xref: /linux/mm/ksm.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51 
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)		(x)
54 #define DO_NUMA(x)	do { (x); } while (0)
55 #else
56 #define NUMA(x)		(0)
57 #define DO_NUMA(x)	do { } while (0)
58 #endif
59 
60 typedef u8 rmap_age_t;
61 
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121 
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128 	struct mm_slot slot;
129 	struct ksm_rmap_item *rmap_list;
130 };
131 
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142 	struct ksm_mm_slot *mm_slot;
143 	unsigned long address;
144 	struct ksm_rmap_item **rmap_list;
145 	unsigned long seqnr;
146 };
147 
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161 	union {
162 		struct rb_node node;	/* when node of stable tree */
163 		struct {		/* when listed for migration */
164 			struct list_head *head;
165 			struct {
166 				struct hlist_node hlist_dup;
167 				struct list_head list;
168 			};
169 		};
170 	};
171 	struct hlist_head hlist;
172 	union {
173 		unsigned long kpfn;
174 		unsigned long chain_prune_time;
175 	};
176 	/*
177 	 * STABLE_NODE_CHAIN can be any negative number in
178 	 * rmap_hlist_len negative range, but better not -1 to be able
179 	 * to reliably detect underflows.
180 	 */
181 #define STABLE_NODE_CHAIN -1024
182 	int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184 	int nid;
185 #endif
186 };
187 
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203 	struct ksm_rmap_item *rmap_list;
204 	union {
205 		struct anon_vma *anon_vma;	/* when stable */
206 #ifdef CONFIG_NUMA
207 		int nid;		/* when node of unstable tree */
208 #endif
209 	};
210 	struct mm_struct *mm;
211 	unsigned long address;		/* + low bits used for flags below */
212 	unsigned int oldchecksum;	/* when unstable */
213 	rmap_age_t age;
214 	rmap_age_t remaining_skips;
215 	union {
216 		struct rb_node node;	/* when node of unstable tree */
217 		struct {		/* when listed from stable tree */
218 			struct ksm_stable_node *head;
219 			struct hlist_node hlist;
220 		};
221 	};
222 };
223 
224 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
226 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
227 
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233 
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237 
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240 
241 static struct ksm_mm_slot ksm_mm_head = {
242 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245 	.mm_slot = &ksm_mm_head,
246 };
247 
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251 
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254 
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257 
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260 
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263 
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266 
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269 
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272 
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275 
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278 
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281 
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284 
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287 
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290 
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293 
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297 
298 /* The number of zero pages which is placed by KSM */
299 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0);
300 
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303 
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306 
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309 
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312 
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315 
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318 
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327 	ktime_t start_scan;
328 	unsigned long scan_time;
329 	unsigned long change;
330 	unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333 
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336 	KSM_ADVISOR_NONE,
337 	KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340 
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345 
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348 
349 static void set_advisor_defaults(void)
350 {
351 	if (ksm_advisor == KSM_ADVISOR_NONE) {
352 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 		advisor_ctx = (const struct advisor_ctx){ 0 };
355 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 	}
357 }
358 #endif /* CONFIG_SYSFS */
359 
360 static inline void advisor_start_scan(void)
361 {
362 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 		advisor_ctx.start_scan = ktime_get();
364 }
365 
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 					   unsigned long scan_time)
372 {
373 	return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375 
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381 
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405 	unsigned int cpu_percent;
406 	unsigned long cpu_time;
407 	unsigned long cpu_time_diff;
408 	unsigned long cpu_time_diff_ms;
409 	unsigned long pages;
410 	unsigned long per_page_cost;
411 	unsigned long factor;
412 	unsigned long change;
413 	unsigned long last_scan_time;
414 	unsigned long scan_time;
415 
416 	/* Convert scan time to seconds */
417 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 			    MSEC_PER_SEC);
419 	scan_time = scan_time ? scan_time : 1;
420 
421 	/* Calculate CPU consumption of ksmd background thread */
422 	cpu_time = task_sched_runtime(current);
423 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425 
426 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 	cpu_percent = cpu_percent ? cpu_percent : 1;
428 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429 
430 	/* Calculate scan time as percentage of target scan time */
431 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 	factor = factor ? factor : 1;
433 
434 	/*
435 	 * Calculate scan time as percentage of last scan time and use
436 	 * exponentially weighted average to smooth it
437 	 */
438 	change = scan_time * 100 / last_scan_time;
439 	change = change ? change : 1;
440 	change = ewma(advisor_ctx.change, change);
441 
442 	/* Calculate new scan rate based on target scan rate. */
443 	pages = ksm_thread_pages_to_scan * 100 / factor;
444 	/* Update pages_to_scan by weighted change percentage. */
445 	pages = pages * change / 100;
446 
447 	/* Cap new pages_to_scan value */
448 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 	per_page_cost = per_page_cost ? per_page_cost : 1;
450 
451 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 	pages = min(pages, ksm_advisor_max_pages_to_scan);
454 
455 	/* Update advisor context */
456 	advisor_ctx.change = change;
457 	advisor_ctx.scan_time = scan_time;
458 	advisor_ctx.cpu_time = cpu_time;
459 
460 	ksm_thread_pages_to_scan = pages;
461 	trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463 
464 static void advisor_stop_scan(void)
465 {
466 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 		scan_time_advisor();
468 }
469 
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes	1U
476 #define ksm_nr_node_ids		1
477 #endif
478 
479 #define KSM_RUN_STOP	0
480 #define KSM_RUN_MERGE	1
481 #define KSM_RUN_UNMERGE	2
482 #define KSM_RUN_OFFLINE	4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485 
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490 
491 static int __init ksm_slab_init(void)
492 {
493 	rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0);
494 	if (!rmap_item_cache)
495 		goto out;
496 
497 	stable_node_cache = KMEM_CACHE(ksm_stable_node, 0);
498 	if (!stable_node_cache)
499 		goto out_free1;
500 
501 	mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0);
502 	if (!mm_slot_cache)
503 		goto out_free2;
504 
505 	return 0;
506 
507 out_free2:
508 	kmem_cache_destroy(stable_node_cache);
509 out_free1:
510 	kmem_cache_destroy(rmap_item_cache);
511 out:
512 	return -ENOMEM;
513 }
514 
515 static void __init ksm_slab_free(void)
516 {
517 	kmem_cache_destroy(mm_slot_cache);
518 	kmem_cache_destroy(stable_node_cache);
519 	kmem_cache_destroy(rmap_item_cache);
520 	mm_slot_cache = NULL;
521 }
522 
523 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
524 {
525 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
526 }
527 
528 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
529 {
530 	return dup->head == STABLE_NODE_DUP_HEAD;
531 }
532 
533 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
534 					     struct ksm_stable_node *chain)
535 {
536 	VM_BUG_ON(is_stable_node_dup(dup));
537 	dup->head = STABLE_NODE_DUP_HEAD;
538 	VM_BUG_ON(!is_stable_node_chain(chain));
539 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
540 	ksm_stable_node_dups++;
541 }
542 
543 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
544 {
545 	VM_BUG_ON(!is_stable_node_dup(dup));
546 	hlist_del(&dup->hlist_dup);
547 	ksm_stable_node_dups--;
548 }
549 
550 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
551 {
552 	VM_BUG_ON(is_stable_node_chain(dup));
553 	if (is_stable_node_dup(dup))
554 		__stable_node_dup_del(dup);
555 	else
556 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
557 #ifdef CONFIG_DEBUG_VM
558 	dup->head = NULL;
559 #endif
560 }
561 
562 static inline struct ksm_rmap_item *alloc_rmap_item(void)
563 {
564 	struct ksm_rmap_item *rmap_item;
565 
566 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
567 						__GFP_NORETRY | __GFP_NOWARN);
568 	if (rmap_item)
569 		ksm_rmap_items++;
570 	return rmap_item;
571 }
572 
573 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
574 {
575 	ksm_rmap_items--;
576 	rmap_item->mm->ksm_rmap_items--;
577 	rmap_item->mm = NULL;	/* debug safety */
578 	kmem_cache_free(rmap_item_cache, rmap_item);
579 }
580 
581 static inline struct ksm_stable_node *alloc_stable_node(void)
582 {
583 	/*
584 	 * The allocation can take too long with GFP_KERNEL when memory is under
585 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
586 	 * grants access to memory reserves, helping to avoid this problem.
587 	 */
588 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
589 }
590 
591 static inline void free_stable_node(struct ksm_stable_node *stable_node)
592 {
593 	VM_BUG_ON(stable_node->rmap_hlist_len &&
594 		  !is_stable_node_chain(stable_node));
595 	kmem_cache_free(stable_node_cache, stable_node);
596 }
597 
598 /*
599  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
600  * page tables after it has passed through ksm_exit() - which, if necessary,
601  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
602  * a special flag: they can just back out as soon as mm_users goes to zero.
603  * ksm_test_exit() is used throughout to make this test for exit: in some
604  * places for correctness, in some places just to avoid unnecessary work.
605  */
606 static inline bool ksm_test_exit(struct mm_struct *mm)
607 {
608 	return atomic_read(&mm->mm_users) == 0;
609 }
610 
611 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
612 			struct mm_walk *walk)
613 {
614 	struct page *page = NULL;
615 	spinlock_t *ptl;
616 	pte_t *pte;
617 	pte_t ptent;
618 	int ret;
619 
620 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
621 	if (!pte)
622 		return 0;
623 	ptent = ptep_get(pte);
624 	if (pte_present(ptent)) {
625 		page = vm_normal_page(walk->vma, addr, ptent);
626 	} else if (!pte_none(ptent)) {
627 		swp_entry_t entry = pte_to_swp_entry(ptent);
628 
629 		/*
630 		 * As KSM pages remain KSM pages until freed, no need to wait
631 		 * here for migration to end.
632 		 */
633 		if (is_migration_entry(entry))
634 			page = pfn_swap_entry_to_page(entry);
635 	}
636 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
637 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
638 	pte_unmap_unlock(pte, ptl);
639 	return ret;
640 }
641 
642 static const struct mm_walk_ops break_ksm_ops = {
643 	.pmd_entry = break_ksm_pmd_entry,
644 	.walk_lock = PGWALK_RDLOCK,
645 };
646 
647 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
648 	.pmd_entry = break_ksm_pmd_entry,
649 	.walk_lock = PGWALK_WRLOCK,
650 };
651 
652 /*
653  * We use break_ksm to break COW on a ksm page by triggering unsharing,
654  * such that the ksm page will get replaced by an exclusive anonymous page.
655  *
656  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
657  * in case the application has unmapped and remapped mm,addr meanwhile.
658  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
659  * mmap of /dev/mem, where we would not want to touch it.
660  *
661  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
662  * of the process that owns 'vma'.  We also do not want to enforce
663  * protection keys here anyway.
664  */
665 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
666 {
667 	vm_fault_t ret = 0;
668 	const struct mm_walk_ops *ops = lock_vma ?
669 				&break_ksm_lock_vma_ops : &break_ksm_ops;
670 
671 	do {
672 		int ksm_page;
673 
674 		cond_resched();
675 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
676 		if (WARN_ON_ONCE(ksm_page < 0))
677 			return ksm_page;
678 		if (!ksm_page)
679 			return 0;
680 		ret = handle_mm_fault(vma, addr,
681 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
682 				      NULL);
683 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
684 	/*
685 	 * We must loop until we no longer find a KSM page because
686 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
687 	 * pte accessed bit gets updated concurrently.
688 	 *
689 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
690 	 * backing file, which also invalidates anonymous pages: that's
691 	 * okay, that truncation will have unmapped the PageKsm for us.
692 	 *
693 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
694 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
695 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
696 	 * to user; and ksmd, having no mm, would never be chosen for that.
697 	 *
698 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
699 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
700 	 * even ksmd can fail in this way - though it's usually breaking ksm
701 	 * just to undo a merge it made a moment before, so unlikely to oom.
702 	 *
703 	 * That's a pity: we might therefore have more kernel pages allocated
704 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
705 	 * will retry to break_cow on each pass, so should recover the page
706 	 * in due course.  The important thing is to not let VM_MERGEABLE
707 	 * be cleared while any such pages might remain in the area.
708 	 */
709 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
710 }
711 
712 static bool vma_ksm_compatible(struct vm_area_struct *vma)
713 {
714 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
715 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
716 			     VM_MIXEDMAP| VM_DROPPABLE))
717 		return false;		/* just ignore the advice */
718 
719 	if (vma_is_dax(vma))
720 		return false;
721 
722 #ifdef VM_SAO
723 	if (vma->vm_flags & VM_SAO)
724 		return false;
725 #endif
726 #ifdef VM_SPARC_ADI
727 	if (vma->vm_flags & VM_SPARC_ADI)
728 		return false;
729 #endif
730 
731 	return true;
732 }
733 
734 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
735 		unsigned long addr)
736 {
737 	struct vm_area_struct *vma;
738 	if (ksm_test_exit(mm))
739 		return NULL;
740 	vma = vma_lookup(mm, addr);
741 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
742 		return NULL;
743 	return vma;
744 }
745 
746 static void break_cow(struct ksm_rmap_item *rmap_item)
747 {
748 	struct mm_struct *mm = rmap_item->mm;
749 	unsigned long addr = rmap_item->address;
750 	struct vm_area_struct *vma;
751 
752 	/*
753 	 * It is not an accident that whenever we want to break COW
754 	 * to undo, we also need to drop a reference to the anon_vma.
755 	 */
756 	put_anon_vma(rmap_item->anon_vma);
757 
758 	mmap_read_lock(mm);
759 	vma = find_mergeable_vma(mm, addr);
760 	if (vma)
761 		break_ksm(vma, addr, false);
762 	mmap_read_unlock(mm);
763 }
764 
765 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
766 {
767 	struct mm_struct *mm = rmap_item->mm;
768 	unsigned long addr = rmap_item->address;
769 	struct vm_area_struct *vma;
770 	struct page *page;
771 
772 	mmap_read_lock(mm);
773 	vma = find_mergeable_vma(mm, addr);
774 	if (!vma)
775 		goto out;
776 
777 	page = follow_page(vma, addr, FOLL_GET);
778 	if (IS_ERR_OR_NULL(page))
779 		goto out;
780 	if (is_zone_device_page(page))
781 		goto out_putpage;
782 	if (PageAnon(page)) {
783 		flush_anon_page(vma, page, addr);
784 		flush_dcache_page(page);
785 	} else {
786 out_putpage:
787 		put_page(page);
788 out:
789 		page = NULL;
790 	}
791 	mmap_read_unlock(mm);
792 	return page;
793 }
794 
795 /*
796  * This helper is used for getting right index into array of tree roots.
