1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 219 /* The stable and unstable tree heads */ 220 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 221 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 222 static struct rb_root *root_stable_tree = one_stable_tree; 223 static struct rb_root *root_unstable_tree = one_unstable_tree; 224 225 /* Recently migrated nodes of stable tree, pending proper placement */ 226 static LIST_HEAD(migrate_nodes); 227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 228 229 #define MM_SLOTS_HASH_BITS 10 230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 231 232 static struct mm_slot ksm_mm_head = { 233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 234 }; 235 static struct ksm_scan ksm_scan = { 236 .mm_slot = &ksm_mm_head, 237 }; 238 239 static struct kmem_cache *rmap_item_cache; 240 static struct kmem_cache *stable_node_cache; 241 static struct kmem_cache *mm_slot_cache; 242 243 /* The number of nodes in the stable tree */ 244 static unsigned long ksm_pages_shared; 245 246 /* The number of page slots additionally sharing those nodes */ 247 static unsigned long ksm_pages_sharing; 248 249 /* The number of nodes in the unstable tree */ 250 static unsigned long ksm_pages_unshared; 251 252 /* The number of rmap_items in use: to calculate pages_volatile */ 253 static unsigned long ksm_rmap_items; 254 255 /* The number of stable_node chains */ 256 static unsigned long ksm_stable_node_chains; 257 258 /* The number of stable_node dups linked to the stable_node chains */ 259 static unsigned long ksm_stable_node_dups; 260 261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 262 static int ksm_stable_node_chains_prune_millisecs = 2000; 263 264 /* Maximum number of page slots sharing a stable node */ 265 static int ksm_max_page_sharing = 256; 266 267 /* Number of pages ksmd should scan in one batch */ 268 static unsigned int ksm_thread_pages_to_scan = 100; 269 270 /* Milliseconds ksmd should sleep between batches */ 271 static unsigned int ksm_thread_sleep_millisecs = 20; 272 273 /* Checksum of an empty (zeroed) page */ 274 static unsigned int zero_checksum __read_mostly; 275 276 /* Whether to merge empty (zeroed) pages with actual zero pages */ 277 static bool ksm_use_zero_pages __read_mostly; 278 279 #ifdef CONFIG_NUMA 280 /* Zeroed when merging across nodes is not allowed */ 281 static unsigned int ksm_merge_across_nodes = 1; 282 static int ksm_nr_node_ids = 1; 283 #else 284 #define ksm_merge_across_nodes 1U 285 #define ksm_nr_node_ids 1 286 #endif 287 288 #define KSM_RUN_STOP 0 289 #define KSM_RUN_MERGE 1 290 #define KSM_RUN_UNMERGE 2 291 #define KSM_RUN_OFFLINE 4 292 static unsigned long ksm_run = KSM_RUN_STOP; 293 static void wait_while_offlining(void); 294 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 vm_fault_t ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 482 NULL); 483 else 484 ret = VM_FAULT_WRITE; 485 put_page(page); 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop because handle_mm_fault() may back out if there's 489 * any difficulty e.g. if pte accessed bit gets updated concurrently. 490 * 491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 492 * COW has been broken, even if the vma does not permit VM_WRITE; 493 * but note that a concurrent fault might break PageKsm for us. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 519 unsigned long addr) 520 { 521 struct vm_area_struct *vma; 522 if (ksm_test_exit(mm)) 523 return NULL; 524 vma = find_vma(mm, addr); 525 if (!vma || vma->vm_start > addr) 526 return NULL; 527 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 528 return NULL; 529 return vma; 530 } 531 532 static void break_cow(struct rmap_item *rmap_item) 533 { 534 struct mm_struct *mm = rmap_item->mm; 535 unsigned long addr = rmap_item->address; 536 struct vm_area_struct *vma; 537 538 /* 539 * It is not an accident that whenever we want to break COW 540 * to undo, we also need to drop a reference to the anon_vma. 541 */ 542 put_anon_vma(rmap_item->anon_vma); 543 544 mmap_read_lock(mm); 545 vma = find_mergeable_vma(mm, addr); 546 if (vma) 547 break_ksm(vma, addr); 548 mmap_read_unlock(mm); 549 } 550 551 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 552 { 553 struct mm_struct *mm = rmap_item->mm; 554 unsigned long addr = rmap_item->address; 555 struct vm_area_struct *vma; 556 struct page *page; 557 558 mmap_read_lock(mm); 559 vma = find_mergeable_vma(mm, addr); 560 if (!vma) 561 goto out; 562 563 page = follow_page(vma, addr, FOLL_GET); 564 if (IS_ERR_OR_NULL(page)) 565 goto out; 566 if (PageAnon(page)) { 567 flush_anon_page(vma, page, addr); 568 flush_dcache_page(page); 569 } else { 570 put_page(page); 571 out: 572 page = NULL; 573 } 574 mmap_read_unlock(mm); 575 return page; 576 } 577 578 /* 579 * This helper is used for getting right index into array of tree roots. 580 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 581 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 582 * every node has its own stable and unstable tree. 583 */ 584 static inline int get_kpfn_nid(unsigned long kpfn) 585 { 586 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 587 } 588 589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 590 struct rb_root *root) 591 { 592 struct stable_node *chain = alloc_stable_node(); 593 VM_BUG_ON(is_stable_node_chain(dup)); 594 if (likely(chain)) { 595 INIT_HLIST_HEAD(&chain->hlist); 596 chain->chain_prune_time = jiffies; 597 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 599 chain->nid = NUMA_NO_NODE; /* debug */ 600 #endif 601 ksm_stable_node_chains++; 602 603 /* 604 * Put the stable node chain in the first dimension of 605 * the stable tree and at the same time remove the old 606 * stable node. 607 */ 608 rb_replace_node(&dup->node, &chain->node, root); 609 610 /* 611 * Move the old stable node to the second dimension 612 * queued in the hlist_dup. The invariant is that all 613 * dup stable_nodes in the chain->hlist point to pages 614 * that are write protected and have the exact same 615 * content. 616 */ 617 stable_node_chain_add_dup(dup, chain); 618 } 619 return chain; 620 } 621 622 static inline void free_stable_node_chain(struct stable_node *chain, 623 struct rb_root *root) 624 { 625 rb_erase(&chain->node, root); 626 free_stable_node(chain); 627 ksm_stable_node_chains--; 628 } 629 630 static void remove_node_from_stable_tree(struct stable_node *stable_node) 631 { 632 struct rmap_item *rmap_item; 633 634 /* check it's not STABLE_NODE_CHAIN or negative */ 635 BUG_ON(stable_node->rmap_hlist_len < 0); 636 637 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 638 if (rmap_item->hlist.next) 639 ksm_pages_sharing--; 640 else 641 ksm_pages_shared--; 642 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 643 stable_node->rmap_hlist_len--; 644 put_anon_vma(rmap_item->anon_vma); 645 rmap_item->address &= PAGE_MASK; 646 cond_resched(); 647 } 648 649 /* 650 * We need the second aligned pointer of the migrate_nodes 651 * list_head to stay clear from the rb_parent_color union 652 * (aligned and different than any node) and also different 653 * from &migrate_nodes. This will verify that future list.h changes 654 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 655 */ 656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 659 #endif 660 661 if (stable_node->head == &migrate_nodes) 662 list_del(&stable_node->list); 663 else 664 stable_node_dup_del(stable_node); 665 free_stable_node(stable_node); 666 } 667 668 enum get_ksm_page_flags { 669 GET_KSM_PAGE_NOLOCK, 670 GET_KSM_PAGE_LOCK, 671 GET_KSM_PAGE_TRYLOCK 672 }; 673 674 /* 675 * get_ksm_page: checks if the page indicated by the stable node 676 * is still its ksm page, despite having held no reference to it. 677 * In which case we can trust the content of the page, and it 678 * returns the gotten page; but if the page has now been zapped, 679 * remove the stale node from the stable tree and return NULL. 680 * But beware, the stable node's page might be being migrated. 681 * 682 * You would expect the stable_node to hold a reference to the ksm page. 683 * But if it increments the page's count, swapping out has to wait for 684 * ksmd to come around again before it can free the page, which may take 685 * seconds or even minutes: much too unresponsive. So instead we use a 686 * "keyhole reference": access to the ksm page from the stable node peeps 687 * out through its keyhole to see if that page still holds the right key, 688 * pointing back to this stable node. This relies on freeing a PageAnon 689 * page to reset its page->mapping to NULL, and relies on no other use of 690 * a page to put something that might look like our key in page->mapping. 691 * is on its way to being freed; but it is an anomaly to bear in mind. 692 */ 693 static struct page *get_ksm_page(struct stable_node *stable_node, 694 enum get_ksm_page_flags flags) 695 { 696 struct page *page; 697 void *expected_mapping; 698 unsigned long kpfn; 699 700 expected_mapping = (void *)((unsigned long)stable_node | 701 PAGE_MAPPING_KSM); 702 again: 703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 704 page = pfn_to_page(kpfn); 705 if (READ_ONCE(page->mapping) != expected_mapping) 706 goto stale; 707 708 /* 709 * We cannot do anything with the page while its refcount is 0. 710 * Usually 0 means free, or tail of a higher-order page: in which 711 * case this node is no longer referenced, and should be freed; 712 * however, it might mean that the page is under page_ref_freeze(). 713 * The __remove_mapping() case is easy, again the node is now stale; 714 * the same is in reuse_ksm_page() case; but if page is swapcache 715 * in migrate_page_move_mapping(), it might still be our page, 716 * in which case it's essential to keep the node. 717 */ 718 while (!get_page_unless_zero(page)) { 719 /* 720 * Another check for page->mapping != expected_mapping would 721 * work here too. We have chosen the !PageSwapCache test to 722 * optimize the common case, when the page is or is about to 723 * be freed: PageSwapCache is cleared (under spin_lock_irq) 724 * in the ref_freeze section of __remove_mapping(); but Anon 725 * page->mapping reset to NULL later, in free_pages_prepare(). 