1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/cputime.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 typedef u8 rmap_age_t; 60 61 /** 62 * DOC: Overview 63 * 64 * A few notes about the KSM scanning process, 65 * to make it easier to understand the data structures below: 66 * 67 * In order to reduce excessive scanning, KSM sorts the memory pages by their 68 * contents into a data structure that holds pointers to the pages' locations. 69 * 70 * Since the contents of the pages may change at any moment, KSM cannot just 71 * insert the pages into a normal sorted tree and expect it to find anything. 72 * Therefore KSM uses two data structures - the stable and the unstable tree. 73 * 74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 75 * by their contents. Because each such page is write-protected, searching on 76 * this tree is fully assured to be working (except when pages are unmapped), 77 * and therefore this tree is called the stable tree. 78 * 79 * The stable tree node includes information required for reverse 80 * mapping from a KSM page to virtual addresses that map this page. 81 * 82 * In order to avoid large latencies of the rmap walks on KSM pages, 83 * KSM maintains two types of nodes in the stable tree: 84 * 85 * * the regular nodes that keep the reverse mapping structures in a 86 * linked list 87 * * the "chains" that link nodes ("dups") that represent the same 88 * write protected memory content, but each "dup" corresponds to a 89 * different KSM page copy of that content 90 * 91 * Internally, the regular nodes, "dups" and "chains" are represented 92 * using the same struct ksm_stable_node structure. 93 * 94 * In addition to the stable tree, KSM uses a second data structure called the 95 * unstable tree: this tree holds pointers to pages which have been found to 96 * be "unchanged for a period of time". The unstable tree sorts these pages 97 * by their contents, but since they are not write-protected, KSM cannot rely 98 * upon the unstable tree to work correctly - the unstable tree is liable to 99 * be corrupted as its contents are modified, and so it is called unstable. 100 * 101 * KSM solves this problem by several techniques: 102 * 103 * 1) The unstable tree is flushed every time KSM completes scanning all 104 * memory areas, and then the tree is rebuilt again from the beginning. 105 * 2) KSM will only insert into the unstable tree, pages whose hash value 106 * has not changed since the previous scan of all memory areas. 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 108 * colors of the nodes and not on their contents, assuring that even when 109 * the tree gets "corrupted" it won't get out of balance, so scanning time 110 * remains the same (also, searching and inserting nodes in an rbtree uses 111 * the same algorithm, so we have no overhead when we flush and rebuild). 112 * 4) KSM never flushes the stable tree, which means that even if it were to 113 * take 10 attempts to find a page in the unstable tree, once it is found, 114 * it is secured in the stable tree. (When we scan a new page, we first 115 * compare it against the stable tree, and then against the unstable tree.) 116 * 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 118 * stable trees and multiple unstable trees: one of each for each NUMA node. 119 */ 120 121 /** 122 * struct ksm_mm_slot - ksm information per mm that is being scanned 123 * @slot: hash lookup from mm to mm_slot 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 125 */ 126 struct ksm_mm_slot { 127 struct mm_slot slot; 128 struct ksm_rmap_item *rmap_list; 129 }; 130 131 /** 132 * struct ksm_scan - cursor for scanning 133 * @mm_slot: the current mm_slot we are scanning 134 * @address: the next address inside that to be scanned 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list 136 * @seqnr: count of completed full scans (needed when removing unstable node) 137 * 138 * There is only the one ksm_scan instance of this cursor structure. 139 */ 140 struct ksm_scan { 141 struct ksm_mm_slot *mm_slot; 142 unsigned long address; 143 struct ksm_rmap_item **rmap_list; 144 unsigned long seqnr; 145 }; 146 147 /** 148 * struct ksm_stable_node - node of the stable rbtree 149 * @node: rb node of this ksm page in the stable tree 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 152 * @list: linked into migrate_nodes, pending placement in the proper node tree 153 * @hlist: hlist head of rmap_items using this ksm page 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 155 * @chain_prune_time: time of the last full garbage collection 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 158 */ 159 struct ksm_stable_node { 160 union { 161 struct rb_node node; /* when node of stable tree */ 162 struct { /* when listed for migration */ 163 struct list_head *head; 164 struct { 165 struct hlist_node hlist_dup; 166 struct list_head list; 167 }; 168 }; 169 }; 170 struct hlist_head hlist; 171 union { 172 unsigned long kpfn; 173 unsigned long chain_prune_time; 174 }; 175 /* 176 * STABLE_NODE_CHAIN can be any negative number in 177 * rmap_hlist_len negative range, but better not -1 to be able 178 * to reliably detect underflows. 179 */ 180 #define STABLE_NODE_CHAIN -1024 181 int rmap_hlist_len; 182 #ifdef CONFIG_NUMA 183 int nid; 184 #endif 185 }; 186 187 /** 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 191 * @nid: NUMA node id of unstable tree in which linked (may not match page) 192 * @mm: the memory structure this rmap_item is pointing into 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 194 * @oldchecksum: previous checksum of the page at that virtual address 195 * @node: rb node of this rmap_item in the unstable tree 196 * @head: pointer to stable_node heading this list in the stable tree 197 * @hlist: link into hlist of rmap_items hanging off that stable_node 198 * @age: number of scan iterations since creation 199 * @remaining_skips: how many scans to skip 200 */ 201 struct ksm_rmap_item { 202 struct ksm_rmap_item *rmap_list; 203 union { 204 struct anon_vma *anon_vma; /* when stable */ 205 #ifdef CONFIG_NUMA 206 int nid; /* when node of unstable tree */ 207 #endif 208 }; 209 struct mm_struct *mm; 210 unsigned long address; /* + low bits used for flags below */ 211 unsigned int oldchecksum; /* when unstable */ 212 rmap_age_t age; 213 rmap_age_t remaining_skips; 214 union { 215 struct rb_node node; /* when node of unstable tree */ 216 struct { /* when listed from stable tree */ 217 struct ksm_stable_node *head; 218 struct hlist_node hlist; 219 }; 220 }; 221 }; 222 223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 226 227 /* The stable and unstable tree heads */ 228 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 229 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 230 static struct rb_root *root_stable_tree = one_stable_tree; 231 static struct rb_root *root_unstable_tree = one_unstable_tree; 232 233 /* Recently migrated nodes of stable tree, pending proper placement */ 234 static LIST_HEAD(migrate_nodes); 235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 236 237 #define MM_SLOTS_HASH_BITS 10 238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 239 240 static struct ksm_mm_slot ksm_mm_head = { 241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 242 }; 243 static struct ksm_scan ksm_scan = { 244 .mm_slot = &ksm_mm_head, 245 }; 246 247 static struct kmem_cache *rmap_item_cache; 248 static struct kmem_cache *stable_node_cache; 249 static struct kmem_cache *mm_slot_cache; 250 251 /* Default number of pages to scan per batch */ 252 #define DEFAULT_PAGES_TO_SCAN 100 253 254 /* The number of pages scanned */ 255 static unsigned long ksm_pages_scanned; 256 257 /* The number of nodes in the stable tree */ 258 static unsigned long ksm_pages_shared; 259 260 /* The number of page slots additionally sharing those nodes */ 261 static unsigned long ksm_pages_sharing; 262 263 /* The number of nodes in the unstable tree */ 264 static unsigned long ksm_pages_unshared; 265 266 /* The number of rmap_items in use: to calculate pages_volatile */ 267 static unsigned long ksm_rmap_items; 268 269 /* The number of stable_node chains */ 270 static unsigned long ksm_stable_node_chains; 271 272 /* The number of stable_node dups linked to the stable_node chains */ 273 static unsigned long ksm_stable_node_dups; 274 275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 277 278 /* Maximum number of page slots sharing a stable node */ 279 static int ksm_max_page_sharing = 256; 280 281 /* Number of pages ksmd should scan in one batch */ 282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 283 284 /* Milliseconds ksmd should sleep between batches */ 285 static unsigned int ksm_thread_sleep_millisecs = 20; 286 287 /* Checksum of an empty (zeroed) page */ 288 static unsigned int zero_checksum __read_mostly; 289 290 /* Whether to merge empty (zeroed) pages with actual zero pages */ 291 static bool ksm_use_zero_pages __read_mostly; 292 293 /* Skip pages that couldn't be de-duplicated previously */ 294 /* Default to true at least temporarily, for testing */ 295 static bool ksm_smart_scan = true; 296 297 /* The number of zero pages which is placed by KSM */ 298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); 299 300 /* The number of pages that have been skipped due to "smart scanning" */ 301 static unsigned long ksm_pages_skipped; 302 303 /* Don't scan more than max pages per batch. */ 304 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 305 306 /* Min CPU for scanning pages per scan */ 307 #define KSM_ADVISOR_MIN_CPU 10 308 309 /* Max CPU for scanning pages per scan */ 310 static unsigned int ksm_advisor_max_cpu = 70; 311 312 /* Target scan time in seconds to analyze all KSM candidate pages. */ 313 static unsigned long ksm_advisor_target_scan_time = 200; 314 315 /* Exponentially weighted moving average. */ 316 #define EWMA_WEIGHT 30 317 318 /** 319 * struct advisor_ctx - metadata for KSM advisor 320 * @start_scan: start time of the current scan 321 * @scan_time: scan time of previous scan 322 * @change: change in percent to pages_to_scan parameter 323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 324 */ 325 struct advisor_ctx { 326 ktime_t start_scan; 327 unsigned long scan_time; 328 unsigned long change; 329 unsigned long long cpu_time; 330 }; 331 static struct advisor_ctx advisor_ctx; 332 333 /* Define different advisor's */ 334 enum ksm_advisor_type { 335 KSM_ADVISOR_NONE, 336 KSM_ADVISOR_SCAN_TIME, 337 }; 338 static enum ksm_advisor_type ksm_advisor; 339 340 #ifdef CONFIG_SYSFS 341 /* 342 * Only called through the sysfs control interface: 343 */ 344 345 /* At least scan this many pages per batch. */ 346 static unsigned long ksm_advisor_min_pages_to_scan = 500; 347 348 static void set_advisor_defaults(void) 349 { 350 if (ksm_advisor == KSM_ADVISOR_NONE) { 351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 353 advisor_ctx = (const struct advisor_ctx){ 0 }; 354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 355 } 356 } 357 #endif /* CONFIG_SYSFS */ 358 359 static inline void advisor_start_scan(void) 360 { 361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 362 advisor_ctx.start_scan = ktime_get(); 363 } 364 365 /* 366 * Use previous scan time if available, otherwise use current scan time as an 367 * approximation for the previous scan time. 368 */ 369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 370 unsigned long scan_time) 371 { 372 return ctx->scan_time ? ctx->scan_time : scan_time; 373 } 374 375 /* Calculate exponential weighted moving average */ 376 static unsigned long ewma(unsigned long prev, unsigned long curr) 377 { 378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 379 } 380 381 /* 382 * The scan time advisor is based on the current scan rate and the target 383 * scan rate. 384 * 385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 386 * 387 * To avoid perturbations it calculates a change factor of previous changes. 388 * A new change factor is calculated for each iteration and it uses an 389 * exponentially weighted moving average. The new pages_to_scan value is 390 * multiplied with that change factor: 391 * 392 * new_pages_to_scan *= change facor 393 * 394 * The new_pages_to_scan value is limited by the cpu min and max values. It 395 * calculates the cpu percent for the last scan and calculates the new 396 * estimated cpu percent cost for the next scan. That value is capped by the 397 * cpu min and max setting. 398 * 399 * In addition the new pages_to_scan value is capped by the max and min 400 * limits. 