1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 219 /* The stable and unstable tree heads */ 220 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 221 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 222 static struct rb_root *root_stable_tree = one_stable_tree; 223 static struct rb_root *root_unstable_tree = one_unstable_tree; 224 225 /* Recently migrated nodes of stable tree, pending proper placement */ 226 static LIST_HEAD(migrate_nodes); 227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 228 229 #define MM_SLOTS_HASH_BITS 10 230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 231 232 static struct mm_slot ksm_mm_head = { 233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 234 }; 235 static struct ksm_scan ksm_scan = { 236 .mm_slot = &ksm_mm_head, 237 }; 238 239 static struct kmem_cache *rmap_item_cache; 240 static struct kmem_cache *stable_node_cache; 241 static struct kmem_cache *mm_slot_cache; 242 243 /* The number of nodes in the stable tree */ 244 static unsigned long ksm_pages_shared; 245 246 /* The number of page slots additionally sharing those nodes */ 247 static unsigned long ksm_pages_sharing; 248 249 /* The number of nodes in the unstable tree */ 250 static unsigned long ksm_pages_unshared; 251 252 /* The number of rmap_items in use: to calculate pages_volatile */ 253 static unsigned long ksm_rmap_items; 254 255 /* The number of stable_node chains */ 256 static unsigned long ksm_stable_node_chains; 257 258 /* The number of stable_node dups linked to the stable_node chains */ 259 static unsigned long ksm_stable_node_dups; 260 261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 263 264 /* Maximum number of page slots sharing a stable node */ 265 static int ksm_max_page_sharing = 256; 266 267 /* Number of pages ksmd should scan in one batch */ 268 static unsigned int ksm_thread_pages_to_scan = 100; 269 270 /* Milliseconds ksmd should sleep between batches */ 271 static unsigned int ksm_thread_sleep_millisecs = 20; 272 273 /* Checksum of an empty (zeroed) page */ 274 static unsigned int zero_checksum __read_mostly; 275 276 /* Whether to merge empty (zeroed) pages with actual zero pages */ 277 static bool ksm_use_zero_pages __read_mostly; 278 279 #ifdef CONFIG_NUMA 280 /* Zeroed when merging across nodes is not allowed */ 281 static unsigned int ksm_merge_across_nodes = 1; 282 static int ksm_nr_node_ids = 1; 283 #else 284 #define ksm_merge_across_nodes 1U 285 #define ksm_nr_node_ids 1 286 #endif 287 288 #define KSM_RUN_STOP 0 289 #define KSM_RUN_MERGE 1 290 #define KSM_RUN_UNMERGE 2 291 #define KSM_RUN_OFFLINE 4 292 static unsigned long ksm_run = KSM_RUN_STOP; 293 static void wait_while_offlining(void); 294 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 vm_fault_t ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 482 NULL); 483 else 484 ret = VM_FAULT_WRITE; 485 put_page(page); 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop because handle_mm_fault() may back out if there's 489 * any difficulty e.g. if pte accessed bit gets updated concurrently. 490 * 491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 492 * COW has been broken, even if the vma does not permit VM_WRITE; 493 * but note that a concurrent fault might break PageKsm for us. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 519 unsigned long addr) 520 { 521 struct vm_area_struct *vma; 522 if (ksm_test_exit(mm)) 523 return NULL; 524 vma = vma_lookup(mm, addr); 525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 526 return NULL; 527 return vma; 528 } 529 530 static void break_cow(struct rmap_item *rmap_item) 531 { 532 struct mm_struct *mm = rmap_item->mm; 533 unsigned long addr = rmap_item->address; 534 struct vm_area_struct *vma; 535 536 /* 537 * It is not an accident that whenever we want to break COW 538 * to undo, we also need to drop a reference to the anon_vma. 539 */ 540 put_anon_vma(rmap_item->anon_vma); 541 542 mmap_read_lock(mm); 543 vma = find_mergeable_vma(mm, addr); 544 if (vma) 545 break_ksm(vma, addr); 546 mmap_read_unlock(mm); 547 } 548 549 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 550 { 551 struct mm_struct *mm = rmap_item->mm; 552 unsigned long addr = rmap_item->address; 553 struct vm_area_struct *vma; 554 struct page *page; 555 556 mmap_read_lock(mm); 557 vma = find_mergeable_vma(mm, addr); 558 if (!vma) 559 goto out; 560 561 page = follow_page(vma, addr, FOLL_GET); 562 if (IS_ERR_OR_NULL(page)) 563 goto out; 564 if (PageAnon(page)) { 565 flush_anon_page(vma, page, addr); 566 flush_dcache_page(page); 567 } else { 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 588 struct rb_root *root) 589 { 590 struct stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct stable_node *stable_node) 629 { 630 struct rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 641 stable_node->rmap_hlist_len--; 642 put_anon_vma(rmap_item->anon_vma); 643 rmap_item->address &= PAGE_MASK; 644 cond_resched(); 645 } 646 647 /* 648 * We need the second aligned pointer of the migrate_nodes 649 * list_head to stay clear from the rb_parent_color union 650 * (aligned and different than any node) and also different 651 * from &migrate_nodes. This will verify that future list.h changes 652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 653 */ 654 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 656 657 if (stable_node->head == &migrate_nodes) 658 list_del(&stable_node->list); 659 else 660 stable_node_dup_del(stable_node); 661 free_stable_node(stable_node); 662 } 663 664 enum get_ksm_page_flags { 665 GET_KSM_PAGE_NOLOCK, 666 GET_KSM_PAGE_LOCK, 667 GET_KSM_PAGE_TRYLOCK 668 }; 669 670 /* 671 * get_ksm_page: checks if the page indicated by the stable node 672 * is still its ksm page, despite having held no reference to it. 673 * In which case we can trust the content of the page, and it 674 * returns the gotten page; but if the page has now been zapped, 675 * remove the stale node from the stable tree and return NULL. 676 * But beware, the stable node's page might be being migrated. 677 * 678 * You would expect the stable_node to hold a reference to the ksm page. 679 * But if it increments the page's count, swapping out has to wait for 680 * ksmd to come around again before it can free the page, which may take 681 * seconds or even minutes: much too unresponsive. So instead we use a 682 * "keyhole reference": access to the ksm page from the stable node peeps 683 * out through its keyhole to see if that page still holds the right key, 684 * pointing back to this stable node. This relies on freeing a PageAnon 685 * page to reset its page->mapping to NULL, and relies on no other use of 686 * a page to put something that might look like our key in page->mapping. 687 * is on its way to being freed; but it is an anomaly to bear in mind. 688 */ 689 static struct page *get_ksm_page(struct stable_node *stable_node, 690 enum get_ksm_page_flags flags) 691 { 692 struct page *page; 693 void *expected_mapping; 694 unsigned long kpfn; 695 696 expected_mapping = (void *)((unsigned long)stable_node | 697 PAGE_MAPPING_KSM); 698 again: 699 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 700 page = pfn_to_page(kpfn); 701 if (READ_ONCE(page->mapping) != expected_mapping) 702 goto stale; 703 704 /* 705 * We cannot do anything with the page while its refcount is 0. 706 * Usually 0 means free, or tail of a higher-order page: in which 707 * case this node is no longer referenced, and should be freed; 708 * however, it might mean that the page is under page_ref_freeze(). 709 * The __remove_mapping() case is easy, again the node is now stale; 710 * the same is in reuse_ksm_page() case; but if page is swapcache 711 * in migrate_page_move_mapping(), it might still be our page, 712 * in which case it's essential to keep the node. 713 */ 714 while (!get_page_unless_zero(page)) { 715 /* 716 * Another check for page->mapping != expected_mapping would 717 * work here too. We have chosen the !PageSwapCache test to 718 * optimize the common case, when the page is or is about to 719 * be freed: PageSwapCache is cleared (under spin_lock_irq) 720 * in the ref_freeze section of __remove_mapping(); but Anon 721 * page->mapping reset to NULL later, in free_pages_prepare(). 722 */ 723 if (!PageSwapCache(page)) 724 goto stale; 725 cpu_relax(); 726 } 727 728 if (READ_ONCE(page->mapping) != expected_mapping) { 729 put_page(page); 730 goto stale; 731 } 732 733 if (flags == GET_KSM_PAGE_TRYLOCK) { 734 if (!trylock_page(page)) { 735 put_page(page); 736 return ERR_PTR(-EBUSY); 737 } 738 } else if (flags == GET_KSM_PAGE_LOCK) 739 lock_page(page); 740 741 if (flags != GET_KSM_PAGE_NOLOCK) { 742 if (READ_ONCE(page->mapping) != expected_mapping) { 743 unlock_page(page); 744 put_page(page); 745 goto stale; 746 } 747 } 748 return page; 749 750 stale: 751 /* 752 * We come here from above when page->mapping or !PageSwapCache 753 * suggests that the node is stale; but it might be under migration. 754 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 755 * before checking whether node->kpfn has been changed. 756 */ 757 smp_rmb(); 758 if (READ_ONCE(stable_node->kpfn) != kpfn) 759 goto again; 760 remove_node_from_stable_tree(stable_node); 761 return NULL; 762 } 763 764 /* 765 * Removing rmap_item from stable or unstable tree. 766 * This function will clean the information from the stable/unstable tree. 767 */ 768 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 769 { 770 if (rmap_item->address & STABLE_FLAG) { 771 struct stable_node *stable_node; 772 struct page *page; 773 774 stable_node = rmap_item->head; 775 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 776 if (!page) 777 goto out; 778 779 hlist_del(&rmap_item->hlist); 780 unlock_page(page); 781 put_page(page); 782 783 if (!hlist_empty(&stable_node->hlist)) 784 ksm_pages_sharing--; 785 else 786 ksm_pages_shared--; 787 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 788 stable_node->rmap_hlist_len--; 789 790 put_anon_vma(rmap_item->anon_vma); 791 rmap_item->head = NULL; 792 rmap_item->address &= PAGE_MASK; 793 794 } else if (rmap_item->address & UNSTABLE_FLAG) { 795 unsigned char age; 796 /* 797 * Usually ksmd can and must skip the rb_erase, because 798 * root_unstable_tree was already reset to RB_ROOT. 799 * But be careful when an mm is exiting: do the rb_erase 800 * if this rmap_item was inserted by this scan, rather 801 * than left over from before. 