xref: /linux/mm/ksm.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/memcontrol.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hash.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 /*
45  * A few notes about the KSM scanning process,
46  * to make it easier to understand the data structures below:
47  *
48  * In order to reduce excessive scanning, KSM sorts the memory pages by their
49  * contents into a data structure that holds pointers to the pages' locations.
50  *
51  * Since the contents of the pages may change at any moment, KSM cannot just
52  * insert the pages into a normal sorted tree and expect it to find anything.
53  * Therefore KSM uses two data structures - the stable and the unstable tree.
54  *
55  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
56  * by their contents.  Because each such page is write-protected, searching on
57  * this tree is fully assured to be working (except when pages are unmapped),
58  * and therefore this tree is called the stable tree.
59  *
60  * In addition to the stable tree, KSM uses a second data structure called the
61  * unstable tree: this tree holds pointers to pages which have been found to
62  * be "unchanged for a period of time".  The unstable tree sorts these pages
63  * by their contents, but since they are not write-protected, KSM cannot rely
64  * upon the unstable tree to work correctly - the unstable tree is liable to
65  * be corrupted as its contents are modified, and so it is called unstable.
66  *
67  * KSM solves this problem by several techniques:
68  *
69  * 1) The unstable tree is flushed every time KSM completes scanning all
70  *    memory areas, and then the tree is rebuilt again from the beginning.
71  * 2) KSM will only insert into the unstable tree, pages whose hash value
72  *    has not changed since the previous scan of all memory areas.
73  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
74  *    colors of the nodes and not on their contents, assuring that even when
75  *    the tree gets "corrupted" it won't get out of balance, so scanning time
76  *    remains the same (also, searching and inserting nodes in an rbtree uses
77  *    the same algorithm, so we have no overhead when we flush and rebuild).
78  * 4) KSM never flushes the stable tree, which means that even if it were to
79  *    take 10 attempts to find a page in the unstable tree, once it is found,
80  *    it is secured in the stable tree.  (When we scan a new page, we first
81  *    compare it against the stable tree, and then against the unstable tree.)
82  */
83 
84 /**
85  * struct mm_slot - ksm information per mm that is being scanned
86  * @link: link to the mm_slots hash list
87  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
88  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
89  * @mm: the mm that this information is valid for
90  */
91 struct mm_slot {
92 	struct hlist_node link;
93 	struct list_head mm_list;
94 	struct rmap_item *rmap_list;
95 	struct mm_struct *mm;
96 };
97 
98 /**
99  * struct ksm_scan - cursor for scanning
100  * @mm_slot: the current mm_slot we are scanning
101  * @address: the next address inside that to be scanned
102  * @rmap_list: link to the next rmap to be scanned in the rmap_list
103  * @seqnr: count of completed full scans (needed when removing unstable node)
104  *
105  * There is only the one ksm_scan instance of this cursor structure.
106  */
107 struct ksm_scan {
108 	struct mm_slot *mm_slot;
109 	unsigned long address;
110 	struct rmap_item **rmap_list;
111 	unsigned long seqnr;
112 };
113 
114 /**
115  * struct stable_node - node of the stable rbtree
116  * @node: rb node of this ksm page in the stable tree
117  * @hlist: hlist head of rmap_items using this ksm page
118  * @kpfn: page frame number of this ksm page
119  */
120 struct stable_node {
121 	struct rb_node node;
122 	struct hlist_head hlist;
123 	unsigned long kpfn;
124 };
125 
126 /**
127  * struct rmap_item - reverse mapping item for virtual addresses
128  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
129  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
130  * @mm: the memory structure this rmap_item is pointing into
131  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
132  * @oldchecksum: previous checksum of the page at that virtual address
133  * @node: rb node of this rmap_item in the unstable tree
134  * @head: pointer to stable_node heading this list in the stable tree
135  * @hlist: link into hlist of rmap_items hanging off that stable_node
136  */
137 struct rmap_item {
138 	struct rmap_item *rmap_list;
139 	struct anon_vma *anon_vma;	/* when stable */
140 	struct mm_struct *mm;
141 	unsigned long address;		/* + low bits used for flags below */
142 	unsigned int oldchecksum;	/* when unstable */
143 	union {
144 		struct rb_node node;	/* when node of unstable tree */
145 		struct {		/* when listed from stable tree */
146 			struct stable_node *head;
147 			struct hlist_node hlist;
148 		};
149 	};
150 };
151 
152 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
153 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
154 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
155 
156 /* The stable and unstable tree heads */
157 static struct rb_root root_stable_tree = RB_ROOT;
158 static struct rb_root root_unstable_tree = RB_ROOT;
159 
160 #define MM_SLOTS_HASH_SHIFT 10
161 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
162 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
163 
164 static struct mm_slot ksm_mm_head = {
165 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
166 };
167 static struct ksm_scan ksm_scan = {
168 	.mm_slot = &ksm_mm_head,
169 };
170 
171 static struct kmem_cache *rmap_item_cache;
172 static struct kmem_cache *stable_node_cache;
173 static struct kmem_cache *mm_slot_cache;
174 
175 /* The number of nodes in the stable tree */
176 static unsigned long ksm_pages_shared;
177 
178 /* The number of page slots additionally sharing those nodes */
179 static unsigned long ksm_pages_sharing;
180 
181 /* The number of nodes in the unstable tree */
182 static unsigned long ksm_pages_unshared;
183 
184 /* The number of rmap_items in use: to calculate pages_volatile */
185 static unsigned long ksm_rmap_items;
186 
187 /* Number of pages ksmd should scan in one batch */
188 static unsigned int ksm_thread_pages_to_scan = 100;
189 
190 /* Milliseconds ksmd should sleep between batches */
191 static unsigned int ksm_thread_sleep_millisecs = 20;
192 
193 #define KSM_RUN_STOP	0
194 #define KSM_RUN_MERGE	1
195 #define KSM_RUN_UNMERGE	2
196 static unsigned int ksm_run = KSM_RUN_STOP;
197 
198 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
199 static DEFINE_MUTEX(ksm_thread_mutex);
200 static DEFINE_SPINLOCK(ksm_mmlist_lock);
201 
202 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
203 		sizeof(struct __struct), __alignof__(struct __struct),\
204 		(__flags), NULL)
205 
206 static int __init ksm_slab_init(void)
207 {
208 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
209 	if (!rmap_item_cache)
210 		goto out;
211 
212 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
213 	if (!stable_node_cache)
214 		goto out_free1;
215 
216 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
217 	if (!mm_slot_cache)
218 		goto out_free2;
219 
220 	return 0;
221 
222 out_free2:
223 	kmem_cache_destroy(stable_node_cache);
224 out_free1:
225 	kmem_cache_destroy(rmap_item_cache);
226 out:
227 	return -ENOMEM;
228 }
229 
230 static void __init ksm_slab_free(void)
231 {
232 	kmem_cache_destroy(mm_slot_cache);
233 	kmem_cache_destroy(stable_node_cache);
234 	kmem_cache_destroy(rmap_item_cache);
235 	mm_slot_cache = NULL;
236 }
237 
238 static inline struct rmap_item *alloc_rmap_item(void)
239 {
240 	struct rmap_item *rmap_item;
241 
242 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
243 	if (rmap_item)
244 		ksm_rmap_items++;
245 	return rmap_item;
246 }
247 
248 static inline void free_rmap_item(struct rmap_item *rmap_item)
249 {
250 	ksm_rmap_items--;
251 	rmap_item->mm = NULL;	/* debug safety */
252 	kmem_cache_free(rmap_item_cache, rmap_item);
253 }
254 
255 static inline struct stable_node *alloc_stable_node(void)
256 {
257 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
258 }
259 
260 static inline void free_stable_node(struct stable_node *stable_node)
261 {
262 	kmem_cache_free(stable_node_cache, stable_node);
263 }
264 
265 static inline struct mm_slot *alloc_mm_slot(void)
266 {
267 	if (!mm_slot_cache)	/* initialization failed */
268 		return NULL;
269 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
270 }
271 
272 static inline void free_mm_slot(struct mm_slot *mm_slot)
273 {
274 	kmem_cache_free(mm_slot_cache, mm_slot);
275 }
276 
277 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
278 {
279 	struct mm_slot *mm_slot;
280 	struct hlist_head *bucket;
281 	struct hlist_node *node;
282 
283 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
284 	hlist_for_each_entry(mm_slot, node, bucket, link) {
285 		if (mm == mm_slot->mm)
286 			return mm_slot;
287 	}
288 	return NULL;
289 }
290 
291 static void insert_to_mm_slots_hash(struct mm_struct *mm,
292 				    struct mm_slot *mm_slot)
293 {
294 	struct hlist_head *bucket;
295 
296 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
297 	mm_slot->mm = mm;
298 	hlist_add_head(&mm_slot->link, bucket);
299 }
300 
301 static inline int in_stable_tree(struct rmap_item *rmap_item)
302 {
303 	return rmap_item->address & STABLE_FLAG;
304 }
305 
306 /*
307  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
308  * page tables after it has passed through ksm_exit() - which, if necessary,
309  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
310  * a special flag: they can just back out as soon as mm_users goes to zero.
