xref: /linux/mm/ksm.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * A few notes about the KSM scanning process,
43  * to make it easier to understand the data structures below:
44  *
45  * In order to reduce excessive scanning, KSM sorts the memory pages by their
46  * contents into a data structure that holds pointers to the pages' locations.
47  *
48  * Since the contents of the pages may change at any moment, KSM cannot just
49  * insert the pages into a normal sorted tree and expect it to find anything.
50  * Therefore KSM uses two data structures - the stable and the unstable tree.
51  *
52  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
53  * by their contents.  Because each such page is write-protected, searching on
54  * this tree is fully assured to be working (except when pages are unmapped),
55  * and therefore this tree is called the stable tree.
56  *
57  * In addition to the stable tree, KSM uses a second data structure called the
58  * unstable tree: this tree holds pointers to pages which have been found to
59  * be "unchanged for a period of time".  The unstable tree sorts these pages
60  * by their contents, but since they are not write-protected, KSM cannot rely
61  * upon the unstable tree to work correctly - the unstable tree is liable to
62  * be corrupted as its contents are modified, and so it is called unstable.
63  *
64  * KSM solves this problem by several techniques:
65  *
66  * 1) The unstable tree is flushed every time KSM completes scanning all
67  *    memory areas, and then the tree is rebuilt again from the beginning.
68  * 2) KSM will only insert into the unstable tree, pages whose hash value
69  *    has not changed since the previous scan of all memory areas.
70  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
71  *    colors of the nodes and not on their contents, assuring that even when
72  *    the tree gets "corrupted" it won't get out of balance, so scanning time
73  *    remains the same (also, searching and inserting nodes in an rbtree uses
74  *    the same algorithm, so we have no overhead when we flush and rebuild).
75  * 4) KSM never flushes the stable tree, which means that even if it were to
76  *    take 10 attempts to find a page in the unstable tree, once it is found,
77  *    it is secured in the stable tree.  (When we scan a new page, we first
78  *    compare it against the stable tree, and then against the unstable tree.)
79  */
80 
81 /**
82  * struct mm_slot - ksm information per mm that is being scanned
83  * @link: link to the mm_slots hash list
84  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
85  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89 	struct hlist_node link;
90 	struct list_head mm_list;
91 	struct rmap_item *rmap_list;
92 	struct mm_struct *mm;
93 };
94 
95 /**
96  * struct ksm_scan - cursor for scanning
97  * @mm_slot: the current mm_slot we are scanning
98  * @address: the next address inside that to be scanned
99  * @rmap_list: link to the next rmap to be scanned in the rmap_list
100  * @seqnr: count of completed full scans (needed when removing unstable node)
101  *
102  * There is only the one ksm_scan instance of this cursor structure.
103  */
104 struct ksm_scan {
105 	struct mm_slot *mm_slot;
106 	unsigned long address;
107 	struct rmap_item **rmap_list;
108 	unsigned long seqnr;
109 };
110 
111 /**
112  * struct stable_node - node of the stable rbtree
113  * @node: rb node of this ksm page in the stable tree
114  * @hlist: hlist head of rmap_items using this ksm page
115  * @kpfn: page frame number of this ksm page
116  */
117 struct stable_node {
118 	struct rb_node node;
119 	struct hlist_head hlist;
120 	unsigned long kpfn;
121 };
122 
123 /**
124  * struct rmap_item - reverse mapping item for virtual addresses
125  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
126  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
127  * @mm: the memory structure this rmap_item is pointing into
128  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
129  * @oldchecksum: previous checksum of the page at that virtual address
130  * @node: rb node of this rmap_item in the unstable tree
131  * @head: pointer to stable_node heading this list in the stable tree
132  * @hlist: link into hlist of rmap_items hanging off that stable_node
133  */
134 struct rmap_item {
135 	struct rmap_item *rmap_list;
136 	struct anon_vma *anon_vma;	/* when stable */
137 	struct mm_struct *mm;
138 	unsigned long address;		/* + low bits used for flags below */
139 	unsigned int oldchecksum;	/* when unstable */
140 	union {
141 		struct rb_node node;	/* when node of unstable tree */
142 		struct {		/* when listed from stable tree */
143 			struct stable_node *head;
144 			struct hlist_node hlist;
145 		};
146 	};
147 };
148 
149 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
150 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
151 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
152 
153 /* The stable and unstable tree heads */
154 static struct rb_root root_stable_tree = RB_ROOT;
155 static struct rb_root root_unstable_tree = RB_ROOT;
156 
157 #define MM_SLOTS_HASH_SHIFT 10
158 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
159 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
160 
161 static struct mm_slot ksm_mm_head = {
162 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
163 };
164 static struct ksm_scan ksm_scan = {
165 	.mm_slot = &ksm_mm_head,
166 };
167 
168 static struct kmem_cache *rmap_item_cache;
169 static struct kmem_cache *stable_node_cache;
170 static struct kmem_cache *mm_slot_cache;
171 
172 /* The number of nodes in the stable tree */
173 static unsigned long ksm_pages_shared;
174 
175 /* The number of page slots additionally sharing those nodes */
176 static unsigned long ksm_pages_sharing;
177 
178 /* The number of nodes in the unstable tree */
179 static unsigned long ksm_pages_unshared;
180 
181 /* The number of rmap_items in use: to calculate pages_volatile */
182 static unsigned long ksm_rmap_items;
183 
184 /* Number of pages ksmd should scan in one batch */
185 static unsigned int ksm_thread_pages_to_scan = 100;
186 
187 /* Milliseconds ksmd should sleep between batches */
188 static unsigned int ksm_thread_sleep_millisecs = 20;
189 
190 #define KSM_RUN_STOP	0
191 #define KSM_RUN_MERGE	1
192 #define KSM_RUN_UNMERGE	2
193 static unsigned int ksm_run = KSM_RUN_STOP;
194 
195 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
196 static DEFINE_MUTEX(ksm_thread_mutex);
197 static DEFINE_SPINLOCK(ksm_mmlist_lock);
198 
199 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
200 		sizeof(struct __struct), __alignof__(struct __struct),\
201 		(__flags), NULL)
202 
203 static int __init ksm_slab_init(void)
204 {
205 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
206 	if (!rmap_item_cache)
207 		goto out;
208 
209 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
210 	if (!stable_node_cache)
211 		goto out_free1;
212 
213 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
214 	if (!mm_slot_cache)
215 		goto out_free2;
216 
217 	return 0;
218 
219 out_free2:
220 	kmem_cache_destroy(stable_node_cache);
221 out_free1:
222 	kmem_cache_destroy(rmap_item_cache);
223 out:
224 	return -ENOMEM;
225 }
226 
227 static void __init ksm_slab_free(void)
228 {
229 	kmem_cache_destroy(mm_slot_cache);
230 	kmem_cache_destroy(stable_node_cache);
231 	kmem_cache_destroy(rmap_item_cache);
232 	mm_slot_cache = NULL;
233 }
234 
235 static inline struct rmap_item *alloc_rmap_item(void)
236 {
237 	struct rmap_item *rmap_item;
238 
239 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
240 	if (rmap_item)
241 		ksm_rmap_items++;
242 	return rmap_item;
243 }
244 
245 static inline void free_rmap_item(struct rmap_item *rmap_item)
246 {
247 	ksm_rmap_items--;
248 	rmap_item->mm = NULL;	/* debug safety */
249 	kmem_cache_free(rmap_item_cache, rmap_item);
250 }
251 
252 static inline struct stable_node *alloc_stable_node(void)
253 {
254 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
255 }
256 
257 static inline void free_stable_node(struct stable_node *stable_node)
258 {
259 	kmem_cache_free(stable_node_cache, stable_node);
260 }
261 
262 static inline struct mm_slot *alloc_mm_slot(void)
263 {
264 	if (!mm_slot_cache)	/* initialization failed */
265 		return NULL;
266 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
267 }
268 
269 static inline void free_mm_slot(struct mm_slot *mm_slot)
270 {
271 	kmem_cache_free(mm_slot_cache, mm_slot);
272 }
273 
274 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
275 {
276 	struct mm_slot *mm_slot;
277 	struct hlist_head *bucket;
278 	struct hlist_node *node;
279 
280 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
281 	hlist_for_each_entry(mm_slot, node, bucket, link) {
282 		if (mm == mm_slot->mm)
283 			return mm_slot;
284 	}
285 	return NULL;
286 }
287 
288 static void insert_to_mm_slots_hash(struct mm_struct *mm,
289 				    struct mm_slot *mm_slot)
290 {
291 	struct hlist_head *bucket;
292 
293 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
294 	mm_slot->mm = mm;
295 	hlist_add_head(&mm_slot->link, bucket);
296 }
297 
298 static inline int in_stable_tree(struct rmap_item *rmap_item)
299 {
300 	return rmap_item->address & STABLE_FLAG;
301 }
302 
303 static void hold_anon_vma(struct rmap_item *rmap_item,
304 			  struct anon_vma *anon_vma)
305 {
306 	rmap_item->anon_vma = anon_vma;
307 	get_anon_vma(anon_vma);
308 }
309 
310 static void ksm_drop_anon_vma(struct rmap_item *rmap_item)
311 {
312 	struct anon_vma *anon_vma = rmap_item->anon_vma;
313 
314 	drop_anon_vma(anon_vma);
315 }
316 
317 /*
318  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
319  * page tables after it has passed through ksm_exit() - which, if necessary,
320  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
321  * a special flag: they can just back out as soon as mm_users goes to zero.