802 */ 803 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 804 BUG_ON(age > 1); 805 if (!age) 806 rb_erase(&rmap_item->node, 807 root_unstable_tree + NUMA(rmap_item->nid)); 808 ksm_pages_unshared--; 809 rmap_item->address &= PAGE_MASK; 810 } 811 out: 812 cond_resched(); /* we're called from many long loops */ 813 } 814 815 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 816 { 817 while (*rmap_list) { 818 struct rmap_item *rmap_item = *rmap_list; 819 *rmap_list = rmap_item->rmap_list; 820 remove_rmap_item_from_tree(rmap_item); 821 free_rmap_item(rmap_item); 822 } 823 } 824 825 /* 826 * Though it's very tempting to unmerge rmap_items from stable tree rather 827 * than check every pte of a given vma, the locking doesn't quite work for 828 * that - an rmap_item is assigned to the stable tree after inserting ksm 829 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 830 * rmap_items from parent to child at fork time (so as not to waste time 831 * if exit comes before the next scan reaches it). 832 * 833 * Similarly, although we'd like to remove rmap_items (so updating counts 834 * and freeing memory) when unmerging an area, it's easier to leave that 835 * to the next pass of ksmd - consider, for example, how ksmd might be 836 * in cmp_and_merge_page on one of the rmap_items we would be removing. 837 */ 838 static int unmerge_ksm_pages(struct vm_area_struct *vma, 839 unsigned long start, unsigned long end) 840 { 841 unsigned long addr; 842 int err = 0; 843 844 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 845 if (ksm_test_exit(vma->vm_mm)) 846 break; 847 if (signal_pending(current)) 848 err = -ERESTARTSYS; 849 else 850 err = break_ksm(vma, addr); 851 } 852 return err; 853 } 854 855 static inline struct stable_node *folio_stable_node(struct folio *folio) 856 { 857 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 858 } 859 860 static inline struct stable_node *page_stable_node(struct page *page) 861 { 862 return folio_stable_node(page_folio(page)); 863 } 864 865 static inline void set_page_stable_node(struct page *page, 866 struct stable_node *stable_node) 867 { 868 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 869 } 870 871 #ifdef CONFIG_SYSFS 872 /* 873 * Only called through the sysfs control interface: 874 */ 875 static int remove_stable_node(struct stable_node *stable_node) 876 { 877 struct page *page; 878 int err; 879 880 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 881 if (!page) { 882 /* 883 * get_ksm_page did remove_node_from_stable_tree itself. 884 */ 885 return 0; 886 } 887 888 /* 889 * Page could be still mapped if this races with __mmput() running in 890 * between ksm_exit() and exit_mmap(). Just refuse to let 891 * merge_across_nodes/max_page_sharing be switched. 892 */ 893 err = -EBUSY; 894 if (!page_mapped(page)) { 895 /* 896 * The stable node did not yet appear stale to get_ksm_page(), 897 * since that allows for an unmapped ksm page to be recognized 898 * right up until it is freed; but the node is safe to remove. 899 * This page might be in a pagevec waiting to be freed, 900 * or it might be PageSwapCache (perhaps under writeback), 901 * or it might have been removed from swapcache a moment ago. 902 */ 903 set_page_stable_node(page, NULL); 904 remove_node_from_stable_tree(stable_node); 905 err = 0; 906 } 907 908 unlock_page(page); 909 put_page(page); 910 return err; 911 } 912 913 static int remove_stable_node_chain(struct stable_node *stable_node, 914 struct rb_root *root) 915 { 916 struct stable_node *dup; 917 struct hlist_node *hlist_safe; 918 919 if (!is_stable_node_chain(stable_node)) { 920 VM_BUG_ON(is_stable_node_dup(stable_node)); 921 if (remove_stable_node(stable_node)) 922 return true; 923 else 924 return false; 925 } 926 927 hlist_for_each_entry_safe(dup, hlist_safe, 928 &stable_node->hlist, hlist_dup) { 929 VM_BUG_ON(!is_stable_node_dup(dup)); 930 if (remove_stable_node(dup)) 931 return true; 932 } 933 BUG_ON(!hlist_empty(&stable_node->hlist)); 934 free_stable_node_chain(stable_node, root); 935 return false; 936 } 937 938 static int remove_all_stable_nodes(void) 939 { 940 struct stable_node *stable_node, *next; 941 int nid; 942 int err = 0; 943 944 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 945 while (root_stable_tree[nid].rb_node) { 946 stable_node = rb_entry(root_stable_tree[nid].rb_node, 947 struct stable_node, node); 948 if (remove_stable_node_chain(stable_node, 949 root_stable_tree + nid)) { 950 err = -EBUSY; 951 break; /* proceed to next nid */ 952 } 953 cond_resched(); 954 } 955 } 956 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 957 if (remove_stable_node(stable_node)) 958 err = -EBUSY; 959 cond_resched(); 960 } 961 return err; 962 } 963 964 static int unmerge_and_remove_all_rmap_items(void) 965 { 966 struct mm_slot *mm_slot; 967 struct mm_struct *mm; 968 struct vm_area_struct *vma; 969 int err = 0; 970 971 spin_lock(&ksm_mmlist_lock); 972 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 973 struct mm_slot, mm_list); 974 spin_unlock(&ksm_mmlist_lock); 975 976 for (mm_slot = ksm_scan.mm_slot; 977 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 978 mm = mm_slot->mm; 979 mmap_read_lock(mm); 980 for (vma = mm->mmap; vma; vma = vma->vm_next) { 981 if (ksm_test_exit(mm)) 982 break; 983 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 984 continue; 985 err = unmerge_ksm_pages(vma, 986 vma->vm_start, vma->vm_end); 987 if (err) 988 goto error; 989 } 990 991 remove_trailing_rmap_items(&mm_slot->rmap_list); 992 mmap_read_unlock(mm); 993 994 spin_lock(&ksm_mmlist_lock); 995 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 996 struct mm_slot, mm_list); 997 if (ksm_test_exit(mm)) { 998 hash_del(&mm_slot->link); 999 list_del(&mm_slot->mm_list); 1000 spin_unlock(&ksm_mmlist_lock); 1001 1002 free_mm_slot(mm_slot); 1003 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1004 mmdrop(mm); 1005 } else 1006 spin_unlock(&ksm_mmlist_lock); 1007 } 1008 1009 /* Clean up stable nodes, but don't worry if some are still busy */ 1010 remove_all_stable_nodes(); 1011 ksm_scan.seqnr = 0; 1012 return 0; 1013 1014 error: 1015 mmap_read_unlock(mm); 1016 spin_lock(&ksm_mmlist_lock); 1017 ksm_scan.mm_slot = &ksm_mm_head; 1018 spin_unlock(&ksm_mmlist_lock); 1019 return err; 1020 } 1021 #endif /* CONFIG_SYSFS */ 1022 1023 static u32 calc_checksum(struct page *page) 1024 { 1025 u32 checksum; 1026 void *addr = kmap_atomic(page); 1027 checksum = xxhash(addr, PAGE_SIZE, 0); 1028 kunmap_atomic(addr); 1029 return checksum; 1030 } 1031 1032 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1033 pte_t *orig_pte) 1034 { 1035 struct mm_struct *mm = vma->vm_mm; 1036 struct page_vma_mapped_walk pvmw = { 1037 .page = page, 1038 .vma = vma, 1039 }; 1040 int swapped; 1041 int err = -EFAULT; 1042 struct mmu_notifier_range range; 1043 1044 pvmw.address = page_address_in_vma(page, vma); 1045 if (pvmw.address == -EFAULT) 1046 goto out; 1047 1048 BUG_ON(PageTransCompound(page)); 1049 1050 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1051 pvmw.address, 1052 pvmw.address + PAGE_SIZE); 1053 mmu_notifier_invalidate_range_start(&range); 1054 1055 if (!page_vma_mapped_walk(&pvmw)) 1056 goto out_mn; 1057 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1058 goto out_unlock; 1059 1060 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1061 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1062 mm_tlb_flush_pending(mm)) { 1063 pte_t entry; 1064 1065 swapped = PageSwapCache(page); 1066 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1067 /* 1068 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1069 * take any lock, therefore the check that we are going to make 1070 * with the pagecount against the mapcount is racy and 1071 * O_DIRECT can happen right after the check. 1072 * So we clear the pte and flush the tlb before the check 1073 * this assure us that no O_DIRECT can happen after the check 1074 * or in the middle of the check. 1075 * 1076 * No need to notify as we are downgrading page table to read 1077 * only not changing it to point to a new page. 1078 * 1079 * See Documentation/vm/mmu_notifier.rst 1080 */ 1081 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1082 /* 1083 * Check that no O_DIRECT or similar I/O is in progress on the 1084 * page 1085 */ 1086 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1087 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1088 goto out_unlock; 1089 } 1090 if (pte_dirty(entry)) 1091 set_page_dirty(page); 1092 1093 if (pte_protnone(entry)) 1094 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1095 else 1096 entry = pte_mkclean(pte_wrprotect(entry)); 1097 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1098 } 1099 *orig_pte = *pvmw.pte; 1100 err = 0; 1101 1102 out_unlock: 1103 page_vma_mapped_walk_done(&pvmw); 1104 out_mn: 1105 mmu_notifier_invalidate_range_end(&range); 1106 out: 1107 return err; 1108 } 1109 1110 /** 1111 * replace_page - replace page in vma by new ksm page 1112 * @vma: vma that holds the pte pointing to page 1113 * @page: the page we are replacing by kpage 1114 * @kpage: the ksm page we replace page by 1115 * @orig_pte: the original value of the pte 1116 * 1117 * Returns 0 on success, -EFAULT on failure. 1118 */ 1119 static int replace_page(struct vm_area_struct *vma, struct page *page, 1120 struct page *kpage, pte_t orig_pte) 1121 { 1122 struct mm_struct *mm = vma->vm_mm; 1123 pmd_t *pmd; 1124 pte_t *ptep; 1125 pte_t newpte; 1126 spinlock_t *ptl; 1127 unsigned long addr; 1128 int err = -EFAULT; 1129 struct mmu_notifier_range range; 1130 1131 addr = page_address_in_vma(page, vma); 1132 if (addr == -EFAULT) 1133 goto out; 1134 1135 pmd = mm_find_pmd(mm, addr); 1136 if (!pmd) 1137 goto out; 1138 1139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1140 addr + PAGE_SIZE); 1141 mmu_notifier_invalidate_range_start(&range); 1142 1143 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1144 if (!pte_same(*ptep, orig_pte)) { 1145 pte_unmap_unlock(ptep, ptl); 1146 goto out_mn; 1147 } 1148 1149 /* 1150 * No need to check ksm_use_zero_pages here: we can only have a 1151 * zero_page here if ksm_use_zero_pages was enabled already. 