xref: /linux/mm/ksm.c (revision bb1c928df78ee6e3665a0d013e74108cc9abf34b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96 
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105 	struct hlist_node link;
106 	struct list_head mm_list;
107 	struct rmap_item *rmap_list;
108 	struct mm_struct *mm;
109 };
110 
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121 	struct mm_slot *mm_slot;
122 	unsigned long address;
123 	struct rmap_item **rmap_list;
124 	unsigned long seqnr;
125 };
126 
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140 	union {
141 		struct rb_node node;	/* when node of stable tree */
142 		struct {		/* when listed for migration */
143 			struct list_head *head;
144 			struct {
145 				struct hlist_node hlist_dup;
146 				struct list_head list;
147 			};
148 		};
149 	};
150 	struct hlist_head hlist;
151 	union {
152 		unsigned long kpfn;
153 		unsigned long chain_prune_time;
154 	};
155 	/*
156 	 * STABLE_NODE_CHAIN can be any negative number in
157 	 * rmap_hlist_len negative range, but better not -1 to be able
158 	 * to reliably detect underflows.
159 	 */
160 #define STABLE_NODE_CHAIN -1024
161 	int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 	int nid;
164 #endif
165 };
166 
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180 	struct rmap_item *rmap_list;
181 	union {
182 		struct anon_vma *anon_vma;	/* when stable */
183 #ifdef CONFIG_NUMA
184 		int nid;		/* when node of unstable tree */
185 #endif
186 	};
187 	struct mm_struct *mm;
188 	unsigned long address;		/* + low bits used for flags below */
189 	unsigned int oldchecksum;	/* when unstable */
190 	union {
191 		struct rb_node node;	/* when node of unstable tree */
192 		struct {		/* when listed from stable tree */
193 			struct stable_node *head;
194 			struct hlist_node hlist;
195 		};
196 	};
197 };
198 
199 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
201 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
202 
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208 
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212 
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215 
216 static struct mm_slot ksm_mm_head = {
217 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220 	.mm_slot = &ksm_mm_head,
221 };
222 
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226 
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229 
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232 
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235 
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238 
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241 
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244 
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247 
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250 
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253 
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256 
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259 
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262 
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes	1U
269 #define ksm_nr_node_ids		1
270 #endif
271 
272 #define KSM_RUN_STOP	0
273 #define KSM_RUN_MERGE	1
274 #define KSM_RUN_UNMERGE	2
275 #define KSM_RUN_OFFLINE	4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278 
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282 
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 		sizeof(struct __struct), __alignof__(struct __struct),\
285 		(__flags), NULL)
286 
287 static int __init ksm_slab_init(void)
288 {
289 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 	if (!rmap_item_cache)
291 		goto out;
292 
293 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 	if (!stable_node_cache)
295 		goto out_free1;
296 
297 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 	if (!mm_slot_cache)
299 		goto out_free2;
300 
301 	return 0;
302 
303 out_free2:
304 	kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 	kmem_cache_destroy(rmap_item_cache);
307 out:
308 	return -ENOMEM;
309 }
310 
311 static void __init ksm_slab_free(void)
312 {
313 	kmem_cache_destroy(mm_slot_cache);
314 	kmem_cache_destroy(stable_node_cache);
315 	kmem_cache_destroy(rmap_item_cache);
316 	mm_slot_cache = NULL;
317 }
318 
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323 
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326 	return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328 
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 					     struct stable_node *chain)
331 {
332 	VM_BUG_ON(is_stable_node_dup(dup));
333 	dup->head = STABLE_NODE_DUP_HEAD;
334 	VM_BUG_ON(!is_stable_node_chain(chain));
335 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 	ksm_stable_node_dups++;
337 }
338 
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341 	VM_BUG_ON(!is_stable_node_dup(dup));
342 	hlist_del(&dup->hlist_dup);
343 	ksm_stable_node_dups--;
344 }
345 
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348 	VM_BUG_ON(is_stable_node_chain(dup));
349 	if (is_stable_node_dup(dup))
350 		__stable_node_dup_del(dup);
351 	else
352 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 	dup->head = NULL;
355 #endif
356 }
357 
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360 	struct rmap_item *rmap_item;
361 
362 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 						__GFP_NORETRY | __GFP_NOWARN);
364 	if (rmap_item)
365 		ksm_rmap_items++;
366 	return rmap_item;
367 }
368 
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371 	ksm_rmap_items--;
372 	rmap_item->mm = NULL;	/* debug safety */
373 	kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375 
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378 	/*
379 	 * The allocation can take too long with GFP_KERNEL when memory is under
380 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
381 	 * grants access to memory reserves, helping to avoid this problem.
382 	 */
383 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385 
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388 	VM_BUG_ON(stable_node->rmap_hlist_len &&
389 		  !is_stable_node_chain(stable_node));
390 	kmem_cache_free(stable_node_cache, stable_node);
391 }
392 
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395 	if (!mm_slot_cache)	/* initialization failed */
396 		return NULL;
397 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399 
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402 	kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404 
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407 	struct mm_slot *slot;
408 
409 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 		if (slot->mm == mm)
411 			return slot;
412 
413 	return NULL;
414 }
415 
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 				    struct mm_slot *mm_slot)
418 {
419 	mm_slot->mm = mm;
420 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422 
423 /*
424  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425  * page tables after it has passed through ksm_exit() - which, if necessary,
426  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
427  * a special flag: they can just back out as soon as mm_users goes to zero.
428  * ksm_test_exit() is used throughout to make this test for exit: in some
429  * places for correctness, in some places just to avoid unnecessary work.
430  */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433 	return atomic_read(&mm->mm_users) == 0;
434 }
435 
436 /*
437  * We use break_ksm to break COW on a ksm page: it's a stripped down
438  *
439  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440  *		put_page(page);
441  *
442  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443  * in case the application has unmapped and remapped mm,addr meanwhile.
444  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
445  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446  *
447  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448  * of the process that owns 'vma'.  We also do not want to enforce
449  * protection keys here anyway.
450  */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453 	struct page *page;
454 	int ret = 0;
455 
456 	do {
457 		cond_resched();
458 		page = follow_page(vma, addr,
459 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 		if (IS_ERR_OR_NULL(page))
461 			break;
462 		if (PageKsm(page))
463 			ret = handle_mm_fault(vma, addr,
464 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 		else
466 			ret = VM_FAULT_WRITE;
467 		put_page(page);
468 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469 	/*
470 	 * We must loop because handle_mm_fault() may back out if there's
471 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 	 *
473 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 	 * COW has been broken, even if the vma does not permit VM_WRITE;
475 	 * but note that a concurrent fault might break PageKsm for us.
476 	 *
477 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 	 * backing file, which also invalidates anonymous pages: that's
479 	 * okay, that truncation will have unmapped the PageKsm for us.
480 	 *
481 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 	 * to user; and ksmd, having no mm, would never be chosen for that.
485 	 *
486 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 	 * even ksmd can fail in this way - though it's usually breaking ksm
489 	 * just to undo a merge it made a moment before, so unlikely to oom.
490 	 *
491 	 * That's a pity: we might therefore have more kernel pages allocated
492 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 	 * will retry to break_cow on each pass, so should recover the page
494 	 * in due course.  The important thing is to not let VM_MERGEABLE
495 	 * be cleared while any such pages might remain in the area.
496 	 */
497 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499 
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 		unsigned long addr)
502 {
503 	struct vm_area_struct *vma;
504 	if (ksm_test_exit(mm))
505 		return NULL;
506 	vma = find_vma(mm, addr);
507 	if (!vma || vma->vm_start > addr)
508 		return NULL;
509 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 		return NULL;
511 	return vma;
512 }
513 
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516 	struct mm_struct *mm = rmap_item->mm;
517 	unsigned long addr = rmap_item->address;
518 	struct vm_area_struct *vma;
519 
520 	/*
521 	 * It is not an accident that whenever we want to break COW
522 	 * to undo, we also need to drop a reference to the anon_vma.
523 	 */
524 	put_anon_vma(rmap_item->anon_vma);
525 
526 	down_read(&mm->mmap_sem);
527 	vma = find_mergeable_vma(mm, addr);
528 	if (vma)
529 		break_ksm(vma, addr);
530 	up_read(&mm->mmap_sem);
531 }
532 
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535 	struct mm_struct *mm = rmap_item->mm;
536 	unsigned long addr = rmap_item->address;
537 	struct vm_area_struct *vma;
538 	struct page *page;
539 
540 	down_read(&mm->mmap_sem);
541 	vma = find_mergeable_vma(mm, addr);
542 	if (!vma)
543 		goto out;
544 
545 	page = follow_page(vma, addr, FOLL_GET);
546 	if (IS_ERR_OR_NULL(page))
547 		goto out;
548 	if (PageAnon(page)) {
549 		flush_anon_page(vma, page, addr);
550 		flush_dcache_page(page);
551 	} else {
552 		put_page(page);
553 out:
554 		page = NULL;
555 	}
556 	up_read(&mm->mmap_sem);
557 	return page;
558 }
559 
560 /*
561  * This helper is used for getting right index into array of tree roots.
562  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564  * every node has its own stable and unstable tree.
565  */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570 
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 						   struct rb_root *root)
573 {
574 	struct stable_node *chain = alloc_stable_node();
575 	VM_BUG_ON(is_stable_node_chain(dup));
576 	if (likely(chain)) {
577 		INIT_HLIST_HEAD(&chain->hlist);
578 		chain->chain_prune_time = jiffies;
579 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 		chain->nid = -1; /* debug */
582 #endif
583 		ksm_stable_node_chains++;
584 
585 		/*
586 		 * Put the stable node chain in the first dimension of
587 		 * the stable tree and at the same time remove the old
588 		 * stable node.
589 		 */
590 		rb_replace_node(&dup->node, &chain->node, root);
591 
592 		/*
593 		 * Move the old stable node to the second dimension
594 		 * queued in the hlist_dup. The invariant is that all
595 		 * dup stable_nodes in the chain->hlist point to pages
596 		 * that are wrprotected and have the exact same
597 		 * content.
598 		 */
599 		stable_node_chain_add_dup(dup, chain);
600 	}
601 	return chain;
602 }
603 
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 					  struct rb_root *root)
606 {
607 	rb_erase(&chain->node, root);
608 	free_stable_node(chain);
609 	ksm_stable_node_chains--;
610 }
611 
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614 	struct rmap_item *rmap_item;
615 
616 	/* check it's not STABLE_NODE_CHAIN or negative */
617 	BUG_ON(stable_node->rmap_hlist_len < 0);
618 
619 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 		if (rmap_item->hlist.next)
621 			ksm_pages_sharing--;
622 		else
623 			ksm_pages_shared--;
624 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 		stable_node->rmap_hlist_len--;
626 		put_anon_vma(rmap_item->anon_vma);
627 		rmap_item->address &= PAGE_MASK;
628 		cond_resched();
629 	}
630 
631 	/*
632 	 * We need the second aligned pointer of the migrate_nodes
633 	 * list_head to stay clear from the rb_parent_color union
634 	 * (aligned and different than any node) and also different
635 	 * from &migrate_nodes. This will verify that future list.h changes
636 	 * don't break STABLE_NODE_DUP_HEAD.
637 	 */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642 
643 	if (stable_node->head == &migrate_nodes)
644 		list_del(&stable_node->list);
645 	else
646 		stable_node_dup_del(stable_node);
647 	free_stable_node(stable_node);
648 }
649 
650 /*
651  * get_ksm_page: checks if the page indicated by the stable node
652  * is still its ksm page, despite having held no reference to it.
653  * In which case we can trust the content of the page, and it
654  * returns the gotten page; but if the page has now been zapped,
655  * remove the stale node from the stable tree and return NULL.