726 */ 727 if (!PageSwapCache(page)) 728 goto stale; 729 cpu_relax(); 730 } 731 732 if (READ_ONCE(page->mapping) != expected_mapping) { 733 put_page(page); 734 goto stale; 735 } 736 737 if (flags == GET_KSM_PAGE_TRYLOCK) { 738 if (!trylock_page(page)) { 739 put_page(page); 740 return ERR_PTR(-EBUSY); 741 } 742 } else if (flags == GET_KSM_PAGE_LOCK) 743 lock_page(page); 744 745 if (flags != GET_KSM_PAGE_NOLOCK) { 746 if (READ_ONCE(page->mapping) != expected_mapping) { 747 unlock_page(page); 748 put_page(page); 749 goto stale; 750 } 751 } 752 return page; 753 754 stale: 755 /* 756 * We come here from above when page->mapping or !PageSwapCache 757 * suggests that the node is stale; but it might be under migration. 758 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 759 * before checking whether node->kpfn has been changed. 760 */ 761 smp_rmb(); 762 if (READ_ONCE(stable_node->kpfn) != kpfn) 763 goto again; 764 remove_node_from_stable_tree(stable_node); 765 return NULL; 766 } 767 768 /* 769 * Removing rmap_item from stable or unstable tree. 770 * This function will clean the information from the stable/unstable tree. 771 */ 772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 773 { 774 if (rmap_item->address & STABLE_FLAG) { 775 struct stable_node *stable_node; 776 struct page *page; 777 778 stable_node = rmap_item->head; 779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 780 if (!page) 781 goto out; 782 783 hlist_del(&rmap_item->hlist); 784 unlock_page(page); 785 put_page(page); 786 787 if (!hlist_empty(&stable_node->hlist)) 788 ksm_pages_sharing--; 789 else 790 ksm_pages_shared--; 791 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 792 stable_node->rmap_hlist_len--; 793 794 put_anon_vma(rmap_item->anon_vma); 795 rmap_item->head = NULL; 796 rmap_item->address &= PAGE_MASK; 797 798 } else if (rmap_item->address & UNSTABLE_FLAG) { 799 unsigned char age; 800 /* 801 * Usually ksmd can and must skip the rb_erase, because 802 * root_unstable_tree was already reset to RB_ROOT. 803 * But be careful when an mm is exiting: do the rb_erase 804 * if this rmap_item was inserted by this scan, rather 805 * than left over from before. 806 */ 807 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 808 BUG_ON(age > 1); 809 if (!age) 810 rb_erase(&rmap_item->node, 811 root_unstable_tree + NUMA(rmap_item->nid)); 812 ksm_pages_unshared--; 813 rmap_item->address &= PAGE_MASK; 814 } 815 out: 816 cond_resched(); /* we're called from many long loops */ 817 } 818 819 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 820 { 821 while (*rmap_list) { 822 struct rmap_item *rmap_item = *rmap_list; 823 *rmap_list = rmap_item->rmap_list; 824 remove_rmap_item_from_tree(rmap_item); 825 free_rmap_item(rmap_item); 826 } 827 } 828 829 /* 830 * Though it's very tempting to unmerge rmap_items from stable tree rather 831 * than check every pte of a given vma, the locking doesn't quite work for 832 * that - an rmap_item is assigned to the stable tree after inserting ksm 833 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 834 * rmap_items from parent to child at fork time (so as not to waste time 835 * if exit comes before the next scan reaches it). 836 * 837 * Similarly, although we'd like to remove rmap_items (so updating counts 838 * and freeing memory) when unmerging an area, it's easier to leave that 839 * to the next pass of ksmd - consider, for example, how ksmd might be 840 * in cmp_and_merge_page on one of the rmap_items we would be removing. 841 */ 842 static int unmerge_ksm_pages(struct vm_area_struct *vma, 843 unsigned long start, unsigned long end) 844 { 845 unsigned long addr; 846 int err = 0; 847 848 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 849 if (ksm_test_exit(vma->vm_mm)) 850 break; 851 if (signal_pending(current)) 852 err = -ERESTARTSYS; 853 else 854 err = break_ksm(vma, addr); 855 } 856 return err; 857 } 858 859 static inline struct stable_node *page_stable_node(struct page *page) 860 { 861 return PageKsm(page) ? page_rmapping(page) : NULL; 862 } 863 864 static inline void set_page_stable_node(struct page *page, 865 struct stable_node *stable_node) 866 { 867 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 868 } 869 870 #ifdef CONFIG_SYSFS 871 /* 872 * Only called through the sysfs control interface: 873 */ 874 static int remove_stable_node(struct stable_node *stable_node) 875 { 876 struct page *page; 877 int err; 878 879 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 880 if (!page) { 881 /* 882 * get_ksm_page did remove_node_from_stable_tree itself. 883 */ 884 return 0; 885 } 886 887 /* 888 * Page could be still mapped if this races with __mmput() running in 889 * between ksm_exit() and exit_mmap(). Just refuse to let 890 * merge_across_nodes/max_page_sharing be switched. 891 */ 892 err = -EBUSY; 893 if (!page_mapped(page)) { 894 /* 895 * The stable node did not yet appear stale to get_ksm_page(), 896 * since that allows for an unmapped ksm page to be recognized 897 * right up until it is freed; but the node is safe to remove. 898 * This page might be in a pagevec waiting to be freed, 899 * or it might be PageSwapCache (perhaps under writeback), 900 * or it might have been removed from swapcache a moment ago. 901 */ 902 set_page_stable_node(page, NULL); 903 remove_node_from_stable_tree(stable_node); 904 err = 0; 905 } 906 907 unlock_page(page); 908 put_page(page); 909 return err; 910 } 911 912 static int remove_stable_node_chain(struct stable_node *stable_node, 913 struct rb_root *root) 914 { 915 struct stable_node *dup; 916 struct hlist_node *hlist_safe; 917 918 if (!is_stable_node_chain(stable_node)) { 919 VM_BUG_ON(is_stable_node_dup(stable_node)); 920 if (remove_stable_node(stable_node)) 921 return true; 922 else 923 return false; 924 } 925 926 hlist_for_each_entry_safe(dup, hlist_safe, 927 &stable_node->hlist, hlist_dup) { 928 VM_BUG_ON(!is_stable_node_dup(dup)); 929 if (remove_stable_node(dup)) 930 return true; 931 } 932 BUG_ON(!hlist_empty(&stable_node->hlist)); 933 free_stable_node_chain(stable_node, root); 934 return false; 935 } 936 937 static int remove_all_stable_nodes(void) 938 { 939 struct stable_node *stable_node, *next; 940 int nid; 941 int err = 0; 942 943 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 944 while (root_stable_tree[nid].rb_node) { 945 stable_node = rb_entry(root_stable_tree[nid].rb_node, 946 struct stable_node, node); 947 if (remove_stable_node_chain(stable_node, 948 root_stable_tree + nid)) { 949 err = -EBUSY; 950 break; /* proceed to next nid */ 951 } 952 cond_resched(); 953 } 954 } 955 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 956 if (remove_stable_node(stable_node)) 957 err = -EBUSY; 958 cond_resched(); 959 } 960 return err; 961 } 962 963 static int unmerge_and_remove_all_rmap_items(void) 964 { 965 struct mm_slot *mm_slot; 966 struct mm_struct *mm; 967 struct vm_area_struct *vma; 968 int err = 0; 969 970 spin_lock(&ksm_mmlist_lock); 971 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 972 struct mm_slot, mm_list); 973 spin_unlock(&ksm_mmlist_lock); 974 975 for (mm_slot = ksm_scan.mm_slot; 976 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 977 mm = mm_slot->mm; 978 mmap_read_lock(mm); 979 for (vma = mm->mmap; vma; vma = vma->vm_next) { 980 if (ksm_test_exit(mm)) 981 break; 982 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 983 continue; 984 err = unmerge_ksm_pages(vma, 985 vma->vm_start, vma->vm_end); 986 if (err) 987 goto error; 988 } 989 990 remove_trailing_rmap_items(&mm_slot->rmap_list); 991 mmap_read_unlock(mm); 992 993 spin_lock(&ksm_mmlist_lock); 994 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 995 struct mm_slot, mm_list); 996 if (ksm_test_exit(mm)) { 997 hash_del(&mm_slot->link); 998 list_del(&mm_slot->mm_list); 999 spin_unlock(&ksm_mmlist_lock); 1000 1001 free_mm_slot(mm_slot); 1002 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1003 mmdrop(mm); 1004 } else 1005 spin_unlock(&ksm_mmlist_lock); 1006 } 1007 1008 /* Clean up stable nodes, but don't worry if some are still busy */ 1009 remove_all_stable_nodes(); 1010 ksm_scan.seqnr = 0; 1011 return 0; 1012 1013 error: 1014 mmap_read_unlock(mm); 1015 spin_lock(&ksm_mmlist_lock); 1016 ksm_scan.mm_slot = &ksm_mm_head; 1017 spin_unlock(&ksm_mmlist_lock); 1018 return err; 1019 } 1020 #endif /* CONFIG_SYSFS */ 1021 1022 static u32 calc_checksum(struct page *page) 1023 { 1024 u32 checksum; 1025 void *addr = kmap_atomic(page); 1026 checksum = xxhash(addr, PAGE_SIZE, 0); 1027 kunmap_atomic(addr); 1028 return checksum; 1029 } 1030 1031 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1032 pte_t *orig_pte) 1033 { 1034 struct mm_struct *mm = vma->vm_mm; 1035 struct page_vma_mapped_walk pvmw = { 1036 .page = page, 1037 .vma = vma, 1038 }; 1039 int swapped; 1040 int err = -EFAULT; 1041 struct mmu_notifier_range range; 1042 1043 pvmw.address = page_address_in_vma(page, vma); 1044 if (pvmw.address == -EFAULT) 1045 goto out; 1046 1047 BUG_ON(PageTransCompound(page)); 1048 1049 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1050 pvmw.address, 1051 pvmw.address + PAGE_SIZE); 1052 mmu_notifier_invalidate_range_start(&range); 1053 1054 if (!page_vma_mapped_walk(&pvmw)) 1055 goto out_mn; 1056 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1057 goto out_unlock; 1058 1059 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1060 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1061 mm_tlb_flush_pending(mm)) { 1062 pte_t entry; 1063 1064 swapped = PageSwapCache(page); 1065 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1066 /* 1067 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1068 * take any lock, therefore the check that we are going to make 1069 * with the pagecount against the mapcount is racy and 1070 * O_DIRECT can happen right after the check. 1071 * So we clear the pte and flush the tlb before the check 1072 * this assure us that no O_DIRECT can happen after the check 1073 * or in the middle of the check. 1074 * 1075 * No need to notify as we are downgrading page table to read 1076 * only not changing it to point to a new page. 1077 * 1078 * See Documentation/vm/mmu_notifier.rst 1079 */ 1080 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1081 /* 1082 * Check that no O_DIRECT or similar I/O is in progress on the 1083 * page 1084 */ 1085 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1086 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1087 goto out_unlock; 1088 } 1089 if (pte_dirty(entry)) 1090 set_page_dirty(page); 1091 1092 if (pte_protnone(entry)) 1093 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1094 else 1095 entry = pte_mkclean(pte_wrprotect(entry)); 1096 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1097 } 1098 *orig_pte = *pvmw.pte; 1099 err = 0; 1100 1101 out_unlock: 1102 page_vma_mapped_walk_done(&pvmw); 1103 out_mn: 1104 mmu_notifier_invalidate_range_end(&range); 1105 out: 1106 return err; 1107 } 1108 1109 /** 1110 * replace_page - replace page in vma by new ksm page 1111 * @vma: vma that holds the pte pointing to page 1112 * @page: the page we are replacing by kpage 1113 * @kpage: the ksm page we replace page by 1114 * @orig_pte: the original value of the pte 1115 * 1116 * Returns 0 on success, -EFAULT on failure. 