322  * ksm_test_exit() is used throughout to make this test for exit: in some
323  * places for correctness, in some places just to avoid unnecessary work.
324  */
325 static inline bool ksm_test_exit(struct mm_struct *mm)
326 {
327 	return atomic_read(&mm->mm_users) == 0;
328 }
329 
330 /*
331  * We use break_ksm to break COW on a ksm page: it's a stripped down
332  *
333  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
334  *		put_page(page);
335  *
336  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
337  * in case the application has unmapped and remapped mm,addr meanwhile.
338  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
339  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
340  */
341 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
342 {
343 	struct page *page;
344 	int ret = 0;
345 
346 	do {
347 		cond_resched();
348 		page = follow_page(vma, addr, FOLL_GET);
349 		if (IS_ERR_OR_NULL(page))
350 			break;
351 		if (PageKsm(page))
352 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
353 							FAULT_FLAG_WRITE);
354 		else
355 			ret = VM_FAULT_WRITE;
356 		put_page(page);
357 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
358 	/*
359 	 * We must loop because handle_mm_fault() may back out if there's
360 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
361 	 *
362 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
363 	 * COW has been broken, even if the vma does not permit VM_WRITE;
364 	 * but note that a concurrent fault might break PageKsm for us.
365 	 *
366 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
367 	 * backing file, which also invalidates anonymous pages: that's
368 	 * okay, that truncation will have unmapped the PageKsm for us.
369 	 *
370 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
371 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
372 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
373 	 * to user; and ksmd, having no mm, would never be chosen for that.
374 	 *
375 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
376 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
377 	 * even ksmd can fail in this way - though it's usually breaking ksm
378 	 * just to undo a merge it made a moment before, so unlikely to oom.
379 	 *
380 	 * That's a pity: we might therefore have more kernel pages allocated
381 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
382 	 * will retry to break_cow on each pass, so should recover the page
383 	 * in due course.  The important thing is to not let VM_MERGEABLE
384 	 * be cleared while any such pages might remain in the area.
385 	 */
386 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
387 }
388 
389 static void break_cow(struct rmap_item *rmap_item)
390 {
391 	struct mm_struct *mm = rmap_item->mm;
392 	unsigned long addr = rmap_item->address;
393 	struct vm_area_struct *vma;
394 
395 	/*
396 	 * It is not an accident that whenever we want to break COW
397 	 * to undo, we also need to drop a reference to the anon_vma.
398 	 */
399 	ksm_drop_anon_vma(rmap_item);
400 
401 	down_read(&mm->mmap_sem);
402 	if (ksm_test_exit(mm))
403 		goto out;
404 	vma = find_vma(mm, addr);
405 	if (!vma || vma->vm_start > addr)
406 		goto out;
407 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
408 		goto out;
409 	break_ksm(vma, addr);
410 out:
411 	up_read(&mm->mmap_sem);
412 }
413 
414 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
415 {
416 	struct mm_struct *mm = rmap_item->mm;
417 	unsigned long addr = rmap_item->address;
418 	struct vm_area_struct *vma;
419 	struct page *page;
420 
421 	down_read(&mm->mmap_sem);
422 	if (ksm_test_exit(mm))
423 		goto out;
424 	vma = find_vma(mm, addr);
425 	if (!vma || vma->vm_start > addr)
426 		goto out;
427 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
428 		goto out;
429 
430 	page = follow_page(vma, addr, FOLL_GET);
431 	if (IS_ERR_OR_NULL(page))
432 		goto out;
433 	if (PageAnon(page)) {
434 		flush_anon_page(vma, page, addr);
435 		flush_dcache_page(page);
436 	} else {
437 		put_page(page);
438 out:		page = NULL;
439 	}
440 	up_read(&mm->mmap_sem);
441 	return page;
442 }
443 
444 static void remove_node_from_stable_tree(struct stable_node *stable_node)
445 {
446 	struct rmap_item *rmap_item;
447 	struct hlist_node *hlist;
448 
449 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
450 		if (rmap_item->hlist.next)
451 			ksm_pages_sharing--;
452 		else
453 			ksm_pages_shared--;
454 		ksm_drop_anon_vma(rmap_item);
455 		rmap_item->address &= PAGE_MASK;
456 		cond_resched();
457 	}
458 
459 	rb_erase(&stable_node->node, &root_stable_tree);
460 	free_stable_node(stable_node);
461 }
462 
463 /*
464  * get_ksm_page: checks if the page indicated by the stable node
465  * is still its ksm page, despite having held no reference to it.
466  * In which case we can trust the content of the page, and it
467  * returns the gotten page; but if the page has now been zapped,
468  * remove the stale node from the stable tree and return NULL.
469  *
470  * You would expect the stable_node to hold a reference to the ksm page.
471  * But if it increments the page's count, swapping out has to wait for
472  * ksmd to come around again before it can free the page, which may take
473  * seconds or even minutes: much too unresponsive.  So instead we use a
474  * "keyhole reference": access to the ksm page from the stable node peeps
475  * out through its keyhole to see if that page still holds the right key,
476  * pointing back to this stable node.  This relies on freeing a PageAnon
477  * page to reset its page->mapping to NULL, and relies on no other use of
478  * a page to put something that might look like our key in page->mapping.
479  *
480  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
481  * but this is different - made simpler by ksm_thread_mutex being held, but
482  * interesting for assuming that no other use of the struct page could ever
483  * put our expected_mapping into page->mapping (or a field of the union which
484  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
485  * to keep the page_count protocol described with page_cache_get_speculative.
486  *
487  * Note: it is possible that get_ksm_page() will return NULL one moment,
488  * then page the next, if the page is in between page_freeze_refs() and
489  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
490  * is on its way to being freed; but it is an anomaly to bear in mind.
491  */
492 static struct page *get_ksm_page(struct stable_node *stable_node)
493 {
494 	struct page *page;
495 	void *expected_mapping;
496 
497 	page = pfn_to_page(stable_node->kpfn);
498 	expected_mapping = (void *)stable_node +
499 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
500 	rcu_read_lock();
501 	if (page->mapping != expected_mapping)
502 		goto stale;
503 	if (!get_page_unless_zero(page))
504 		goto stale;
505 	if (page->mapping != expected_mapping) {
506 		put_page(page);
507 		goto stale;
508 	}
509 	rcu_read_unlock();
510 	return page;
511 stale:
512 	rcu_read_unlock();
513 	remove_node_from_stable_tree(stable_node);
514 	return NULL;
515 }
516 
517 /*
518  * Removing rmap_item from stable or unstable tree.