656  * But beware, the stable node's page might be being migrated.
657  *
658  * You would expect the stable_node to hold a reference to the ksm page.
659  * But if it increments the page's count, swapping out has to wait for
660  * ksmd to come around again before it can free the page, which may take
661  * seconds or even minutes: much too unresponsive.  So instead we use a
662  * "keyhole reference": access to the ksm page from the stable node peeps
663  * out through its keyhole to see if that page still holds the right key,
664  * pointing back to this stable node.  This relies on freeing a PageAnon
665  * page to reset its page->mapping to NULL, and relies on no other use of
666  * a page to put something that might look like our key in page->mapping.
667  * is on its way to being freed; but it is an anomaly to bear in mind.
668  */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671 	struct page *page;
672 	void *expected_mapping;
673 	unsigned long kpfn;
674 
675 	expected_mapping = (void *)((unsigned long)stable_node |
676 					PAGE_MAPPING_KSM);
677 again:
678 	kpfn = READ_ONCE(stable_node->kpfn);
679 	page = pfn_to_page(kpfn);
680 
681 	/*
682 	 * page is computed from kpfn, so on most architectures reading
683 	 * page->mapping is naturally ordered after reading node->kpfn,
684 	 * but on Alpha we need to be more careful.
685 	 */
686 	smp_read_barrier_depends();
687 	if (READ_ONCE(page->mapping) != expected_mapping)
688 		goto stale;
689 
690 	/*
691 	 * We cannot do anything with the page while its refcount is 0.
692 	 * Usually 0 means free, or tail of a higher-order page: in which
693 	 * case this node is no longer referenced, and should be freed;
694 	 * however, it might mean that the page is under page_freeze_refs().
695 	 * The __remove_mapping() case is easy, again the node is now stale;
696 	 * but if page is swapcache in migrate_page_move_mapping(), it might
697 	 * still be our page, in which case it's essential to keep the node.
698 	 */
699 	while (!get_page_unless_zero(page)) {
700 		/*
701 		 * Another check for page->mapping != expected_mapping would
702 		 * work here too.  We have chosen the !PageSwapCache test to
703 		 * optimize the common case, when the page is or is about to
704 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 		 * in the freeze_refs section of __remove_mapping(); but Anon
706 		 * page->mapping reset to NULL later, in free_pages_prepare().
707 		 */
708 		if (!PageSwapCache(page))
709 			goto stale;
710 		cpu_relax();
711 	}
712 
713 	if (READ_ONCE(page->mapping) != expected_mapping) {
714 		put_page(page);
715 		goto stale;
716 	}
717 
718 	if (lock_it) {
719 		lock_page(page);
720 		if (READ_ONCE(page->mapping) != expected_mapping) {
721 			unlock_page(page);
722 			put_page(page);
723 			goto stale;
724 		}
725 	}
726 	return page;
727 
728 stale:
729 	/*
730 	 * We come here from above when page->mapping or !PageSwapCache
731 	 * suggests that the node is stale; but it might be under migration.
732 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 	 * before checking whether node->kpfn has been changed.
734 	 */
735 	smp_rmb();
736 	if (READ_ONCE(stable_node->kpfn) != kpfn)
737 		goto again;
738 	remove_node_from_stable_tree(stable_node);
739 	return NULL;
740 }
741 
742 /*
743  * Removing rmap_item from stable or unstable tree.
744  * This function will clean the information from the stable/unstable tree.
745  */
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747 {
748 	if (rmap_item->address & STABLE_FLAG) {
749 		struct stable_node *stable_node;
750 		struct page *page;
751 
752 		stable_node = rmap_item->head;
753 		page = get_ksm_page(stable_node, true);
754 		if (!page)
755 			goto out;
756 
757 		hlist_del(&rmap_item->hlist);
758 		unlock_page(page);
759 		put_page(page);
760 
761 		if (!hlist_empty(&stable_node->hlist))
762 			ksm_pages_sharing--;
763 		else
764 			ksm_pages_shared--;
765 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 		stable_node->rmap_hlist_len--;
767 
768 		put_anon_vma(rmap_item->anon_vma);
769 		rmap_item->address &= PAGE_MASK;
770 
771 	} else if (rmap_item->address & UNSTABLE_FLAG) {
772 		unsigned char age;
773 		/*
774 		 * Usually ksmd can and must skip the rb_erase, because
775 		 * root_unstable_tree was already reset to RB_ROOT.
776 		 * But be careful when an mm is exiting: do the rb_erase
777 		 * if this rmap_item was inserted by this scan, rather
778 		 * than left over from before.
779 		 */
780 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781 		BUG_ON(age > 1);
782 		if (!age)
783 			rb_erase(&rmap_item->node,
784 				 root_unstable_tree + NUMA(rmap_item->nid));
785 		ksm_pages_unshared--;
786 		rmap_item->address &= PAGE_MASK;
787 	}
788 out:
789 	cond_resched();		/* we're called from many long loops */
790 }
791 
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793 				       struct rmap_item **rmap_list)
794 {
795 	while (*rmap_list) {
796 		struct rmap_item *rmap_item = *rmap_list;
797 		*rmap_list = rmap_item->rmap_list;
798 		remove_rmap_item_from_tree(rmap_item);
799 		free_rmap_item(rmap_item);
800 	}
801 }
802 
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 			     unsigned long start, unsigned long end)
818 {
819 	unsigned long addr;
820 	int err = 0;
821 
822 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 		if (ksm_test_exit(vma->vm_mm))
824 			break;
825 		if (signal_pending(current))
826 			err = -ERESTARTSYS;
827 		else
828 			err = break_ksm(vma, addr);
829 	}
830 	return err;
831 }
832 
833 #ifdef CONFIG_SYSFS
834 /*
835  * Only called through the sysfs control interface:
836  */
837 static int remove_stable_node(struct stable_node *stable_node)
838 {
839 	struct page *page;
840 	int err;
841 
842 	page = get_ksm_page(stable_node, true);
843 	if (!page) {
844 		/*
845 		 * get_ksm_page did remove_node_from_stable_tree itself.
846 		 */
847 		return 0;
848 	}
849 
850 	if (WARN_ON_ONCE(page_mapped(page))) {
851 		/*
852 		 * This should not happen: but if it does, just refuse to let
853 		 * merge_across_nodes be switched - there is no need to panic.
854 		 */
855 		err = -EBUSY;
856 	} else {
857 		/*
858 		 * The stable node did not yet appear stale to get_ksm_page(),
859 		 * since that allows for an unmapped ksm page to be recognized
860 		 * right up until it is freed; but the node is safe to remove.
861 		 * This page might be in a pagevec waiting to be freed,
862 		 * or it might be PageSwapCache (perhaps under writeback),
863 		 * or it might have been removed from swapcache a moment ago.
864 		 */
865 		set_page_stable_node(page, NULL);
866 		remove_node_from_stable_tree(stable_node);
867 		err = 0;
868 	}
869 
870 	unlock_page(page);
871 	put_page(page);
872 	return err;
873 }
874 
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876 				    struct rb_root *root)
877 {
878 	struct stable_node *dup;
879 	struct hlist_node *hlist_safe;
880 
881 	if (!is_stable_node_chain(stable_node)) {
882 		VM_BUG_ON(is_stable_node_dup(stable_node));
883 		if (remove_stable_node(stable_node))
884 			return true;
885 		else
886 			return false;
887 	}
888 
889 	hlist_for_each_entry_safe(dup, hlist_safe,
890 				  &stable_node->hlist, hlist_dup) {
891 		VM_BUG_ON(!is_stable_node_dup(dup));
892 		if (remove_stable_node(dup))
893 			return true;
894 	}
895 	BUG_ON(!hlist_empty(&stable_node->hlist));
896 	free_stable_node_chain(stable_node, root);
897 	return false;
898 }
899 
900 static int remove_all_stable_nodes(void)
901 {
902 	struct stable_node *stable_node, *next;
903 	int nid;
904 	int err = 0;
905 
906 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907 		while (root_stable_tree[nid].rb_node) {
908 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 						struct stable_node, node);
910 			if (remove_stable_node_chain(stable_node,
911 						     root_stable_tree + nid)) {
912 				err = -EBUSY;
913 				break;	/* proceed to next nid */
914 			}
915 			cond_resched();
916 		}
917 	}
918 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919 		if (remove_stable_node(stable_node))
920 			err = -EBUSY;
921 		cond_resched();
922 	}
923 	return err;
924 }
925 
926 static int unmerge_and_remove_all_rmap_items(void)
927 {
928 	struct mm_slot *mm_slot;
929 	struct mm_struct *mm;
930 	struct vm_area_struct *vma;
931 	int err = 0;
932 
933 	spin_lock(&ksm_mmlist_lock);
934 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935 						struct mm_slot, mm_list);
936 	spin_unlock(&ksm_mmlist_lock);
937 
938 	for (mm_slot = ksm_scan.mm_slot;
939 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940 		mm = mm_slot->mm;
941 		down_read(&mm->mmap_sem);
942 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
943 			if (ksm_test_exit(mm))
944 				break;
945 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 				continue;
947 			err = unmerge_ksm_pages(vma,
948 						vma->vm_start, vma->vm_end);
949 			if (err)
950 				goto error;
951 		}
952 
953 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954 		up_read(&mm->mmap_sem);
955 
956 		spin_lock(&ksm_mmlist_lock);
957 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958 						struct mm_slot, mm_list);
959 		if (ksm_test_exit(mm)) {
960 			hash_del(&mm_slot->link);
961 			list_del(&mm_slot->mm_list);
962 			spin_unlock(&ksm_mmlist_lock);
963 
964 			free_mm_slot(mm_slot);
965 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966 			mmdrop(mm);
967 		} else
968 			spin_unlock(&ksm_mmlist_lock);
969 	}
970 
971 	/* Clean up stable nodes, but don't worry if some are still busy */
972 	remove_all_stable_nodes();
973 	ksm_scan.seqnr = 0;
974 	return 0;
975 
976 error:
977 	up_read(&mm->mmap_sem);
978 	spin_lock(&ksm_mmlist_lock);
979 	ksm_scan.mm_slot = &ksm_mm_head;
980 	spin_unlock(&ksm_mmlist_lock);
981 	return err;
982 }
983 #endif /* CONFIG_SYSFS */
984 
985 static u32 calc_checksum(struct page *page)
986 {
987 	u32 checksum;
988 	void *addr = kmap_atomic(page);
989 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990 	kunmap_atomic(addr);
991 	return checksum;
992 }
993 
994 static int memcmp_pages(struct page *page1, struct page *page2)
995 {
996 	char *addr1, *addr2;
997 	int ret;
998 
999 	addr1 = kmap_atomic(page1);
1000 	addr2 = kmap_atomic(page2);
1001 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1002 	kunmap_atomic(addr2);
1003 	kunmap_atomic(addr1);
1004 	return ret;
1005 }
1006 
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1008 {
1009 	return !memcmp_pages(page1, page2);
1010 }
1011 
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 			      pte_t *orig_pte)
1014 {
1015 	struct mm_struct *mm = vma->vm_mm;
1016 	struct page_vma_mapped_walk pvmw = {
1017 		.page = page,
1018 		.vma = vma,
1019 	};
1020 	int swapped;
1021 	int err = -EFAULT;
1022 	unsigned long mmun_start;	/* For mmu_notifiers */
1023 	unsigned long mmun_end;		/* For mmu_notifiers */
1024 
1025 	pvmw.address = page_address_in_vma(page, vma);
1026 	if (pvmw.address == -EFAULT)
1027 		goto out;
1028 
1029 	BUG_ON(PageTransCompound(page));
1030 
1031 	mmun_start = pvmw.address;
1032 	mmun_end   = pvmw.address + PAGE_SIZE;
1033 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034 
1035 	if (!page_vma_mapped_walk(&pvmw))
1036 		goto out_mn;
1037 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 		goto out_unlock;
1039 
1040 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
1042 		pte_t entry;
1043 
1044 		swapped = PageSwapCache(page);
1045 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1046 		/*
1047 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1048 		 * take any lock, therefore the check that we are going to make
1049 		 * with the pagecount against the mapcount is racey and
1050 		 * O_DIRECT can happen right after the check.