401 */ 402 static void scan_time_advisor(void) 403 { 404 unsigned int cpu_percent; 405 unsigned long cpu_time; 406 unsigned long cpu_time_diff; 407 unsigned long cpu_time_diff_ms; 408 unsigned long pages; 409 unsigned long per_page_cost; 410 unsigned long factor; 411 unsigned long change; 412 unsigned long last_scan_time; 413 unsigned long scan_time; 414 415 /* Convert scan time to seconds */ 416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 417 MSEC_PER_SEC); 418 scan_time = scan_time ? scan_time : 1; 419 420 /* Calculate CPU consumption of ksmd background thread */ 421 cpu_time = task_sched_runtime(current); 422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 424 425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 426 cpu_percent = cpu_percent ? cpu_percent : 1; 427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 428 429 /* Calculate scan time as percentage of target scan time */ 430 factor = ksm_advisor_target_scan_time * 100 / scan_time; 431 factor = factor ? factor : 1; 432 433 /* 434 * Calculate scan time as percentage of last scan time and use 435 * exponentially weighted average to smooth it 436 */ 437 change = scan_time * 100 / last_scan_time; 438 change = change ? change : 1; 439 change = ewma(advisor_ctx.change, change); 440 441 /* Calculate new scan rate based on target scan rate. */ 442 pages = ksm_thread_pages_to_scan * 100 / factor; 443 /* Update pages_to_scan by weighted change percentage. */ 444 pages = pages * change / 100; 445 446 /* Cap new pages_to_scan value */ 447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 448 per_page_cost = per_page_cost ? per_page_cost : 1; 449 450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 452 pages = min(pages, ksm_advisor_max_pages_to_scan); 453 454 /* Update advisor context */ 455 advisor_ctx.change = change; 456 advisor_ctx.scan_time = scan_time; 457 advisor_ctx.cpu_time = cpu_time; 458 459 ksm_thread_pages_to_scan = pages; 460 trace_ksm_advisor(scan_time, pages, cpu_percent); 461 } 462 463 static void advisor_stop_scan(void) 464 { 465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 466 scan_time_advisor(); 467 } 468 469 #ifdef CONFIG_NUMA 470 /* Zeroed when merging across nodes is not allowed */ 471 static unsigned int ksm_merge_across_nodes = 1; 472 static int ksm_nr_node_ids = 1; 473 #else 474 #define ksm_merge_across_nodes 1U 475 #define ksm_nr_node_ids 1 476 #endif 477 478 #define KSM_RUN_STOP 0 479 #define KSM_RUN_MERGE 1 480 #define KSM_RUN_UNMERGE 2 481 #define KSM_RUN_OFFLINE 4 482 static unsigned long ksm_run = KSM_RUN_STOP; 483 static void wait_while_offlining(void); 484 485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 487 static DEFINE_MUTEX(ksm_thread_mutex); 488 static DEFINE_SPINLOCK(ksm_mmlist_lock); 489 490 static int __init ksm_slab_init(void) 491 { 492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); 493 if (!rmap_item_cache) 494 goto out; 495 496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); 497 if (!stable_node_cache) 498 goto out_free1; 499 500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); 501 if (!mm_slot_cache) 502 goto out_free2; 503 504 return 0; 505 506 out_free2: 507 kmem_cache_destroy(stable_node_cache); 508 out_free1: 509 kmem_cache_destroy(rmap_item_cache); 510 out: 511 return -ENOMEM; 512 } 513 514 static void __init ksm_slab_free(void) 515 { 516 kmem_cache_destroy(mm_slot_cache); 517 kmem_cache_destroy(stable_node_cache); 518 kmem_cache_destroy(rmap_item_cache); 519 mm_slot_cache = NULL; 520 } 521 522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 523 { 524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 525 } 526 527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 528 { 529 return dup->head == STABLE_NODE_DUP_HEAD; 530 } 531 532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 533 struct ksm_stable_node *chain) 534 { 535 VM_BUG_ON(is_stable_node_dup(dup)); 536 dup->head = STABLE_NODE_DUP_HEAD; 537 VM_BUG_ON(!is_stable_node_chain(chain)); 538 hlist_add_head(&dup->hlist_dup, &chain->hlist); 539 ksm_stable_node_dups++; 540 } 541 542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 543 { 544 VM_BUG_ON(!is_stable_node_dup(dup)); 545 hlist_del(&dup->hlist_dup); 546 ksm_stable_node_dups--; 547 } 548 549 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 550 { 551 VM_BUG_ON(is_stable_node_chain(dup)); 552 if (is_stable_node_dup(dup)) 553 __stable_node_dup_del(dup); 554 else 555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 556 #ifdef CONFIG_DEBUG_VM 557 dup->head = NULL; 558 #endif 559 } 560 561 static inline struct ksm_rmap_item *alloc_rmap_item(void) 562 { 563 struct ksm_rmap_item *rmap_item; 564 565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 566 __GFP_NORETRY | __GFP_NOWARN); 567 if (rmap_item) 568 ksm_rmap_items++; 569 return rmap_item; 570 } 571 572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 573 { 574 ksm_rmap_items--; 575 rmap_item->mm->ksm_rmap_items--; 576 rmap_item->mm = NULL; /* debug safety */ 577 kmem_cache_free(rmap_item_cache, rmap_item); 578 } 579 580 static inline struct ksm_stable_node *alloc_stable_node(void) 581 { 582 /* 583 * The allocation can take too long with GFP_KERNEL when memory is under 584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 585 * grants access to memory reserves, helping to avoid this problem. 586 */ 587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 588 } 589 590 static inline void free_stable_node(struct ksm_stable_node *stable_node) 591 { 592 VM_BUG_ON(stable_node->rmap_hlist_len && 593 !is_stable_node_chain(stable_node)); 594 kmem_cache_free(stable_node_cache, stable_node); 595 } 596 597 /* 598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 599 * page tables after it has passed through ksm_exit() - which, if necessary, 600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 601 * a special flag: they can just back out as soon as mm_users goes to zero. 602 * ksm_test_exit() is used throughout to make this test for exit: in some 603 * places for correctness, in some places just to avoid unnecessary work. 604 */ 605 static inline bool ksm_test_exit(struct mm_struct *mm) 606 { 607 return atomic_read(&mm->mm_users) == 0; 608 } 609 610 /* 611 * We use break_ksm to break COW on a ksm page by triggering unsharing, 612 * such that the ksm page will get replaced by an exclusive anonymous page. 613 * 614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 615 * in case the application has unmapped and remapped mm,addr meanwhile. 616 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 617 * mmap of /dev/mem, where we would not want to touch it. 618 * 619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 620 * of the process that owns 'vma'. We also do not want to enforce 621 * protection keys here anyway. 622 */ 623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 624 { 625 vm_fault_t ret = 0; 626 627 if (lock_vma) 628 vma_start_write(vma); 629 630 do { 631 bool ksm_page = false; 632 struct folio_walk fw; 633 struct folio *folio; 634 635 cond_resched(); 636 folio = folio_walk_start(&fw, vma, addr, 637 FW_MIGRATION | FW_ZEROPAGE); 638 if (folio) { 639 /* Small folio implies FW_LEVEL_PTE. */ 640 if (!folio_test_large(folio) && 641 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte))) 642 ksm_page = true; 643 folio_walk_end(&fw, vma); 644 } 645 646 if (!ksm_page) 647 return 0; 648 ret = handle_mm_fault(vma, addr, 649 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 650 NULL); 651 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 652 /* 653 * We must loop until we no longer find a KSM page because 654 * handle_mm_fault() may back out if there's any difficulty e.g. if 655 * pte accessed bit gets updated concurrently. 656 * 657 * VM_FAULT_SIGBUS could occur if we race with truncation of the 658 * backing file, which also invalidates anonymous pages: that's 659 * okay, that truncation will have unmapped the KSM page for us. 660 * 661 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 662 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 663 * current task has TIF_MEMDIE set, and will be OOM killed on return 664 * to user; and ksmd, having no mm, would never be chosen for that. 665 * 666 * But if the mm is in a limited mem_cgroup, then the fault may fail 667 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 668 * even ksmd can fail in this way - though it's usually breaking ksm 669 * just to undo a merge it made a moment before, so unlikely to oom. 670 * 671 * That's a pity: we might therefore have more kernel pages allocated 672 * than we're counting as nodes in the stable tree; but ksm_do_scan 673 * will retry to break_cow on each pass, so should recover the page 674 * in due course. The important thing is to not let VM_MERGEABLE 675 * be cleared while any such pages might remain in the area. 676 */ 677 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 678 } 679 680 static bool vma_ksm_compatible(struct vm_area_struct *vma) 681 { 682 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 683 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 684 VM_MIXEDMAP| VM_DROPPABLE)) 685 return false; /* just ignore the advice */ 686 687 if (vma_is_dax(vma)) 688 return false; 689 690 #ifdef VM_SAO 691 if (vma->vm_flags & VM_SAO) 692 return false; 693 #endif 694 #ifdef VM_SPARC_ADI 695 if (vma->vm_flags & VM_SPARC_ADI) 696 return false; 697 #endif 698 699 return true; 700 } 701 702 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 703 unsigned long addr) 704 { 705 struct vm_area_struct *vma; 706 if (ksm_test_exit(mm)) 707 return NULL; 708 vma = vma_lookup(mm, addr); 709 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 710 return NULL; 711 return vma; 712 } 713 714 static void break_cow(struct ksm_rmap_item *rmap_item) 715 { 716 struct mm_struct *mm = rmap_item->mm; 717 unsigned long addr = rmap_item->address; 718 struct vm_area_struct *vma; 719 720 /* 721 * It is not an accident that whenever we want to break COW 722 * to undo, we also need to drop a reference to the anon_vma. 723 */ 724 put_anon_vma(rmap_item->anon_vma); 725 726 mmap_read_lock(mm); 727 vma = find_mergeable_vma(mm, addr); 728 if (vma) 729 break_ksm(vma, addr, false); 730 mmap_read_unlock(mm); 731 } 732 733 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 734 { 735 struct mm_struct *mm = rmap_item->mm; 736 unsigned long addr = rmap_item->address; 737 struct vm_area_struct *vma; 738 struct page *page = NULL; 739 struct folio_walk fw; 740 struct folio *folio; 741 742 mmap_read_lock(mm); 743 vma = find_mergeable_vma(mm, addr); 744 if (!vma) 745 goto out; 746 747 folio = folio_walk_start(&fw, vma, addr, 0); 748 if (folio) { 749 if (!folio_is_zone_device(folio) && 750 folio_test_anon(folio)) { 751 folio_get(folio); 752 page = fw.page; 753 } 754 folio_walk_end(&fw, vma); 755 } 756 out: 757 if (page) { 758 flush_anon_page(vma, page, addr); 759 flush_dcache_page(page); 760 } 761 mmap_read_unlock(mm); 762 return page; 763 } 764 765 /* 766 * This helper is used for getting right index into array of tree roots. 767 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 768 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 769 * every node has its own stable and unstable tree. 770 */ 771 static inline int get_kpfn_nid(unsigned long kpfn) 772 { 773 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 774 } 775 776 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 777 struct rb_root *root) 778 { 779 struct ksm_stable_node *chain = alloc_stable_node(); 780 VM_BUG_ON(is_stable_node_chain(dup)); 781 if (likely(chain)) { 782 INIT_HLIST_HEAD(&chain->hlist); 783 chain->chain_prune_time = jiffies; 784 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 785 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 786 chain->nid = NUMA_NO_NODE; /* debug */ 787 #endif 788 ksm_stable_node_chains++; 789 790 /* 791 * Put the stable node chain in the first dimension of 792 * the stable tree and at the same time remove the old 793 * stable node. 794 */ 795 rb_replace_node(&dup->node, &chain->node, root); 796 797 /* 798 * Move the old stable node to the second dimension 799 * queued in the hlist_dup. The invariant is that all 800 * dup stable_nodes in the chain->hlist point to pages 801 * that are write protected and have the exact same 802 * content. 803 */ 804 stable_node_chain_add_dup(dup, chain); 805 } 806 return chain; 807 } 808 809 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 810 struct rb_root *root) 811 { 812 rb_erase(&chain->node, root); 813 free_stable_node(chain); 814 ksm_stable_node_chains--; 815 } 816 817 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 818 { 819 struct ksm_rmap_item *rmap_item; 820 821 /* check it's not STABLE_NODE_CHAIN or negative */ 822 BUG_ON(stable_node->rmap_hlist_len < 0); 823 824 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 825 if (rmap_item->hlist.next) { 826 ksm_pages_sharing--; 827 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 828 } else { 829 ksm_pages_shared--; 830 } 831 832 rmap_item->mm->ksm_merging_pages--; 833 834 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 835 stable_node->rmap_hlist_len--; 836 put_anon_vma(rmap_item->anon_vma); 837 rmap_item->address &= PAGE_MASK; 838 cond_resched(); 839 } 840 841 /* 842 * We need the second aligned pointer of the migrate_nodes 843 * list_head to stay clear from the rb_parent_color union 844 * (aligned and different than any node) and also different 845 * from &migrate_nodes. This will verify that future list.h changes 846 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 847 */ 848 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 849 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 850 851 trace_ksm_remove_ksm_page(stable_node->kpfn); 852 if (stable_node->head == &migrate_nodes) 853 list_del(&stable_node->list); 854 else 855 stable_node_dup_del(stable_node); 856 free_stable_node(stable_node); 857 } 858 859 enum ksm_get_folio_flags { 860 KSM_GET_FOLIO_NOLOCK, 861 KSM_GET_FOLIO_LOCK, 862 KSM_GET_FOLIO_TRYLOCK 863 }; 864 865 /* 866 * ksm_get_folio: checks if the page indicated by the stable node 867 * is still its ksm page, despite having held no reference to it. 868 * In which case we can trust the content of the page, and it 869 * returns the gotten page; but if the page has now been zapped, 870 * remove the stale node from the stable tree and return NULL. 871 * But beware, the stable node's page might be being migrated. 872 * 873 * You would expect the stable_node to hold a reference to the ksm page. 874 * But if it increments the page's count, swapping out has to wait for 875 * ksmd to come around again before it can free the page, which may take 876 * seconds or even minutes: much too unresponsive. So instead we use a 877 * "keyhole reference": access to the ksm page from the stable node peeps 878 * out through its keyhole to see if that page still holds the right key, 879 * pointing back to this stable node. This relies on freeing a PageAnon 880 * page to reset its page->mapping to NULL, and relies on no other use of 881 * a page to put something that might look like our key in page->mapping. 882 * is on its way to being freed; but it is an anomaly to bear in mind. 883 */ 884 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 885 enum ksm_get_folio_flags flags) 886 { 887 struct folio *folio; 888 void *expected_mapping; 889 unsigned long kpfn; 890 891 expected_mapping = (void *)((unsigned long)stable_node | 892 PAGE_MAPPING_KSM); 893 again: 894 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 895 folio = pfn_folio(kpfn); 896 if (READ_ONCE(folio->mapping) != expected_mapping) 897 goto stale; 898 899 /* 900 * We cannot do anything with the page while its refcount is 0. 901 * Usually 0 means free, or tail of a higher-order page: in which 902 * case this node is no longer referenced, and should be freed; 903 * however, it might mean that the page is under page_ref_freeze(). 