519  * This function will clean the information from the stable/unstable tree.
520  */
521 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
522 {
523 	if (rmap_item->address & STABLE_FLAG) {
524 		struct stable_node *stable_node;
525 		struct page *page;
526 
527 		stable_node = rmap_item->head;
528 		page = get_ksm_page(stable_node);
529 		if (!page)
530 			goto out;
531 
532 		lock_page(page);
533 		hlist_del(&rmap_item->hlist);
534 		unlock_page(page);
535 		put_page(page);
536 
537 		if (stable_node->hlist.first)
538 			ksm_pages_sharing--;
539 		else
540 			ksm_pages_shared--;
541 
542 		ksm_drop_anon_vma(rmap_item);
543 		rmap_item->address &= PAGE_MASK;
544 
545 	} else if (rmap_item->address & UNSTABLE_FLAG) {
546 		unsigned char age;
547 		/*
548 		 * Usually ksmd can and must skip the rb_erase, because
549 		 * root_unstable_tree was already reset to RB_ROOT.
550 		 * But be careful when an mm is exiting: do the rb_erase
551 		 * if this rmap_item was inserted by this scan, rather
552 		 * than left over from before.
553 		 */
554 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
555 		BUG_ON(age > 1);
556 		if (!age)
557 			rb_erase(&rmap_item->node, &root_unstable_tree);
558 
559 		ksm_pages_unshared--;
560 		rmap_item->address &= PAGE_MASK;
561 	}
562 out:
563 	cond_resched();		/* we're called from many long loops */
564 }
565 
566 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
567 				       struct rmap_item **rmap_list)
568 {
569 	while (*rmap_list) {
570 		struct rmap_item *rmap_item = *rmap_list;
571 		*rmap_list = rmap_item->rmap_list;
572 		remove_rmap_item_from_tree(rmap_item);
573 		free_rmap_item(rmap_item);
574 	}
575 }
576 
577 /*
578  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
579  * than check every pte of a given vma, the locking doesn't quite work for
580  * that - an rmap_item is assigned to the stable tree after inserting ksm
581  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
582  * rmap_items from parent to child at fork time (so as not to waste time
583  * if exit comes before the next scan reaches it).
584  *
585  * Similarly, although we'd like to remove rmap_items (so updating counts
586  * and freeing memory) when unmerging an area, it's easier to leave that
587  * to the next pass of ksmd - consider, for example, how ksmd might be
588  * in cmp_and_merge_page on one of the rmap_items we would be removing.
589  */
590 static int unmerge_ksm_pages(struct vm_area_struct *vma,
591 			     unsigned long start, unsigned long end)
592 {
593 	unsigned long addr;
594 	int err = 0;
595 
596 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
597 		if (ksm_test_exit(vma->vm_mm))
598 			break;
599 		if (signal_pending(current))
600 			err = -ERESTARTSYS;
601 		else
602 			err = break_ksm(vma, addr);
603 	}
604 	return err;
605 }
606 
607 #ifdef CONFIG_SYSFS
608 /*
609  * Only called through the sysfs control interface:
610  */
611 static int unmerge_and_remove_all_rmap_items(void)
612 {
613 	struct mm_slot *mm_slot;
614 	struct mm_struct *mm;
615 	struct vm_area_struct *vma;
616 	int err = 0;
617 
618 	spin_lock(&ksm_mmlist_lock);
619 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
620 						struct mm_slot, mm_list);
621 	spin_unlock(&ksm_mmlist_lock);
622 
623 	for (mm_slot = ksm_scan.mm_slot;
624 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
625 		mm = mm_slot->mm;
626 		down_read(&mm->mmap_sem);
627 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
628 			if (ksm_test_exit(mm))
629 				break;
630 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
631 				continue;
632 			err = unmerge_ksm_pages(vma,
633 						vma->vm_start, vma->vm_end);
634 			if (err)
635 				goto error;
636 		}
637 
638 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
639 
640 		spin_lock(&ksm_mmlist_lock);
641 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
642 						struct mm_slot, mm_list);
643 		if (ksm_test_exit(mm)) {
644 			hlist_del(&mm_slot->link);
645 			list_del(&mm_slot->mm_list);
646 			spin_unlock(&ksm_mmlist_lock);
647 
648 			free_mm_slot(mm_slot);
649 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
650 			up_read(&mm->mmap_sem);
651 			mmdrop(mm);
652 		} else {
653 			spin_unlock(&ksm_mmlist_lock);
654 			up_read(&mm->mmap_sem);
655 		}
656 	}
657 
658 	ksm_scan.seqnr = 0;
659 	return 0;
660 
661 error:
662 	up_read(&mm->mmap_sem);
663 	spin_lock(&ksm_mmlist_lock);
664 	ksm_scan.mm_slot = &ksm_mm_head;
665 	spin_unlock(&ksm_mmlist_lock);
666 	return err;
667 }
668 #endif /* CONFIG_SYSFS */
669 
670 static u32 calc_checksum(struct page *page)
671 {
672 	u32 checksum;
673 	void *addr = kmap_atomic(page, KM_USER0);
674 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
675 	kunmap_atomic(addr, KM_USER0);
676 	return checksum;
677 }
678 
679 static int memcmp_pages(struct page *page1, struct page *page2)
680 {
681 	char *addr1, *addr2;
682 	int ret;
683 
684 	addr1 = kmap_atomic(page1, KM_USER0);
685 	addr2 = kmap_atomic(page2, KM_USER1);
686 	ret = memcmp(addr1, addr2, PAGE_SIZE);
687 	kunmap_atomic(addr2, KM_USER1);
688 	kunmap_atomic(addr1, KM_USER0);
689 	return ret;
690 }
691 
692 static inline int pages_identical(struct page *page1, struct page *page2)
693 {
694 	return !memcmp_pages(page1, page2);
695 }
696 
697 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
698 			      pte_t *orig_pte)
699 {
700 	struct mm_struct *mm = vma->vm_mm;
701 	unsigned long addr;
702 	pte_t *ptep;
703 	spinlock_t *ptl;
704 	int swapped;
705 	int err = -EFAULT;
706 
707 	addr = page_address_in_vma(page, vma);
708 	if (addr == -EFAULT)
709 		goto out;
710 
711 	ptep = page_check_address(page, mm, addr, &ptl, 0);
712 	if (!ptep)
713 		goto out;
714 
715 	if (pte_write(*ptep)) {
716 		pte_t entry;
717 
718 		swapped = PageSwapCache(page);
719 		flush_cache_page(vma, addr, page_to_pfn(page));
720 		/*
721 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
722 		 * take any lock, therefore the check that we are going to make
723 		 * with the pagecount against the mapcount is racey and
724 		 * O_DIRECT can happen right after the check.
725 		 * So we clear the pte and flush the tlb before the check
726 		 * this assure us that no O_DIRECT can happen after the check
727 		 * or in the middle of the check.
728 		 */
729 		entry = ptep_clear_flush(vma, addr, ptep);
730 		/*
731 		 * Check that no O_DIRECT or similar I/O is in progress on the
732 		 * page
733 		 */
734 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
735 			set_pte_at(mm, addr, ptep, entry);
736 			goto out_unlock;
737 		}
738 		entry = pte_wrprotect(entry);
739 		set_pte_at_notify(mm, addr, ptep, entry);
740 	}
741 	*orig_pte = *ptep;
742 	err = 0;
743 
744 out_unlock:
745 	pte_unmap_unlock(ptep, ptl);
746 out:
747 	return err;
748 }
749 
750 /**
751  * replace_page - replace page in vma by new ksm page
752  * @vma:      vma that holds the pte pointing to page
753  * @page:     the page we are replacing by kpage
754  * @kpage:    the ksm page we replace page by
755  * @orig_pte: the original value of the pte
756  *
757  * Returns 0 on success, -EFAULT on failure.