1051 		 * So we clear the pte and flush the tlb before the check
1052 		 * this assure us that no O_DIRECT can happen after the check
1053 		 * or in the middle of the check.
1054 		 */
1055 		entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
1056 		/*
1057 		 * Check that no O_DIRECT or similar I/O is in progress on the
1058 		 * page
1059 		 */
1060 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1061 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1062 			goto out_unlock;
1063 		}
1064 		if (pte_dirty(entry))
1065 			set_page_dirty(page);
1066 
1067 		if (pte_protnone(entry))
1068 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1069 		else
1070 			entry = pte_mkclean(pte_wrprotect(entry));
1071 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1072 	}
1073 	*orig_pte = *pvmw.pte;
1074 	err = 0;
1075 
1076 out_unlock:
1077 	page_vma_mapped_walk_done(&pvmw);
1078 out_mn:
1079 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1080 out:
1081 	return err;
1082 }
1083 
1084 /**
1085  * replace_page - replace page in vma by new ksm page
1086  * @vma:      vma that holds the pte pointing to page
1087  * @page:     the page we are replacing by kpage
1088  * @kpage:    the ksm page we replace page by
1089  * @orig_pte: the original value of the pte
1090  *
1091  * Returns 0 on success, -EFAULT on failure.
1092  */
1093 static int replace_page(struct vm_area_struct *vma, struct page *page,
1094 			struct page *kpage, pte_t orig_pte)
1095 {
1096 	struct mm_struct *mm = vma->vm_mm;
1097 	pmd_t *pmd;
1098 	pte_t *ptep;
1099 	pte_t newpte;
1100 	spinlock_t *ptl;
1101 	unsigned long addr;
1102 	int err = -EFAULT;
1103 	unsigned long mmun_start;	/* For mmu_notifiers */
1104 	unsigned long mmun_end;		/* For mmu_notifiers */
1105 
1106 	addr = page_address_in_vma(page, vma);
1107 	if (addr == -EFAULT)
1108 		goto out;
1109 
1110 	pmd = mm_find_pmd(mm, addr);
1111 	if (!pmd)
1112 		goto out;
1113 
1114 	mmun_start = addr;
1115 	mmun_end   = addr + PAGE_SIZE;
1116 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1117 
1118 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 	if (!pte_same(*ptep, orig_pte)) {
1120 		pte_unmap_unlock(ptep, ptl);
1121 		goto out_mn;
1122 	}
1123 
1124 	/*
1125 	 * No need to check ksm_use_zero_pages here: we can only have a
1126 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1127 	 */
1128 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1129 		get_page(kpage);
1130 		page_add_anon_rmap(kpage, vma, addr, false);
1131 		newpte = mk_pte(kpage, vma->vm_page_prot);
1132 	} else {
1133 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1134 					       vma->vm_page_prot));
1135 	}
1136 
1137 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1138 	ptep_clear_flush_notify(vma, addr, ptep);
1139 	set_pte_at_notify(mm, addr, ptep, newpte);
1140 
1141 	page_remove_rmap(page, false);
1142 	if (!page_mapped(page))
1143 		try_to_free_swap(page);
1144 	put_page(page);
1145 
1146 	pte_unmap_unlock(ptep, ptl);
1147 	err = 0;
1148 out_mn:
1149 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1150 out:
1151 	return err;
1152 }
1153 
1154 /*
1155  * try_to_merge_one_page - take two pages and merge them into one
1156  * @vma: the vma that holds the pte pointing to page
1157  * @page: the PageAnon page that we want to replace with kpage
1158  * @kpage: the PageKsm page that we want to map instead of page,
1159  *         or NULL the first time when we want to use page as kpage.
1160  *
1161  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1162  */
1163 static int try_to_merge_one_page(struct vm_area_struct *vma,
1164 				 struct page *page, struct page *kpage)
1165 {
1166 	pte_t orig_pte = __pte(0);
1167 	int err = -EFAULT;
1168 
1169 	if (page == kpage)			/* ksm page forked */
1170 		return 0;
1171 
1172 	if (!PageAnon(page))
1173 		goto out;
1174 
1175 	/*
1176 	 * We need the page lock to read a stable PageSwapCache in
1177 	 * write_protect_page().  We use trylock_page() instead of
1178 	 * lock_page() because we don't want to wait here - we
1179 	 * prefer to continue scanning and merging different pages,
1180 	 * then come back to this page when it is unlocked.
1181 	 */
1182 	if (!trylock_page(page))
1183 		goto out;
1184 
1185 	if (PageTransCompound(page)) {
1186 		if (split_huge_page(page))
1187 			goto out_unlock;
1188 	}
1189 
1190 	/*
1191 	 * If this anonymous page is mapped only here, its pte may need
1192 	 * to be write-protected.  If it's mapped elsewhere, all of its
1193 	 * ptes are necessarily already write-protected.  But in either
1194 	 * case, we need to lock and check page_count is not raised.
1195 	 */
1196 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1197 		if (!kpage) {
1198 			/*
1199 			 * While we hold page lock, upgrade page from
1200 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1201 			 * stable_tree_insert() will update stable_node.
1202 			 */
1203 			set_page_stable_node(page, NULL);
1204 			mark_page_accessed(page);
1205 			/*
1206 			 * Page reclaim just frees a clean page with no dirty
1207 			 * ptes: make sure that the ksm page would be swapped.
1208 			 */
1209 			if (!PageDirty(page))
1210 				SetPageDirty(page);
1211 			err = 0;
1212 		} else if (pages_identical(page, kpage))
1213 			err = replace_page(vma, page, kpage, orig_pte);
1214 	}
1215 
1216 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1217 		munlock_vma_page(page);
1218 		if (!PageMlocked(kpage)) {
1219 			unlock_page(page);
1220 			lock_page(kpage);
1221 			mlock_vma_page(kpage);
1222 			page = kpage;		/* for final unlock */
1223 		}
1224 	}
1225 
1226 out_unlock:
1227 	unlock_page(page);
1228 out:
1229 	return err;
1230 }
1231 
1232 /*
1233  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1234  * but no new kernel page is allocated: kpage must already be a ksm page.
1235  *
1236  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1237  */
1238 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1239 				      struct page *page, struct page *kpage)
1240 {
1241 	struct mm_struct *mm = rmap_item->mm;
1242 	struct vm_area_struct *vma;
1243 	int err = -EFAULT;
1244 
1245 	down_read(&mm->mmap_sem);
1246 	vma = find_mergeable_vma(mm, rmap_item->address);
1247 	if (!vma)
1248 		goto out;
1249 
1250 	err = try_to_merge_one_page(vma, page, kpage);
1251 	if (err)
1252 		goto out;
1253 
1254 	/* Unstable nid is in union with stable anon_vma: remove first */
1255 	remove_rmap_item_from_tree(rmap_item);
1256 
1257 	/* Must get reference to anon_vma while still holding mmap_sem */
1258 	rmap_item->anon_vma = vma->anon_vma;
1259 	get_anon_vma(vma->anon_vma);
1260 out:
1261 	up_read(&mm->mmap_sem);
1262 	return err;
1263 }
1264 
1265 /*
1266  * try_to_merge_two_pages - take two identical pages and prepare them
1267  * to be merged into one page.
1268  *
1269  * This function returns the kpage if we successfully merged two identical
1270  * pages into one ksm page, NULL otherwise.
1271  *
1272  * Note that this function upgrades page to ksm page: if one of the pages
1273  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1274  */
1275 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1276 					   struct page *page,
1277 					   struct rmap_item *tree_rmap_item,
1278 					   struct page *tree_page)
1279 {
1280 	int err;
1281 
1282 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1283 	if (!err) {
1284 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1285 							tree_page, page);
1286 		/*
1287 		 * If that fails, we have a ksm page with only one pte
1288 		 * pointing to it: so break it.
1289 		 */
1290 		if (err)
1291 			break_cow(rmap_item);
1292 	}
1293 	return err ? NULL : page;
1294 }
1295 
1296 static __always_inline
1297 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1298 {
1299 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1300 	/*
1301 	 * Check that at least one mapping still exists, otherwise
1302 	 * there's no much point to merge and share with this
1303 	 * stable_node, as the underlying tree_page of the other
1304 	 * sharer is going to be freed soon.
1305 	 */
1306 	return stable_node->rmap_hlist_len &&
1307 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1308 }
1309 
1310 static __always_inline
1311 bool is_page_sharing_candidate(struct stable_node *stable_node)
1312 {
1313 	return __is_page_sharing_candidate(stable_node, 0);
1314 }
1315 
1316 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1317 			     struct stable_node **_stable_node,
1318 			     struct rb_root *root,
1319 			     bool prune_stale_stable_nodes)
1320 {
1321 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1322 	struct hlist_node *hlist_safe;
1323 	struct page *_tree_page, *tree_page = NULL;
1324 	int nr = 0;
1325 	int found_rmap_hlist_len;
1326 
1327 	if (!prune_stale_stable_nodes ||
1328 	    time_before(jiffies, stable_node->chain_prune_time +
1329 			msecs_to_jiffies(
1330 				ksm_stable_node_chains_prune_millisecs)))
1331 		prune_stale_stable_nodes = false;
1332 	else
1333 		stable_node->chain_prune_time = jiffies;
1334 
1335 	hlist_for_each_entry_safe(dup, hlist_safe,
1336 				  &stable_node->hlist, hlist_dup) {
1337 		cond_resched();
1338 		/*
1339 		 * We must walk all stable_node_dup to prune the stale
1340 		 * stable nodes during lookup.
1341 		 *
1342 		 * get_ksm_page can drop the nodes from the
1343 		 * stable_node->hlist if they point to freed pages
1344 		 * (that's why we do a _safe walk). The "dup"
1345 		 * stable_node parameter itself will be freed from
1346 		 * under us if it returns NULL.
1347 		 */
1348 		_tree_page = get_ksm_page(dup, false);
1349 		if (!_tree_page)
1350 			continue;
1351 		nr += 1;
1352 		if (is_page_sharing_candidate(dup)) {
1353 			if (!found ||
1354 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1355 				if (found)
1356 					put_page(tree_page);
1357 				found = dup;
1358 				found_rmap_hlist_len = found->rmap_hlist_len;
1359 				tree_page = _tree_page;
1360 
1361 				/* skip put_page for found dup */
1362 				if (!prune_stale_stable_nodes)
1363 					break;
1364 				continue;
1365 			}
1366 		}
1367 		put_page(_tree_page);
1368 	}
1369 
1370 	if (found) {
1371 		/*
1372 		 * nr is counting all dups in the chain only if
1373 		 * prune_stale_stable_nodes is true, otherwise we may
1374 		 * break the loop at nr == 1 even if there are
1375 		 * multiple entries.
1376 		 */
1377 		if (prune_stale_stable_nodes && nr == 1) {
1378 			/*
1379 			 * If there's not just one entry it would
1380 			 * corrupt memory, better BUG_ON. In KSM
1381 			 * context with no lock held it's not even
1382 			 * fatal.
1383 			 */
1384 			BUG_ON(stable_node->hlist.first->next);
1385 
1386 			/*
1387 			 * There's just one entry and it is below the
1388 			 * deduplication limit so drop the chain.