904 * The __remove_mapping() case is easy, again the node is now stale; 905 * the same is in reuse_ksm_page() case; but if page is swapcache 906 * in folio_migrate_mapping(), it might still be our page, 907 * in which case it's essential to keep the node. 908 */ 909 while (!folio_try_get(folio)) { 910 /* 911 * Another check for folio->mapping != expected_mapping 912 * would work here too. We have chosen to test the 913 * swapcache flag to optimize the common case, when the 914 * folio is or is about to be freed: the swapcache flag 915 * is cleared (under spin_lock_irq) in the ref_freeze 916 * section of __remove_mapping(); but anon folio->mapping 917 * is reset to NULL later, in free_pages_prepare(). 918 */ 919 if (!folio_test_swapcache(folio)) 920 goto stale; 921 cpu_relax(); 922 } 923 924 if (READ_ONCE(folio->mapping) != expected_mapping) { 925 folio_put(folio); 926 goto stale; 927 } 928 929 if (flags == KSM_GET_FOLIO_TRYLOCK) { 930 if (!folio_trylock(folio)) { 931 folio_put(folio); 932 return ERR_PTR(-EBUSY); 933 } 934 } else if (flags == KSM_GET_FOLIO_LOCK) 935 folio_lock(folio); 936 937 if (flags != KSM_GET_FOLIO_NOLOCK) { 938 if (READ_ONCE(folio->mapping) != expected_mapping) { 939 folio_unlock(folio); 940 folio_put(folio); 941 goto stale; 942 } 943 } 944 return folio; 945 946 stale: 947 /* 948 * We come here from above when folio->mapping or the swapcache flag 949 * suggests that the node is stale; but it might be under migration. 950 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 951 * before checking whether node->kpfn has been changed. 952 */ 953 smp_rmb(); 954 if (READ_ONCE(stable_node->kpfn) != kpfn) 955 goto again; 956 remove_node_from_stable_tree(stable_node); 957 return NULL; 958 } 959 960 /* 961 * Removing rmap_item from stable or unstable tree. 962 * This function will clean the information from the stable/unstable tree. 963 */ 964 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 965 { 966 if (rmap_item->address & STABLE_FLAG) { 967 struct ksm_stable_node *stable_node; 968 struct folio *folio; 969 970 stable_node = rmap_item->head; 971 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 972 if (!folio) 973 goto out; 974 975 hlist_del(&rmap_item->hlist); 976 folio_unlock(folio); 977 folio_put(folio); 978 979 if (!hlist_empty(&stable_node->hlist)) 980 ksm_pages_sharing--; 981 else 982 ksm_pages_shared--; 983 984 rmap_item->mm->ksm_merging_pages--; 985 986 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 987 stable_node->rmap_hlist_len--; 988 989 put_anon_vma(rmap_item->anon_vma); 990 rmap_item->head = NULL; 991 rmap_item->address &= PAGE_MASK; 992 993 } else if (rmap_item->address & UNSTABLE_FLAG) { 994 unsigned char age; 995 /* 996 * Usually ksmd can and must skip the rb_erase, because 997 * root_unstable_tree was already reset to RB_ROOT. 998 * But be careful when an mm is exiting: do the rb_erase 999 * if this rmap_item was inserted by this scan, rather 1000 * than left over from before. 1001 */ 1002 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1003 BUG_ON(age > 1); 1004 if (!age) 1005 rb_erase(&rmap_item->node, 1006 root_unstable_tree + NUMA(rmap_item->nid)); 1007 ksm_pages_unshared--; 1008 rmap_item->address &= PAGE_MASK; 1009 } 1010 out: 1011 cond_resched(); /* we're called from many long loops */ 1012 } 1013 1014 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1015 { 1016 while (*rmap_list) { 1017 struct ksm_rmap_item *rmap_item = *rmap_list; 1018 *rmap_list = rmap_item->rmap_list; 1019 remove_rmap_item_from_tree(rmap_item); 1020 free_rmap_item(rmap_item); 1021 } 1022 } 1023 1024 /* 1025 * Though it's very tempting to unmerge rmap_items from stable tree rather 1026 * than check every pte of a given vma, the locking doesn't quite work for 1027 * that - an rmap_item is assigned to the stable tree after inserting ksm 1028 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1029 * rmap_items from parent to child at fork time (so as not to waste time 1030 * if exit comes before the next scan reaches it). 1031 * 1032 * Similarly, although we'd like to remove rmap_items (so updating counts 1033 * and freeing memory) when unmerging an area, it's easier to leave that 1034 * to the next pass of ksmd - consider, for example, how ksmd might be 1035 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1036 */ 1037 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1038 unsigned long start, unsigned long end, bool lock_vma) 1039 { 1040 unsigned long addr; 1041 int err = 0; 1042 1043 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1044 if (ksm_test_exit(vma->vm_mm)) 1045 break; 1046 if (signal_pending(current)) 1047 err = -ERESTARTSYS; 1048 else 1049 err = break_ksm(vma, addr, lock_vma); 1050 } 1051 return err; 1052 } 1053 1054 static inline 1055 struct ksm_stable_node *folio_stable_node(const struct folio *folio) 1056 { 1057 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1058 } 1059 1060 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1061 { 1062 return folio_stable_node(page_folio(page)); 1063 } 1064 1065 static inline void folio_set_stable_node(struct folio *folio, 1066 struct ksm_stable_node *stable_node) 1067 { 1068 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1069 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 1070 } 1071 1072 #ifdef CONFIG_SYSFS 1073 /* 1074 * Only called through the sysfs control interface: 1075 */ 1076 static int remove_stable_node(struct ksm_stable_node *stable_node) 1077 { 1078 struct folio *folio; 1079 int err; 1080 1081 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1082 if (!folio) { 1083 /* 1084 * ksm_get_folio did remove_node_from_stable_tree itself. 1085 */ 1086 return 0; 1087 } 1088 1089 /* 1090 * Page could be still mapped if this races with __mmput() running in 1091 * between ksm_exit() and exit_mmap(). Just refuse to let 1092 * merge_across_nodes/max_page_sharing be switched. 1093 */ 1094 err = -EBUSY; 1095 if (!folio_mapped(folio)) { 1096 /* 1097 * The stable node did not yet appear stale to ksm_get_folio(), 1098 * since that allows for an unmapped ksm folio to be recognized 1099 * right up until it is freed; but the node is safe to remove. 1100 * This folio might be in an LRU cache waiting to be freed, 1101 * or it might be in the swapcache (perhaps under writeback), 1102 * or it might have been removed from swapcache a moment ago. 1103 */ 1104 folio_set_stable_node(folio, NULL); 1105 remove_node_from_stable_tree(stable_node); 1106 err = 0; 1107 } 1108 1109 folio_unlock(folio); 1110 folio_put(folio); 1111 return err; 1112 } 1113 1114 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1115 struct rb_root *root) 1116 { 1117 struct ksm_stable_node *dup; 1118 struct hlist_node *hlist_safe; 1119 1120 if (!is_stable_node_chain(stable_node)) { 1121 VM_BUG_ON(is_stable_node_dup(stable_node)); 1122 if (remove_stable_node(stable_node)) 1123 return true; 1124 else 1125 return false; 1126 } 1127 1128 hlist_for_each_entry_safe(dup, hlist_safe, 1129 &stable_node->hlist, hlist_dup) { 1130 VM_BUG_ON(!is_stable_node_dup(dup)); 1131 if (remove_stable_node(dup)) 1132 return true; 1133 } 1134 BUG_ON(!hlist_empty(&stable_node->hlist)); 1135 free_stable_node_chain(stable_node, root); 1136 return false; 1137 } 1138 1139 static int remove_all_stable_nodes(void) 1140 { 1141 struct ksm_stable_node *stable_node, *next; 1142 int nid; 1143 int err = 0; 1144 1145 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1146 while (root_stable_tree[nid].rb_node) { 1147 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1148 struct ksm_stable_node, node); 1149 if (remove_stable_node_chain(stable_node, 1150 root_stable_tree + nid)) { 1151 err = -EBUSY; 1152 break; /* proceed to next nid */ 1153 } 1154 cond_resched(); 1155 } 1156 } 1157 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1158 if (remove_stable_node(stable_node)) 1159 err = -EBUSY; 1160 cond_resched(); 1161 } 1162 return err; 1163 } 1164 1165 static int unmerge_and_remove_all_rmap_items(void) 1166 { 1167 struct ksm_mm_slot *mm_slot; 1168 struct mm_slot *slot; 1169 struct mm_struct *mm; 1170 struct vm_area_struct *vma; 1171 int err = 0; 1172 1173 spin_lock(&ksm_mmlist_lock); 1174 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1175 struct mm_slot, mm_node); 1176 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1177 spin_unlock(&ksm_mmlist_lock); 1178 1179 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1180 mm_slot = ksm_scan.mm_slot) { 1181 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1182 1183 mm = mm_slot->slot.mm; 1184 mmap_read_lock(mm); 1185 1186 /* 1187 * Exit right away if mm is exiting to avoid lockdep issue in 1188 * the maple tree 1189 */ 1190 if (ksm_test_exit(mm)) 1191 goto mm_exiting; 1192 1193 for_each_vma(vmi, vma) { 1194 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1195 continue; 1196 err = unmerge_ksm_pages(vma, 1197 vma->vm_start, vma->vm_end, false); 1198 if (err) 1199 goto error; 1200 } 1201 1202 mm_exiting: 1203 remove_trailing_rmap_items(&mm_slot->rmap_list); 1204 mmap_read_unlock(mm); 1205 1206 spin_lock(&ksm_mmlist_lock); 1207 slot = list_entry(mm_slot->slot.mm_node.next, 1208 struct mm_slot, mm_node); 1209 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1210 if (ksm_test_exit(mm)) { 1211 hash_del(&mm_slot->slot.hash); 1212 list_del(&mm_slot->slot.mm_node); 1213 spin_unlock(&ksm_mmlist_lock); 1214 1215 mm_slot_free(mm_slot_cache, mm_slot); 1216 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1217 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1218 mmdrop(mm); 1219 } else 1220 spin_unlock(&ksm_mmlist_lock); 1221 } 1222 1223 /* Clean up stable nodes, but don't worry if some are still busy */ 1224 remove_all_stable_nodes(); 1225 ksm_scan.seqnr = 0; 1226 return 0; 1227 1228 error: 1229 mmap_read_unlock(mm); 1230 spin_lock(&ksm_mmlist_lock); 1231 ksm_scan.mm_slot = &ksm_mm_head; 1232 spin_unlock(&ksm_mmlist_lock); 1233 return err; 1234 } 1235 #endif /* CONFIG_SYSFS */ 1236 1237 static u32 calc_checksum(struct page *page) 1238 { 1239 u32 checksum; 1240 void *addr = kmap_local_page(page); 1241 checksum = xxhash(addr, PAGE_SIZE, 0); 1242 kunmap_local(addr); 1243 return checksum; 1244 } 1245 1246 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1247 pte_t *orig_pte) 1248 { 1249 struct mm_struct *mm = vma->vm_mm; 1250 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1251 int swapped; 1252 int err = -EFAULT; 1253 struct mmu_notifier_range range; 1254 bool anon_exclusive; 1255 pte_t entry; 1256 1257 if (WARN_ON_ONCE(folio_test_large(folio))) 1258 return err; 1259 1260 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma); 1261 if (pvmw.address == -EFAULT) 1262 goto out; 1263 1264 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1265 pvmw.address + PAGE_SIZE); 1266 mmu_notifier_invalidate_range_start(&range); 1267 1268 if (!page_vma_mapped_walk(&pvmw)) 1269 goto out_mn; 1270 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1271 goto out_unlock; 1272 1273 entry = ptep_get(pvmw.pte); 1274 /* 1275 * Handle PFN swap PTEs, such as device-exclusive ones, that actually 1276 * map pages: give up just like the next folio_walk would. 1277 */ 1278 if (unlikely(!pte_present(entry))) 1279 goto out_unlock; 1280 1281 anon_exclusive = PageAnonExclusive(&folio->page); 1282 if (pte_write(entry) || pte_dirty(entry) || 1283 anon_exclusive || mm_tlb_flush_pending(mm)) { 1284 swapped = folio_test_swapcache(folio); 1285 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1286 /* 1287 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1288 * take any lock, therefore the check that we are going to make 1289 * with the pagecount against the mapcount is racy and 1290 * O_DIRECT can happen right after the check. 1291 * So we clear the pte and flush the tlb before the check 1292 * this assure us that no O_DIRECT can happen after the check 1293 * or in the middle of the check. 1294 * 1295 * No need to notify as we are downgrading page table to read 1296 * only not changing it to point to a new page. 1297 * 1298 * See Documentation/mm/mmu_notifier.rst 1299 */ 1300 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1301 /* 1302 * Check that no O_DIRECT or similar I/O is in progress on the 1303 * page 1304 */ 1305 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1306 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1307 goto out_unlock; 1308 } 1309 1310 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1311 if (anon_exclusive && 1312 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1313 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1314 goto out_unlock; 1315 } 1316 1317 if (pte_dirty(entry)) 1318 folio_mark_dirty(folio); 1319 entry = pte_mkclean(entry); 1320 1321 if (pte_write(entry)) 1322 entry = pte_wrprotect(entry); 1323 1324 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1325 } 1326 *orig_pte = entry; 1327 err = 0; 1328 1329 out_unlock: 1330 page_vma_mapped_walk_done(&pvmw); 1331 out_mn: 1332 mmu_notifier_invalidate_range_end(&range); 1333 out: 1334 return err; 1335 } 1336 1337 /** 1338 * replace_page - replace page in vma by new ksm page 1339 * @vma: vma that holds the pte pointing to page 1340 * @page: the page we are replacing by kpage 1341 * @kpage: the ksm page we replace page by 1342 * @orig_pte: the original value of the pte 1343 * 1344 * Returns 0 on success, -EFAULT on failure. 1345 */ 1346 static int replace_page(struct vm_area_struct *vma, struct page *page, 1347 struct page *kpage, pte_t orig_pte) 1348 { 1349 struct folio *kfolio = page_folio(kpage); 1350 struct mm_struct *mm = vma->vm_mm; 1351 struct folio *folio = page_folio(page); 1352 pmd_t *pmd; 1353 pmd_t pmde; 1354 pte_t *ptep; 1355 pte_t newpte; 1356 spinlock_t *ptl; 1357 unsigned long addr; 1358 int err = -EFAULT; 1359 struct mmu_notifier_range range; 1360 1361 addr = page_address_in_vma(folio, page, vma); 1362 if (addr == -EFAULT) 1363 goto out; 1364 1365 pmd = mm_find_pmd(mm, addr); 1366 if (!pmd) 1367 goto out; 1368 /* 1369 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1370 * without holding anon_vma lock for write. So when looking for a 1371 * genuine pmde (in which to find pte), test present and !THP together. 1372 */ 1373 pmde = pmdp_get_lockless(pmd); 1374 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1375 goto out; 1376 1377 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1378 addr + PAGE_SIZE); 1379 mmu_notifier_invalidate_range_start(&range); 1380 1381 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1382 if (!ptep) 1383 goto out_mn; 1384 if (!pte_same(ptep_get(ptep), orig_pte)) { 1385 pte_unmap_unlock(ptep, ptl); 1386 goto out_mn; 1387 } 1388 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1389 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1390 kfolio); 1391 1392 /* 1393 * No need to check ksm_use_zero_pages here: we can only have a 1394 * zero_page here if ksm_use_zero_pages was enabled already. 