1152 */ 1153 if (!is_zero_pfn(page_to_pfn(kpage))) { 1154 get_page(kpage); 1155 page_add_anon_rmap(kpage, vma, addr, false); 1156 newpte = mk_pte(kpage, vma->vm_page_prot); 1157 } else { 1158 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1159 vma->vm_page_prot)); 1160 /* 1161 * We're replacing an anonymous page with a zero page, which is 1162 * not anonymous. We need to do proper accounting otherwise we 1163 * will get wrong values in /proc, and a BUG message in dmesg 1164 * when tearing down the mm. 1165 */ 1166 dec_mm_counter(mm, MM_ANONPAGES); 1167 } 1168 1169 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1170 /* 1171 * No need to notify as we are replacing a read only page with another 1172 * read only page with the same content. 1173 * 1174 * See Documentation/vm/mmu_notifier.rst 1175 */ 1176 ptep_clear_flush(vma, addr, ptep); 1177 set_pte_at_notify(mm, addr, ptep, newpte); 1178 1179 page_remove_rmap(page, false); 1180 if (!page_mapped(page)) 1181 try_to_free_swap(page); 1182 put_page(page); 1183 1184 pte_unmap_unlock(ptep, ptl); 1185 err = 0; 1186 out_mn: 1187 mmu_notifier_invalidate_range_end(&range); 1188 out: 1189 return err; 1190 } 1191 1192 /* 1193 * try_to_merge_one_page - take two pages and merge them into one 1194 * @vma: the vma that holds the pte pointing to page 1195 * @page: the PageAnon page that we want to replace with kpage 1196 * @kpage: the PageKsm page that we want to map instead of page, 1197 * or NULL the first time when we want to use page as kpage. 1198 * 1199 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1200 */ 1201 static int try_to_merge_one_page(struct vm_area_struct *vma, 1202 struct page *page, struct page *kpage) 1203 { 1204 pte_t orig_pte = __pte(0); 1205 int err = -EFAULT; 1206 1207 if (page == kpage) /* ksm page forked */ 1208 return 0; 1209 1210 if (!PageAnon(page)) 1211 goto out; 1212 1213 /* 1214 * We need the page lock to read a stable PageSwapCache in 1215 * write_protect_page(). We use trylock_page() instead of 1216 * lock_page() because we don't want to wait here - we 1217 * prefer to continue scanning and merging different pages, 1218 * then come back to this page when it is unlocked. 1219 */ 1220 if (!trylock_page(page)) 1221 goto out; 1222 1223 if (PageTransCompound(page)) { 1224 if (split_huge_page(page)) 1225 goto out_unlock; 1226 } 1227 1228 /* 1229 * If this anonymous page is mapped only here, its pte may need 1230 * to be write-protected. If it's mapped elsewhere, all of its 1231 * ptes are necessarily already write-protected. But in either 1232 * case, we need to lock and check page_count is not raised. 1233 */ 1234 if (write_protect_page(vma, page, &orig_pte) == 0) { 1235 if (!kpage) { 1236 /* 1237 * While we hold page lock, upgrade page from 1238 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1239 * stable_tree_insert() will update stable_node. 1240 */ 1241 set_page_stable_node(page, NULL); 1242 mark_page_accessed(page); 1243 /* 1244 * Page reclaim just frees a clean page with no dirty 1245 * ptes: make sure that the ksm page would be swapped. 1246 */ 1247 if (!PageDirty(page)) 1248 SetPageDirty(page); 1249 err = 0; 1250 } else if (pages_identical(page, kpage)) 1251 err = replace_page(vma, page, kpage, orig_pte); 1252 } 1253 1254 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1255 munlock_vma_page(page); 1256 if (!PageMlocked(kpage)) { 1257 unlock_page(page); 1258 lock_page(kpage); 1259 mlock_vma_page(kpage); 1260 page = kpage; /* for final unlock */ 1261 } 1262 } 1263 1264 out_unlock: 1265 unlock_page(page); 1266 out: 1267 return err; 1268 } 1269 1270 /* 1271 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1272 * but no new kernel page is allocated: kpage must already be a ksm page. 1273 * 1274 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1275 */ 1276 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1277 struct page *page, struct page *kpage) 1278 { 1279 struct mm_struct *mm = rmap_item->mm; 1280 struct vm_area_struct *vma; 1281 int err = -EFAULT; 1282 1283 mmap_read_lock(mm); 1284 vma = find_mergeable_vma(mm, rmap_item->address); 1285 if (!vma) 1286 goto out; 1287 1288 err = try_to_merge_one_page(vma, page, kpage); 1289 if (err) 1290 goto out; 1291 1292 /* Unstable nid is in union with stable anon_vma: remove first */ 1293 remove_rmap_item_from_tree(rmap_item); 1294 1295 /* Must get reference to anon_vma while still holding mmap_lock */ 1296 rmap_item->anon_vma = vma->anon_vma; 1297 get_anon_vma(vma->anon_vma); 1298 out: 1299 mmap_read_unlock(mm); 1300 return err; 1301 } 1302 1303 /* 1304 * try_to_merge_two_pages - take two identical pages and prepare them 1305 * to be merged into one page. 1306 * 1307 * This function returns the kpage if we successfully merged two identical 1308 * pages into one ksm page, NULL otherwise. 1309 * 1310 * Note that this function upgrades page to ksm page: if one of the pages 1311 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1312 */ 1313 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1314 struct page *page, 1315 struct rmap_item *tree_rmap_item, 1316 struct page *tree_page) 1317 { 1318 int err; 1319 1320 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1321 if (!err) { 1322 err = try_to_merge_with_ksm_page(tree_rmap_item, 1323 tree_page, page); 1324 /* 1325 * If that fails, we have a ksm page with only one pte 1326 * pointing to it: so break it. 1327 */ 1328 if (err) 1329 break_cow(rmap_item); 1330 } 1331 return err ? NULL : page; 1332 } 1333 1334 static __always_inline 1335 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1336 { 1337 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1338 /* 1339 * Check that at least one mapping still exists, otherwise 1340 * there's no much point to merge and share with this 1341 * stable_node, as the underlying tree_page of the other 1342 * sharer is going to be freed soon. 1343 */ 1344 return stable_node->rmap_hlist_len && 1345 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1346 } 1347 1348 static __always_inline 1349 bool is_page_sharing_candidate(struct stable_node *stable_node) 1350 { 1351 return __is_page_sharing_candidate(stable_node, 0); 1352 } 1353 1354 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1355 struct stable_node **_stable_node, 1356 struct rb_root *root, 1357 bool prune_stale_stable_nodes) 1358 { 1359 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1360 struct hlist_node *hlist_safe; 1361 struct page *_tree_page, *tree_page = NULL; 1362 int nr = 0; 1363 int found_rmap_hlist_len; 1364 1365 if (!prune_stale_stable_nodes || 1366 time_before(jiffies, stable_node->chain_prune_time + 1367 msecs_to_jiffies( 1368 ksm_stable_node_chains_prune_millisecs))) 1369 prune_stale_stable_nodes = false; 1370 else 1371 stable_node->chain_prune_time = jiffies; 1372 1373 hlist_for_each_entry_safe(dup, hlist_safe, 1374 &stable_node->hlist, hlist_dup) { 1375 cond_resched(); 1376 /* 1377 * We must walk all stable_node_dup to prune the stale 1378 * stable nodes during lookup. 1379 * 1380 * get_ksm_page can drop the nodes from the 1381 * stable_node->hlist if they point to freed pages 1382 * (that's why we do a _safe walk). The "dup" 1383 * stable_node parameter itself will be freed from 1384 * under us if it returns NULL. 1385 */ 1386 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1387 if (!_tree_page) 1388 continue; 1389 nr += 1; 1390 if (is_page_sharing_candidate(dup)) { 1391 if (!found || 1392 dup->rmap_hlist_len > found_rmap_hlist_len) { 1393 if (found) 1394 put_page(tree_page); 1395 found = dup; 1396 found_rmap_hlist_len = found->rmap_hlist_len; 1397 tree_page = _tree_page; 1398 1399 /* skip put_page for found dup */ 1400 if (!prune_stale_stable_nodes) 1401 break; 1402 continue; 1403 } 1404 } 1405 put_page(_tree_page); 1406 } 1407 1408 if (found) { 1409 /* 1410 * nr is counting all dups in the chain only if 1411 * prune_stale_stable_nodes is true, otherwise we may 1412 * break the loop at nr == 1 even if there are 1413 * multiple entries. 1414 */ 1415 if (prune_stale_stable_nodes && nr == 1) { 1416 /* 1417 * If there's not just one entry it would 1418 * corrupt memory, better BUG_ON. In KSM 1419 * context with no lock held it's not even 1420 * fatal. 1421 */ 1422 BUG_ON(stable_node->hlist.first->next); 1423 1424 /* 1425 * There's just one entry and it is below the 1426 * deduplication limit so drop the chain. 1427 */ 1428 rb_replace_node(&stable_node->node, &found->node, 1429 root); 1430 free_stable_node(stable_node); 1431 ksm_stable_node_chains--; 1432 ksm_stable_node_dups--; 1433 /* 1434 * NOTE: the caller depends on the stable_node 1435 * to be equal to stable_node_dup if the chain 1436 * was collapsed. 1437 */ 1438 *_stable_node = found; 1439 /* 1440 * Just for robustness, as stable_node is 1441 * otherwise left as a stable pointer, the 1442 * compiler shall optimize it away at build 1443 * time. 1444 */ 1445 stable_node = NULL; 1446 } else if (stable_node->hlist.first != &found->hlist_dup && 1447 __is_page_sharing_candidate(found, 1)) { 1448 /* 1449 * If the found stable_node dup can accept one 1450 * more future merge (in addition to the one 1451 * that is underway) and is not at the head of 1452 * the chain, put it there so next search will 1453 * be quicker in the !prune_stale_stable_nodes 1454 * case. 1455 * 1456 * NOTE: it would be inaccurate to use nr > 1 1457 * instead of checking the hlist.first pointer 1458 * directly, because in the 1459 * prune_stale_stable_nodes case "nr" isn't 1460 * the position of the found dup in the chain, 1461 * but the total number of dups in the chain. 