797  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
798  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
799  * every node has its own stable and unstable tree.
800  */
801 static inline int get_kpfn_nid(unsigned long kpfn)
802 {
803 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
804 }
805 
806 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
807 						   struct rb_root *root)
808 {
809 	struct ksm_stable_node *chain = alloc_stable_node();
810 	VM_BUG_ON(is_stable_node_chain(dup));
811 	if (likely(chain)) {
812 		INIT_HLIST_HEAD(&chain->hlist);
813 		chain->chain_prune_time = jiffies;
814 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
815 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
816 		chain->nid = NUMA_NO_NODE; /* debug */
817 #endif
818 		ksm_stable_node_chains++;
819 
820 		/*
821 		 * Put the stable node chain in the first dimension of
822 		 * the stable tree and at the same time remove the old
823 		 * stable node.
824 		 */
825 		rb_replace_node(&dup->node, &chain->node, root);
826 
827 		/*
828 		 * Move the old stable node to the second dimension
829 		 * queued in the hlist_dup. The invariant is that all
830 		 * dup stable_nodes in the chain->hlist point to pages
831 		 * that are write protected and have the exact same
832 		 * content.
833 		 */
834 		stable_node_chain_add_dup(dup, chain);
835 	}
836 	return chain;
837 }
838 
839 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
840 					  struct rb_root *root)
841 {
842 	rb_erase(&chain->node, root);
843 	free_stable_node(chain);
844 	ksm_stable_node_chains--;
845 }
846 
847 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
848 {
849 	struct ksm_rmap_item *rmap_item;
850 
851 	/* check it's not STABLE_NODE_CHAIN or negative */
852 	BUG_ON(stable_node->rmap_hlist_len < 0);
853 
854 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
855 		if (rmap_item->hlist.next) {
856 			ksm_pages_sharing--;
857 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
858 		} else {
859 			ksm_pages_shared--;
860 		}
861 
862 		rmap_item->mm->ksm_merging_pages--;
863 
864 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
865 		stable_node->rmap_hlist_len--;
866 		put_anon_vma(rmap_item->anon_vma);
867 		rmap_item->address &= PAGE_MASK;
868 		cond_resched();
869 	}
870 
871 	/*
872 	 * We need the second aligned pointer of the migrate_nodes
873 	 * list_head to stay clear from the rb_parent_color union
874 	 * (aligned and different than any node) and also different
875 	 * from &migrate_nodes. This will verify that future list.h changes
876 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
877 	 */
878 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
879 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
880 
881 	trace_ksm_remove_ksm_page(stable_node->kpfn);
882 	if (stable_node->head == &migrate_nodes)
883 		list_del(&stable_node->list);
884 	else
885 		stable_node_dup_del(stable_node);
886 	free_stable_node(stable_node);
887 }
888 
889 enum ksm_get_folio_flags {
890 	KSM_GET_FOLIO_NOLOCK,
891 	KSM_GET_FOLIO_LOCK,
892 	KSM_GET_FOLIO_TRYLOCK
893 };
894 
895 /*
896  * ksm_get_folio: checks if the page indicated by the stable node
897  * is still its ksm page, despite having held no reference to it.
898  * In which case we can trust the content of the page, and it
899  * returns the gotten page; but if the page has now been zapped,
900  * remove the stale node from the stable tree and return NULL.
901  * But beware, the stable node's page might be being migrated.
902  *
903  * You would expect the stable_node to hold a reference to the ksm page.
904  * But if it increments the page's count, swapping out has to wait for
905  * ksmd to come around again before it can free the page, which may take
906  * seconds or even minutes: much too unresponsive.  So instead we use a
907  * "keyhole reference": access to the ksm page from the stable node peeps
908  * out through its keyhole to see if that page still holds the right key,
909  * pointing back to this stable node.  This relies on freeing a PageAnon
910  * page to reset its page->mapping to NULL, and relies on no other use of
911  * a page to put something that might look like our key in page->mapping.
912  * is on its way to being freed; but it is an anomaly to bear in mind.
913  */
914 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
915 				 enum ksm_get_folio_flags flags)
916 {
917 	struct folio *folio;
918 	void *expected_mapping;
919 	unsigned long kpfn;
920 
921 	expected_mapping = (void *)((unsigned long)stable_node |
922 					PAGE_MAPPING_KSM);
923 again:
924 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
925 	folio = pfn_folio(kpfn);
926 	if (READ_ONCE(folio->mapping) != expected_mapping)
927 		goto stale;
928 
929 	/*
930 	 * We cannot do anything with the page while its refcount is 0.
931 	 * Usually 0 means free, or tail of a higher-order page: in which
932 	 * case this node is no longer referenced, and should be freed;
933 	 * however, it might mean that the page is under page_ref_freeze().
934 	 * The __remove_mapping() case is easy, again the node is now stale;
935 	 * the same is in reuse_ksm_page() case; but if page is swapcache
936 	 * in folio_migrate_mapping(), it might still be our page,
937 	 * in which case it's essential to keep the node.
938 	 */
939 	while (!folio_try_get(folio)) {
940 		/*
941 		 * Another check for page->mapping != expected_mapping would
942 		 * work here too.  We have chosen the !PageSwapCache test to
943 		 * optimize the common case, when the page is or is about to
944 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
945 		 * in the ref_freeze section of __remove_mapping(); but Anon
946 		 * folio->mapping reset to NULL later, in free_pages_prepare().
947 		 */
948 		if (!folio_test_swapcache(folio))
949 			goto stale;
950 		cpu_relax();
951 	}
952 
953 	if (READ_ONCE(folio->mapping) != expected_mapping) {
954 		folio_put(folio);
955 		goto stale;
956 	}
957 
958 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
959 		if (!folio_trylock(folio)) {
960 			folio_put(folio);
961 			return ERR_PTR(-EBUSY);
962 		}
963 	} else if (flags == KSM_GET_FOLIO_LOCK)
964 		folio_lock(folio);
965 
966 	if (flags != KSM_GET_FOLIO_NOLOCK) {
967 		if (READ_ONCE(folio->mapping) != expected_mapping) {
968 			folio_unlock(folio);
969 			folio_put(folio);
970 			goto stale;
971 		}
972 	}
973 	return folio;
974 
975 stale:
976 	/*
977 	 * We come here from above when page->mapping or !PageSwapCache
978 	 * suggests that the node is stale; but it might be under migration.
979 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
980 	 * before checking whether node->kpfn has been changed.
981 	 */
982 	smp_rmb();
983 	if (READ_ONCE(stable_node->kpfn) != kpfn)
984 		goto again;
985 	remove_node_from_stable_tree(stable_node);
986 	return NULL;
987 }
988 
989 /*
990  * Removing rmap_item from stable or unstable tree.
991  * This function will clean the information from the stable/unstable tree.
992  */
993 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
994 {
995 	if (rmap_item->address & STABLE_FLAG) {
996 		struct ksm_stable_node *stable_node;
997 		struct folio *folio;
998 
999 		stable_node = rmap_item->head;
1000 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1001 		if (!folio)
1002 			goto out;
1003 
1004 		hlist_del(&rmap_item->hlist);
1005 		folio_unlock(folio);
1006 		folio_put(folio);
1007 
1008 		if (!hlist_empty(&stable_node->hlist))
1009 			ksm_pages_sharing--;
1010 		else
1011 			ksm_pages_shared--;
1012 
1013 		rmap_item->mm->ksm_merging_pages--;
1014 
1015 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1016 		stable_node->rmap_hlist_len--;
1017 
1018 		put_anon_vma(rmap_item->anon_vma);
1019 		rmap_item->head = NULL;
1020 		rmap_item->address &= PAGE_MASK;
1021 
1022 	} else if (rmap_item->address & UNSTABLE_FLAG) {
1023 		unsigned char age;
1024 		/*
1025 		 * Usually ksmd can and must skip the rb_erase, because
1026 		 * root_unstable_tree was already reset to RB_ROOT.
1027 		 * But be careful when an mm is exiting: do the rb_erase
1028 		 * if this rmap_item was inserted by this scan, rather
1029 		 * than left over from before.
1030 		 */
1031 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1032 		BUG_ON(age > 1);
1033 		if (!age)
1034 			rb_erase(&rmap_item->node,
1035 				 root_unstable_tree + NUMA(rmap_item->nid));
1036 		ksm_pages_unshared--;
1037 		rmap_item->address &= PAGE_MASK;
1038 	}
1039 out:
1040 	cond_resched();		/* we're called from many long loops */
1041 }
1042 
1043 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1044 {
1045 	while (*rmap_list) {
1046 		struct ksm_rmap_item *rmap_item = *rmap_list;
1047 		*rmap_list = rmap_item->rmap_list;
1048 		remove_rmap_item_from_tree(rmap_item);
1049 		free_rmap_item(rmap_item);
1050 	}
1051 }
1052 
1053 /*
1054  * Though it's very tempting to unmerge rmap_items from stable tree rather
1055  * than check every pte of a given vma, the locking doesn't quite work for
1056  * that - an rmap_item is assigned to the stable tree after inserting ksm
1057  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1058  * rmap_items from parent to child at fork time (so as not to waste time
1059  * if exit comes before the next scan reaches it).
1060  *
1061  * Similarly, although we'd like to remove rmap_items (so updating counts
1062  * and freeing memory) when unmerging an area, it's easier to leave that
1063  * to the next pass of ksmd - consider, for example, how ksmd might be
1064  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1065  */
1066 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1067 			     unsigned long start, unsigned long end, bool lock_vma)
1068 {
1069 	unsigned long addr;
1070 	int err = 0;
1071 
1072 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1073 		if (ksm_test_exit(vma->vm_mm))
1074 			break;
1075 		if (signal_pending(current))
1076 			err = -ERESTARTSYS;
1077 		else
1078 			err = break_ksm(vma, addr, lock_vma);
1079 	}
1080 	return err;
1081 }
1082 
1083 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1084 {
1085 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1086 }
1087 
1088 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1089 {
1090 	return folio_stable_node(page_folio(page));
1091 }
1092 
1093 static inline void folio_set_stable_node(struct folio *folio,
1094 					 struct ksm_stable_node *stable_node)
1095 {
1096 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1097 	folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1098 }
1099 
1100 #ifdef CONFIG_SYSFS
1101 /*
1102  * Only called through the sysfs control interface:
1103  */
1104 static int remove_stable_node(struct ksm_stable_node *stable_node)
1105 {
1106 	struct folio *folio;
1107 	int err;
1108 
1109 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1110 	if (!folio) {
1111 		/*
1112 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1113 		 */
1114 		return 0;
1115 	}
1116 
1117 	/*
1118 	 * Page could be still mapped if this races with __mmput() running in
1119 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1120 	 * merge_across_nodes/max_page_sharing be switched.
1121 	 */
1122 	err = -EBUSY;
1123 	if (!folio_mapped(folio)) {
1124 		/*
1125 		 * The stable node did not yet appear stale to ksm_get_folio(),
1126 		 * since that allows for an unmapped ksm folio to be recognized
1127 		 * right up until it is freed; but the node is safe to remove.
1128 		 * This folio might be in an LRU cache waiting to be freed,
1129 		 * or it might be in the swapcache (perhaps under writeback),
1130 		 * or it might have been removed from swapcache a moment ago.
1131 		 */
1132 		folio_set_stable_node(folio, NULL);
1133 		remove_node_from_stable_tree(stable_node);
1134 		err = 0;
1135 	}
1136 
1137 	folio_unlock(folio);
1138 	folio_put(folio);
1139 	return err;
1140 }
1141 
1142 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1143 				    struct rb_root *root)
1144 {
1145 	struct ksm_stable_node *dup;
1146 	struct hlist_node *hlist_safe;
1147 
1148 	if (!is_stable_node_chain(stable_node)) {
1149 		VM_BUG_ON(is_stable_node_dup(stable_node));
1150 		if (remove_stable_node(stable_node))
1151 			return true;
1152 		else
1153 			return false;
1154 	}
1155 
1156 	hlist_for_each_entry_safe(dup, hlist_safe,
1157 				  &stable_node->hlist, hlist_dup) {
1158 		VM_BUG_ON(!is_stable_node_dup(dup));
1159 		if (remove_stable_node(dup))
1160 			return true;
1161 	}
1162 	BUG_ON(!hlist_empty(&stable_node->hlist));
1163 	free_stable_node_chain(stable_node, root);
1164 	return false;
1165 }
1166 
1167 static int remove_all_stable_nodes(void)
1168 {
1169 	struct ksm_stable_node *stable_node, *next;
1170 	int nid;
1171 	int err = 0;
1172 
1173 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1174 		while (root_stable_tree[nid].rb_node) {
1175 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1176 						struct ksm_stable_node, node);
1177 			if (remove_stable_node_chain(stable_node,
1178 						     root_stable_tree + nid)) {
1179 				err = -EBUSY;
1180 				break;	/* proceed to next nid */
1181 			}
1182 			cond_resched();
1183 		}
1184 	}
1185 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1186 		if (remove_stable_node(stable_node))
1187 			err = -EBUSY;
1188 		cond_resched();
1189 	}
1190 	return err;
1191 }
1192 
1193 static int unmerge_and_remove_all_rmap_items(void)
1194 {
1195 	struct ksm_mm_slot *mm_slot;
1196 	struct mm_slot *slot;
1197 	struct mm_struct *mm;
1198 	struct vm_area_struct *vma;
1199 	int err = 0;
1200 
1201 	spin_lock(&ksm_mmlist_lock);
1202 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1203 			  struct mm_slot, mm_node);
1204 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1205 	spin_unlock(&ksm_mmlist_lock);
1206 
1207 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1208 	     mm_slot = ksm_scan.mm_slot) {
1209 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1210 
1211 		mm = mm_slot->slot.mm;
1212 		mmap_read_lock(mm);
1213 
1214 		/*
1215 		 * Exit right away if mm is exiting to avoid lockdep issue in
1216 		 * the maple tree
1217 		 */
1218 		if (ksm_test_exit(mm))
1219 			goto mm_exiting;
1220 
1221 		for_each_vma(vmi, vma) {
1222 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1223 				continue;
1224 			err = unmerge_ksm_pages(vma,
1225 						vma->vm_start, vma->vm_end, false);
1226 			if (err)
1227 				goto error;
1228 		}
1229 
1230 mm_exiting:
1231 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1232 		mmap_read_unlock(mm);
1233 
1234 		spin_lock(&ksm_mmlist_lock);
1235 		slot = list_entry(mm_slot->slot.mm_node.next,
1236 				  struct mm_slot, mm_node);
1237 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1238 		if (ksm_test_exit(mm)) {
1239 			hash_del(&mm_slot->slot.hash);
1240 			list_del(&mm_slot->slot.mm_node);
1241 			spin_unlock(&ksm_mmlist_lock);
1242 
1243 			mm_slot_free(mm_slot_cache, mm_slot);
1244 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1245 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1246 			mmdrop(mm);
1247 		} else
1248 			spin_unlock(&ksm_mmlist_lock);
1249 	}
1250 
1251 	/* Clean up stable nodes, but don't worry if some are still busy */
1252 	remove_all_stable_nodes();
1253 	ksm_scan.seqnr = 0;
1254 	return 0;
1255 
1256 error:
1257 	mmap_read_unlock(mm);
1258 	spin_lock(&ksm_mmlist_lock);
1259 	ksm_scan.mm_slot = &ksm_mm_head;
1260 	spin_unlock(&ksm_mmlist_lock);
1261 	return err;
1262 }
1263 #endif /* CONFIG_SYSFS */
1264 
1265 static u32 calc_checksum(struct page *page)
1266 {
1267 	u32 checksum;
1268 	void *addr = kmap_local_page(page);
1269 	checksum = xxhash(addr, PAGE_SIZE, 0);
1270 	kunmap_local(addr);
1271 	return checksum;
1272 }
1273 
1274 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1275 			      pte_t *orig_pte)
1276 {
1277 	struct mm_struct *mm = vma->vm_mm;
1278 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1279 	int swapped;
1280 	int err = -EFAULT;
1281 	struct mmu_notifier_range range;
1282 	bool anon_exclusive;
1283 	pte_t entry;
1284 
1285 	if (WARN_ON_ONCE(folio_test_large(folio)))
1286 		return err;
1287 
1288 	pvmw.address = page_address_in_vma(&folio->page, vma);
1289 	if (pvmw.address == -EFAULT)
1290 		goto out;
1291 
1292 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1293 				pvmw.address + PAGE_SIZE);
1294 	mmu_notifier_invalidate_range_start(&range);
1295 
1296 	if (!page_vma_mapped_walk(&pvmw))
1297 		goto out_mn;
1298 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1299 		goto out_unlock;
1300 
1301 	anon_exclusive = PageAnonExclusive(&folio->page);
1302 	entry = ptep_get(pvmw.pte);
1303 	if (pte_write(entry) || pte_dirty(entry) ||
1304 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1305 		swapped = folio_test_swapcache(folio);
1306 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1307 		/*
1308 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1309 		 * take any lock, therefore the check that we are going to make
1310 		 * with the pagecount against the mapcount is racy and
1311 		 * O_DIRECT can happen right after the check.
