xref: /linux/mm/ksm.c (revision 7340c6df49df1b261892d287444c255d0a378063)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of pages scanned */
246 static unsigned long ksm_pages_scanned;
247 
248 /* The number of nodes in the stable tree */
249 static unsigned long ksm_pages_shared;
250 
251 /* The number of page slots additionally sharing those nodes */
252 static unsigned long ksm_pages_sharing;
253 
254 /* The number of nodes in the unstable tree */
255 static unsigned long ksm_pages_unshared;
256 
257 /* The number of rmap_items in use: to calculate pages_volatile */
258 static unsigned long ksm_rmap_items;
259 
260 /* The number of stable_node chains */
261 static unsigned long ksm_stable_node_chains;
262 
263 /* The number of stable_node dups linked to the stable_node chains */
264 static unsigned long ksm_stable_node_dups;
265 
266 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
267 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
268 
269 /* Maximum number of page slots sharing a stable node */
270 static int ksm_max_page_sharing = 256;
271 
272 /* Number of pages ksmd should scan in one batch */
273 static unsigned int ksm_thread_pages_to_scan = 100;
274 
275 /* Milliseconds ksmd should sleep between batches */
276 static unsigned int ksm_thread_sleep_millisecs = 20;
277 
278 /* Checksum of an empty (zeroed) page */
279 static unsigned int zero_checksum __read_mostly;
280 
281 /* Whether to merge empty (zeroed) pages with actual zero pages */
282 static bool ksm_use_zero_pages __read_mostly;
283 
284 /* The number of zero pages which is placed by KSM */
285 unsigned long ksm_zero_pages;
286 
287 #ifdef CONFIG_NUMA
288 /* Zeroed when merging across nodes is not allowed */
289 static unsigned int ksm_merge_across_nodes = 1;
290 static int ksm_nr_node_ids = 1;
291 #else
292 #define ksm_merge_across_nodes	1U
293 #define ksm_nr_node_ids		1
294 #endif
295 
296 #define KSM_RUN_STOP	0
297 #define KSM_RUN_MERGE	1
298 #define KSM_RUN_UNMERGE	2
299 #define KSM_RUN_OFFLINE	4
300 static unsigned long ksm_run = KSM_RUN_STOP;
301 static void wait_while_offlining(void);
302 
303 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
304 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
305 static DEFINE_MUTEX(ksm_thread_mutex);
306 static DEFINE_SPINLOCK(ksm_mmlist_lock);
307 
308 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
309 		sizeof(struct __struct), __alignof__(struct __struct),\
310 		(__flags), NULL)
311 
312 static int __init ksm_slab_init(void)
313 {
314 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
315 	if (!rmap_item_cache)
316 		goto out;
317 
318 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
319 	if (!stable_node_cache)
320 		goto out_free1;
321 
322 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
323 	if (!mm_slot_cache)
324 		goto out_free2;
325 
326 	return 0;
327 
328 out_free2:
329 	kmem_cache_destroy(stable_node_cache);
330 out_free1:
331 	kmem_cache_destroy(rmap_item_cache);
332 out:
333 	return -ENOMEM;
334 }
335 
336 static void __init ksm_slab_free(void)
337 {
338 	kmem_cache_destroy(mm_slot_cache);
339 	kmem_cache_destroy(stable_node_cache);
340 	kmem_cache_destroy(rmap_item_cache);
341 	mm_slot_cache = NULL;
342 }
343 
344 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
345 {
346 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
347 }
348 
349 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
350 {
351 	return dup->head == STABLE_NODE_DUP_HEAD;
352 }
353 
354 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
355 					     struct ksm_stable_node *chain)
356 {
357 	VM_BUG_ON(is_stable_node_dup(dup));
358 	dup->head = STABLE_NODE_DUP_HEAD;
359 	VM_BUG_ON(!is_stable_node_chain(chain));
360 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
361 	ksm_stable_node_dups++;
362 }
363 
364 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
365 {
366 	VM_BUG_ON(!is_stable_node_dup(dup));
367 	hlist_del(&dup->hlist_dup);