311  * ksm_test_exit() is used throughout to make this test for exit: in some
312  * places for correctness, in some places just to avoid unnecessary work.
313  */
314 static inline bool ksm_test_exit(struct mm_struct *mm)
315 {
316 	return atomic_read(&mm->mm_users) == 0;
317 }
318 
319 /*
320  * We use break_ksm to break COW on a ksm page: it's a stripped down
321  *
322  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
323  *		put_page(page);
324  *
325  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
326  * in case the application has unmapped and remapped mm,addr meanwhile.
327  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
328  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
329  */
330 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
331 {
332 	struct page *page;
333 	int ret = 0;
334 
335 	do {
336 		cond_resched();
337 		page = follow_page(vma, addr, FOLL_GET);
338 		if (IS_ERR_OR_NULL(page))
339 			break;
340 		if (PageKsm(page))
341 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
342 							FAULT_FLAG_WRITE);
343 		else
344 			ret = VM_FAULT_WRITE;
345 		put_page(page);
346 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
347 	/*
348 	 * We must loop because handle_mm_fault() may back out if there's
349 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
350 	 *
351 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
352 	 * COW has been broken, even if the vma does not permit VM_WRITE;
353 	 * but note that a concurrent fault might break PageKsm for us.
354 	 *
355 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
356 	 * backing file, which also invalidates anonymous pages: that's
357 	 * okay, that truncation will have unmapped the PageKsm for us.
358 	 *
359 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
360 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
361 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
362 	 * to user; and ksmd, having no mm, would never be chosen for that.
363 	 *
364 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
365 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
366 	 * even ksmd can fail in this way - though it's usually breaking ksm
367 	 * just to undo a merge it made a moment before, so unlikely to oom.
368 	 *
369 	 * That's a pity: we might therefore have more kernel pages allocated
370 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
371 	 * will retry to break_cow on each pass, so should recover the page
372 	 * in due course.  The important thing is to not let VM_MERGEABLE
373 	 * be cleared while any such pages might remain in the area.
374 	 */
375 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
376 }
377 
378 static void break_cow(struct rmap_item *rmap_item)
379 {
380 	struct mm_struct *mm = rmap_item->mm;
381 	unsigned long addr = rmap_item->address;
382 	struct vm_area_struct *vma;
383 
384 	/*
385 	 * It is not an accident that whenever we want to break COW
386 	 * to undo, we also need to drop a reference to the anon_vma.
387 	 */
388 	put_anon_vma(rmap_item->anon_vma);
389 
390 	down_read(&mm->mmap_sem);
391 	if (ksm_test_exit(mm))
392 		goto out;
393 	vma = find_vma(mm, addr);
394 	if (!vma || vma->vm_start > addr)
395 		goto out;
396 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
397 		goto out;
398 	break_ksm(vma, addr);
399 out:
400 	up_read(&mm->mmap_sem);
401 }
402 
403 static struct page *page_trans_compound_anon(struct page *page)
404 {
405 	if (PageTransCompound(page)) {
406 		struct page *head = compound_trans_head(page);
407 		/*
408 		 * head may actually be splitted and freed from under
409 		 * us but it's ok here.
410 		 */
411 		if (PageAnon(head))
412 			return head;
413 	}
414 	return NULL;
415 }
416 
417 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
418 {
419 	struct mm_struct *mm = rmap_item->mm;
420 	unsigned long addr = rmap_item->address;
421 	struct vm_area_struct *vma;
422 	struct page *page;
423 
424 	down_read(&mm->mmap_sem);
425 	if (ksm_test_exit(mm))
426 		goto out;
427 	vma = find_vma(mm, addr);
428 	if (!vma || vma->vm_start > addr)
429 		goto out;
430 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
431 		goto out;
432 
433 	page = follow_page(vma, addr, FOLL_GET);
434 	if (IS_ERR_OR_NULL(page))
435 		goto out;
436 	if (PageAnon(page) || page_trans_compound_anon(page)) {
437 		flush_anon_page(vma, page, addr);
438 		flush_dcache_page(page);
439 	} else {
440 		put_page(page);
441 out:		page = NULL;
442 	}
443 	up_read(&mm->mmap_sem);
444 	return page;
445 }
446 
447 static void remove_node_from_stable_tree(struct stable_node *stable_node)
448 {
449 	struct rmap_item *rmap_item;
450 	struct hlist_node *hlist;
451 
452 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
453 		if (rmap_item->hlist.next)
454 			ksm_pages_sharing--;
455 		else
456 			ksm_pages_shared--;
457 		put_anon_vma(rmap_item->anon_vma);
458 		rmap_item->address &= PAGE_MASK;
459 		cond_resched();
460 	}
461 
462 	rb_erase(&stable_node->node, &root_stable_tree);
463 	free_stable_node(stable_node);
464 }
465 
466 /*
467  * get_ksm_page: checks if the page indicated by the stable node
468  * is still its ksm page, despite having held no reference to it.
469  * In which case we can trust the content of the page, and it
470  * returns the gotten page; but if the page has now been zapped,
471  * remove the stale node from the stable tree and return NULL.
472  *
473  * You would expect the stable_node to hold a reference to the ksm page.
474  * But if it increments the page's count, swapping out has to wait for
475  * ksmd to come around again before it can free the page, which may take
476  * seconds or even minutes: much too unresponsive.  So instead we use a
477  * "keyhole reference": access to the ksm page from the stable node peeps
478  * out through its keyhole to see if that page still holds the right key,
479  * pointing back to this stable node.  This relies on freeing a PageAnon
480  * page to reset its page->mapping to NULL, and relies on no other use of
481  * a page to put something that might look like our key in page->mapping.
482  *
483  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
484  * but this is different - made simpler by ksm_thread_mutex being held, but
485  * interesting for assuming that no other use of the struct page could ever
486  * put our expected_mapping into page->mapping (or a field of the union which
487  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
488  * to keep the page_count protocol described with page_cache_get_speculative.
489  *
490  * Note: it is possible that get_ksm_page() will return NULL one moment,
491  * then page the next, if the page is in between page_freeze_refs() and
492  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
493  * is on its way to being freed; but it is an anomaly to bear in mind.
494  */
495 static struct page *get_ksm_page(struct stable_node *stable_node)
496 {
497 	struct page *page;
498 	void *expected_mapping;
499 
500 	page = pfn_to_page(stable_node->kpfn);
501 	expected_mapping = (void *)stable_node +
502 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
503 	rcu_read_lock();
504 	if (page->mapping != expected_mapping)
505 		goto stale;
506 	if (!get_page_unless_zero(page))
507 		goto stale;
508 	if (page->mapping != expected_mapping) {
509 		put_page(page);
510 		goto stale;
511 	}
512 	rcu_read_unlock();
513 	return page;
514 stale:
515 	rcu_read_unlock();
516 	remove_node_from_stable_tree(stable_node);
517 	return NULL;
518 }
519 
520 /*
521  * Removing rmap_item from stable or unstable tree.
522  * This function will clean the information from the stable/unstable tree.