1312 		 * So we clear the pte and flush the tlb before the check
1313 		 * this assure us that no O_DIRECT can happen after the check
1314 		 * or in the middle of the check.
1315 		 *
1316 		 * No need to notify as we are downgrading page table to read
1317 		 * only not changing it to point to a new page.
1318 		 *
1319 		 * See Documentation/mm/mmu_notifier.rst
1320 		 */
1321 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1322 		/*
1323 		 * Check that no O_DIRECT or similar I/O is in progress on the
1324 		 * page
1325 		 */
1326 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1327 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1328 			goto out_unlock;
1329 		}
1330 
1331 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1332 		if (anon_exclusive &&
1333 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1334 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1335 			goto out_unlock;
1336 		}
1337 
1338 		if (pte_dirty(entry))
1339 			folio_mark_dirty(folio);
1340 		entry = pte_mkclean(entry);
1341 
1342 		if (pte_write(entry))
1343 			entry = pte_wrprotect(entry);
1344 
1345 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1346 	}
1347 	*orig_pte = entry;
1348 	err = 0;
1349 
1350 out_unlock:
1351 	page_vma_mapped_walk_done(&pvmw);
1352 out_mn:
1353 	mmu_notifier_invalidate_range_end(&range);
1354 out:
1355 	return err;
1356 }
1357 
1358 /**
1359  * replace_page - replace page in vma by new ksm page
1360  * @vma:      vma that holds the pte pointing to page
1361  * @page:     the page we are replacing by kpage
1362  * @kpage:    the ksm page we replace page by
1363  * @orig_pte: the original value of the pte
1364  *
1365  * Returns 0 on success, -EFAULT on failure.
1366  */
1367 static int replace_page(struct vm_area_struct *vma, struct page *page,
1368 			struct page *kpage, pte_t orig_pte)
1369 {
1370 	struct folio *kfolio = page_folio(kpage);
1371 	struct mm_struct *mm = vma->vm_mm;
1372 	struct folio *folio;
1373 	pmd_t *pmd;
1374 	pmd_t pmde;
1375 	pte_t *ptep;
1376 	pte_t newpte;
1377 	spinlock_t *ptl;
1378 	unsigned long addr;
1379 	int err = -EFAULT;
1380 	struct mmu_notifier_range range;
1381 
1382 	addr = page_address_in_vma(page, vma);
1383 	if (addr == -EFAULT)
1384 		goto out;
1385 
1386 	pmd = mm_find_pmd(mm, addr);
1387 	if (!pmd)
1388 		goto out;
1389 	/*
1390 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1391 	 * without holding anon_vma lock for write.  So when looking for a
1392 	 * genuine pmde (in which to find pte), test present and !THP together.
1393 	 */
1394 	pmde = pmdp_get_lockless(pmd);
1395 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1396 		goto out;
1397 
1398 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1399 				addr + PAGE_SIZE);
1400 	mmu_notifier_invalidate_range_start(&range);
1401 
1402 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1403 	if (!ptep)
1404 		goto out_mn;
1405 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1406 		pte_unmap_unlock(ptep, ptl);
1407 		goto out_mn;
1408 	}
1409 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1410 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1411 			kfolio);
1412 
1413 	/*
1414 	 * No need to check ksm_use_zero_pages here: we can only have a
1415 	 * zero_page here if ksm_use_zero_pages was enabled already.
1416 	 */
1417 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1418 		folio_get(kfolio);
1419 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1420 		newpte = mk_pte(kpage, vma->vm_page_prot);
1421 	} else {
1422 		/*
1423 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1424 		 * we can easily track all KSM-placed zero pages by checking if
1425 		 * the dirty bit in zero page's PTE is set.
1426 		 */
1427 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1428 		ksm_map_zero_page(mm);
1429 		/*
1430 		 * We're replacing an anonymous page with a zero page, which is
1431 		 * not anonymous. We need to do proper accounting otherwise we
1432 		 * will get wrong values in /proc, and a BUG message in dmesg
1433 		 * when tearing down the mm.
1434 		 */
1435 		dec_mm_counter(mm, MM_ANONPAGES);
1436 	}
1437 
1438 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1439 	/*
1440 	 * No need to notify as we are replacing a read only page with another
1441 	 * read only page with the same content.
1442 	 *
1443 	 * See Documentation/mm/mmu_notifier.rst
1444 	 */
1445 	ptep_clear_flush(vma, addr, ptep);
1446 	set_pte_at(mm, addr, ptep, newpte);
1447 
1448 	folio = page_folio(page);
1449 	folio_remove_rmap_pte(folio, page, vma);
1450 	if (!folio_mapped(folio))
1451 		folio_free_swap(folio);
1452 	folio_put(folio);
1453 
1454 	pte_unmap_unlock(ptep, ptl);
1455 	err = 0;
1456 out_mn:
1457 	mmu_notifier_invalidate_range_end(&range);
1458 out:
1459 	return err;
1460 }
1461 
1462 /*
1463  * try_to_merge_one_page - take two pages and merge them into one
1464  * @vma: the vma that holds the pte pointing to page
1465  * @page: the PageAnon page that we want to replace with kpage
1466  * @kpage: the PageKsm page that we want to map instead of page,
1467  *         or NULL the first time when we want to use page as kpage.
1468  *
1469  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1470  */
1471 static int try_to_merge_one_page(struct vm_area_struct *vma,
1472 				 struct page *page, struct page *kpage)
1473 {
1474 	pte_t orig_pte = __pte(0);
1475 	int err = -EFAULT;
1476 
1477 	if (page == kpage)			/* ksm page forked */
1478 		return 0;
1479 
1480 	if (!PageAnon(page))
1481 		goto out;
1482 
1483 	/*
1484 	 * We need the page lock to read a stable PageSwapCache in
1485 	 * write_protect_page().  We use trylock_page() instead of
1486 	 * lock_page() because we don't want to wait here - we
1487 	 * prefer to continue scanning and merging different pages,
1488 	 * then come back to this page when it is unlocked.
1489 	 */
1490 	if (!trylock_page(page))
1491 		goto out;
1492 
1493 	if (PageTransCompound(page)) {
1494 		if (split_huge_page(page))
1495 			goto out_unlock;
1496 	}
1497 
1498 	/*
1499 	 * If this anonymous page is mapped only here, its pte may need
1500 	 * to be write-protected.  If it's mapped elsewhere, all of its
1501 	 * ptes are necessarily already write-protected.  But in either
1502 	 * case, we need to lock and check page_count is not raised.
1503 	 */
1504 	if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1505 		if (!kpage) {
1506 			/*
1507 			 * While we hold page lock, upgrade page from
1508 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1509 			 * stable_tree_insert() will update stable_node.
1510 			 */
1511 			folio_set_stable_node(page_folio(page), NULL);
1512 			mark_page_accessed(page);
1513 			/*
1514 			 * Page reclaim just frees a clean page with no dirty
1515 			 * ptes: make sure that the ksm page would be swapped.
1516 			 */
1517 			if (!PageDirty(page))
1518 				SetPageDirty(page);
1519 			err = 0;
1520 		} else if (pages_identical(page, kpage))
1521 			err = replace_page(vma, page, kpage, orig_pte);
1522 	}
1523 
1524 out_unlock:
1525 	unlock_page(page);
1526 out:
1527 	return err;
1528 }
1529 
1530 /*
1531  * This function returns 0 if the pages were merged or if they are
1532  * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise.
1533  */
1534 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item,
1535 				       struct page *page)
1536 {
1537 	struct mm_struct *mm = rmap_item->mm;
1538 	int err = -EFAULT;
1539 
1540 	/*
1541 	 * Same checksum as an empty page. We attempt to merge it with the
1542 	 * appropriate zero page if the user enabled this via sysfs.
1543 	 */
1544 	if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) {
1545 		struct vm_area_struct *vma;
1546 
1547 		mmap_read_lock(mm);
1548 		vma = find_mergeable_vma(mm, rmap_item->address);
1549 		if (vma) {
1550 			err = try_to_merge_one_page(vma, page,
1551 					ZERO_PAGE(rmap_item->address));
1552 			trace_ksm_merge_one_page(
1553 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
1554 				rmap_item, mm, err);
1555 		} else {
1556 			/*
1557 			 * If the vma is out of date, we do not need to
1558 			 * continue.
1559 			 */
1560 			err = 0;
1561 		}
1562 		mmap_read_unlock(mm);
1563 	}
1564 
1565 	return err;
1566 }
1567 
1568 /*
1569  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1570  * but no new kernel page is allocated: kpage must already be a ksm page.
1571  *
1572  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1573  */
1574 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1575 				      struct page *page, struct page *kpage)
1576 {
1577 	struct mm_struct *mm = rmap_item->mm;
1578 	struct vm_area_struct *vma;
1579 	int err = -EFAULT;
1580 
1581 	mmap_read_lock(mm);
1582 	vma = find_mergeable_vma(mm, rmap_item->address);
1583 	if (!vma)
1584 		goto out;
1585 
1586 	err = try_to_merge_one_page(vma, page, kpage);
1587 	if (err)
1588 		goto out;
1589 
1590 	/* Unstable nid is in union with stable anon_vma: remove first */
1591 	remove_rmap_item_from_tree(rmap_item);
1592 
1593 	/* Must get reference to anon_vma while still holding mmap_lock */
1594 	rmap_item->anon_vma = vma->anon_vma;
1595 	get_anon_vma(vma->anon_vma);
1596 out:
1597 	mmap_read_unlock(mm);
1598 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1599 				rmap_item, mm, err);
1600 	return err;
1601 }
1602 
1603 /*
1604  * try_to_merge_two_pages - take two identical pages and prepare them
1605  * to be merged into one page.
1606  *
1607  * This function returns the kpage if we successfully merged two identical
1608  * pages into one ksm page, NULL otherwise.
1609  *
1610  * Note that this function upgrades page to ksm page: if one of the pages
1611  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1612  */
1613 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1614 					   struct page *page,
1615 					   struct ksm_rmap_item *tree_rmap_item,
1616 					   struct page *tree_page)
1617 {
1618 	int err;
1619 
1620 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1621 	if (!err) {
1622 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1623 							tree_page, page);
1624 		/*
1625 		 * If that fails, we have a ksm page with only one pte
1626 		 * pointing to it: so break it.
1627 		 */
1628 		if (err)
1629 			break_cow(rmap_item);
1630 	}
1631 	return err ? NULL : page;
1632 }
1633 
1634 static __always_inline
1635 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1636 {
1637 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1638 	/*
1639 	 * Check that at least one mapping still exists, otherwise
1640 	 * there's no much point to merge and share with this
1641 	 * stable_node, as the underlying tree_page of the other
1642 	 * sharer is going to be freed soon.
1643 	 */
1644 	return stable_node->rmap_hlist_len &&
1645 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1646 }
1647 
1648 static __always_inline
1649 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1650 {
1651 	return __is_page_sharing_candidate(stable_node, 0);
1652 }
1653 
1654 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1655 				     struct ksm_stable_node **_stable_node,
1656 				     struct rb_root *root,
1657 				     bool prune_stale_stable_nodes)
1658 {
1659 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1660 	struct hlist_node *hlist_safe;
1661 	struct folio *folio, *tree_folio = NULL;
1662 	int found_rmap_hlist_len;
1663 
1664 	if (!prune_stale_stable_nodes ||
1665 	    time_before(jiffies, stable_node->chain_prune_time +
1666 			msecs_to_jiffies(
1667 				ksm_stable_node_chains_prune_millisecs)))
1668 		prune_stale_stable_nodes = false;
1669 	else
1670 		stable_node->chain_prune_time = jiffies;
1671 
1672 	hlist_for_each_entry_safe(dup, hlist_safe,
1673 				  &stable_node->hlist, hlist_dup) {
1674 		cond_resched();
1675 		/*
1676 		 * We must walk all stable_node_dup to prune the stale
1677 		 * stable nodes during lookup.
