xref: /linux/mm/ksm.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 	if (rmap_item)
288 		ksm_rmap_items++;
289 	return rmap_item;
290 }
291 
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 	ksm_rmap_items--;
295 	rmap_item->mm = NULL;	/* debug safety */
296 	kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298 
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303 
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 	kmem_cache_free(stable_node_cache, stable_node);
307 }
308 
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 	if (!mm_slot_cache)	/* initialization failed */
312 		return NULL;
313 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315 
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 	kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320 
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 	struct mm_slot *slot;
324 
325 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 		if (slot->mm == mm)
327 			return slot;
328 
329 	return NULL;
330 }
331 
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 				    struct mm_slot *mm_slot)
334 {
335 	mm_slot->mm = mm;
336 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338 
339 /*
340  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341  * page tables after it has passed through ksm_exit() - which, if necessary,
342  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
343  * a special flag: they can just back out as soon as mm_users goes to zero.
344  * ksm_test_exit() is used throughout to make this test for exit: in some
345  * places for correctness, in some places just to avoid unnecessary work.
346  */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 	return atomic_read(&mm->mm_users) == 0;
350 }
351 
352 /*
353  * We use break_ksm to break COW on a ksm page: it's a stripped down
354  *
355  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356  *		put_page(page);
357  *
358  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359  * in case the application has unmapped and remapped mm,addr meanwhile.
360  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
361  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362  */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365 	struct page *page;
366 	int ret = 0;
367 
368 	do {
369 		cond_resched();
370 		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371 		if (IS_ERR_OR_NULL(page))
372 			break;
373 		if (PageKsm(page))
374 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 							FAULT_FLAG_WRITE);
376 		else
377 			ret = VM_FAULT_WRITE;
378 		put_page(page);
379 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380 	/*
381 	 * We must loop because handle_mm_fault() may back out if there's
382 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 	 *
384 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 	 * COW has been broken, even if the vma does not permit VM_WRITE;
386 	 * but note that a concurrent fault might break PageKsm for us.
387 	 *
388 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 	 * backing file, which also invalidates anonymous pages: that's
390 	 * okay, that truncation will have unmapped the PageKsm for us.
391 	 *
392 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 	 * to user; and ksmd, having no mm, would never be chosen for that.
396 	 *
397 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 	 * even ksmd can fail in this way - though it's usually breaking ksm
400 	 * just to undo a merge it made a moment before, so unlikely to oom.
401 	 *
402 	 * That's a pity: we might therefore have more kernel pages allocated
403 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 	 * will retry to break_cow on each pass, so should recover the page
405 	 * in due course.  The important thing is to not let VM_MERGEABLE
406 	 * be cleared while any such pages might remain in the area.
407 	 */
408 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410 
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 		unsigned long addr)
413 {
414 	struct vm_area_struct *vma;
415 	if (ksm_test_exit(mm))
416 		return NULL;
417 	vma = find_vma(mm, addr);
418 	if (!vma || vma->vm_start > addr)
419 		return NULL;
420 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 		return NULL;
422 	return vma;
423 }
424 
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427 	struct mm_struct *mm = rmap_item->mm;
428 	unsigned long addr = rmap_item->address;
429 	struct vm_area_struct *vma;
430 
431 	/*
432 	 * It is not an accident that whenever we want to break COW
433 	 * to undo, we also need to drop a reference to the anon_vma.
434 	 */
435 	put_anon_vma(rmap_item->anon_vma);
436 
437 	down_read(&mm->mmap_sem);
438 	vma = find_mergeable_vma(mm, addr);
439 	if (vma)
440 		break_ksm(vma, addr);
441 	up_read(&mm->mmap_sem);
442 }
443 
444 static struct page *page_trans_compound_anon(struct page *page)
445 {
446 	if (PageTransCompound(page)) {
447 		struct page *head = compound_head(page);
448 		/*
449 		 * head may actually be splitted and freed from under
450 		 * us but it's ok here.
451 		 */
452 		if (PageAnon(head))
453 			return head;
454 	}
455 	return NULL;
456 }
457 
458 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
459 {
460 	struct mm_struct *mm = rmap_item->mm;
461 	unsigned long addr = rmap_item->address;
462 	struct vm_area_struct *vma;
463 	struct page *page;
464 
465 	down_read(&mm->mmap_sem);
466 	vma = find_mergeable_vma(mm, addr);
467 	if (!vma)
468 		goto out;
469 
470 	page = follow_page(vma, addr, FOLL_GET);
471 	if (IS_ERR_OR_NULL(page))
472 		goto out;
473 	if (PageAnon(page) || page_trans_compound_anon(page)) {
474 		flush_anon_page(vma, page, addr);
475 		flush_dcache_page(page);
476 	} else {
477 		put_page(page);
478 out:
479 		page = NULL;
480 	}
481 	up_read(&mm->mmap_sem);
482 	return page;
483 }
484 
485 /*
486  * This helper is used for getting right index into array of tree roots.
487  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489  * every node has its own stable and unstable tree.
490  */
491 static inline int get_kpfn_nid(unsigned long kpfn)
492 {
493 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
494 }
495 
496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
497 {
498 	struct rmap_item *rmap_item;
499 
500 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
501 		if (rmap_item->hlist.next)
502 			ksm_pages_sharing--;
503 		else
504 			ksm_pages_shared--;
505 		put_anon_vma(rmap_item->anon_vma);
506 		rmap_item->address &= PAGE_MASK;
507 		cond_resched();
508 	}
509 
510 	if (stable_node->head == &migrate_nodes)
511 		list_del(&stable_node->list);
512 	else
513 		rb_erase(&stable_node->node,
514 			 root_stable_tree + NUMA(stable_node->nid));
515 	free_stable_node(stable_node);
516 }
517 
518 /*
519  * get_ksm_page: checks if the page indicated by the stable node
520  * is still its ksm page, despite having held no reference to it.
521  * In which case we can trust the content of the page, and it
522  * returns the gotten page; but if the page has now been zapped,
523  * remove the stale node from the stable tree and return NULL.
524  * But beware, the stable node's page might be being migrated.
525  *
526  * You would expect the stable_node to hold a reference to the ksm page.
527  * But if it increments the page's count, swapping out has to wait for
528  * ksmd to come around again before it can free the page, which may take
529  * seconds or even minutes: much too unresponsive.  So instead we use a
530  * "keyhole reference": access to the ksm page from the stable node peeps
531  * out through its keyhole to see if that page still holds the right key,
532  * pointing back to this stable node.  This relies on freeing a PageAnon
533  * page to reset its page->mapping to NULL, and relies on no other use of
534  * a page to put something that might look like our key in page->mapping.
535  * is on its way to being freed; but it is an anomaly to bear in mind.
536  */
537 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
538 {
539 	struct page *page;
540 	void *expected_mapping;
541 	unsigned long kpfn;
542 
543 	expected_mapping = (void *)stable_node +
544 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
545 again:
546 	kpfn = READ_ONCE(stable_node->kpfn);
547 	page = pfn_to_page(kpfn);
548 
549 	/*
550 	 * page is computed from kpfn, so on most architectures reading
551 	 * page->mapping is naturally ordered after reading node->kpfn,
552 	 * but on Alpha we need to be more careful.
553 	 */
554 	smp_read_barrier_depends();
555 	if (READ_ONCE(page->mapping) != expected_mapping)
556 		goto stale;
557 
558 	/*
559 	 * We cannot do anything with the page while its refcount is 0.
560 	 * Usually 0 means free, or tail of a higher-order page: in which
561 	 * case this node is no longer referenced, and should be freed;
562 	 * however, it might mean that the page is under page_freeze_refs().
563 	 * The __remove_mapping() case is easy, again the node is now stale;
564 	 * but if page is swapcache in migrate_page_move_mapping(), it might
565 	 * still be our page, in which case it's essential to keep the node.
566 	 */
567 	while (!get_page_unless_zero(page)) {
568 		/*
569 		 * Another check for page->mapping != expected_mapping would
570 		 * work here too.  We have chosen the !PageSwapCache test to
571 		 * optimize the common case, when the page is or is about to
572 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573 		 * in the freeze_refs section of __remove_mapping(); but Anon
574 		 * page->mapping reset to NULL later, in free_pages_prepare().