523  */
524 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
525 {
526 	if (rmap_item->address & STABLE_FLAG) {
527 		struct stable_node *stable_node;
528 		struct page *page;
529 
530 		stable_node = rmap_item->head;
531 		page = get_ksm_page(stable_node);
532 		if (!page)
533 			goto out;
534 
535 		lock_page(page);
536 		hlist_del(&rmap_item->hlist);
537 		unlock_page(page);
538 		put_page(page);
539 
540 		if (stable_node->hlist.first)
541 			ksm_pages_sharing--;
542 		else
543 			ksm_pages_shared--;
544 
545 		put_anon_vma(rmap_item->anon_vma);
546 		rmap_item->address &= PAGE_MASK;
547 
548 	} else if (rmap_item->address & UNSTABLE_FLAG) {
549 		unsigned char age;
550 		/*
551 		 * Usually ksmd can and must skip the rb_erase, because
552 		 * root_unstable_tree was already reset to RB_ROOT.
553 		 * But be careful when an mm is exiting: do the rb_erase
554 		 * if this rmap_item was inserted by this scan, rather
555 		 * than left over from before.
556 		 */
557 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
558 		BUG_ON(age > 1);
559 		if (!age)
560 			rb_erase(&rmap_item->node, &root_unstable_tree);
561 
562 		ksm_pages_unshared--;
563 		rmap_item->address &= PAGE_MASK;
564 	}
565 out:
566 	cond_resched();		/* we're called from many long loops */
567 }
568 
569 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
570 				       struct rmap_item **rmap_list)
571 {
572 	while (*rmap_list) {
573 		struct rmap_item *rmap_item = *rmap_list;
574 		*rmap_list = rmap_item->rmap_list;
575 		remove_rmap_item_from_tree(rmap_item);
576 		free_rmap_item(rmap_item);
577 	}
578 }
579 
580 /*
581  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
582  * than check every pte of a given vma, the locking doesn't quite work for
583  * that - an rmap_item is assigned to the stable tree after inserting ksm
584  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
585  * rmap_items from parent to child at fork time (so as not to waste time
586  * if exit comes before the next scan reaches it).
587  *
588  * Similarly, although we'd like to remove rmap_items (so updating counts
589  * and freeing memory) when unmerging an area, it's easier to leave that
590  * to the next pass of ksmd - consider, for example, how ksmd might be
591  * in cmp_and_merge_page on one of the rmap_items we would be removing.
592  */
593 static int unmerge_ksm_pages(struct vm_area_struct *vma,
594 			     unsigned long start, unsigned long end)
595 {
596 	unsigned long addr;
597 	int err = 0;
598 
599 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
600 		if (ksm_test_exit(vma->vm_mm))
601 			break;
602 		if (signal_pending(current))
603 			err = -ERESTARTSYS;
604 		else
605 			err = break_ksm(vma, addr);
606 	}
607 	return err;
608 }
609 
610 #ifdef CONFIG_SYSFS
611 /*
612  * Only called through the sysfs control interface:
613  */
614 static int unmerge_and_remove_all_rmap_items(void)
615 {
616 	struct mm_slot *mm_slot;
617 	struct mm_struct *mm;
618 	struct vm_area_struct *vma;
619 	int err = 0;
620 
621 	spin_lock(&ksm_mmlist_lock);
622 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
623 						struct mm_slot, mm_list);
624 	spin_unlock(&ksm_mmlist_lock);
625 
626 	for (mm_slot = ksm_scan.mm_slot;
627 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
628 		mm = mm_slot->mm;
629 		down_read(&mm->mmap_sem);
630 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
631 			if (ksm_test_exit(mm))
632 				break;
633 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
634 				continue;
635 			err = unmerge_ksm_pages(vma,
636 						vma->vm_start, vma->vm_end);
637 			if (err)
638 				goto error;
639 		}
640 
641 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
642 
643 		spin_lock(&ksm_mmlist_lock);
644 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
645 						struct mm_slot, mm_list);
646 		if (ksm_test_exit(mm)) {
647 			hlist_del(&mm_slot->link);
648 			list_del(&mm_slot->mm_list);
649 			spin_unlock(&ksm_mmlist_lock);
650 
651 			free_mm_slot(mm_slot);
652 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
653 			up_read(&mm->mmap_sem);
654 			mmdrop(mm);
655 		} else {
656 			spin_unlock(&ksm_mmlist_lock);
657 			up_read(&mm->mmap_sem);
658 		}
659 	}
660 
661 	ksm_scan.seqnr = 0;
662 	return 0;
663 
664 error:
665 	up_read(&mm->mmap_sem);
666 	spin_lock(&ksm_mmlist_lock);
667 	ksm_scan.mm_slot = &ksm_mm_head;
668 	spin_unlock(&ksm_mmlist_lock);
669 	return err;
670 }
671 #endif /* CONFIG_SYSFS */
672 
673 static u32 calc_checksum(struct page *page)
674 {
675 	u32 checksum;
676 	void *addr = kmap_atomic(page, KM_USER0);
677 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
678 	kunmap_atomic(addr, KM_USER0);
679 	return checksum;
680 }
681 
682 static int memcmp_pages(struct page *page1, struct page *page2)
683 {
684 	char *addr1, *addr2;
685 	int ret;
686 
687 	addr1 = kmap_atomic(page1, KM_USER0);
688 	addr2 = kmap_atomic(page2, KM_USER1);
689 	ret = memcmp(addr1, addr2, PAGE_SIZE);
690 	kunmap_atomic(addr2, KM_USER1);
691 	kunmap_atomic(addr1, KM_USER0);
692 	return ret;
693 }
694 
695 static inline int pages_identical(struct page *page1, struct page *page2)
696 {
697 	return !memcmp_pages(page1, page2);
698 }
699 
700 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
701 			      pte_t *orig_pte)
702 {
703 	struct mm_struct *mm = vma->vm_mm;
704 	unsigned long addr;
705 	pte_t *ptep;
706 	spinlock_t *ptl;
707 	int swapped;
708 	int err = -EFAULT;
709 
710 	addr = page_address_in_vma(page, vma);
711 	if (addr == -EFAULT)
712 		goto out;
713 
714 	BUG_ON(PageTransCompound(page));
715 	ptep = page_check_address(page, mm, addr, &ptl, 0);
716 	if (!ptep)
717 		goto out;
718 
719 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
720 		pte_t entry;
721 
722 		swapped = PageSwapCache(page);
723 		flush_cache_page(vma, addr, page_to_pfn(page));
724 		/*
725 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
726 		 * take any lock, therefore the check that we are going to make
727 		 * with the pagecount against the mapcount is racey and
728 		 * O_DIRECT can happen right after the check.
729 		 * So we clear the pte and flush the tlb before the check
730 		 * this assure us that no O_DIRECT can happen after the check
731 		 * or in the middle of the check.
732 		 */
733 		entry = ptep_clear_flush(vma, addr, ptep);
734 		/*
735 		 * Check that no O_DIRECT or similar I/O is in progress on the
736 		 * page
737 		 */
738 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
739 			set_pte_at(mm, addr, ptep, entry);
740 			goto out_unlock;
741 		}
742 		if (pte_dirty(entry))
743 			set_page_dirty(page);
744 		entry = pte_mkclean(pte_wrprotect(entry));
745 		set_pte_at_notify(mm, addr, ptep, entry);
746 	}
747 	*orig_pte = *ptep;
748 	err = 0;
749 
750 out_unlock:
751 	pte_unmap_unlock(ptep, ptl);
752 out:
753 	return err;
754 }
755 
756 /**
757  * replace_page - replace page in vma by new ksm page
758  * @vma:      vma that holds the pte pointing to page
759  * @page:     the page we are replacing by kpage
760  * @kpage:    the ksm page we replace page by
761  * @orig_pte: the original value of the pte
762  *
763  * Returns 0 on success, -EFAULT on failure.