1678 		 *
1679 		 * ksm_get_folio can drop the nodes from the
1680 		 * stable_node->hlist if they point to freed pages
1681 		 * (that's why we do a _safe walk). The "dup"
1682 		 * stable_node parameter itself will be freed from
1683 		 * under us if it returns NULL.
1684 		 */
1685 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1686 		if (!folio)
1687 			continue;
1688 		/* Pick the best candidate if possible. */
1689 		if (!found || (is_page_sharing_candidate(dup) &&
1690 		    (!is_page_sharing_candidate(found) ||
1691 		     dup->rmap_hlist_len > found_rmap_hlist_len))) {
1692 			if (found)
1693 				folio_put(tree_folio);
1694 			found = dup;
1695 			found_rmap_hlist_len = found->rmap_hlist_len;
1696 			tree_folio = folio;
1697 			/* skip put_page for found candidate */
1698 			if (!prune_stale_stable_nodes &&
1699 			    is_page_sharing_candidate(found))
1700 				break;
1701 			continue;
1702 		}
1703 		folio_put(folio);
1704 	}
1705 
1706 	if (found) {
1707 		if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) {
1708 			/*
1709 			 * If there's not just one entry it would
1710 			 * corrupt memory, better BUG_ON. In KSM
1711 			 * context with no lock held it's not even
1712 			 * fatal.
1713 			 */
1714 			BUG_ON(stable_node->hlist.first->next);
1715 
1716 			/*
1717 			 * There's just one entry and it is below the
1718 			 * deduplication limit so drop the chain.
1719 			 */
1720 			rb_replace_node(&stable_node->node, &found->node,
1721 					root);
1722 			free_stable_node(stable_node);
1723 			ksm_stable_node_chains--;
1724 			ksm_stable_node_dups--;
1725 			/*
1726 			 * NOTE: the caller depends on the stable_node
1727 			 * to be equal to stable_node_dup if the chain
1728 			 * was collapsed.
1729 			 */
1730 			*_stable_node = found;
1731 			/*
1732 			 * Just for robustness, as stable_node is
1733 			 * otherwise left as a stable pointer, the
1734 			 * compiler shall optimize it away at build
1735 			 * time.
1736 			 */
1737 			stable_node = NULL;
1738 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1739 			   __is_page_sharing_candidate(found, 1)) {
1740 			/*
1741 			 * If the found stable_node dup can accept one
1742 			 * more future merge (in addition to the one
1743 			 * that is underway) and is not at the head of
1744 			 * the chain, put it there so next search will
1745 			 * be quicker in the !prune_stale_stable_nodes
1746 			 * case.
1747 			 *
1748 			 * NOTE: it would be inaccurate to use nr > 1
1749 			 * instead of checking the hlist.first pointer
1750 			 * directly, because in the
1751 			 * prune_stale_stable_nodes case "nr" isn't
1752 			 * the position of the found dup in the chain,
1753 			 * but the total number of dups in the chain.
1754 			 */
1755 			hlist_del(&found->hlist_dup);
1756 			hlist_add_head(&found->hlist_dup,
1757 				       &stable_node->hlist);
1758 		}
1759 	} else {
1760 		/* Its hlist must be empty if no one found. */
1761 		free_stable_node_chain(stable_node, root);
1762 	}
1763 
1764 	*_stable_node_dup = found;
1765 	return tree_folio;
1766 }
1767 
1768 /*
1769  * Like for ksm_get_folio, this function can free the *_stable_node and
1770  * *_stable_node_dup if the returned tree_page is NULL.
1771  *
1772  * It can also free and overwrite *_stable_node with the found
1773  * stable_node_dup if the chain is collapsed (in which case
1774  * *_stable_node will be equal to *_stable_node_dup like if the chain
1775  * never existed). It's up to the caller to verify tree_page is not
1776  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1777  *
1778  * *_stable_node_dup is really a second output parameter of this
1779  * function and will be overwritten in all cases, the caller doesn't
1780  * need to initialize it.
1781  */
1782 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1783 					 struct ksm_stable_node **_stable_node,
1784 					 struct rb_root *root,
1785 					 bool prune_stale_stable_nodes)
1786 {
1787 	struct ksm_stable_node *stable_node = *_stable_node;
1788 
1789 	if (!is_stable_node_chain(stable_node)) {
1790 		*_stable_node_dup = stable_node;
1791 		return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1792 	}
1793 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1794 			       prune_stale_stable_nodes);
1795 }
1796 
1797 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1798 						 struct ksm_stable_node **s_n,
1799 						 struct rb_root *root)
1800 {
1801 	return __stable_node_chain(s_n_d, s_n, root, true);
1802 }
1803 
1804 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1805 					   struct ksm_stable_node **s_n,
1806 					   struct rb_root *root)
1807 {
1808 	return __stable_node_chain(s_n_d, s_n, root, false);
1809 }
1810 
1811 /*
1812  * stable_tree_search - search for page inside the stable tree
1813  *
1814  * This function checks if there is a page inside the stable tree
1815  * with identical content to the page that we are scanning right now.
1816  *
1817  * This function returns the stable tree node of identical content if found,
1818  * NULL otherwise.
1819  */
1820 static struct page *stable_tree_search(struct page *page)
1821 {
1822 	int nid;
1823 	struct rb_root *root;
1824 	struct rb_node **new;
1825 	struct rb_node *parent;
1826 	struct ksm_stable_node *stable_node, *stable_node_dup;
1827 	struct ksm_stable_node *page_node;
1828 	struct folio *folio;
1829 
1830 	folio = page_folio(page);
1831 	page_node = folio_stable_node(folio);
1832 	if (page_node && page_node->head != &migrate_nodes) {
1833 		/* ksm page forked */
1834 		folio_get(folio);
1835 		return &folio->page;
1836 	}
1837 
1838 	nid = get_kpfn_nid(folio_pfn(folio));
1839 	root = root_stable_tree + nid;
1840 again:
1841 	new = &root->rb_node;
1842 	parent = NULL;
1843 
1844 	while (*new) {
1845 		struct folio *tree_folio;
1846 		int ret;
1847 
1848 		cond_resched();
1849 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1850 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1851 		if (!tree_folio) {
1852 			/*
1853 			 * If we walked over a stale stable_node,
1854 			 * ksm_get_folio() will call rb_erase() and it
1855 			 * may rebalance the tree from under us. So
1856 			 * restart the search from scratch. Returning
1857 			 * NULL would be safe too, but we'd generate
1858 			 * false negative insertions just because some
1859 			 * stable_node was stale.
1860 			 */
1861 			goto again;
1862 		}
1863 
1864 		ret = memcmp_pages(page, &tree_folio->page);
1865 		folio_put(tree_folio);
1866 
1867 		parent = *new;
1868 		if (ret < 0)
1869 			new = &parent->rb_left;
1870 		else if (ret > 0)
1871 			new = &parent->rb_right;
1872 		else {
1873 			if (page_node) {
1874 				VM_BUG_ON(page_node->head != &migrate_nodes);
1875 				/*
1876 				 * If the mapcount of our migrated KSM folio is
1877 				 * at most 1, we can merge it with another
1878 				 * KSM folio where we know that we have space
1879 				 * for one more mapping without exceeding the
1880 				 * ksm_max_page_sharing limit: see
1881 				 * chain_prune(). This way, we can avoid adding
1882 				 * this stable node to the chain.
1883 				 */
1884 				if (folio_mapcount(folio) > 1)
1885 					goto chain_append;
1886 			}
1887 
1888 			if (!is_page_sharing_candidate(stable_node_dup)) {
1889 				/*
1890 				 * If the stable_node is a chain and
1891 				 * we got a payload match in memcmp
1892 				 * but we cannot merge the scanned
1893 				 * page in any of the existing
1894 				 * stable_node dups because they're
1895 				 * all full, we need to wait the
1896 				 * scanned page to find itself a match
1897 				 * in the unstable tree to create a
1898 				 * brand new KSM page to add later to
1899 				 * the dups of this stable_node.
1900 				 */
1901 				return NULL;
1902 			}
1903 
1904 			/*
1905 			 * Lock and unlock the stable_node's page (which
1906 			 * might already have been migrated) so that page
1907 			 * migration is sure to notice its raised count.
1908 			 * It would be more elegant to return stable_node
1909 			 * than kpage, but that involves more changes.
1910 			 */
1911 			tree_folio = ksm_get_folio(stable_node_dup,
1912 						   KSM_GET_FOLIO_TRYLOCK);
1913 
1914 			if (PTR_ERR(tree_folio) == -EBUSY)
1915 				return ERR_PTR(-EBUSY);
1916 
1917 			if (unlikely(!tree_folio))
1918 				/*
1919 				 * The tree may have been rebalanced,
1920 				 * so re-evaluate parent and new.
1921 				 */
1922 				goto again;
1923 			folio_unlock(tree_folio);
1924 
1925 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1926 			    NUMA(stable_node_dup->nid)) {
1927 				folio_put(tree_folio);
1928 				goto replace;
1929 			}
1930 			return &tree_folio->page;
1931 		}
1932 	}
1933 
1934 	if (!page_node)
1935 		return NULL;
1936 
1937 	list_del(&page_node->list);
1938 	DO_NUMA(page_node->nid = nid);
1939 	rb_link_node(&page_node->node, parent, new);
1940 	rb_insert_color(&page_node->node, root);
1941 out:
1942 	if (is_page_sharing_candidate(page_node)) {
1943 		folio_get(folio);
1944 		return &folio->page;
1945 	} else
1946 		return NULL;
1947 
1948 replace:
1949 	/*
1950 	 * If stable_node was a chain and chain_prune collapsed it,
1951 	 * stable_node has been updated to be the new regular
1952 	 * stable_node. A collapse of the chain is indistinguishable
1953 	 * from the case there was no chain in the stable
1954 	 * rbtree. Otherwise stable_node is the chain and
1955 	 * stable_node_dup is the dup to replace.
1956 	 */
1957 	if (stable_node_dup == stable_node) {
1958 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1959 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1960 		/* there is no chain */
1961 		if (page_node) {
1962 			VM_BUG_ON(page_node->head != &migrate_nodes);
1963 			list_del(&page_node->list);
1964 			DO_NUMA(page_node->nid = nid);
1965 			rb_replace_node(&stable_node_dup->node,
1966 					&page_node->node,
1967 					root);
1968 			if (is_page_sharing_candidate(page_node))
1969 				folio_get(folio);
1970 			else
1971 				folio = NULL;
1972 		} else {
1973 			rb_erase(&stable_node_dup->node, root);
1974 			folio = NULL;
1975 		}
1976 	} else {
1977 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1978 		__stable_node_dup_del(stable_node_dup);
1979 		if (page_node) {
1980 			VM_BUG_ON(page_node->head != &migrate_nodes);
1981 			list_del(&page_node->list);
1982 			DO_NUMA(page_node->nid = nid);
1983 			stable_node_chain_add_dup(page_node, stable_node);
1984 			if (is_page_sharing_candidate(page_node))
1985 				folio_get(folio);
1986 			else
1987 				folio = NULL;
1988 		} else {
1989 			folio = NULL;
1990 		}
1991 	}
1992 	stable_node_dup->head = &migrate_nodes;
1993 	list_add(&stable_node_dup->list, stable_node_dup->head);
1994 	return &folio->page;
1995 
1996 chain_append:
1997 	/*
1998 	 * If stable_node was a chain and chain_prune collapsed it,
1999 	 * stable_node has been updated to be the new regular
2000 	 * stable_node. A collapse of the chain is indistinguishable
2001 	 * from the case there was no chain in the stable
2002 	 * rbtree. Otherwise stable_node is the chain and
2003 	 * stable_node_dup is the dup to replace.
2004 	 */
2005 	if (stable_node_dup == stable_node) {
2006 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2007 		/* chain is missing so create it */
2008 		stable_node = alloc_stable_node_chain(stable_node_dup,
2009 						      root);
2010 		if (!stable_node)
2011 			return NULL;
2012 	}
2013 	/*
2014 	 * Add this stable_node dup that was
2015 	 * migrated to the stable_node chain
2016 	 * of the current nid for this page
2017 	 * content.
2018 	 */
2019 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2020 	VM_BUG_ON(page_node->head != &migrate_nodes);
2021 	list_del(&page_node->list);
2022 	DO_NUMA(page_node->nid = nid);
2023 	stable_node_chain_add_dup(page_node, stable_node);
2024 	goto out;
2025 }
2026 
2027 /*
2028  * stable_tree_insert - insert stable tree node pointing to new ksm page
2029  * into the stable tree.
2030  *
2031  * This function returns the stable tree node just allocated on success,
2032  * NULL otherwise.
2033  */
2034 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2035 {
2036 	int nid;
2037 	unsigned long kpfn;
2038 	struct rb_root *root;
2039 	struct rb_node **new;
2040 	struct rb_node *parent;
2041 	struct ksm_stable_node *stable_node, *stable_node_dup;
2042 	bool need_chain = false;
2043 
2044 	kpfn = folio_pfn(kfolio);
2045 	nid = get_kpfn_nid(kpfn);
2046 	root = root_stable_tree + nid;
2047 again:
2048 	parent = NULL;
2049 	new = &root->rb_node;
2050 
2051 	while (*new) {
2052 		struct folio *tree_folio;
2053 		int ret;
2054 
2055 		cond_resched();
2056 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2057 		tree_folio = chain(&stable_node_dup, &stable_node, root);
2058 		if (!tree_folio) {
2059 			/*
2060 			 * If we walked over a stale stable_node,
2061 			 * ksm_get_folio() will call rb_erase() and it
2062 			 * may rebalance the tree from under us. So
2063 			 * restart the search from scratch. Returning
2064 			 * NULL would be safe too, but we'd generate
2065 			 * false negative insertions just because some
2066 			 * stable_node was stale.