1462 */ 1463 hlist_del(&found->hlist_dup); 1464 hlist_add_head(&found->hlist_dup, 1465 &stable_node->hlist); 1466 } 1467 } 1468 1469 *_stable_node_dup = found; 1470 return tree_page; 1471 } 1472 1473 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1474 struct rb_root *root) 1475 { 1476 if (!is_stable_node_chain(stable_node)) 1477 return stable_node; 1478 if (hlist_empty(&stable_node->hlist)) { 1479 free_stable_node_chain(stable_node, root); 1480 return NULL; 1481 } 1482 return hlist_entry(stable_node->hlist.first, 1483 typeof(*stable_node), hlist_dup); 1484 } 1485 1486 /* 1487 * Like for get_ksm_page, this function can free the *_stable_node and 1488 * *_stable_node_dup if the returned tree_page is NULL. 1489 * 1490 * It can also free and overwrite *_stable_node with the found 1491 * stable_node_dup if the chain is collapsed (in which case 1492 * *_stable_node will be equal to *_stable_node_dup like if the chain 1493 * never existed). It's up to the caller to verify tree_page is not 1494 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1495 * 1496 * *_stable_node_dup is really a second output parameter of this 1497 * function and will be overwritten in all cases, the caller doesn't 1498 * need to initialize it. 1499 */ 1500 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1501 struct stable_node **_stable_node, 1502 struct rb_root *root, 1503 bool prune_stale_stable_nodes) 1504 { 1505 struct stable_node *stable_node = *_stable_node; 1506 if (!is_stable_node_chain(stable_node)) { 1507 if (is_page_sharing_candidate(stable_node)) { 1508 *_stable_node_dup = stable_node; 1509 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1510 } 1511 /* 1512 * _stable_node_dup set to NULL means the stable_node 1513 * reached the ksm_max_page_sharing limit. 1514 */ 1515 *_stable_node_dup = NULL; 1516 return NULL; 1517 } 1518 return stable_node_dup(_stable_node_dup, _stable_node, root, 1519 prune_stale_stable_nodes); 1520 } 1521 1522 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1523 struct stable_node **s_n, 1524 struct rb_root *root) 1525 { 1526 return __stable_node_chain(s_n_d, s_n, root, true); 1527 } 1528 1529 static __always_inline struct page *chain(struct stable_node **s_n_d, 1530 struct stable_node *s_n, 1531 struct rb_root *root) 1532 { 1533 struct stable_node *old_stable_node = s_n; 1534 struct page *tree_page; 1535 1536 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1537 /* not pruning dups so s_n cannot have changed */ 1538 VM_BUG_ON(s_n != old_stable_node); 1539 return tree_page; 1540 } 1541 1542 /* 1543 * stable_tree_search - search for page inside the stable tree 1544 * 1545 * This function checks if there is a page inside the stable tree 1546 * with identical content to the page that we are scanning right now. 1547 * 1548 * This function returns the stable tree node of identical content if found, 1549 * NULL otherwise. 1550 */ 1551 static struct page *stable_tree_search(struct page *page) 1552 { 1553 int nid; 1554 struct rb_root *root; 1555 struct rb_node **new; 1556 struct rb_node *parent; 1557 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1558 struct stable_node *page_node; 1559 1560 page_node = page_stable_node(page); 1561 if (page_node && page_node->head != &migrate_nodes) { 1562 /* ksm page forked */ 1563 get_page(page); 1564 return page; 1565 } 1566 1567 nid = get_kpfn_nid(page_to_pfn(page)); 1568 root = root_stable_tree + nid; 1569 again: 1570 new = &root->rb_node; 1571 parent = NULL; 1572 1573 while (*new) { 1574 struct page *tree_page; 1575 int ret; 1576 1577 cond_resched(); 1578 stable_node = rb_entry(*new, struct stable_node, node); 1579 stable_node_any = NULL; 1580 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1581 /* 1582 * NOTE: stable_node may have been freed by 1583 * chain_prune() if the returned stable_node_dup is 1584 * not NULL. stable_node_dup may have been inserted in 1585 * the rbtree instead as a regular stable_node (in 1586 * order to collapse the stable_node chain if a single 1587 * stable_node dup was found in it). In such case the 1588 * stable_node is overwritten by the calleee to point 1589 * to the stable_node_dup that was collapsed in the 1590 * stable rbtree and stable_node will be equal to 1591 * stable_node_dup like if the chain never existed. 1592 */ 1593 if (!stable_node_dup) { 1594 /* 1595 * Either all stable_node dups were full in 1596 * this stable_node chain, or this chain was 1597 * empty and should be rb_erased. 1598 */ 1599 stable_node_any = stable_node_dup_any(stable_node, 1600 root); 1601 if (!stable_node_any) { 1602 /* rb_erase just run */ 1603 goto again; 1604 } 1605 /* 1606 * Take any of the stable_node dups page of 1607 * this stable_node chain to let the tree walk 1608 * continue. All KSM pages belonging to the 1609 * stable_node dups in a stable_node chain 1610 * have the same content and they're 1611 * write protected at all times. Any will work 1612 * fine to continue the walk. 1613 */ 1614 tree_page = get_ksm_page(stable_node_any, 1615 GET_KSM_PAGE_NOLOCK); 1616 } 1617 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1618 if (!tree_page) { 1619 /* 1620 * If we walked over a stale stable_node, 1621 * get_ksm_page() will call rb_erase() and it 1622 * may rebalance the tree from under us. So 1623 * restart the search from scratch. Returning 1624 * NULL would be safe too, but we'd generate 1625 * false negative insertions just because some 1626 * stable_node was stale. 1627 */ 1628 goto again; 1629 } 1630 1631 ret = memcmp_pages(page, tree_page); 1632 put_page(tree_page); 1633 1634 parent = *new; 1635 if (ret < 0) 1636 new = &parent->rb_left; 1637 else if (ret > 0) 1638 new = &parent->rb_right; 1639 else { 1640 if (page_node) { 1641 VM_BUG_ON(page_node->head != &migrate_nodes); 1642 /* 1643 * Test if the migrated page should be merged 1644 * into a stable node dup. If the mapcount is 1645 * 1 we can migrate it with another KSM page 1646 * without adding it to the chain. 1647 */ 1648 if (page_mapcount(page) > 1) 1649 goto chain_append; 1650 } 1651 1652 if (!stable_node_dup) { 1653 /* 1654 * If the stable_node is a chain and 1655 * we got a payload match in memcmp 1656 * but we cannot merge the scanned 1657 * page in any of the existing 1658 * stable_node dups because they're 1659 * all full, we need to wait the 1660 * scanned page to find itself a match 1661 * in the unstable tree to create a 1662 * brand new KSM page to add later to 1663 * the dups of this stable_node. 1664 */ 1665 return NULL; 1666 } 1667 1668 /* 1669 * Lock and unlock the stable_node's page (which 1670 * might already have been migrated) so that page 1671 * migration is sure to notice its raised count. 1672 * It would be more elegant to return stable_node 1673 * than kpage, but that involves more changes. 1674 */ 1675 tree_page = get_ksm_page(stable_node_dup, 1676 GET_KSM_PAGE_TRYLOCK); 1677 1678 if (PTR_ERR(tree_page) == -EBUSY) 1679 return ERR_PTR(-EBUSY); 1680 1681 if (unlikely(!tree_page)) 1682 /* 1683 * The tree may have been rebalanced, 1684 * so re-evaluate parent and new. 1685 */ 1686 goto again; 1687 unlock_page(tree_page); 1688 1689 if (get_kpfn_nid(stable_node_dup->kpfn) != 1690 NUMA(stable_node_dup->nid)) { 1691 put_page(tree_page); 1692 goto replace; 1693 } 1694 return tree_page; 1695 } 1696 } 1697 1698 if (!page_node) 1699 return NULL; 1700 1701 list_del(&page_node->list); 1702 DO_NUMA(page_node->nid = nid); 1703 rb_link_node(&page_node->node, parent, new); 1704 rb_insert_color(&page_node->node, root); 1705 out: 1706 if (is_page_sharing_candidate(page_node)) { 1707 get_page(page); 1708 return page; 1709 } else 1710 return NULL; 1711 1712 replace: 1713 /* 1714 * If stable_node was a chain and chain_prune collapsed it, 1715 * stable_node has been updated to be the new regular 1716 * stable_node. A collapse of the chain is indistinguishable 1717 * from the case there was no chain in the stable 1718 * rbtree. Otherwise stable_node is the chain and 1719 * stable_node_dup is the dup to replace. 1720 */ 1721 if (stable_node_dup == stable_node) { 1722 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1723 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1724 /* there is no chain */ 1725 if (page_node) { 1726 VM_BUG_ON(page_node->head != &migrate_nodes); 1727 list_del(&page_node->list); 1728 DO_NUMA(page_node->nid = nid); 1729 rb_replace_node(&stable_node_dup->node, 1730 &page_node->node, 1731 root); 1732 if (is_page_sharing_candidate(page_node)) 1733 get_page(page); 1734 else 1735 page = NULL; 1736 } else { 1737 rb_erase(&stable_node_dup->node, root); 1738 page = NULL; 1739 } 1740 } else { 1741 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1742 __stable_node_dup_del(stable_node_dup); 1743 if (page_node) { 1744 VM_BUG_ON(page_node->head != &migrate_nodes); 1745 list_del(&page_node->list); 1746 DO_NUMA(page_node->nid = nid); 1747 stable_node_chain_add_dup(page_node, stable_node); 1748 if (is_page_sharing_candidate(page_node)) 1749 get_page(page); 1750 else 1751 page = NULL; 1752 } else { 1753 page = NULL; 1754 } 1755 } 1756 stable_node_dup->head = &migrate_nodes; 1757 list_add(&stable_node_dup->list, stable_node_dup->head); 1758 return page; 1759 1760 chain_append: 1761 /* stable_node_dup could be null if it reached the limit */ 1762 if (!stable_node_dup) 1763 stable_node_dup = stable_node_any; 1764 /* 1765 * If stable_node was a chain and chain_prune collapsed it, 1766 * stable_node has been updated to be the new regular 1767 * stable_node. A collapse of the chain is indistinguishable 1768 * from the case there was no chain in the stable 1769 * rbtree. Otherwise stable_node is the chain and 1770 * stable_node_dup is the dup to replace. 1771 */ 1772 if (stable_node_dup == stable_node) { 1773 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1774 /* chain is missing so create it */ 1775 stable_node = alloc_stable_node_chain(stable_node_dup, 1776 root); 1777 if (!stable_node) 1778 return NULL; 1779 } 1780 /* 1781 * Add this stable_node dup that was 1782 * migrated to the stable_node chain 1783 * of the current nid for this page 1784 * content. 1785 */ 1786 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1787 VM_BUG_ON(page_node->head != &migrate_nodes); 1788 list_del(&page_node->list); 1789 DO_NUMA(page_node->nid = nid); 1790 stable_node_chain_add_dup(page_node, stable_node); 1791 goto out; 1792 } 1793 1794 /* 1795 * stable_tree_insert - insert stable tree node pointing to new ksm page 1796 * into the stable tree. 1797 * 1798 * This function returns the stable tree node just allocated on success, 1799 * NULL otherwise. 