368 	ksm_stable_node_dups--;
369 }
370 
371 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
372 {
373 	VM_BUG_ON(is_stable_node_chain(dup));
374 	if (is_stable_node_dup(dup))
375 		__stable_node_dup_del(dup);
376 	else
377 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
378 #ifdef CONFIG_DEBUG_VM
379 	dup->head = NULL;
380 #endif
381 }
382 
383 static inline struct ksm_rmap_item *alloc_rmap_item(void)
384 {
385 	struct ksm_rmap_item *rmap_item;
386 
387 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
388 						__GFP_NORETRY | __GFP_NOWARN);
389 	if (rmap_item)
390 		ksm_rmap_items++;
391 	return rmap_item;
392 }
393 
394 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
395 {
396 	ksm_rmap_items--;
397 	rmap_item->mm->ksm_rmap_items--;
398 	rmap_item->mm = NULL;	/* debug safety */
399 	kmem_cache_free(rmap_item_cache, rmap_item);
400 }
401 
402 static inline struct ksm_stable_node *alloc_stable_node(void)
403 {
404 	/*
405 	 * The allocation can take too long with GFP_KERNEL when memory is under
406 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
407 	 * grants access to memory reserves, helping to avoid this problem.
408 	 */
409 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
410 }
411 
412 static inline void free_stable_node(struct ksm_stable_node *stable_node)
413 {
414 	VM_BUG_ON(stable_node->rmap_hlist_len &&
415 		  !is_stable_node_chain(stable_node));
416 	kmem_cache_free(stable_node_cache, stable_node);
417 }
418 
419 /*
420  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
421  * page tables after it has passed through ksm_exit() - which, if necessary,
422  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
423  * a special flag: they can just back out as soon as mm_users goes to zero.
424  * ksm_test_exit() is used throughout to make this test for exit: in some
425  * places for correctness, in some places just to avoid unnecessary work.
426  */
427 static inline bool ksm_test_exit(struct mm_struct *mm)
428 {
429 	return atomic_read(&mm->mm_users) == 0;
430 }
431 
432 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
433 			struct mm_walk *walk)
434 {
435 	struct page *page = NULL;
436 	spinlock_t *ptl;
437 	pte_t *pte;
438 	pte_t ptent;
439 	int ret;
440 
441 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
442 	if (!pte)
443 		return 0;
444 	ptent = ptep_get(pte);
445 	if (pte_present(ptent)) {
446 		page = vm_normal_page(walk->vma, addr, ptent);
447 	} else if (!pte_none(ptent)) {
448 		swp_entry_t entry = pte_to_swp_entry(ptent);
449 
450 		/*
451 		 * As KSM pages remain KSM pages until freed, no need to wait
452 		 * here for migration to end.
453 		 */
454 		if (is_migration_entry(entry))
455 			page = pfn_swap_entry_to_page(entry);
456 	}
457 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
458 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
459 	pte_unmap_unlock(pte, ptl);
460 	return ret;
461 }
462 
463 static const struct mm_walk_ops break_ksm_ops = {
464 	.pmd_entry = break_ksm_pmd_entry,
465 	.walk_lock = PGWALK_RDLOCK,
466 };
467 
468 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
469 	.pmd_entry = break_ksm_pmd_entry,
470 	.walk_lock = PGWALK_WRLOCK,
471 };
472 
473 /*
474  * We use break_ksm to break COW on a ksm page by triggering unsharing,
475  * such that the ksm page will get replaced by an exclusive anonymous page.
476  *
477  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
478  * in case the application has unmapped and remapped mm,addr meanwhile.
479  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
480  * mmap of /dev/mem, where we would not want to touch it.
481  *
482  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
483  * of the process that owns 'vma'.  We also do not want to enforce
484  * protection keys here anyway.
485  */
486 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
487 {
488 	vm_fault_t ret = 0;
489 	const struct mm_walk_ops *ops = lock_vma ?