575 		 */
576 		if (!PageSwapCache(page))
577 			goto stale;
578 		cpu_relax();
579 	}
580 
581 	if (READ_ONCE(page->mapping) != expected_mapping) {
582 		put_page(page);
583 		goto stale;
584 	}
585 
586 	if (lock_it) {
587 		lock_page(page);
588 		if (READ_ONCE(page->mapping) != expected_mapping) {
589 			unlock_page(page);
590 			put_page(page);
591 			goto stale;
592 		}
593 	}
594 	return page;
595 
596 stale:
597 	/*
598 	 * We come here from above when page->mapping or !PageSwapCache
599 	 * suggests that the node is stale; but it might be under migration.
600 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601 	 * before checking whether node->kpfn has been changed.
602 	 */
603 	smp_rmb();
604 	if (READ_ONCE(stable_node->kpfn) != kpfn)
605 		goto again;
606 	remove_node_from_stable_tree(stable_node);
607 	return NULL;
608 }
609 
610 /*
611  * Removing rmap_item from stable or unstable tree.
612  * This function will clean the information from the stable/unstable tree.
613  */
614 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615 {
616 	if (rmap_item->address & STABLE_FLAG) {
617 		struct stable_node *stable_node;
618 		struct page *page;
619 
620 		stable_node = rmap_item->head;
621 		page = get_ksm_page(stable_node, true);
622 		if (!page)
623 			goto out;
624 
625 		hlist_del(&rmap_item->hlist);
626 		unlock_page(page);
627 		put_page(page);
628 
629 		if (!hlist_empty(&stable_node->hlist))
630 			ksm_pages_sharing--;
631 		else
632 			ksm_pages_shared--;
633 
634 		put_anon_vma(rmap_item->anon_vma);
635 		rmap_item->address &= PAGE_MASK;
636 
637 	} else if (rmap_item->address & UNSTABLE_FLAG) {
638 		unsigned char age;
639 		/*
640 		 * Usually ksmd can and must skip the rb_erase, because
641 		 * root_unstable_tree was already reset to RB_ROOT.
642 		 * But be careful when an mm is exiting: do the rb_erase
643 		 * if this rmap_item was inserted by this scan, rather
644 		 * than left over from before.
645 		 */
646 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
647 		BUG_ON(age > 1);
648 		if (!age)
649 			rb_erase(&rmap_item->node,
650 				 root_unstable_tree + NUMA(rmap_item->nid));
651 		ksm_pages_unshared--;
652 		rmap_item->address &= PAGE_MASK;
653 	}
654 out:
655 	cond_resched();		/* we're called from many long loops */
656 }
657 
658 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
659 				       struct rmap_item **rmap_list)
660 {
661 	while (*rmap_list) {
662 		struct rmap_item *rmap_item = *rmap_list;
663 		*rmap_list = rmap_item->rmap_list;
664 		remove_rmap_item_from_tree(rmap_item);
665 		free_rmap_item(rmap_item);
666 	}
667 }
668 
669 /*
670  * Though it's very tempting to unmerge rmap_items from stable tree rather
671  * than check every pte of a given vma, the locking doesn't quite work for
672  * that - an rmap_item is assigned to the stable tree after inserting ksm
673  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
674  * rmap_items from parent to child at fork time (so as not to waste time
675  * if exit comes before the next scan reaches it).
676  *
677  * Similarly, although we'd like to remove rmap_items (so updating counts
678  * and freeing memory) when unmerging an area, it's easier to leave that
679  * to the next pass of ksmd - consider, for example, how ksmd might be
680  * in cmp_and_merge_page on one of the rmap_items we would be removing.
681  */
682 static int unmerge_ksm_pages(struct vm_area_struct *vma,
683 			     unsigned long start, unsigned long end)
684 {
685 	unsigned long addr;
686 	int err = 0;
687 
688 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
689 		if (ksm_test_exit(vma->vm_mm))
690 			break;
691 		if (signal_pending(current))
692 			err = -ERESTARTSYS;
693 		else
694 			err = break_ksm(vma, addr);
695 	}
696 	return err;
697 }
698 
699 #ifdef CONFIG_SYSFS
700 /*
701  * Only called through the sysfs control interface:
702  */
703 static int remove_stable_node(struct stable_node *stable_node)
704 {
705 	struct page *page;
706 	int err;
707 
708 	page = get_ksm_page(stable_node, true);
709 	if (!page) {
710 		/*
711 		 * get_ksm_page did remove_node_from_stable_tree itself.
712 		 */
713 		return 0;
714 	}
715 
716 	if (WARN_ON_ONCE(page_mapped(page))) {
717 		/*
718 		 * This should not happen: but if it does, just refuse to let
719 		 * merge_across_nodes be switched - there is no need to panic.
720 		 */
721 		err = -EBUSY;
722 	} else {
723 		/*
724 		 * The stable node did not yet appear stale to get_ksm_page(),
725 		 * since that allows for an unmapped ksm page to be recognized
726 		 * right up until it is freed; but the node is safe to remove.
727 		 * This page might be in a pagevec waiting to be freed,
728 		 * or it might be PageSwapCache (perhaps under writeback),
729 		 * or it might have been removed from swapcache a moment ago.
730 		 */
731 		set_page_stable_node(page, NULL);
732 		remove_node_from_stable_tree(stable_node);
733 		err = 0;
734 	}
735 
736 	unlock_page(page);
737 	put_page(page);
738 	return err;
739 }
740 
741 static int remove_all_stable_nodes(void)
742 {
743 	struct stable_node *stable_node;
744 	struct list_head *this, *next;
745 	int nid;
746 	int err = 0;
747 
748 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
749 		while (root_stable_tree[nid].rb_node) {
750 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
751 						struct stable_node, node);
752 			if (remove_stable_node(stable_node)) {
753 				err = -EBUSY;
754 				break;	/* proceed to next nid */
755 			}
756 			cond_resched();
757 		}
758 	}
759 	list_for_each_safe(this, next, &migrate_nodes) {
760 		stable_node = list_entry(this, struct stable_node, list);
761 		if (remove_stable_node(stable_node))
762 			err = -EBUSY;
763 		cond_resched();
764 	}
765 	return err;
766 }
767 
768 static int unmerge_and_remove_all_rmap_items(void)
769 {
770 	struct mm_slot *mm_slot;
771 	struct mm_struct *mm;
772 	struct vm_area_struct *vma;
773 	int err = 0;
774 
775 	spin_lock(&ksm_mmlist_lock);
776 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
777 						struct mm_slot, mm_list);
778 	spin_unlock(&ksm_mmlist_lock);
779 
780 	for (mm_slot = ksm_scan.mm_slot;
781 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
782 		mm = mm_slot->mm;
783 		down_read(&mm->mmap_sem);
784 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
785 			if (ksm_test_exit(mm))
786 				break;
787 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
788 				continue;
789 			err = unmerge_ksm_pages(vma,
790 						vma->vm_start, vma->vm_end);
791 			if (err)
792 				goto error;
793 		}
794 
795 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
796 
797 		spin_lock(&ksm_mmlist_lock);
798 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
799 						struct mm_slot, mm_list);
800 		if (ksm_test_exit(mm)) {
801 			hash_del(&mm_slot->link);
802 			list_del(&mm_slot->mm_list);
803 			spin_unlock(&ksm_mmlist_lock);
804 
805 			free_mm_slot(mm_slot);
806 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
807 			up_read(&mm->mmap_sem);
808 			mmdrop(mm);
809 		} else {
810 			spin_unlock(&ksm_mmlist_lock);
811 			up_read(&mm->mmap_sem);
812 		}
813 	}
814 
815 	/* Clean up stable nodes, but don't worry if some are still busy */
816 	remove_all_stable_nodes();
817 	ksm_scan.seqnr = 0;
818 	return 0;
819 
820 error:
821 	up_read(&mm->mmap_sem);
822 	spin_lock(&ksm_mmlist_lock);
823 	ksm_scan.mm_slot = &ksm_mm_head;
824 	spin_unlock(&ksm_mmlist_lock);
825 	return err;
826 }
827 #endif /* CONFIG_SYSFS */
828 
829 static u32 calc_checksum(struct page *page)
830 {
831 	u32 checksum;
832 	void *addr = kmap_atomic(page);
833 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
834 	kunmap_atomic(addr);
835 	return checksum;
836 }
837 
838 static int memcmp_pages(struct page *page1, struct page *page2)
839 {
840 	char *addr1, *addr2;
841 	int ret;
842 
843 	addr1 = kmap_atomic(page1);
844 	addr2 = kmap_atomic(page2);
845 	ret = memcmp(addr1, addr2, PAGE_SIZE);
846 	kunmap_atomic(addr2);
847 	kunmap_atomic(addr1);
848 	return ret;
849 }
850 
851 static inline int pages_identical(struct page *page1, struct page *page2)
852 {
853 	return !memcmp_pages(page1, page2);
854 }
855 
856 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
857 			      pte_t *orig_pte)
858 {
859 	struct mm_struct *mm = vma->vm_mm;
860 	unsigned long addr;
861 	pte_t *ptep;
862 	spinlock_t *ptl;
863 	int swapped;
864 	int err = -EFAULT;
865 	unsigned long mmun_start;	/* For mmu_notifiers */
866 	unsigned long mmun_end;		/* For mmu_notifiers */
867 
868 	addr = page_address_in_vma(page, vma);
869 	if (addr == -EFAULT)
870 		goto out;
871 
872 	BUG_ON(PageTransCompound(page));
873 
874 	mmun_start = addr;
875 	mmun_end   = addr + PAGE_SIZE;
876 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877 
878 	ptep = page_check_address(page, mm, addr, &ptl, 0);
879 	if (!ptep)
880 		goto out_mn;
881 
882 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
883 		pte_t entry;
884 
885 		swapped = PageSwapCache(page);
886 		flush_cache_page(vma, addr, page_to_pfn(page));
887 		/*
888 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
889 		 * take any lock, therefore the check that we are going to make
890 		 * with the pagecount against the mapcount is racey and
891 		 * O_DIRECT can happen right after the check.