1117 */ 1118 static int replace_page(struct vm_area_struct *vma, struct page *page, 1119 struct page *kpage, pte_t orig_pte) 1120 { 1121 struct mm_struct *mm = vma->vm_mm; 1122 pmd_t *pmd; 1123 pte_t *ptep; 1124 pte_t newpte; 1125 spinlock_t *ptl; 1126 unsigned long addr; 1127 int err = -EFAULT; 1128 struct mmu_notifier_range range; 1129 1130 addr = page_address_in_vma(page, vma); 1131 if (addr == -EFAULT) 1132 goto out; 1133 1134 pmd = mm_find_pmd(mm, addr); 1135 if (!pmd) 1136 goto out; 1137 1138 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1139 addr + PAGE_SIZE); 1140 mmu_notifier_invalidate_range_start(&range); 1141 1142 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1143 if (!pte_same(*ptep, orig_pte)) { 1144 pte_unmap_unlock(ptep, ptl); 1145 goto out_mn; 1146 } 1147 1148 /* 1149 * No need to check ksm_use_zero_pages here: we can only have a 1150 * zero_page here if ksm_use_zero_pages was enabled already. 1151 */ 1152 if (!is_zero_pfn(page_to_pfn(kpage))) { 1153 get_page(kpage); 1154 page_add_anon_rmap(kpage, vma, addr, false); 1155 newpte = mk_pte(kpage, vma->vm_page_prot); 1156 } else { 1157 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1158 vma->vm_page_prot)); 1159 /* 1160 * We're replacing an anonymous page with a zero page, which is 1161 * not anonymous. We need to do proper accounting otherwise we 1162 * will get wrong values in /proc, and a BUG message in dmesg 1163 * when tearing down the mm. 1164 */ 1165 dec_mm_counter(mm, MM_ANONPAGES); 1166 } 1167 1168 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1169 /* 1170 * No need to notify as we are replacing a read only page with another 1171 * read only page with the same content. 1172 * 1173 * See Documentation/vm/mmu_notifier.rst 1174 */ 1175 ptep_clear_flush(vma, addr, ptep); 1176 set_pte_at_notify(mm, addr, ptep, newpte); 1177 1178 page_remove_rmap(page, false); 1179 if (!page_mapped(page)) 1180 try_to_free_swap(page); 1181 put_page(page); 1182 1183 pte_unmap_unlock(ptep, ptl); 1184 err = 0; 1185 out_mn: 1186 mmu_notifier_invalidate_range_end(&range); 1187 out: 1188 return err; 1189 } 1190 1191 /* 1192 * try_to_merge_one_page - take two pages and merge them into one 1193 * @vma: the vma that holds the pte pointing to page 1194 * @page: the PageAnon page that we want to replace with kpage 1195 * @kpage: the PageKsm page that we want to map instead of page, 1196 * or NULL the first time when we want to use page as kpage. 1197 * 1198 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1199 */ 1200 static int try_to_merge_one_page(struct vm_area_struct *vma, 1201 struct page *page, struct page *kpage) 1202 { 1203 pte_t orig_pte = __pte(0); 1204 int err = -EFAULT; 1205 1206 if (page == kpage) /* ksm page forked */ 1207 return 0; 1208 1209 if (!PageAnon(page)) 1210 goto out; 1211 1212 /* 1213 * We need the page lock to read a stable PageSwapCache in 1214 * write_protect_page(). We use trylock_page() instead of 1215 * lock_page() because we don't want to wait here - we 1216 * prefer to continue scanning and merging different pages, 1217 * then come back to this page when it is unlocked. 1218 */ 1219 if (!trylock_page(page)) 1220 goto out; 1221 1222 if (PageTransCompound(page)) { 1223 if (split_huge_page(page)) 1224 goto out_unlock; 1225 } 1226 1227 /* 1228 * If this anonymous page is mapped only here, its pte may need 1229 * to be write-protected. If it's mapped elsewhere, all of its 1230 * ptes are necessarily already write-protected. But in either 1231 * case, we need to lock and check page_count is not raised. 1232 */ 1233 if (write_protect_page(vma, page, &orig_pte) == 0) { 1234 if (!kpage) { 1235 /* 1236 * While we hold page lock, upgrade page from 1237 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1238 * stable_tree_insert() will update stable_node. 1239 */ 1240 set_page_stable_node(page, NULL); 1241 mark_page_accessed(page); 1242 /* 1243 * Page reclaim just frees a clean page with no dirty 1244 * ptes: make sure that the ksm page would be swapped. 1245 */ 1246 if (!PageDirty(page)) 1247 SetPageDirty(page); 1248 err = 0; 1249 } else if (pages_identical(page, kpage)) 1250 err = replace_page(vma, page, kpage, orig_pte); 1251 } 1252 1253 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1254 munlock_vma_page(page); 1255 if (!PageMlocked(kpage)) { 1256 unlock_page(page); 1257 lock_page(kpage); 1258 mlock_vma_page(kpage); 1259 page = kpage; /* for final unlock */ 1260 } 1261 } 1262 1263 out_unlock: 1264 unlock_page(page); 1265 out: 1266 return err; 1267 } 1268 1269 /* 1270 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1271 * but no new kernel page is allocated: kpage must already be a ksm page. 1272 * 1273 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1274 */ 1275 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1276 struct page *page, struct page *kpage) 1277 { 1278 struct mm_struct *mm = rmap_item->mm; 1279 struct vm_area_struct *vma; 1280 int err = -EFAULT; 1281 1282 mmap_read_lock(mm); 1283 vma = find_mergeable_vma(mm, rmap_item->address); 1284 if (!vma) 1285 goto out; 1286 1287 err = try_to_merge_one_page(vma, page, kpage); 1288 if (err) 1289 goto out; 1290 1291 /* Unstable nid is in union with stable anon_vma: remove first */ 1292 remove_rmap_item_from_tree(rmap_item); 1293 1294 /* Must get reference to anon_vma while still holding mmap_lock */ 1295 rmap_item->anon_vma = vma->anon_vma; 1296 get_anon_vma(vma->anon_vma); 1297 out: 1298 mmap_read_unlock(mm); 1299 return err; 1300 } 1301 1302 /* 1303 * try_to_merge_two_pages - take two identical pages and prepare them 1304 * to be merged into one page. 1305 * 1306 * This function returns the kpage if we successfully merged two identical 1307 * pages into one ksm page, NULL otherwise. 1308 * 1309 * Note that this function upgrades page to ksm page: if one of the pages 1310 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1311 */ 1312 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1313 struct page *page, 1314 struct rmap_item *tree_rmap_item, 1315 struct page *tree_page) 1316 { 1317 int err; 1318 1319 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1320 if (!err) { 1321 err = try_to_merge_with_ksm_page(tree_rmap_item, 1322 tree_page, page); 1323 /* 1324 * If that fails, we have a ksm page with only one pte 1325 * pointing to it: so break it. 1326 */ 1327 if (err) 1328 break_cow(rmap_item); 1329 } 1330 return err ? NULL : page; 1331 } 1332 1333 static __always_inline 1334 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1335 { 1336 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1337 /* 1338 * Check that at least one mapping still exists, otherwise 1339 * there's no much point to merge and share with this 1340 * stable_node, as the underlying tree_page of the other 1341 * sharer is going to be freed soon. 1342 */ 1343 return stable_node->rmap_hlist_len && 1344 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1345 } 1346 1347 static __always_inline 1348 bool is_page_sharing_candidate(struct stable_node *stable_node) 1349 { 1350 return __is_page_sharing_candidate(stable_node, 0); 1351 } 1352 1353 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1354 struct stable_node **_stable_node, 1355 struct rb_root *root, 1356 bool prune_stale_stable_nodes) 1357 { 1358 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1359 struct hlist_node *hlist_safe; 1360 struct page *_tree_page, *tree_page = NULL; 1361 int nr = 0; 1362 int found_rmap_hlist_len; 1363 1364 if (!prune_stale_stable_nodes || 1365 time_before(jiffies, stable_node->chain_prune_time + 1366 msecs_to_jiffies( 1367 ksm_stable_node_chains_prune_millisecs))) 1368 prune_stale_stable_nodes = false; 1369 else 1370 stable_node->chain_prune_time = jiffies; 1371 1372 hlist_for_each_entry_safe(dup, hlist_safe, 1373 &stable_node->hlist, hlist_dup) { 1374 cond_resched(); 1375 /* 1376 * We must walk all stable_node_dup to prune the stale 1377 * stable nodes during lookup. 1378 * 1379 * get_ksm_page can drop the nodes from the 1380 * stable_node->hlist if they point to freed pages 1381 * (that's why we do a _safe walk). The "dup" 1382 * stable_node parameter itself will be freed from 1383 * under us if it returns NULL. 1384 */ 1385 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1386 if (!_tree_page) 1387 continue; 1388 nr += 1; 1389 if (is_page_sharing_candidate(dup)) { 1390 if (!found || 1391 dup->rmap_hlist_len > found_rmap_hlist_len) { 1392 if (found) 1393 put_page(tree_page); 1394 found = dup; 1395 found_rmap_hlist_len = found->rmap_hlist_len; 1396 tree_page = _tree_page; 1397 1398 /* skip put_page for found dup */ 1399 if (!prune_stale_stable_nodes) 1400 break; 1401 continue; 1402 } 1403 } 1404 put_page(_tree_page); 1405 } 1406 1407 if (found) { 1408 /* 1409 * nr is counting all dups in the chain only if 1410 * prune_stale_stable_nodes is true, otherwise we may 1411 * break the loop at nr == 1 even if there are 1412 * multiple entries. 1413 */ 1414 if (prune_stale_stable_nodes && nr == 1) { 1415 /* 1416 * If there's not just one entry it would 1417 * corrupt memory, better BUG_ON. In KSM 1418 * context with no lock held it's not even 1419 * fatal. 1420 */ 1421 BUG_ON(stable_node->hlist.first->next); 1422 1423 /* 1424 * There's just one entry and it is below the 1425 * deduplication limit so drop the chain. 1426 */ 1427 rb_replace_node(&stable_node->node, &found->node, 1428 root); 1429 free_stable_node(stable_node); 1430 ksm_stable_node_chains--; 1431 ksm_stable_node_dups--; 1432 /* 1433 * NOTE: the caller depends on the stable_node 1434 * to be equal to stable_node_dup if the chain 1435 * was collapsed. 