764  */
765 static int replace_page(struct vm_area_struct *vma, struct page *page,
766 			struct page *kpage, pte_t orig_pte)
767 {
768 	struct mm_struct *mm = vma->vm_mm;
769 	pgd_t *pgd;
770 	pud_t *pud;
771 	pmd_t *pmd;
772 	pte_t *ptep;
773 	spinlock_t *ptl;
774 	unsigned long addr;
775 	int err = -EFAULT;
776 
777 	addr = page_address_in_vma(page, vma);
778 	if (addr == -EFAULT)
779 		goto out;
780 
781 	pgd = pgd_offset(mm, addr);
782 	if (!pgd_present(*pgd))
783 		goto out;
784 
785 	pud = pud_offset(pgd, addr);
786 	if (!pud_present(*pud))
787 		goto out;
788 
789 	pmd = pmd_offset(pud, addr);
790 	BUG_ON(pmd_trans_huge(*pmd));
791 	if (!pmd_present(*pmd))
792 		goto out;
793 
794 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
795 	if (!pte_same(*ptep, orig_pte)) {
796 		pte_unmap_unlock(ptep, ptl);
797 		goto out;
798 	}
799 
800 	get_page(kpage);
801 	page_add_anon_rmap(kpage, vma, addr);
802 
803 	flush_cache_page(vma, addr, pte_pfn(*ptep));
804 	ptep_clear_flush(vma, addr, ptep);
805 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
806 
807 	page_remove_rmap(page);
808 	if (!page_mapped(page))
809 		try_to_free_swap(page);
810 	put_page(page);
811 
812 	pte_unmap_unlock(ptep, ptl);
813 	err = 0;
814 out:
815 	return err;
816 }
817 
818 static int page_trans_compound_anon_split(struct page *page)
819 {
820 	int ret = 0;
821 	struct page *transhuge_head = page_trans_compound_anon(page);
822 	if (transhuge_head) {
823 		/* Get the reference on the head to split it. */
824 		if (get_page_unless_zero(transhuge_head)) {
825 			/*
826 			 * Recheck we got the reference while the head
827 			 * was still anonymous.
828 			 */
829 			if (PageAnon(transhuge_head))
830 				ret = split_huge_page(transhuge_head);
831 			else
832 				/*
833 				 * Retry later if split_huge_page run
834 				 * from under us.
835 				 */
836 				ret = 1;
837 			put_page(transhuge_head);
838 		} else
839 			/* Retry later if split_huge_page run from under us. */
840 			ret = 1;
841 	}
842 	return ret;
843 }
844 
845 /*
846  * try_to_merge_one_page - take two pages and merge them into one
847  * @vma: the vma that holds the pte pointing to page
848  * @page: the PageAnon page that we want to replace with kpage
849  * @kpage: the PageKsm page that we want to map instead of page,
850  *         or NULL the first time when we want to use page as kpage.
851  *
852  * This function returns 0 if the pages were merged, -EFAULT otherwise.
853  */
854 static int try_to_merge_one_page(struct vm_area_struct *vma,
855 				 struct page *page, struct page *kpage)
856 {
857 	pte_t orig_pte = __pte(0);
858 	int err = -EFAULT;
859 
860 	if (page == kpage)			/* ksm page forked */
861 		return 0;
862 
863 	if (!(vma->vm_flags & VM_MERGEABLE))
864 		goto out;
865 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
866 		goto out;
867 	BUG_ON(PageTransCompound(page));
868 	if (!PageAnon(page))
869 		goto out;
870 
871 	/*
872 	 * We need the page lock to read a stable PageSwapCache in
873 	 * write_protect_page().  We use trylock_page() instead of
874 	 * lock_page() because we don't want to wait here - we
875 	 * prefer to continue scanning and merging different pages,
876 	 * then come back to this page when it is unlocked.
877 	 */
878 	if (!trylock_page(page))
879 		goto out;
880 	/*
881 	 * If this anonymous page is mapped only here, its pte may need
882 	 * to be write-protected.  If it's mapped elsewhere, all of its
883 	 * ptes are necessarily already write-protected.  But in either
884 	 * case, we need to lock and check page_count is not raised.
885 	 */
886 	if (write_protect_page(vma, page, &orig_pte) == 0) {
887 		if (!kpage) {
888 			/*
889 			 * While we hold page lock, upgrade page from
890 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
891 			 * stable_tree_insert() will update stable_node.
892 			 */
893 			set_page_stable_node(page, NULL);
894 			mark_page_accessed(page);
895 			err = 0;
896 		} else if (pages_identical(page, kpage))
897 			err = replace_page(vma, page, kpage, orig_pte);
898 	}
899 
900 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
901 		munlock_vma_page(page);
902 		if (!PageMlocked(kpage)) {
903 			unlock_page(page);
904 			lock_page(kpage);
905 			mlock_vma_page(kpage);
906 			page = kpage;		/* for final unlock */
907 		}
908 	}
909 
910 	unlock_page(page);
911 out:
912 	return err;
913 }
914 
915 /*
916  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
917  * but no new kernel page is allocated: kpage must already be a ksm page.
918  *
919  * This function returns 0 if the pages were merged, -EFAULT otherwise.
920  */
921 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
922 				      struct page *page, struct page *kpage)
923 {
924 	struct mm_struct *mm = rmap_item->mm;
925 	struct vm_area_struct *vma;
926 	int err = -EFAULT;
927 
928 	down_read(&mm->mmap_sem);
929 	if (ksm_test_exit(mm))
930 		goto out;
931 	vma = find_vma(mm, rmap_item->address);
932 	if (!vma || vma->vm_start > rmap_item->address)
933 		goto out;
934 
935 	err = try_to_merge_one_page(vma, page, kpage);
936 	if (err)
937 		goto out;
938 
939 	/* Must get reference to anon_vma while still holding mmap_sem */
940 	rmap_item->anon_vma = vma->anon_vma;
941 	get_anon_vma(vma->anon_vma);
942 out:
943 	up_read(&mm->mmap_sem);
944 	return err;
945 }
946 
947 /*
948  * try_to_merge_two_pages - take two identical pages and prepare them
949  * to be merged into one page.
950  *
951  * This function returns the kpage if we successfully merged two identical
952  * pages into one ksm page, NULL otherwise.
953  *
954  * Note that this function upgrades page to ksm page: if one of the pages
955  * is already a ksm page, try_to_merge_with_ksm_page should be used.
956  */
957 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
958 					   struct page *page,
959 					   struct rmap_item *tree_rmap_item,
960 					   struct page *tree_page)
961 {
962 	int err;
963 
964 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
965 	if (!err) {
966 		err = try_to_merge_with_ksm_page(tree_rmap_item,
967 							tree_page, page);
968 		/*
969 		 * If that fails, we have a ksm page with only one pte
970 		 * pointing to it: so break it.
971 		 */
972 		if (err)
973 			break_cow(rmap_item);
974 	}
975 	return err ? NULL : page;
976 }
977 
978 /*
979  * stable_tree_search - search for page inside the stable tree
980  *
981  * This function checks if there is a page inside the stable tree
982  * with identical content to the page that we are scanning right now.
983  *
984  * This function returns the stable tree node of identical content if found,
985  * NULL otherwise.
986  */
987 static struct page *stable_tree_search(struct page *page)
988 {
989 	struct rb_node *node = root_stable_tree.rb_node;
990 	struct stable_node *stable_node;
991 
992 	stable_node = page_stable_node(page);
993 	if (stable_node) {			/* ksm page forked */
994 		get_page(page);
995 		return page;
996 	}
997 
998 	while (node) {
999 		struct page *tree_page;
1000 		int ret;
1001 
1002 		cond_resched();
1003 		stable_node = rb_entry(node, struct stable_node, node);
1004 		tree_page = get_ksm_page(stable_node);
1005 		if (!tree_page)
1006 			return NULL;
1007 
1008 		ret = memcmp_pages(page, tree_page);
1009 
1010 		if (ret < 0) {
1011 			put_page(tree_page);
1012 			node = node->rb_left;
1013 		} else if (ret > 0) {
1014 			put_page(tree_page);
1015 			node = node->rb_right;
1016 		} else
1017 			return tree_page;
1018 	}
1019 
1020 	return NULL;
1021 }
1022 
1023 /*
1024  * stable_tree_insert - insert rmap_item pointing to new ksm page
1025  * into the stable tree.
1026  *
1027  * This function returns the stable tree node just allocated on success,
1028  * NULL otherwise.
1029  */
1030 static struct stable_node *stable_tree_insert(struct page *kpage)
1031 {
1032 	struct rb_node **new = &root_stable_tree.rb_node;
1033 	struct rb_node *parent = NULL;
1034 	struct stable_node *stable_node;
1035 
1036 	while (*new) {
1037 		struct page *tree_page;
1038 		int ret;
1039 
1040 		cond_resched();
1041 		stable_node = rb_entry(*new, struct stable_node, node);
1042 		tree_page = get_ksm_page(stable_node);
1043 		if (!tree_page)
1044 			return NULL;
1045 
1046 		ret = memcmp_pages(kpage, tree_page);
1047 		put_page(tree_page);
1048 
1049 		parent = *new;
1050 		if (ret < 0)
1051 			new = &parent->rb_left;
1052 		else if (ret > 0)
1053 			new = &parent->rb_right;
1054 		else {
1055 			/*
1056 			 * It is not a bug that stable_tree_search() didn't
1057 			 * find this node: because at that time our page was
1058 			 * not yet write-protected, so may have changed since.