892 		 * So we clear the pte and flush the tlb before the check
893 		 * this assure us that no O_DIRECT can happen after the check
894 		 * or in the middle of the check.
895 		 */
896 		entry = ptep_clear_flush_notify(vma, addr, ptep);
897 		/*
898 		 * Check that no O_DIRECT or similar I/O is in progress on the
899 		 * page
900 		 */
901 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
902 			set_pte_at(mm, addr, ptep, entry);
903 			goto out_unlock;
904 		}
905 		if (pte_dirty(entry))
906 			set_page_dirty(page);
907 		entry = pte_mkclean(pte_wrprotect(entry));
908 		set_pte_at_notify(mm, addr, ptep, entry);
909 	}
910 	*orig_pte = *ptep;
911 	err = 0;
912 
913 out_unlock:
914 	pte_unmap_unlock(ptep, ptl);
915 out_mn:
916 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
917 out:
918 	return err;
919 }
920 
921 /**
922  * replace_page - replace page in vma by new ksm page
923  * @vma:      vma that holds the pte pointing to page
924  * @page:     the page we are replacing by kpage
925  * @kpage:    the ksm page we replace page by
926  * @orig_pte: the original value of the pte
927  *
928  * Returns 0 on success, -EFAULT on failure.
929  */
930 static int replace_page(struct vm_area_struct *vma, struct page *page,
931 			struct page *kpage, pte_t orig_pte)
932 {
933 	struct mm_struct *mm = vma->vm_mm;
934 	pmd_t *pmd;
935 	pte_t *ptep;
936 	spinlock_t *ptl;
937 	unsigned long addr;
938 	int err = -EFAULT;
939 	unsigned long mmun_start;	/* For mmu_notifiers */
940 	unsigned long mmun_end;		/* For mmu_notifiers */
941 
942 	addr = page_address_in_vma(page, vma);
943 	if (addr == -EFAULT)
944 		goto out;
945 
946 	pmd = mm_find_pmd(mm, addr);
947 	if (!pmd)
948 		goto out;
949 
950 	mmun_start = addr;
951 	mmun_end   = addr + PAGE_SIZE;
952 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
953 
954 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955 	if (!pte_same(*ptep, orig_pte)) {
956 		pte_unmap_unlock(ptep, ptl);
957 		goto out_mn;
958 	}
959 
960 	get_page(kpage);
961 	page_add_anon_rmap(kpage, vma, addr);
962 
963 	flush_cache_page(vma, addr, pte_pfn(*ptep));
964 	ptep_clear_flush_notify(vma, addr, ptep);
965 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
966 
967 	page_remove_rmap(page);
968 	if (!page_mapped(page))
969 		try_to_free_swap(page);
970 	put_page(page);
971 
972 	pte_unmap_unlock(ptep, ptl);
973 	err = 0;
974 out_mn:
975 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
976 out:
977 	return err;
978 }
979 
980 static int page_trans_compound_anon_split(struct page *page)
981 {
982 	int ret = 0;
983 	struct page *transhuge_head = page_trans_compound_anon(page);
984 	if (transhuge_head) {
985 		/* Get the reference on the head to split it. */
986 		if (get_page_unless_zero(transhuge_head)) {
987 			/*
988 			 * Recheck we got the reference while the head
989 			 * was still anonymous.
990 			 */
991 			if (PageAnon(transhuge_head))
992 				ret = split_huge_page(transhuge_head);
993 			else
994 				/*
995 				 * Retry later if split_huge_page run
996 				 * from under us.
997 				 */
998 				ret = 1;
999 			put_page(transhuge_head);
1000 		} else
1001 			/* Retry later if split_huge_page run from under us. */
1002 			ret = 1;
1003 	}
1004 	return ret;
1005 }
1006 
1007 /*
1008  * try_to_merge_one_page - take two pages and merge them into one
1009  * @vma: the vma that holds the pte pointing to page
1010  * @page: the PageAnon page that we want to replace with kpage
1011  * @kpage: the PageKsm page that we want to map instead of page,
1012  *         or NULL the first time when we want to use page as kpage.
1013  *
1014  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1015  */
1016 static int try_to_merge_one_page(struct vm_area_struct *vma,
1017 				 struct page *page, struct page *kpage)
1018 {
1019 	pte_t orig_pte = __pte(0);
1020 	int err = -EFAULT;
1021 
1022 	if (page == kpage)			/* ksm page forked */
1023 		return 0;
1024 
1025 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1026 		goto out;
1027 	BUG_ON(PageTransCompound(page));
1028 	if (!PageAnon(page))
1029 		goto out;
1030 
1031 	/*
1032 	 * We need the page lock to read a stable PageSwapCache in
1033 	 * write_protect_page().  We use trylock_page() instead of
1034 	 * lock_page() because we don't want to wait here - we
1035 	 * prefer to continue scanning and merging different pages,
1036 	 * then come back to this page when it is unlocked.
1037 	 */
1038 	if (!trylock_page(page))
1039 		goto out;
1040 	/*
1041 	 * If this anonymous page is mapped only here, its pte may need
1042 	 * to be write-protected.  If it's mapped elsewhere, all of its
1043 	 * ptes are necessarily already write-protected.  But in either
1044 	 * case, we need to lock and check page_count is not raised.
1045 	 */
1046 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1047 		if (!kpage) {
1048 			/*
1049 			 * While we hold page lock, upgrade page from
1050 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1051 			 * stable_tree_insert() will update stable_node.
1052 			 */
1053 			set_page_stable_node(page, NULL);
1054 			mark_page_accessed(page);
1055 			err = 0;
1056 		} else if (pages_identical(page, kpage))
1057 			err = replace_page(vma, page, kpage, orig_pte);
1058 	}
1059 
1060 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061 		munlock_vma_page(page);
1062 		if (!PageMlocked(kpage)) {
1063 			unlock_page(page);
1064 			lock_page(kpage);
1065 			mlock_vma_page(kpage);
1066 			page = kpage;		/* for final unlock */
1067 		}
1068 	}
1069 
1070 	unlock_page(page);
1071 out:
1072 	return err;
1073 }
1074 
1075 /*
1076  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1077  * but no new kernel page is allocated: kpage must already be a ksm page.
1078  *
1079  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1080  */
1081 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1082 				      struct page *page, struct page *kpage)
1083 {
1084 	struct mm_struct *mm = rmap_item->mm;
1085 	struct vm_area_struct *vma;
1086 	int err = -EFAULT;
1087 
1088 	down_read(&mm->mmap_sem);
1089 	vma = find_mergeable_vma(mm, rmap_item->address);
1090 	if (!vma)
1091 		goto out;
1092 
1093 	err = try_to_merge_one_page(vma, page, kpage);
1094 	if (err)
1095 		goto out;
1096 
1097 	/* Unstable nid is in union with stable anon_vma: remove first */
1098 	remove_rmap_item_from_tree(rmap_item);
1099 
1100 	/* Must get reference to anon_vma while still holding mmap_sem */
1101 	rmap_item->anon_vma = vma->anon_vma;
1102 	get_anon_vma(vma->anon_vma);
1103 out:
1104 	up_read(&mm->mmap_sem);
1105 	return err;
1106 }
1107 
1108 /*
1109  * try_to_merge_two_pages - take two identical pages and prepare them
1110  * to be merged into one page.