1395 */ 1396 if (!is_zero_pfn(page_to_pfn(kpage))) { 1397 folio_get(kfolio); 1398 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1399 newpte = mk_pte(kpage, vma->vm_page_prot); 1400 } else { 1401 /* 1402 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1403 * we can easily track all KSM-placed zero pages by checking if 1404 * the dirty bit in zero page's PTE is set. 1405 */ 1406 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1407 ksm_map_zero_page(mm); 1408 /* 1409 * We're replacing an anonymous page with a zero page, which is 1410 * not anonymous. We need to do proper accounting otherwise we 1411 * will get wrong values in /proc, and a BUG message in dmesg 1412 * when tearing down the mm. 1413 */ 1414 dec_mm_counter(mm, MM_ANONPAGES); 1415 } 1416 1417 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1418 /* 1419 * No need to notify as we are replacing a read only page with another 1420 * read only page with the same content. 1421 * 1422 * See Documentation/mm/mmu_notifier.rst 1423 */ 1424 ptep_clear_flush(vma, addr, ptep); 1425 set_pte_at(mm, addr, ptep, newpte); 1426 1427 folio_remove_rmap_pte(folio, page, vma); 1428 if (!folio_mapped(folio)) 1429 folio_free_swap(folio); 1430 folio_put(folio); 1431 1432 pte_unmap_unlock(ptep, ptl); 1433 err = 0; 1434 out_mn: 1435 mmu_notifier_invalidate_range_end(&range); 1436 out: 1437 return err; 1438 } 1439 1440 /* 1441 * try_to_merge_one_page - take two pages and merge them into one 1442 * @vma: the vma that holds the pte pointing to page 1443 * @page: the PageAnon page that we want to replace with kpage 1444 * @kpage: the KSM page that we want to map instead of page, 1445 * or NULL the first time when we want to use page as kpage. 1446 * 1447 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1448 */ 1449 static int try_to_merge_one_page(struct vm_area_struct *vma, 1450 struct page *page, struct page *kpage) 1451 { 1452 struct folio *folio = page_folio(page); 1453 pte_t orig_pte = __pte(0); 1454 int err = -EFAULT; 1455 1456 if (page == kpage) /* ksm page forked */ 1457 return 0; 1458 1459 if (!folio_test_anon(folio)) 1460 goto out; 1461 1462 /* 1463 * We need the folio lock to read a stable swapcache flag in 1464 * write_protect_page(). We trylock because we don't want to wait 1465 * here - we prefer to continue scanning and merging different 1466 * pages, then come back to this page when it is unlocked. 1467 */ 1468 if (!folio_trylock(folio)) 1469 goto out; 1470 1471 if (folio_test_large(folio)) { 1472 if (split_huge_page(page)) 1473 goto out_unlock; 1474 folio = page_folio(page); 1475 } 1476 1477 /* 1478 * If this anonymous page is mapped only here, its pte may need 1479 * to be write-protected. If it's mapped elsewhere, all of its 1480 * ptes are necessarily already write-protected. But in either 1481 * case, we need to lock and check page_count is not raised. 1482 */ 1483 if (write_protect_page(vma, folio, &orig_pte) == 0) { 1484 if (!kpage) { 1485 /* 1486 * While we hold folio lock, upgrade folio from 1487 * anon to a NULL stable_node with the KSM flag set: 1488 * stable_tree_insert() will update stable_node. 1489 */ 1490 folio_set_stable_node(folio, NULL); 1491 folio_mark_accessed(folio); 1492 /* 1493 * Page reclaim just frees a clean folio with no dirty 1494 * ptes: make sure that the ksm page would be swapped. 1495 */ 1496 if (!folio_test_dirty(folio)) 1497 folio_mark_dirty(folio); 1498 err = 0; 1499 } else if (pages_identical(page, kpage)) 1500 err = replace_page(vma, page, kpage, orig_pte); 1501 } 1502 1503 out_unlock: 1504 folio_unlock(folio); 1505 out: 1506 return err; 1507 } 1508 1509 /* 1510 * This function returns 0 if the pages were merged or if they are 1511 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. 1512 */ 1513 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, 1514 struct page *page) 1515 { 1516 struct mm_struct *mm = rmap_item->mm; 1517 int err = -EFAULT; 1518 1519 /* 1520 * Same checksum as an empty page. We attempt to merge it with the 1521 * appropriate zero page if the user enabled this via sysfs. 1522 */ 1523 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { 1524 struct vm_area_struct *vma; 1525 1526 mmap_read_lock(mm); 1527 vma = find_mergeable_vma(mm, rmap_item->address); 1528 if (vma) { 1529 err = try_to_merge_one_page(vma, page, 1530 ZERO_PAGE(rmap_item->address)); 1531 trace_ksm_merge_one_page( 1532 page_to_pfn(ZERO_PAGE(rmap_item->address)), 1533 rmap_item, mm, err); 1534 } else { 1535 /* 1536 * If the vma is out of date, we do not need to 1537 * continue. 1538 */ 1539 err = 0; 1540 } 1541 mmap_read_unlock(mm); 1542 } 1543 1544 return err; 1545 } 1546 1547 /* 1548 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1549 * but no new kernel page is allocated: kpage must already be a ksm page. 1550 * 1551 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1552 */ 1553 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1554 struct page *page, struct page *kpage) 1555 { 1556 struct mm_struct *mm = rmap_item->mm; 1557 struct vm_area_struct *vma; 1558 int err = -EFAULT; 1559 1560 mmap_read_lock(mm); 1561 vma = find_mergeable_vma(mm, rmap_item->address); 1562 if (!vma) 1563 goto out; 1564 1565 err = try_to_merge_one_page(vma, page, kpage); 1566 if (err) 1567 goto out; 1568 1569 /* Unstable nid is in union with stable anon_vma: remove first */ 1570 remove_rmap_item_from_tree(rmap_item); 1571 1572 /* Must get reference to anon_vma while still holding mmap_lock */ 1573 rmap_item->anon_vma = vma->anon_vma; 1574 get_anon_vma(vma->anon_vma); 1575 out: 1576 mmap_read_unlock(mm); 1577 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1578 rmap_item, mm, err); 1579 return err; 1580 } 1581 1582 /* 1583 * try_to_merge_two_pages - take two identical pages and prepare them 1584 * to be merged into one page. 1585 * 1586 * This function returns the kpage if we successfully merged two identical 1587 * pages into one ksm page, NULL otherwise. 1588 * 1589 * Note that this function upgrades page to ksm page: if one of the pages 1590 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1591 */ 1592 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1593 struct page *page, 1594 struct ksm_rmap_item *tree_rmap_item, 1595 struct page *tree_page) 1596 { 1597 int err; 1598 1599 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1600 if (!err) { 1601 err = try_to_merge_with_ksm_page(tree_rmap_item, 1602 tree_page, page); 1603 /* 1604 * If that fails, we have a ksm page with only one pte 1605 * pointing to it: so break it. 1606 */ 1607 if (err) 1608 break_cow(rmap_item); 1609 } 1610 return err ? NULL : page_folio(page); 1611 } 1612 1613 static __always_inline 1614 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1615 { 1616 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1617 /* 1618 * Check that at least one mapping still exists, otherwise 1619 * there's no much point to merge and share with this 1620 * stable_node, as the underlying tree_page of the other 1621 * sharer is going to be freed soon. 1622 */ 1623 return stable_node->rmap_hlist_len && 1624 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1625 } 1626 1627 static __always_inline 1628 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1629 { 1630 return __is_page_sharing_candidate(stable_node, 0); 1631 } 1632 1633 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1634 struct ksm_stable_node **_stable_node, 1635 struct rb_root *root, 1636 bool prune_stale_stable_nodes) 1637 { 1638 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1639 struct hlist_node *hlist_safe; 1640 struct folio *folio, *tree_folio = NULL; 1641 int found_rmap_hlist_len; 1642 1643 if (!prune_stale_stable_nodes || 1644 time_before(jiffies, stable_node->chain_prune_time + 1645 msecs_to_jiffies( 1646 ksm_stable_node_chains_prune_millisecs))) 1647 prune_stale_stable_nodes = false; 1648 else 1649 stable_node->chain_prune_time = jiffies; 1650 1651 hlist_for_each_entry_safe(dup, hlist_safe, 1652 &stable_node->hlist, hlist_dup) { 1653 cond_resched(); 1654 /* 1655 * We must walk all stable_node_dup to prune the stale 1656 * stable nodes during lookup. 1657 * 1658 * ksm_get_folio can drop the nodes from the 1659 * stable_node->hlist if they point to freed pages 1660 * (that's why we do a _safe walk). The "dup" 1661 * stable_node parameter itself will be freed from 1662 * under us if it returns NULL. 1663 */ 1664 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1665 if (!folio) 1666 continue; 1667 /* Pick the best candidate if possible. */ 1668 if (!found || (is_page_sharing_candidate(dup) && 1669 (!is_page_sharing_candidate(found) || 1670 dup->rmap_hlist_len > found_rmap_hlist_len))) { 1671 if (found) 1672 folio_put(tree_folio); 1673 found = dup; 1674 found_rmap_hlist_len = found->rmap_hlist_len; 1675 tree_folio = folio; 1676 /* skip put_page for found candidate */ 1677 if (!prune_stale_stable_nodes && 1678 is_page_sharing_candidate(found)) 1679 break; 1680 continue; 1681 } 1682 folio_put(folio); 1683 } 1684 1685 if (found) { 1686 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { 1687 /* 1688 * If there's not just one entry it would 1689 * corrupt memory, better BUG_ON. In KSM 1690 * context with no lock held it's not even 1691 * fatal. 1692 */ 1693 BUG_ON(stable_node->hlist.first->next); 1694 1695 /* 1696 * There's just one entry and it is below the 1697 * deduplication limit so drop the chain. 1698 */ 1699 rb_replace_node(&stable_node->node, &found->node, 1700 root); 1701 free_stable_node(stable_node); 1702 ksm_stable_node_chains--; 1703 ksm_stable_node_dups--; 1704 /* 1705 * NOTE: the caller depends on the stable_node 1706 * to be equal to stable_node_dup if the chain 1707 * was collapsed. 1708 */ 1709 *_stable_node = found; 1710 /* 1711 * Just for robustness, as stable_node is 1712 * otherwise left as a stable pointer, the 1713 * compiler shall optimize it away at build 1714 * time. 1715 */ 1716 stable_node = NULL; 1717 } else if (stable_node->hlist.first != &found->hlist_dup && 1718 __is_page_sharing_candidate(found, 1)) { 1719 /* 1720 * If the found stable_node dup can accept one 1721 * more future merge (in addition to the one 1722 * that is underway) and is not at the head of 1723 * the chain, put it there so next search will 1724 * be quicker in the !prune_stale_stable_nodes 1725 * case. 1726 * 1727 * NOTE: it would be inaccurate to use nr > 1 1728 * instead of checking the hlist.first pointer 1729 * directly, because in the 1730 * prune_stale_stable_nodes case "nr" isn't 1731 * the position of the found dup in the chain, 1732 * but the total number of dups in the chain. 1733 */ 1734 hlist_del(&found->hlist_dup); 1735 hlist_add_head(&found->hlist_dup, 1736 &stable_node->hlist); 1737 } 1738 } else { 1739 /* Its hlist must be empty if no one found. */ 1740 free_stable_node_chain(stable_node, root); 1741 } 1742 1743 *_stable_node_dup = found; 1744 return tree_folio; 1745 } 1746 1747 /* 1748 * Like for ksm_get_folio, this function can free the *_stable_node and 1749 * *_stable_node_dup if the returned tree_page is NULL. 1750 * 1751 * It can also free and overwrite *_stable_node with the found 1752 * stable_node_dup if the chain is collapsed (in which case 1753 * *_stable_node will be equal to *_stable_node_dup like if the chain 1754 * never existed). It's up to the caller to verify tree_page is not 1755 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1756 * 1757 * *_stable_node_dup is really a second output parameter of this 1758 * function and will be overwritten in all cases, the caller doesn't 1759 * need to initialize it. 1760 */ 1761 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1762 struct ksm_stable_node **_stable_node, 1763 struct rb_root *root, 1764 bool prune_stale_stable_nodes) 1765 { 1766 struct ksm_stable_node *stable_node = *_stable_node; 1767 1768 if (!is_stable_node_chain(stable_node)) { 1769 *_stable_node_dup = stable_node; 1770 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1771 } 1772 return stable_node_dup(_stable_node_dup, _stable_node, root, 1773 prune_stale_stable_nodes); 1774 } 1775 1776 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1777 struct ksm_stable_node **s_n, 1778 struct rb_root *root) 1779 { 1780 return __stable_node_chain(s_n_d, s_n, root, true); 1781 } 1782 1783 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1784 struct ksm_stable_node **s_n, 1785 struct rb_root *root) 1786 { 1787 return __stable_node_chain(s_n_d, s_n, root, false); 1788 } 1789 1790 /* 1791 * stable_tree_search - search for page inside the stable tree 1792 * 1793 * This function checks if there is a page inside the stable tree 1794 * with identical content to the page that we are scanning right now. 1795 * 1796 * This function returns the stable tree node of identical content if found, 1797 * -EBUSY if the stable node's page is being migrated, NULL otherwise. 1798 */ 1799 static struct folio *stable_tree_search(struct page *page) 1800 { 1801 int nid; 1802 struct rb_root *root; 1803 struct rb_node **new; 1804 struct rb_node *parent; 1805 struct ksm_stable_node *stable_node, *stable_node_dup; 1806 struct ksm_stable_node *page_node; 1807 struct folio *folio; 1808 1809 folio = page_folio(page); 1810 page_node = folio_stable_node(folio); 1811 if (page_node && page_node->head != &migrate_nodes) { 1812 /* ksm page forked */ 1813 folio_get(folio); 1814 return folio; 1815 } 1816 1817 nid = get_kpfn_nid(folio_pfn(folio)); 1818 root = root_stable_tree + nid; 1819 again: 1820 new = &root->rb_node; 1821 parent = NULL; 1822 1823 while (*new) { 1824 struct folio *tree_folio; 1825 int ret; 1826 1827 cond_resched(); 1828 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1829 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1830 if (!tree_folio) { 1831 /* 1832 * If we walked over a stale stable_node, 1833 * ksm_get_folio() will call rb_erase() and it 1834 * may rebalance the tree from under us. So 1835 * restart the search from scratch. Returning 1836 * NULL would be safe too, but we'd generate 1837 * false negative insertions just because some 1838 * stable_node was stale. 