758  */
759 static int replace_page(struct vm_area_struct *vma, struct page *page,
760 			struct page *kpage, pte_t orig_pte)
761 {
762 	struct mm_struct *mm = vma->vm_mm;
763 	pgd_t *pgd;
764 	pud_t *pud;
765 	pmd_t *pmd;
766 	pte_t *ptep;
767 	spinlock_t *ptl;
768 	unsigned long addr;
769 	int err = -EFAULT;
770 
771 	addr = page_address_in_vma(page, vma);
772 	if (addr == -EFAULT)
773 		goto out;
774 
775 	pgd = pgd_offset(mm, addr);
776 	if (!pgd_present(*pgd))
777 		goto out;
778 
779 	pud = pud_offset(pgd, addr);
780 	if (!pud_present(*pud))
781 		goto out;
782 
783 	pmd = pmd_offset(pud, addr);
784 	if (!pmd_present(*pmd))
785 		goto out;
786 
787 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
788 	if (!pte_same(*ptep, orig_pte)) {
789 		pte_unmap_unlock(ptep, ptl);
790 		goto out;
791 	}
792 
793 	get_page(kpage);
794 	page_add_anon_rmap(kpage, vma, addr);
795 
796 	flush_cache_page(vma, addr, pte_pfn(*ptep));
797 	ptep_clear_flush(vma, addr, ptep);
798 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
799 
800 	page_remove_rmap(page);
801 	put_page(page);
802 
803 	pte_unmap_unlock(ptep, ptl);
804 	err = 0;
805 out:
806 	return err;
807 }
808 
809 /*
810  * try_to_merge_one_page - take two pages and merge them into one
811  * @vma: the vma that holds the pte pointing to page
812  * @page: the PageAnon page that we want to replace with kpage
813  * @kpage: the PageKsm page that we want to map instead of page,
814  *         or NULL the first time when we want to use page as kpage.
815  *
816  * This function returns 0 if the pages were merged, -EFAULT otherwise.
817  */
818 static int try_to_merge_one_page(struct vm_area_struct *vma,
819 				 struct page *page, struct page *kpage)
820 {
821 	pte_t orig_pte = __pte(0);
822 	int err = -EFAULT;
823 
824 	if (page == kpage)			/* ksm page forked */
825 		return 0;
826 
827 	if (!(vma->vm_flags & VM_MERGEABLE))
828 		goto out;
829 	if (!PageAnon(page))
830 		goto out;
831 
832 	/*
833 	 * We need the page lock to read a stable PageSwapCache in
834 	 * write_protect_page().  We use trylock_page() instead of
835 	 * lock_page() because we don't want to wait here - we
836 	 * prefer to continue scanning and merging different pages,
837 	 * then come back to this page when it is unlocked.
838 	 */
839 	if (!trylock_page(page))
840 		goto out;
841 	/*
842 	 * If this anonymous page is mapped only here, its pte may need
843 	 * to be write-protected.  If it's mapped elsewhere, all of its
844 	 * ptes are necessarily already write-protected.  But in either
845 	 * case, we need to lock and check page_count is not raised.
846 	 */
847 	if (write_protect_page(vma, page, &orig_pte) == 0) {
848 		if (!kpage) {
849 			/*
850 			 * While we hold page lock, upgrade page from
851 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
852 			 * stable_tree_insert() will update stable_node.
853 			 */
854 			set_page_stable_node(page, NULL);
855 			mark_page_accessed(page);
856 			err = 0;
857 		} else if (pages_identical(page, kpage))
858 			err = replace_page(vma, page, kpage, orig_pte);
859 	}
860 
861 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
862 		munlock_vma_page(page);
863 		if (!PageMlocked(kpage)) {
864 			unlock_page(page);
865 			lock_page(kpage);
866 			mlock_vma_page(kpage);
867 			page = kpage;		/* for final unlock */
868 		}
869 	}
870 
871 	unlock_page(page);
872 out:
873 	return err;
874 }
875 
876 /*
877  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
878  * but no new kernel page is allocated: kpage must already be a ksm page.
879  *
880  * This function returns 0 if the pages were merged, -EFAULT otherwise.
881  */
882 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
883 				      struct page *page, struct page *kpage)
884 {
885 	struct mm_struct *mm = rmap_item->mm;
886 	struct vm_area_struct *vma;
887 	int err = -EFAULT;
888 
889 	down_read(&mm->mmap_sem);
890 	if (ksm_test_exit(mm))
891 		goto out;
892 	vma = find_vma(mm, rmap_item->address);
893 	if (!vma || vma->vm_start > rmap_item->address)
894 		goto out;
895 
896 	err = try_to_merge_one_page(vma, page, kpage);
897 	if (err)
898 		goto out;
899 
900 	/* Must get reference to anon_vma while still holding mmap_sem */
901 	hold_anon_vma(rmap_item, vma->anon_vma);
902 out:
903 	up_read(&mm->mmap_sem);
904 	return err;
905 }
906 
907 /*
908  * try_to_merge_two_pages - take two identical pages and prepare them
909  * to be merged into one page.
910  *
911  * This function returns the kpage if we successfully merged two identical
912  * pages into one ksm page, NULL otherwise.
913  *
914  * Note that this function upgrades page to ksm page: if one of the pages
915  * is already a ksm page, try_to_merge_with_ksm_page should be used.
916  */
917 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
918 					   struct page *page,
919 					   struct rmap_item *tree_rmap_item,
920 					   struct page *tree_page)
921 {
922 	int err;
923 
924 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
925 	if (!err) {
926 		err = try_to_merge_with_ksm_page(tree_rmap_item,
927 							tree_page, page);
928 		/*
929 		 * If that fails, we have a ksm page with only one pte
930 		 * pointing to it: so break it.
931 		 */
932 		if (err)
933 			break_cow(rmap_item);
934 	}
935 	return err ? NULL : page;
936 }
937 
938 /*
939  * stable_tree_search - search for page inside the stable tree
940  *
941  * This function checks if there is a page inside the stable tree
942  * with identical content to the page that we are scanning right now.
943  *
944  * This function returns the stable tree node of identical content if found,
945  * NULL otherwise.
946  */
947 static struct page *stable_tree_search(struct page *page)
948 {
949 	struct rb_node *node = root_stable_tree.rb_node;
950 	struct stable_node *stable_node;
951 
952 	stable_node = page_stable_node(page);
953 	if (stable_node) {			/* ksm page forked */
954 		get_page(page);
955 		return page;
956 	}
957 
958 	while (node) {
959 		struct page *tree_page;
960 		int ret;
961 
962 		cond_resched();
963 		stable_node = rb_entry(node, struct stable_node, node);
964 		tree_page = get_ksm_page(stable_node);
965 		if (!tree_page)
966 			return NULL;
967 
968 		ret = memcmp_pages(page, tree_page);
969 
970 		if (ret < 0) {
971 			put_page(tree_page);
972 			node = node->rb_left;
973 		} else if (ret > 0) {
974 			put_page(tree_page);
975 			node = node->rb_right;
976 		} else
977 			return tree_page;
978 	}
979 
980 	return NULL;
981 }
982 
983 /*
984  * stable_tree_insert - insert rmap_item pointing to new ksm page
985  * into the stable tree.
986  *
987  * This function returns the stable tree node just allocated on success,
988  * NULL otherwise.