1800 */ 1801 static struct stable_node *stable_tree_insert(struct page *kpage) 1802 { 1803 int nid; 1804 unsigned long kpfn; 1805 struct rb_root *root; 1806 struct rb_node **new; 1807 struct rb_node *parent; 1808 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1809 bool need_chain = false; 1810 1811 kpfn = page_to_pfn(kpage); 1812 nid = get_kpfn_nid(kpfn); 1813 root = root_stable_tree + nid; 1814 again: 1815 parent = NULL; 1816 new = &root->rb_node; 1817 1818 while (*new) { 1819 struct page *tree_page; 1820 int ret; 1821 1822 cond_resched(); 1823 stable_node = rb_entry(*new, struct stable_node, node); 1824 stable_node_any = NULL; 1825 tree_page = chain(&stable_node_dup, stable_node, root); 1826 if (!stable_node_dup) { 1827 /* 1828 * Either all stable_node dups were full in 1829 * this stable_node chain, or this chain was 1830 * empty and should be rb_erased. 1831 */ 1832 stable_node_any = stable_node_dup_any(stable_node, 1833 root); 1834 if (!stable_node_any) { 1835 /* rb_erase just run */ 1836 goto again; 1837 } 1838 /* 1839 * Take any of the stable_node dups page of 1840 * this stable_node chain to let the tree walk 1841 * continue. All KSM pages belonging to the 1842 * stable_node dups in a stable_node chain 1843 * have the same content and they're 1844 * write protected at all times. Any will work 1845 * fine to continue the walk. 1846 */ 1847 tree_page = get_ksm_page(stable_node_any, 1848 GET_KSM_PAGE_NOLOCK); 1849 } 1850 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1851 if (!tree_page) { 1852 /* 1853 * If we walked over a stale stable_node, 1854 * get_ksm_page() will call rb_erase() and it 1855 * may rebalance the tree from under us. So 1856 * restart the search from scratch. Returning 1857 * NULL would be safe too, but we'd generate 1858 * false negative insertions just because some 1859 * stable_node was stale. 1860 */ 1861 goto again; 1862 } 1863 1864 ret = memcmp_pages(kpage, tree_page); 1865 put_page(tree_page); 1866 1867 parent = *new; 1868 if (ret < 0) 1869 new = &parent->rb_left; 1870 else if (ret > 0) 1871 new = &parent->rb_right; 1872 else { 1873 need_chain = true; 1874 break; 1875 } 1876 } 1877 1878 stable_node_dup = alloc_stable_node(); 1879 if (!stable_node_dup) 1880 return NULL; 1881 1882 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1883 stable_node_dup->kpfn = kpfn; 1884 set_page_stable_node(kpage, stable_node_dup); 1885 stable_node_dup->rmap_hlist_len = 0; 1886 DO_NUMA(stable_node_dup->nid = nid); 1887 if (!need_chain) { 1888 rb_link_node(&stable_node_dup->node, parent, new); 1889 rb_insert_color(&stable_node_dup->node, root); 1890 } else { 1891 if (!is_stable_node_chain(stable_node)) { 1892 struct stable_node *orig = stable_node; 1893 /* chain is missing so create it */ 1894 stable_node = alloc_stable_node_chain(orig, root); 1895 if (!stable_node) { 1896 free_stable_node(stable_node_dup); 1897 return NULL; 1898 } 1899 } 1900 stable_node_chain_add_dup(stable_node_dup, stable_node); 1901 } 1902 1903 return stable_node_dup; 1904 } 1905 1906 /* 1907 * unstable_tree_search_insert - search for identical page, 1908 * else insert rmap_item into the unstable tree. 1909 * 1910 * This function searches for a page in the unstable tree identical to the 1911 * page currently being scanned; and if no identical page is found in the 1912 * tree, we insert rmap_item as a new object into the unstable tree. 1913 * 1914 * This function returns pointer to rmap_item found to be identical 1915 * to the currently scanned page, NULL otherwise. 1916 * 1917 * This function does both searching and inserting, because they share 1918 * the same walking algorithm in an rbtree. 1919 */ 1920 static 1921 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1922 struct page *page, 1923 struct page **tree_pagep) 1924 { 1925 struct rb_node **new; 1926 struct rb_root *root; 1927 struct rb_node *parent = NULL; 1928 int nid; 1929 1930 nid = get_kpfn_nid(page_to_pfn(page)); 1931 root = root_unstable_tree + nid; 1932 new = &root->rb_node; 1933 1934 while (*new) { 1935 struct rmap_item *tree_rmap_item; 1936 struct page *tree_page; 1937 int ret; 1938 1939 cond_resched(); 1940 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1941 tree_page = get_mergeable_page(tree_rmap_item); 1942 if (!tree_page) 1943 return NULL; 1944 1945 /* 1946 * Don't substitute a ksm page for a forked page. 1947 */ 1948 if (page == tree_page) { 1949 put_page(tree_page); 1950 return NULL; 1951 } 1952 1953 ret = memcmp_pages(page, tree_page); 1954 1955 parent = *new; 1956 if (ret < 0) { 1957 put_page(tree_page); 1958 new = &parent->rb_left; 1959 } else if (ret > 0) { 1960 put_page(tree_page); 1961 new = &parent->rb_right; 1962 } else if (!ksm_merge_across_nodes && 1963 page_to_nid(tree_page) != nid) { 1964 /* 1965 * If tree_page has been migrated to another NUMA node, 1966 * it will be flushed out and put in the right unstable 1967 * tree next time: only merge with it when across_nodes. 1968 */ 1969 put_page(tree_page); 1970 return NULL; 1971 } else { 1972 *tree_pagep = tree_page; 1973 return tree_rmap_item; 1974 } 1975 } 1976 1977 rmap_item->address |= UNSTABLE_FLAG; 1978 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1979 DO_NUMA(rmap_item->nid = nid); 1980 rb_link_node(&rmap_item->node, parent, new); 1981 rb_insert_color(&rmap_item->node, root); 1982 1983 ksm_pages_unshared++; 1984 return NULL; 1985 } 1986 1987 /* 1988 * stable_tree_append - add another rmap_item to the linked list of 1989 * rmap_items hanging off a given node of the stable tree, all sharing 1990 * the same ksm page. 1991 */ 1992 static void stable_tree_append(struct rmap_item *rmap_item, 1993 struct stable_node *stable_node, 1994 bool max_page_sharing_bypass) 1995 { 1996 /* 1997 * rmap won't find this mapping if we don't insert the 1998 * rmap_item in the right stable_node 1999 * duplicate. page_migration could break later if rmap breaks, 2000 * so we can as well crash here. We really need to check for 2001 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2002 * for other negative values as an underflow if detected here 2003 * for the first time (and not when decreasing rmap_hlist_len) 2004 * would be sign of memory corruption in the stable_node. 2005 */ 2006 BUG_ON(stable_node->rmap_hlist_len < 0); 2007 2008 stable_node->rmap_hlist_len++; 2009 if (!max_page_sharing_bypass) 2010 /* possibly non fatal but unexpected overflow, only warn */ 2011 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2012 ksm_max_page_sharing); 2013 2014 rmap_item->head = stable_node; 2015 rmap_item->address |= STABLE_FLAG; 2016 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2017 2018 if (rmap_item->hlist.next) 2019 ksm_pages_sharing++; 2020 else 2021 ksm_pages_shared++; 2022 } 2023 2024 /* 2025 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2026 * if not, compare checksum to previous and if it's the same, see if page can 2027 * be inserted into the unstable tree, or merged with a page already there and 2028 * both transferred to the stable tree. 2029 * 2030 * @page: the page that we are searching identical page to. 2031 * @rmap_item: the reverse mapping into the virtual address of this page 2032 */ 2033 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2034 { 2035 struct mm_struct *mm = rmap_item->mm; 2036 struct rmap_item *tree_rmap_item; 2037 struct page *tree_page = NULL; 2038 struct stable_node *stable_node; 2039 struct page *kpage; 2040 unsigned int checksum; 2041 int err; 2042 bool max_page_sharing_bypass = false; 2043 2044 stable_node = page_stable_node(page); 2045 if (stable_node) { 2046 if (stable_node->head != &migrate_nodes && 2047 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2048 NUMA(stable_node->nid)) { 2049 stable_node_dup_del(stable_node); 2050 stable_node->head = &migrate_nodes; 2051 list_add(&stable_node->list, stable_node->head); 2052 } 2053 if (stable_node->head != &migrate_nodes && 2054 rmap_item->head == stable_node) 2055 return; 2056 /* 2057 * If it's a KSM fork, allow it to go over the sharing limit 2058 * without warnings. 2059 */ 2060 if (!is_page_sharing_candidate(stable_node)) 2061 max_page_sharing_bypass = true; 2062 } 2063 2064 /* We first start with searching the page inside the stable tree */ 2065 kpage = stable_tree_search(page); 2066 if (kpage == page && rmap_item->head == stable_node) { 2067 put_page(kpage); 2068 return; 2069 } 2070 2071 remove_rmap_item_from_tree(rmap_item); 2072 2073 if (kpage) { 2074 if (PTR_ERR(kpage) == -EBUSY) 2075 return; 2076 2077 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2078 if (!err) { 2079 /* 2080 * The page was successfully merged: 2081 * add its rmap_item to the stable tree. 2082 */ 2083 lock_page(kpage); 2084 stable_tree_append(rmap_item, page_stable_node(kpage), 2085 max_page_sharing_bypass); 2086 unlock_page(kpage); 2087 } 2088 put_page(kpage); 2089 return; 2090 } 2091 2092 /* 2093 * If the hash value of the page has changed from the last time 2094 * we calculated it, this page is changing frequently: therefore we 2095 * don't want to insert it in the unstable tree, and we don't want 2096 * to waste our time searching for something identical to it there. 2097 */ 2098 checksum = calc_checksum(page); 2099 if (rmap_item->oldchecksum != checksum) { 2100 rmap_item->oldchecksum = checksum; 2101 return; 2102 } 2103 2104 /* 2105 * Same checksum as an empty page. We attempt to merge it with the 2106 * appropriate zero page if the user enabled this via sysfs. 2107 */ 2108 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2109 struct vm_area_struct *vma; 2110 2111 mmap_read_lock(mm); 2112 vma = find_mergeable_vma(mm, rmap_item->address); 2113 if (vma) { 2114 err = try_to_merge_one_page(vma, page, 2115 ZERO_PAGE(rmap_item->address)); 2116 } else { 2117 /* 2118 * If the vma is out of date, we do not need to 2119 * continue. 2120 */ 2121 err = 0; 2122 } 2123 mmap_read_unlock(mm); 2124 /* 2125 * In case of failure, the page was not really empty, so we 2126 * need to continue. Otherwise we're done. 2127 */ 2128 if (!err) 2129 return; 2130 } 2131 tree_rmap_item = 2132 unstable_tree_search_insert(rmap_item, page, &tree_page); 2133 if (tree_rmap_item) { 2134 bool split; 2135 2136 kpage = try_to_merge_two_pages(rmap_item, page, 2137 tree_rmap_item, tree_page); 2138 /* 2139 * If both pages we tried to merge belong to the same compound 2140 * page, then we actually ended up increasing the reference 2141 * count of the same compound page twice, and split_huge_page 2142 * failed. 