1111  *
1112  * This function returns the kpage if we successfully merged two identical
1113  * pages into one ksm page, NULL otherwise.
1114  *
1115  * Note that this function upgrades page to ksm page: if one of the pages
1116  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1117  */
1118 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1119 					   struct page *page,
1120 					   struct rmap_item *tree_rmap_item,
1121 					   struct page *tree_page)
1122 {
1123 	int err;
1124 
1125 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1126 	if (!err) {
1127 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1128 							tree_page, page);
1129 		/*
1130 		 * If that fails, we have a ksm page with only one pte
1131 		 * pointing to it: so break it.
1132 		 */
1133 		if (err)
1134 			break_cow(rmap_item);
1135 	}
1136 	return err ? NULL : page;
1137 }
1138 
1139 /*
1140  * stable_tree_search - search for page inside the stable tree
1141  *
1142  * This function checks if there is a page inside the stable tree
1143  * with identical content to the page that we are scanning right now.
1144  *
1145  * This function returns the stable tree node of identical content if found,
1146  * NULL otherwise.
1147  */
1148 static struct page *stable_tree_search(struct page *page)
1149 {
1150 	int nid;
1151 	struct rb_root *root;
1152 	struct rb_node **new;
1153 	struct rb_node *parent;
1154 	struct stable_node *stable_node;
1155 	struct stable_node *page_node;
1156 
1157 	page_node = page_stable_node(page);
1158 	if (page_node && page_node->head != &migrate_nodes) {
1159 		/* ksm page forked */
1160 		get_page(page);
1161 		return page;
1162 	}
1163 
1164 	nid = get_kpfn_nid(page_to_pfn(page));
1165 	root = root_stable_tree + nid;
1166 again:
1167 	new = &root->rb_node;
1168 	parent = NULL;
1169 
1170 	while (*new) {
1171 		struct page *tree_page;
1172 		int ret;
1173 
1174 		cond_resched();
1175 		stable_node = rb_entry(*new, struct stable_node, node);
1176 		tree_page = get_ksm_page(stable_node, false);
1177 		if (!tree_page) {
1178 			/*
1179 			 * If we walked over a stale stable_node,
1180 			 * get_ksm_page() will call rb_erase() and it
1181 			 * may rebalance the tree from under us. So
1182 			 * restart the search from scratch. Returning
1183 			 * NULL would be safe too, but we'd generate
1184 			 * false negative insertions just because some
1185 			 * stable_node was stale.
1186 			 */
1187 			goto again;
1188 		}
1189 
1190 		ret = memcmp_pages(page, tree_page);
1191 		put_page(tree_page);
1192 
1193 		parent = *new;
1194 		if (ret < 0)
1195 			new = &parent->rb_left;
1196 		else if (ret > 0)
1197 			new = &parent->rb_right;
1198 		else {
1199 			/*
1200 			 * Lock and unlock the stable_node's page (which
1201 			 * might already have been migrated) so that page
1202 			 * migration is sure to notice its raised count.
1203 			 * It would be more elegant to return stable_node
1204 			 * than kpage, but that involves more changes.
1205 			 */
1206 			tree_page = get_ksm_page(stable_node, true);
1207 			if (tree_page) {
1208 				unlock_page(tree_page);
1209 				if (get_kpfn_nid(stable_node->kpfn) !=
1210 						NUMA(stable_node->nid)) {
1211 					put_page(tree_page);
1212 					goto replace;
1213 				}
1214 				return tree_page;
1215 			}
1216 			/*
1217 			 * There is now a place for page_node, but the tree may
1218 			 * have been rebalanced, so re-evaluate parent and new.
1219 			 */
1220 			if (page_node)
1221 				goto again;
1222 			return NULL;
1223 		}
1224 	}
1225 
1226 	if (!page_node)
1227 		return NULL;
1228 
1229 	list_del(&page_node->list);
1230 	DO_NUMA(page_node->nid = nid);
1231 	rb_link_node(&page_node->node, parent, new);
1232 	rb_insert_color(&page_node->node, root);
1233 	get_page(page);
1234 	return page;
1235 
1236 replace:
1237 	if (page_node) {
1238 		list_del(&page_node->list);
1239 		DO_NUMA(page_node->nid = nid);
1240 		rb_replace_node(&stable_node->node, &page_node->node, root);
1241 		get_page(page);
1242 	} else {
1243 		rb_erase(&stable_node->node, root);
1244 		page = NULL;
1245 	}
1246 	stable_node->head = &migrate_nodes;
1247 	list_add(&stable_node->list, stable_node->head);
1248 	return page;
1249 }
1250 
1251 /*
1252  * stable_tree_insert - insert stable tree node pointing to new ksm page
1253  * into the stable tree.
1254  *
1255  * This function returns the stable tree node just allocated on success,
1256  * NULL otherwise.
1257  */
1258 static struct stable_node *stable_tree_insert(struct page *kpage)
1259 {
1260 	int nid;
1261 	unsigned long kpfn;
1262 	struct rb_root *root;
1263 	struct rb_node **new;
1264 	struct rb_node *parent;
1265 	struct stable_node *stable_node;
1266 
1267 	kpfn = page_to_pfn(kpage);
1268 	nid = get_kpfn_nid(kpfn);
1269 	root = root_stable_tree + nid;
1270 again:
1271 	parent = NULL;
1272 	new = &root->rb_node;
1273 
1274 	while (*new) {
1275 		struct page *tree_page;
1276 		int ret;
1277 
1278 		cond_resched();
1279 		stable_node = rb_entry(*new, struct stable_node, node);
1280 		tree_page = get_ksm_page(stable_node, false);
1281 		if (!tree_page) {
1282 			/*
1283 			 * If we walked over a stale stable_node,
1284 			 * get_ksm_page() will call rb_erase() and it
1285 			 * may rebalance the tree from under us. So
1286 			 * restart the search from scratch. Returning
1287 			 * NULL would be safe too, but we'd generate
1288 			 * false negative insertions just because some
1289 			 * stable_node was stale.
1290 			 */
1291 			goto again;
1292 		}
1293 
1294 		ret = memcmp_pages(kpage, tree_page);
1295 		put_page(tree_page);
1296 
1297 		parent = *new;
1298 		if (ret < 0)
1299 			new = &parent->rb_left;
1300 		else if (ret > 0)
1301 			new = &parent->rb_right;
1302 		else {
1303 			/*
1304 			 * It is not a bug that stable_tree_search() didn't
1305 			 * find this node: because at that time our page was
1306 			 * not yet write-protected, so may have changed since.
1307 			 */
1308 			return NULL;
1309 		}
1310 	}
1311 
1312 	stable_node = alloc_stable_node();
1313 	if (!stable_node)
1314 		return NULL;
1315 
1316 	INIT_HLIST_HEAD(&stable_node->hlist);
1317 	stable_node->kpfn = kpfn;
1318 	set_page_stable_node(kpage, stable_node);
1319 	DO_NUMA(stable_node->nid = nid);
1320 	rb_link_node(&stable_node->node, parent, new);
1321 	rb_insert_color(&stable_node->node, root);
1322 
1323 	return stable_node;
1324 }
1325 
1326 /*
1327  * unstable_tree_search_insert - search for identical page,
1328  * else insert rmap_item into the unstable tree.
1329  *
1330  * This function searches for a page in the unstable tree identical to the
1331  * page currently being scanned; and if no identical page is found in the
1332  * tree, we insert rmap_item as a new object into the unstable tree.
1333  *
1334  * This function returns pointer to rmap_item found to be identical
1335  * to the currently scanned page, NULL otherwise.
1336  *
1337  * This function does both searching and inserting, because they share
1338  * the same walking algorithm in an rbtree.
1339  */
1340 static
1341 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1342 					      struct page *page,
1343 					      struct page **tree_pagep)
1344 {
1345 	struct rb_node **new;
1346 	struct rb_root *root;
1347 	struct rb_node *parent = NULL;
1348 	int nid;
1349 
1350 	nid = get_kpfn_nid(page_to_pfn(page));
1351 	root = root_unstable_tree + nid;
1352 	new = &root->rb_node;
1353 
1354 	while (*new) {
1355 		struct rmap_item *tree_rmap_item;
1356 		struct page *tree_page;
1357 		int ret;
1358 
1359 		cond_resched();
1360 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1361 		tree_page = get_mergeable_page(tree_rmap_item);
1362 		if (!tree_page)
1363 			return NULL;
1364 
1365 		/*
1366 		 * Don't substitute a ksm page for a forked page.