989  */
990 static struct stable_node *stable_tree_insert(struct page *kpage)
991 {
992 	struct rb_node **new = &root_stable_tree.rb_node;
993 	struct rb_node *parent = NULL;
994 	struct stable_node *stable_node;
995 
996 	while (*new) {
997 		struct page *tree_page;
998 		int ret;
999 
1000 		cond_resched();
1001 		stable_node = rb_entry(*new, struct stable_node, node);
1002 		tree_page = get_ksm_page(stable_node);
1003 		if (!tree_page)
1004 			return NULL;
1005 
1006 		ret = memcmp_pages(kpage, tree_page);
1007 		put_page(tree_page);
1008 
1009 		parent = *new;
1010 		if (ret < 0)
1011 			new = &parent->rb_left;
1012 		else if (ret > 0)
1013 			new = &parent->rb_right;
1014 		else {
1015 			/*
1016 			 * It is not a bug that stable_tree_search() didn't
1017 			 * find this node: because at that time our page was
1018 			 * not yet write-protected, so may have changed since.
1019 			 */
1020 			return NULL;
1021 		}
1022 	}
1023 
1024 	stable_node = alloc_stable_node();
1025 	if (!stable_node)
1026 		return NULL;
1027 
1028 	rb_link_node(&stable_node->node, parent, new);
1029 	rb_insert_color(&stable_node->node, &root_stable_tree);
1030 
1031 	INIT_HLIST_HEAD(&stable_node->hlist);
1032 
1033 	stable_node->kpfn = page_to_pfn(kpage);
1034 	set_page_stable_node(kpage, stable_node);
1035 
1036 	return stable_node;
1037 }
1038 
1039 /*
1040  * unstable_tree_search_insert - search for identical page,
1041  * else insert rmap_item into the unstable tree.
1042  *
1043  * This function searches for a page in the unstable tree identical to the
1044  * page currently being scanned; and if no identical page is found in the
1045  * tree, we insert rmap_item as a new object into the unstable tree.
1046  *
1047  * This function returns pointer to rmap_item found to be identical
1048  * to the currently scanned page, NULL otherwise.
1049  *
1050  * This function does both searching and inserting, because they share
1051  * the same walking algorithm in an rbtree.
1052  */
1053 static
1054 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1055 					      struct page *page,
1056 					      struct page **tree_pagep)
1057 
1058 {
1059 	struct rb_node **new = &root_unstable_tree.rb_node;
1060 	struct rb_node *parent = NULL;
1061 
1062 	while (*new) {
1063 		struct rmap_item *tree_rmap_item;
1064 		struct page *tree_page;
1065 		int ret;
1066 
1067 		cond_resched();
1068 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1069 		tree_page = get_mergeable_page(tree_rmap_item);
1070 		if (IS_ERR_OR_NULL(tree_page))
1071 			return NULL;
1072 
1073 		/*
1074 		 * Don't substitute a ksm page for a forked page.
1075 		 */
1076 		if (page == tree_page) {
1077 			put_page(tree_page);
1078 			return NULL;
1079 		}
1080 
1081 		ret = memcmp_pages(page, tree_page);
1082 
1083 		parent = *new;
1084 		if (ret < 0) {
1085 			put_page(tree_page);
1086 			new = &parent->rb_left;
1087 		} else if (ret > 0) {
1088 			put_page(tree_page);
1089 			new = &parent->rb_right;
1090 		} else {
1091 			*tree_pagep = tree_page;
1092 			return tree_rmap_item;
1093 		}
1094 	}
1095 
1096 	rmap_item->address |= UNSTABLE_FLAG;
1097 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1098 	rb_link_node(&rmap_item->node, parent, new);
1099 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1100 
1101 	ksm_pages_unshared++;
1102 	return NULL;
1103 }
1104 
1105 /*
1106  * stable_tree_append - add another rmap_item to the linked list of
1107  * rmap_items hanging off a given node of the stable tree, all sharing
1108  * the same ksm page.
1109  */
1110 static void stable_tree_append(struct rmap_item *rmap_item,
1111 			       struct stable_node *stable_node)
1112 {
1113 	rmap_item->head = stable_node;
1114 	rmap_item->address |= STABLE_FLAG;
1115 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1116 
1117 	if (rmap_item->hlist.next)
1118 		ksm_pages_sharing++;
1119 	else
1120 		ksm_pages_shared++;
1121 }
1122 
1123 /*
1124  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1125  * if not, compare checksum to previous and if it's the same, see if page can
1126  * be inserted into the unstable tree, or merged with a page already there and
1127  * both transferred to the stable tree.
1128  *
1129  * @page: the page that we are searching identical page to.
1130  * @rmap_item: the reverse mapping into the virtual address of this page
1131  */
1132 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1133 {
1134 	struct rmap_item *tree_rmap_item;
1135 	struct page *tree_page = NULL;
1136 	struct stable_node *stable_node;
1137 	struct page *kpage;
1138 	unsigned int checksum;
1139 	int err;
1140 
1141 	remove_rmap_item_from_tree(rmap_item);
1142 
1143 	/* We first start with searching the page inside the stable tree */
1144 	kpage = stable_tree_search(page);
1145 	if (kpage) {
1146 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1147 		if (!err) {
1148 			/*
1149 			 * The page was successfully merged:
1150 			 * add its rmap_item to the stable tree.
1151 			 */
1152 			lock_page(kpage);
1153 			stable_tree_append(rmap_item, page_stable_node(kpage));
1154 			unlock_page(kpage);
1155 		}
1156 		put_page(kpage);
1157 		return;
1158 	}
1159 
1160 	/*
1161 	 * If the hash value of the page has changed from the last time
1162 	 * we calculated it, this page is changing frequently: therefore we
1163 	 * don't want to insert it in the unstable tree, and we don't want
1164 	 * to waste our time searching for something identical to it there.
1165 	 */
1166 	checksum = calc_checksum(page);
1167 	if (rmap_item->oldchecksum != checksum) {
1168 		rmap_item->oldchecksum = checksum;
1169 		return;
1170 	}
1171 
1172 	tree_rmap_item =
1173 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1174 	if (tree_rmap_item) {
1175 		kpage = try_to_merge_two_pages(rmap_item, page,
1176 						tree_rmap_item, tree_page);
1177 		put_page(tree_page);
1178 		/*
1179 		 * As soon as we merge this page, we want to remove the
1180 		 * rmap_item of the page we have merged with from the unstable
1181 		 * tree, and insert it instead as new node in the stable tree.
1182 		 */
1183 		if (kpage) {
1184 			remove_rmap_item_from_tree(tree_rmap_item);
1185 
1186 			lock_page(kpage);
1187 			stable_node = stable_tree_insert(kpage);
1188 			if (stable_node) {
1189 				stable_tree_append(tree_rmap_item, stable_node);
1190 				stable_tree_append(rmap_item, stable_node);
1191 			}
1192 			unlock_page(kpage);
1193 
1194 			/*
1195 			 * If we fail to insert the page into the stable tree,
1196 			 * we will have 2 virtual addresses that are pointing
1197 			 * to a ksm page left outside the stable tree,
1198 			 * in which case we need to break_cow on both.