2143 * Here we set a flag if that happened, and we use it later to 2144 * try split_huge_page again. Since we call put_page right 2145 * afterwards, the reference count will be correct and 2146 * split_huge_page should succeed. 2147 */ 2148 split = PageTransCompound(page) 2149 && compound_head(page) == compound_head(tree_page); 2150 put_page(tree_page); 2151 if (kpage) { 2152 /* 2153 * The pages were successfully merged: insert new 2154 * node in the stable tree and add both rmap_items. 2155 */ 2156 lock_page(kpage); 2157 stable_node = stable_tree_insert(kpage); 2158 if (stable_node) { 2159 stable_tree_append(tree_rmap_item, stable_node, 2160 false); 2161 stable_tree_append(rmap_item, stable_node, 2162 false); 2163 } 2164 unlock_page(kpage); 2165 2166 /* 2167 * If we fail to insert the page into the stable tree, 2168 * we will have 2 virtual addresses that are pointing 2169 * to a ksm page left outside the stable tree, 2170 * in which case we need to break_cow on both. 2171 */ 2172 if (!stable_node) { 2173 break_cow(tree_rmap_item); 2174 break_cow(rmap_item); 2175 } 2176 } else if (split) { 2177 /* 2178 * We are here if we tried to merge two pages and 2179 * failed because they both belonged to the same 2180 * compound page. We will split the page now, but no 2181 * merging will take place. 2182 * We do not want to add the cost of a full lock; if 2183 * the page is locked, it is better to skip it and 2184 * perhaps try again later. 2185 */ 2186 if (!trylock_page(page)) 2187 return; 2188 split_huge_page(page); 2189 unlock_page(page); 2190 } 2191 } 2192 } 2193 2194 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2195 struct rmap_item **rmap_list, 2196 unsigned long addr) 2197 { 2198 struct rmap_item *rmap_item; 2199 2200 while (*rmap_list) { 2201 rmap_item = *rmap_list; 2202 if ((rmap_item->address & PAGE_MASK) == addr) 2203 return rmap_item; 2204 if (rmap_item->address > addr) 2205 break; 2206 *rmap_list = rmap_item->rmap_list; 2207 remove_rmap_item_from_tree(rmap_item); 2208 free_rmap_item(rmap_item); 2209 } 2210 2211 rmap_item = alloc_rmap_item(); 2212 if (rmap_item) { 2213 /* It has already been zeroed */ 2214 rmap_item->mm = mm_slot->mm; 2215 rmap_item->address = addr; 2216 rmap_item->rmap_list = *rmap_list; 2217 *rmap_list = rmap_item; 2218 } 2219 return rmap_item; 2220 } 2221 2222 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2223 { 2224 struct mm_struct *mm; 2225 struct mm_slot *slot; 2226 struct vm_area_struct *vma; 2227 struct rmap_item *rmap_item; 2228 int nid; 2229 2230 if (list_empty(&ksm_mm_head.mm_list)) 2231 return NULL; 2232 2233 slot = ksm_scan.mm_slot; 2234 if (slot == &ksm_mm_head) { 2235 /* 2236 * A number of pages can hang around indefinitely on per-cpu 2237 * pagevecs, raised page count preventing write_protect_page 2238 * from merging them. Though it doesn't really matter much, 2239 * it is puzzling to see some stuck in pages_volatile until 2240 * other activity jostles them out, and they also prevented 2241 * LTP's KSM test from succeeding deterministically; so drain 2242 * them here (here rather than on entry to ksm_do_scan(), 2243 * so we don't IPI too often when pages_to_scan is set low). 2244 */ 2245 lru_add_drain_all(); 2246 2247 /* 2248 * Whereas stale stable_nodes on the stable_tree itself 2249 * get pruned in the regular course of stable_tree_search(), 2250 * those moved out to the migrate_nodes list can accumulate: 2251 * so prune them once before each full scan. 2252 */ 2253 if (!ksm_merge_across_nodes) { 2254 struct stable_node *stable_node, *next; 2255 struct page *page; 2256 2257 list_for_each_entry_safe(stable_node, next, 2258 &migrate_nodes, list) { 2259 page = get_ksm_page(stable_node, 2260 GET_KSM_PAGE_NOLOCK); 2261 if (page) 2262 put_page(page); 2263 cond_resched(); 2264 } 2265 } 2266 2267 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2268 root_unstable_tree[nid] = RB_ROOT; 2269 2270 spin_lock(&ksm_mmlist_lock); 2271 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2272 ksm_scan.mm_slot = slot; 2273 spin_unlock(&ksm_mmlist_lock); 2274 /* 2275 * Although we tested list_empty() above, a racing __ksm_exit 2276 * of the last mm on the list may have removed it since then. 2277 */ 2278 if (slot == &ksm_mm_head) 2279 return NULL; 2280 next_mm: 2281 ksm_scan.address = 0; 2282 ksm_scan.rmap_list = &slot->rmap_list; 2283 } 2284 2285 mm = slot->mm; 2286 mmap_read_lock(mm); 2287 if (ksm_test_exit(mm)) 2288 vma = NULL; 2289 else 2290 vma = find_vma(mm, ksm_scan.address); 2291 2292 for (; vma; vma = vma->vm_next) { 2293 if (!(vma->vm_flags & VM_MERGEABLE)) 2294 continue; 2295 if (ksm_scan.address < vma->vm_start) 2296 ksm_scan.address = vma->vm_start; 2297 if (!vma->anon_vma) 2298 ksm_scan.address = vma->vm_end; 2299 2300 while (ksm_scan.address < vma->vm_end) { 2301 if (ksm_test_exit(mm)) 2302 break; 2303 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2304 if (IS_ERR_OR_NULL(*page)) { 2305 ksm_scan.address += PAGE_SIZE; 2306 cond_resched(); 2307 continue; 2308 } 2309 if (PageAnon(*page)) { 2310 flush_anon_page(vma, *page, ksm_scan.address); 2311 flush_dcache_page(*page); 2312 rmap_item = get_next_rmap_item(slot, 2313 ksm_scan.rmap_list, ksm_scan.address); 2314 if (rmap_item) { 2315 ksm_scan.rmap_list = 2316 &rmap_item->rmap_list; 2317 ksm_scan.address += PAGE_SIZE; 2318 } else 2319 put_page(*page); 2320 mmap_read_unlock(mm); 2321 return rmap_item; 2322 } 2323 put_page(*page); 2324 ksm_scan.address += PAGE_SIZE; 2325 cond_resched(); 2326 } 2327 } 2328 2329 if (ksm_test_exit(mm)) { 2330 ksm_scan.address = 0; 2331 ksm_scan.rmap_list = &slot->rmap_list; 2332 } 2333 /* 2334 * Nuke all the rmap_items that are above this current rmap: 2335 * because there were no VM_MERGEABLE vmas with such addresses. 2336 */ 2337 remove_trailing_rmap_items(ksm_scan.rmap_list); 2338 2339 spin_lock(&ksm_mmlist_lock); 2340 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2341 struct mm_slot, mm_list); 2342 if (ksm_scan.address == 0) { 2343 /* 2344 * We've completed a full scan of all vmas, holding mmap_lock 2345 * throughout, and found no VM_MERGEABLE: so do the same as 2346 * __ksm_exit does to remove this mm from all our lists now. 2347 * This applies either when cleaning up after __ksm_exit 2348 * (but beware: we can reach here even before __ksm_exit), 2349 * or when all VM_MERGEABLE areas have been unmapped (and 2350 * mmap_lock then protects against race with MADV_MERGEABLE). 2351 */ 2352 hash_del(&slot->link); 2353 list_del(&slot->mm_list); 2354 spin_unlock(&ksm_mmlist_lock); 2355 2356 free_mm_slot(slot); 2357 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2358 mmap_read_unlock(mm); 2359 mmdrop(mm); 2360 } else { 2361 mmap_read_unlock(mm); 2362 /* 2363 * mmap_read_unlock(mm) first because after 2364 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2365 * already have been freed under us by __ksm_exit() 2366 * because the "mm_slot" is still hashed and 2367 * ksm_scan.mm_slot doesn't point to it anymore. 2368 */ 2369 spin_unlock(&ksm_mmlist_lock); 2370 } 2371 2372 /* Repeat until we've completed scanning the whole list */ 2373 slot = ksm_scan.mm_slot; 2374 if (slot != &ksm_mm_head) 2375 goto next_mm; 2376 2377 ksm_scan.seqnr++; 2378 return NULL; 2379 } 2380 2381 /** 2382 * ksm_do_scan - the ksm scanner main worker function. 2383 * @scan_npages: number of pages we want to scan before we return. 2384 */ 2385 static void ksm_do_scan(unsigned int scan_npages) 2386 { 2387 struct rmap_item *rmap_item; 2388 struct page *page; 2389 2390 while (scan_npages-- && likely(!freezing(current))) { 2391 cond_resched(); 2392 rmap_item = scan_get_next_rmap_item(&page); 2393 if (!rmap_item) 2394 return; 2395 cmp_and_merge_page(page, rmap_item); 2396 put_page(page); 2397 } 2398 } 2399 2400 static int ksmd_should_run(void) 2401 { 2402 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2403 } 2404 2405 static int ksm_scan_thread(void *nothing) 2406 { 2407 unsigned int sleep_ms; 2408 2409 set_freezable(); 2410 set_user_nice(current, 5); 2411 2412 while (!kthread_should_stop()) { 2413 mutex_lock(&ksm_thread_mutex); 2414 wait_while_offlining(); 2415 if (ksmd_should_run()) 2416 ksm_do_scan(ksm_thread_pages_to_scan); 2417 mutex_unlock(&ksm_thread_mutex); 2418 2419 try_to_freeze(); 2420 2421 if (ksmd_should_run()) { 2422 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2423 wait_event_interruptible_timeout(ksm_iter_wait, 2424 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2425 msecs_to_jiffies(sleep_ms)); 2426 } else { 2427 wait_event_freezable(ksm_thread_wait, 2428 ksmd_should_run() || kthread_should_stop()); 2429 } 2430 } 2431 return 0; 2432 } 2433 2434 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2435 unsigned long end, int advice, unsigned long *vm_flags) 2436 { 2437 struct mm_struct *mm = vma->vm_mm; 2438 int err; 2439 2440 switch (advice) { 2441 case MADV_MERGEABLE: 2442 /* 2443 * Be somewhat over-protective for now! 2444 */ 2445 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2446 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2447 VM_HUGETLB | VM_MIXEDMAP)) 2448 return 0; /* just ignore the advice */ 2449 2450 if (vma_is_dax(vma)) 2451 return 0; 2452 2453 #ifdef VM_SAO 2454 if (*vm_flags & VM_SAO) 2455 return 0; 2456 #endif 2457 #ifdef VM_SPARC_ADI 2458 if (*vm_flags & VM_SPARC_ADI) 2459 return 0; 2460 #endif 2461 2462 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2463 err = __ksm_enter(mm); 2464 if (err) 2465 return err; 2466 } 2467 2468 *vm_flags |= VM_MERGEABLE; 2469 break; 2470 2471 case MADV_UNMERGEABLE: 2472 if (!