1367 		 */
1368 		if (page == tree_page) {
1369 			put_page(tree_page);
1370 			return NULL;
1371 		}
1372 
1373 		ret = memcmp_pages(page, tree_page);
1374 
1375 		parent = *new;
1376 		if (ret < 0) {
1377 			put_page(tree_page);
1378 			new = &parent->rb_left;
1379 		} else if (ret > 0) {
1380 			put_page(tree_page);
1381 			new = &parent->rb_right;
1382 		} else if (!ksm_merge_across_nodes &&
1383 			   page_to_nid(tree_page) != nid) {
1384 			/*
1385 			 * If tree_page has been migrated to another NUMA node,
1386 			 * it will be flushed out and put in the right unstable
1387 			 * tree next time: only merge with it when across_nodes.
1388 			 */
1389 			put_page(tree_page);
1390 			return NULL;
1391 		} else {
1392 			*tree_pagep = tree_page;
1393 			return tree_rmap_item;
1394 		}
1395 	}
1396 
1397 	rmap_item->address |= UNSTABLE_FLAG;
1398 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1399 	DO_NUMA(rmap_item->nid = nid);
1400 	rb_link_node(&rmap_item->node, parent, new);
1401 	rb_insert_color(&rmap_item->node, root);
1402 
1403 	ksm_pages_unshared++;
1404 	return NULL;
1405 }
1406 
1407 /*
1408  * stable_tree_append - add another rmap_item to the linked list of
1409  * rmap_items hanging off a given node of the stable tree, all sharing
1410  * the same ksm page.
1411  */
1412 static void stable_tree_append(struct rmap_item *rmap_item,
1413 			       struct stable_node *stable_node)
1414 {
1415 	rmap_item->head = stable_node;
1416 	rmap_item->address |= STABLE_FLAG;
1417 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1418 
1419 	if (rmap_item->hlist.next)
1420 		ksm_pages_sharing++;
1421 	else
1422 		ksm_pages_shared++;
1423 }
1424 
1425 /*
1426  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1427  * if not, compare checksum to previous and if it's the same, see if page can
1428  * be inserted into the unstable tree, or merged with a page already there and
1429  * both transferred to the stable tree.
1430  *
1431  * @page: the page that we are searching identical page to.
1432  * @rmap_item: the reverse mapping into the virtual address of this page
1433  */
1434 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1435 {
1436 	struct rmap_item *tree_rmap_item;
1437 	struct page *tree_page = NULL;
1438 	struct stable_node *stable_node;
1439 	struct page *kpage;
1440 	unsigned int checksum;
1441 	int err;
1442 
1443 	stable_node = page_stable_node(page);
1444 	if (stable_node) {
1445 		if (stable_node->head != &migrate_nodes &&
1446 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1447 			rb_erase(&stable_node->node,
1448 				 root_stable_tree + NUMA(stable_node->nid));
1449 			stable_node->head = &migrate_nodes;
1450 			list_add(&stable_node->list, stable_node->head);
1451 		}
1452 		if (stable_node->head != &migrate_nodes &&
1453 		    rmap_item->head == stable_node)
1454 			return;
1455 	}
1456 
1457 	/* We first start with searching the page inside the stable tree */
1458 	kpage = stable_tree_search(page);
1459 	if (kpage == page && rmap_item->head == stable_node) {
1460 		put_page(kpage);
1461 		return;
1462 	}
1463 
1464 	remove_rmap_item_from_tree(rmap_item);
1465 
1466 	if (kpage) {
1467 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1468 		if (!err) {
1469 			/*
1470 			 * The page was successfully merged:
1471 			 * add its rmap_item to the stable tree.
1472 			 */
1473 			lock_page(kpage);
1474 			stable_tree_append(rmap_item, page_stable_node(kpage));
1475 			unlock_page(kpage);
1476 		}
1477 		put_page(kpage);
1478 		return;
1479 	}
1480 
1481 	/*
1482 	 * If the hash value of the page has changed from the last time
1483 	 * we calculated it, this page is changing frequently: therefore we
1484 	 * don't want to insert it in the unstable tree, and we don't want
1485 	 * to waste our time searching for something identical to it there.
1486 	 */
1487 	checksum = calc_checksum(page);
1488 	if (rmap_item->oldchecksum != checksum) {
1489 		rmap_item->oldchecksum = checksum;
1490 		return;
1491 	}
1492 
1493 	tree_rmap_item =
1494 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1495 	if (tree_rmap_item) {
1496 		kpage = try_to_merge_two_pages(rmap_item, page,
1497 						tree_rmap_item, tree_page);
1498 		put_page(tree_page);
1499 		if (kpage) {
1500 			/*
1501 			 * The pages were successfully merged: insert new
1502 			 * node in the stable tree and add both rmap_items.
1503 			 */
1504 			lock_page(kpage);
1505 			stable_node = stable_tree_insert(kpage);
1506 			if (stable_node) {
1507 				stable_tree_append(tree_rmap_item, stable_node);
1508 				stable_tree_append(rmap_item, stable_node);
1509 			}
1510 			unlock_page(kpage);
1511 
1512 			/*
1513 			 * If we fail to insert the page into the stable tree,
1514 			 * we will have 2 virtual addresses that are pointing
1515 			 * to a ksm page left outside the stable tree,
1516 			 * in which case we need to break_cow on both.
1517 			 */
1518 			if (!stable_node) {
1519 				break_cow(tree_rmap_item);
1520 				break_cow(rmap_item);
1521 			}
1522 		}
1523 	}
1524 }
1525 
1526 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1527 					    struct rmap_item **rmap_list,
1528 					    unsigned long addr)
1529 {
1530 	struct rmap_item *rmap_item;
1531 
1532 	while (*rmap_list) {
1533 		rmap_item = *rmap_list;
1534 		if ((rmap_item->address & PAGE_MASK) == addr)
1535 			return rmap_item;
1536 		if (rmap_item->address > addr)
1537 			break;
1538 		*rmap_list = rmap_item->rmap_list;
1539 		remove_rmap_item_from_tree(rmap_item);
1540 		free_rmap_item(rmap_item);
1541 	}
1542 
1543 	rmap_item = alloc_rmap_item();
1544 	if (rmap_item) {
1545 		/* It has already been zeroed */
1546 		rmap_item->mm = mm_slot->mm;
1547 		rmap_item->address = addr;
1548 		rmap_item->rmap_list = *rmap_list;
1549 		*rmap_list = rmap_item;
1550 	}
1551 	return rmap_item;
1552 }
1553 
1554 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1555 {
1556 	struct mm_struct *mm;
1557 	struct mm_slot *slot;
1558 	struct vm_area_struct *vma;
1559 	struct rmap_item *rmap_item;
1560 	int nid;
1561 
1562 	if (list_empty(&ksm_mm_head.mm_list))
1563 		return NULL;
1564 
1565 	slot = ksm_scan.mm_slot;
1566 	if (slot == &ksm_mm_head) {
1567 		/*
1568 		 * A number of pages can hang around indefinitely on per-cpu
1569 		 * pagevecs, raised page count preventing write_protect_page
1570 		 * from merging them.  Though it doesn't really matter much,
1571 		 * it is puzzling to see some stuck in pages_volatile until
1572 		 * other activity jostles them out, and they also prevented
1573 		 * LTP's KSM test from succeeding deterministically; so drain
1574 		 * them here (here rather than on entry to ksm_do_scan(),
1575 		 * so we don't IPI too often when pages_to_scan is set low).
1576 		 */
1577 		lru_add_drain_all();
1578 
1579 		/*
1580 		 * Whereas stale stable_nodes on the stable_tree itself
1581 		 * get pruned in the regular course of stable_tree_search(),
1582 		 * those moved out to the migrate_nodes list can accumulate:
1583 		 * so prune them once before each full scan.
1584 		 */
1585 		if (!ksm_merge_across_nodes) {
1586 			struct stable_node *stable_node;
1587 			struct list_head *this, *next;
1588 			struct page *page;
1589 
1590 			list_for_each_safe(this, next, &migrate_nodes) {
1591 				stable_node = list_entry(this,
1592 						struct stable_node, list);
1593 				page = get_ksm_page(stable_node, false);
1594 				if (page)
1595 					put_page(page);
1596 				cond_resched();
1597 			}
1598 		}
1599 
1600 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1601 			root_unstable_tree[nid] = RB_ROOT;
1602 
1603 		spin_lock(&ksm_mmlist_lock);
1604 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1605 		ksm_scan.mm_slot = slot;
1606 		spin_unlock(&ksm_mmlist_lock);
1607 		/*
1608 		 * Although we tested list_empty() above, a racing __ksm_exit
1609 		 * of the last mm on the list may have removed it since then.