1059 			 */
1060 			return NULL;
1061 		}
1062 	}
1063 
1064 	stable_node = alloc_stable_node();
1065 	if (!stable_node)
1066 		return NULL;
1067 
1068 	rb_link_node(&stable_node->node, parent, new);
1069 	rb_insert_color(&stable_node->node, &root_stable_tree);
1070 
1071 	INIT_HLIST_HEAD(&stable_node->hlist);
1072 
1073 	stable_node->kpfn = page_to_pfn(kpage);
1074 	set_page_stable_node(kpage, stable_node);
1075 
1076 	return stable_node;
1077 }
1078 
1079 /*
1080  * unstable_tree_search_insert - search for identical page,
1081  * else insert rmap_item into the unstable tree.
1082  *
1083  * This function searches for a page in the unstable tree identical to the
1084  * page currently being scanned; and if no identical page is found in the
1085  * tree, we insert rmap_item as a new object into the unstable tree.
1086  *
1087  * This function returns pointer to rmap_item found to be identical
1088  * to the currently scanned page, NULL otherwise.
1089  *
1090  * This function does both searching and inserting, because they share
1091  * the same walking algorithm in an rbtree.
1092  */
1093 static
1094 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1095 					      struct page *page,
1096 					      struct page **tree_pagep)
1097 
1098 {
1099 	struct rb_node **new = &root_unstable_tree.rb_node;
1100 	struct rb_node *parent = NULL;
1101 
1102 	while (*new) {
1103 		struct rmap_item *tree_rmap_item;
1104 		struct page *tree_page;
1105 		int ret;
1106 
1107 		cond_resched();
1108 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1109 		tree_page = get_mergeable_page(tree_rmap_item);
1110 		if (IS_ERR_OR_NULL(tree_page))
1111 			return NULL;
1112 
1113 		/*
1114 		 * Don't substitute a ksm page for a forked page.
1115 		 */
1116 		if (page == tree_page) {
1117 			put_page(tree_page);
1118 			return NULL;
1119 		}
1120 
1121 		ret = memcmp_pages(page, tree_page);
1122 
1123 		parent = *new;
1124 		if (ret < 0) {
1125 			put_page(tree_page);
1126 			new = &parent->rb_left;
1127 		} else if (ret > 0) {
1128 			put_page(tree_page);
1129 			new = &parent->rb_right;
1130 		} else {
1131 			*tree_pagep = tree_page;
1132 			return tree_rmap_item;
1133 		}
1134 	}
1135 
1136 	rmap_item->address |= UNSTABLE_FLAG;
1137 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1138 	rb_link_node(&rmap_item->node, parent, new);
1139 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1140 
1141 	ksm_pages_unshared++;
1142 	return NULL;
1143 }
1144 
1145 /*
1146  * stable_tree_append - add another rmap_item to the linked list of
1147  * rmap_items hanging off a given node of the stable tree, all sharing
1148  * the same ksm page.
1149  */
1150 static void stable_tree_append(struct rmap_item *rmap_item,
1151 			       struct stable_node *stable_node)
1152 {
1153 	rmap_item->head = stable_node;
1154 	rmap_item->address |= STABLE_FLAG;
1155 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1156 
1157 	if (rmap_item->hlist.next)
1158 		ksm_pages_sharing++;
1159 	else
1160 		ksm_pages_shared++;
1161 }
1162 
1163 /*
1164  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1165  * if not, compare checksum to previous and if it's the same, see if page can
1166  * be inserted into the unstable tree, or merged with a page already there and
1167  * both transferred to the stable tree.
1168  *
1169  * @page: the page that we are searching identical page to.
1170  * @rmap_item: the reverse mapping into the virtual address of this page
1171  */
1172 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1173 {
1174 	struct rmap_item *tree_rmap_item;
1175 	struct page *tree_page = NULL;
1176 	struct stable_node *stable_node;
1177 	struct page *kpage;
1178 	unsigned int checksum;
1179 	int err;
1180 
1181 	remove_rmap_item_from_tree(rmap_item);
1182 
1183 	/* We first start with searching the page inside the stable tree */
1184 	kpage = stable_tree_search(page);
1185 	if (kpage) {
1186 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1187 		if (!err) {
1188 			/*
1189 			 * The page was successfully merged:
1190 			 * add its rmap_item to the stable tree.
1191 			 */
1192 			lock_page(kpage);
1193 			stable_tree_append(rmap_item, page_stable_node(kpage));
1194 			unlock_page(kpage);
1195 		}
1196 		put_page(kpage);
1197 		return;
1198 	}
1199 
1200 	/*
1201 	 * If the hash value of the page has changed from the last time
1202 	 * we calculated it, this page is changing frequently: therefore we
1203 	 * don't want to insert it in the unstable tree, and we don't want
1204 	 * to waste our time searching for something identical to it there.
1205 	 */
1206 	checksum = calc_checksum(page);
1207 	if (rmap_item->oldchecksum != checksum) {
1208 		rmap_item->oldchecksum = checksum;
1209 		return;
1210 	}
1211 
1212 	tree_rmap_item =
1213 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1214 	if (tree_rmap_item) {
1215 		kpage = try_to_merge_two_pages(rmap_item, page,
1216 						tree_rmap_item, tree_page);
1217 		put_page(tree_page);
1218 		/*
1219 		 * As soon as we merge this page, we want to remove the
1220 		 * rmap_item of the page we have merged with from the unstable
1221 		 * tree, and insert it instead as new node in the stable tree.
1222 		 */
1223 		if (kpage) {
1224 			remove_rmap_item_from_tree(tree_rmap_item);
1225 
1226 			lock_page(kpage);
1227 			stable_node = stable_tree_insert(kpage);
1228 			if (stable_node) {
1229 				stable_tree_append(tree_rmap_item, stable_node);
1230 				stable_tree_append(rmap_item, stable_node);
1231 			}
1232 			unlock_page(kpage);
1233 
1234 			/*
1235 			 * If we fail to insert the page into the stable tree,
1236 			 * we will have 2 virtual addresses that are pointing
1237 			 * to a ksm page left outside the stable tree,
1238 			 * in which case we need to break_cow on both.
1239 			 */
1240 			if (!stable_node) {
1241 				break_cow(tree_rmap_item);
1242 				break_cow(rmap_item);
1243 			}
1244 		}
1245 	}
1246 }
1247 
1248 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1249 					    struct rmap_item **rmap_list,
1250 					    unsigned long addr)
1251 {
1252 	struct rmap_item *rmap_item;
1253 
1254 	while (*rmap_list) {
1255 		rmap_item = *rmap_list;
1256 		if ((rmap_item->address & PAGE_MASK) == addr)
1257 			return rmap_item;
1258 		if (rmap_item->address > addr)
1259 			break;
1260 		*rmap_list = rmap_item->rmap_list;
1261 		remove_rmap_item_from_tree(rmap_item);
1262 		free_rmap_item(rmap_item);
1263 	}
1264 
1265 	rmap_item = alloc_rmap_item();
1266 	if (rmap_item) {
1267 		/* It has already been zeroed */
1268 		rmap_item->mm = mm_slot->mm;
1269 		rmap_item->address = addr;
1270 		rmap_item->rmap_list = *rmap_list;
1271 		*rmap_list = rmap_item;
1272 	}
1273 	return rmap_item;
1274 }
1275 
1276 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1277 {
1278 	struct mm_struct *mm;
1279 	struct mm_slot *slot;
1280 	struct vm_area_struct *vma;
1281 	struct rmap_item *rmap_item;
1282 
1283 	if (list_empty(&ksm_mm_head.mm_list))
1284 		return NULL;
1285 
1286 	slot = ksm_scan.mm_slot;
1287 	if (slot == &ksm_mm_head) {
1288 		/*
1289 		 * A number of pages can hang around indefinitely on per-cpu
1290 		 * pagevecs, raised page count preventing write_protect_page
1291 		 * from merging them.  Though it doesn't really matter much,
1292 		 * it is puzzling to see some stuck in pages_volatile until
1293 		 * other activity jostles them out, and they also prevented
1294 		 * LTP's KSM test from succeeding deterministically; so drain
1295 		 * them here (here rather than on entry to ksm_do_scan(),
1296 		 * so we don't IPI too often when pages_to_scan is set low).