2067 			 */
2068 			goto again;
2069 		}
2070 
2071 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2072 		folio_put(tree_folio);
2073 
2074 		parent = *new;
2075 		if (ret < 0)
2076 			new = &parent->rb_left;
2077 		else if (ret > 0)
2078 			new = &parent->rb_right;
2079 		else {
2080 			need_chain = true;
2081 			break;
2082 		}
2083 	}
2084 
2085 	stable_node_dup = alloc_stable_node();
2086 	if (!stable_node_dup)
2087 		return NULL;
2088 
2089 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2090 	stable_node_dup->kpfn = kpfn;
2091 	stable_node_dup->rmap_hlist_len = 0;
2092 	DO_NUMA(stable_node_dup->nid = nid);
2093 	if (!need_chain) {
2094 		rb_link_node(&stable_node_dup->node, parent, new);
2095 		rb_insert_color(&stable_node_dup->node, root);
2096 	} else {
2097 		if (!is_stable_node_chain(stable_node)) {
2098 			struct ksm_stable_node *orig = stable_node;
2099 			/* chain is missing so create it */
2100 			stable_node = alloc_stable_node_chain(orig, root);
2101 			if (!stable_node) {
2102 				free_stable_node(stable_node_dup);
2103 				return NULL;
2104 			}
2105 		}
2106 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2107 	}
2108 
2109 	folio_set_stable_node(kfolio, stable_node_dup);
2110 
2111 	return stable_node_dup;
2112 }
2113 
2114 /*
2115  * unstable_tree_search_insert - search for identical page,
2116  * else insert rmap_item into the unstable tree.
2117  *
2118  * This function searches for a page in the unstable tree identical to the
2119  * page currently being scanned; and if no identical page is found in the
2120  * tree, we insert rmap_item as a new object into the unstable tree.
2121  *
2122  * This function returns pointer to rmap_item found to be identical
2123  * to the currently scanned page, NULL otherwise.
2124  *
2125  * This function does both searching and inserting, because they share
2126  * the same walking algorithm in an rbtree.
2127  */
2128 static
2129 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2130 					      struct page *page,
2131 					      struct page **tree_pagep)
2132 {
2133 	struct rb_node **new;
2134 	struct rb_root *root;
2135 	struct rb_node *parent = NULL;
2136 	int nid;
2137 
2138 	nid = get_kpfn_nid(page_to_pfn(page));
2139 	root = root_unstable_tree + nid;
2140 	new = &root->rb_node;
2141 
2142 	while (*new) {
2143 		struct ksm_rmap_item *tree_rmap_item;
2144 		struct page *tree_page;
2145 		int ret;
2146 
2147 		cond_resched();
2148 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2149 		tree_page = get_mergeable_page(tree_rmap_item);
2150 		if (!tree_page)
2151 			return NULL;
2152 
2153 		/*
2154 		 * Don't substitute a ksm page for a forked page.
2155 		 */
2156 		if (page == tree_page) {
2157 			put_page(tree_page);
2158 			return NULL;
2159 		}
2160 
2161 		ret = memcmp_pages(page, tree_page);
2162 
2163 		parent = *new;
2164 		if (ret < 0) {
2165 			put_page(tree_page);
2166 			new = &parent->rb_left;
2167 		} else if (ret > 0) {
2168 			put_page(tree_page);
2169 			new = &parent->rb_right;
2170 		} else if (!ksm_merge_across_nodes &&
2171 			   page_to_nid(tree_page) != nid) {
2172 			/*
2173 			 * If tree_page has been migrated to another NUMA node,
2174 			 * it will be flushed out and put in the right unstable
2175 			 * tree next time: only merge with it when across_nodes.
2176 			 */
2177 			put_page(tree_page);
2178 			return NULL;
2179 		} else {
2180 			*tree_pagep = tree_page;
2181 			return tree_rmap_item;
2182 		}
2183 	}
2184 
2185 	rmap_item->address |= UNSTABLE_FLAG;
2186 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2187 	DO_NUMA(rmap_item->nid = nid);
2188 	rb_link_node(&rmap_item->node, parent, new);
2189 	rb_insert_color(&rmap_item->node, root);
2190 
2191 	ksm_pages_unshared++;
2192 	return NULL;
2193 }
2194 
2195 /*
2196  * stable_tree_append - add another rmap_item to the linked list of
2197  * rmap_items hanging off a given node of the stable tree, all sharing
2198  * the same ksm page.
2199  */
2200 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2201 			       struct ksm_stable_node *stable_node,
2202 			       bool max_page_sharing_bypass)
2203 {
2204 	/*
2205 	 * rmap won't find this mapping if we don't insert the
2206 	 * rmap_item in the right stable_node
2207 	 * duplicate. page_migration could break later if rmap breaks,
2208 	 * so we can as well crash here. We really need to check for
2209 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2210 	 * for other negative values as an underflow if detected here
2211 	 * for the first time (and not when decreasing rmap_hlist_len)
2212 	 * would be sign of memory corruption in the stable_node.
2213 	 */
2214 	BUG_ON(stable_node->rmap_hlist_len < 0);
2215 
2216 	stable_node->rmap_hlist_len++;
2217 	if (!max_page_sharing_bypass)
2218 		/* possibly non fatal but unexpected overflow, only warn */
2219 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2220 			     ksm_max_page_sharing);
2221 
2222 	rmap_item->head = stable_node;
2223 	rmap_item->address |= STABLE_FLAG;
2224 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2225 
2226 	if (rmap_item->hlist.next)
2227 		ksm_pages_sharing++;
2228 	else
2229 		ksm_pages_shared++;
2230 
2231 	rmap_item->mm->ksm_merging_pages++;
2232 }
2233 
2234 /*
2235  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2236  * if not, compare checksum to previous and if it's the same, see if page can
2237  * be inserted into the unstable tree, or merged with a page already there and
2238  * both transferred to the stable tree.
2239  *
2240  * @page: the page that we are searching identical page to.
2241  * @rmap_item: the reverse mapping into the virtual address of this page
2242  */
2243 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2244 {
2245 	struct ksm_rmap_item *tree_rmap_item;
2246 	struct page *tree_page = NULL;
2247 	struct ksm_stable_node *stable_node;
2248 	struct page *kpage;
2249 	unsigned int checksum;
2250 	int err;
2251 	bool max_page_sharing_bypass = false;
2252 
2253 	stable_node = page_stable_node(page);
2254 	if (stable_node) {
2255 		if (stable_node->head != &migrate_nodes &&
2256 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2257 		    NUMA(stable_node->nid)) {
2258 			stable_node_dup_del(stable_node);
2259 			stable_node->head = &migrate_nodes;
2260 			list_add(&stable_node->list, stable_node->head);
2261 		}
2262 		if (stable_node->head != &migrate_nodes &&
2263 		    rmap_item->head == stable_node)
2264 			return;
2265 		/*
2266 		 * If it's a KSM fork, allow it to go over the sharing limit
2267 		 * without warnings.
2268 		 */
2269 		if (!is_page_sharing_candidate(stable_node))
2270 			max_page_sharing_bypass = true;
2271 	} else {
2272 		remove_rmap_item_from_tree(rmap_item);
2273 
2274 		/*
2275 		 * If the hash value of the page has changed from the last time
2276 		 * we calculated it, this page is changing frequently: therefore we
2277 		 * don't want to insert it in the unstable tree, and we don't want
2278 		 * to waste our time searching for something identical to it there.
2279 		 */
2280 		checksum = calc_checksum(page);
2281 		if (rmap_item->oldchecksum != checksum) {
2282 			rmap_item->oldchecksum = checksum;
2283 			return;
2284 		}
2285 
2286 		if (!try_to_merge_with_zero_page(rmap_item, page))
2287 			return;
2288 	}
2289 
2290 	/* We first start with searching the page inside the stable tree */
2291 	kpage = stable_tree_search(page);
2292 	if (kpage == page && rmap_item->head == stable_node) {
2293 		put_page(kpage);
2294 		return;
2295 	}
2296 
2297 	remove_rmap_item_from_tree(rmap_item);
2298 
2299 	if (kpage) {
2300 		if (PTR_ERR(kpage) == -EBUSY)
2301 			return;
2302 
2303 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2304 		if (!err) {
2305 			/*
2306 			 * The page was successfully merged:
2307 			 * add its rmap_item to the stable tree.
2308 			 */
2309 			lock_page(kpage);
2310 			stable_tree_append(rmap_item, page_stable_node(kpage),
2311 					   max_page_sharing_bypass);
2312 			unlock_page(kpage);
2313 		}
2314 		put_page(kpage);
2315 		return;
2316 	}
2317 
2318 	tree_rmap_item =
2319 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2320 	if (tree_rmap_item) {
2321 		bool split;
2322 
2323 		kpage = try_to_merge_two_pages(rmap_item, page,
2324 						tree_rmap_item, tree_page);
2325 		/*
2326 		 * If both pages we tried to merge belong to the same compound
2327 		 * page, then we actually ended up increasing the reference
2328 		 * count of the same compound page twice, and split_huge_page
2329 		 * failed.
2330 		 * Here we set a flag if that happened, and we use it later to
2331 		 * try split_huge_page again. Since we call put_page right
2332 		 * afterwards, the reference count will be correct and
2333 		 * split_huge_page should succeed.
2334 		 */
2335 		split = PageTransCompound(page)
2336 			&& compound_head(page) == compound_head(tree_page);
2337 		put_page(tree_page);
2338 		if (kpage) {
2339 			/*
2340 			 * The pages were successfully merged: insert new
2341 			 * node in the stable tree and add both rmap_items.
2342 			 */
2343 			lock_page(kpage);
2344 			stable_node = stable_tree_insert(page_folio(kpage));
2345 			if (stable_node) {
2346 				stable_tree_append(tree_rmap_item, stable_node,
2347 						   false);
2348 				stable_tree_append(rmap_item, stable_node,
2349 						   false);
2350 			}
2351 			unlock_page(kpage);
2352 
2353 			/*
2354 			 * If we fail to insert the page into the stable tree,
2355 			 * we will have 2 virtual addresses that are pointing
2356 			 * to a ksm page left outside the stable tree,
2357 			 * in which case we need to break_cow on both.
2358 			 */
2359 			if (!stable_node) {
2360 				break_cow(tree_rmap_item);
2361 				break_cow(rmap_item);
2362 			}
2363 		} else if (split) {
2364 			/*
2365 			 * We are here if we tried to merge two pages and
2366 			 * failed because they both belonged to the same
2367 			 * compound page. We will split the page now, but no
2368 			 * merging will take place.
2369 			 * We do not want to add the cost of a full lock; if
2370 			 * the page is locked, it is better to skip it and
2371 			 * perhaps try again later.
2372 			 */
2373 			if (!trylock_page(page))
2374 				return;
2375 			split_huge_page(page);
2376 			unlock_page(page);
2377 		}
2378 	}
2379 }
2380 
2381 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2382 					    struct ksm_rmap_item **rmap_list,
2383 					    unsigned long addr)
2384 {
2385 	struct ksm_rmap_item *rmap_item;
2386 
2387 	while (*rmap_list) {
2388 		rmap_item = *rmap_list;
2389 		if ((rmap_item->address & PAGE_MASK) == addr)
2390 			return rmap_item;
2391 		if (rmap_item->address > addr)
2392 			break;
2393 		*rmap_list = rmap_item->rmap_list;
2394 		remove_rmap_item_from_tree(rmap_item);
2395 		free_rmap_item(rmap_item);
2396 	}
2397 
2398 	rmap_item = alloc_rmap_item();
2399 	if (rmap_item) {
2400 		/* It has already been zeroed */
2401 		rmap_item->mm = mm_slot->slot.mm;
2402 		rmap_item->mm->ksm_rmap_items++;
2403 		rmap_item->address = addr;
2404 		rmap_item->rmap_list = *rmap_list;
2405 		*rmap_list = rmap_item;
2406 	}
2407 	return rmap_item;
2408 }
2409 
2410 /*
2411  * Calculate skip age for the ksm page age. The age determines how often
2412  * de-duplicating has already been tried unsuccessfully. If the age is
2413  * smaller, the scanning of this page is skipped for less scans.
2414  *
2415  * @age: rmap_item age of page
2416  */
2417 static unsigned int skip_age(rmap_age_t age)
2418 {
2419 	if (age <= 3)
2420 		return 1;
2421 	if (age <= 5)
2422 		return 2;
2423 	if (age <= 8)
2424 		return 4;
2425 
2426 	return 8;
2427 }
2428 
2429 /*
2430  * Determines if a page should be skipped for the current scan.
2431  *
2432  * @page: page to check
2433  * @rmap_item: associated rmap_item of page
2434  */
2435 static bool should_skip_rmap_item(struct page *page,
2436 				  struct ksm_rmap_item *rmap_item)
2437 {
2438 	rmap_age_t age;
2439 
2440 	if (!ksm_smart_scan)
2441 		return false;
2442 
2443 	/*
2444 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2445 	 * will essentially ignore them, but we still have to process them
2446 	 * properly.
2447 	 */
2448 	if (PageKsm(page))
2449 		return false;
2450 
2451 	age = rmap_item->age;
2452 	if (age != U8_MAX)
2453 		rmap_item->age++;
2454 
2455 	/*
2456 	 * Smaller ages are not skipped, they need to get a chance to go
2457 	 * through the different phases of the KSM merging.
2458 	 */
2459 	if (age < 3)
2460 		return false;
2461 
2462 	/*
2463 	 * Are we still allowed to skip? If not, then don't skip it
2464 	 * and determine how much more often we are allowed to skip next.
2465 	 */
2466 	if (!rmap_item->remaining_skips) {
2467 		rmap_item->remaining_skips = skip_age(age);
2468 		return false;
2469 	}
2470 
2471 	/* Skip this page */
2472 	ksm_pages_skipped++;
2473 	rmap_item->remaining_skips--;
2474 	remove_rmap_item_from_tree(rmap_item);
2475 	return true;
2476 }
2477 
2478 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2479 {
2480 	struct mm_struct *mm;
2481 	struct ksm_mm_slot *mm_slot;
2482 	struct mm_slot *slot;
2483 	struct vm_area_struct *vma;
2484 	struct ksm_rmap_item *rmap_item;
2485 	struct vma_iterator vmi;
2486 	int nid;
2487 
2488 	if (list_empty(&ksm_mm_head.slot.mm_node))
2489 		return NULL;
2490 
2491 	mm_slot = ksm_scan.mm_slot;
2492 	if (mm_slot == &ksm_mm_head) {
2493 		advisor_start_scan();
2494 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2495 
2496 		/*
2497 		 * A number of pages can hang around indefinitely in per-cpu
2498 		 * LRU cache, raised page count preventing write_protect_page
2499 		 * from merging them.  Though it doesn't really matter much,
2500 		 * it is puzzling to see some stuck in pages_volatile until
2501 		 * other activity jostles them out, and they also prevented
2502 		 * LTP's KSM test from succeeding deterministically; so drain
2503 		 * them here (here rather than on entry to ksm_do_scan(),
2504 		 * so we don't IPI too often when pages_to_scan is set low).