1389 			 */
1390 			rb_replace_node(&stable_node->node, &found->node,
1391 					root);
1392 			free_stable_node(stable_node);
1393 			ksm_stable_node_chains--;
1394 			ksm_stable_node_dups--;
1395 			/*
1396 			 * NOTE: the caller depends on the stable_node
1397 			 * to be equal to stable_node_dup if the chain
1398 			 * was collapsed.
1399 			 */
1400 			*_stable_node = found;
1401 			/*
1402 			 * Just for robustneess as stable_node is
1403 			 * otherwise left as a stable pointer, the
1404 			 * compiler shall optimize it away at build
1405 			 * time.
1406 			 */
1407 			stable_node = NULL;
1408 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1409 			   __is_page_sharing_candidate(found, 1)) {
1410 			/*
1411 			 * If the found stable_node dup can accept one
1412 			 * more future merge (in addition to the one
1413 			 * that is underway) and is not at the head of
1414 			 * the chain, put it there so next search will
1415 			 * be quicker in the !prune_stale_stable_nodes
1416 			 * case.
1417 			 *
1418 			 * NOTE: it would be inaccurate to use nr > 1
1419 			 * instead of checking the hlist.first pointer
1420 			 * directly, because in the
1421 			 * prune_stale_stable_nodes case "nr" isn't
1422 			 * the position of the found dup in the chain,
1423 			 * but the total number of dups in the chain.
1424 			 */
1425 			hlist_del(&found->hlist_dup);
1426 			hlist_add_head(&found->hlist_dup,
1427 				       &stable_node->hlist);
1428 		}
1429 	}
1430 
1431 	*_stable_node_dup = found;
1432 	return tree_page;
1433 }
1434 
1435 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1436 					       struct rb_root *root)
1437 {
1438 	if (!is_stable_node_chain(stable_node))
1439 		return stable_node;
1440 	if (hlist_empty(&stable_node->hlist)) {
1441 		free_stable_node_chain(stable_node, root);
1442 		return NULL;
1443 	}
1444 	return hlist_entry(stable_node->hlist.first,
1445 			   typeof(*stable_node), hlist_dup);
1446 }
1447 
1448 /*
1449  * Like for get_ksm_page, this function can free the *_stable_node and
1450  * *_stable_node_dup if the returned tree_page is NULL.
1451  *
1452  * It can also free and overwrite *_stable_node with the found
1453  * stable_node_dup if the chain is collapsed (in which case
1454  * *_stable_node will be equal to *_stable_node_dup like if the chain
1455  * never existed). It's up to the caller to verify tree_page is not
1456  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1457  *
1458  * *_stable_node_dup is really a second output parameter of this
1459  * function and will be overwritten in all cases, the caller doesn't
1460  * need to initialize it.
1461  */
1462 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1463 					struct stable_node **_stable_node,
1464 					struct rb_root *root,
1465 					bool prune_stale_stable_nodes)
1466 {
1467 	struct stable_node *stable_node = *_stable_node;
1468 	if (!is_stable_node_chain(stable_node)) {
1469 		if (is_page_sharing_candidate(stable_node)) {
1470 			*_stable_node_dup = stable_node;
1471 			return get_ksm_page(stable_node, false);
1472 		}
1473 		/*
1474 		 * _stable_node_dup set to NULL means the stable_node
1475 		 * reached the ksm_max_page_sharing limit.
1476 		 */
1477 		*_stable_node_dup = NULL;
1478 		return NULL;
1479 	}
1480 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1481 			       prune_stale_stable_nodes);
1482 }
1483 
1484 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1485 						struct stable_node **s_n,
1486 						struct rb_root *root)
1487 {
1488 	return __stable_node_chain(s_n_d, s_n, root, true);
1489 }
1490 
1491 static __always_inline struct page *chain(struct stable_node **s_n_d,
1492 					  struct stable_node *s_n,
1493 					  struct rb_root *root)
1494 {
1495 	struct stable_node *old_stable_node = s_n;
1496 	struct page *tree_page;
1497 
1498 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1499 	/* not pruning dups so s_n cannot have changed */
1500 	VM_BUG_ON(s_n != old_stable_node);
1501 	return tree_page;
1502 }
1503 
1504 /*
1505  * stable_tree_search - search for page inside the stable tree
1506  *
1507  * This function checks if there is a page inside the stable tree
1508  * with identical content to the page that we are scanning right now.
1509  *
1510  * This function returns the stable tree node of identical content if found,
1511  * NULL otherwise.
1512  */
1513 static struct page *stable_tree_search(struct page *page)
1514 {
1515 	int nid;
1516 	struct rb_root *root;
1517 	struct rb_node **new;
1518 	struct rb_node *parent;
1519 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1520 	struct stable_node *page_node;
1521 
1522 	page_node = page_stable_node(page);
1523 	if (page_node && page_node->head != &migrate_nodes) {
1524 		/* ksm page forked */
1525 		get_page(page);
1526 		return page;
1527 	}
1528 
1529 	nid = get_kpfn_nid(page_to_pfn(page));
1530 	root = root_stable_tree + nid;
1531 again:
1532 	new = &root->rb_node;
1533 	parent = NULL;
1534 
1535 	while (*new) {
1536 		struct page *tree_page;
1537 		int ret;
1538 
1539 		cond_resched();
1540 		stable_node = rb_entry(*new, struct stable_node, node);
1541 		stable_node_any = NULL;
1542 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1543 		/*
1544 		 * NOTE: stable_node may have been freed by
1545 		 * chain_prune() if the returned stable_node_dup is
1546 		 * not NULL. stable_node_dup may have been inserted in
1547 		 * the rbtree instead as a regular stable_node (in
1548 		 * order to collapse the stable_node chain if a single
1549 		 * stable_node dup was found in it). In such case the
1550 		 * stable_node is overwritten by the calleee to point
1551 		 * to the stable_node_dup that was collapsed in the
1552 		 * stable rbtree and stable_node will be equal to
1553 		 * stable_node_dup like if the chain never existed.
1554 		 */
1555 		if (!stable_node_dup) {
1556 			/*
1557 			 * Either all stable_node dups were full in
1558 			 * this stable_node chain, or this chain was
1559 			 * empty and should be rb_erased.
1560 			 */
1561 			stable_node_any = stable_node_dup_any(stable_node,
1562 							      root);
1563 			if (!stable_node_any) {
1564 				/* rb_erase just run */
1565 				goto again;
1566 			}
1567 			/*
1568 			 * Take any of the stable_node dups page of
1569 			 * this stable_node chain to let the tree walk
1570 			 * continue. All KSM pages belonging to the
1571 			 * stable_node dups in a stable_node chain
1572 			 * have the same content and they're
1573 			 * wrprotected at all times. Any will work
1574 			 * fine to continue the walk.
1575 			 */
1576 			tree_page = get_ksm_page(stable_node_any, false);
1577 		}
1578 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1579 		if (!tree_page) {
1580 			/*
1581 			 * If we walked over a stale stable_node,
1582 			 * get_ksm_page() will call rb_erase() and it
1583 			 * may rebalance the tree from under us. So
1584 			 * restart the search from scratch. Returning
1585 			 * NULL would be safe too, but we'd generate
1586 			 * false negative insertions just because some
1587 			 * stable_node was stale.
1588 			 */
1589 			goto again;
1590 		}
1591 
1592 		ret = memcmp_pages(page, tree_page);
1593 		put_page(tree_page);
1594 
1595 		parent = *new;
1596 		if (ret < 0)
1597 			new = &parent->rb_left;
1598 		else if (ret > 0)
1599 			new = &parent->rb_right;
1600 		else {
1601 			if (page_node) {
1602 				VM_BUG_ON(page_node->head != &migrate_nodes);
1603 				/*
1604 				 * Test if the migrated page should be merged
1605 				 * into a stable node dup. If the mapcount is
1606 				 * 1 we can migrate it with another KSM page
1607 				 * without adding it to the chain.
1608 				 */
1609 				if (page_mapcount(page) > 1)
1610 					goto chain_append;
1611 			}
1612 
1613 			if (!stable_node_dup) {
1614 				/*
1615 				 * If the stable_node is a chain and
1616 				 * we got a payload match in memcmp
1617 				 * but we cannot merge the scanned
1618 				 * page in any of the existing
1619 				 * stable_node dups because they're
1620 				 * all full, we need to wait the
1621 				 * scanned page to find itself a match
1622 				 * in the unstable tree to create a
1623 				 * brand new KSM page to add later to
1624 				 * the dups of this stable_node.
1625 				 */
1626 				return NULL;
1627 			}
1628 
1629 			/*
1630 			 * Lock and unlock the stable_node's page (which
1631 			 * might already have been migrated) so that page
1632 			 * migration is sure to notice its raised count.
1633 			 * It would be more elegant to return stable_node
1634 			 * than kpage, but that involves more changes.
1635 			 */
1636 			tree_page = get_ksm_page(stable_node_dup, true);
1637 			if (unlikely(!tree_page))
1638 				/*
1639 				 * The tree may have been rebalanced,
1640 				 * so re-evaluate parent and new.
1641 				 */
1642 				goto again;
1643 			unlock_page(tree_page);
1644 
1645 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1646 			    NUMA(stable_node_dup->nid)) {
1647 				put_page(tree_page);
1648 				goto replace;
1649 			}
1650 			return tree_page;
1651 		}
1652 	}
1653 
1654 	if (!page_node)
1655 		return NULL;
1656 
1657 	list_del(&page_node->list);
1658 	DO_NUMA(page_node->nid = nid);
1659 	rb_link_node(&page_node->node, parent, new);
1660 	rb_insert_color(&page_node->node, root);
1661 out:
1662 	if (is_page_sharing_candidate(page_node)) {
1663 		get_page(page);
1664 		return page;
1665 	} else
1666 		return NULL;
1667 
1668 replace:
1669 	/*
1670 	 * If stable_node was a chain and chain_prune collapsed it,
1671 	 * stable_node has been updated to be the new regular
1672 	 * stable_node. A collapse of the chain is indistinguishable
1673 	 * from the case there was no chain in the stable
1674 	 * rbtree. Otherwise stable_node is the chain and
1675 	 * stable_node_dup is the dup to replace.
1676 	 */
1677 	if (stable_node_dup == stable_node) {
1678 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1679 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1680 		/* there is no chain */
1681 		if (page_node) {
1682 			VM_BUG_ON(page_node->head != &migrate_nodes);
1683 			list_del(&page_node->list);
1684 			DO_NUMA(page_node->nid = nid);
1685 			rb_replace_node(&stable_node_dup->node,
1686 					&page_node->node,
1687 					root);
1688 			if (is_page_sharing_candidate(page_node))
1689 				get_page(page);
1690 			else
1691 				page = NULL;
1692 		} else {
1693 			rb_erase(&stable_node_dup->node, root);
1694 			page = NULL;
1695 		}
1696 	} else {
1697 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1698 		__stable_node_dup_del(stable_node_dup);
1699 		if (page_node) {
1700 			VM_BUG_ON(page_node->head != &migrate_nodes);
1701 			list_del(&page_node->list);
1702 			DO_NUMA(page_node->nid = nid);
1703 			stable_node_chain_add_dup(page_node, stable_node);
1704 			if (is_page_sharing_candidate(page_node))
1705 				get_page(page);
1706 			else
1707 				page = NULL;
1708 		} else {
1709 			page = NULL;
1710 		}
1711 	}
1712 	stable_node_dup->head = &migrate_nodes;
1713 	list_add(&stable_node_dup->list, stable_node_dup->head);
1714 	return page;
1715 
1716 chain_append:
1717 	/* stable_node_dup could be null if it reached the limit */
1718 	if (!stable_node_dup)
1719 		stable_node_dup = stable_node_any;
1720 	/*
1721 	 * If stable_node was a chain and chain_prune collapsed it,
1722 	 * stable_node has been updated to be the new regular
1723 	 * stable_node. A collapse of the chain is indistinguishable
1724 	 * from the case there was no chain in the stable
1725 	 * rbtree. Otherwise stable_node is the chain and
1726 	 * stable_node_dup is the dup to replace.