1297 		 */
1298 		lru_add_drain_all();
1299 
1300 		root_unstable_tree = RB_ROOT;
1301 
1302 		spin_lock(&ksm_mmlist_lock);
1303 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1304 		ksm_scan.mm_slot = slot;
1305 		spin_unlock(&ksm_mmlist_lock);
1306 		/*
1307 		 * Although we tested list_empty() above, a racing __ksm_exit
1308 		 * of the last mm on the list may have removed it since then.
1309 		 */
1310 		if (slot == &ksm_mm_head)
1311 			return NULL;
1312 next_mm:
1313 		ksm_scan.address = 0;
1314 		ksm_scan.rmap_list = &slot->rmap_list;
1315 	}
1316 
1317 	mm = slot->mm;
1318 	down_read(&mm->mmap_sem);
1319 	if (ksm_test_exit(mm))
1320 		vma = NULL;
1321 	else
1322 		vma = find_vma(mm, ksm_scan.address);
1323 
1324 	for (; vma; vma = vma->vm_next) {
1325 		if (!(vma->vm_flags & VM_MERGEABLE))
1326 			continue;
1327 		if (ksm_scan.address < vma->vm_start)
1328 			ksm_scan.address = vma->vm_start;
1329 		if (!vma->anon_vma)
1330 			ksm_scan.address = vma->vm_end;
1331 
1332 		while (ksm_scan.address < vma->vm_end) {
1333 			if (ksm_test_exit(mm))
1334 				break;
1335 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1336 			if (IS_ERR_OR_NULL(*page)) {
1337 				ksm_scan.address += PAGE_SIZE;
1338 				cond_resched();
1339 				continue;
1340 			}
1341 			if (PageAnon(*page) ||
1342 			    page_trans_compound_anon(*page)) {
1343 				flush_anon_page(vma, *page, ksm_scan.address);
1344 				flush_dcache_page(*page);
1345 				rmap_item = get_next_rmap_item(slot,
1346 					ksm_scan.rmap_list, ksm_scan.address);
1347 				if (rmap_item) {
1348 					ksm_scan.rmap_list =
1349 							&rmap_item->rmap_list;
1350 					ksm_scan.address += PAGE_SIZE;
1351 				} else
1352 					put_page(*page);
1353 				up_read(&mm->mmap_sem);
1354 				return rmap_item;
1355 			}
1356 			put_page(*page);
1357 			ksm_scan.address += PAGE_SIZE;
1358 			cond_resched();
1359 		}
1360 	}
1361 
1362 	if (ksm_test_exit(mm)) {
1363 		ksm_scan.address = 0;
1364 		ksm_scan.rmap_list = &slot->rmap_list;
1365 	}
1366 	/*
1367 	 * Nuke all the rmap_items that are above this current rmap:
1368 	 * because there were no VM_MERGEABLE vmas with such addresses.
1369 	 */
1370 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1371 
1372 	spin_lock(&ksm_mmlist_lock);
1373 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1374 						struct mm_slot, mm_list);
1375 	if (ksm_scan.address == 0) {
1376 		/*
1377 		 * We've completed a full scan of all vmas, holding mmap_sem
1378 		 * throughout, and found no VM_MERGEABLE: so do the same as
1379 		 * __ksm_exit does to remove this mm from all our lists now.
1380 		 * This applies either when cleaning up after __ksm_exit
1381 		 * (but beware: we can reach here even before __ksm_exit),
1382 		 * or when all VM_MERGEABLE areas have been unmapped (and
1383 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1384 		 */
1385 		hlist_del(&slot->link);
1386 		list_del(&slot->mm_list);
1387 		spin_unlock(&ksm_mmlist_lock);
1388 
1389 		free_mm_slot(slot);
1390 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1391 		up_read(&mm->mmap_sem);
1392 		mmdrop(mm);
1393 	} else {
1394 		spin_unlock(&ksm_mmlist_lock);
1395 		up_read(&mm->mmap_sem);
1396 	}
1397 
1398 	/* Repeat until we've completed scanning the whole list */
1399 	slot = ksm_scan.mm_slot;
1400 	if (slot != &ksm_mm_head)
1401 		goto next_mm;
1402 
1403 	ksm_scan.seqnr++;
1404 	return NULL;
1405 }
1406 
1407 /**
1408  * ksm_do_scan  - the ksm scanner main worker function.
1409  * @scan_npages - number of pages we want to scan before we return.
1410  */
1411 static void ksm_do_scan(unsigned int scan_npages)
1412 {
1413 	struct rmap_item *rmap_item;
1414 	struct page *uninitialized_var(page);
1415 
1416 	while (scan_npages-- && likely(!freezing(current))) {
1417 		cond_resched();
1418 		rmap_item = scan_get_next_rmap_item(&page);
1419 		if (!rmap_item)
1420 			return;
1421 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1422 			cmp_and_merge_page(page, rmap_item);
1423 		put_page(page);
1424 	}
1425 }
1426 
1427 static int ksmd_should_run(void)
1428 {
1429 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1430 }
1431 
1432 static int ksm_scan_thread(void *nothing)
1433 {
1434 	set_freezable();
1435 	set_user_nice(current, 5);
1436 
1437 	while (!kthread_should_stop()) {
1438 		mutex_lock(&ksm_thread_mutex);
1439 		if (ksmd_should_run())
1440 			ksm_do_scan(ksm_thread_pages_to_scan);
1441 		mutex_unlock(&ksm_thread_mutex);
1442 
1443 		try_to_freeze();
1444 
1445 		if (ksmd_should_run()) {
1446 			schedule_timeout_interruptible(
1447 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1448 		} else {
1449 			wait_event_freezable(ksm_thread_wait,
1450 				ksmd_should_run() || kthread_should_stop());
1451 		}
1452 	}
1453 	return 0;
1454 }
1455 
1456 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1457 		unsigned long end, int advice, unsigned long *vm_flags)
1458 {
1459 	struct mm_struct *mm = vma->vm_mm;
1460 	int err;
1461 
1462 	switch (advice) {
1463 	case MADV_MERGEABLE:
1464 		/*
1465 		 * Be somewhat over-protective for now!
1466 		 */
1467 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1468 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1469 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1470 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1471 			return 0;		/* just ignore the advice */
1472 
1473 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1474 			err = __ksm_enter(mm);
1475 			if (err)
1476 				return err;
1477 		}
1478 
1479 		*vm_flags |= VM_MERGEABLE;
1480 		break;
1481 
1482 	case MADV_UNMERGEABLE:
1483 		if (!(*vm_flags & VM_MERGEABLE))
1484 			return 0;		/* just ignore the advice */
1485 
1486 		if (vma->anon_vma) {
1487 			err = unmerge_ksm_pages(vma, start, end);
1488 			if (err)
1489 				return err;
1490 		}
1491 
1492 		*vm_flags &= ~VM_MERGEABLE;
1493 		break;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 int __ksm_enter(struct mm_struct *mm)
1500 {
1501 	struct mm_slot *mm_slot;
1502 	int needs_wakeup;
1503 
1504 	mm_slot = alloc_mm_slot();
1505 	if (!mm_slot)
1506 		return -ENOMEM;
1507 
1508 	/* Check ksm_run too?  Would need tighter locking */
1509 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1510 
1511 	spin_lock(&ksm_mmlist_lock);
1512 	insert_to_mm_slots_hash(mm, mm_slot);
1513 	/*
1514 	 * Insert just behind the scanning cursor, to let the area settle
1515 	 * down a little; when fork is followed by immediate exec, we don't
1516 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1517 	 */
1518 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1519 	spin_unlock(&ksm_mmlist_lock);
1520 
1521 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1522 	atomic_inc(&mm->mm_count);
1523 
1524 	if (needs_wakeup)
1525 		wake_up_interruptible(&ksm_thread_wait);
1526 
1527 	return 0;
1528 }
1529 
1530 void __ksm_exit(struct mm_struct *mm)
1531 {
1532 	struct mm_slot *mm_slot;
1533 	int easy_to_free = 0;
1534 
1535 	/*
1536 	 * This process is exiting: if it's straightforward (as is the
1537 	 * case when ksmd was never running), free mm_slot immediately.