2505 		 */
2506 		lru_add_drain_all();
2507 
2508 		/*
2509 		 * Whereas stale stable_nodes on the stable_tree itself
2510 		 * get pruned in the regular course of stable_tree_search(),
2511 		 * those moved out to the migrate_nodes list can accumulate:
2512 		 * so prune them once before each full scan.
2513 		 */
2514 		if (!ksm_merge_across_nodes) {
2515 			struct ksm_stable_node *stable_node, *next;
2516 			struct folio *folio;
2517 
2518 			list_for_each_entry_safe(stable_node, next,
2519 						 &migrate_nodes, list) {
2520 				folio = ksm_get_folio(stable_node,
2521 						      KSM_GET_FOLIO_NOLOCK);
2522 				if (folio)
2523 					folio_put(folio);
2524 				cond_resched();
2525 			}
2526 		}
2527 
2528 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2529 			root_unstable_tree[nid] = RB_ROOT;
2530 
2531 		spin_lock(&ksm_mmlist_lock);
2532 		slot = list_entry(mm_slot->slot.mm_node.next,
2533 				  struct mm_slot, mm_node);
2534 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2535 		ksm_scan.mm_slot = mm_slot;
2536 		spin_unlock(&ksm_mmlist_lock);
2537 		/*
2538 		 * Although we tested list_empty() above, a racing __ksm_exit
2539 		 * of the last mm on the list may have removed it since then.
2540 		 */
2541 		if (mm_slot == &ksm_mm_head)
2542 			return NULL;
2543 next_mm:
2544 		ksm_scan.address = 0;
2545 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2546 	}
2547 
2548 	slot = &mm_slot->slot;
2549 	mm = slot->mm;
2550 	vma_iter_init(&vmi, mm, ksm_scan.address);
2551 
2552 	mmap_read_lock(mm);
2553 	if (ksm_test_exit(mm))
2554 		goto no_vmas;
2555 
2556 	for_each_vma(vmi, vma) {
2557 		if (!(vma->vm_flags & VM_MERGEABLE))
2558 			continue;
2559 		if (ksm_scan.address < vma->vm_start)
2560 			ksm_scan.address = vma->vm_start;
2561 		if (!vma->anon_vma)
2562 			ksm_scan.address = vma->vm_end;
2563 
2564 		while (ksm_scan.address < vma->vm_end) {
2565 			if (ksm_test_exit(mm))
2566 				break;
2567 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2568 			if (IS_ERR_OR_NULL(*page)) {
2569 				ksm_scan.address += PAGE_SIZE;
2570 				cond_resched();
2571 				continue;
2572 			}
2573 			if (is_zone_device_page(*page))
2574 				goto next_page;
2575 			if (PageAnon(*page)) {
2576 				flush_anon_page(vma, *page, ksm_scan.address);
2577 				flush_dcache_page(*page);
2578 				rmap_item = get_next_rmap_item(mm_slot,
2579 					ksm_scan.rmap_list, ksm_scan.address);
2580 				if (rmap_item) {
2581 					ksm_scan.rmap_list =
2582 							&rmap_item->rmap_list;
2583 
2584 					if (should_skip_rmap_item(*page, rmap_item))
2585 						goto next_page;
2586 
2587 					ksm_scan.address += PAGE_SIZE;
2588 				} else
2589 					put_page(*page);
2590 				mmap_read_unlock(mm);
2591 				return rmap_item;
2592 			}
2593 next_page:
2594 			put_page(*page);
2595 			ksm_scan.address += PAGE_SIZE;
2596 			cond_resched();
2597 		}
2598 	}
2599 
2600 	if (ksm_test_exit(mm)) {
2601 no_vmas:
2602 		ksm_scan.address = 0;
2603 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2604 	}
2605 	/*
2606 	 * Nuke all the rmap_items that are above this current rmap:
2607 	 * because there were no VM_MERGEABLE vmas with such addresses.
2608 	 */
2609 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2610 
2611 	spin_lock(&ksm_mmlist_lock);
2612 	slot = list_entry(mm_slot->slot.mm_node.next,
2613 			  struct mm_slot, mm_node);
2614 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2615 	if (ksm_scan.address == 0) {
2616 		/*
2617 		 * We've completed a full scan of all vmas, holding mmap_lock
2618 		 * throughout, and found no VM_MERGEABLE: so do the same as
2619 		 * __ksm_exit does to remove this mm from all our lists now.
2620 		 * This applies either when cleaning up after __ksm_exit
2621 		 * (but beware: we can reach here even before __ksm_exit),
2622 		 * or when all VM_MERGEABLE areas have been unmapped (and
2623 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2624 		 */
2625 		hash_del(&mm_slot->slot.hash);
2626 		list_del(&mm_slot->slot.mm_node);
2627 		spin_unlock(&ksm_mmlist_lock);
2628 
2629 		mm_slot_free(mm_slot_cache, mm_slot);
2630 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2631 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2632 		mmap_read_unlock(mm);
2633 		mmdrop(mm);
2634 	} else {
2635 		mmap_read_unlock(mm);
2636 		/*
2637 		 * mmap_read_unlock(mm) first because after
2638 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2639 		 * already have been freed under us by __ksm_exit()
2640 		 * because the "mm_slot" is still hashed and
2641 		 * ksm_scan.mm_slot doesn't point to it anymore.
2642 		 */
2643 		spin_unlock(&ksm_mmlist_lock);
2644 	}
2645 
2646 	/* Repeat until we've completed scanning the whole list */
2647 	mm_slot = ksm_scan.mm_slot;
2648 	if (mm_slot != &ksm_mm_head)
2649 		goto next_mm;
2650 
2651 	advisor_stop_scan();
2652 
2653 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2654 	ksm_scan.seqnr++;
2655 	return NULL;
2656 }
2657 
2658 /**
2659  * ksm_do_scan  - the ksm scanner main worker function.
2660  * @scan_npages:  number of pages we want to scan before we return.
2661  */
2662 static void ksm_do_scan(unsigned int scan_npages)
2663 {
2664 	struct ksm_rmap_item *rmap_item;
2665 	struct page *page;
2666 
2667 	while (scan_npages-- && likely(!freezing(current))) {
2668 		cond_resched();
2669 		rmap_item = scan_get_next_rmap_item(&page);
2670 		if (!rmap_item)
2671 			return;
2672 		cmp_and_merge_page(page, rmap_item);
2673 		put_page(page);
2674 		ksm_pages_scanned++;
2675 	}
2676 }
2677 
2678 static int ksmd_should_run(void)
2679 {
2680 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2681 }
2682 
2683 static int ksm_scan_thread(void *nothing)
2684 {
2685 	unsigned int sleep_ms;
2686 
2687 	set_freezable();
2688 	set_user_nice(current, 5);
2689 
2690 	while (!kthread_should_stop()) {
2691 		mutex_lock(&ksm_thread_mutex);
2692 		wait_while_offlining();
2693 		if (ksmd_should_run())
2694 			ksm_do_scan(ksm_thread_pages_to_scan);
2695 		mutex_unlock(&ksm_thread_mutex);
2696 
2697 		if (ksmd_should_run()) {
2698 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2699 			wait_event_freezable_timeout(ksm_iter_wait,
2700 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2701 				msecs_to_jiffies(sleep_ms));
2702 		} else {
2703 			wait_event_freezable(ksm_thread_wait,
2704 				ksmd_should_run() || kthread_should_stop());
2705 		}
2706 	}
2707 	return 0;
2708 }
2709 
2710 static void __ksm_add_vma(struct vm_area_struct *vma)
2711 {
2712 	unsigned long vm_flags = vma->vm_flags;
2713 
2714 	if (vm_flags & VM_MERGEABLE)
2715 		return;
2716 
2717 	if (vma_ksm_compatible(vma))
2718 		vm_flags_set(vma, VM_MERGEABLE);
2719 }
2720 
2721 static int __ksm_del_vma(struct vm_area_struct *vma)
2722 {
2723 	int err;
2724 
2725 	if (!(vma->vm_flags & VM_MERGEABLE))
2726 		return 0;
2727 
2728 	if (vma->anon_vma) {
2729 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2730 		if (err)
2731 			return err;
2732 	}
2733 
2734 	vm_flags_clear(vma, VM_MERGEABLE);
2735 	return 0;
2736 }
2737 /**
2738  * ksm_add_vma - Mark vma as mergeable if compatible
2739  *
2740  * @vma:  Pointer to vma
2741  */
2742 void ksm_add_vma(struct vm_area_struct *vma)
2743 {
2744 	struct mm_struct *mm = vma->vm_mm;
2745 
2746 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2747 		__ksm_add_vma(vma);
2748 }
2749 
2750 static void ksm_add_vmas(struct mm_struct *mm)
2751 {
2752 	struct vm_area_struct *vma;
2753 
2754 	VMA_ITERATOR(vmi, mm, 0);
2755 	for_each_vma(vmi, vma)
2756 		__ksm_add_vma(vma);
2757 }
2758 
2759 static int ksm_del_vmas(struct mm_struct *mm)
2760 {
2761 	struct vm_area_struct *vma;
2762 	int err;
2763 
2764 	VMA_ITERATOR(vmi, mm, 0);
2765 	for_each_vma(vmi, vma) {
2766 		err = __ksm_del_vma(vma);
2767 		if (err)
2768 			return err;
2769 	}
2770 	return 0;
2771 }
2772 
2773 /**
2774  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2775  *                        compatible VMA's
2776  *
2777  * @mm:  Pointer to mm
2778  *
2779  * Returns 0 on success, otherwise error code
2780  */
2781 int ksm_enable_merge_any(struct mm_struct *mm)
2782 {
2783 	int err;
2784 
2785 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2786 		return 0;
2787 
2788 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2789 		err = __ksm_enter(mm);
2790 		if (err)
2791 			return err;
2792 	}
2793 
2794 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2795 	ksm_add_vmas(mm);
2796 
2797 	return 0;
2798 }
2799 
2800 /**
2801  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2802  *			   previously enabled via ksm_enable_merge_any().
2803  *
2804  * Disabling merging implies unmerging any merged pages, like setting
2805  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2806  * merging on all compatible VMA's remains enabled.
2807  *
2808  * @mm: Pointer to mm
2809  *
2810  * Returns 0 on success, otherwise error code
2811  */
2812 int ksm_disable_merge_any(struct mm_struct *mm)
2813 {
2814 	int err;
2815 
2816 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2817 		return 0;
2818 
2819 	err = ksm_del_vmas(mm);
2820 	if (err) {
2821 		ksm_add_vmas(mm);
2822 		return err;
2823 	}
2824 
2825 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2826 	return 0;
2827 }
2828 
2829 int ksm_disable(struct mm_struct *mm)
2830 {
2831 	mmap_assert_write_locked(mm);
2832 
2833 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2834 		return 0;
2835 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2836 		return ksm_disable_merge_any(mm);
2837 	return ksm_del_vmas(mm);
2838 }
2839 
2840 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2841 		unsigned long end, int advice, unsigned long *vm_flags)
2842 {
2843 	struct mm_struct *mm = vma->vm_mm;
2844 	int err;
2845 
2846 	switch (advice) {
2847 	case MADV_MERGEABLE:
2848 		if (vma->vm_flags & VM_MERGEABLE)
2849 			return 0;
2850 		if (!vma_ksm_compatible(vma))
2851 			return 0;
2852 
2853 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2854 			err = __ksm_enter(mm);
2855 			if (err)
2856 				return err;
2857 		}
2858 
2859 		*vm_flags |= VM_MERGEABLE;
2860 		break;
2861 
2862 	case MADV_UNMERGEABLE:
2863 		if (!(*vm_flags & VM_MERGEABLE))
2864 			return 0;		/* just ignore the advice */
2865 
2866 		if (vma->anon_vma) {
2867 			err = unmerge_ksm_pages(vma, start, end, true);
2868 			if (err)
2869 				return err;
2870 		}
2871 
2872 		*vm_flags &= ~VM_MERGEABLE;
2873 		break;
2874 	}
2875 
2876 	return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(ksm_madvise);
2879 
2880 int __ksm_enter(struct mm_struct *mm)
2881 {
2882 	struct ksm_mm_slot *mm_slot;
2883 	struct mm_slot *slot;
2884 	int needs_wakeup;
2885 
2886 	mm_slot = mm_slot_alloc(mm_slot_cache);
2887 	if (!mm_slot)
2888 		return -ENOMEM;
2889 
2890 	slot = &mm_slot->slot;
2891 
2892 	/* Check ksm_run too?  Would need tighter locking */
2893 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2894 
2895 	spin_lock(&ksm_mmlist_lock);
2896 	mm_slot_insert(mm_slots_hash, mm, slot);
2897 	/*
2898 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2899 	 * insert just behind the scanning cursor, to let the area settle
2900 	 * down a little; when fork is followed by immediate exec, we don't
2901 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2902 	 *
2903 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2904 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2905 	 * missed: then we might as well insert at the end of the list.
2906 	 */
2907 	if (ksm_run & KSM_RUN_UNMERGE)
2908 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2909 	else
2910 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2911 	spin_unlock(&ksm_mmlist_lock);
2912 
2913 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2914 	mmgrab(mm);
2915 
2916 	if (needs_wakeup)
2917 		wake_up_interruptible(&ksm_thread_wait);
2918 
2919 	trace_ksm_enter(mm);
2920 	return 0;
2921 }
2922 
2923 void __ksm_exit(struct mm_struct *mm)
2924 {
2925 	struct ksm_mm_slot *mm_slot;
2926 	struct mm_slot *slot;
2927 	int easy_to_free = 0;
2928 
2929 	/*
2930 	 * This process is exiting: if it's straightforward (as is the
2931 	 * case when ksmd was never running), free mm_slot immediately.