1436 */ 1437 *_stable_node = found; 1438 /* 1439 * Just for robustness, as stable_node is 1440 * otherwise left as a stable pointer, the 1441 * compiler shall optimize it away at build 1442 * time. 1443 */ 1444 stable_node = NULL; 1445 } else if (stable_node->hlist.first != &found->hlist_dup && 1446 __is_page_sharing_candidate(found, 1)) { 1447 /* 1448 * If the found stable_node dup can accept one 1449 * more future merge (in addition to the one 1450 * that is underway) and is not at the head of 1451 * the chain, put it there so next search will 1452 * be quicker in the !prune_stale_stable_nodes 1453 * case. 1454 * 1455 * NOTE: it would be inaccurate to use nr > 1 1456 * instead of checking the hlist.first pointer 1457 * directly, because in the 1458 * prune_stale_stable_nodes case "nr" isn't 1459 * the position of the found dup in the chain, 1460 * but the total number of dups in the chain. 1461 */ 1462 hlist_del(&found->hlist_dup); 1463 hlist_add_head(&found->hlist_dup, 1464 &stable_node->hlist); 1465 } 1466 } 1467 1468 *_stable_node_dup = found; 1469 return tree_page; 1470 } 1471 1472 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1473 struct rb_root *root) 1474 { 1475 if (!is_stable_node_chain(stable_node)) 1476 return stable_node; 1477 if (hlist_empty(&stable_node->hlist)) { 1478 free_stable_node_chain(stable_node, root); 1479 return NULL; 1480 } 1481 return hlist_entry(stable_node->hlist.first, 1482 typeof(*stable_node), hlist_dup); 1483 } 1484 1485 /* 1486 * Like for get_ksm_page, this function can free the *_stable_node and 1487 * *_stable_node_dup if the returned tree_page is NULL. 1488 * 1489 * It can also free and overwrite *_stable_node with the found 1490 * stable_node_dup if the chain is collapsed (in which case 1491 * *_stable_node will be equal to *_stable_node_dup like if the chain 1492 * never existed). It's up to the caller to verify tree_page is not 1493 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1494 * 1495 * *_stable_node_dup is really a second output parameter of this 1496 * function and will be overwritten in all cases, the caller doesn't 1497 * need to initialize it. 1498 */ 1499 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1500 struct stable_node **_stable_node, 1501 struct rb_root *root, 1502 bool prune_stale_stable_nodes) 1503 { 1504 struct stable_node *stable_node = *_stable_node; 1505 if (!is_stable_node_chain(stable_node)) { 1506 if (is_page_sharing_candidate(stable_node)) { 1507 *_stable_node_dup = stable_node; 1508 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1509 } 1510 /* 1511 * _stable_node_dup set to NULL means the stable_node 1512 * reached the ksm_max_page_sharing limit. 1513 */ 1514 *_stable_node_dup = NULL; 1515 return NULL; 1516 } 1517 return stable_node_dup(_stable_node_dup, _stable_node, root, 1518 prune_stale_stable_nodes); 1519 } 1520 1521 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1522 struct stable_node **s_n, 1523 struct rb_root *root) 1524 { 1525 return __stable_node_chain(s_n_d, s_n, root, true); 1526 } 1527 1528 static __always_inline struct page *chain(struct stable_node **s_n_d, 1529 struct stable_node *s_n, 1530 struct rb_root *root) 1531 { 1532 struct stable_node *old_stable_node = s_n; 1533 struct page *tree_page; 1534 1535 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1536 /* not pruning dups so s_n cannot have changed */ 1537 VM_BUG_ON(s_n != old_stable_node); 1538 return tree_page; 1539 } 1540 1541 /* 1542 * stable_tree_search - search for page inside the stable tree 1543 * 1544 * This function checks if there is a page inside the stable tree 1545 * with identical content to the page that we are scanning right now. 1546 * 1547 * This function returns the stable tree node of identical content if found, 1548 * NULL otherwise. 1549 */ 1550 static struct page *stable_tree_search(struct page *page) 1551 { 1552 int nid; 1553 struct rb_root *root; 1554 struct rb_node **new; 1555 struct rb_node *parent; 1556 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1557 struct stable_node *page_node; 1558 1559 page_node = page_stable_node(page); 1560 if (page_node && page_node->head != &migrate_nodes) { 1561 /* ksm page forked */ 1562 get_page(page); 1563 return page; 1564 } 1565 1566 nid = get_kpfn_nid(page_to_pfn(page)); 1567 root = root_stable_tree + nid; 1568 again: 1569 new = &root->rb_node; 1570 parent = NULL; 1571 1572 while (*new) { 1573 struct page *tree_page; 1574 int ret; 1575 1576 cond_resched(); 1577 stable_node = rb_entry(*new, struct stable_node, node); 1578 stable_node_any = NULL; 1579 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1580 /* 1581 * NOTE: stable_node may have been freed by 1582 * chain_prune() if the returned stable_node_dup is 1583 * not NULL. stable_node_dup may have been inserted in 1584 * the rbtree instead as a regular stable_node (in 1585 * order to collapse the stable_node chain if a single 1586 * stable_node dup was found in it). In such case the 1587 * stable_node is overwritten by the calleee to point 1588 * to the stable_node_dup that was collapsed in the 1589 * stable rbtree and stable_node will be equal to 1590 * stable_node_dup like if the chain never existed. 1591 */ 1592 if (!stable_node_dup) { 1593 /* 1594 * Either all stable_node dups were full in 1595 * this stable_node chain, or this chain was 1596 * empty and should be rb_erased. 1597 */ 1598 stable_node_any = stable_node_dup_any(stable_node, 1599 root); 1600 if (!stable_node_any) { 1601 /* rb_erase just run */ 1602 goto again; 1603 } 1604 /* 1605 * Take any of the stable_node dups page of 1606 * this stable_node chain to let the tree walk 1607 * continue. All KSM pages belonging to the 1608 * stable_node dups in a stable_node chain 1609 * have the same content and they're 1610 * write protected at all times. Any will work 1611 * fine to continue the walk. 1612 */ 1613 tree_page = get_ksm_page(stable_node_any, 1614 GET_KSM_PAGE_NOLOCK); 1615 } 1616 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1617 if (!tree_page) { 1618 /* 1619 * If we walked over a stale stable_node, 1620 * get_ksm_page() will call rb_erase() and it 1621 * may rebalance the tree from under us. So 1622 * restart the search from scratch. Returning 1623 * NULL would be safe too, but we'd generate 1624 * false negative insertions just because some 1625 * stable_node was stale. 1626 */ 1627 goto again; 1628 } 1629 1630 ret = memcmp_pages(page, tree_page); 1631 put_page(tree_page); 1632 1633 parent = *new; 1634 if (ret < 0) 1635 new = &parent->rb_left; 1636 else if (ret > 0) 1637 new = &parent->rb_right; 1638 else { 1639 if (page_node) { 1640 VM_BUG_ON(page_node->head != &migrate_nodes); 1641 /* 1642 * Test if the migrated page should be merged 1643 * into a stable node dup. If the mapcount is 1644 * 1 we can migrate it with another KSM page 1645 * without adding it to the chain. 1646 */ 1647 if (page_mapcount(page) > 1) 1648 goto chain_append; 1649 } 1650 1651 if (!stable_node_dup) { 1652 /* 1653 * If the stable_node is a chain and 1654 * we got a payload match in memcmp 1655 * but we cannot merge the scanned 1656 * page in any of the existing 1657 * stable_node dups because they're 1658 * all full, we need to wait the 1659 * scanned page to find itself a match 1660 * in the unstable tree to create a 1661 * brand new KSM page to add later to 1662 * the dups of this stable_node. 1663 */ 1664 return NULL; 1665 } 1666 1667 /* 1668 * Lock and unlock the stable_node's page (which 1669 * might already have been migrated) so that page 1670 * migration is sure to notice its raised count. 1671 * It would be more elegant to return stable_node 1672 * than kpage, but that involves more changes. 1673 */ 1674 tree_page = get_ksm_page(stable_node_dup, 1675 GET_KSM_PAGE_TRYLOCK); 1676 1677 if (PTR_ERR(tree_page) == -EBUSY) 1678 return ERR_PTR(-EBUSY); 1679 1680 if (unlikely(!tree_page)) 1681 /* 1682 * The tree may have been rebalanced, 1683 * so re-evaluate parent and new. 1684 */ 1685 goto again; 1686 unlock_page(tree_page); 1687 1688 if (get_kpfn_nid(stable_node_dup->kpfn) != 1689 NUMA(stable_node_dup->nid)) { 1690 put_page(tree_page); 1691 goto replace; 1692 } 1693 return tree_page; 1694 } 1695 } 1696 1697 if (!page_node) 1698 return NULL; 1699 1700 list_del(&page_node->list); 1701 DO_NUMA(page_node->nid = nid); 1702 rb_link_node(&page_node->node, parent, new); 1703 rb_insert_color(&page_node->node, root); 1704 out: 1705 if (is_page_sharing_candidate(page_node)) { 1706 get_page(page); 1707 return page; 1708 } else 1709 return NULL; 1710 1711 replace: 1712 /* 1713 * If stable_node was a chain and chain_prune collapsed it, 1714 * stable_node has been updated to be the new regular 1715 * stable_node. A collapse of the chain is indistinguishable 1716 * from the case there was no chain in the stable 1717 * rbtree. Otherwise stable_node is the chain and 1718 * stable_node_dup is the dup to replace. 1719 */ 1720 if (stable_node_dup == stable_node) { 1721 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1722 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1723 /* there is no chain */ 1724 if (page_node) { 1725 VM_BUG_ON(page_node->head != &migrate_nodes); 1726 list_del(&page_node->list); 1727 DO_NUMA(page_node->nid = nid); 1728 rb_replace_node(&stable_node_dup->node, 1729 &page_node->node, 1730 root); 1731 if (is_page_sharing_candidate(page_node)) 1732 get_page(page); 1733 else 1734 page = NULL; 1735 } else { 1736 rb_erase(&stable_node_dup->node, root); 1737 page = NULL; 1738 } 1739 } else { 1740 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1741 __stable_node_dup_del(stable_node_dup); 1742 if (page_node) { 1743 VM_BUG_ON(page_node->head != &migrate_nodes); 1744 list_del(&page_node->list); 1745 DO_NUMA(page_node->nid = nid); 1746 stable_node_chain_add_dup(page_node, stable_node); 1747 if (is_page_sharing_candidate(page_node)) 1748 get_page(page); 1749 else 1750 page = NULL; 1751 } else { 1752 page = NULL; 1753 } 1754 } 1755 stable_node_dup->head = &migrate_nodes; 1756 list_add(&stable_node_dup->list, stable_node_dup->head); 1757 return page; 1758 1759 chain_append: 1760 /* stable_node_dup could be null if it reached the limit */ 1761 if (!stable_node_dup) 1762 stable_node_dup = stable_node_any; 1763 /* 1764 * If stable_node was a chain and chain_prune collapsed it, 1765 * stable_node has been updated to be the new regular 1766 * stable_node. A collapse of the chain is indistinguishable 1767 * from the case there was no chain in the stable 1768 * rbtree. Otherwise stable_node is the chain and 1769 * stable_node_dup is the dup to replace. 