1538 	 * But if it's at the cursor or has rmap_items linked to it, use
1539 	 * mmap_sem to synchronize with any break_cows before pagetables
1540 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1541 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1542 	 */
1543 
1544 	spin_lock(&ksm_mmlist_lock);
1545 	mm_slot = get_mm_slot(mm);
1546 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1547 		if (!mm_slot->rmap_list) {
1548 			hlist_del(&mm_slot->link);
1549 			list_del(&mm_slot->mm_list);
1550 			easy_to_free = 1;
1551 		} else {
1552 			list_move(&mm_slot->mm_list,
1553 				  &ksm_scan.mm_slot->mm_list);
1554 		}
1555 	}
1556 	spin_unlock(&ksm_mmlist_lock);
1557 
1558 	if (easy_to_free) {
1559 		free_mm_slot(mm_slot);
1560 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1561 		mmdrop(mm);
1562 	} else if (mm_slot) {
1563 		down_write(&mm->mmap_sem);
1564 		up_write(&mm->mmap_sem);
1565 	}
1566 }
1567 
1568 struct page *ksm_does_need_to_copy(struct page *page,
1569 			struct vm_area_struct *vma, unsigned long address)
1570 {
1571 	struct page *new_page;
1572 
1573 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1574 	if (new_page) {
1575 		/*
1576 		 * The memcg-specific accounting when moving
1577 		 * pages around the LRU lists relies on the
1578 		 * page's owner (memcg) to be valid.  Usually,
1579 		 * pages are assigned to a new owner before
1580 		 * being put on the LRU list, but since this
1581 		 * is not the case here, the stale owner from
1582 		 * a previous allocation cycle must be reset.
1583 		 */
1584 		mem_cgroup_reset_owner(new_page);
1585 		copy_user_highpage(new_page, page, address, vma);
1586 
1587 		SetPageDirty(new_page);
1588 		__SetPageUptodate(new_page);
1589 		SetPageSwapBacked(new_page);
1590 		__set_page_locked(new_page);
1591 
1592 		if (page_evictable(new_page, vma))
1593 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1594 		else
1595 			add_page_to_unevictable_list(new_page);
1596 	}
1597 
1598 	return new_page;
1599 }
1600 
1601 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1602 			unsigned long *vm_flags)
1603 {
1604 	struct stable_node *stable_node;
1605 	struct rmap_item *rmap_item;
1606 	struct hlist_node *hlist;
1607 	unsigned int mapcount = page_mapcount(page);
1608 	int referenced = 0;
1609 	int search_new_forks = 0;
1610 
1611 	VM_BUG_ON(!PageKsm(page));
1612 	VM_BUG_ON(!PageLocked(page));
1613 
1614 	stable_node = page_stable_node(page);
1615 	if (!stable_node)
1616 		return 0;
1617 again:
1618 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1619 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1620 		struct anon_vma_chain *vmac;
1621 		struct vm_area_struct *vma;
1622 
1623 		anon_vma_lock(anon_vma);
1624 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1625 			vma = vmac->vma;
1626 			if (rmap_item->address < vma->vm_start ||
1627 			    rmap_item->address >= vma->vm_end)
1628 				continue;
1629 			/*
1630 			 * Initially we examine only the vma which covers this
1631 			 * rmap_item; but later, if there is still work to do,
1632 			 * we examine covering vmas in other mms: in case they
1633 			 * were forked from the original since ksmd passed.
1634 			 */
1635 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1636 				continue;
1637 
1638 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1639 				continue;
1640 
1641 			referenced += page_referenced_one(page, vma,
1642 				rmap_item->address, &mapcount, vm_flags);
1643 			if (!search_new_forks || !mapcount)
1644 				break;
1645 		}
1646 		anon_vma_unlock(anon_vma);
1647 		if (!mapcount)
1648 			goto out;
1649 	}
1650 	if (!search_new_forks++)
1651 		goto again;
1652 out:
1653 	return referenced;
1654 }
1655 
1656 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1657 {
1658 	struct stable_node *stable_node;
1659 	struct hlist_node *hlist;
1660 	struct rmap_item *rmap_item;
1661 	int ret = SWAP_AGAIN;
1662 	int search_new_forks = 0;
1663 
1664 	VM_BUG_ON(!PageKsm(page));
1665 	VM_BUG_ON(!PageLocked(page));
1666 
1667 	stable_node = page_stable_node(page);
1668 	if (!stable_node)
1669 		return SWAP_FAIL;
1670 again:
1671 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1672 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1673 		struct anon_vma_chain *vmac;
1674 		struct vm_area_struct *vma;
1675 
1676 		anon_vma_lock(anon_vma);
1677 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1678 			vma = vmac->vma;
1679 			if (rmap_item->address < vma->vm_start ||
1680 			    rmap_item->address >= vma->vm_end)
1681 				continue;
1682 			/*
1683 			 * Initially we examine only the vma which covers this
1684 			 * rmap_item; but later, if there is still work to do,
1685 			 * we examine covering vmas in other mms: in case they
1686 			 * were forked from the original since ksmd passed.
1687 			 */
1688 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1689 				continue;
1690 
1691 			ret = try_to_unmap_one(page, vma,
1692 					rmap_item->address, flags);
1693 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1694 				anon_vma_unlock(anon_vma);
1695 				goto out;
1696 			}
1697 		}
1698 		anon_vma_unlock(anon_vma);
1699 	}
1700 	if (!search_new_forks++)
1701 		goto again;
1702 out:
1703 	return ret;
1704 }
1705 
1706 #ifdef CONFIG_MIGRATION
1707 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1708 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1709 {
1710 	struct stable_node *stable_node;
1711 	struct hlist_node *hlist;
1712 	struct rmap_item *rmap_item;
1713 	int ret = SWAP_AGAIN;
1714 	int search_new_forks = 0;
1715 
1716 	VM_BUG_ON(!PageKsm(page));
1717 	VM_BUG_ON(!PageLocked(page));
1718 
1719 	stable_node = page_stable_node(page);
1720 	if (!stable_node)
1721 		return ret;
1722 again:
1723 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1724 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1725 		struct anon_vma_chain *vmac;
1726 		struct vm_area_struct *vma;
1727 
1728 		anon_vma_lock(anon_vma);
1729 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1730 			vma = vmac->vma;
1731 			if (rmap_item->address < vma->vm_start ||
1732 			    rmap_item->address >= vma->vm_end)
1733 				continue;
1734 			/*
1735 			 * Initially we examine only the vma which covers this
1736 			 * rmap_item; but later, if there is still work to do,
1737 			 * we examine covering vmas in other mms: in case they
1738 			 * were forked from the original since ksmd passed.
1739 			 */
1740 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1741 				continue;
1742 
1743 			ret = rmap_one(page, vma, rmap_item->address, arg);
1744 			if (ret != SWAP_AGAIN) {
1745 				anon_vma_unlock(anon_vma);
1746 				goto out;
1747 			}
1748 		}
1749 		anon_vma_unlock(anon_vma);
1750 	}
1751 	if (!search_new_forks++)
1752 		goto again;
1753 out:
1754 	return ret;
1755 }
1756 
1757 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1758 {
1759 	struct stable_node *stable_node;
1760 
1761 	VM_BUG_ON(!PageLocked(oldpage));
1762 	VM_BUG_ON(!PageLocked(newpage));
1763 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1764 
1765 	stable_node = page_stable_node(newpage);
1766 	if (stable_node) {
1767 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1768 		stable_node->kpfn = page_to_pfn(newpage);
1769 	}
1770 }
1771 #endif /* CONFIG_MIGRATION */
1772 
1773 #ifdef CONFIG_MEMORY_HOTREMOVE
1774 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1775 						 unsigned long end_pfn)
1776 {
1777 	struct rb_node *node;
1778 
1779 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1780 		struct stable_node *stable_node;
1781 
1782 		stable_node = rb_entry(node, struct stable_node, node);
1783 		if (stable_node->kpfn >= start_pfn &&
1784 		    stable_node->kpfn < end_pfn)
1785 			return stable_node;
1786 	}
1787 	return NULL;
1788 }
1789 
1790 static int ksm_memory_callback(struct notifier_block *self,
1791 			       unsigned long action, void *arg)
1792 {
1793 	struct memory_notify *mn = arg;
1794 	struct stable_node *stable_node;
1795 
1796 	switch (action) {
1797 	case MEM_GOING_OFFLINE:
1798 		/*
1799 		 * Keep it very simple for now: just lock out ksmd and
1800 		 * MADV_UNMERGEABLE while any memory is going offline.