1727 	 */
1728 	if (stable_node_dup == stable_node) {
1729 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1730 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1731 		/* chain is missing so create it */
1732 		stable_node = alloc_stable_node_chain(stable_node_dup,
1733 						      root);
1734 		if (!stable_node)
1735 			return NULL;
1736 	}
1737 	/*
1738 	 * Add this stable_node dup that was
1739 	 * migrated to the stable_node chain
1740 	 * of the current nid for this page
1741 	 * content.
1742 	 */
1743 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1744 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1745 	VM_BUG_ON(page_node->head != &migrate_nodes);
1746 	list_del(&page_node->list);
1747 	DO_NUMA(page_node->nid = nid);
1748 	stable_node_chain_add_dup(page_node, stable_node);
1749 	goto out;
1750 }
1751 
1752 /*
1753  * stable_tree_insert - insert stable tree node pointing to new ksm page
1754  * into the stable tree.
1755  *
1756  * This function returns the stable tree node just allocated on success,
1757  * NULL otherwise.
1758  */
1759 static struct stable_node *stable_tree_insert(struct page *kpage)
1760 {
1761 	int nid;
1762 	unsigned long kpfn;
1763 	struct rb_root *root;
1764 	struct rb_node **new;
1765 	struct rb_node *parent;
1766 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1767 	bool need_chain = false;
1768 
1769 	kpfn = page_to_pfn(kpage);
1770 	nid = get_kpfn_nid(kpfn);
1771 	root = root_stable_tree + nid;
1772 again:
1773 	parent = NULL;
1774 	new = &root->rb_node;
1775 
1776 	while (*new) {
1777 		struct page *tree_page;
1778 		int ret;
1779 
1780 		cond_resched();
1781 		stable_node = rb_entry(*new, struct stable_node, node);
1782 		stable_node_any = NULL;
1783 		tree_page = chain(&stable_node_dup, stable_node, root);
1784 		if (!stable_node_dup) {
1785 			/*
1786 			 * Either all stable_node dups were full in
1787 			 * this stable_node chain, or this chain was
1788 			 * empty and should be rb_erased.
1789 			 */
1790 			stable_node_any = stable_node_dup_any(stable_node,
1791 							      root);
1792 			if (!stable_node_any) {
1793 				/* rb_erase just run */
1794 				goto again;
1795 			}
1796 			/*
1797 			 * Take any of the stable_node dups page of
1798 			 * this stable_node chain to let the tree walk
1799 			 * continue. All KSM pages belonging to the
1800 			 * stable_node dups in a stable_node chain
1801 			 * have the same content and they're
1802 			 * wrprotected at all times. Any will work
1803 			 * fine to continue the walk.
1804 			 */
1805 			tree_page = get_ksm_page(stable_node_any, false);
1806 		}
1807 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1808 		if (!tree_page) {
1809 			/*
1810 			 * If we walked over a stale stable_node,
1811 			 * get_ksm_page() will call rb_erase() and it
1812 			 * may rebalance the tree from under us. So
1813 			 * restart the search from scratch. Returning
1814 			 * NULL would be safe too, but we'd generate
1815 			 * false negative insertions just because some
1816 			 * stable_node was stale.
1817 			 */
1818 			goto again;
1819 		}
1820 
1821 		ret = memcmp_pages(kpage, tree_page);
1822 		put_page(tree_page);
1823 
1824 		parent = *new;
1825 		if (ret < 0)
1826 			new = &parent->rb_left;
1827 		else if (ret > 0)
1828 			new = &parent->rb_right;
1829 		else {
1830 			need_chain = true;
1831 			break;
1832 		}
1833 	}
1834 
1835 	stable_node_dup = alloc_stable_node();
1836 	if (!stable_node_dup)
1837 		return NULL;
1838 
1839 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1840 	stable_node_dup->kpfn = kpfn;
1841 	set_page_stable_node(kpage, stable_node_dup);
1842 	stable_node_dup->rmap_hlist_len = 0;
1843 	DO_NUMA(stable_node_dup->nid = nid);
1844 	if (!need_chain) {
1845 		rb_link_node(&stable_node_dup->node, parent, new);
1846 		rb_insert_color(&stable_node_dup->node, root);
1847 	} else {
1848 		if (!is_stable_node_chain(stable_node)) {
1849 			struct stable_node *orig = stable_node;
1850 			/* chain is missing so create it */
1851 			stable_node = alloc_stable_node_chain(orig, root);
1852 			if (!stable_node) {
1853 				free_stable_node(stable_node_dup);
1854 				return NULL;
1855 			}
1856 		}
1857 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1858 	}
1859 
1860 	return stable_node_dup;
1861 }
1862 
1863 /*
1864  * unstable_tree_search_insert - search for identical page,
1865  * else insert rmap_item into the unstable tree.
1866  *
1867  * This function searches for a page in the unstable tree identical to the
1868  * page currently being scanned; and if no identical page is found in the
1869  * tree, we insert rmap_item as a new object into the unstable tree.
1870  *
1871  * This function returns pointer to rmap_item found to be identical
1872  * to the currently scanned page, NULL otherwise.
1873  *
1874  * This function does both searching and inserting, because they share
1875  * the same walking algorithm in an rbtree.
1876  */
1877 static
1878 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1879 					      struct page *page,
1880 					      struct page **tree_pagep)
1881 {
1882 	struct rb_node **new;
1883 	struct rb_root *root;
1884 	struct rb_node *parent = NULL;
1885 	int nid;
1886 
1887 	nid = get_kpfn_nid(page_to_pfn(page));
1888 	root = root_unstable_tree + nid;
1889 	new = &root->rb_node;
1890 
1891 	while (*new) {
1892 		struct rmap_item *tree_rmap_item;
1893 		struct page *tree_page;
1894 		int ret;
1895 
1896 		cond_resched();
1897 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1898 		tree_page = get_mergeable_page(tree_rmap_item);
1899 		if (!tree_page)
1900 			return NULL;
1901 
1902 		/*
1903 		 * Don't substitute a ksm page for a forked page.
1904 		 */
1905 		if (page == tree_page) {
1906 			put_page(tree_page);
1907 			return NULL;
1908 		}
1909 
1910 		ret = memcmp_pages(page, tree_page);
1911 
1912 		parent = *new;
1913 		if (ret < 0) {
1914 			put_page(tree_page);
1915 			new = &parent->rb_left;
1916 		} else if (ret > 0) {
1917 			put_page(tree_page);
1918 			new = &parent->rb_right;
1919 		} else if (!ksm_merge_across_nodes &&
1920 			   page_to_nid(tree_page) != nid) {
1921 			/*
1922 			 * If tree_page has been migrated to another NUMA node,
1923 			 * it will be flushed out and put in the right unstable
1924 			 * tree next time: only merge with it when across_nodes.
1925 			 */
1926 			put_page(tree_page);
1927 			return NULL;
1928 		} else {
1929 			*tree_pagep = tree_page;
1930 			return tree_rmap_item;
1931 		}
1932 	}
1933 
1934 	rmap_item->address |= UNSTABLE_FLAG;
1935 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1936 	DO_NUMA(rmap_item->nid = nid);
1937 	rb_link_node(&rmap_item->node, parent, new);
1938 	rb_insert_color(&rmap_item->node, root);
1939 
1940 	ksm_pages_unshared++;
1941 	return NULL;
1942 }
1943 
1944 /*
1945  * stable_tree_append - add another rmap_item to the linked list of
1946  * rmap_items hanging off a given node of the stable tree, all sharing
1947  * the same ksm page.
1948  */
1949 static void stable_tree_append(struct rmap_item *rmap_item,
1950 			       struct stable_node *stable_node,
1951 			       bool max_page_sharing_bypass)
1952 {
1953 	/*
1954 	 * rmap won't find this mapping if we don't insert the
1955 	 * rmap_item in the right stable_node
1956 	 * duplicate. page_migration could break later if rmap breaks,
1957 	 * so we can as well crash here. We really need to check for
1958 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1959 	 * for other negative values as an undeflow if detected here
1960 	 * for the first time (and not when decreasing rmap_hlist_len)
1961 	 * would be sign of memory corruption in the stable_node.
1962 	 */
1963 	BUG_ON(stable_node->rmap_hlist_len < 0);
1964 
1965 	stable_node->rmap_hlist_len++;
1966 	if (!max_page_sharing_bypass)
1967 		/* possibly non fatal but unexpected overflow, only warn */
1968 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
1969 			     ksm_max_page_sharing);
1970 
1971 	rmap_item->head = stable_node;
1972 	rmap_item->address |= STABLE_FLAG;
1973 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1974 
1975 	if (rmap_item->hlist.next)
1976 		ksm_pages_sharing++;
1977 	else
1978 		ksm_pages_shared++;
1979 }
1980 
1981 /*
1982  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1983  * if not, compare checksum to previous and if it's the same, see if page can
1984  * be inserted into the unstable tree, or merged with a page already there and
1985  * both transferred to the stable tree.
1986  *
1987  * @page: the page that we are searching identical page to.
1988  * @rmap_item: the reverse mapping into the virtual address of this page
1989  */
1990 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1991 {
1992 	struct rmap_item *tree_rmap_item;
1993 	struct page *tree_page = NULL;
1994 	struct stable_node *stable_node;
1995 	struct page *kpage;
1996 	unsigned int checksum;
1997 	int err;
1998 	bool max_page_sharing_bypass = false;
1999 
2000 	stable_node = page_stable_node(page);
2001 	if (stable_node) {
2002 		if (stable_node->head != &migrate_nodes &&
2003 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2004 		    NUMA(stable_node->nid)) {
2005 			stable_node_dup_del(stable_node);
2006 			stable_node->head = &migrate_nodes;
2007 			list_add(&stable_node->list, stable_node->head);
2008 		}
2009 		if (stable_node->head != &migrate_nodes &&
2010 		    rmap_item->head == stable_node)
2011 			return;
2012 		/*
2013 		 * If it's a KSM fork, allow it to go over the sharing limit
2014 		 * without warnings.
2015 		 */
2016 		if (!is_page_sharing_candidate(stable_node))
2017 			max_page_sharing_bypass = true;
2018 	}
2019 
2020 	/* We first start with searching the page inside the stable tree */
2021 	kpage = stable_tree_search(page);
2022 	if (kpage == page && rmap_item->head == stable_node) {
2023 		put_page(kpage);
2024 		return;
2025 	}
2026 
2027 	remove_rmap_item_from_tree(rmap_item);
2028 
2029 	if (kpage) {
2030 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2031 		if (!err) {
2032 			/*
2033 			 * The page was successfully merged:
2034 			 * add its rmap_item to the stable tree.
2035 			 */
2036 			lock_page(kpage);
2037 			stable_tree_append(rmap_item, page_stable_node(kpage),
2038 					   max_page_sharing_bypass);
2039 			unlock_page(kpage);
2040 		}
2041 		put_page(kpage);
2042 		return;
2043 	}
2044 
2045 	/*
2046 	 * If the hash value of the page has changed from the last time
2047 	 * we calculated it, this page is changing frequently: therefore we
2048 	 * don't want to insert it in the unstable tree, and we don't want
2049 	 * to waste our time searching for something identical to it there.