1199 			 */
1200 			if (!stable_node) {
1201 				break_cow(tree_rmap_item);
1202 				break_cow(rmap_item);
1203 			}
1204 		}
1205 	}
1206 }
1207 
1208 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1209 					    struct rmap_item **rmap_list,
1210 					    unsigned long addr)
1211 {
1212 	struct rmap_item *rmap_item;
1213 
1214 	while (*rmap_list) {
1215 		rmap_item = *rmap_list;
1216 		if ((rmap_item->address & PAGE_MASK) == addr)
1217 			return rmap_item;
1218 		if (rmap_item->address > addr)
1219 			break;
1220 		*rmap_list = rmap_item->rmap_list;
1221 		remove_rmap_item_from_tree(rmap_item);
1222 		free_rmap_item(rmap_item);
1223 	}
1224 
1225 	rmap_item = alloc_rmap_item();
1226 	if (rmap_item) {
1227 		/* It has already been zeroed */
1228 		rmap_item->mm = mm_slot->mm;
1229 		rmap_item->address = addr;
1230 		rmap_item->rmap_list = *rmap_list;
1231 		*rmap_list = rmap_item;
1232 	}
1233 	return rmap_item;
1234 }
1235 
1236 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1237 {
1238 	struct mm_struct *mm;
1239 	struct mm_slot *slot;
1240 	struct vm_area_struct *vma;
1241 	struct rmap_item *rmap_item;
1242 
1243 	if (list_empty(&ksm_mm_head.mm_list))
1244 		return NULL;
1245 
1246 	slot = ksm_scan.mm_slot;
1247 	if (slot == &ksm_mm_head) {
1248 		root_unstable_tree = RB_ROOT;
1249 
1250 		spin_lock(&ksm_mmlist_lock);
1251 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1252 		ksm_scan.mm_slot = slot;
1253 		spin_unlock(&ksm_mmlist_lock);
1254 next_mm:
1255 		ksm_scan.address = 0;
1256 		ksm_scan.rmap_list = &slot->rmap_list;
1257 	}
1258 
1259 	mm = slot->mm;
1260 	down_read(&mm->mmap_sem);
1261 	if (ksm_test_exit(mm))
1262 		vma = NULL;
1263 	else
1264 		vma = find_vma(mm, ksm_scan.address);
1265 
1266 	for (; vma; vma = vma->vm_next) {
1267 		if (!(vma->vm_flags & VM_MERGEABLE))
1268 			continue;
1269 		if (ksm_scan.address < vma->vm_start)
1270 			ksm_scan.address = vma->vm_start;
1271 		if (!vma->anon_vma)
1272 			ksm_scan.address = vma->vm_end;
1273 
1274 		while (ksm_scan.address < vma->vm_end) {
1275 			if (ksm_test_exit(mm))
1276 				break;
1277 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1278 			if (!IS_ERR_OR_NULL(*page) && PageAnon(*page)) {
1279 				flush_anon_page(vma, *page, ksm_scan.address);
1280 				flush_dcache_page(*page);
1281 				rmap_item = get_next_rmap_item(slot,
1282 					ksm_scan.rmap_list, ksm_scan.address);
1283 				if (rmap_item) {
1284 					ksm_scan.rmap_list =
1285 							&rmap_item->rmap_list;
1286 					ksm_scan.address += PAGE_SIZE;
1287 				} else
1288 					put_page(*page);
1289 				up_read(&mm->mmap_sem);
1290 				return rmap_item;
1291 			}
1292 			if (!IS_ERR_OR_NULL(*page))
1293 				put_page(*page);
1294 			ksm_scan.address += PAGE_SIZE;
1295 			cond_resched();
1296 		}
1297 	}
1298 
1299 	if (ksm_test_exit(mm)) {
1300 		ksm_scan.address = 0;
1301 		ksm_scan.rmap_list = &slot->rmap_list;
1302 	}
1303 	/*
1304 	 * Nuke all the rmap_items that are above this current rmap:
1305 	 * because there were no VM_MERGEABLE vmas with such addresses.
1306 	 */
1307 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1308 
1309 	spin_lock(&ksm_mmlist_lock);
1310 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1311 						struct mm_slot, mm_list);
1312 	if (ksm_scan.address == 0) {
1313 		/*
1314 		 * We've completed a full scan of all vmas, holding mmap_sem
1315 		 * throughout, and found no VM_MERGEABLE: so do the same as
1316 		 * __ksm_exit does to remove this mm from all our lists now.
1317 		 * This applies either when cleaning up after __ksm_exit
1318 		 * (but beware: we can reach here even before __ksm_exit),
1319 		 * or when all VM_MERGEABLE areas have been unmapped (and
1320 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1321 		 */
1322 		hlist_del(&slot->link);
1323 		list_del(&slot->mm_list);
1324 		spin_unlock(&ksm_mmlist_lock);
1325 
1326 		free_mm_slot(slot);
1327 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1328 		up_read(&mm->mmap_sem);
1329 		mmdrop(mm);
1330 	} else {
1331 		spin_unlock(&ksm_mmlist_lock);
1332 		up_read(&mm->mmap_sem);
1333 	}
1334 
1335 	/* Repeat until we've completed scanning the whole list */
1336 	slot = ksm_scan.mm_slot;
1337 	if (slot != &ksm_mm_head)
1338 		goto next_mm;
1339 
1340 	ksm_scan.seqnr++;
1341 	return NULL;
1342 }
1343 
1344 /**
1345  * ksm_do_scan  - the ksm scanner main worker function.
1346  * @scan_npages - number of pages we want to scan before we return.
1347  */
1348 static void ksm_do_scan(unsigned int scan_npages)
1349 {
1350 	struct rmap_item *rmap_item;
1351 	struct page *uninitialized_var(page);
1352 
1353 	while (scan_npages--) {
1354 		cond_resched();
1355 		rmap_item = scan_get_next_rmap_item(&page);
1356 		if (!rmap_item)
1357 			return;
1358 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1359 			cmp_and_merge_page(page, rmap_item);
1360 		put_page(page);
1361 	}
1362 }
1363 
1364 static int ksmd_should_run(void)
1365 {
1366 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1367 }
1368 
1369 static int ksm_scan_thread(void *nothing)
1370 {
1371 	set_user_nice(current, 5);
1372 
1373 	while (!kthread_should_stop()) {
1374 		mutex_lock(&ksm_thread_mutex);
1375 		if (ksmd_should_run())
1376 			ksm_do_scan(ksm_thread_pages_to_scan);
1377 		mutex_unlock(&ksm_thread_mutex);
1378 
1379 		if (ksmd_should_run()) {
1380 			schedule_timeout_interruptible(
1381 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1382 		} else {
1383 			wait_event_interruptible(ksm_thread_wait,
1384 				ksmd_should_run() || kthread_should_stop());
1385 		}
1386 	}
1387 	return 0;
1388 }
1389 
1390 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1391 		unsigned long end, int advice, unsigned long *vm_flags)
1392 {
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	int err;
1395 
1396 	switch (advice) {
1397 	case MADV_MERGEABLE:
1398 		/*
1399 		 * Be somewhat over-protective for now!
1400 		 */
1401 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1402 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1403 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1404 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1405 			return 0;		/* just ignore the advice */
1406 
1407 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1408 			err = __ksm_enter(mm);
1409 			if (err)
1410 				return err;
1411 		}
1412 
1413 		*vm_flags |= VM_MERGEABLE;
1414 		break;
1415 
1416 	case MADV_UNMERGEABLE:
1417 		if (!(*vm_flags & VM_MERGEABLE))
1418 			return 0;		/* just ignore the advice */
1419 
1420 		if (vma->anon_vma) {
1421 			err = unmerge_ksm_pages(vma, start, end);
1422 			if (err)
1423 				return err;
1424 		}
1425 
1426 		*vm_flags &= ~VM_MERGEABLE;
1427 		break;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 int __ksm_enter(struct mm_struct *mm)
1434 {
1435 	struct mm_slot *mm_slot;
1436 	int needs_wakeup;
1437 
1438 	mm_slot = alloc_mm_slot();
1439 	if (!mm_slot)
1440 		return -ENOMEM;
1441 
1442 	/* Check ksm_run too?  Would need tighter locking */
1443 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1444 
1445 	spin_lock(&ksm_mmlist_lock);
1446 	insert_to_mm_slots_hash(mm, mm_slot);
1447 	/*
1448 	 * Insert just behind the scanning cursor, to let the area settle
1449 	 * down a little; when fork is followed by immediate exec, we don't
1450 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1451 	 */
1452 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1453 	spin_unlock(&ksm_mmlist_lock);
1454 
1455 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1456 	atomic_inc(&mm->mm_count);
1457 
1458 	if (needs_wakeup)
1459 		wake_up_interruptible(&ksm_thread_wait);
1460 
1461 	return 0;
1462 }
1463 
1464 void __ksm_exit(struct mm_struct *mm)
1465 {
1466 	struct mm_slot *mm_slot;
1467 	int easy_to_free = 0;
1468 
1469 	/*
1470 	 * This process is exiting: if it's straightforward (as is the
1471 	 * case when ksmd was never running), free mm_slot immediately.