1839 */ 1840 goto again; 1841 } 1842 1843 ret = memcmp_pages(page, &tree_folio->page); 1844 folio_put(tree_folio); 1845 1846 parent = *new; 1847 if (ret < 0) 1848 new = &parent->rb_left; 1849 else if (ret > 0) 1850 new = &parent->rb_right; 1851 else { 1852 if (page_node) { 1853 VM_BUG_ON(page_node->head != &migrate_nodes); 1854 /* 1855 * If the mapcount of our migrated KSM folio is 1856 * at most 1, we can merge it with another 1857 * KSM folio where we know that we have space 1858 * for one more mapping without exceeding the 1859 * ksm_max_page_sharing limit: see 1860 * chain_prune(). This way, we can avoid adding 1861 * this stable node to the chain. 1862 */ 1863 if (folio_mapcount(folio) > 1) 1864 goto chain_append; 1865 } 1866 1867 if (!is_page_sharing_candidate(stable_node_dup)) { 1868 /* 1869 * If the stable_node is a chain and 1870 * we got a payload match in memcmp 1871 * but we cannot merge the scanned 1872 * page in any of the existing 1873 * stable_node dups because they're 1874 * all full, we need to wait the 1875 * scanned page to find itself a match 1876 * in the unstable tree to create a 1877 * brand new KSM page to add later to 1878 * the dups of this stable_node. 1879 */ 1880 return NULL; 1881 } 1882 1883 /* 1884 * Lock and unlock the stable_node's page (which 1885 * might already have been migrated) so that page 1886 * migration is sure to notice its raised count. 1887 * It would be more elegant to return stable_node 1888 * than kpage, but that involves more changes. 1889 */ 1890 tree_folio = ksm_get_folio(stable_node_dup, 1891 KSM_GET_FOLIO_TRYLOCK); 1892 1893 if (PTR_ERR(tree_folio) == -EBUSY) 1894 return ERR_PTR(-EBUSY); 1895 1896 if (unlikely(!tree_folio)) 1897 /* 1898 * The tree may have been rebalanced, 1899 * so re-evaluate parent and new. 1900 */ 1901 goto again; 1902 folio_unlock(tree_folio); 1903 1904 if (get_kpfn_nid(stable_node_dup->kpfn) != 1905 NUMA(stable_node_dup->nid)) { 1906 folio_put(tree_folio); 1907 goto replace; 1908 } 1909 return tree_folio; 1910 } 1911 } 1912 1913 if (!page_node) 1914 return NULL; 1915 1916 list_del(&page_node->list); 1917 DO_NUMA(page_node->nid = nid); 1918 rb_link_node(&page_node->node, parent, new); 1919 rb_insert_color(&page_node->node, root); 1920 out: 1921 if (is_page_sharing_candidate(page_node)) { 1922 folio_get(folio); 1923 return folio; 1924 } else 1925 return NULL; 1926 1927 replace: 1928 /* 1929 * If stable_node was a chain and chain_prune collapsed it, 1930 * stable_node has been updated to be the new regular 1931 * stable_node. A collapse of the chain is indistinguishable 1932 * from the case there was no chain in the stable 1933 * rbtree. Otherwise stable_node is the chain and 1934 * stable_node_dup is the dup to replace. 1935 */ 1936 if (stable_node_dup == stable_node) { 1937 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1938 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1939 /* there is no chain */ 1940 if (page_node) { 1941 VM_BUG_ON(page_node->head != &migrate_nodes); 1942 list_del(&page_node->list); 1943 DO_NUMA(page_node->nid = nid); 1944 rb_replace_node(&stable_node_dup->node, 1945 &page_node->node, 1946 root); 1947 if (is_page_sharing_candidate(page_node)) 1948 folio_get(folio); 1949 else 1950 folio = NULL; 1951 } else { 1952 rb_erase(&stable_node_dup->node, root); 1953 folio = NULL; 1954 } 1955 } else { 1956 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1957 __stable_node_dup_del(stable_node_dup); 1958 if (page_node) { 1959 VM_BUG_ON(page_node->head != &migrate_nodes); 1960 list_del(&page_node->list); 1961 DO_NUMA(page_node->nid = nid); 1962 stable_node_chain_add_dup(page_node, stable_node); 1963 if (is_page_sharing_candidate(page_node)) 1964 folio_get(folio); 1965 else 1966 folio = NULL; 1967 } else { 1968 folio = NULL; 1969 } 1970 } 1971 stable_node_dup->head = &migrate_nodes; 1972 list_add(&stable_node_dup->list, stable_node_dup->head); 1973 return folio; 1974 1975 chain_append: 1976 /* 1977 * If stable_node was a chain and chain_prune collapsed it, 1978 * stable_node has been updated to be the new regular 1979 * stable_node. A collapse of the chain is indistinguishable 1980 * from the case there was no chain in the stable 1981 * rbtree. Otherwise stable_node is the chain and 1982 * stable_node_dup is the dup to replace. 1983 */ 1984 if (stable_node_dup == stable_node) { 1985 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1986 /* chain is missing so create it */ 1987 stable_node = alloc_stable_node_chain(stable_node_dup, 1988 root); 1989 if (!stable_node) 1990 return NULL; 1991 } 1992 /* 1993 * Add this stable_node dup that was 1994 * migrated to the stable_node chain 1995 * of the current nid for this page 1996 * content. 1997 */ 1998 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1999 VM_BUG_ON(page_node->head != &migrate_nodes); 2000 list_del(&page_node->list); 2001 DO_NUMA(page_node->nid = nid); 2002 stable_node_chain_add_dup(page_node, stable_node); 2003 goto out; 2004 } 2005 2006 /* 2007 * stable_tree_insert - insert stable tree node pointing to new ksm page 2008 * into the stable tree. 2009 * 2010 * This function returns the stable tree node just allocated on success, 2011 * NULL otherwise. 2012 */ 2013 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2014 { 2015 int nid; 2016 unsigned long kpfn; 2017 struct rb_root *root; 2018 struct rb_node **new; 2019 struct rb_node *parent; 2020 struct ksm_stable_node *stable_node, *stable_node_dup; 2021 bool need_chain = false; 2022 2023 kpfn = folio_pfn(kfolio); 2024 nid = get_kpfn_nid(kpfn); 2025 root = root_stable_tree + nid; 2026 again: 2027 parent = NULL; 2028 new = &root->rb_node; 2029 2030 while (*new) { 2031 struct folio *tree_folio; 2032 int ret; 2033 2034 cond_resched(); 2035 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2036 tree_folio = chain(&stable_node_dup, &stable_node, root); 2037 if (!tree_folio) { 2038 /* 2039 * If we walked over a stale stable_node, 2040 * ksm_get_folio() will call rb_erase() and it 2041 * may rebalance the tree from under us. So 2042 * restart the search from scratch. Returning 2043 * NULL would be safe too, but we'd generate 2044 * false negative insertions just because some 2045 * stable_node was stale. 2046 */ 2047 goto again; 2048 } 2049 2050 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2051 folio_put(tree_folio); 2052 2053 parent = *new; 2054 if (ret < 0) 2055 new = &parent->rb_left; 2056 else if (ret > 0) 2057 new = &parent->rb_right; 2058 else { 2059 need_chain = true; 2060 break; 2061 } 2062 } 2063 2064 stable_node_dup = alloc_stable_node(); 2065 if (!stable_node_dup) 2066 return NULL; 2067 2068 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2069 stable_node_dup->kpfn = kpfn; 2070 stable_node_dup->rmap_hlist_len = 0; 2071 DO_NUMA(stable_node_dup->nid = nid); 2072 if (!need_chain) { 2073 rb_link_node(&stable_node_dup->node, parent, new); 2074 rb_insert_color(&stable_node_dup->node, root); 2075 } else { 2076 if (!is_stable_node_chain(stable_node)) { 2077 struct ksm_stable_node *orig = stable_node; 2078 /* chain is missing so create it */ 2079 stable_node = alloc_stable_node_chain(orig, root); 2080 if (!stable_node) { 2081 free_stable_node(stable_node_dup); 2082 return NULL; 2083 } 2084 } 2085 stable_node_chain_add_dup(stable_node_dup, stable_node); 2086 } 2087 2088 folio_set_stable_node(kfolio, stable_node_dup); 2089 2090 return stable_node_dup; 2091 } 2092 2093 /* 2094 * unstable_tree_search_insert - search for identical page, 2095 * else insert rmap_item into the unstable tree. 2096 * 2097 * This function searches for a page in the unstable tree identical to the 2098 * page currently being scanned; and if no identical page is found in the 2099 * tree, we insert rmap_item as a new object into the unstable tree. 2100 * 2101 * This function returns pointer to rmap_item found to be identical 2102 * to the currently scanned page, NULL otherwise. 2103 * 2104 * This function does both searching and inserting, because they share 2105 * the same walking algorithm in an rbtree. 2106 */ 2107 static 2108 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2109 struct page *page, 2110 struct page **tree_pagep) 2111 { 2112 struct rb_node **new; 2113 struct rb_root *root; 2114 struct rb_node *parent = NULL; 2115 int nid; 2116 2117 nid = get_kpfn_nid(page_to_pfn(page)); 2118 root = root_unstable_tree + nid; 2119 new = &root->rb_node; 2120 2121 while (*new) { 2122 struct ksm_rmap_item *tree_rmap_item; 2123 struct page *tree_page; 2124 int ret; 2125 2126 cond_resched(); 2127 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2128 tree_page = get_mergeable_page(tree_rmap_item); 2129 if (!tree_page) 2130 return NULL; 2131 2132 /* 2133 * Don't substitute a ksm page for a forked page. 2134 */ 2135 if (page == tree_page) { 2136 put_page(tree_page); 2137 return NULL; 2138 } 2139 2140 ret = memcmp_pages(page, tree_page); 2141 2142 parent = *new; 2143 if (ret < 0) { 2144 put_page(tree_page); 2145 new = &parent->rb_left; 2146 } else if (ret > 0) { 2147 put_page(tree_page); 2148 new = &parent->rb_right; 2149 } else if (!ksm_merge_across_nodes && 2150 page_to_nid(tree_page) != nid) { 2151 /* 2152 * If tree_page has been migrated to another NUMA node, 2153 * it will be flushed out and put in the right unstable 2154 * tree next time: only merge with it when across_nodes. 2155 */ 2156 put_page(tree_page); 2157 return NULL; 2158 } else { 2159 *tree_pagep = tree_page; 2160 return tree_rmap_item; 2161 } 2162 } 2163 2164 rmap_item->address |= UNSTABLE_FLAG; 2165 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2166 DO_NUMA(rmap_item->nid = nid); 2167 rb_link_node(&rmap_item->node, parent, new); 2168 rb_insert_color(&rmap_item->node, root); 2169 2170 ksm_pages_unshared++; 2171 return NULL; 2172 } 2173 2174 /* 2175 * stable_tree_append - add another rmap_item to the linked list of 2176 * rmap_items hanging off a given node of the stable tree, all sharing 2177 * the same ksm page. 2178 */ 2179 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2180 struct ksm_stable_node *stable_node, 2181 bool max_page_sharing_bypass) 2182 { 2183 /* 2184 * rmap won't find this mapping if we don't insert the 2185 * rmap_item in the right stable_node 2186 * duplicate. page_migration could break later if rmap breaks, 2187 * so we can as well crash here. We really need to check for 2188 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2189 * for other negative values as an underflow if detected here 2190 * for the first time (and not when decreasing rmap_hlist_len) 2191 * would be sign of memory corruption in the stable_node. 2192 */ 2193 BUG_ON(stable_node->rmap_hlist_len < 0); 2194 2195 stable_node->rmap_hlist_len++; 2196 if (!max_page_sharing_bypass) 2197 /* possibly non fatal but unexpected overflow, only warn */ 2198 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2199 ksm_max_page_sharing); 2200 2201 rmap_item->head = stable_node; 2202 rmap_item->address |= STABLE_FLAG; 2203 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2204 2205 if (rmap_item->hlist.next) 2206 ksm_pages_sharing++; 2207 else 2208 ksm_pages_shared++; 2209 2210 rmap_item->mm->ksm_merging_pages++; 2211 } 2212 2213 /* 2214 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2215 * if not, compare checksum to previous and if it's the same, see if page can 2216 * be inserted into the unstable tree, or merged with a page already there and 2217 * both transferred to the stable tree. 2218 * 2219 * @page: the page that we are searching identical page to. 2220 * @rmap_item: the reverse mapping into the virtual address of this page 2221 */ 2222 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2223 { 2224 struct ksm_rmap_item *tree_rmap_item; 2225 struct page *tree_page = NULL; 2226 struct ksm_stable_node *stable_node; 2227 struct folio *kfolio; 2228 unsigned int checksum; 2229 int err; 2230 bool max_page_sharing_bypass = false; 2231 2232 stable_node = page_stable_node(page); 2233 if (stable_node) { 2234 if (stable_node->head != &migrate_nodes && 2235 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2236 NUMA(stable_node->nid)) { 2237 stable_node_dup_del(stable_node); 2238 stable_node->head = &migrate_nodes; 2239 list_add(&stable_node->list, stable_node->head); 2240 } 2241 if (stable_node->head != &migrate_nodes && 2242 rmap_item->head == stable_node) 2243 return; 2244 /* 2245 * If it's a KSM fork, allow it to go over the sharing limit 2246 * without warnings. 2247 */ 2248 if (!is_page_sharing_candidate(stable_node)) 2249 max_page_sharing_bypass = true; 2250 } else { 2251 remove_rmap_item_from_tree(rmap_item); 2252 2253 /* 2254 * If the hash value of the page has changed from the last time 2255 * we calculated it, this page is changing frequently: therefore we 2256 * don't want to insert it in the unstable tree, and we don't want 2257 * to waste our time searching for something identical to it there. 2258 */ 2259 checksum = calc_checksum(page); 2260 if (rmap_item->oldchecksum != checksum) { 2261 rmap_item->oldchecksum = checksum; 2262 return; 2263 } 2264 2265 if (!try_to_merge_with_zero_page(rmap_item, page)) 2266 return; 2267 } 2268 2269 /* Start by searching for the folio in the stable tree */ 2270 kfolio = stable_tree_search(page); 2271 if (&kfolio->page == page && rmap_item->head == stable_node) { 2272 folio_put(kfolio); 2273 return; 2274 } 2275 2276 remove_rmap_item_from_tree(rmap_item); 2277 2278 if (kfolio) { 2279 if (kfolio == ERR_PTR(-EBUSY)) 2280 return; 2281 2282 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page); 2283 if (!err) { 2284 /* 2285 * The page was successfully merged: 2286 * add its rmap_item to the stable tree. 2287 */ 2288 folio_lock(kfolio); 2289 stable_tree_append(rmap_item, folio_stable_node(kfolio), 2290 max_page_sharing_bypass); 2291 folio_unlock(kfolio); 2292 } 2293 folio_put(kfolio); 2294 return; 2295 } 2296 2297 tree_rmap_item = 2298 unstable_tree_search_insert(rmap_item, page, &tree_page); 2299 if (tree_rmap_item) { 2300 bool split; 2301 2302 kfolio = try_to_merge_two_pages(rmap_item, page, 2303 tree_rmap_item, tree_page); 2304 /* 2305 * If both pages we tried to merge belong to the same compound 2306 * page, then we actually ended up increasing the reference 2307 * count of the same compound page twice, and split_huge_page 2308 * failed. 2309 * Here we set a flag if that happened, and we use it later to 2310 * try split_huge_page again. Since we call put_page right 2311 * afterwards, the reference count will be correct and 2312 * split_huge_page should succeed. 