1770 */ 1771 if (stable_node_dup == stable_node) { 1772 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1773 /* chain is missing so create it */ 1774 stable_node = alloc_stable_node_chain(stable_node_dup, 1775 root); 1776 if (!stable_node) 1777 return NULL; 1778 } 1779 /* 1780 * Add this stable_node dup that was 1781 * migrated to the stable_node chain 1782 * of the current nid for this page 1783 * content. 1784 */ 1785 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1786 VM_BUG_ON(page_node->head != &migrate_nodes); 1787 list_del(&page_node->list); 1788 DO_NUMA(page_node->nid = nid); 1789 stable_node_chain_add_dup(page_node, stable_node); 1790 goto out; 1791 } 1792 1793 /* 1794 * stable_tree_insert - insert stable tree node pointing to new ksm page 1795 * into the stable tree. 1796 * 1797 * This function returns the stable tree node just allocated on success, 1798 * NULL otherwise. 1799 */ 1800 static struct stable_node *stable_tree_insert(struct page *kpage) 1801 { 1802 int nid; 1803 unsigned long kpfn; 1804 struct rb_root *root; 1805 struct rb_node **new; 1806 struct rb_node *parent; 1807 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1808 bool need_chain = false; 1809 1810 kpfn = page_to_pfn(kpage); 1811 nid = get_kpfn_nid(kpfn); 1812 root = root_stable_tree + nid; 1813 again: 1814 parent = NULL; 1815 new = &root->rb_node; 1816 1817 while (*new) { 1818 struct page *tree_page; 1819 int ret; 1820 1821 cond_resched(); 1822 stable_node = rb_entry(*new, struct stable_node, node); 1823 stable_node_any = NULL; 1824 tree_page = chain(&stable_node_dup, stable_node, root); 1825 if (!stable_node_dup) { 1826 /* 1827 * Either all stable_node dups were full in 1828 * this stable_node chain, or this chain was 1829 * empty and should be rb_erased. 1830 */ 1831 stable_node_any = stable_node_dup_any(stable_node, 1832 root); 1833 if (!stable_node_any) { 1834 /* rb_erase just run */ 1835 goto again; 1836 } 1837 /* 1838 * Take any of the stable_node dups page of 1839 * this stable_node chain to let the tree walk 1840 * continue. All KSM pages belonging to the 1841 * stable_node dups in a stable_node chain 1842 * have the same content and they're 1843 * write protected at all times. Any will work 1844 * fine to continue the walk. 1845 */ 1846 tree_page = get_ksm_page(stable_node_any, 1847 GET_KSM_PAGE_NOLOCK); 1848 } 1849 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1850 if (!tree_page) { 1851 /* 1852 * If we walked over a stale stable_node, 1853 * get_ksm_page() will call rb_erase() and it 1854 * may rebalance the tree from under us. So 1855 * restart the search from scratch. Returning 1856 * NULL would be safe too, but we'd generate 1857 * false negative insertions just because some 1858 * stable_node was stale. 1859 */ 1860 goto again; 1861 } 1862 1863 ret = memcmp_pages(kpage, tree_page); 1864 put_page(tree_page); 1865 1866 parent = *new; 1867 if (ret < 0) 1868 new = &parent->rb_left; 1869 else if (ret > 0) 1870 new = &parent->rb_right; 1871 else { 1872 need_chain = true; 1873 break; 1874 } 1875 } 1876 1877 stable_node_dup = alloc_stable_node(); 1878 if (!stable_node_dup) 1879 return NULL; 1880 1881 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1882 stable_node_dup->kpfn = kpfn; 1883 set_page_stable_node(kpage, stable_node_dup); 1884 stable_node_dup->rmap_hlist_len = 0; 1885 DO_NUMA(stable_node_dup->nid = nid); 1886 if (!need_chain) { 1887 rb_link_node(&stable_node_dup->node, parent, new); 1888 rb_insert_color(&stable_node_dup->node, root); 1889 } else { 1890 if (!is_stable_node_chain(stable_node)) { 1891 struct stable_node *orig = stable_node; 1892 /* chain is missing so create it */ 1893 stable_node = alloc_stable_node_chain(orig, root); 1894 if (!stable_node) { 1895 free_stable_node(stable_node_dup); 1896 return NULL; 1897 } 1898 } 1899 stable_node_chain_add_dup(stable_node_dup, stable_node); 1900 } 1901 1902 return stable_node_dup; 1903 } 1904 1905 /* 1906 * unstable_tree_search_insert - search for identical page, 1907 * else insert rmap_item into the unstable tree. 1908 * 1909 * This function searches for a page in the unstable tree identical to the 1910 * page currently being scanned; and if no identical page is found in the 1911 * tree, we insert rmap_item as a new object into the unstable tree. 1912 * 1913 * This function returns pointer to rmap_item found to be identical 1914 * to the currently scanned page, NULL otherwise. 1915 * 1916 * This function does both searching and inserting, because they share 1917 * the same walking algorithm in an rbtree. 1918 */ 1919 static 1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1921 struct page *page, 1922 struct page **tree_pagep) 1923 { 1924 struct rb_node **new; 1925 struct rb_root *root; 1926 struct rb_node *parent = NULL; 1927 int nid; 1928 1929 nid = get_kpfn_nid(page_to_pfn(page)); 1930 root = root_unstable_tree + nid; 1931 new = &root->rb_node; 1932 1933 while (*new) { 1934 struct rmap_item *tree_rmap_item; 1935 struct page *tree_page; 1936 int ret; 1937 1938 cond_resched(); 1939 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1940 tree_page = get_mergeable_page(tree_rmap_item); 1941 if (!tree_page) 1942 return NULL; 1943 1944 /* 1945 * Don't substitute a ksm page for a forked page. 1946 */ 1947 if (page == tree_page) { 1948 put_page(tree_page); 1949 return NULL; 1950 } 1951 1952 ret = memcmp_pages(page, tree_page); 1953 1954 parent = *new; 1955 if (ret < 0) { 1956 put_page(tree_page); 1957 new = &parent->rb_left; 1958 } else if (ret > 0) { 1959 put_page(tree_page); 1960 new = &parent->rb_right; 1961 } else if (!ksm_merge_across_nodes && 1962 page_to_nid(tree_page) != nid) { 1963 /* 1964 * If tree_page has been migrated to another NUMA node, 1965 * it will be flushed out and put in the right unstable 1966 * tree next time: only merge with it when across_nodes. 1967 */ 1968 put_page(tree_page); 1969 return NULL; 1970 } else { 1971 *tree_pagep = tree_page; 1972 return tree_rmap_item; 1973 } 1974 } 1975 1976 rmap_item->address |= UNSTABLE_FLAG; 1977 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1978 DO_NUMA(rmap_item->nid = nid); 1979 rb_link_node(&rmap_item->node, parent, new); 1980 rb_insert_color(&rmap_item->node, root); 1981 1982 ksm_pages_unshared++; 1983 return NULL; 1984 } 1985 1986 /* 1987 * stable_tree_append - add another rmap_item to the linked list of 1988 * rmap_items hanging off a given node of the stable tree, all sharing 1989 * the same ksm page. 1990 */ 1991 static void stable_tree_append(struct rmap_item *rmap_item, 1992 struct stable_node *stable_node, 1993 bool max_page_sharing_bypass) 1994 { 1995 /* 1996 * rmap won't find this mapping if we don't insert the 1997 * rmap_item in the right stable_node 1998 * duplicate. page_migration could break later if rmap breaks, 1999 * so we can as well crash here. We really need to check for 2000 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2001 * for other negative values as an underflow if detected here 2002 * for the first time (and not when decreasing rmap_hlist_len) 2003 * would be sign of memory corruption in the stable_node. 2004 */ 2005 BUG_ON(stable_node->rmap_hlist_len < 0); 2006 2007 stable_node->rmap_hlist_len++; 2008 if (!max_page_sharing_bypass) 2009 /* possibly non fatal but unexpected overflow, only warn */ 2010 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2011 ksm_max_page_sharing); 2012 2013 rmap_item->head = stable_node; 2014 rmap_item->address |= STABLE_FLAG; 2015 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2016 2017 if (rmap_item->hlist.next) 2018 ksm_pages_sharing++; 2019 else 2020 ksm_pages_shared++; 2021 } 2022 2023 /* 2024 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2025 * if not, compare checksum to previous and if it's the same, see if page can 2026 * be inserted into the unstable tree, or merged with a page already there and 2027 * both transferred to the stable tree. 2028 * 2029 * @page: the page that we are searching identical page to. 2030 * @rmap_item: the reverse mapping into the virtual address of this page 2031 */ 2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2033 { 2034 struct mm_struct *mm = rmap_item->mm; 2035 struct rmap_item *tree_rmap_item; 2036 struct page *tree_page = NULL; 2037 struct stable_node *stable_node; 2038 struct page *kpage; 2039 unsigned int checksum; 2040 int err; 2041 bool max_page_sharing_bypass = false; 2042 2043 stable_node = page_stable_node(page); 2044 if (stable_node) { 2045 if (stable_node->head != &migrate_nodes && 2046 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2047 NUMA(stable_node->nid)) { 2048 stable_node_dup_del(stable_node); 2049 stable_node->head = &migrate_nodes; 2050 list_add(&stable_node->list, stable_node->head); 2051 } 2052 if (stable_node->head != &migrate_nodes && 2053 rmap_item->head == stable_node) 2054 return; 2055 /* 2056 * If it's a KSM fork, allow it to go over the sharing limit 2057 * without warnings. 2058 */ 2059 if (!is_page_sharing_candidate(stable_node)) 2060 max_page_sharing_bypass = true; 2061 } 2062 2063 /* We first start with searching the page inside the stable tree */ 2064 kpage = stable_tree_search(page); 2065 if (kpage == page && rmap_item->head == stable_node) { 2066 put_page(kpage); 2067 return; 2068 } 2069 2070 remove_rmap_item_from_tree(rmap_item); 2071 2072 if (kpage) { 2073 if (PTR_ERR(kpage) == -EBUSY) 2074 return; 2075 2076 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2077 if (!err) { 2078 /* 2079 * The page was successfully merged: 2080 * add its rmap_item to the stable tree. 2081 */ 2082 lock_page(kpage); 2083 stable_tree_append(rmap_item, page_stable_node(kpage), 2084 max_page_sharing_bypass); 2085 unlock_page(kpage); 2086 } 2087 put_page(kpage); 2088 return; 2089 } 2090 2091 /* 2092 * If the hash value of the page has changed from the last time 2093 * we calculated it, this page is changing frequently: therefore we 2094 * don't want to insert it in the unstable tree, and we don't want 2095 * to waste our time searching for something identical to it there. 2096 */ 2097 checksum = calc_checksum(page); 2098 if (rmap_item->oldchecksum != checksum) { 2099 rmap_item->oldchecksum = checksum; 2100 return; 2101 } 2102 2103 /* 2104 * Same checksum as an empty page. We attempt to merge it with the 2105 * appropriate zero page if the user enabled this via sysfs. 