1610 		 */
1611 		if (slot == &ksm_mm_head)
1612 			return NULL;
1613 next_mm:
1614 		ksm_scan.address = 0;
1615 		ksm_scan.rmap_list = &slot->rmap_list;
1616 	}
1617 
1618 	mm = slot->mm;
1619 	down_read(&mm->mmap_sem);
1620 	if (ksm_test_exit(mm))
1621 		vma = NULL;
1622 	else
1623 		vma = find_vma(mm, ksm_scan.address);
1624 
1625 	for (; vma; vma = vma->vm_next) {
1626 		if (!(vma->vm_flags & VM_MERGEABLE))
1627 			continue;
1628 		if (ksm_scan.address < vma->vm_start)
1629 			ksm_scan.address = vma->vm_start;
1630 		if (!vma->anon_vma)
1631 			ksm_scan.address = vma->vm_end;
1632 
1633 		while (ksm_scan.address < vma->vm_end) {
1634 			if (ksm_test_exit(mm))
1635 				break;
1636 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1637 			if (IS_ERR_OR_NULL(*page)) {
1638 				ksm_scan.address += PAGE_SIZE;
1639 				cond_resched();
1640 				continue;
1641 			}
1642 			if (PageAnon(*page) ||
1643 			    page_trans_compound_anon(*page)) {
1644 				flush_anon_page(vma, *page, ksm_scan.address);
1645 				flush_dcache_page(*page);
1646 				rmap_item = get_next_rmap_item(slot,
1647 					ksm_scan.rmap_list, ksm_scan.address);
1648 				if (rmap_item) {
1649 					ksm_scan.rmap_list =
1650 							&rmap_item->rmap_list;
1651 					ksm_scan.address += PAGE_SIZE;
1652 				} else
1653 					put_page(*page);
1654 				up_read(&mm->mmap_sem);
1655 				return rmap_item;
1656 			}
1657 			put_page(*page);
1658 			ksm_scan.address += PAGE_SIZE;
1659 			cond_resched();
1660 		}
1661 	}
1662 
1663 	if (ksm_test_exit(mm)) {
1664 		ksm_scan.address = 0;
1665 		ksm_scan.rmap_list = &slot->rmap_list;
1666 	}
1667 	/*
1668 	 * Nuke all the rmap_items that are above this current rmap:
1669 	 * because there were no VM_MERGEABLE vmas with such addresses.
1670 	 */
1671 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1672 
1673 	spin_lock(&ksm_mmlist_lock);
1674 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1675 						struct mm_slot, mm_list);
1676 	if (ksm_scan.address == 0) {
1677 		/*
1678 		 * We've completed a full scan of all vmas, holding mmap_sem
1679 		 * throughout, and found no VM_MERGEABLE: so do the same as
1680 		 * __ksm_exit does to remove this mm from all our lists now.
1681 		 * This applies either when cleaning up after __ksm_exit
1682 		 * (but beware: we can reach here even before __ksm_exit),
1683 		 * or when all VM_MERGEABLE areas have been unmapped (and
1684 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1685 		 */
1686 		hash_del(&slot->link);
1687 		list_del(&slot->mm_list);
1688 		spin_unlock(&ksm_mmlist_lock);
1689 
1690 		free_mm_slot(slot);
1691 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1692 		up_read(&mm->mmap_sem);
1693 		mmdrop(mm);
1694 	} else {
1695 		spin_unlock(&ksm_mmlist_lock);
1696 		up_read(&mm->mmap_sem);
1697 	}
1698 
1699 	/* Repeat until we've completed scanning the whole list */
1700 	slot = ksm_scan.mm_slot;
1701 	if (slot != &ksm_mm_head)
1702 		goto next_mm;
1703 
1704 	ksm_scan.seqnr++;
1705 	return NULL;
1706 }
1707 
1708 /**
1709  * ksm_do_scan  - the ksm scanner main worker function.
1710  * @scan_npages - number of pages we want to scan before we return.
1711  */
1712 static void ksm_do_scan(unsigned int scan_npages)
1713 {
1714 	struct rmap_item *rmap_item;
1715 	struct page *uninitialized_var(page);
1716 
1717 	while (scan_npages-- && likely(!freezing(current))) {
1718 		cond_resched();
1719 		rmap_item = scan_get_next_rmap_item(&page);
1720 		if (!rmap_item)
1721 			return;
1722 		cmp_and_merge_page(page, rmap_item);
1723 		put_page(page);
1724 	}
1725 }
1726 
1727 static int ksmd_should_run(void)
1728 {
1729 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1730 }
1731 
1732 static int ksm_scan_thread(void *nothing)
1733 {
1734 	set_freezable();
1735 	set_user_nice(current, 5);
1736 
1737 	while (!kthread_should_stop()) {
1738 		mutex_lock(&ksm_thread_mutex);
1739 		wait_while_offlining();
1740 		if (ksmd_should_run())
1741 			ksm_do_scan(ksm_thread_pages_to_scan);
1742 		mutex_unlock(&ksm_thread_mutex);
1743 
1744 		try_to_freeze();
1745 
1746 		if (ksmd_should_run()) {
1747 			schedule_timeout_interruptible(
1748 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1749 		} else {
1750 			wait_event_freezable(ksm_thread_wait,
1751 				ksmd_should_run() || kthread_should_stop());
1752 		}
1753 	}
1754 	return 0;
1755 }
1756 
1757 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1758 		unsigned long end, int advice, unsigned long *vm_flags)
1759 {
1760 	struct mm_struct *mm = vma->vm_mm;
1761 	int err;
1762 
1763 	switch (advice) {
1764 	case MADV_MERGEABLE:
1765 		/*
1766 		 * Be somewhat over-protective for now!
1767 		 */
1768 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1769 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1770 				 VM_HUGETLB | VM_MIXEDMAP))
1771 			return 0;		/* just ignore the advice */
1772 
1773 #ifdef VM_SAO
1774 		if (*vm_flags & VM_SAO)
1775 			return 0;
1776 #endif
1777 
1778 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1779 			err = __ksm_enter(mm);
1780 			if (err)
1781 				return err;
1782 		}
1783 
1784 		*vm_flags |= VM_MERGEABLE;
1785 		break;
1786 
1787 	case MADV_UNMERGEABLE:
1788 		if (!(*vm_flags & VM_MERGEABLE))
1789 			return 0;		/* just ignore the advice */
1790 
1791 		if (vma->anon_vma) {
1792 			err = unmerge_ksm_pages(vma, start, end);
1793 			if (err)
1794 				return err;
1795 		}
1796 
1797 		*vm_flags &= ~VM_MERGEABLE;
1798 		break;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 int __ksm_enter(struct mm_struct *mm)
1805 {
1806 	struct mm_slot *mm_slot;
1807 	int needs_wakeup;
1808 
1809 	mm_slot = alloc_mm_slot();
1810 	if (!mm_slot)
1811 		return -ENOMEM;
1812 
1813 	/* Check ksm_run too?  Would need tighter locking */
1814 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1815 
1816 	spin_lock(&ksm_mmlist_lock);
1817 	insert_to_mm_slots_hash(mm, mm_slot);
1818 	/*
1819 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1820 	 * insert just behind the scanning cursor, to let the area settle
1821 	 * down a little; when fork is followed by immediate exec, we don't
1822 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1823 	 *
1824 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1825 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1826 	 * missed: then we might as well insert at the end of the list.
1827 	 */
1828 	if (ksm_run & KSM_RUN_UNMERGE)
1829 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1830 	else
1831 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1832 	spin_unlock(&ksm_mmlist_lock);
1833 
1834 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1835 	atomic_inc(&mm->mm_count);
1836 
1837 	if (needs_wakeup)
1838 		wake_up_interruptible(&ksm_thread_wait);
1839 
1840 	return 0;
1841 }
1842 
1843 void __ksm_exit(struct mm_struct *mm)
1844 {
1845 	struct mm_slot *mm_slot;
1846 	int easy_to_free = 0;
1847 
1848 	/*
1849 	 * This process is exiting: if it's straightforward (as is the
1850 	 * case when ksmd was never running), free mm_slot immediately.