2932 	 * But if it's at the cursor or has rmap_items linked to it, use
2933 	 * mmap_lock to synchronize with any break_cows before pagetables
2934 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2935 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2936 	 */
2937 
2938 	spin_lock(&ksm_mmlist_lock);
2939 	slot = mm_slot_lookup(mm_slots_hash, mm);
2940 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2941 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2942 		if (!mm_slot->rmap_list) {
2943 			hash_del(&slot->hash);
2944 			list_del(&slot->mm_node);
2945 			easy_to_free = 1;
2946 		} else {
2947 			list_move(&slot->mm_node,
2948 				  &ksm_scan.mm_slot->slot.mm_node);
2949 		}
2950 	}
2951 	spin_unlock(&ksm_mmlist_lock);
2952 
2953 	if (easy_to_free) {
2954 		mm_slot_free(mm_slot_cache, mm_slot);
2955 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2956 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2957 		mmdrop(mm);
2958 	} else if (mm_slot) {
2959 		mmap_write_lock(mm);
2960 		mmap_write_unlock(mm);
2961 	}
2962 
2963 	trace_ksm_exit(mm);
2964 }
2965 
2966 struct folio *ksm_might_need_to_copy(struct folio *folio,
2967 			struct vm_area_struct *vma, unsigned long addr)
2968 {
2969 	struct page *page = folio_page(folio, 0);
2970 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2971 	struct folio *new_folio;
2972 
2973 	if (folio_test_large(folio))
2974 		return folio;
2975 
2976 	if (folio_test_ksm(folio)) {
2977 		if (folio_stable_node(folio) &&
2978 		    !(ksm_run & KSM_RUN_UNMERGE))
2979 			return folio;	/* no need to copy it */
2980 	} else if (!anon_vma) {
2981 		return folio;		/* no need to copy it */
2982 	} else if (folio->index == linear_page_index(vma, addr) &&
2983 			anon_vma->root == vma->anon_vma->root) {
2984 		return folio;		/* still no need to copy it */
2985 	}
2986 	if (PageHWPoison(page))
2987 		return ERR_PTR(-EHWPOISON);
2988 	if (!folio_test_uptodate(folio))
2989 		return folio;		/* let do_swap_page report the error */
2990 
2991 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
2992 	if (new_folio &&
2993 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
2994 		folio_put(new_folio);
2995 		new_folio = NULL;
2996 	}
2997 	if (new_folio) {
2998 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
2999 								addr, vma)) {
3000 			folio_put(new_folio);
3001 			return ERR_PTR(-EHWPOISON);
3002 		}
3003 		folio_set_dirty(new_folio);
3004 		__folio_mark_uptodate(new_folio);
3005 		__folio_set_locked(new_folio);
3006 #ifdef CONFIG_SWAP
3007 		count_vm_event(KSM_SWPIN_COPY);
3008 #endif
3009 	}
3010 
3011 	return new_folio;
3012 }
3013 
3014 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3015 {
3016 	struct ksm_stable_node *stable_node;
3017 	struct ksm_rmap_item *rmap_item;
3018 	int search_new_forks = 0;
3019 
3020 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3021 
3022 	/*
3023 	 * Rely on the page lock to protect against concurrent modifications
3024 	 * to that page's node of the stable tree.
3025 	 */
3026 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3027 
3028 	stable_node = folio_stable_node(folio);
3029 	if (!stable_node)
3030 		return;
3031 again:
3032 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3033 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3034 		struct anon_vma_chain *vmac;
3035 		struct vm_area_struct *vma;
3036 
3037 		cond_resched();
3038 		if (!anon_vma_trylock_read(anon_vma)) {
3039 			if (rwc->try_lock) {
3040 				rwc->contended = true;
3041 				return;
3042 			}
3043 			anon_vma_lock_read(anon_vma);
3044 		}
3045 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3046 					       0, ULONG_MAX) {
3047 			unsigned long addr;
3048 
3049 			cond_resched();
3050 			vma = vmac->vma;
3051 
3052 			/* Ignore the stable/unstable/sqnr flags */
3053 			addr = rmap_item->address & PAGE_MASK;
3054 
3055 			if (addr < vma->vm_start || addr >= vma->vm_end)
3056 				continue;
3057 			/*
3058 			 * Initially we examine only the vma which covers this
3059 			 * rmap_item; but later, if there is still work to do,
3060 			 * we examine covering vmas in other mms: in case they
3061 			 * were forked from the original since ksmd passed.
3062 			 */
3063 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3064 				continue;
3065 
3066 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3067 				continue;
3068 
3069 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3070 				anon_vma_unlock_read(anon_vma);
3071 				return;
3072 			}
3073 			if (rwc->done && rwc->done(folio)) {
3074 				anon_vma_unlock_read(anon_vma);
3075 				return;
3076 			}
3077 		}
3078 		anon_vma_unlock_read(anon_vma);
3079 	}
3080 	if (!search_new_forks++)
3081 		goto again;
3082 }
3083 
3084 #ifdef CONFIG_MEMORY_FAILURE
3085 /*
3086  * Collect processes when the error hit an ksm page.
3087  */
3088 void collect_procs_ksm(struct folio *folio, struct page *page,
3089 		struct list_head *to_kill, int force_early)
3090 {
3091 	struct ksm_stable_node *stable_node;
3092 	struct ksm_rmap_item *rmap_item;
3093 	struct vm_area_struct *vma;
3094 	struct task_struct *tsk;
3095 
3096 	stable_node = folio_stable_node(folio);
3097 	if (!stable_node)
3098 		return;
3099 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3100 		struct anon_vma *av = rmap_item->anon_vma;
3101 
3102 		anon_vma_lock_read(av);
3103 		rcu_read_lock();
3104 		for_each_process(tsk) {
3105 			struct anon_vma_chain *vmac;
3106 			unsigned long addr;
3107 			struct task_struct *t =
3108 				task_early_kill(tsk, force_early);
3109 			if (!t)
3110 				continue;
3111 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3112 						       ULONG_MAX)
3113 			{
3114 				vma = vmac->vma;
3115 				if (vma->vm_mm == t->mm) {
3116 					addr = rmap_item->address & PAGE_MASK;
3117 					add_to_kill_ksm(t, page, vma, to_kill,
3118 							addr);
3119 				}
3120 			}
3121 		}
3122 		rcu_read_unlock();
3123 		anon_vma_unlock_read(av);
3124 	}
3125 }
3126 #endif
3127 
3128 #ifdef CONFIG_MIGRATION
3129 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3130 {
3131 	struct ksm_stable_node *stable_node;
3132 
3133 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3134 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3135 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3136 
3137 	stable_node = folio_stable_node(folio);
3138 	if (stable_node) {
3139 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3140 		stable_node->kpfn = folio_pfn(newfolio);
3141 		/*
3142 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3143 		 * to make sure that the new stable_node->kpfn is visible
3144 		 * to ksm_get_folio() before it can see that folio->mapping
3145 		 * has gone stale (or that folio_test_swapcache has been cleared).
3146 		 */
3147 		smp_wmb();
3148 		folio_set_stable_node(folio, NULL);
3149 	}
3150 }
3151 #endif /* CONFIG_MIGRATION */
3152 
3153 #ifdef CONFIG_MEMORY_HOTREMOVE
3154 static void wait_while_offlining(void)
3155 {
3156 	while (ksm_run & KSM_RUN_OFFLINE) {
3157 		mutex_unlock(&ksm_thread_mutex);
3158 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3159 			    TASK_UNINTERRUPTIBLE);
3160 		mutex_lock(&ksm_thread_mutex);
3161 	}
3162 }
3163 
3164 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3165 					 unsigned long start_pfn,
3166 					 unsigned long end_pfn)
3167 {
3168 	if (stable_node->kpfn >= start_pfn &&
3169 	    stable_node->kpfn < end_pfn) {
3170 		/*
3171 		 * Don't ksm_get_folio, page has already gone:
3172 		 * which is why we keep kpfn instead of page*
3173 		 */
3174 		remove_node_from_stable_tree(stable_node);
3175 		return true;
3176 	}
3177 	return false;
3178 }
3179 
3180 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3181 					   unsigned long start_pfn,
3182 					   unsigned long end_pfn,
3183 					   struct rb_root *root)
3184 {
3185 	struct ksm_stable_node *dup;
3186 	struct hlist_node *hlist_safe;
3187 
3188 	if (!is_stable_node_chain(stable_node)) {
3189 		VM_BUG_ON(is_stable_node_dup(stable_node));
3190 		return stable_node_dup_remove_range(stable_node, start_pfn,
3191 						    end_pfn);
3192 	}
3193 
3194 	hlist_for_each_entry_safe(dup, hlist_safe,
3195 				  &stable_node->hlist, hlist_dup) {
3196 		VM_BUG_ON(!is_stable_node_dup(dup));
3197 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3198 	}
3199 	if (hlist_empty(&stable_node->hlist)) {
3200 		free_stable_node_chain(stable_node, root);
3201 		return true; /* notify caller that tree was rebalanced */
3202 	} else
3203 		return false;
3204 }
3205 
3206 static void ksm_check_stable_tree(unsigned long start_pfn,
3207 				  unsigned long end_pfn)
3208 {
3209 	struct ksm_stable_node *stable_node, *next;
3210 	struct rb_node *node;
3211 	int nid;
3212 
3213 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3214 		node = rb_first(root_stable_tree + nid);
3215 		while (node) {
3216 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3217 			if (stable_node_chain_remove_range(stable_node,
3218 							   start_pfn, end_pfn,
3219 							   root_stable_tree +
3220 							   nid))
3221 				node = rb_first(root_stable_tree + nid);
3222 			else
3223 				node = rb_next(node);
3224 			cond_resched();
3225 		}
3226 	}
3227 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3228 		if (stable_node->kpfn >= start_pfn &&
3229 		    stable_node->kpfn < end_pfn)
3230 			remove_node_from_stable_tree(stable_node);
3231 		cond_resched();
3232 	}
3233 }
3234 
3235 static int ksm_memory_callback(struct notifier_block *self,
3236 			       unsigned long action, void *arg)
3237 {
3238 	struct memory_notify *mn = arg;
3239 
3240 	switch (action) {
3241 	case MEM_GOING_OFFLINE:
3242 		/*
3243 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3244 		 * and remove_all_stable_nodes() while memory is going offline:
3245 		 * it is unsafe for them to touch the stable tree at this time.
3246 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3247 		 * which do not need the ksm_thread_mutex are all safe.
3248 		 */
3249 		mutex_lock(&ksm_thread_mutex);
3250 		ksm_run |= KSM_RUN_OFFLINE;
3251 		mutex_unlock(&ksm_thread_mutex);
3252 		break;
3253 
3254 	case MEM_OFFLINE:
3255 		/*
3256 		 * Most of the work is done by page migration; but there might
3257 		 * be a few stable_nodes left over, still pointing to struct
3258 		 * pages which have been offlined: prune those from the tree,
3259 		 * otherwise ksm_get_folio() might later try to access a
3260 		 * non-existent struct page.
3261 		 */
3262 		ksm_check_stable_tree(mn->start_pfn,
3263 				      mn->start_pfn + mn->nr_pages);
3264 		fallthrough;
3265 	case MEM_CANCEL_OFFLINE:
3266 		mutex_lock(&ksm_thread_mutex);
3267 		ksm_run &= ~KSM_RUN_OFFLINE;
3268 		mutex_unlock(&ksm_thread_mutex);
3269 
3270 		smp_mb();	/* wake_up_bit advises this */
3271 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3272 		break;
3273 	}
3274 	return NOTIFY_OK;
3275 }
3276 #else
3277 static void wait_while_offlining(void)
3278 {
3279 }
3280 #endif /* CONFIG_MEMORY_HOTREMOVE */
3281 
3282 #ifdef CONFIG_PROC_FS
3283 long ksm_process_profit(struct mm_struct *mm)
3284 {
3285 	return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE -
3286 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3287 }
3288 #endif /* CONFIG_PROC_FS */
3289 
3290 #ifdef CONFIG_SYSFS
3291 /*
3292  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3293  */
3294 
3295 #define KSM_ATTR_RO(_name) \
3296 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3297 #define KSM_ATTR(_name) \
3298 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3299 
3300 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3301 				    struct kobj_attribute *attr, char *buf)
3302 {
3303 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3304 }
3305 
3306 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3307 				     struct kobj_attribute *attr,
3308 				     const char *buf, size_t count)
3309 {
3310 	unsigned int msecs;
3311 	int err;
3312 
3313 	err = kstrtouint(buf, 10, &msecs);
3314 	if (err)
3315 		return -EINVAL;
3316 
3317 	ksm_thread_sleep_millisecs = msecs;
3318 	wake_up_interruptible(&ksm_iter_wait);
3319 
3320 	return count;
3321 }
3322 KSM_ATTR(sleep_millisecs);
3323 
3324 static ssize_t pages_to_scan_show(struct kobject *kobj,
3325 				  struct kobj_attribute *attr, char *buf)
3326 {
3327 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3328 }
3329 
3330 static ssize_t pages_to_scan_store(struct kobject *kobj,
3331 				   struct kobj_attribute *attr,
3332 				   const char *buf, size_t count)
3333 {
3334 	unsigned int nr_pages;
3335 	int err;
3336 
3337 	if (ksm_advisor != KSM_ADVISOR_NONE)
3338 		return -EINVAL;
3339 
3340 	err = kstrtouint(buf, 10, &nr_pages);
3341 	if (err)
3342 		return -EINVAL;
3343 
3344 	ksm_thread_pages_to_scan = nr_pages;
3345 
3346 	return count;
3347 }
3348 KSM_ATTR(pages_to_scan);
3349 
3350 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3351 			char *buf)
3352 {
3353 	return sysfs_emit(buf, "%lu\n", ksm_run);
3354 }
3355 
3356 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3357 			 const char *buf, size_t count)
3358 {
3359 	unsigned int flags;
3360 	int err;
3361 
3362 	err = kstrtouint(buf, 10, &flags);
3363 	if (err)
3364 		return -EINVAL;
3365 	if (flags > KSM_RUN_UNMERGE)
3366 		return -EINVAL;
3367 
3368 	/*
3369 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3370 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3371 	 * breaking COW to free the pages_shared (but leaves mm_slots
3372 	 * on the list for when ksmd may be set running again).