2106 */ 2107 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2108 struct vm_area_struct *vma; 2109 2110 mmap_read_lock(mm); 2111 vma = find_mergeable_vma(mm, rmap_item->address); 2112 if (vma) { 2113 err = try_to_merge_one_page(vma, page, 2114 ZERO_PAGE(rmap_item->address)); 2115 } else { 2116 /* 2117 * If the vma is out of date, we do not need to 2118 * continue. 2119 */ 2120 err = 0; 2121 } 2122 mmap_read_unlock(mm); 2123 /* 2124 * In case of failure, the page was not really empty, so we 2125 * need to continue. Otherwise we're done. 2126 */ 2127 if (!err) 2128 return; 2129 } 2130 tree_rmap_item = 2131 unstable_tree_search_insert(rmap_item, page, &tree_page); 2132 if (tree_rmap_item) { 2133 bool split; 2134 2135 kpage = try_to_merge_two_pages(rmap_item, page, 2136 tree_rmap_item, tree_page); 2137 /* 2138 * If both pages we tried to merge belong to the same compound 2139 * page, then we actually ended up increasing the reference 2140 * count of the same compound page twice, and split_huge_page 2141 * failed. 2142 * Here we set a flag if that happened, and we use it later to 2143 * try split_huge_page again. Since we call put_page right 2144 * afterwards, the reference count will be correct and 2145 * split_huge_page should succeed. 2146 */ 2147 split = PageTransCompound(page) 2148 && compound_head(page) == compound_head(tree_page); 2149 put_page(tree_page); 2150 if (kpage) { 2151 /* 2152 * The pages were successfully merged: insert new 2153 * node in the stable tree and add both rmap_items. 2154 */ 2155 lock_page(kpage); 2156 stable_node = stable_tree_insert(kpage); 2157 if (stable_node) { 2158 stable_tree_append(tree_rmap_item, stable_node, 2159 false); 2160 stable_tree_append(rmap_item, stable_node, 2161 false); 2162 } 2163 unlock_page(kpage); 2164 2165 /* 2166 * If we fail to insert the page into the stable tree, 2167 * we will have 2 virtual addresses that are pointing 2168 * to a ksm page left outside the stable tree, 2169 * in which case we need to break_cow on both. 2170 */ 2171 if (!stable_node) { 2172 break_cow(tree_rmap_item); 2173 break_cow(rmap_item); 2174 } 2175 } else if (split) { 2176 /* 2177 * We are here if we tried to merge two pages and 2178 * failed because they both belonged to the same 2179 * compound page. We will split the page now, but no 2180 * merging will take place. 2181 * We do not want to add the cost of a full lock; if 2182 * the page is locked, it is better to skip it and 2183 * perhaps try again later. 2184 */ 2185 if (!trylock_page(page)) 2186 return; 2187 split_huge_page(page); 2188 unlock_page(page); 2189 } 2190 } 2191 } 2192 2193 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2194 struct rmap_item **rmap_list, 2195 unsigned long addr) 2196 { 2197 struct rmap_item *rmap_item; 2198 2199 while (*rmap_list) { 2200 rmap_item = *rmap_list; 2201 if ((rmap_item->address & PAGE_MASK) == addr) 2202 return rmap_item; 2203 if (rmap_item->address > addr) 2204 break; 2205 *rmap_list = rmap_item->rmap_list; 2206 remove_rmap_item_from_tree(rmap_item); 2207 free_rmap_item(rmap_item); 2208 } 2209 2210 rmap_item = alloc_rmap_item(); 2211 if (rmap_item) { 2212 /* It has already been zeroed */ 2213 rmap_item->mm = mm_slot->mm; 2214 rmap_item->address = addr; 2215 rmap_item->rmap_list = *rmap_list; 2216 *rmap_list = rmap_item; 2217 } 2218 return rmap_item; 2219 } 2220 2221 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2222 { 2223 struct mm_struct *mm; 2224 struct mm_slot *slot; 2225 struct vm_area_struct *vma; 2226 struct rmap_item *rmap_item; 2227 int nid; 2228 2229 if (list_empty(&ksm_mm_head.mm_list)) 2230 return NULL; 2231 2232 slot = ksm_scan.mm_slot; 2233 if (slot == &ksm_mm_head) { 2234 /* 2235 * A number of pages can hang around indefinitely on per-cpu 2236 * pagevecs, raised page count preventing write_protect_page 2237 * from merging them. Though it doesn't really matter much, 2238 * it is puzzling to see some stuck in pages_volatile until 2239 * other activity jostles them out, and they also prevented 2240 * LTP's KSM test from succeeding deterministically; so drain 2241 * them here (here rather than on entry to ksm_do_scan(), 2242 * so we don't IPI too often when pages_to_scan is set low). 2243 */ 2244 lru_add_drain_all(); 2245 2246 /* 2247 * Whereas stale stable_nodes on the stable_tree itself 2248 * get pruned in the regular course of stable_tree_search(), 2249 * those moved out to the migrate_nodes list can accumulate: 2250 * so prune them once before each full scan. 2251 */ 2252 if (!ksm_merge_across_nodes) { 2253 struct stable_node *stable_node, *next; 2254 struct page *page; 2255 2256 list_for_each_entry_safe(stable_node, next, 2257 &migrate_nodes, list) { 2258 page = get_ksm_page(stable_node, 2259 GET_KSM_PAGE_NOLOCK); 2260 if (page) 2261 put_page(page); 2262 cond_resched(); 2263 } 2264 } 2265 2266 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2267 root_unstable_tree[nid] = RB_ROOT; 2268 2269 spin_lock(&ksm_mmlist_lock); 2270 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2271 ksm_scan.mm_slot = slot; 2272 spin_unlock(&ksm_mmlist_lock); 2273 /* 2274 * Although we tested list_empty() above, a racing __ksm_exit 2275 * of the last mm on the list may have removed it since then. 2276 */ 2277 if (slot == &ksm_mm_head) 2278 return NULL; 2279 next_mm: 2280 ksm_scan.address = 0; 2281 ksm_scan.rmap_list = &slot->rmap_list; 2282 } 2283 2284 mm = slot->mm; 2285 mmap_read_lock(mm); 2286 if (ksm_test_exit(mm)) 2287 vma = NULL; 2288 else 2289 vma = find_vma(mm, ksm_scan.address); 2290 2291 for (; vma; vma = vma->vm_next) { 2292 if (!(vma->vm_flags & VM_MERGEABLE)) 2293 continue; 2294 if (ksm_scan.address < vma->vm_start) 2295 ksm_scan.address = vma->vm_start; 2296 if (!vma->anon_vma) 2297 ksm_scan.address = vma->vm_end; 2298 2299 while (ksm_scan.address < vma->vm_end) { 2300 if (ksm_test_exit(mm)) 2301 break; 2302 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2303 if (IS_ERR_OR_NULL(*page)) { 2304 ksm_scan.address += PAGE_SIZE; 2305 cond_resched(); 2306 continue; 2307 } 2308 if (PageAnon(*page)) { 2309 flush_anon_page(vma, *page, ksm_scan.address); 2310 flush_dcache_page(*page); 2311 rmap_item = get_next_rmap_item(slot, 2312 ksm_scan.rmap_list, ksm_scan.address); 2313 if (rmap_item) { 2314 ksm_scan.rmap_list = 2315 &rmap_item->rmap_list; 2316 ksm_scan.address += PAGE_SIZE; 2317 } else 2318 put_page(*page); 2319 mmap_read_unlock(mm); 2320 return rmap_item; 2321 } 2322 put_page(*page); 2323 ksm_scan.address += PAGE_SIZE; 2324 cond_resched(); 2325 } 2326 } 2327 2328 if (ksm_test_exit(mm)) { 2329 ksm_scan.address = 0; 2330 ksm_scan.rmap_list = &slot->rmap_list; 2331 } 2332 /* 2333 * Nuke all the rmap_items that are above this current rmap: 2334 * because there were no VM_MERGEABLE vmas with such addresses. 2335 */ 2336 remove_trailing_rmap_items(ksm_scan.rmap_list); 2337 2338 spin_lock(&ksm_mmlist_lock); 2339 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2340 struct mm_slot, mm_list); 2341 if (ksm_scan.address == 0) { 2342 /* 2343 * We've completed a full scan of all vmas, holding mmap_lock 2344 * throughout, and found no VM_MERGEABLE: so do the same as 2345 * __ksm_exit does to remove this mm from all our lists now. 2346 * This applies either when cleaning up after __ksm_exit 2347 * (but beware: we can reach here even before __ksm_exit), 2348 * or when all VM_MERGEABLE areas have been unmapped (and 2349 * mmap_lock then protects against race with MADV_MERGEABLE). 2350 */ 2351 hash_del(&slot->link); 2352 list_del(&slot->mm_list); 2353 spin_unlock(&ksm_mmlist_lock); 2354 2355 free_mm_slot(slot); 2356 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2357 mmap_read_unlock(mm); 2358 mmdrop(mm); 2359 } else { 2360 mmap_read_unlock(mm); 2361 /* 2362 * mmap_read_unlock(mm) first because after 2363 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2364 * already have been freed under us by __ksm_exit() 2365 * because the "mm_slot" is still hashed and 2366 * ksm_scan.mm_slot doesn't point to it anymore. 2367 */ 2368 spin_unlock(&ksm_mmlist_lock); 2369 } 2370 2371 /* Repeat until we've completed scanning the whole list */ 2372 slot = ksm_scan.mm_slot; 2373 if (slot != &ksm_mm_head) 2374 goto next_mm; 2375 2376 ksm_scan.seqnr++; 2377 return NULL; 2378 } 2379 2380 /** 2381 * ksm_do_scan - the ksm scanner main worker function. 2382 * @scan_npages: number of pages we want to scan before we return. 2383 */ 2384 static void ksm_do_scan(unsigned int scan_npages) 2385 { 2386 struct rmap_item *rmap_item; 2387 struct page *page; 2388 2389 while (scan_npages-- && likely(!freezing(current))) { 2390 cond_resched(); 2391 rmap_item = scan_get_next_rmap_item(&page); 2392 if (!rmap_item) 2393 return; 2394 cmp_and_merge_page(page, rmap_item); 2395 put_page(page); 2396 } 2397 } 2398 2399 static int ksmd_should_run(void) 2400 { 2401 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2402 } 2403 2404 static int ksm_scan_thread(void *nothing) 2405 { 2406 unsigned int sleep_ms; 2407 2408 set_freezable(); 2409 set_user_nice(current, 5); 2410 2411 while (!kthread_should_stop()) { 2412 mutex_lock(&ksm_thread_mutex); 2413 wait_while_offlining(); 2414 if (ksmd_should_run()) 2415 ksm_do_scan(ksm_thread_pages_to_scan); 2416 mutex_unlock(&ksm_thread_mutex); 2417 2418 try_to_freeze(); 2419 2420 if (ksmd_should_run()) { 2421 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2422 wait_event_interruptible_timeout(ksm_iter_wait, 2423 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2424 msecs_to_jiffies(sleep_ms)); 2425 } else { 2426 wait_event_freezable(ksm_thread_wait, 2427 ksmd_should_run() || kthread_should_stop()); 2428 } 2429 } 2430 return 0; 2431 } 2432 2433 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2434 unsigned long end, int advice, unsigned long *vm_flags) 2435 { 2436 struct mm_struct *mm = vma->vm_mm; 2437 int err; 2438 2439 switch (advice) { 2440 case MADV_MERGEABLE: 2441 /* 2442 * Be somewhat over-protective for now! 2443 */ 2444 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2445 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2446 VM_HUGETLB | VM_MIXEDMAP)) 2447 return 0; /* just ignore the advice */ 2448 2449 if (vma_is_dax(vma)) 2450 return 0; 2451 2452 #ifdef VM_SAO 2453 if (*vm_flags & VM_SAO) 2454 return 0; 2455 #endif 2456 #ifdef VM_SPARC_ADI 2457 if (*vm_flags & VM_SPARC_ADI) 2458 return 0; 2459 #endif 2460 2461 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2462 err = __ksm_enter(mm); 2463 if (err) 2464 return err; 2465 } 2466 2467 *vm_flags |= VM_MERGEABLE; 2468 break; 2469 2470 case MADV_UNMERGEABLE: 2471 if (!