1472 	 * But if it's at the cursor or has rmap_items linked to it, use
1473 	 * mmap_sem to synchronize with any break_cows before pagetables
1474 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1475 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1476 	 */
1477 
1478 	spin_lock(&ksm_mmlist_lock);
1479 	mm_slot = get_mm_slot(mm);
1480 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1481 		if (!mm_slot->rmap_list) {
1482 			hlist_del(&mm_slot->link);
1483 			list_del(&mm_slot->mm_list);
1484 			easy_to_free = 1;
1485 		} else {
1486 			list_move(&mm_slot->mm_list,
1487 				  &ksm_scan.mm_slot->mm_list);
1488 		}
1489 	}
1490 	spin_unlock(&ksm_mmlist_lock);
1491 
1492 	if (easy_to_free) {
1493 		free_mm_slot(mm_slot);
1494 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1495 		mmdrop(mm);
1496 	} else if (mm_slot) {
1497 		down_write(&mm->mmap_sem);
1498 		up_write(&mm->mmap_sem);
1499 	}
1500 }
1501 
1502 struct page *ksm_does_need_to_copy(struct page *page,
1503 			struct vm_area_struct *vma, unsigned long address)
1504 {
1505 	struct page *new_page;
1506 
1507 	unlock_page(page);	/* any racers will COW it, not modify it */
1508 
1509 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1510 	if (new_page) {
1511 		copy_user_highpage(new_page, page, address, vma);
1512 
1513 		SetPageDirty(new_page);
1514 		__SetPageUptodate(new_page);
1515 		SetPageSwapBacked(new_page);
1516 		__set_page_locked(new_page);
1517 
1518 		if (page_evictable(new_page, vma))
1519 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1520 		else
1521 			add_page_to_unevictable_list(new_page);
1522 	}
1523 
1524 	page_cache_release(page);
1525 	return new_page;
1526 }
1527 
1528 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1529 			unsigned long *vm_flags)
1530 {
1531 	struct stable_node *stable_node;
1532 	struct rmap_item *rmap_item;
1533 	struct hlist_node *hlist;
1534 	unsigned int mapcount = page_mapcount(page);
1535 	int referenced = 0;
1536 	int search_new_forks = 0;
1537 
1538 	VM_BUG_ON(!PageKsm(page));
1539 	VM_BUG_ON(!PageLocked(page));
1540 
1541 	stable_node = page_stable_node(page);
1542 	if (!stable_node)
1543 		return 0;
1544 again:
1545 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1546 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1547 		struct anon_vma_chain *vmac;
1548 		struct vm_area_struct *vma;
1549 
1550 		anon_vma_lock(anon_vma);
1551 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1552 			vma = vmac->vma;
1553 			if (rmap_item->address < vma->vm_start ||
1554 			    rmap_item->address >= vma->vm_end)
1555 				continue;
1556 			/*
1557 			 * Initially we examine only the vma which covers this
1558 			 * rmap_item; but later, if there is still work to do,
1559 			 * we examine covering vmas in other mms: in case they
1560 			 * were forked from the original since ksmd passed.
1561 			 */
1562 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1563 				continue;
1564 
1565 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1566 				continue;
1567 
1568 			referenced += page_referenced_one(page, vma,
1569 				rmap_item->address, &mapcount, vm_flags);
1570 			if (!search_new_forks || !mapcount)
1571 				break;
1572 		}
1573 		anon_vma_unlock(anon_vma);
1574 		if (!mapcount)
1575 			goto out;
1576 	}
1577 	if (!search_new_forks++)
1578 		goto again;
1579 out:
1580 	return referenced;
1581 }
1582 
1583 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1584 {
1585 	struct stable_node *stable_node;
1586 	struct hlist_node *hlist;
1587 	struct rmap_item *rmap_item;
1588 	int ret = SWAP_AGAIN;
1589 	int search_new_forks = 0;
1590 
1591 	VM_BUG_ON(!PageKsm(page));
1592 	VM_BUG_ON(!PageLocked(page));
1593 
1594 	stable_node = page_stable_node(page);
1595 	if (!stable_node)
1596 		return SWAP_FAIL;
1597 again:
1598 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1599 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1600 		struct anon_vma_chain *vmac;
1601 		struct vm_area_struct *vma;
1602 
1603 		anon_vma_lock(anon_vma);
1604 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1605 			vma = vmac->vma;
1606 			if (rmap_item->address < vma->vm_start ||
1607 			    rmap_item->address >= vma->vm_end)
1608 				continue;
1609 			/*
1610 			 * Initially we examine only the vma which covers this
1611 			 * rmap_item; but later, if there is still work to do,
1612 			 * we examine covering vmas in other mms: in case they
1613 			 * were forked from the original since ksmd passed.
1614 			 */
1615 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1616 				continue;
1617 
1618 			ret = try_to_unmap_one(page, vma,
1619 					rmap_item->address, flags);
1620 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1621 				anon_vma_unlock(anon_vma);
1622 				goto out;
1623 			}
1624 		}
1625 		anon_vma_unlock(anon_vma);
1626 	}
1627 	if (!search_new_forks++)
1628 		goto again;
1629 out:
1630 	return ret;
1631 }
1632 
1633 #ifdef CONFIG_MIGRATION
1634 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1635 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1636 {
1637 	struct stable_node *stable_node;
1638 	struct hlist_node *hlist;
1639 	struct rmap_item *rmap_item;
1640 	int ret = SWAP_AGAIN;
1641 	int search_new_forks = 0;
1642 
1643 	VM_BUG_ON(!PageKsm(page));
1644 	VM_BUG_ON(!PageLocked(page));
1645 
1646 	stable_node = page_stable_node(page);
1647 	if (!stable_node)
1648 		return ret;
1649 again:
1650 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1651 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1652 		struct anon_vma_chain *vmac;
1653 		struct vm_area_struct *vma;
1654 
1655 		anon_vma_lock(anon_vma);
1656 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1657 			vma = vmac->vma;
1658 			if (rmap_item->address < vma->vm_start ||
1659 			    rmap_item->address >= vma->vm_end)
1660 				continue;
1661 			/*
1662 			 * Initially we examine only the vma which covers this
1663 			 * rmap_item; but later, if there is still work to do,
1664 			 * we examine covering vmas in other mms: in case they
1665 			 * were forked from the original since ksmd passed.
1666 			 */
1667 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1668 				continue;
1669 
1670 			ret = rmap_one(page, vma, rmap_item->address, arg);
1671 			if (ret != SWAP_AGAIN) {
1672 				anon_vma_unlock(anon_vma);
1673 				goto out;
1674 			}
1675 		}
1676 		anon_vma_unlock(anon_vma);
1677 	}
1678 	if (!search_new_forks++)
1679 		goto again;
1680 out:
1681 	return ret;
1682 }
1683 
1684 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1685 {
1686 	struct stable_node *stable_node;
1687 
1688 	VM_BUG_ON(!PageLocked(oldpage));
1689 	VM_BUG_ON(!PageLocked(newpage));
1690 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1691 
1692 	stable_node = page_stable_node(newpage);
1693 	if (stable_node) {
1694 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1695 		stable_node->kpfn = page_to_pfn(newpage);
1696 	}
1697 }
1698 #endif /* CONFIG_MIGRATION */
1699 
1700 #ifdef CONFIG_MEMORY_HOTREMOVE
1701 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1702 						 unsigned long end_pfn)
1703 {
1704 	struct rb_node *node;
1705 
1706 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1707 		struct stable_node *stable_node;
1708 
1709 		stable_node = rb_entry(node, struct stable_node, node);
1710 		if (stable_node->kpfn >= start_pfn &&
1711 		    stable_node->kpfn < end_pfn)
1712 			return stable_node;
1713 	}
1714 	return NULL;
1715 }
1716 
1717 static int ksm_memory_callback(struct notifier_block *self,
1718 			       unsigned long action, void *arg)
1719 {
1720 	struct memory_notify *mn = arg;
1721 	struct stable_node *stable_node;
1722 
1723 	switch (action) {
1724 	case MEM_GOING_OFFLINE:
1725 		/*
1726 		 * Keep it very simple for now: just lock out ksmd and
1727 		 * MADV_UNMERGEABLE while any memory is going offline.