2050 	 */
2051 	checksum = calc_checksum(page);
2052 	if (rmap_item->oldchecksum != checksum) {
2053 		rmap_item->oldchecksum = checksum;
2054 		return;
2055 	}
2056 
2057 	/*
2058 	 * Same checksum as an empty page. We attempt to merge it with the
2059 	 * appropriate zero page if the user enabled this via sysfs.
2060 	 */
2061 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2062 		struct vm_area_struct *vma;
2063 
2064 		vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
2065 		err = try_to_merge_one_page(vma, page,
2066 					    ZERO_PAGE(rmap_item->address));
2067 		/*
2068 		 * In case of failure, the page was not really empty, so we
2069 		 * need to continue. Otherwise we're done.
2070 		 */
2071 		if (!err)
2072 			return;
2073 	}
2074 	tree_rmap_item =
2075 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2076 	if (tree_rmap_item) {
2077 		kpage = try_to_merge_two_pages(rmap_item, page,
2078 						tree_rmap_item, tree_page);
2079 		put_page(tree_page);
2080 		if (kpage) {
2081 			/*
2082 			 * The pages were successfully merged: insert new
2083 			 * node in the stable tree and add both rmap_items.
2084 			 */
2085 			lock_page(kpage);
2086 			stable_node = stable_tree_insert(kpage);
2087 			if (stable_node) {
2088 				stable_tree_append(tree_rmap_item, stable_node,
2089 						   false);
2090 				stable_tree_append(rmap_item, stable_node,
2091 						   false);
2092 			}
2093 			unlock_page(kpage);
2094 
2095 			/*
2096 			 * If we fail to insert the page into the stable tree,
2097 			 * we will have 2 virtual addresses that are pointing
2098 			 * to a ksm page left outside the stable tree,
2099 			 * in which case we need to break_cow on both.
2100 			 */
2101 			if (!stable_node) {
2102 				break_cow(tree_rmap_item);
2103 				break_cow(rmap_item);
2104 			}
2105 		}
2106 	}
2107 }
2108 
2109 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2110 					    struct rmap_item **rmap_list,
2111 					    unsigned long addr)
2112 {
2113 	struct rmap_item *rmap_item;
2114 
2115 	while (*rmap_list) {
2116 		rmap_item = *rmap_list;
2117 		if ((rmap_item->address & PAGE_MASK) == addr)
2118 			return rmap_item;
2119 		if (rmap_item->address > addr)
2120 			break;
2121 		*rmap_list = rmap_item->rmap_list;
2122 		remove_rmap_item_from_tree(rmap_item);
2123 		free_rmap_item(rmap_item);
2124 	}
2125 
2126 	rmap_item = alloc_rmap_item();
2127 	if (rmap_item) {
2128 		/* It has already been zeroed */
2129 		rmap_item->mm = mm_slot->mm;
2130 		rmap_item->address = addr;
2131 		rmap_item->rmap_list = *rmap_list;
2132 		*rmap_list = rmap_item;
2133 	}
2134 	return rmap_item;
2135 }
2136 
2137 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2138 {
2139 	struct mm_struct *mm;
2140 	struct mm_slot *slot;
2141 	struct vm_area_struct *vma;
2142 	struct rmap_item *rmap_item;
2143 	int nid;
2144 
2145 	if (list_empty(&ksm_mm_head.mm_list))
2146 		return NULL;
2147 
2148 	slot = ksm_scan.mm_slot;
2149 	if (slot == &ksm_mm_head) {
2150 		/*
2151 		 * A number of pages can hang around indefinitely on per-cpu
2152 		 * pagevecs, raised page count preventing write_protect_page
2153 		 * from merging them.  Though it doesn't really matter much,
2154 		 * it is puzzling to see some stuck in pages_volatile until
2155 		 * other activity jostles them out, and they also prevented
2156 		 * LTP's KSM test from succeeding deterministically; so drain
2157 		 * them here (here rather than on entry to ksm_do_scan(),
2158 		 * so we don't IPI too often when pages_to_scan is set low).
2159 		 */
2160 		lru_add_drain_all();
2161 
2162 		/*
2163 		 * Whereas stale stable_nodes on the stable_tree itself
2164 		 * get pruned in the regular course of stable_tree_search(),
2165 		 * those moved out to the migrate_nodes list can accumulate:
2166 		 * so prune them once before each full scan.
2167 		 */
2168 		if (!ksm_merge_across_nodes) {
2169 			struct stable_node *stable_node, *next;
2170 			struct page *page;
2171 
2172 			list_for_each_entry_safe(stable_node, next,
2173 						 &migrate_nodes, list) {
2174 				page = get_ksm_page(stable_node, false);
2175 				if (page)
2176 					put_page(page);
2177 				cond_resched();
2178 			}
2179 		}
2180 
2181 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2182 			root_unstable_tree[nid] = RB_ROOT;
2183 
2184 		spin_lock(&ksm_mmlist_lock);
2185 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2186 		ksm_scan.mm_slot = slot;
2187 		spin_unlock(&ksm_mmlist_lock);
2188 		/*
2189 		 * Although we tested list_empty() above, a racing __ksm_exit
2190 		 * of the last mm on the list may have removed it since then.
2191 		 */
2192 		if (slot == &ksm_mm_head)
2193 			return NULL;
2194 next_mm:
2195 		ksm_scan.address = 0;
2196 		ksm_scan.rmap_list = &slot->rmap_list;
2197 	}
2198 
2199 	mm = slot->mm;
2200 	down_read(&mm->mmap_sem);
2201 	if (ksm_test_exit(mm))
2202 		vma = NULL;
2203 	else
2204 		vma = find_vma(mm, ksm_scan.address);
2205 
2206 	for (; vma; vma = vma->vm_next) {
2207 		if (!(vma->vm_flags & VM_MERGEABLE))
2208 			continue;
2209 		if (ksm_scan.address < vma->vm_start)
2210 			ksm_scan.address = vma->vm_start;
2211 		if (!vma->anon_vma)
2212 			ksm_scan.address = vma->vm_end;
2213 
2214 		while (ksm_scan.address < vma->vm_end) {
2215 			if (ksm_test_exit(mm))
2216 				break;
2217 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2218 			if (IS_ERR_OR_NULL(*page)) {
2219 				ksm_scan.address += PAGE_SIZE;
2220 				cond_resched();
2221 				continue;
2222 			}
2223 			if (PageAnon(*page)) {
2224 				flush_anon_page(vma, *page, ksm_scan.address);
2225 				flush_dcache_page(*page);
2226 				rmap_item = get_next_rmap_item(slot,
2227 					ksm_scan.rmap_list, ksm_scan.address);
2228 				if (rmap_item) {
2229 					ksm_scan.rmap_list =
2230 							&rmap_item->rmap_list;
2231 					ksm_scan.address += PAGE_SIZE;
2232 				} else
2233 					put_page(*page);
2234 				up_read(&mm->mmap_sem);
2235 				return rmap_item;
2236 			}
2237 			put_page(*page);
2238 			ksm_scan.address += PAGE_SIZE;
2239 			cond_resched();
2240 		}
2241 	}
2242 
2243 	if (ksm_test_exit(mm)) {
2244 		ksm_scan.address = 0;
2245 		ksm_scan.rmap_list = &slot->rmap_list;
2246 	}
2247 	/*
2248 	 * Nuke all the rmap_items that are above this current rmap:
2249 	 * because there were no VM_MERGEABLE vmas with such addresses.
2250 	 */
2251 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2252 
2253 	spin_lock(&ksm_mmlist_lock);
2254 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2255 						struct mm_slot, mm_list);
2256 	if (ksm_scan.address == 0) {
2257 		/*
2258 		 * We've completed a full scan of all vmas, holding mmap_sem
2259 		 * throughout, and found no VM_MERGEABLE: so do the same as
2260 		 * __ksm_exit does to remove this mm from all our lists now.
2261 		 * This applies either when cleaning up after __ksm_exit
2262 		 * (but beware: we can reach here even before __ksm_exit),
2263 		 * or when all VM_MERGEABLE areas have been unmapped (and
2264 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2265 		 */
2266 		hash_del(&slot->link);
2267 		list_del(&slot->mm_list);
2268 		spin_unlock(&ksm_mmlist_lock);
2269 
2270 		free_mm_slot(slot);
2271 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2272 		up_read(&mm->mmap_sem);
2273 		mmdrop(mm);
2274 	} else {
2275 		up_read(&mm->mmap_sem);
2276 		/*
2277 		 * up_read(&mm->mmap_sem) first because after
2278 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2279 		 * already have been freed under us by __ksm_exit()
2280 		 * because the "mm_slot" is still hashed and
2281 		 * ksm_scan.mm_slot doesn't point to it anymore.
2282 		 */
2283 		spin_unlock(&ksm_mmlist_lock);
2284 	}
2285 
2286 	/* Repeat until we've completed scanning the whole list */
2287 	slot = ksm_scan.mm_slot;
2288 	if (slot != &ksm_mm_head)
2289 		goto next_mm;
2290 
2291 	ksm_scan.seqnr++;
2292 	return NULL;
2293 }
2294 
2295 /**
2296  * ksm_do_scan  - the ksm scanner main worker function.
2297  * @scan_npages - number of pages we want to scan before we return.
2298  */
2299 static void ksm_do_scan(unsigned int scan_npages)
2300 {
2301 	struct rmap_item *rmap_item;
2302 	struct page *uninitialized_var(page);
2303 
2304 	while (scan_npages-- && likely(!freezing(current))) {
2305 		cond_resched();
2306 		rmap_item = scan_get_next_rmap_item(&page);
2307 		if (!rmap_item)
2308 			return;
2309 		cmp_and_merge_page(page, rmap_item);
2310 		put_page(page);
2311 	}
2312 }
2313 
2314 static int ksmd_should_run(void)
2315 {
2316 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2317 }
2318 
2319 static int ksm_scan_thread(void *nothing)
2320 {
2321 	set_freezable();
2322 	set_user_nice(current, 5);
2323 
2324 	while (!kthread_should_stop()) {
2325 		mutex_lock(&ksm_thread_mutex);
2326 		wait_while_offlining();
2327 		if (ksmd_should_run())
2328 			ksm_do_scan(ksm_thread_pages_to_scan);
2329 		mutex_unlock(&ksm_thread_mutex);
2330 
2331 		try_to_freeze();
2332 
2333 		if (ksmd_should_run()) {
2334 			schedule_timeout_interruptible(
2335 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
2336 		} else {
2337 			wait_event_freezable(ksm_thread_wait,
2338 				ksmd_should_run() || kthread_should_stop());
2339 		}
2340 	}
2341 	return 0;
2342 }
2343 
2344 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2345 		unsigned long end, int advice, unsigned long *vm_flags)
2346 {
2347 	struct mm_struct *mm = vma->vm_mm;
2348 	int err;
2349 
2350 	switch (advice) {
2351 	case MADV_MERGEABLE:
2352 		/*
2353 		 * Be somewhat over-protective for now!