(*vm_flags & VM_MERGEABLE)) 2472 return 0; /* just ignore the advice */ 2473 2474 if (vma->anon_vma) { 2475 err = unmerge_ksm_pages(vma, start, end); 2476 if (err) 2477 return err; 2478 } 2479 2480 *vm_flags &= ~VM_MERGEABLE; 2481 break; 2482 } 2483 2484 return 0; 2485 } 2486 EXPORT_SYMBOL_GPL(ksm_madvise); 2487 2488 int __ksm_enter(struct mm_struct *mm) 2489 { 2490 struct mm_slot *mm_slot; 2491 int needs_wakeup; 2492 2493 mm_slot = alloc_mm_slot(); 2494 if (!mm_slot) 2495 return -ENOMEM; 2496 2497 /* Check ksm_run too? Would need tighter locking */ 2498 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2499 2500 spin_lock(&ksm_mmlist_lock); 2501 insert_to_mm_slots_hash(mm, mm_slot); 2502 /* 2503 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2504 * insert just behind the scanning cursor, to let the area settle 2505 * down a little; when fork is followed by immediate exec, we don't 2506 * want ksmd to waste time setting up and tearing down an rmap_list. 2507 * 2508 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2509 * scanning cursor, otherwise KSM pages in newly forked mms will be 2510 * missed: then we might as well insert at the end of the list. 2511 */ 2512 if (ksm_run & KSM_RUN_UNMERGE) 2513 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2514 else 2515 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2516 spin_unlock(&ksm_mmlist_lock); 2517 2518 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2519 mmgrab(mm); 2520 2521 if (needs_wakeup) 2522 wake_up_interruptible(&ksm_thread_wait); 2523 2524 return 0; 2525 } 2526 2527 void __ksm_exit(struct mm_struct *mm) 2528 { 2529 struct mm_slot *mm_slot; 2530 int easy_to_free = 0; 2531 2532 /* 2533 * This process is exiting: if it's straightforward (as is the 2534 * case when ksmd was never running), free mm_slot immediately. 2535 * But if it's at the cursor or has rmap_items linked to it, use 2536 * mmap_lock to synchronize with any break_cows before pagetables 2537 * are freed, and leave the mm_slot on the list for ksmd to free. 2538 * Beware: ksm may already have noticed it exiting and freed the slot. 2539 */ 2540 2541 spin_lock(&ksm_mmlist_lock); 2542 mm_slot = get_mm_slot(mm); 2543 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2544 if (!mm_slot->rmap_list) { 2545 hash_del(&mm_slot->link); 2546 list_del(&mm_slot->mm_list); 2547 easy_to_free = 1; 2548 } else { 2549 list_move(&mm_slot->mm_list, 2550 &ksm_scan.mm_slot->mm_list); 2551 } 2552 } 2553 spin_unlock(&ksm_mmlist_lock); 2554 2555 if (easy_to_free) { 2556 free_mm_slot(mm_slot); 2557 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2558 mmdrop(mm); 2559 } else if (mm_slot) { 2560 mmap_write_lock(mm); 2561 mmap_write_unlock(mm); 2562 } 2563 } 2564 2565 struct page *ksm_might_need_to_copy(struct page *page, 2566 struct vm_area_struct *vma, unsigned long address) 2567 { 2568 struct anon_vma *anon_vma = page_anon_vma(page); 2569 struct page *new_page; 2570 2571 if (PageKsm(page)) { 2572 if (page_stable_node(page) && 2573 !(ksm_run & KSM_RUN_UNMERGE)) 2574 return page; /* no need to copy it */ 2575 } else if (!anon_vma) { 2576 return page; /* no need to copy it */ 2577 } else if (anon_vma->root == vma->anon_vma->root && 2578 page->index == linear_page_index(vma, address)) { 2579 return page; /* still no need to copy it */ 2580 } 2581 if (!PageUptodate(page)) 2582 return page; /* let do_swap_page report the error */ 2583 2584 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2585 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2586 put_page(new_page); 2587 new_page = NULL; 2588 } 2589 if (new_page) { 2590 copy_user_highpage(new_page, page, address, vma); 2591 2592 SetPageDirty(new_page); 2593 __SetPageUptodate(new_page); 2594 __SetPageLocked(new_page); 2595 } 2596 2597 return new_page; 2598 } 2599 2600 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2601 { 2602 struct stable_node *stable_node; 2603 struct rmap_item *rmap_item; 2604 int search_new_forks = 0; 2605 2606 VM_BUG_ON_PAGE(!PageKsm(page), page); 2607 2608 /* 2609 * Rely on the page lock to protect against concurrent modifications 2610 * to that page's node of the stable tree. 2611 */ 2612 VM_BUG_ON_PAGE(!PageLocked(page), page); 2613 2614 stable_node = page_stable_node(page); 2615 if (!stable_node) 2616 return; 2617 again: 2618 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2619 struct anon_vma *anon_vma = rmap_item->anon_vma; 2620 struct anon_vma_chain *vmac; 2621 struct vm_area_struct *vma; 2622 2623 cond_resched(); 2624 anon_vma_lock_read(anon_vma); 2625 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2626 0, ULONG_MAX) { 2627 unsigned long addr; 2628 2629 cond_resched(); 2630 vma = vmac->vma; 2631 2632 /* Ignore the stable/unstable/sqnr flags */ 2633 addr = rmap_item->address & PAGE_MASK; 2634 2635 if (addr < vma->vm_start || addr >= vma->vm_end) 2636 continue; 2637 /* 2638 * Initially we examine only the vma which covers this 2639 * rmap_item; but later, if there is still work to do, 2640 * we examine covering vmas in other mms: in case they 2641 * were forked from the original since ksmd passed. 2642 */ 2643 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2644 continue; 2645 2646 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2647 continue; 2648 2649 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2650 anon_vma_unlock_read(anon_vma); 2651 return; 2652 } 2653 if (rwc->done && rwc->done(page)) { 2654 anon_vma_unlock_read(anon_vma); 2655 return; 2656 } 2657 } 2658 anon_vma_unlock_read(anon_vma); 2659 } 2660 if (!search_new_forks++) 2661 goto again; 2662 } 2663 2664 #ifdef CONFIG_MIGRATION 2665 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2666 { 2667 struct stable_node *stable_node; 2668 2669 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2670 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2671 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2672 2673 stable_node = page_stable_node(newpage); 2674 if (stable_node) { 2675 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2676 stable_node->kpfn = page_to_pfn(newpage); 2677 /* 2678 * newpage->mapping was set in advance; now we need smp_wmb() 2679 * to make sure that the new stable_node->kpfn is visible 2680 * to get_ksm_page() before it can see that oldpage->mapping 2681 * has gone stale (or that PageSwapCache has been cleared). 2682 */ 2683 smp_wmb(); 2684 set_page_stable_node(oldpage, NULL); 2685 } 2686 } 2687 #endif /* CONFIG_MIGRATION */ 2688 2689 #ifdef CONFIG_MEMORY_HOTREMOVE 2690 static void wait_while_offlining(void) 2691 { 2692 while (ksm_run & KSM_RUN_OFFLINE) { 2693 mutex_unlock(&ksm_thread_mutex); 2694 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2695 TASK_UNINTERRUPTIBLE); 2696 mutex_lock(&ksm_thread_mutex); 2697 } 2698 } 2699 2700 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2701 unsigned long start_pfn, 2702 unsigned long end_pfn) 2703 { 2704 if (stable_node->kpfn >= start_pfn && 2705 stable_node->kpfn < end_pfn) { 2706 /* 2707 * Don't get_ksm_page, page has already gone: 2708 * which is why we keep kpfn instead of page* 2709 */ 2710 remove_node_from_stable_tree(stable_node); 2711 return true; 2712 } 2713 return false; 2714 } 2715 2716 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2717 unsigned long start_pfn, 2718 unsigned long end_pfn, 2719 struct rb_root *root) 2720 { 2721 struct stable_node *dup; 2722 struct hlist_node *hlist_safe; 2723 2724 if (!is_stable_node_chain(stable_node)) { 2725 VM_BUG_ON(is_stable_node_dup(stable_node)); 2726 return stable_node_dup_remove_range(stable_node, start_pfn, 2727 end_pfn); 2728 } 2729 2730 hlist_for_each_entry_safe(dup, hlist_safe, 2731 &stable_node->hlist, hlist_dup) { 2732 VM_BUG_ON(!is_stable_node_dup(dup)); 2733 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2734 } 2735 if (hlist_empty(&stable_node->hlist)) { 2736 free_stable_node_chain(stable_node, root); 2737 return true; /* notify caller that tree was rebalanced */ 2738 } else 2739 return false; 2740 } 2741 2742 static void ksm_check_stable_tree(unsigned long start_pfn, 2743 unsigned long end_pfn) 2744 { 2745 struct stable_node *stable_node, *next; 2746 struct rb_node *node; 2747 int nid; 2748 2749 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2750 node = rb_first(root_stable_tree + nid); 2751 while (node) { 2752 stable_node = rb_entry(node, struct stable_node, node); 2753 if (stable_node_chain_remove_range(stable_node, 2754 start_pfn, end_pfn, 2755 root_stable_tree + 2756 nid)) 2757 node = rb_first(root_stable_tree + nid); 2758 else 2759 node = rb_next(node); 2760 cond_resched(); 2761 } 2762 } 2763 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2764 if (stable_node->kpfn >= start_pfn && 2765 stable_node->kpfn < end_pfn) 2766 remove_node_from_stable_tree(stable_node); 2767 cond_resched(); 2768 } 2769 } 2770 2771 static int ksm_memory_callback(struct notifier_block *self, 2772 unsigned long action, void *arg) 2773 { 2774 struct memory_notify *mn = arg; 2775 2776 switch (action) { 2777 case MEM_GOING_OFFLINE: 2778 /* 2779 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2780 * and remove_all_stable_nodes() while memory is going offline: 2781 * it is unsafe for them to touch the stable tree at this time. 2782 * But unmerge_ksm_pages(), rmap lookups and other entry points 2783 * which do not need the ksm_thread_mutex are all safe. 2784 */ 2785 mutex_lock(&ksm_thread_mutex); 2786 ksm_run |= KSM_RUN_OFFLINE; 2787 mutex_unlock(&ksm_thread_mutex); 2788 break; 2789 2790 case MEM_OFFLINE: 2791 /* 2792 * Most of the work is done by page migration; but there might 2793 * be a few stable_nodes left over, still pointing to struct 2794 * pages which have been offlined: prune those from the tree, 2795 * otherwise get_ksm_page() might later try to access a 2796 * non-existent struct page. 2797 */ 2798 ksm_check_stable_tree(mn->start_pfn, 2799 mn->start_pfn + mn->nr_pages); 2800 fallthrough; 2801 case MEM_CANCEL_OFFLINE: 2802 mutex_lock(&ksm_thread_mutex); 2803 ksm_run &= ~KSM_RUN_OFFLINE; 2804 mutex_unlock(&ksm_thread_mutex); 2805 2806 smp_mb(); /* wake_up_bit advises this */ 2807 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2808 break; 2809 } 2810 return NOTIFY_OK; 2811 } 2812 #else 2813 static void wait_while_offlining(void) 2814 { 2815 } 2816 