1851 	 * But if it's at the cursor or has rmap_items linked to it, use
1852 	 * mmap_sem to synchronize with any break_cows before pagetables
1853 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1854 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1855 	 */
1856 
1857 	spin_lock(&ksm_mmlist_lock);
1858 	mm_slot = get_mm_slot(mm);
1859 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1860 		if (!mm_slot->rmap_list) {
1861 			hash_del(&mm_slot->link);
1862 			list_del(&mm_slot->mm_list);
1863 			easy_to_free = 1;
1864 		} else {
1865 			list_move(&mm_slot->mm_list,
1866 				  &ksm_scan.mm_slot->mm_list);
1867 		}
1868 	}
1869 	spin_unlock(&ksm_mmlist_lock);
1870 
1871 	if (easy_to_free) {
1872 		free_mm_slot(mm_slot);
1873 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1874 		mmdrop(mm);
1875 	} else if (mm_slot) {
1876 		down_write(&mm->mmap_sem);
1877 		up_write(&mm->mmap_sem);
1878 	}
1879 }
1880 
1881 struct page *ksm_might_need_to_copy(struct page *page,
1882 			struct vm_area_struct *vma, unsigned long address)
1883 {
1884 	struct anon_vma *anon_vma = page_anon_vma(page);
1885 	struct page *new_page;
1886 
1887 	if (PageKsm(page)) {
1888 		if (page_stable_node(page) &&
1889 		    !(ksm_run & KSM_RUN_UNMERGE))
1890 			return page;	/* no need to copy it */
1891 	} else if (!anon_vma) {
1892 		return page;		/* no need to copy it */
1893 	} else if (anon_vma->root == vma->anon_vma->root &&
1894 		 page->index == linear_page_index(vma, address)) {
1895 		return page;		/* still no need to copy it */
1896 	}
1897 	if (!PageUptodate(page))
1898 		return page;		/* let do_swap_page report the error */
1899 
1900 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1901 	if (new_page) {
1902 		copy_user_highpage(new_page, page, address, vma);
1903 
1904 		SetPageDirty(new_page);
1905 		__SetPageUptodate(new_page);
1906 		__set_page_locked(new_page);
1907 	}
1908 
1909 	return new_page;
1910 }
1911 
1912 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1913 {
1914 	struct stable_node *stable_node;
1915 	struct rmap_item *rmap_item;
1916 	int ret = SWAP_AGAIN;
1917 	int search_new_forks = 0;
1918 
1919 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1920 
1921 	/*
1922 	 * Rely on the page lock to protect against concurrent modifications
1923 	 * to that page's node of the stable tree.
1924 	 */
1925 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1926 
1927 	stable_node = page_stable_node(page);
1928 	if (!stable_node)
1929 		return ret;
1930 again:
1931 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1932 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1933 		struct anon_vma_chain *vmac;
1934 		struct vm_area_struct *vma;
1935 
1936 		cond_resched();
1937 		anon_vma_lock_read(anon_vma);
1938 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1939 					       0, ULONG_MAX) {
1940 			cond_resched();
1941 			vma = vmac->vma;
1942 			if (rmap_item->address < vma->vm_start ||
1943 			    rmap_item->address >= vma->vm_end)
1944 				continue;
1945 			/*
1946 			 * Initially we examine only the vma which covers this
1947 			 * rmap_item; but later, if there is still work to do,
1948 			 * we examine covering vmas in other mms: in case they
1949 			 * were forked from the original since ksmd passed.
1950 			 */
1951 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1952 				continue;
1953 
1954 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1955 				continue;
1956 
1957 			ret = rwc->rmap_one(page, vma,
1958 					rmap_item->address, rwc->arg);
1959 			if (ret != SWAP_AGAIN) {
1960 				anon_vma_unlock_read(anon_vma);
1961 				goto out;
1962 			}
1963 			if (rwc->done && rwc->done(page)) {
1964 				anon_vma_unlock_read(anon_vma);
1965 				goto out;
1966 			}
1967 		}
1968 		anon_vma_unlock_read(anon_vma);
1969 	}
1970 	if (!search_new_forks++)
1971 		goto again;
1972 out:
1973 	return ret;
1974 }
1975 
1976 #ifdef CONFIG_MIGRATION
1977 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1978 {
1979 	struct stable_node *stable_node;
1980 
1981 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1982 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1983 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1984 
1985 	stable_node = page_stable_node(newpage);
1986 	if (stable_node) {
1987 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1988 		stable_node->kpfn = page_to_pfn(newpage);
1989 		/*
1990 		 * newpage->mapping was set in advance; now we need smp_wmb()
1991 		 * to make sure that the new stable_node->kpfn is visible
1992 		 * to get_ksm_page() before it can see that oldpage->mapping
1993 		 * has gone stale (or that PageSwapCache has been cleared).
1994 		 */
1995 		smp_wmb();
1996 		set_page_stable_node(oldpage, NULL);
1997 	}
1998 }
1999 #endif /* CONFIG_MIGRATION */
2000 
2001 #ifdef CONFIG_MEMORY_HOTREMOVE
2002 static void wait_while_offlining(void)
2003 {
2004 	while (ksm_run & KSM_RUN_OFFLINE) {
2005 		mutex_unlock(&ksm_thread_mutex);
2006 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2007 			    TASK_UNINTERRUPTIBLE);
2008 		mutex_lock(&ksm_thread_mutex);
2009 	}
2010 }
2011 
2012 static void ksm_check_stable_tree(unsigned long start_pfn,
2013 				  unsigned long end_pfn)
2014 {
2015 	struct stable_node *stable_node;
2016 	struct list_head *this, *next;
2017 	struct rb_node *node;
2018 	int nid;
2019 
2020 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2021 		node = rb_first(root_stable_tree + nid);
2022 		while (node) {
2023 			stable_node = rb_entry(node, struct stable_node, node);
2024 			if (stable_node->kpfn >= start_pfn &&
2025 			    stable_node->kpfn < end_pfn) {
2026 				/*
2027 				 * Don't get_ksm_page, page has already gone:
2028 				 * which is why we keep kpfn instead of page*
2029 				 */
2030 				remove_node_from_stable_tree(stable_node);
2031 				node = rb_first(root_stable_tree + nid);
2032 			} else
2033 				node = rb_next(node);
2034 			cond_resched();
2035 		}
2036 	}
2037 	list_for_each_safe(this, next, &migrate_nodes) {
2038 		stable_node = list_entry(this, struct stable_node, list);
2039 		if (stable_node->kpfn >= start_pfn &&
2040 		    stable_node->kpfn < end_pfn)
2041 			remove_node_from_stable_tree(stable_node);
2042 		cond_resched();
2043 	}
2044 }
2045 
2046 static int ksm_memory_callback(struct notifier_block *self,
2047 			       unsigned long action, void *arg)
2048 {
2049 	struct memory_notify *mn = arg;
2050 
2051 	switch (action) {
2052 	case MEM_GOING_OFFLINE:
2053 		/*
2054 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2055 		 * and remove_all_stable_nodes() while memory is going offline:
2056 		 * it is unsafe for them to touch the stable tree at this time.
2057 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2058 		 * which do not need the ksm_thread_mutex are all safe.
2059 		 */
2060 		mutex_lock(&ksm_thread_mutex);
2061 		ksm_run |= KSM_RUN_OFFLINE;
2062 		mutex_unlock(&ksm_thread_mutex);
2063 		break;
2064 
2065 	case MEM_OFFLINE:
2066 		/*
2067 		 * Most of the work is done by page migration; but there might
2068 		 * be a few stable_nodes left over, still pointing to struct
2069 		 * pages which have been offlined: prune those from the tree,
2070 		 * otherwise get_ksm_page() might later try to access a
2071 		 * non-existent struct page.