2354 		 */
2355 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2356 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2357 				 VM_HUGETLB | VM_MIXEDMAP))
2358 			return 0;		/* just ignore the advice */
2359 
2360 #ifdef VM_SAO
2361 		if (*vm_flags & VM_SAO)
2362 			return 0;
2363 #endif
2364 
2365 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2366 			err = __ksm_enter(mm);
2367 			if (err)
2368 				return err;
2369 		}
2370 
2371 		*vm_flags |= VM_MERGEABLE;
2372 		break;
2373 
2374 	case MADV_UNMERGEABLE:
2375 		if (!(*vm_flags & VM_MERGEABLE))
2376 			return 0;		/* just ignore the advice */
2377 
2378 		if (vma->anon_vma) {
2379 			err = unmerge_ksm_pages(vma, start, end);
2380 			if (err)
2381 				return err;
2382 		}
2383 
2384 		*vm_flags &= ~VM_MERGEABLE;
2385 		break;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
2391 int __ksm_enter(struct mm_struct *mm)
2392 {
2393 	struct mm_slot *mm_slot;
2394 	int needs_wakeup;
2395 
2396 	mm_slot = alloc_mm_slot();
2397 	if (!mm_slot)
2398 		return -ENOMEM;
2399 
2400 	/* Check ksm_run too?  Would need tighter locking */
2401 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2402 
2403 	spin_lock(&ksm_mmlist_lock);
2404 	insert_to_mm_slots_hash(mm, mm_slot);
2405 	/*
2406 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2407 	 * insert just behind the scanning cursor, to let the area settle
2408 	 * down a little; when fork is followed by immediate exec, we don't
2409 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2410 	 *
2411 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2412 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2413 	 * missed: then we might as well insert at the end of the list.
2414 	 */
2415 	if (ksm_run & KSM_RUN_UNMERGE)
2416 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2417 	else
2418 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2419 	spin_unlock(&ksm_mmlist_lock);
2420 
2421 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2422 	mmgrab(mm);
2423 
2424 	if (needs_wakeup)
2425 		wake_up_interruptible(&ksm_thread_wait);
2426 
2427 	return 0;
2428 }
2429 
2430 void __ksm_exit(struct mm_struct *mm)
2431 {
2432 	struct mm_slot *mm_slot;
2433 	int easy_to_free = 0;
2434 
2435 	/*
2436 	 * This process is exiting: if it's straightforward (as is the
2437 	 * case when ksmd was never running), free mm_slot immediately.
2438 	 * But if it's at the cursor or has rmap_items linked to it, use
2439 	 * mmap_sem to synchronize with any break_cows before pagetables
2440 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2441 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2442 	 */
2443 
2444 	spin_lock(&ksm_mmlist_lock);
2445 	mm_slot = get_mm_slot(mm);
2446 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2447 		if (!mm_slot->rmap_list) {
2448 			hash_del(&mm_slot->link);
2449 			list_del(&mm_slot->mm_list);
2450 			easy_to_free = 1;
2451 		} else {
2452 			list_move(&mm_slot->mm_list,
2453 				  &ksm_scan.mm_slot->mm_list);
2454 		}
2455 	}
2456 	spin_unlock(&ksm_mmlist_lock);
2457 
2458 	if (easy_to_free) {
2459 		free_mm_slot(mm_slot);
2460 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2461 		mmdrop(mm);
2462 	} else if (mm_slot) {
2463 		down_write(&mm->mmap_sem);
2464 		up_write(&mm->mmap_sem);
2465 	}
2466 }
2467 
2468 struct page *ksm_might_need_to_copy(struct page *page,
2469 			struct vm_area_struct *vma, unsigned long address)
2470 {
2471 	struct anon_vma *anon_vma = page_anon_vma(page);
2472 	struct page *new_page;
2473 
2474 	if (PageKsm(page)) {
2475 		if (page_stable_node(page) &&
2476 		    !(ksm_run & KSM_RUN_UNMERGE))
2477 			return page;	/* no need to copy it */
2478 	} else if (!anon_vma) {
2479 		return page;		/* no need to copy it */
2480 	} else if (anon_vma->root == vma->anon_vma->root &&
2481 		 page->index == linear_page_index(vma, address)) {
2482 		return page;		/* still no need to copy it */
2483 	}
2484 	if (!PageUptodate(page))
2485 		return page;		/* let do_swap_page report the error */
2486 
2487 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2488 	if (new_page) {
2489 		copy_user_highpage(new_page, page, address, vma);
2490 
2491 		SetPageDirty(new_page);
2492 		__SetPageUptodate(new_page);
2493 		__SetPageLocked(new_page);
2494 	}
2495 
2496 	return new_page;
2497 }
2498 
2499 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2500 {
2501 	struct stable_node *stable_node;
2502 	struct rmap_item *rmap_item;
2503 	int search_new_forks = 0;
2504 
2505 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2506 
2507 	/*
2508 	 * Rely on the page lock to protect against concurrent modifications
2509 	 * to that page's node of the stable tree.
2510 	 */
2511 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2512 
2513 	stable_node = page_stable_node(page);
2514 	if (!stable_node)
2515 		return;
2516 again:
2517 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2518 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2519 		struct anon_vma_chain *vmac;
2520 		struct vm_area_struct *vma;
2521 
2522 		cond_resched();
2523 		anon_vma_lock_read(anon_vma);
2524 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2525 					       0, ULONG_MAX) {
2526 			cond_resched();
2527 			vma = vmac->vma;
2528 			if (rmap_item->address < vma->vm_start ||
2529 			    rmap_item->address >= vma->vm_end)
2530 				continue;
2531 			/*
2532 			 * Initially we examine only the vma which covers this
2533 			 * rmap_item; but later, if there is still work to do,
2534 			 * we examine covering vmas in other mms: in case they
2535 			 * were forked from the original since ksmd passed.
2536 			 */
2537 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2538 				continue;
2539 
2540 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2541 				continue;
2542 
2543 			if (!rwc->rmap_one(page, vma,
2544 					rmap_item->address, rwc->arg)) {
2545 				anon_vma_unlock_read(anon_vma);
2546 				return;
2547 			}
2548 			if (rwc->done && rwc->done(page)) {
2549 				anon_vma_unlock_read(anon_vma);
2550 				return;
2551 			}
2552 		}
2553 		anon_vma_unlock_read(anon_vma);
2554 	}
2555 	if (!search_new_forks++)
2556 		goto again;
2557 }
2558 
2559 #ifdef CONFIG_MIGRATION
2560 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2561 {
2562 	struct stable_node *stable_node;
2563 
2564 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2565 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2566 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2567 
2568 	stable_node = page_stable_node(newpage);
2569 	if (stable_node) {
2570 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2571 		stable_node->kpfn = page_to_pfn(newpage);
2572 		/*
2573 		 * newpage->mapping was set in advance; now we need smp_wmb()
2574 		 * to make sure that the new stable_node->kpfn is visible
2575 		 * to get_ksm_page() before it can see that oldpage->mapping
2576 		 * has gone stale (or that PageSwapCache has been cleared).
2577 		 */
2578 		smp_wmb();
2579 		set_page_stable_node(oldpage, NULL);
2580 	}
2581 }
2582 #endif /* CONFIG_MIGRATION */
2583 
2584 #ifdef CONFIG_MEMORY_HOTREMOVE
2585 static void wait_while_offlining(void)
2586 {
2587 	while (ksm_run & KSM_RUN_OFFLINE) {
2588 		mutex_unlock(&ksm_thread_mutex);
2589 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2590 			    TASK_UNINTERRUPTIBLE);
2591 		mutex_lock(&ksm_thread_mutex);
2592 	}
2593 }
2594 
2595 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2596 					 unsigned long start_pfn,
2597 					 unsigned long end_pfn)
2598 {
2599 	if (stable_node->kpfn >= start_pfn &&
2600 	    stable_node->kpfn < end_pfn) {
2601 		/*
2602 		 * Don't get_ksm_page, page has already gone:
2603 		 * which is why we keep kpfn instead of page*
2604 		 */
2605 		remove_node_from_stable_tree(stable_node);
2606 		return true;
2607 	}
2608 	return false;
2609 }
2610 
2611 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2612 					   unsigned long start_pfn,
2613 					   unsigned long end_pfn,
2614 					   struct rb_root *root)
2615 {
2616 	struct stable_node *dup;
2617 	struct hlist_node *hlist_safe;
2618 
2619 	if (!is_stable_node_chain(stable_node)) {
2620 		VM_BUG_ON(is_stable_node_dup(stable_node));
2621 		return stable_node_dup_remove_range(stable_node, start_pfn,
2622 						    end_pfn);
2623 	}
2624 
2625 	hlist_for_each_entry_safe(dup, hlist_safe,
2626 				  &stable_node->hlist, hlist_dup) {
2627 		VM_BUG_ON(!is_stable_node_dup(dup));
2628 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2629 	}
2630 	if (hlist_empty(&stable_node->hlist)) {
2631 		free_stable_node_chain(stable_node, root);
2632 		return true; /* notify caller that tree was rebalanced */
2633 	} else
2634 		return false;
2635 }
2636 
2637 static void ksm_check_stable_tree(unsigned long start_pfn,
2638 				  unsigned long end_pfn)
2639 {
2640 	struct stable_node *stable_node, *next;
2641 	struct rb_node *node;
2642 	int nid;
2643 
2644 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2645 		node = rb_first(root_stable_tree + nid);
2646 		while (node) {
2647 			stable_node = rb_entry(node, struct stable_node, node);
2648 			if (stable_node_chain_remove_range(stable_node,
2649 							   start_pfn, end_pfn,
2650 							   root_stable_tree +
2651 							   nid))
2652 				node = rb_first(root_stable_tree + nid);
2653 			else
2654 				node = rb_next(node);
2655 			cond_resched();
2656 		}
2657 	}
2658 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2659 		if (stable_node->kpfn >= start_pfn &&
2660 		    stable_node->kpfn < end_pfn)
2661 			remove_node_from_stable_tree(stable_node);
2662 		cond_resched();
2663 	}
2664 }
2665 
2666 static int ksm_memory_callback(struct notifier_block *self,
2667 			       unsigned long action, void *arg)
2668 {
2669 	struct memory_notify *mn = arg;
2670 
2671 	switch (action) {
2672 	case MEM_GOING_OFFLINE:
2673 		/*
2674 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2675 		 * and remove_all_stable_nodes() while memory is going offline:
2676 		 * it is unsafe for them to touch the stable tree at this time.
2677 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2678 		 * which do not need the ksm_thread_mutex are all safe.
2679 		 */
2680 		mutex_lock(&ksm_thread_mutex);
2681 		ksm_run |= KSM_RUN_OFFLINE;
2682 		mutex_unlock(&ksm_thread_mutex);
2683 		break;
2684 
2685 	case MEM_OFFLINE:
2686 		/*
2687 		 * Most of the work is done by page migration; but there might
2688 		 * be a few stable_nodes left over, still pointing to struct
2689 		 * pages which have been offlined: prune those from the tree,
2690 		 * otherwise get_ksm_page() might later try to access a
2691 		 * non-existent struct page.