3373 	 */
3374 
3375 	mutex_lock(&ksm_thread_mutex);
3376 	wait_while_offlining();
3377 	if (ksm_run != flags) {
3378 		ksm_run = flags;
3379 		if (flags & KSM_RUN_UNMERGE) {
3380 			set_current_oom_origin();
3381 			err = unmerge_and_remove_all_rmap_items();
3382 			clear_current_oom_origin();
3383 			if (err) {
3384 				ksm_run = KSM_RUN_STOP;
3385 				count = err;
3386 			}
3387 		}
3388 	}
3389 	mutex_unlock(&ksm_thread_mutex);
3390 
3391 	if (flags & KSM_RUN_MERGE)
3392 		wake_up_interruptible(&ksm_thread_wait);
3393 
3394 	return count;
3395 }
3396 KSM_ATTR(run);
3397 
3398 #ifdef CONFIG_NUMA
3399 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3400 				       struct kobj_attribute *attr, char *buf)
3401 {
3402 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3403 }
3404 
3405 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3406 				   struct kobj_attribute *attr,
3407 				   const char *buf, size_t count)
3408 {
3409 	int err;
3410 	unsigned long knob;
3411 
3412 	err = kstrtoul(buf, 10, &knob);
3413 	if (err)
3414 		return err;
3415 	if (knob > 1)
3416 		return -EINVAL;
3417 
3418 	mutex_lock(&ksm_thread_mutex);
3419 	wait_while_offlining();
3420 	if (ksm_merge_across_nodes != knob) {
3421 		if (ksm_pages_shared || remove_all_stable_nodes())
3422 			err = -EBUSY;
3423 		else if (root_stable_tree == one_stable_tree) {
3424 			struct rb_root *buf;
3425 			/*
3426 			 * This is the first time that we switch away from the
3427 			 * default of merging across nodes: must now allocate
3428 			 * a buffer to hold as many roots as may be needed.
3429 			 * Allocate stable and unstable together:
3430 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3431 			 */
3432 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3433 				      GFP_KERNEL);
3434 			/* Let us assume that RB_ROOT is NULL is zero */
3435 			if (!buf)
3436 				err = -ENOMEM;
3437 			else {
3438 				root_stable_tree = buf;
3439 				root_unstable_tree = buf + nr_node_ids;
3440 				/* Stable tree is empty but not the unstable */
3441 				root_unstable_tree[0] = one_unstable_tree[0];
3442 			}
3443 		}
3444 		if (!err) {
3445 			ksm_merge_across_nodes = knob;
3446 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3447 		}
3448 	}
3449 	mutex_unlock(&ksm_thread_mutex);
3450 
3451 	return err ? err : count;
3452 }
3453 KSM_ATTR(merge_across_nodes);
3454 #endif
3455 
3456 static ssize_t use_zero_pages_show(struct kobject *kobj,
3457 				   struct kobj_attribute *attr, char *buf)
3458 {
3459 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3460 }
3461 static ssize_t use_zero_pages_store(struct kobject *kobj,
3462 				   struct kobj_attribute *attr,
3463 				   const char *buf, size_t count)
3464 {
3465 	int err;
3466 	bool value;
3467 
3468 	err = kstrtobool(buf, &value);
3469 	if (err)
3470 		return -EINVAL;
3471 
3472 	ksm_use_zero_pages = value;
3473 
3474 	return count;
3475 }
3476 KSM_ATTR(use_zero_pages);
3477 
3478 static ssize_t max_page_sharing_show(struct kobject *kobj,
3479 				     struct kobj_attribute *attr, char *buf)
3480 {
3481 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3482 }
3483 
3484 static ssize_t max_page_sharing_store(struct kobject *kobj,
3485 				      struct kobj_attribute *attr,
3486 				      const char *buf, size_t count)
3487 {
3488 	int err;
3489 	int knob;
3490 
3491 	err = kstrtoint(buf, 10, &knob);
3492 	if (err)
3493 		return err;
3494 	/*
3495 	 * When a KSM page is created it is shared by 2 mappings. This
3496 	 * being a signed comparison, it implicitly verifies it's not
3497 	 * negative.
3498 	 */
3499 	if (knob < 2)
3500 		return -EINVAL;
3501 
3502 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3503 		return count;
3504 
3505 	mutex_lock(&ksm_thread_mutex);
3506 	wait_while_offlining();
3507 	if (ksm_max_page_sharing != knob) {
3508 		if (ksm_pages_shared || remove_all_stable_nodes())
3509 			err = -EBUSY;
3510 		else
3511 			ksm_max_page_sharing = knob;
3512 	}
3513 	mutex_unlock(&ksm_thread_mutex);
3514 
3515 	return err ? err : count;
3516 }
3517 KSM_ATTR(max_page_sharing);
3518 
3519 static ssize_t pages_scanned_show(struct kobject *kobj,
3520 				  struct kobj_attribute *attr, char *buf)
3521 {
3522 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3523 }
3524 KSM_ATTR_RO(pages_scanned);
3525 
3526 static ssize_t pages_shared_show(struct kobject *kobj,
3527 				 struct kobj_attribute *attr, char *buf)
3528 {
3529 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3530 }
3531 KSM_ATTR_RO(pages_shared);
3532 
3533 static ssize_t pages_sharing_show(struct kobject *kobj,
3534 				  struct kobj_attribute *attr, char *buf)
3535 {
3536 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3537 }
3538 KSM_ATTR_RO(pages_sharing);
3539 
3540 static ssize_t pages_unshared_show(struct kobject *kobj,
3541 				   struct kobj_attribute *attr, char *buf)
3542 {
3543 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3544 }
3545 KSM_ATTR_RO(pages_unshared);
3546 
3547 static ssize_t pages_volatile_show(struct kobject *kobj,
3548 				   struct kobj_attribute *attr, char *buf)
3549 {
3550 	long ksm_pages_volatile;
3551 
3552 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3553 				- ksm_pages_sharing - ksm_pages_unshared;
3554 	/*
3555 	 * It was not worth any locking to calculate that statistic,
3556 	 * but it might therefore sometimes be negative: conceal that.
3557 	 */
3558 	if (ksm_pages_volatile < 0)
3559 		ksm_pages_volatile = 0;
3560 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3561 }
3562 KSM_ATTR_RO(pages_volatile);
3563 
3564 static ssize_t pages_skipped_show(struct kobject *kobj,
3565 				  struct kobj_attribute *attr, char *buf)
3566 {
3567 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3568 }
3569 KSM_ATTR_RO(pages_skipped);
3570 
3571 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3572 				struct kobj_attribute *attr, char *buf)
3573 {
3574 	return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages));
3575 }
3576 KSM_ATTR_RO(ksm_zero_pages);
3577 
3578 static ssize_t general_profit_show(struct kobject *kobj,
3579 				   struct kobj_attribute *attr, char *buf)
3580 {
3581 	long general_profit;
3582 
3583 	general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE -
3584 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3585 
3586 	return sysfs_emit(buf, "%ld\n", general_profit);
3587 }
3588 KSM_ATTR_RO(general_profit);
3589 
3590 static ssize_t stable_node_dups_show(struct kobject *kobj,
3591 				     struct kobj_attribute *attr, char *buf)
3592 {
3593 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3594 }
3595 KSM_ATTR_RO(stable_node_dups);
3596 
3597 static ssize_t stable_node_chains_show(struct kobject *kobj,
3598 				       struct kobj_attribute *attr, char *buf)
3599 {
3600 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3601 }
3602 KSM_ATTR_RO(stable_node_chains);
3603 
3604 static ssize_t
3605 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3606 					struct kobj_attribute *attr,
3607 					char *buf)
3608 {
3609 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3610 }
3611 
3612 static ssize_t
3613 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3614 					 struct kobj_attribute *attr,
3615 					 const char *buf, size_t count)
3616 {
3617 	unsigned int msecs;
3618 	int err;
3619 
3620 	err = kstrtouint(buf, 10, &msecs);
3621 	if (err)
3622 		return -EINVAL;
3623 
3624 	ksm_stable_node_chains_prune_millisecs = msecs;
3625 
3626 	return count;
3627 }
3628 KSM_ATTR(stable_node_chains_prune_millisecs);
3629 
3630 static ssize_t full_scans_show(struct kobject *kobj,
3631 			       struct kobj_attribute *attr, char *buf)
3632 {
3633 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3634 }
3635 KSM_ATTR_RO(full_scans);
3636 
3637 static ssize_t smart_scan_show(struct kobject *kobj,
3638 			       struct kobj_attribute *attr, char *buf)
3639 {
3640 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3641 }
3642 
3643 static ssize_t smart_scan_store(struct kobject *kobj,
3644 				struct kobj_attribute *attr,
3645 				const char *buf, size_t count)
3646 {
3647 	int err;
3648 	bool value;
3649 
3650 	err = kstrtobool(buf, &value);
3651 	if (err)
3652 		return -EINVAL;
3653 
3654 	ksm_smart_scan = value;
3655 	return count;
3656 }
3657 KSM_ATTR(smart_scan);
3658 
3659 static ssize_t advisor_mode_show(struct kobject *kobj,
3660 				 struct kobj_attribute *attr, char *buf)
3661 {
3662 	const char *output;
3663 
3664 	if (ksm_advisor == KSM_ADVISOR_NONE)
3665 		output = "[none] scan-time";
3666 	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3667 		output = "none [scan-time]";
3668 
3669 	return sysfs_emit(buf, "%s\n", output);
3670 }
3671 
3672 static ssize_t advisor_mode_store(struct kobject *kobj,
3673 				  struct kobj_attribute *attr, const char *buf,
3674 				  size_t count)
3675 {
3676 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3677 
3678 	if (sysfs_streq("scan-time", buf))
3679 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3680 	else if (sysfs_streq("none", buf))
3681 		ksm_advisor = KSM_ADVISOR_NONE;
3682 	else
3683 		return -EINVAL;
3684 
3685 	/* Set advisor default values */
3686 	if (curr_advisor != ksm_advisor)
3687 		set_advisor_defaults();
3688 
3689 	return count;
3690 }
3691 KSM_ATTR(advisor_mode);
3692 
3693 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3694 				    struct kobj_attribute *attr, char *buf)
3695 {
3696 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3697 }
3698 
3699 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3700 				     struct kobj_attribute *attr,
3701 				     const char *buf, size_t count)
3702 {
3703 	int err;
3704 	unsigned long value;
3705 
3706 	err = kstrtoul(buf, 10, &value);
3707 	if (err)
3708 		return -EINVAL;
3709 
3710 	ksm_advisor_max_cpu = value;
3711 	return count;
3712 }
3713 KSM_ATTR(advisor_max_cpu);
3714 
3715 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3716 					struct kobj_attribute *attr, char *buf)
3717 {
3718 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3719 }
3720 
3721 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3722 					struct kobj_attribute *attr,
3723 					const char *buf, size_t count)
3724 {
3725 	int err;
3726 	unsigned long value;
3727 
3728 	err = kstrtoul(buf, 10, &value);
3729 	if (err)
3730 		return -EINVAL;
3731 
3732 	ksm_advisor_min_pages_to_scan = value;
3733 	return count;
3734 }
3735 KSM_ATTR(advisor_min_pages_to_scan);
3736 
3737 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3738 					struct kobj_attribute *attr, char *buf)
3739 {
3740 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3741 }
3742 
3743 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3744 					struct kobj_attribute *attr,
3745 					const char *buf, size_t count)
3746 {
3747 	int err;
3748 	unsigned long value;
3749 
3750 	err = kstrtoul(buf, 10, &value);
3751 	if (err)
3752 		return -EINVAL;
3753 
3754 	ksm_advisor_max_pages_to_scan = value;
3755 	return count;
3756 }
3757 KSM_ATTR(advisor_max_pages_to_scan);
3758 
3759 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3760 					     struct kobj_attribute *attr, char *buf)
3761 {
3762 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3763 }
3764 
3765 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3766 					      struct kobj_attribute *attr,
3767 					      const char *buf, size_t count)
3768 {
3769 	int err;
3770 	unsigned long value;
3771 
3772 	err = kstrtoul(buf, 10, &value);
3773 	if (err)
3774 		return -EINVAL;
3775 	if (value < 1)
3776 		return -EINVAL;
3777 
3778 	ksm_advisor_target_scan_time = value;
3779 	return count;
3780 }
3781 KSM_ATTR(advisor_target_scan_time);
3782 
3783 static struct attribute *ksm_attrs[] = {
3784 	&sleep_millisecs_attr.attr,
3785 	&pages_to_scan_attr.attr,
3786 	&run_attr.attr,
3787 	&pages_scanned_attr.attr,
3788 	&pages_shared_attr.attr,
3789 	&pages_sharing_attr.attr,
3790 	&pages_unshared_attr.attr,
3791 	&pages_volatile_attr.attr,
3792 	&pages_skipped_attr.attr,
3793 	&ksm_zero_pages_attr.attr,
3794 	&full_scans_attr.attr,
3795 #ifdef CONFIG_NUMA
3796 	&merge_across_nodes_attr.attr,
3797 #endif
3798 	&max_page_sharing_attr.attr,
3799 	&stable_node_chains_attr.attr,
3800 	&stable_node_dups_attr.attr,
3801 	&stable_node_chains_prune_millisecs_attr.attr,
3802 	&use_zero_pages_attr.attr,
3803 	&general_profit_attr.attr,
3804 	&smart_scan_attr.attr,
3805 	&advisor_mode_attr.attr,
3806 	&advisor_max_cpu_attr.attr,
3807 	&advisor_min_pages_to_scan_attr.attr,
3808 	&advisor_max_pages_to_scan_attr.attr,
3809 	&advisor_target_scan_time_attr.attr,
3810 	NULL,
3811 };
3812 
3813 static const struct attribute_group ksm_attr_group = {
3814 	.attrs = ksm_attrs,
3815 	.name = "ksm",
3816 };
3817 #endif /* CONFIG_SYSFS */
3818 
3819 static int __init ksm_init(void)
3820 {
3821 	struct task_struct *ksm_thread;
3822 	int err;
3823 
3824 	/* The correct value depends on page size and endianness */
3825 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3826 	/* Default to false for backwards compatibility */
3827 	ksm_use_zero_pages = false;
3828 
3829 	err = ksm_slab_init();
3830 	if (err)
3831 		goto out;
3832 
3833 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3834 	if (IS_ERR(ksm_thread)) {
3835 		pr_err("ksm: creating kthread failed\n");
3836 		err = PTR_ERR(ksm_thread);
3837 		goto out_free;
3838 	}
3839 
3840 #ifdef CONFIG_SYSFS
3841 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3842 	if (err) {
3843 		pr_err("ksm: register sysfs failed\n");
3844 		kthread_stop(ksm_thread);
3845 		goto out_free;
3846 	}
3847 #else
3848 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3849 
3850 #endif /* CONFIG_SYSFS */
3851 
3852 #ifdef CONFIG_MEMORY_HOTREMOVE
3853 	/* There is no significance to this priority 100 */
3854 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3855 #endif
3856 	return 0;
3857 
3858 out_free:
3859 	ksm_slab_free();
3860 out:
3861 	return err;
3862 }
3863 subsys_initcall(ksm_init);
3864