2313 */ 2314 split = PageTransCompound(page) 2315 && compound_head(page) == compound_head(tree_page); 2316 put_page(tree_page); 2317 if (kfolio) { 2318 /* 2319 * The pages were successfully merged: insert new 2320 * node in the stable tree and add both rmap_items. 2321 */ 2322 folio_lock(kfolio); 2323 stable_node = stable_tree_insert(kfolio); 2324 if (stable_node) { 2325 stable_tree_append(tree_rmap_item, stable_node, 2326 false); 2327 stable_tree_append(rmap_item, stable_node, 2328 false); 2329 } 2330 folio_unlock(kfolio); 2331 2332 /* 2333 * If we fail to insert the page into the stable tree, 2334 * we will have 2 virtual addresses that are pointing 2335 * to a ksm page left outside the stable tree, 2336 * in which case we need to break_cow on both. 2337 */ 2338 if (!stable_node) { 2339 break_cow(tree_rmap_item); 2340 break_cow(rmap_item); 2341 } 2342 } else if (split) { 2343 /* 2344 * We are here if we tried to merge two pages and 2345 * failed because they both belonged to the same 2346 * compound page. We will split the page now, but no 2347 * merging will take place. 2348 * We do not want to add the cost of a full lock; if 2349 * the page is locked, it is better to skip it and 2350 * perhaps try again later. 2351 */ 2352 if (!trylock_page(page)) 2353 return; 2354 split_huge_page(page); 2355 unlock_page(page); 2356 } 2357 } 2358 } 2359 2360 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2361 struct ksm_rmap_item **rmap_list, 2362 unsigned long addr) 2363 { 2364 struct ksm_rmap_item *rmap_item; 2365 2366 while (*rmap_list) { 2367 rmap_item = *rmap_list; 2368 if ((rmap_item->address & PAGE_MASK) == addr) 2369 return rmap_item; 2370 if (rmap_item->address > addr) 2371 break; 2372 *rmap_list = rmap_item->rmap_list; 2373 remove_rmap_item_from_tree(rmap_item); 2374 free_rmap_item(rmap_item); 2375 } 2376 2377 rmap_item = alloc_rmap_item(); 2378 if (rmap_item) { 2379 /* It has already been zeroed */ 2380 rmap_item->mm = mm_slot->slot.mm; 2381 rmap_item->mm->ksm_rmap_items++; 2382 rmap_item->address = addr; 2383 rmap_item->rmap_list = *rmap_list; 2384 *rmap_list = rmap_item; 2385 } 2386 return rmap_item; 2387 } 2388 2389 /* 2390 * Calculate skip age for the ksm page age. The age determines how often 2391 * de-duplicating has already been tried unsuccessfully. If the age is 2392 * smaller, the scanning of this page is skipped for less scans. 2393 * 2394 * @age: rmap_item age of page 2395 */ 2396 static unsigned int skip_age(rmap_age_t age) 2397 { 2398 if (age <= 3) 2399 return 1; 2400 if (age <= 5) 2401 return 2; 2402 if (age <= 8) 2403 return 4; 2404 2405 return 8; 2406 } 2407 2408 /* 2409 * Determines if a page should be skipped for the current scan. 2410 * 2411 * @folio: folio containing the page to check 2412 * @rmap_item: associated rmap_item of page 2413 */ 2414 static bool should_skip_rmap_item(struct folio *folio, 2415 struct ksm_rmap_item *rmap_item) 2416 { 2417 rmap_age_t age; 2418 2419 if (!ksm_smart_scan) 2420 return false; 2421 2422 /* 2423 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2424 * will essentially ignore them, but we still have to process them 2425 * properly. 2426 */ 2427 if (folio_test_ksm(folio)) 2428 return false; 2429 2430 age = rmap_item->age; 2431 if (age != U8_MAX) 2432 rmap_item->age++; 2433 2434 /* 2435 * Smaller ages are not skipped, they need to get a chance to go 2436 * through the different phases of the KSM merging. 2437 */ 2438 if (age < 3) 2439 return false; 2440 2441 /* 2442 * Are we still allowed to skip? If not, then don't skip it 2443 * and determine how much more often we are allowed to skip next. 2444 */ 2445 if (!rmap_item->remaining_skips) { 2446 rmap_item->remaining_skips = skip_age(age); 2447 return false; 2448 } 2449 2450 /* Skip this page */ 2451 ksm_pages_skipped++; 2452 rmap_item->remaining_skips--; 2453 remove_rmap_item_from_tree(rmap_item); 2454 return true; 2455 } 2456 2457 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2458 { 2459 struct mm_struct *mm; 2460 struct ksm_mm_slot *mm_slot; 2461 struct mm_slot *slot; 2462 struct vm_area_struct *vma; 2463 struct ksm_rmap_item *rmap_item; 2464 struct vma_iterator vmi; 2465 int nid; 2466 2467 if (list_empty(&ksm_mm_head.slot.mm_node)) 2468 return NULL; 2469 2470 mm_slot = ksm_scan.mm_slot; 2471 if (mm_slot == &ksm_mm_head) { 2472 advisor_start_scan(); 2473 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2474 2475 /* 2476 * A number of pages can hang around indefinitely in per-cpu 2477 * LRU cache, raised page count preventing write_protect_page 2478 * from merging them. Though it doesn't really matter much, 2479 * it is puzzling to see some stuck in pages_volatile until 2480 * other activity jostles them out, and they also prevented 2481 * LTP's KSM test from succeeding deterministically; so drain 2482 * them here (here rather than on entry to ksm_do_scan(), 2483 * so we don't IPI too often when pages_to_scan is set low). 2484 */ 2485 lru_add_drain_all(); 2486 2487 /* 2488 * Whereas stale stable_nodes on the stable_tree itself 2489 * get pruned in the regular course of stable_tree_search(), 2490 * those moved out to the migrate_nodes list can accumulate: 2491 * so prune them once before each full scan. 2492 */ 2493 if (!ksm_merge_across_nodes) { 2494 struct ksm_stable_node *stable_node, *next; 2495 struct folio *folio; 2496 2497 list_for_each_entry_safe(stable_node, next, 2498 &migrate_nodes, list) { 2499 folio = ksm_get_folio(stable_node, 2500 KSM_GET_FOLIO_NOLOCK); 2501 if (folio) 2502 folio_put(folio); 2503 cond_resched(); 2504 } 2505 } 2506 2507 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2508 root_unstable_tree[nid] = RB_ROOT; 2509 2510 spin_lock(&ksm_mmlist_lock); 2511 slot = list_entry(mm_slot->slot.mm_node.next, 2512 struct mm_slot, mm_node); 2513 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2514 ksm_scan.mm_slot = mm_slot; 2515 spin_unlock(&ksm_mmlist_lock); 2516 /* 2517 * Although we tested list_empty() above, a racing __ksm_exit 2518 * of the last mm on the list may have removed it since then. 2519 */ 2520 if (mm_slot == &ksm_mm_head) 2521 return NULL; 2522 next_mm: 2523 ksm_scan.address = 0; 2524 ksm_scan.rmap_list = &mm_slot->rmap_list; 2525 } 2526 2527 slot = &mm_slot->slot; 2528 mm = slot->mm; 2529 vma_iter_init(&vmi, mm, ksm_scan.address); 2530 2531 mmap_read_lock(mm); 2532 if (ksm_test_exit(mm)) 2533 goto no_vmas; 2534 2535 for_each_vma(vmi, vma) { 2536 if (!(vma->vm_flags & VM_MERGEABLE)) 2537 continue; 2538 if (ksm_scan.address < vma->vm_start) 2539 ksm_scan.address = vma->vm_start; 2540 if (!vma->anon_vma) 2541 ksm_scan.address = vma->vm_end; 2542 2543 while (ksm_scan.address < vma->vm_end) { 2544 struct page *tmp_page = NULL; 2545 struct folio_walk fw; 2546 struct folio *folio; 2547 2548 if (ksm_test_exit(mm)) 2549 break; 2550 2551 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0); 2552 if (folio) { 2553 if (!folio_is_zone_device(folio) && 2554 folio_test_anon(folio)) { 2555 folio_get(folio); 2556 tmp_page = fw.page; 2557 } 2558 folio_walk_end(&fw, vma); 2559 } 2560 2561 if (tmp_page) { 2562 flush_anon_page(vma, tmp_page, ksm_scan.address); 2563 flush_dcache_page(tmp_page); 2564 rmap_item = get_next_rmap_item(mm_slot, 2565 ksm_scan.rmap_list, ksm_scan.address); 2566 if (rmap_item) { 2567 ksm_scan.rmap_list = 2568 &rmap_item->rmap_list; 2569 2570 if (should_skip_rmap_item(folio, rmap_item)) { 2571 folio_put(folio); 2572 goto next_page; 2573 } 2574 2575 ksm_scan.address += PAGE_SIZE; 2576 *page = tmp_page; 2577 } else { 2578 folio_put(folio); 2579 } 2580 mmap_read_unlock(mm); 2581 return rmap_item; 2582 } 2583 next_page: 2584 ksm_scan.address += PAGE_SIZE; 2585 cond_resched(); 2586 } 2587 } 2588 2589 if (ksm_test_exit(mm)) { 2590 no_vmas: 2591 ksm_scan.address = 0; 2592 ksm_scan.rmap_list = &mm_slot->rmap_list; 2593 } 2594 /* 2595 * Nuke all the rmap_items that are above this current rmap: 2596 * because there were no VM_MERGEABLE vmas with such addresses. 2597 */ 2598 remove_trailing_rmap_items(ksm_scan.rmap_list); 2599 2600 spin_lock(&ksm_mmlist_lock); 2601 slot = list_entry(mm_slot->slot.mm_node.next, 2602 struct mm_slot, mm_node); 2603 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2604 if (ksm_scan.address == 0) { 2605 /* 2606 * We've completed a full scan of all vmas, holding mmap_lock 2607 * throughout, and found no VM_MERGEABLE: so do the same as 2608 * __ksm_exit does to remove this mm from all our lists now. 2609 * This applies either when cleaning up after __ksm_exit 2610 * (but beware: we can reach here even before __ksm_exit), 2611 * or when all VM_MERGEABLE areas have been unmapped (and 2612 * mmap_lock then protects against race with MADV_MERGEABLE). 2613 */ 2614 hash_del(&mm_slot->slot.hash); 2615 list_del(&mm_slot->slot.mm_node); 2616 spin_unlock(&ksm_mmlist_lock); 2617 2618 mm_slot_free(mm_slot_cache, mm_slot); 2619 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2620 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2621 mmap_read_unlock(mm); 2622 mmdrop(mm); 2623 } else { 2624 mmap_read_unlock(mm); 2625 /* 2626 * mmap_read_unlock(mm) first because after 2627 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2628 * already have been freed under us by __ksm_exit() 2629 * because the "mm_slot" is still hashed and 2630 * ksm_scan.mm_slot doesn't point to it anymore. 2631 */ 2632 spin_unlock(&ksm_mmlist_lock); 2633 } 2634 2635 /* Repeat until we've completed scanning the whole list */ 2636 mm_slot = ksm_scan.mm_slot; 2637 if (mm_slot != &ksm_mm_head) 2638 goto next_mm; 2639 2640 advisor_stop_scan(); 2641 2642 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2643 ksm_scan.seqnr++; 2644 return NULL; 2645 } 2646 2647 /** 2648 * ksm_do_scan - the ksm scanner main worker function. 2649 * @scan_npages: number of pages we want to scan before we return. 2650 */ 2651 static void ksm_do_scan(unsigned int scan_npages) 2652 { 2653 struct ksm_rmap_item *rmap_item; 2654 struct page *page; 2655 2656 while (scan_npages-- && likely(!freezing(current))) { 2657 cond_resched(); 2658 rmap_item = scan_get_next_rmap_item(&page); 2659 if (!rmap_item) 2660 return; 2661 cmp_and_merge_page(page, rmap_item); 2662 put_page(page); 2663 ksm_pages_scanned++; 2664 } 2665 } 2666 2667 static int ksmd_should_run(void) 2668 { 2669 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2670 } 2671 2672 static int ksm_scan_thread(void *nothing) 2673 { 2674 unsigned int sleep_ms; 2675 2676 set_freezable(); 2677 set_user_nice(current, 5); 2678 2679 while (!kthread_should_stop()) { 2680 mutex_lock(&ksm_thread_mutex); 2681 wait_while_offlining(); 2682 if (ksmd_should_run()) 2683 ksm_do_scan(ksm_thread_pages_to_scan); 2684 mutex_unlock(&ksm_thread_mutex); 2685 2686 if (ksmd_should_run()) { 2687 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2688 wait_event_freezable_timeout(ksm_iter_wait, 2689 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2690 msecs_to_jiffies(sleep_ms)); 2691 } else { 2692 wait_event_freezable(ksm_thread_wait, 2693 ksmd_should_run() || kthread_should_stop()); 2694 } 2695 } 2696 return 0; 2697 } 2698 2699 static void __ksm_add_vma(struct vm_area_struct *vma) 2700 { 2701 unsigned long vm_flags = vma->vm_flags; 2702 2703 if (vm_flags & VM_MERGEABLE) 2704 return; 2705 2706 if (vma_ksm_compatible(vma)) 2707 vm_flags_set(vma, VM_MERGEABLE); 2708 } 2709 2710 static int __ksm_del_vma(struct vm_area_struct *vma) 2711 { 2712 int err; 2713 2714 if (!(vma->vm_flags & VM_MERGEABLE)) 2715 return 0; 2716 2717 if (vma->anon_vma) { 2718 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2719 if (err) 2720 return err; 2721 } 2722 2723 vm_flags_clear(vma, VM_MERGEABLE); 2724 return 0; 2725 } 2726 /** 2727 * ksm_add_vma - Mark vma as mergeable if compatible 2728 * 2729 * @vma: Pointer to vma 2730 */ 2731 void ksm_add_vma(struct vm_area_struct *vma) 2732 { 2733 struct mm_struct *mm = vma->vm_mm; 2734 2735 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2736 __ksm_add_vma(vma); 2737 } 2738 2739 static void ksm_add_vmas(struct mm_struct *mm) 2740 { 2741 struct vm_area_struct *vma; 2742 2743 VMA_ITERATOR(vmi, mm, 0); 2744 for_each_vma(vmi, vma) 2745 __ksm_add_vma(vma); 2746 } 2747 2748 static int ksm_del_vmas(struct mm_struct *mm) 2749 { 2750 struct vm_area_struct *vma; 2751 int err; 2752 2753 VMA_ITERATOR(vmi, mm, 0); 2754 for_each_vma(vmi, vma) { 2755 err = __ksm_del_vma(vma); 2756 if (err) 2757 return err; 2758 } 2759 return 0; 2760 } 2761 2762 /** 2763 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2764 * compatible VMA's 2765 * 2766 * @mm: Pointer to mm 2767 * 2768 * Returns 0 on success, otherwise error code 2769 */ 2770 int ksm_enable_merge_any(struct mm_struct *mm) 2771 { 2772 int err; 2773 2774 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2775 return 0; 2776 2777 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2778 err = __ksm_enter(mm); 2779 if (err) 2780 return err; 2781 } 2782 2783 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2784 ksm_add_vmas(mm); 2785 2786 return 0; 2787 } 2788 2789 /** 2790 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2791 * previously enabled via ksm_enable_merge_any(). 2792 * 2793 * Disabling merging implies unmerging any merged pages, like setting 2794 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2795 * merging on all compatible VMA's remains enabled. 2796 * 2797 * @mm: Pointer to mm 2798 * 2799 * Returns 0 on success, otherwise error code 2800 */ 2801 int ksm_disable_merge_any(struct mm_struct *mm) 2802 { 2803 int err; 2804 2805 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2806 return 0; 2807 2808 err = ksm_del_vmas(mm); 2809 if (err) { 2810 ksm_add_vmas(mm); 2811 return err; 2812 } 2813 2814 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2815 return 0; 2816 } 2817 2818 int ksm_disable(struct mm_struct *mm) 2819 { 2820 mmap_assert_write_locked(mm); 2821 2822 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2823 return 0; 2824 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2825 return ksm_disable_merge_any(mm); 2826 return ksm_del_vmas(mm); 2827 } 2828 2829 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2830 unsigned long end, int advice, unsigned long *vm_flags) 2831 { 2832 struct mm_struct *mm = vma->vm_mm; 2833 int err; 2834 2835 switch (advice) { 2836 case MADV_MERGEABLE: 2837 if (vma->vm_flags & VM_MERGEABLE) 2838 return 0; 2839 if (!vma_ksm_compatible(vma)) 2840 return 0; 2841 2842 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2843 err = __ksm_enter(mm); 2844 if (err) 2845 return err; 2846 } 2847 2848 *vm_flags |= VM_MERGEABLE; 2849 break; 2850 2851 case MADV_UNMERGEABLE: 2852 if (!