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2817 2818 #ifdef CONFIG_SYSFS 2819 /* 2820 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2821 */ 2822 2823 #define KSM_ATTR_RO(_name) \ 2824 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2825 #define KSM_ATTR(_name) \ 2826 static struct kobj_attribute _name##_attr = \ 2827 __ATTR(_name, 0644, _name##_show, _name##_store) 2828 2829 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2830 struct kobj_attribute *attr, char *buf) 2831 { 2832 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2833 } 2834 2835 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2836 struct kobj_attribute *attr, 2837 const char *buf, size_t count) 2838 { 2839 unsigned int msecs; 2840 int err; 2841 2842 err = kstrtouint(buf, 10, &msecs); 2843 if (err) 2844 return -EINVAL; 2845 2846 ksm_thread_sleep_millisecs = msecs; 2847 wake_up_interruptible(&ksm_iter_wait); 2848 2849 return count; 2850 } 2851 KSM_ATTR(sleep_millisecs); 2852 2853 static ssize_t pages_to_scan_show(struct kobject *kobj, 2854 struct kobj_attribute *attr, char *buf) 2855 { 2856 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2857 } 2858 2859 static ssize_t pages_to_scan_store(struct kobject *kobj, 2860 struct kobj_attribute *attr, 2861 const char *buf, size_t count) 2862 { 2863 unsigned int nr_pages; 2864 int err; 2865 2866 err = kstrtouint(buf, 10, &nr_pages); 2867 if (err) 2868 return -EINVAL; 2869 2870 ksm_thread_pages_to_scan = nr_pages; 2871 2872 return count; 2873 } 2874 KSM_ATTR(pages_to_scan); 2875 2876 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2877 char *buf) 2878 { 2879 return sysfs_emit(buf, "%lu\n", ksm_run); 2880 } 2881 2882 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2883 const char *buf, size_t count) 2884 { 2885 unsigned int flags; 2886 int err; 2887 2888 err = kstrtouint(buf, 10, &flags); 2889 if (err) 2890 return -EINVAL; 2891 if (flags > KSM_RUN_UNMERGE) 2892 return -EINVAL; 2893 2894 /* 2895 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2896 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2897 * breaking COW to free the pages_shared (but leaves mm_slots 2898 * on the list for when ksmd may be set running again). 2899 */ 2900 2901 mutex_lock(&ksm_thread_mutex); 2902 wait_while_offlining(); 2903 if (ksm_run != flags) { 2904 ksm_run = flags; 2905 if (flags & KSM_RUN_UNMERGE) { 2906 set_current_oom_origin(); 2907 err = unmerge_and_remove_all_rmap_items(); 2908 clear_current_oom_origin(); 2909 if (err) { 2910 ksm_run = KSM_RUN_STOP; 2911 count = err; 2912 } 2913 } 2914 } 2915 mutex_unlock(&ksm_thread_mutex); 2916 2917 if (flags & KSM_RUN_MERGE) 2918 wake_up_interruptible(&ksm_thread_wait); 2919 2920 return count; 2921 } 2922 KSM_ATTR(run); 2923 2924 #ifdef CONFIG_NUMA 2925 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2926 struct kobj_attribute *attr, char *buf) 2927 { 2928 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2929 } 2930 2931 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2932 struct kobj_attribute *attr, 2933 const char *buf, size_t count) 2934 { 2935 int err; 2936 unsigned long knob; 2937 2938 err = kstrtoul(buf, 10, &knob); 2939 if (err) 2940 return err; 2941 if (knob > 1) 2942 return -EINVAL; 2943 2944 mutex_lock(&ksm_thread_mutex); 2945 wait_while_offlining(); 2946 if (ksm_merge_across_nodes != knob) { 2947 if (ksm_pages_shared || remove_all_stable_nodes()) 2948 err = -EBUSY; 2949 else if (root_stable_tree == one_stable_tree) { 2950 struct rb_root *buf; 2951 /* 2952 * This is the first time that we switch away from the 2953 * default of merging across nodes: must now allocate 2954 * a buffer to hold as many roots as may be needed. 2955 * Allocate stable and unstable together: 2956 * MAXSMP NODES_SHIFT 10 will use 16kB. 2957 */ 2958 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2959 GFP_KERNEL); 2960 /* Let us assume that RB_ROOT is NULL is zero */ 2961 if (!buf) 2962 err = -ENOMEM; 2963 else { 2964 root_stable_tree = buf; 2965 root_unstable_tree = buf + nr_node_ids; 2966 /* Stable tree is empty but not the unstable */ 2967 root_unstable_tree[0] = one_unstable_tree[0]; 2968 } 2969 } 2970 if (!err) { 2971 ksm_merge_across_nodes = knob; 2972 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2973 } 2974 } 2975 mutex_unlock(&ksm_thread_mutex); 2976 2977 return err ? err : count; 2978 } 2979 KSM_ATTR(merge_across_nodes); 2980 #endif 2981 2982 static ssize_t use_zero_pages_show(struct kobject *kobj, 2983 struct kobj_attribute *attr, char *buf) 2984 { 2985 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2986 } 2987 static ssize_t use_zero_pages_store(struct kobject *kobj, 2988 struct kobj_attribute *attr, 2989 const char *buf, size_t count) 2990 { 2991 int err; 2992 bool value; 2993 2994 err = kstrtobool(buf, &value); 2995 if (err) 2996 return -EINVAL; 2997 2998 ksm_use_zero_pages = value; 2999 3000 return count; 3001 } 3002 KSM_ATTR(use_zero_pages); 3003 3004 static ssize_t max_page_sharing_show(struct kobject *kobj, 3005 struct kobj_attribute *attr, char *buf) 3006 { 3007 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3008 } 3009 3010 static ssize_t max_page_sharing_store(struct kobject *kobj, 3011 struct kobj_attribute *attr, 3012 const char *buf, size_t count) 3013 { 3014 int err; 3015 int knob; 3016 3017 err = kstrtoint(buf, 10, &knob); 3018 if (err) 3019 return err; 3020 /* 3021 * When a KSM page is created it is shared by 2 mappings. This 3022 * being a signed comparison, it implicitly verifies it's not 3023 * negative. 3024 */ 3025 if (knob < 2) 3026 return -EINVAL; 3027 3028 if (READ_ONCE(ksm_max_page_sharing) == knob) 3029 return count; 3030 3031 mutex_lock(&ksm_thread_mutex); 3032 wait_while_offlining(); 3033 if (ksm_max_page_sharing != knob) { 3034 if (ksm_pages_shared || remove_all_stable_nodes()) 3035 err = -EBUSY; 3036 else 3037 ksm_max_page_sharing = knob; 3038 } 3039 mutex_unlock(&ksm_thread_mutex); 3040 3041 return err ? err : count; 3042 } 3043 KSM_ATTR(max_page_sharing); 3044 3045 static ssize_t pages_shared_show(struct kobject *kobj, 3046 struct kobj_attribute *attr, char *buf) 3047 { 3048 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3049 } 3050 KSM_ATTR_RO(pages_shared); 3051 3052 static ssize_t pages_sharing_show(struct kobject *kobj, 3053 struct kobj_attribute *attr, char *buf) 3054 { 3055 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3056 } 3057 KSM_ATTR_RO(pages_sharing); 3058 3059 static ssize_t pages_unshared_show(struct kobject *kobj, 3060 struct kobj_attribute *attr, char *buf) 3061 { 3062 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3063 } 3064 KSM_ATTR_RO(pages_unshared); 3065 3066 static ssize_t pages_volatile_show(struct kobject *kobj, 3067 struct kobj_attribute *attr, char *buf) 3068 { 3069 long ksm_pages_volatile; 3070 3071 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3072 - ksm_pages_sharing - ksm_pages_unshared; 3073 /* 3074 * It was not worth any locking to calculate that statistic, 3075 * but it might therefore sometimes be negative: conceal that. 3076 */ 3077 if (ksm_pages_volatile < 0) 3078 ksm_pages_volatile = 0; 3079 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3080 } 3081 KSM_ATTR_RO(pages_volatile); 3082 3083 static ssize_t stable_node_dups_show(struct kobject *kobj, 3084 struct kobj_attribute *attr, char *buf) 3085 { 3086 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3087 } 3088 KSM_ATTR_RO(stable_node_dups); 3089 3090 static ssize_t stable_node_chains_show(struct kobject *kobj, 3091 struct kobj_attribute *attr, char *buf) 3092 { 3093 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3094 } 3095 KSM_ATTR_RO(stable_node_chains); 3096 3097 static ssize_t 3098 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3099 struct kobj_attribute *attr, 3100 char *buf) 3101 { 3102 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3103 } 3104 3105 static ssize_t 3106 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3107 struct kobj_attribute *attr, 3108 const char *buf, size_t count) 3109 { 3110 unsigned long msecs; 3111 int err; 3112 3113 err = kstrtoul(buf, 10, &msecs); 3114 if (err || msecs > UINT_MAX) 3115 return -EINVAL; 3116 3117 ksm_stable_node_chains_prune_millisecs = msecs; 3118 3119 return count; 3120 } 3121 KSM_ATTR(stable_node_chains_prune_millisecs); 3122 3123 static ssize_t full_scans_show(struct kobject *kobj, 3124 struct kobj_attribute *attr, char *buf) 3125 { 3126 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3127 } 3128 KSM_ATTR_RO(full_scans); 3129 3130 static struct attribute *ksm_attrs[] = { 3131 &sleep_millisecs_attr.attr, 3132 &pages_to_scan_attr.attr, 3133 &run_attr.attr, 3134 &pages_shared_attr.attr, 3135 &pages_sharing_attr.attr, 3136 &pages_unshared_attr.attr, 3137 &pages_volatile_attr.attr, 3138 &full_scans_attr.attr, 3139 #ifdef CONFIG_NUMA 3140 &merge_across_nodes_attr.attr, 3141 #endif 3142 &max_page_sharing_attr.attr, 3143 &stable_node_chains_attr.attr, 3144 &stable_node_dups_attr.attr, 3145 &stable_node_chains_prune_millisecs_attr.attr, 3146 &use_zero_pages_attr.attr, 3147 NULL, 3148 }; 3149 3150 static const struct attribute_group ksm_attr_group = { 3151 .attrs = ksm_attrs, 3152 .name = "ksm", 3153 }; 3154 #endif /* CONFIG_SYSFS */ 3155 3156 static int __init ksm_init(void) 3157 { 3158 struct task_struct *ksm_thread; 3159 int err; 3160 3161 /* The correct value depends on page size and endianness */ 3162 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3163 /* Default to false for backwards compatibility */ 3164 ksm_use_zero_pages = false; 3165 3166 err = ksm_slab_init(); 3167 if (err) 3168 goto out; 3169 3170 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3171 if (IS_ERR(ksm_thread)) { 3172 pr_err("ksm: creating kthread failed\n"); 3173 err = PTR_ERR(ksm_thread); 3174 goto out_free; 3175 } 3176 3177 #ifdef CONFIG_SYSFS 3178 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3179 if (err) { 3180 pr_err("ksm: register sysfs failed\n"); 3181 kthread_stop(ksm_thread); 3182 goto out_free; 3183 } 3184 #else 3185 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3186 3187 #endif /* CONFIG_SYSFS */ 3188 3189 #ifdef CONFIG_MEMORY_HOTREMOVE 3190 /* There is no significance to this priority 100 */ 3191 hotplug_memory_notifier(ksm_memory_callback, 100); 3192 #endif 3193 return 0; 3194 3195 out_free: 3196 ksm_slab_free(); 3197 out: 3198 return err; 3199 } 3200 subsys_initcall(ksm_init); 3201