2692 		 */
2693 		ksm_check_stable_tree(mn->start_pfn,
2694 				      mn->start_pfn + mn->nr_pages);
2695 		/* fallthrough */
2696 
2697 	case MEM_CANCEL_OFFLINE:
2698 		mutex_lock(&ksm_thread_mutex);
2699 		ksm_run &= ~KSM_RUN_OFFLINE;
2700 		mutex_unlock(&ksm_thread_mutex);
2701 
2702 		smp_mb();	/* wake_up_bit advises this */
2703 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2704 		break;
2705 	}
2706 	return NOTIFY_OK;
2707 }
2708 #else
2709 static void wait_while_offlining(void)
2710 {
2711 }
2712 #endif /* CONFIG_MEMORY_HOTREMOVE */
2713 
2714 #ifdef CONFIG_SYSFS
2715 /*
2716  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2717  */
2718 
2719 #define KSM_ATTR_RO(_name) \
2720 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2721 #define KSM_ATTR(_name) \
2722 	static struct kobj_attribute _name##_attr = \
2723 		__ATTR(_name, 0644, _name##_show, _name##_store)
2724 
2725 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2726 				    struct kobj_attribute *attr, char *buf)
2727 {
2728 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2729 }
2730 
2731 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2732 				     struct kobj_attribute *attr,
2733 				     const char *buf, size_t count)
2734 {
2735 	unsigned long msecs;
2736 	int err;
2737 
2738 	err = kstrtoul(buf, 10, &msecs);
2739 	if (err || msecs > UINT_MAX)
2740 		return -EINVAL;
2741 
2742 	ksm_thread_sleep_millisecs = msecs;
2743 
2744 	return count;
2745 }
2746 KSM_ATTR(sleep_millisecs);
2747 
2748 static ssize_t pages_to_scan_show(struct kobject *kobj,
2749 				  struct kobj_attribute *attr, char *buf)
2750 {
2751 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2752 }
2753 
2754 static ssize_t pages_to_scan_store(struct kobject *kobj,
2755 				   struct kobj_attribute *attr,
2756 				   const char *buf, size_t count)
2757 {
2758 	int err;
2759 	unsigned long nr_pages;
2760 
2761 	err = kstrtoul(buf, 10, &nr_pages);
2762 	if (err || nr_pages > UINT_MAX)
2763 		return -EINVAL;
2764 
2765 	ksm_thread_pages_to_scan = nr_pages;
2766 
2767 	return count;
2768 }
2769 KSM_ATTR(pages_to_scan);
2770 
2771 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2772 			char *buf)
2773 {
2774 	return sprintf(buf, "%lu\n", ksm_run);
2775 }
2776 
2777 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2778 			 const char *buf, size_t count)
2779 {
2780 	int err;
2781 	unsigned long flags;
2782 
2783 	err = kstrtoul(buf, 10, &flags);
2784 	if (err || flags > UINT_MAX)
2785 		return -EINVAL;
2786 	if (flags > KSM_RUN_UNMERGE)
2787 		return -EINVAL;
2788 
2789 	/*
2790 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2791 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2792 	 * breaking COW to free the pages_shared (but leaves mm_slots
2793 	 * on the list for when ksmd may be set running again).
2794 	 */
2795 
2796 	mutex_lock(&ksm_thread_mutex);
2797 	wait_while_offlining();
2798 	if (ksm_run != flags) {
2799 		ksm_run = flags;
2800 		if (flags & KSM_RUN_UNMERGE) {
2801 			set_current_oom_origin();
2802 			err = unmerge_and_remove_all_rmap_items();
2803 			clear_current_oom_origin();
2804 			if (err) {
2805 				ksm_run = KSM_RUN_STOP;
2806 				count = err;
2807 			}
2808 		}
2809 	}
2810 	mutex_unlock(&ksm_thread_mutex);
2811 
2812 	if (flags & KSM_RUN_MERGE)
2813 		wake_up_interruptible(&ksm_thread_wait);
2814 
2815 	return count;
2816 }
2817 KSM_ATTR(run);
2818 
2819 #ifdef CONFIG_NUMA
2820 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2821 				struct kobj_attribute *attr, char *buf)
2822 {
2823 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2824 }
2825 
2826 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2827 				   struct kobj_attribute *attr,
2828 				   const char *buf, size_t count)
2829 {
2830 	int err;
2831 	unsigned long knob;
2832 
2833 	err = kstrtoul(buf, 10, &knob);
2834 	if (err)
2835 		return err;
2836 	if (knob > 1)
2837 		return -EINVAL;
2838 
2839 	mutex_lock(&ksm_thread_mutex);
2840 	wait_while_offlining();
2841 	if (ksm_merge_across_nodes != knob) {
2842 		if (ksm_pages_shared || remove_all_stable_nodes())
2843 			err = -EBUSY;
2844 		else if (root_stable_tree == one_stable_tree) {
2845 			struct rb_root *buf;
2846 			/*
2847 			 * This is the first time that we switch away from the
2848 			 * default of merging across nodes: must now allocate
2849 			 * a buffer to hold as many roots as may be needed.
2850 			 * Allocate stable and unstable together:
2851 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2852 			 */
2853 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2854 				      GFP_KERNEL);
2855 			/* Let us assume that RB_ROOT is NULL is zero */
2856 			if (!buf)
2857 				err = -ENOMEM;
2858 			else {
2859 				root_stable_tree = buf;
2860 				root_unstable_tree = buf + nr_node_ids;
2861 				/* Stable tree is empty but not the unstable */
2862 				root_unstable_tree[0] = one_unstable_tree[0];
2863 			}
2864 		}
2865 		if (!err) {
2866 			ksm_merge_across_nodes = knob;
2867 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2868 		}
2869 	}
2870 	mutex_unlock(&ksm_thread_mutex);
2871 
2872 	return err ? err : count;
2873 }
2874 KSM_ATTR(merge_across_nodes);
2875 #endif
2876 
2877 static ssize_t use_zero_pages_show(struct kobject *kobj,
2878 				struct kobj_attribute *attr, char *buf)
2879 {
2880 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2881 }
2882 static ssize_t use_zero_pages_store(struct kobject *kobj,
2883 				   struct kobj_attribute *attr,
2884 				   const char *buf, size_t count)
2885 {
2886 	int err;
2887 	bool value;
2888 
2889 	err = kstrtobool(buf, &value);
2890 	if (err)
2891 		return -EINVAL;
2892 
2893 	ksm_use_zero_pages = value;
2894 
2895 	return count;
2896 }
2897 KSM_ATTR(use_zero_pages);
2898 
2899 static ssize_t max_page_sharing_show(struct kobject *kobj,
2900 				     struct kobj_attribute *attr, char *buf)
2901 {
2902 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2903 }
2904 
2905 static ssize_t max_page_sharing_store(struct kobject *kobj,
2906 				      struct kobj_attribute *attr,
2907 				      const char *buf, size_t count)
2908 {
2909 	int err;
2910 	int knob;
2911 
2912 	err = kstrtoint(buf, 10, &knob);
2913 	if (err)
2914 		return err;
2915 	/*
2916 	 * When a KSM page is created it is shared by 2 mappings. This
2917 	 * being a signed comparison, it implicitly verifies it's not
2918 	 * negative.
2919 	 */
2920 	if (knob < 2)
2921 		return -EINVAL;
2922 
2923 	if (READ_ONCE(ksm_max_page_sharing) == knob)
2924 		return count;
2925 
2926 	mutex_lock(&ksm_thread_mutex);
2927 	wait_while_offlining();
2928 	if (ksm_max_page_sharing != knob) {
2929 		if (ksm_pages_shared || remove_all_stable_nodes())
2930 			err = -EBUSY;
2931 		else
2932 			ksm_max_page_sharing = knob;
2933 	}
2934 	mutex_unlock(&ksm_thread_mutex);
2935 
2936 	return err ? err : count;
2937 }
2938 KSM_ATTR(max_page_sharing);
2939 
2940 static ssize_t pages_shared_show(struct kobject *kobj,
2941 				 struct kobj_attribute *attr, char *buf)
2942 {
2943 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2944 }
2945 KSM_ATTR_RO(pages_shared);
2946 
2947 static ssize_t pages_sharing_show(struct kobject *kobj,
2948 				  struct kobj_attribute *attr, char *buf)
2949 {
2950 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2951 }
2952 KSM_ATTR_RO(pages_sharing);
2953 
2954 static ssize_t pages_unshared_show(struct kobject *kobj,
2955 				   struct kobj_attribute *attr, char *buf)
2956 {
2957 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2958 }
2959 KSM_ATTR_RO(pages_unshared);
2960 
2961 static ssize_t pages_volatile_show(struct kobject *kobj,
2962 				   struct kobj_attribute *attr, char *buf)
2963 {
2964 	long ksm_pages_volatile;
2965 
2966 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2967 				- ksm_pages_sharing - ksm_pages_unshared;
2968 	/*
2969 	 * It was not worth any locking to calculate that statistic,
2970 	 * but it might therefore sometimes be negative: conceal that.
2971 	 */
2972 	if (ksm_pages_volatile < 0)
2973 		ksm_pages_volatile = 0;
2974 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2975 }
2976 KSM_ATTR_RO(pages_volatile);
2977 
2978 static ssize_t stable_node_dups_show(struct kobject *kobj,
2979 				     struct kobj_attribute *attr, char *buf)
2980 {
2981 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2982 }
2983 KSM_ATTR_RO(stable_node_dups);
2984 
2985 static ssize_t stable_node_chains_show(struct kobject *kobj,
2986 				       struct kobj_attribute *attr, char *buf)
2987 {
2988 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2989 }
2990 KSM_ATTR_RO(stable_node_chains);
2991 
2992 static ssize_t
2993 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2994 					struct kobj_attribute *attr,
2995 					char *buf)
2996 {
2997 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2998 }
2999 
3000 static ssize_t
3001 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3002 					 struct kobj_attribute *attr,
3003 					 const char *buf, size_t count)
3004 {
3005 	unsigned long msecs;
3006 	int err;
3007 
3008 	err = kstrtoul(buf, 10, &msecs);
3009 	if (err || msecs > UINT_MAX)
3010 		return -EINVAL;
3011 
3012 	ksm_stable_node_chains_prune_millisecs = msecs;
3013 
3014 	return count;
3015 }
3016 KSM_ATTR(stable_node_chains_prune_millisecs);
3017 
3018 static ssize_t full_scans_show(struct kobject *kobj,
3019 			       struct kobj_attribute *attr, char *buf)
3020 {
3021 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3022 }
3023 KSM_ATTR_RO(full_scans);
3024 
3025 static struct attribute *ksm_attrs[] = {
3026 	&sleep_millisecs_attr.attr,
3027 	&pages_to_scan_attr.attr,
3028 	&run_attr.attr,
3029 	&pages_shared_attr.attr,
3030 	&pages_sharing_attr.attr,
3031 	&pages_unshared_attr.attr,
3032 	&pages_volatile_attr.attr,
3033 	&full_scans_attr.attr,
3034 #ifdef CONFIG_NUMA
3035 	&merge_across_nodes_attr.attr,
3036 #endif
3037 	&max_page_sharing_attr.attr,
3038 	&stable_node_chains_attr.attr,
3039 	&stable_node_dups_attr.attr,
3040 	&stable_node_chains_prune_millisecs_attr.attr,
3041 	&use_zero_pages_attr.attr,
3042 	NULL,
3043 };
3044 
3045 static struct attribute_group ksm_attr_group = {
3046 	.attrs = ksm_attrs,
3047 	.name = "ksm",
3048 };
3049 #endif /* CONFIG_SYSFS */
3050 
3051 static int __init ksm_init(void)
3052 {
3053 	struct task_struct *ksm_thread;
3054 	int err;
3055 
3056 	/* The correct value depends on page size and endianness */
3057 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3058 	/* Default to false for backwards compatibility */
3059 	ksm_use_zero_pages = false;
3060 
3061 	err = ksm_slab_init();
3062 	if (err)
3063 		goto out;
3064 
3065 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3066 	if (IS_ERR(ksm_thread)) {
3067 		pr_err("ksm: creating kthread failed\n");
3068 		err = PTR_ERR(ksm_thread);
3069 		goto out_free;
3070 	}
3071 
3072 #ifdef CONFIG_SYSFS
3073 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3074 	if (err) {
3075 		pr_err("ksm: register sysfs failed\n");
3076 		kthread_stop(ksm_thread);
3077 		goto out_free;
3078 	}
3079 #else
3080 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3081 
3082 #endif /* CONFIG_SYSFS */
3083 
3084 #ifdef CONFIG_MEMORY_HOTREMOVE
3085 	/* There is no significance to this priority 100 */
3086 	hotplug_memory_notifier(ksm_memory_callback, 100);
3087 #endif
3088 	return 0;
3089 
3090 out_free:
3091 	ksm_slab_free();
3092 out:
3093 	return err;
3094 }
3095 subsys_initcall(ksm_init);
3096