2072 		 */
2073 		ksm_check_stable_tree(mn->start_pfn,
2074 				      mn->start_pfn + mn->nr_pages);
2075 		/* fallthrough */
2076 
2077 	case MEM_CANCEL_OFFLINE:
2078 		mutex_lock(&ksm_thread_mutex);
2079 		ksm_run &= ~KSM_RUN_OFFLINE;
2080 		mutex_unlock(&ksm_thread_mutex);
2081 
2082 		smp_mb();	/* wake_up_bit advises this */
2083 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2084 		break;
2085 	}
2086 	return NOTIFY_OK;
2087 }
2088 #else
2089 static void wait_while_offlining(void)
2090 {
2091 }
2092 #endif /* CONFIG_MEMORY_HOTREMOVE */
2093 
2094 #ifdef CONFIG_SYSFS
2095 /*
2096  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2097  */
2098 
2099 #define KSM_ATTR_RO(_name) \
2100 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2101 #define KSM_ATTR(_name) \
2102 	static struct kobj_attribute _name##_attr = \
2103 		__ATTR(_name, 0644, _name##_show, _name##_store)
2104 
2105 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2106 				    struct kobj_attribute *attr, char *buf)
2107 {
2108 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2109 }
2110 
2111 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2112 				     struct kobj_attribute *attr,
2113 				     const char *buf, size_t count)
2114 {
2115 	unsigned long msecs;
2116 	int err;
2117 
2118 	err = kstrtoul(buf, 10, &msecs);
2119 	if (err || msecs > UINT_MAX)
2120 		return -EINVAL;
2121 
2122 	ksm_thread_sleep_millisecs = msecs;
2123 
2124 	return count;
2125 }
2126 KSM_ATTR(sleep_millisecs);
2127 
2128 static ssize_t pages_to_scan_show(struct kobject *kobj,
2129 				  struct kobj_attribute *attr, char *buf)
2130 {
2131 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2132 }
2133 
2134 static ssize_t pages_to_scan_store(struct kobject *kobj,
2135 				   struct kobj_attribute *attr,
2136 				   const char *buf, size_t count)
2137 {
2138 	int err;
2139 	unsigned long nr_pages;
2140 
2141 	err = kstrtoul(buf, 10, &nr_pages);
2142 	if (err || nr_pages > UINT_MAX)
2143 		return -EINVAL;
2144 
2145 	ksm_thread_pages_to_scan = nr_pages;
2146 
2147 	return count;
2148 }
2149 KSM_ATTR(pages_to_scan);
2150 
2151 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2152 			char *buf)
2153 {
2154 	return sprintf(buf, "%lu\n", ksm_run);
2155 }
2156 
2157 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2158 			 const char *buf, size_t count)
2159 {
2160 	int err;
2161 	unsigned long flags;
2162 
2163 	err = kstrtoul(buf, 10, &flags);
2164 	if (err || flags > UINT_MAX)
2165 		return -EINVAL;
2166 	if (flags > KSM_RUN_UNMERGE)
2167 		return -EINVAL;
2168 
2169 	/*
2170 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2171 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2172 	 * breaking COW to free the pages_shared (but leaves mm_slots
2173 	 * on the list for when ksmd may be set running again).
2174 	 */
2175 
2176 	mutex_lock(&ksm_thread_mutex);
2177 	wait_while_offlining();
2178 	if (ksm_run != flags) {
2179 		ksm_run = flags;
2180 		if (flags & KSM_RUN_UNMERGE) {
2181 			set_current_oom_origin();
2182 			err = unmerge_and_remove_all_rmap_items();
2183 			clear_current_oom_origin();
2184 			if (err) {
2185 				ksm_run = KSM_RUN_STOP;
2186 				count = err;
2187 			}
2188 		}
2189 	}
2190 	mutex_unlock(&ksm_thread_mutex);
2191 
2192 	if (flags & KSM_RUN_MERGE)
2193 		wake_up_interruptible(&ksm_thread_wait);
2194 
2195 	return count;
2196 }
2197 KSM_ATTR(run);
2198 
2199 #ifdef CONFIG_NUMA
2200 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2201 				struct kobj_attribute *attr, char *buf)
2202 {
2203 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2204 }
2205 
2206 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2207 				   struct kobj_attribute *attr,
2208 				   const char *buf, size_t count)
2209 {
2210 	int err;
2211 	unsigned long knob;
2212 
2213 	err = kstrtoul(buf, 10, &knob);
2214 	if (err)
2215 		return err;
2216 	if (knob > 1)
2217 		return -EINVAL;
2218 
2219 	mutex_lock(&ksm_thread_mutex);
2220 	wait_while_offlining();
2221 	if (ksm_merge_across_nodes != knob) {
2222 		if (ksm_pages_shared || remove_all_stable_nodes())
2223 			err = -EBUSY;
2224 		else if (root_stable_tree == one_stable_tree) {
2225 			struct rb_root *buf;
2226 			/*
2227 			 * This is the first time that we switch away from the
2228 			 * default of merging across nodes: must now allocate
2229 			 * a buffer to hold as many roots as may be needed.
2230 			 * Allocate stable and unstable together:
2231 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2232 			 */
2233 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2234 				      GFP_KERNEL);
2235 			/* Let us assume that RB_ROOT is NULL is zero */
2236 			if (!buf)
2237 				err = -ENOMEM;
2238 			else {
2239 				root_stable_tree = buf;
2240 				root_unstable_tree = buf + nr_node_ids;
2241 				/* Stable tree is empty but not the unstable */
2242 				root_unstable_tree[0] = one_unstable_tree[0];
2243 			}
2244 		}
2245 		if (!err) {
2246 			ksm_merge_across_nodes = knob;
2247 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2248 		}
2249 	}
2250 	mutex_unlock(&ksm_thread_mutex);
2251 
2252 	return err ? err : count;
2253 }
2254 KSM_ATTR(merge_across_nodes);
2255 #endif
2256 
2257 static ssize_t pages_shared_show(struct kobject *kobj,
2258 				 struct kobj_attribute *attr, char *buf)
2259 {
2260 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2261 }
2262 KSM_ATTR_RO(pages_shared);
2263 
2264 static ssize_t pages_sharing_show(struct kobject *kobj,
2265 				  struct kobj_attribute *attr, char *buf)
2266 {
2267 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2268 }
2269 KSM_ATTR_RO(pages_sharing);
2270 
2271 static ssize_t pages_unshared_show(struct kobject *kobj,
2272 				   struct kobj_attribute *attr, char *buf)
2273 {
2274 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2275 }
2276 KSM_ATTR_RO(pages_unshared);
2277 
2278 static ssize_t pages_volatile_show(struct kobject *kobj,
2279 				   struct kobj_attribute *attr, char *buf)
2280 {
2281 	long ksm_pages_volatile;
2282 
2283 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2284 				- ksm_pages_sharing - ksm_pages_unshared;
2285 	/*
2286 	 * It was not worth any locking to calculate that statistic,
2287 	 * but it might therefore sometimes be negative: conceal that.
2288 	 */
2289 	if (ksm_pages_volatile < 0)
2290 		ksm_pages_volatile = 0;
2291 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2292 }
2293 KSM_ATTR_RO(pages_volatile);
2294 
2295 static ssize_t full_scans_show(struct kobject *kobj,
2296 			       struct kobj_attribute *attr, char *buf)
2297 {
2298 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2299 }
2300 KSM_ATTR_RO(full_scans);
2301 
2302 static struct attribute *ksm_attrs[] = {
2303 	&sleep_millisecs_attr.attr,
2304 	&pages_to_scan_attr.attr,
2305 	&run_attr.attr,
2306 	&pages_shared_attr.attr,
2307 	&pages_sharing_attr.attr,
2308 	&pages_unshared_attr.attr,
2309 	&pages_volatile_attr.attr,
2310 	&full_scans_attr.attr,
2311 #ifdef CONFIG_NUMA
2312 	&merge_across_nodes_attr.attr,
2313 #endif
2314 	NULL,
2315 };
2316 
2317 static struct attribute_group ksm_attr_group = {
2318 	.attrs = ksm_attrs,
2319 	.name = "ksm",
2320 };
2321 #endif /* CONFIG_SYSFS */
2322 
2323 static int __init ksm_init(void)
2324 {
2325 	struct task_struct *ksm_thread;
2326 	int err;
2327 
2328 	err = ksm_slab_init();
2329 	if (err)
2330 		goto out;
2331 
2332 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2333 	if (IS_ERR(ksm_thread)) {
2334 		pr_err("ksm: creating kthread failed\n");
2335 		err = PTR_ERR(ksm_thread);
2336 		goto out_free;
2337 	}
2338 
2339 #ifdef CONFIG_SYSFS
2340 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2341 	if (err) {
2342 		pr_err("ksm: register sysfs failed\n");
2343 		kthread_stop(ksm_thread);
2344 		goto out_free;
2345 	}
2346 #else
2347 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2348 
2349 #endif /* CONFIG_SYSFS */
2350 
2351 #ifdef CONFIG_MEMORY_HOTREMOVE
2352 	/* There is no significance to this priority 100 */
2353 	hotplug_memory_notifier(ksm_memory_callback, 100);
2354 #endif
2355 	return 0;
2356 
2357 out_free:
2358 	ksm_slab_free();
2359 out:
2360 	return err;
2361 }
2362 subsys_initcall(ksm_init);
2363