1801 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1802 		 * that here we take ksm_thread_mutex inside notifier chain
1803 		 * mutex, and later take notifier chain mutex inside
1804 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1805 		 * are inside mem_hotplug_mutex.
1806 		 */
1807 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1808 		break;
1809 
1810 	case MEM_OFFLINE:
1811 		/*
1812 		 * Most of the work is done by page migration; but there might
1813 		 * be a few stable_nodes left over, still pointing to struct
1814 		 * pages which have been offlined: prune those from the tree.
1815 		 */
1816 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1817 					mn->start_pfn + mn->nr_pages)) != NULL)
1818 			remove_node_from_stable_tree(stable_node);
1819 		/* fallthrough */
1820 
1821 	case MEM_CANCEL_OFFLINE:
1822 		mutex_unlock(&ksm_thread_mutex);
1823 		break;
1824 	}
1825 	return NOTIFY_OK;
1826 }
1827 #endif /* CONFIG_MEMORY_HOTREMOVE */
1828 
1829 #ifdef CONFIG_SYSFS
1830 /*
1831  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1832  */
1833 
1834 #define KSM_ATTR_RO(_name) \
1835 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1836 #define KSM_ATTR(_name) \
1837 	static struct kobj_attribute _name##_attr = \
1838 		__ATTR(_name, 0644, _name##_show, _name##_store)
1839 
1840 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1841 				    struct kobj_attribute *attr, char *buf)
1842 {
1843 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1844 }
1845 
1846 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1847 				     struct kobj_attribute *attr,
1848 				     const char *buf, size_t count)
1849 {
1850 	unsigned long msecs;
1851 	int err;
1852 
1853 	err = strict_strtoul(buf, 10, &msecs);
1854 	if (err || msecs > UINT_MAX)
1855 		return -EINVAL;
1856 
1857 	ksm_thread_sleep_millisecs = msecs;
1858 
1859 	return count;
1860 }
1861 KSM_ATTR(sleep_millisecs);
1862 
1863 static ssize_t pages_to_scan_show(struct kobject *kobj,
1864 				  struct kobj_attribute *attr, char *buf)
1865 {
1866 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1867 }
1868 
1869 static ssize_t pages_to_scan_store(struct kobject *kobj,
1870 				   struct kobj_attribute *attr,
1871 				   const char *buf, size_t count)
1872 {
1873 	int err;
1874 	unsigned long nr_pages;
1875 
1876 	err = strict_strtoul(buf, 10, &nr_pages);
1877 	if (err || nr_pages > UINT_MAX)
1878 		return -EINVAL;
1879 
1880 	ksm_thread_pages_to_scan = nr_pages;
1881 
1882 	return count;
1883 }
1884 KSM_ATTR(pages_to_scan);
1885 
1886 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1887 			char *buf)
1888 {
1889 	return sprintf(buf, "%u\n", ksm_run);
1890 }
1891 
1892 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1893 			 const char *buf, size_t count)
1894 {
1895 	int err;
1896 	unsigned long flags;
1897 
1898 	err = strict_strtoul(buf, 10, &flags);
1899 	if (err || flags > UINT_MAX)
1900 		return -EINVAL;
1901 	if (flags > KSM_RUN_UNMERGE)
1902 		return -EINVAL;
1903 
1904 	/*
1905 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1906 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1907 	 * breaking COW to free the pages_shared (but leaves mm_slots
1908 	 * on the list for when ksmd may be set running again).
1909 	 */
1910 
1911 	mutex_lock(&ksm_thread_mutex);
1912 	if (ksm_run != flags) {
1913 		ksm_run = flags;
1914 		if (flags & KSM_RUN_UNMERGE) {
1915 			int oom_score_adj;
1916 
1917 			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1918 			err = unmerge_and_remove_all_rmap_items();
1919 			compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1920 								oom_score_adj);
1921 			if (err) {
1922 				ksm_run = KSM_RUN_STOP;
1923 				count = err;
1924 			}
1925 		}
1926 	}
1927 	mutex_unlock(&ksm_thread_mutex);
1928 
1929 	if (flags & KSM_RUN_MERGE)
1930 		wake_up_interruptible(&ksm_thread_wait);
1931 
1932 	return count;
1933 }
1934 KSM_ATTR(run);
1935 
1936 static ssize_t pages_shared_show(struct kobject *kobj,
1937 				 struct kobj_attribute *attr, char *buf)
1938 {
1939 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1940 }
1941 KSM_ATTR_RO(pages_shared);
1942 
1943 static ssize_t pages_sharing_show(struct kobject *kobj,
1944 				  struct kobj_attribute *attr, char *buf)
1945 {
1946 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1947 }
1948 KSM_ATTR_RO(pages_sharing);
1949 
1950 static ssize_t pages_unshared_show(struct kobject *kobj,
1951 				   struct kobj_attribute *attr, char *buf)
1952 {
1953 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1954 }
1955 KSM_ATTR_RO(pages_unshared);
1956 
1957 static ssize_t pages_volatile_show(struct kobject *kobj,
1958 				   struct kobj_attribute *attr, char *buf)
1959 {
1960 	long ksm_pages_volatile;
1961 
1962 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1963 				- ksm_pages_sharing - ksm_pages_unshared;
1964 	/*
1965 	 * It was not worth any locking to calculate that statistic,
1966 	 * but it might therefore sometimes be negative: conceal that.
1967 	 */
1968 	if (ksm_pages_volatile < 0)
1969 		ksm_pages_volatile = 0;
1970 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1971 }
1972 KSM_ATTR_RO(pages_volatile);
1973 
1974 static ssize_t full_scans_show(struct kobject *kobj,
1975 			       struct kobj_attribute *attr, char *buf)
1976 {
1977 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1978 }
1979 KSM_ATTR_RO(full_scans);
1980 
1981 static struct attribute *ksm_attrs[] = {
1982 	&sleep_millisecs_attr.attr,
1983 	&pages_to_scan_attr.attr,
1984 	&run_attr.attr,
1985 	&pages_shared_attr.attr,
1986 	&pages_sharing_attr.attr,
1987 	&pages_unshared_attr.attr,
1988 	&pages_volatile_attr.attr,
1989 	&full_scans_attr.attr,
1990 	NULL,
1991 };
1992 
1993 static struct attribute_group ksm_attr_group = {
1994 	.attrs = ksm_attrs,
1995 	.name = "ksm",
1996 };
1997 #endif /* CONFIG_SYSFS */
1998 
1999 static int __init ksm_init(void)
2000 {
2001 	struct task_struct *ksm_thread;
2002 	int err;
2003 
2004 	err = ksm_slab_init();
2005 	if (err)
2006 		goto out;
2007 
2008 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2009 	if (IS_ERR(ksm_thread)) {
2010 		printk(KERN_ERR "ksm: creating kthread failed\n");
2011 		err = PTR_ERR(ksm_thread);
2012 		goto out_free;
2013 	}
2014 
2015 #ifdef CONFIG_SYSFS
2016 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2017 	if (err) {
2018 		printk(KERN_ERR "ksm: register sysfs failed\n");
2019 		kthread_stop(ksm_thread);
2020 		goto out_free;
2021 	}
2022 #else
2023 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2024 
2025 #endif /* CONFIG_SYSFS */
2026 
2027 #ifdef CONFIG_MEMORY_HOTREMOVE
2028 	/*
2029 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2030 	 * later callbacks could only be taking locks which nest within that.
2031 	 */
2032 	hotplug_memory_notifier(ksm_memory_callback, 100);
2033 #endif
2034 	return 0;
2035 
2036 out_free:
2037 	ksm_slab_free();
2038 out:
2039 	return err;
2040 }
2041 module_init(ksm_init)
2042