(*vm_flags & VM_MERGEABLE)) 2853 return 0; /* just ignore the advice */ 2854 2855 if (vma->anon_vma) { 2856 err = unmerge_ksm_pages(vma, start, end, true); 2857 if (err) 2858 return err; 2859 } 2860 2861 *vm_flags &= ~VM_MERGEABLE; 2862 break; 2863 } 2864 2865 return 0; 2866 } 2867 EXPORT_SYMBOL_GPL(ksm_madvise); 2868 2869 int __ksm_enter(struct mm_struct *mm) 2870 { 2871 struct ksm_mm_slot *mm_slot; 2872 struct mm_slot *slot; 2873 int needs_wakeup; 2874 2875 mm_slot = mm_slot_alloc(mm_slot_cache); 2876 if (!mm_slot) 2877 return -ENOMEM; 2878 2879 slot = &mm_slot->slot; 2880 2881 /* Check ksm_run too? Would need tighter locking */ 2882 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2883 2884 spin_lock(&ksm_mmlist_lock); 2885 mm_slot_insert(mm_slots_hash, mm, slot); 2886 /* 2887 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2888 * insert just behind the scanning cursor, to let the area settle 2889 * down a little; when fork is followed by immediate exec, we don't 2890 * want ksmd to waste time setting up and tearing down an rmap_list. 2891 * 2892 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2893 * scanning cursor, otherwise KSM pages in newly forked mms will be 2894 * missed: then we might as well insert at the end of the list. 2895 */ 2896 if (ksm_run & KSM_RUN_UNMERGE) 2897 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2898 else 2899 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2900 spin_unlock(&ksm_mmlist_lock); 2901 2902 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2903 mmgrab(mm); 2904 2905 if (needs_wakeup) 2906 wake_up_interruptible(&ksm_thread_wait); 2907 2908 trace_ksm_enter(mm); 2909 return 0; 2910 } 2911 2912 void __ksm_exit(struct mm_struct *mm) 2913 { 2914 struct ksm_mm_slot *mm_slot; 2915 struct mm_slot *slot; 2916 int easy_to_free = 0; 2917 2918 /* 2919 * This process is exiting: if it's straightforward (as is the 2920 * case when ksmd was never running), free mm_slot immediately. 2921 * But if it's at the cursor or has rmap_items linked to it, use 2922 * mmap_lock to synchronize with any break_cows before pagetables 2923 * are freed, and leave the mm_slot on the list for ksmd to free. 2924 * Beware: ksm may already have noticed it exiting and freed the slot. 2925 */ 2926 2927 spin_lock(&ksm_mmlist_lock); 2928 slot = mm_slot_lookup(mm_slots_hash, mm); 2929 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2930 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2931 if (!mm_slot->rmap_list) { 2932 hash_del(&slot->hash); 2933 list_del(&slot->mm_node); 2934 easy_to_free = 1; 2935 } else { 2936 list_move(&slot->mm_node, 2937 &ksm_scan.mm_slot->slot.mm_node); 2938 } 2939 } 2940 spin_unlock(&ksm_mmlist_lock); 2941 2942 if (easy_to_free) { 2943 mm_slot_free(mm_slot_cache, mm_slot); 2944 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2945 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2946 mmdrop(mm); 2947 } else if (mm_slot) { 2948 mmap_write_lock(mm); 2949 mmap_write_unlock(mm); 2950 } 2951 2952 trace_ksm_exit(mm); 2953 } 2954 2955 struct folio *ksm_might_need_to_copy(struct folio *folio, 2956 struct vm_area_struct *vma, unsigned long addr) 2957 { 2958 struct page *page = folio_page(folio, 0); 2959 struct anon_vma *anon_vma = folio_anon_vma(folio); 2960 struct folio *new_folio; 2961 2962 if (folio_test_large(folio)) 2963 return folio; 2964 2965 if (folio_test_ksm(folio)) { 2966 if (folio_stable_node(folio) && 2967 !(ksm_run & KSM_RUN_UNMERGE)) 2968 return folio; /* no need to copy it */ 2969 } else if (!anon_vma) { 2970 return folio; /* no need to copy it */ 2971 } else if (folio->index == linear_page_index(vma, addr) && 2972 anon_vma->root == vma->anon_vma->root) { 2973 return folio; /* still no need to copy it */ 2974 } 2975 if (PageHWPoison(page)) 2976 return ERR_PTR(-EHWPOISON); 2977 if (!folio_test_uptodate(folio)) 2978 return folio; /* let do_swap_page report the error */ 2979 2980 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 2981 if (new_folio && 2982 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 2983 folio_put(new_folio); 2984 new_folio = NULL; 2985 } 2986 if (new_folio) { 2987 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 2988 addr, vma)) { 2989 folio_put(new_folio); 2990 return ERR_PTR(-EHWPOISON); 2991 } 2992 folio_set_dirty(new_folio); 2993 __folio_mark_uptodate(new_folio); 2994 __folio_set_locked(new_folio); 2995 #ifdef CONFIG_SWAP 2996 count_vm_event(KSM_SWPIN_COPY); 2997 #endif 2998 } 2999 3000 return new_folio; 3001 } 3002 3003 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3004 { 3005 struct ksm_stable_node *stable_node; 3006 struct ksm_rmap_item *rmap_item; 3007 int search_new_forks = 0; 3008 3009 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3010 3011 /* 3012 * Rely on the page lock to protect against concurrent modifications 3013 * to that page's node of the stable tree. 3014 */ 3015 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3016 3017 stable_node = folio_stable_node(folio); 3018 if (!stable_node) 3019 return; 3020 again: 3021 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3022 struct anon_vma *anon_vma = rmap_item->anon_vma; 3023 struct anon_vma_chain *vmac; 3024 struct vm_area_struct *vma; 3025 3026 cond_resched(); 3027 if (!anon_vma_trylock_read(anon_vma)) { 3028 if (rwc->try_lock) { 3029 rwc->contended = true; 3030 return; 3031 } 3032 anon_vma_lock_read(anon_vma); 3033 } 3034 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3035 0, ULONG_MAX) { 3036 unsigned long addr; 3037 3038 cond_resched(); 3039 vma = vmac->vma; 3040 3041 /* Ignore the stable/unstable/sqnr flags */ 3042 addr = rmap_item->address & PAGE_MASK; 3043 3044 if (addr < vma->vm_start || addr >= vma->vm_end) 3045 continue; 3046 /* 3047 * Initially we examine only the vma which covers this 3048 * rmap_item; but later, if there is still work to do, 3049 * we examine covering vmas in other mms: in case they 3050 * were forked from the original since ksmd passed. 3051 */ 3052 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3053 continue; 3054 3055 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3056 continue; 3057 3058 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3059 anon_vma_unlock_read(anon_vma); 3060 return; 3061 } 3062 if (rwc->done && rwc->done(folio)) { 3063 anon_vma_unlock_read(anon_vma); 3064 return; 3065 } 3066 } 3067 anon_vma_unlock_read(anon_vma); 3068 } 3069 if (!search_new_forks++) 3070 goto again; 3071 } 3072 3073 #ifdef CONFIG_MEMORY_FAILURE 3074 /* 3075 * Collect processes when the error hit an ksm page. 3076 */ 3077 void collect_procs_ksm(const struct folio *folio, const struct page *page, 3078 struct list_head *to_kill, int force_early) 3079 { 3080 struct ksm_stable_node *stable_node; 3081 struct ksm_rmap_item *rmap_item; 3082 struct vm_area_struct *vma; 3083 struct task_struct *tsk; 3084 3085 stable_node = folio_stable_node(folio); 3086 if (!stable_node) 3087 return; 3088 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3089 struct anon_vma *av = rmap_item->anon_vma; 3090 3091 anon_vma_lock_read(av); 3092 rcu_read_lock(); 3093 for_each_process(tsk) { 3094 struct anon_vma_chain *vmac; 3095 unsigned long addr; 3096 struct task_struct *t = 3097 task_early_kill(tsk, force_early); 3098 if (!t) 3099 continue; 3100 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3101 ULONG_MAX) 3102 { 3103 vma = vmac->vma; 3104 if (vma->vm_mm == t->mm) { 3105 addr = rmap_item->address & PAGE_MASK; 3106 add_to_kill_ksm(t, page, vma, to_kill, 3107 addr); 3108 } 3109 } 3110 } 3111 rcu_read_unlock(); 3112 anon_vma_unlock_read(av); 3113 } 3114 } 3115 #endif 3116 3117 #ifdef CONFIG_MIGRATION 3118 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3119 { 3120 struct ksm_stable_node *stable_node; 3121 3122 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3123 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3124 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3125 3126 stable_node = folio_stable_node(folio); 3127 if (stable_node) { 3128 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3129 stable_node->kpfn = folio_pfn(newfolio); 3130 /* 3131 * newfolio->mapping was set in advance; now we need smp_wmb() 3132 * to make sure that the new stable_node->kpfn is visible 3133 * to ksm_get_folio() before it can see that folio->mapping 3134 * has gone stale (or that the swapcache flag has been cleared). 3135 */ 3136 smp_wmb(); 3137 folio_set_stable_node(folio, NULL); 3138 } 3139 } 3140 #endif /* CONFIG_MIGRATION */ 3141 3142 #ifdef CONFIG_MEMORY_HOTREMOVE 3143 static void wait_while_offlining(void) 3144 { 3145 while (ksm_run & KSM_RUN_OFFLINE) { 3146 mutex_unlock(&ksm_thread_mutex); 3147 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3148 TASK_UNINTERRUPTIBLE); 3149 mutex_lock(&ksm_thread_mutex); 3150 } 3151 } 3152 3153 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3154 unsigned long start_pfn, 3155 unsigned long end_pfn) 3156 { 3157 if (stable_node->kpfn >= start_pfn && 3158 stable_node->kpfn < end_pfn) { 3159 /* 3160 * Don't ksm_get_folio, page has already gone: 3161 * which is why we keep kpfn instead of page* 3162 */ 3163 remove_node_from_stable_tree(stable_node); 3164 return true; 3165 } 3166 return false; 3167 } 3168 3169 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3170 unsigned long start_pfn, 3171 unsigned long end_pfn, 3172 struct rb_root *root) 3173 { 3174 struct ksm_stable_node *dup; 3175 struct hlist_node *hlist_safe; 3176 3177 if (!is_stable_node_chain(stable_node)) { 3178 VM_BUG_ON(is_stable_node_dup(stable_node)); 3179 return stable_node_dup_remove_range(stable_node, start_pfn, 3180 end_pfn); 3181 } 3182 3183 hlist_for_each_entry_safe(dup, hlist_safe, 3184 &stable_node->hlist, hlist_dup) { 3185 VM_BUG_ON(!is_stable_node_dup(dup)); 3186 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3187 } 3188 if (hlist_empty(&stable_node->hlist)) { 3189 free_stable_node_chain(stable_node, root); 3190 return true; /* notify caller that tree was rebalanced */ 3191 } else 3192 return false; 3193 } 3194 3195 static void ksm_check_stable_tree(unsigned long start_pfn, 3196 unsigned long end_pfn) 3197 { 3198 struct ksm_stable_node *stable_node, *next; 3199 struct rb_node *node; 3200 int nid; 3201 3202 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3203 node = rb_first(root_stable_tree + nid); 3204 while (node) { 3205 stable_node = rb_entry(node, struct ksm_stable_node, node); 3206 if (stable_node_chain_remove_range(stable_node, 3207 start_pfn, end_pfn, 3208 root_stable_tree + 3209 nid)) 3210 node = rb_first(root_stable_tree + nid); 3211 else 3212 node = rb_next(node); 3213 cond_resched(); 3214 } 3215 } 3216 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3217 if (stable_node->kpfn >= start_pfn && 3218 stable_node->kpfn < end_pfn) 3219 remove_node_from_stable_tree(stable_node); 3220 cond_resched(); 3221 } 3222 } 3223 3224 static int ksm_memory_callback(struct notifier_block *self, 3225 unsigned long action, void *arg) 3226 { 3227 struct memory_notify *mn = arg; 3228 3229 switch (action) { 3230 case MEM_GOING_OFFLINE: 3231 /* 3232 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3233 * and remove_all_stable_nodes() while memory is going offline: 3234 * it is unsafe for them to touch the stable tree at this time. 3235 * But unmerge_ksm_pages(), rmap lookups and other entry points 3236 * which do not need the ksm_thread_mutex are all safe. 3237 */ 3238 mutex_lock(&ksm_thread_mutex); 3239 ksm_run |= KSM_RUN_OFFLINE; 3240 mutex_unlock(&ksm_thread_mutex); 3241 break; 3242 3243 case MEM_OFFLINE: 3244 /* 3245 * Most of the work is done by page migration; but there might 3246 * be a few stable_nodes left over, still pointing to struct 3247 * pages which have been offlined: prune those from the tree, 3248 * otherwise ksm_get_folio() might later try to access a 3249 * non-existent struct page. 3250 */ 3251 ksm_check_stable_tree(mn->start_pfn, 3252 mn->start_pfn + mn->nr_pages); 3253 fallthrough; 3254 case MEM_CANCEL_OFFLINE: 3255 mutex_lock(&ksm_thread_mutex); 3256 ksm_run &= ~KSM_RUN_OFFLINE; 3257 mutex_unlock(&ksm_thread_mutex); 3258 3259 smp_mb(); /* wake_up_bit advises this */ 3260 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3261 break; 3262 } 3263 return NOTIFY_OK; 3264 } 3265 #else 3266 static void wait_while_offlining(void) 3267 { 3268 } 3269 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3270 3271 #ifdef CONFIG_PROC_FS 3272 /* 3273 * The process is mergeable only if any VMA is currently 3274 * applicable to KSM. 3275 * 3276 * The mmap lock must be held in read mode. 3277 */ 3278 bool ksm_process_mergeable(struct mm_struct *mm) 3279 { 3280 struct vm_area_struct *vma; 3281 3282 mmap_assert_locked(mm); 3283 VMA_ITERATOR(vmi, mm, 0); 3284 for_each_vma(vmi, vma) 3285 if (vma->vm_flags & VM_MERGEABLE) 3286 return true; 3287 3288 return false; 3289 } 3290 3291 long ksm_process_profit(struct mm_struct *mm) 3292 { 3293 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - 3294 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3295 } 3296 #endif /* CONFIG_PROC_FS */ 3297 3298 #ifdef CONFIG_SYSFS 3299 /* 3300 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3301 */ 3302 3303 #define KSM_ATTR_RO(_name) \ 3304 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3305 #define KSM_ATTR(_name) \ 3306 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3307 3308 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3309 struct kobj_attribute *attr, char *buf) 3310 { 3311 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3312 } 3313 3314 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3315 struct kobj_attribute *attr, 3316 const char *buf, size_t count) 3317 { 3318 unsigned int msecs; 3319 int err; 3320 3321 err = kstrtouint(buf, 10, &msecs); 3322 if (err) 3323 return -EINVAL; 3324 3325 ksm_thread_sleep_millisecs = msecs; 3326 wake_up_interruptible(&ksm_iter_wait); 3327 3328 return count; 3329 } 3330 KSM_ATTR(sleep_millisecs); 3331 3332 static ssize_t pages_to_scan_show(struct kobject *kobj, 3333 struct kobj_attribute *attr, char *buf) 3334 { 3335 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3336 } 3337 3338 static ssize_t pages_to_scan_store(struct kobject *kobj, 3339 struct kobj_attribute *attr, 3340 const char *buf, size_t count) 3341 { 3342 unsigned int nr_pages; 3343 int err; 3344 3345 if (ksm_advisor != KSM_ADVISOR_NONE) 3346 return -EINVAL; 3347 3348 err = kstrtouint(buf, 10, &nr_pages); 3349 if (err) 3350 return -EINVAL; 3351 3352 ksm_thread_pages_to_scan = nr_pages; 3353 3354 return count; 3355 } 3356 KSM_ATTR(pages_to_scan); 3357 3358 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3359 char *buf) 3360 { 3361 return sysfs_emit(buf, "%lu\n", ksm_run); 3362 } 3363 3364 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3365 const char *buf, size_t count) 3366 { 3367 unsigned int flags; 3368 int err; 3369 3370 err = kstrtouint(buf, 10, &flags); 3371 if (err) 3372 return -EINVAL; 3373 if (flags > KSM_RUN_UNMERGE) 3374 return -EINVAL; 3375 3376 /* 3377 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3378 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3379 * breaking COW to free the pages_shared (but leaves mm_slots 3380 * on the list for when ksmd may be set running again). 