1728 		 */
1729 		mutex_lock(&ksm_thread_mutex);
1730 		break;
1731 
1732 	case MEM_OFFLINE:
1733 		/*
1734 		 * Most of the work is done by page migration; but there might
1735 		 * be a few stable_nodes left over, still pointing to struct
1736 		 * pages which have been offlined: prune those from the tree.
1737 		 */
1738 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1739 					mn->start_pfn + mn->nr_pages)) != NULL)
1740 			remove_node_from_stable_tree(stable_node);
1741 		/* fallthrough */
1742 
1743 	case MEM_CANCEL_OFFLINE:
1744 		mutex_unlock(&ksm_thread_mutex);
1745 		break;
1746 	}
1747 	return NOTIFY_OK;
1748 }
1749 #endif /* CONFIG_MEMORY_HOTREMOVE */
1750 
1751 #ifdef CONFIG_SYSFS
1752 /*
1753  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1754  */
1755 
1756 #define KSM_ATTR_RO(_name) \
1757 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1758 #define KSM_ATTR(_name) \
1759 	static struct kobj_attribute _name##_attr = \
1760 		__ATTR(_name, 0644, _name##_show, _name##_store)
1761 
1762 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1763 				    struct kobj_attribute *attr, char *buf)
1764 {
1765 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1766 }
1767 
1768 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1769 				     struct kobj_attribute *attr,
1770 				     const char *buf, size_t count)
1771 {
1772 	unsigned long msecs;
1773 	int err;
1774 
1775 	err = strict_strtoul(buf, 10, &msecs);
1776 	if (err || msecs > UINT_MAX)
1777 		return -EINVAL;
1778 
1779 	ksm_thread_sleep_millisecs = msecs;
1780 
1781 	return count;
1782 }
1783 KSM_ATTR(sleep_millisecs);
1784 
1785 static ssize_t pages_to_scan_show(struct kobject *kobj,
1786 				  struct kobj_attribute *attr, char *buf)
1787 {
1788 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1789 }
1790 
1791 static ssize_t pages_to_scan_store(struct kobject *kobj,
1792 				   struct kobj_attribute *attr,
1793 				   const char *buf, size_t count)
1794 {
1795 	int err;
1796 	unsigned long nr_pages;
1797 
1798 	err = strict_strtoul(buf, 10, &nr_pages);
1799 	if (err || nr_pages > UINT_MAX)
1800 		return -EINVAL;
1801 
1802 	ksm_thread_pages_to_scan = nr_pages;
1803 
1804 	return count;
1805 }
1806 KSM_ATTR(pages_to_scan);
1807 
1808 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1809 			char *buf)
1810 {
1811 	return sprintf(buf, "%u\n", ksm_run);
1812 }
1813 
1814 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1815 			 const char *buf, size_t count)
1816 {
1817 	int err;
1818 	unsigned long flags;
1819 
1820 	err = strict_strtoul(buf, 10, &flags);
1821 	if (err || flags > UINT_MAX)
1822 		return -EINVAL;
1823 	if (flags > KSM_RUN_UNMERGE)
1824 		return -EINVAL;
1825 
1826 	/*
1827 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1828 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1829 	 * breaking COW to free the pages_shared (but leaves mm_slots
1830 	 * on the list for when ksmd may be set running again).
1831 	 */
1832 
1833 	mutex_lock(&ksm_thread_mutex);
1834 	if (ksm_run != flags) {
1835 		ksm_run = flags;
1836 		if (flags & KSM_RUN_UNMERGE) {
1837 			current->flags |= PF_OOM_ORIGIN;
1838 			err = unmerge_and_remove_all_rmap_items();
1839 			current->flags &= ~PF_OOM_ORIGIN;
1840 			if (err) {
1841 				ksm_run = KSM_RUN_STOP;
1842 				count = err;
1843 			}
1844 		}
1845 	}
1846 	mutex_unlock(&ksm_thread_mutex);
1847 
1848 	if (flags & KSM_RUN_MERGE)
1849 		wake_up_interruptible(&ksm_thread_wait);
1850 
1851 	return count;
1852 }
1853 KSM_ATTR(run);
1854 
1855 static ssize_t pages_shared_show(struct kobject *kobj,
1856 				 struct kobj_attribute *attr, char *buf)
1857 {
1858 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1859 }
1860 KSM_ATTR_RO(pages_shared);
1861 
1862 static ssize_t pages_sharing_show(struct kobject *kobj,
1863 				  struct kobj_attribute *attr, char *buf)
1864 {
1865 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1866 }
1867 KSM_ATTR_RO(pages_sharing);
1868 
1869 static ssize_t pages_unshared_show(struct kobject *kobj,
1870 				   struct kobj_attribute *attr, char *buf)
1871 {
1872 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1873 }
1874 KSM_ATTR_RO(pages_unshared);
1875 
1876 static ssize_t pages_volatile_show(struct kobject *kobj,
1877 				   struct kobj_attribute *attr, char *buf)
1878 {
1879 	long ksm_pages_volatile;
1880 
1881 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1882 				- ksm_pages_sharing - ksm_pages_unshared;
1883 	/*
1884 	 * It was not worth any locking to calculate that statistic,
1885 	 * but it might therefore sometimes be negative: conceal that.
1886 	 */
1887 	if (ksm_pages_volatile < 0)
1888 		ksm_pages_volatile = 0;
1889 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1890 }
1891 KSM_ATTR_RO(pages_volatile);
1892 
1893 static ssize_t full_scans_show(struct kobject *kobj,
1894 			       struct kobj_attribute *attr, char *buf)
1895 {
1896 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1897 }
1898 KSM_ATTR_RO(full_scans);
1899 
1900 static struct attribute *ksm_attrs[] = {
1901 	&sleep_millisecs_attr.attr,
1902 	&pages_to_scan_attr.attr,
1903 	&run_attr.attr,
1904 	&pages_shared_attr.attr,
1905 	&pages_sharing_attr.attr,
1906 	&pages_unshared_attr.attr,
1907 	&pages_volatile_attr.attr,
1908 	&full_scans_attr.attr,
1909 	NULL,
1910 };
1911 
1912 static struct attribute_group ksm_attr_group = {
1913 	.attrs = ksm_attrs,
1914 	.name = "ksm",
1915 };
1916 #endif /* CONFIG_SYSFS */
1917 
1918 static int __init ksm_init(void)
1919 {
1920 	struct task_struct *ksm_thread;
1921 	int err;
1922 
1923 	err = ksm_slab_init();
1924 	if (err)
1925 		goto out;
1926 
1927 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1928 	if (IS_ERR(ksm_thread)) {
1929 		printk(KERN_ERR "ksm: creating kthread failed\n");
1930 		err = PTR_ERR(ksm_thread);
1931 		goto out_free;
1932 	}
1933 
1934 #ifdef CONFIG_SYSFS
1935 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1936 	if (err) {
1937 		printk(KERN_ERR "ksm: register sysfs failed\n");
1938 		kthread_stop(ksm_thread);
1939 		goto out_free;
1940 	}
1941 #else
1942 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
1943 
1944 #endif /* CONFIG_SYSFS */
1945 
1946 #ifdef CONFIG_MEMORY_HOTREMOVE
1947 	/*
1948 	 * Choose a high priority since the callback takes ksm_thread_mutex:
1949 	 * later callbacks could only be taking locks which nest within that.
1950 	 */
1951 	hotplug_memory_notifier(ksm_memory_callback, 100);
1952 #endif
1953 	return 0;
1954 
1955 out_free:
1956 	ksm_slab_free();
1957 out:
1958 	return err;
1959 }
1960 module_init(ksm_init)
1961