(*vm_flags & VM_MERGEABLE)) 2473 return 0; /* just ignore the advice */ 2474 2475 if (vma->anon_vma) { 2476 err = unmerge_ksm_pages(vma, start, end); 2477 if (err) 2478 return err; 2479 } 2480 2481 *vm_flags &= ~VM_MERGEABLE; 2482 break; 2483 } 2484 2485 return 0; 2486 } 2487 EXPORT_SYMBOL_GPL(ksm_madvise); 2488 2489 int __ksm_enter(struct mm_struct *mm) 2490 { 2491 struct mm_slot *mm_slot; 2492 int needs_wakeup; 2493 2494 mm_slot = alloc_mm_slot(); 2495 if (!mm_slot) 2496 return -ENOMEM; 2497 2498 /* Check ksm_run too? Would need tighter locking */ 2499 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2500 2501 spin_lock(&ksm_mmlist_lock); 2502 insert_to_mm_slots_hash(mm, mm_slot); 2503 /* 2504 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2505 * insert just behind the scanning cursor, to let the area settle 2506 * down a little; when fork is followed by immediate exec, we don't 2507 * want ksmd to waste time setting up and tearing down an rmap_list. 2508 * 2509 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2510 * scanning cursor, otherwise KSM pages in newly forked mms will be 2511 * missed: then we might as well insert at the end of the list. 2512 */ 2513 if (ksm_run & KSM_RUN_UNMERGE) 2514 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2515 else 2516 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2517 spin_unlock(&ksm_mmlist_lock); 2518 2519 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2520 mmgrab(mm); 2521 2522 if (needs_wakeup) 2523 wake_up_interruptible(&ksm_thread_wait); 2524 2525 return 0; 2526 } 2527 2528 void __ksm_exit(struct mm_struct *mm) 2529 { 2530 struct mm_slot *mm_slot; 2531 int easy_to_free = 0; 2532 2533 /* 2534 * This process is exiting: if it's straightforward (as is the 2535 * case when ksmd was never running), free mm_slot immediately. 2536 * But if it's at the cursor or has rmap_items linked to it, use 2537 * mmap_lock to synchronize with any break_cows before pagetables 2538 * are freed, and leave the mm_slot on the list for ksmd to free. 2539 * Beware: ksm may already have noticed it exiting and freed the slot. 2540 */ 2541 2542 spin_lock(&ksm_mmlist_lock); 2543 mm_slot = get_mm_slot(mm); 2544 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2545 if (!mm_slot->rmap_list) { 2546 hash_del(&mm_slot->link); 2547 list_del(&mm_slot->mm_list); 2548 easy_to_free = 1; 2549 } else { 2550 list_move(&mm_slot->mm_list, 2551 &ksm_scan.mm_slot->mm_list); 2552 } 2553 } 2554 spin_unlock(&ksm_mmlist_lock); 2555 2556 if (easy_to_free) { 2557 free_mm_slot(mm_slot); 2558 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2559 mmdrop(mm); 2560 } else if (mm_slot) { 2561 mmap_write_lock(mm); 2562 mmap_write_unlock(mm); 2563 } 2564 } 2565 2566 struct page *ksm_might_need_to_copy(struct page *page, 2567 struct vm_area_struct *vma, unsigned long address) 2568 { 2569 struct anon_vma *anon_vma = page_anon_vma(page); 2570 struct page *new_page; 2571 2572 if (PageKsm(page)) { 2573 if (page_stable_node(page) && 2574 !(ksm_run & KSM_RUN_UNMERGE)) 2575 return page; /* no need to copy it */ 2576 } else if (!anon_vma) { 2577 return page; /* no need to copy it */ 2578 } else if (anon_vma->root == vma->anon_vma->root && 2579 page->index == linear_page_index(vma, address)) { 2580 return page; /* still no need to copy it */ 2581 } 2582 if (!PageUptodate(page)) 2583 return page; /* let do_swap_page report the error */ 2584 2585 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2586 if (new_page && 2587 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2588 put_page(new_page); 2589 new_page = NULL; 2590 } 2591 if (new_page) { 2592 copy_user_highpage(new_page, page, address, vma); 2593 2594 SetPageDirty(new_page); 2595 __SetPageUptodate(new_page); 2596 __SetPageLocked(new_page); 2597 } 2598 2599 return new_page; 2600 } 2601 2602 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2603 { 2604 struct stable_node *stable_node; 2605 struct rmap_item *rmap_item; 2606 int search_new_forks = 0; 2607 2608 VM_BUG_ON_PAGE(!PageKsm(page), page); 2609 2610 /* 2611 * Rely on the page lock to protect against concurrent modifications 2612 * to that page's node of the stable tree. 2613 */ 2614 VM_BUG_ON_PAGE(!PageLocked(page), page); 2615 2616 stable_node = page_stable_node(page); 2617 if (!stable_node) 2618 return; 2619 again: 2620 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2621 struct anon_vma *anon_vma = rmap_item->anon_vma; 2622 struct anon_vma_chain *vmac; 2623 struct vm_area_struct *vma; 2624 2625 cond_resched(); 2626 anon_vma_lock_read(anon_vma); 2627 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2628 0, ULONG_MAX) { 2629 unsigned long addr; 2630 2631 cond_resched(); 2632 vma = vmac->vma; 2633 2634 /* Ignore the stable/unstable/sqnr flags */ 2635 addr = rmap_item->address & PAGE_MASK; 2636 2637 if (addr < vma->vm_start || addr >= vma->vm_end) 2638 continue; 2639 /* 2640 * Initially we examine only the vma which covers this 2641 * rmap_item; but later, if there is still work to do, 2642 * we examine covering vmas in other mms: in case they 2643 * were forked from the original since ksmd passed. 2644 */ 2645 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2646 continue; 2647 2648 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2649 continue; 2650 2651 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2652 anon_vma_unlock_read(anon_vma); 2653 return; 2654 } 2655 if (rwc->done && rwc->done(page)) { 2656 anon_vma_unlock_read(anon_vma); 2657 return; 2658 } 2659 } 2660 anon_vma_unlock_read(anon_vma); 2661 } 2662 if (!search_new_forks++) 2663 goto again; 2664 } 2665 2666 #ifdef CONFIG_MIGRATION 2667 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2668 { 2669 struct stable_node *stable_node; 2670 2671 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2672 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2673 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2674 2675 stable_node = folio_stable_node(folio); 2676 if (stable_node) { 2677 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2678 stable_node->kpfn = folio_pfn(newfolio); 2679 /* 2680 * newfolio->mapping was set in advance; now we need smp_wmb() 2681 * to make sure that the new stable_node->kpfn is visible 2682 * to get_ksm_page() before it can see that folio->mapping 2683 * has gone stale (or that folio_test_swapcache has been cleared). 2684 */ 2685 smp_wmb(); 2686 set_page_stable_node(&folio->page, NULL); 2687 } 2688 } 2689 #endif /* CONFIG_MIGRATION */ 2690 2691 #ifdef CONFIG_MEMORY_HOTREMOVE 2692 static void wait_while_offlining(void) 2693 { 2694 while (ksm_run & KSM_RUN_OFFLINE) { 2695 mutex_unlock(&ksm_thread_mutex); 2696 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2697 TASK_UNINTERRUPTIBLE); 2698 mutex_lock(&ksm_thread_mutex); 2699 } 2700 } 2701 2702 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2703 unsigned long start_pfn, 2704 unsigned long end_pfn) 2705 { 2706 if (stable_node->kpfn >= start_pfn && 2707 stable_node->kpfn < end_pfn) { 2708 /* 2709 * Don't get_ksm_page, page has already gone: 2710 * which is why we keep kpfn instead of page* 2711 */ 2712 remove_node_from_stable_tree(stable_node); 2713 return true; 2714 } 2715 return false; 2716 } 2717 2718 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2719 unsigned long start_pfn, 2720 unsigned long end_pfn, 2721 struct rb_root *root) 2722 { 2723 struct stable_node *dup; 2724 struct hlist_node *hlist_safe; 2725 2726 if (!is_stable_node_chain(stable_node)) { 2727 VM_BUG_ON(is_stable_node_dup(stable_node)); 2728 return stable_node_dup_remove_range(stable_node, start_pfn, 2729 end_pfn); 2730 } 2731 2732 hlist_for_each_entry_safe(dup, hlist_safe, 2733 &stable_node->hlist, hlist_dup) { 2734 VM_BUG_ON(!is_stable_node_dup(dup)); 2735 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2736 } 2737 if (hlist_empty(&stable_node->hlist)) { 2738 free_stable_node_chain(stable_node, root); 2739 return true; /* notify caller that tree was rebalanced */ 2740 } else 2741 return false; 2742 } 2743 2744 static void ksm_check_stable_tree(unsigned long start_pfn, 2745 unsigned long end_pfn) 2746 { 2747 struct stable_node *stable_node, *next; 2748 struct rb_node *node; 2749 int nid; 2750 2751 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2752 node = rb_first(root_stable_tree + nid); 2753 while (node) { 2754 stable_node = rb_entry(node, struct stable_node, node); 2755 if (stable_node_chain_remove_range(stable_node, 2756 start_pfn, end_pfn, 2757 root_stable_tree + 2758 nid)) 2759 node = rb_first(root_stable_tree + nid); 2760 else 2761 node = rb_next(node); 2762 cond_resched(); 2763 } 2764 } 2765 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2766 if (stable_node->kpfn >= start_pfn && 2767 stable_node->kpfn < end_pfn) 2768 remove_node_from_stable_tree(stable_node); 2769 cond_resched(); 2770 } 2771 } 2772 2773 static int ksm_memory_callback(struct notifier_block *self, 2774 unsigned long action, void *arg) 2775 { 2776 struct memory_notify *mn = arg; 2777 2778 switch (action) { 2779 case MEM_GOING_OFFLINE: 2780 /* 2781 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2782 * and remove_all_stable_nodes() while memory is going offline: 2783 * it is unsafe for them to touch the stable tree at this time. 2784 * But unmerge_ksm_pages(), rmap lookups and other entry points 2785 * which do not need the ksm_thread_mutex are all safe. 2786 */ 2787 mutex_lock(&ksm_thread_mutex); 2788 ksm_run |= KSM_RUN_OFFLINE; 2789 mutex_unlock(&ksm_thread_mutex); 2790 break; 2791 2792 case MEM_OFFLINE: 2793 /* 2794 * Most of the work is done by page migration; but there might 2795 * be a few stable_nodes left over, still pointing to struct 2796 * pages which have been offlined: prune those from the tree, 2797 * otherwise get_ksm_page() might later try to access a 2798 * non-existent struct page. 2799 */ 2800 ksm_check_stable_tree(mn->start_pfn, 2801 mn->start_pfn + mn->nr_pages); 2802 fallthrough; 2803 case MEM_CANCEL_OFFLINE: 2804 mutex_lock(&ksm_thread_mutex); 2805 ksm_run &= ~KSM_RUN_OFFLINE; 2806 mutex_unlock(&ksm_thread_mutex); 2807 2808 smp_mb(); /* wake_up_bit advises this */ 2809 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2810 break; 2811 } 2812 return NOTIFY_OK; 2813 } 2814 #else 2815 static void wait_while_offlining(void) 2816 { 2817 } 2818 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2819 2820 #ifdef CONFIG_SYSFS 2821 /* 2822 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2823 */ 2824 2825 #define KSM_ATTR_RO(_name) \ 2826 