3381 */ 3382 3383 mutex_lock(&ksm_thread_mutex); 3384 wait_while_offlining(); 3385 if (ksm_run != flags) { 3386 ksm_run = flags; 3387 if (flags & KSM_RUN_UNMERGE) { 3388 set_current_oom_origin(); 3389 err = unmerge_and_remove_all_rmap_items(); 3390 clear_current_oom_origin(); 3391 if (err) { 3392 ksm_run = KSM_RUN_STOP; 3393 count = err; 3394 } 3395 } 3396 } 3397 mutex_unlock(&ksm_thread_mutex); 3398 3399 if (flags & KSM_RUN_MERGE) 3400 wake_up_interruptible(&ksm_thread_wait); 3401 3402 return count; 3403 } 3404 KSM_ATTR(run); 3405 3406 #ifdef CONFIG_NUMA 3407 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3408 struct kobj_attribute *attr, char *buf) 3409 { 3410 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3411 } 3412 3413 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3414 struct kobj_attribute *attr, 3415 const char *buf, size_t count) 3416 { 3417 int err; 3418 unsigned long knob; 3419 3420 err = kstrtoul(buf, 10, &knob); 3421 if (err) 3422 return err; 3423 if (knob > 1) 3424 return -EINVAL; 3425 3426 mutex_lock(&ksm_thread_mutex); 3427 wait_while_offlining(); 3428 if (ksm_merge_across_nodes != knob) { 3429 if (ksm_pages_shared || remove_all_stable_nodes()) 3430 err = -EBUSY; 3431 else if (root_stable_tree == one_stable_tree) { 3432 struct rb_root *buf; 3433 /* 3434 * This is the first time that we switch away from the 3435 * default of merging across nodes: must now allocate 3436 * a buffer to hold as many roots as may be needed. 3437 * Allocate stable and unstable together: 3438 * MAXSMP NODES_SHIFT 10 will use 16kB. 3439 */ 3440 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3441 GFP_KERNEL); 3442 /* Let us assume that RB_ROOT is NULL is zero */ 3443 if (!buf) 3444 err = -ENOMEM; 3445 else { 3446 root_stable_tree = buf; 3447 root_unstable_tree = buf + nr_node_ids; 3448 /* Stable tree is empty but not the unstable */ 3449 root_unstable_tree[0] = one_unstable_tree[0]; 3450 } 3451 } 3452 if (!err) { 3453 ksm_merge_across_nodes = knob; 3454 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3455 } 3456 } 3457 mutex_unlock(&ksm_thread_mutex); 3458 3459 return err ? err : count; 3460 } 3461 KSM_ATTR(merge_across_nodes); 3462 #endif 3463 3464 static ssize_t use_zero_pages_show(struct kobject *kobj, 3465 struct kobj_attribute *attr, char *buf) 3466 { 3467 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3468 } 3469 static ssize_t use_zero_pages_store(struct kobject *kobj, 3470 struct kobj_attribute *attr, 3471 const char *buf, size_t count) 3472 { 3473 int err; 3474 bool value; 3475 3476 err = kstrtobool(buf, &value); 3477 if (err) 3478 return -EINVAL; 3479 3480 ksm_use_zero_pages = value; 3481 3482 return count; 3483 } 3484 KSM_ATTR(use_zero_pages); 3485 3486 static ssize_t max_page_sharing_show(struct kobject *kobj, 3487 struct kobj_attribute *attr, char *buf) 3488 { 3489 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3490 } 3491 3492 static ssize_t max_page_sharing_store(struct kobject *kobj, 3493 struct kobj_attribute *attr, 3494 const char *buf, size_t count) 3495 { 3496 int err; 3497 int knob; 3498 3499 err = kstrtoint(buf, 10, &knob); 3500 if (err) 3501 return err; 3502 /* 3503 * When a KSM page is created it is shared by 2 mappings. This 3504 * being a signed comparison, it implicitly verifies it's not 3505 * negative. 3506 */ 3507 if (knob < 2) 3508 return -EINVAL; 3509 3510 if (READ_ONCE(ksm_max_page_sharing) == knob) 3511 return count; 3512 3513 mutex_lock(&ksm_thread_mutex); 3514 wait_while_offlining(); 3515 if (ksm_max_page_sharing != knob) { 3516 if (ksm_pages_shared || remove_all_stable_nodes()) 3517 err = -EBUSY; 3518 else 3519 ksm_max_page_sharing = knob; 3520 } 3521 mutex_unlock(&ksm_thread_mutex); 3522 3523 return err ? err : count; 3524 } 3525 KSM_ATTR(max_page_sharing); 3526 3527 static ssize_t pages_scanned_show(struct kobject *kobj, 3528 struct kobj_attribute *attr, char *buf) 3529 { 3530 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3531 } 3532 KSM_ATTR_RO(pages_scanned); 3533 3534 static ssize_t pages_shared_show(struct kobject *kobj, 3535 struct kobj_attribute *attr, char *buf) 3536 { 3537 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3538 } 3539 KSM_ATTR_RO(pages_shared); 3540 3541 static ssize_t pages_sharing_show(struct kobject *kobj, 3542 struct kobj_attribute *attr, char *buf) 3543 { 3544 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3545 } 3546 KSM_ATTR_RO(pages_sharing); 3547 3548 static ssize_t pages_unshared_show(struct kobject *kobj, 3549 struct kobj_attribute *attr, char *buf) 3550 { 3551 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3552 } 3553 KSM_ATTR_RO(pages_unshared); 3554 3555 static ssize_t pages_volatile_show(struct kobject *kobj, 3556 struct kobj_attribute *attr, char *buf) 3557 { 3558 long ksm_pages_volatile; 3559 3560 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3561 - ksm_pages_sharing - ksm_pages_unshared; 3562 /* 3563 * It was not worth any locking to calculate that statistic, 3564 * but it might therefore sometimes be negative: conceal that. 3565 */ 3566 if (ksm_pages_volatile < 0) 3567 ksm_pages_volatile = 0; 3568 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3569 } 3570 KSM_ATTR_RO(pages_volatile); 3571 3572 static ssize_t pages_skipped_show(struct kobject *kobj, 3573 struct kobj_attribute *attr, char *buf) 3574 { 3575 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3576 } 3577 KSM_ATTR_RO(pages_skipped); 3578 3579 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3580 struct kobj_attribute *attr, char *buf) 3581 { 3582 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); 3583 } 3584 KSM_ATTR_RO(ksm_zero_pages); 3585 3586 static ssize_t general_profit_show(struct kobject *kobj, 3587 struct kobj_attribute *attr, char *buf) 3588 { 3589 long general_profit; 3590 3591 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - 3592 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3593 3594 return sysfs_emit(buf, "%ld\n", general_profit); 3595 } 3596 KSM_ATTR_RO(general_profit); 3597 3598 static ssize_t stable_node_dups_show(struct kobject *kobj, 3599 struct kobj_attribute *attr, char *buf) 3600 { 3601 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3602 } 3603 KSM_ATTR_RO(stable_node_dups); 3604 3605 static ssize_t stable_node_chains_show(struct kobject *kobj, 3606 struct kobj_attribute *attr, char *buf) 3607 { 3608 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3609 } 3610 KSM_ATTR_RO(stable_node_chains); 3611 3612 static ssize_t 3613 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3614 struct kobj_attribute *attr, 3615 char *buf) 3616 { 3617 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3618 } 3619 3620 static ssize_t 3621 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3622 struct kobj_attribute *attr, 3623 const char *buf, size_t count) 3624 { 3625 unsigned int msecs; 3626 int err; 3627 3628 err = kstrtouint(buf, 10, &msecs); 3629 if (err) 3630 return -EINVAL; 3631 3632 ksm_stable_node_chains_prune_millisecs = msecs; 3633 3634 return count; 3635 } 3636 KSM_ATTR(stable_node_chains_prune_millisecs); 3637 3638 static ssize_t full_scans_show(struct kobject *kobj, 3639 struct kobj_attribute *attr, char *buf) 3640 { 3641 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3642 } 3643 KSM_ATTR_RO(full_scans); 3644 3645 static ssize_t smart_scan_show(struct kobject *kobj, 3646 struct kobj_attribute *attr, char *buf) 3647 { 3648 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3649 } 3650 3651 static ssize_t smart_scan_store(struct kobject *kobj, 3652 struct kobj_attribute *attr, 3653 const char *buf, size_t count) 3654 { 3655 int err; 3656 bool value; 3657 3658 err = kstrtobool(buf, &value); 3659 if (err) 3660 return -EINVAL; 3661 3662 ksm_smart_scan = value; 3663 return count; 3664 } 3665 KSM_ATTR(smart_scan); 3666 3667 static ssize_t advisor_mode_show(struct kobject *kobj, 3668 struct kobj_attribute *attr, char *buf) 3669 { 3670 const char *output; 3671 3672 if (ksm_advisor == KSM_ADVISOR_NONE) 3673 output = "[none] scan-time"; 3674 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3675 output = "none [scan-time]"; 3676 3677 return sysfs_emit(buf, "%s\n", output); 3678 } 3679 3680 static ssize_t advisor_mode_store(struct kobject *kobj, 3681 struct kobj_attribute *attr, const char *buf, 3682 size_t count) 3683 { 3684 enum ksm_advisor_type curr_advisor = ksm_advisor; 3685 3686 if (sysfs_streq("scan-time", buf)) 3687 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3688 else if (sysfs_streq("none", buf)) 3689 ksm_advisor = KSM_ADVISOR_NONE; 3690 else 3691 return -EINVAL; 3692 3693 /* Set advisor default values */ 3694 if (curr_advisor != ksm_advisor) 3695 set_advisor_defaults(); 3696 3697 return count; 3698 } 3699 KSM_ATTR(advisor_mode); 3700 3701 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3702 struct kobj_attribute *attr, char *buf) 3703 { 3704 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3705 } 3706 3707 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3708 struct kobj_attribute *attr, 3709 const char *buf, size_t count) 3710 { 3711 int err; 3712 unsigned long value; 3713 3714 err = kstrtoul(buf, 10, &value); 3715 if (err) 3716 return -EINVAL; 3717 3718 ksm_advisor_max_cpu = value; 3719 return count; 3720 } 3721 KSM_ATTR(advisor_max_cpu); 3722 3723 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3724 struct kobj_attribute *attr, char *buf) 3725 { 3726 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3727 } 3728 3729 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3730 struct kobj_attribute *attr, 3731 const char *buf, size_t count) 3732 { 3733 int err; 3734 unsigned long value; 3735 3736 err = kstrtoul(buf, 10, &value); 3737 if (err) 3738 return -EINVAL; 3739 3740 ksm_advisor_min_pages_to_scan = value; 3741 return count; 3742 } 3743 KSM_ATTR(advisor_min_pages_to_scan); 3744 3745 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3746 struct kobj_attribute *attr, char *buf) 3747 { 3748 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3749 } 3750 3751 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3752 struct kobj_attribute *attr, 3753 const char *buf, size_t count) 3754 { 3755 int err; 3756 unsigned long value; 3757 3758 err = kstrtoul(buf, 10, &value); 3759 if (err) 3760 return -EINVAL; 3761 3762 ksm_advisor_max_pages_to_scan = value; 3763 return count; 3764 } 3765 KSM_ATTR(advisor_max_pages_to_scan); 3766 3767 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3768 struct kobj_attribute *attr, char *buf) 3769 { 3770 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3771 } 3772 3773 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3774 struct kobj_attribute *attr, 3775 const char *buf, size_t count) 3776 { 3777 int err; 3778 unsigned long value; 3779 3780 err = kstrtoul(buf, 10, &value); 3781 if (err) 3782 return -EINVAL; 3783 if (value < 1) 3784 return -EINVAL; 3785 3786 ksm_advisor_target_scan_time = value; 3787 return count; 3788 } 3789 KSM_ATTR(advisor_target_scan_time); 3790 3791 static struct attribute *ksm_attrs[] = { 3792 &sleep_millisecs_attr.attr, 3793 &pages_to_scan_attr.attr, 3794 &run_attr.attr, 3795 &pages_scanned_attr.attr, 3796 &pages_shared_attr.attr, 3797 &pages_sharing_attr.attr, 3798 &pages_unshared_attr.attr, 3799 &pages_volatile_attr.attr, 3800 &pages_skipped_attr.attr, 3801 &ksm_zero_pages_attr.attr, 3802 &full_scans_attr.attr, 3803 #ifdef CONFIG_NUMA 3804 &merge_across_nodes_attr.attr, 3805 #endif 3806 &max_page_sharing_attr.attr, 3807 &stable_node_chains_attr.attr, 3808 &stable_node_dups_attr.attr, 3809 &stable_node_chains_prune_millisecs_attr.attr, 3810 &use_zero_pages_attr.attr, 3811 &general_profit_attr.attr, 3812 &smart_scan_attr.attr, 3813 &advisor_mode_attr.attr, 3814 &advisor_max_cpu_attr.attr, 3815 &advisor_min_pages_to_scan_attr.attr, 3816 &advisor_max_pages_to_scan_attr.attr, 3817 &advisor_target_scan_time_attr.attr, 3818 NULL, 3819 }; 3820 3821 static const struct attribute_group ksm_attr_group = { 3822 .attrs = ksm_attrs, 3823 .name = "ksm", 3824 }; 3825 #endif /* CONFIG_SYSFS */ 3826 3827 static int __init ksm_init(void) 3828 { 3829 struct task_struct *ksm_thread; 3830 int err; 3831 3832 /* The correct value depends on page size and endianness */ 3833 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3834 /* Default to false for backwards compatibility */ 3835 ksm_use_zero_pages = false; 3836 3837 err = ksm_slab_init(); 3838 if (err) 3839 goto out; 3840 3841 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3842 if (IS_ERR(ksm_thread)) { 3843 pr_err("ksm: creating kthread failed\n"); 3844 err = PTR_ERR(ksm_thread); 3845 goto out_free; 3846 } 3847 3848 #ifdef CONFIG_SYSFS 3849 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3850 if (err) { 3851 pr_err("ksm: register sysfs failed\n"); 3852 kthread_stop(ksm_thread); 3853 goto out_free; 3854 } 3855 #else 3856 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3857 3858 #endif /* CONFIG_SYSFS */ 3859 3860 #ifdef CONFIG_MEMORY_HOTREMOVE 3861 /* There is no significance to this priority 100 */ 3862 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3863 #endif 3864 return 0; 3865 3866 out_free: 3867 ksm_slab_free(); 3868 out: 3869 return err; 3870 } 3871 subsys_initcall(ksm_init); 3872