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2827 #define KSM_ATTR(_name) \ 2828 static struct kobj_attribute _name##_attr = \ 2829 __ATTR(_name, 0644, _name##_show, _name##_store) 2830 2831 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2832 struct kobj_attribute *attr, char *buf) 2833 { 2834 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2835 } 2836 2837 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2838 struct kobj_attribute *attr, 2839 const char *buf, size_t count) 2840 { 2841 unsigned int msecs; 2842 int err; 2843 2844 err = kstrtouint(buf, 10, &msecs); 2845 if (err) 2846 return -EINVAL; 2847 2848 ksm_thread_sleep_millisecs = msecs; 2849 wake_up_interruptible(&ksm_iter_wait); 2850 2851 return count; 2852 } 2853 KSM_ATTR(sleep_millisecs); 2854 2855 static ssize_t pages_to_scan_show(struct kobject *kobj, 2856 struct kobj_attribute *attr, char *buf) 2857 { 2858 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2859 } 2860 2861 static ssize_t pages_to_scan_store(struct kobject *kobj, 2862 struct kobj_attribute *attr, 2863 const char *buf, size_t count) 2864 { 2865 unsigned int nr_pages; 2866 int err; 2867 2868 err = kstrtouint(buf, 10, &nr_pages); 2869 if (err) 2870 return -EINVAL; 2871 2872 ksm_thread_pages_to_scan = nr_pages; 2873 2874 return count; 2875 } 2876 KSM_ATTR(pages_to_scan); 2877 2878 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2879 char *buf) 2880 { 2881 return sysfs_emit(buf, "%lu\n", ksm_run); 2882 } 2883 2884 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2885 const char *buf, size_t count) 2886 { 2887 unsigned int flags; 2888 int err; 2889 2890 err = kstrtouint(buf, 10, &flags); 2891 if (err) 2892 return -EINVAL; 2893 if (flags > KSM_RUN_UNMERGE) 2894 return -EINVAL; 2895 2896 /* 2897 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2898 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2899 * breaking COW to free the pages_shared (but leaves mm_slots 2900 * on the list for when ksmd may be set running again). 2901 */ 2902 2903 mutex_lock(&ksm_thread_mutex); 2904 wait_while_offlining(); 2905 if (ksm_run != flags) { 2906 ksm_run = flags; 2907 if (flags & KSM_RUN_UNMERGE) { 2908 set_current_oom_origin(); 2909 err = unmerge_and_remove_all_rmap_items(); 2910 clear_current_oom_origin(); 2911 if (err) { 2912 ksm_run = KSM_RUN_STOP; 2913 count = err; 2914 } 2915 } 2916 } 2917 mutex_unlock(&ksm_thread_mutex); 2918 2919 if (flags & KSM_RUN_MERGE) 2920 wake_up_interruptible(&ksm_thread_wait); 2921 2922 return count; 2923 } 2924 KSM_ATTR(run); 2925 2926 #ifdef CONFIG_NUMA 2927 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2928 struct kobj_attribute *attr, char *buf) 2929 { 2930 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2931 } 2932 2933 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2934 struct kobj_attribute *attr, 2935 const char *buf, size_t count) 2936 { 2937 int err; 2938 unsigned long knob; 2939 2940 err = kstrtoul(buf, 10, &knob); 2941 if (err) 2942 return err; 2943 if (knob > 1) 2944 return -EINVAL; 2945 2946 mutex_lock(&ksm_thread_mutex); 2947 wait_while_offlining(); 2948 if (ksm_merge_across_nodes != knob) { 2949 if (ksm_pages_shared || remove_all_stable_nodes()) 2950 err = -EBUSY; 2951 else if (root_stable_tree == one_stable_tree) { 2952 struct rb_root *buf; 2953 /* 2954 * This is the first time that we switch away from the 2955 * default of merging across nodes: must now allocate 2956 * a buffer to hold as many roots as may be needed. 2957 * Allocate stable and unstable together: 2958 * MAXSMP NODES_SHIFT 10 will use 16kB. 2959 */ 2960 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2961 GFP_KERNEL); 2962 /* Let us assume that RB_ROOT is NULL is zero */ 2963 if (!buf) 2964 err = -ENOMEM; 2965 else { 2966 root_stable_tree = buf; 2967 root_unstable_tree = buf + nr_node_ids; 2968 /* Stable tree is empty but not the unstable */ 2969 root_unstable_tree[0] = one_unstable_tree[0]; 2970 } 2971 } 2972 if (!err) { 2973 ksm_merge_across_nodes = knob; 2974 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2975 } 2976 } 2977 mutex_unlock(&ksm_thread_mutex); 2978 2979 return err ? err : count; 2980 } 2981 KSM_ATTR(merge_across_nodes); 2982 #endif 2983 2984 static ssize_t use_zero_pages_show(struct kobject *kobj, 2985 struct kobj_attribute *attr, char *buf) 2986 { 2987 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2988 } 2989 static ssize_t use_zero_pages_store(struct kobject *kobj, 2990 struct kobj_attribute *attr, 2991 const char *buf, size_t count) 2992 { 2993 int err; 2994 bool value; 2995 2996 err = kstrtobool(buf, &value); 2997 if (err) 2998 return -EINVAL; 2999 3000 ksm_use_zero_pages = value; 3001 3002 return count; 3003 } 3004 KSM_ATTR(use_zero_pages); 3005 3006 static ssize_t max_page_sharing_show(struct kobject *kobj, 3007 struct kobj_attribute *attr, char *buf) 3008 { 3009 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3010 } 3011 3012 static ssize_t max_page_sharing_store(struct kobject *kobj, 3013 struct kobj_attribute *attr, 3014 const char *buf, size_t count) 3015 { 3016 int err; 3017 int knob; 3018 3019 err = kstrtoint(buf, 10, &knob); 3020 if (err) 3021 return err; 3022 /* 3023 * When a KSM page is created it is shared by 2 mappings. This 3024 * being a signed comparison, it implicitly verifies it's not 3025 * negative. 3026 */ 3027 if (knob < 2) 3028 return -EINVAL; 3029 3030 if (READ_ONCE(ksm_max_page_sharing) == knob) 3031 return count; 3032 3033 mutex_lock(&ksm_thread_mutex); 3034 wait_while_offlining(); 3035 if (ksm_max_page_sharing != knob) { 3036 if (ksm_pages_shared || remove_all_stable_nodes()) 3037 err = -EBUSY; 3038 else 3039 ksm_max_page_sharing = knob; 3040 } 3041 mutex_unlock(&ksm_thread_mutex); 3042 3043 return err ? err : count; 3044 } 3045 KSM_ATTR(max_page_sharing); 3046 3047 static ssize_t pages_shared_show(struct kobject *kobj, 3048 struct kobj_attribute *attr, char *buf) 3049 { 3050 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3051 } 3052 KSM_ATTR_RO(pages_shared); 3053 3054 static ssize_t pages_sharing_show(struct kobject *kobj, 3055 struct kobj_attribute *attr, char *buf) 3056 { 3057 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3058 } 3059 KSM_ATTR_RO(pages_sharing); 3060 3061 static ssize_t pages_unshared_show(struct kobject *kobj, 3062 struct kobj_attribute *attr, char *buf) 3063 { 3064 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3065 } 3066 KSM_ATTR_RO(pages_unshared); 3067 3068 static ssize_t pages_volatile_show(struct kobject *kobj, 3069 struct kobj_attribute *attr, char *buf) 3070 { 3071 long ksm_pages_volatile; 3072 3073 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3074 - ksm_pages_sharing - ksm_pages_unshared; 3075 /* 3076 * It was not worth any locking to calculate that statistic, 3077 * but it might therefore sometimes be negative: conceal that. 3078 */ 3079 if (ksm_pages_volatile < 0) 3080 ksm_pages_volatile = 0; 3081 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3082 } 3083 KSM_ATTR_RO(pages_volatile); 3084 3085 static ssize_t stable_node_dups_show(struct kobject *kobj, 3086 struct kobj_attribute *attr, char *buf) 3087 { 3088 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3089 } 3090 KSM_ATTR_RO(stable_node_dups); 3091 3092 static ssize_t stable_node_chains_show(struct kobject *kobj, 3093 struct kobj_attribute *attr, char *buf) 3094 { 3095 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3096 } 3097 KSM_ATTR_RO(stable_node_chains); 3098 3099 static ssize_t 3100 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3101 struct kobj_attribute *attr, 3102 char *buf) 3103 { 3104 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3105 } 3106 3107 static ssize_t 3108 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3109 struct kobj_attribute *attr, 3110 const char *buf, size_t count) 3111 { 3112 unsigned int msecs; 3113 int err; 3114 3115 err = kstrtouint(buf, 10, &msecs); 3116 if (err) 3117 return -EINVAL; 3118 3119 ksm_stable_node_chains_prune_millisecs = msecs; 3120 3121 return count; 3122 } 3123 KSM_ATTR(stable_node_chains_prune_millisecs); 3124 3125 static ssize_t full_scans_show(struct kobject *kobj, 3126 struct kobj_attribute *attr, char *buf) 3127 { 3128 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3129 } 3130 KSM_ATTR_RO(full_scans); 3131 3132 static struct attribute *ksm_attrs[] = { 3133 &sleep_millisecs_attr.attr, 3134 &pages_to_scan_attr.attr, 3135 &run_attr.attr, 3136 &pages_shared_attr.attr, 3137 &pages_sharing_attr.attr, 3138 &pages_unshared_attr.attr, 3139 &pages_volatile_attr.attr, 3140 &full_scans_attr.attr, 3141 #ifdef CONFIG_NUMA 3142 &merge_across_nodes_attr.attr, 3143 #endif 3144 &max_page_sharing_attr.attr, 3145 &stable_node_chains_attr.attr, 3146 &stable_node_dups_attr.attr, 3147 &stable_node_chains_prune_millisecs_attr.attr, 3148 &use_zero_pages_attr.attr, 3149 NULL, 3150 }; 3151 3152 static const struct attribute_group ksm_attr_group = { 3153 .attrs = ksm_attrs, 3154 .name = "ksm", 3155 }; 3156 #endif /* CONFIG_SYSFS */ 3157 3158 static int __init ksm_init(void) 3159 { 3160 struct task_struct *ksm_thread; 3161 int err; 3162 3163 /* The correct value depends on page size and endianness */ 3164 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3165 /* Default to false for backwards compatibility */ 3166 ksm_use_zero_pages = false; 3167 3168 err = ksm_slab_init(); 3169 if (err) 3170 goto out; 3171 3172 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3173 if (IS_ERR(ksm_thread)) { 3174 pr_err("ksm: creating kthread failed\n"); 3175 err = PTR_ERR(ksm_thread); 3176 goto out_free; 3177 } 3178 3179 #ifdef CONFIG_SYSFS 3180 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3181 if (err) { 3182 pr_err("ksm: register sysfs failed\n"); 3183 kthread_stop(ksm_thread); 3184 goto out_free; 3185 } 3186 #else 3187 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3188 3189 #endif /* CONFIG_SYSFS */ 3190 3191 #ifdef CONFIG_MEMORY_HOTREMOVE 3192 /* There is no significance to this priority 100 */ 3193 hotplug_memory_notifier(ksm_memory_callback, 100); 3194 #endif 3195 return 0; 3196 3197 out_free: 3198 ksm_slab_free(); 3199 out: 3200 return err; 3201 } 3202 subsys_initcall(ksm_init); 3203