490 				&break_ksm_lock_vma_ops : &break_ksm_ops;
491 
492 	do {
493 		int ksm_page;
494 
495 		cond_resched();
496 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
497 		if (WARN_ON_ONCE(ksm_page < 0))
498 			return ksm_page;
499 		if (!ksm_page)
500 			return 0;
501 		ret = handle_mm_fault(vma, addr,
502 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
503 				      NULL);
504 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
505 	/*
506 	 * We must loop until we no longer find a KSM page because
507 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
508 	 * pte accessed bit gets updated concurrently.
509 	 *
510 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
511 	 * backing file, which also invalidates anonymous pages: that's
512 	 * okay, that truncation will have unmapped the PageKsm for us.
513 	 *
514 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
515 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
516 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
517 	 * to user; and ksmd, having no mm, would never be chosen for that.
518 	 *
519 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
520 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
521 	 * even ksmd can fail in this way - though it's usually breaking ksm
522 	 * just to undo a merge it made a moment before, so unlikely to oom.
523 	 *
524 	 * That's a pity: we might therefore have more kernel pages allocated
525 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
526 	 * will retry to break_cow on each pass, so should recover the page
527 	 * in due course.  The important thing is to not let VM_MERGEABLE
528 	 * be cleared while any such pages might remain in the area.
529 	 */
530 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
531 }
532 
533 static bool vma_ksm_compatible(struct vm_area_struct *vma)
534 {
535 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
536 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
537 			     VM_MIXEDMAP))
538 		return false;		/* just ignore the advice */
539 
540 	if (vma_is_dax(vma))
541 		return false;
542 
543 #ifdef VM_SAO
544 	if (vma->vm_flags & VM_SAO)
545 		return false;
546 #endif
547 #ifdef VM_SPARC_ADI
548 	if (vma->vm_flags & VM_SPARC_ADI)
549 		return false;
550 #endif
551 
552 	return true;
553 }
554 
555 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
556 		unsigned long addr)
557 {
558 	struct vm_area_struct *vma;
559 	if (ksm_test_exit(mm))
560 		return NULL;
561 	vma = vma_lookup(mm, addr);
562 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
563 		return NULL;
564 	return vma;
565 }
566 
567 static void break_cow(struct ksm_rmap_item *rmap_item)
568 {
569 	struct mm_struct *mm = rmap_item->mm;
570 	unsigned long addr = rmap_item->address;
571 	struct vm_area_struct *vma;
572 
573 	/*
574 	 * It is not an accident that whenever we want to break COW
575 	 * to undo, we also need to drop a reference to the anon_vma.
576 	 */
577 	put_anon_vma(rmap_item->anon_vma);
578 
579 	mmap_read_lock(mm);
580 	vma = find_mergeable_vma(mm, addr);
581 	if (vma)
582 		break_ksm(vma, addr, false);
583 	mmap_read_unlock(mm);
584 }
585 
586 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
587 {
588 	struct mm_struct *mm = rmap_item->mm;
589 	unsigned long addr = rmap_item->address;
590 	struct vm_area_struct *vma;
591 	struct page *page;
592 
593 	mmap_read_lock(mm);
594 	vma = find_mergeable_vma(mm, addr);
595 	if (!vma)
596 		goto out;
597 
598 	page = follow_page(vma, addr, FOLL_GET);
599 	if (IS_ERR_OR_NULL(page))
600 		goto out;
601 	if (is_zone_device_page(page))
602 		goto out_putpage;
603 	if (PageAnon(page)) {
604 		flush_anon_page(vma, page, addr);
605 		flush_dcache_page(page);
606 	} else {
607 out_putpage:
608 		put_page(page);
609 out:
610 		page = NULL;
611 	}
612 	mmap_read_unlock(mm);
613 	return page;
614 }
615 
616 /*
617  * This helper is used for getting right index into array of tree roots.
618  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
619  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
620  * every node has its own stable and unstable tree.
621  */
622 static inline int get_kpfn_nid(unsigned long kpfn)
623 {
624 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
625 }
626 
627 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
628 						   struct rb_root *root)
629 {
630 	struct ksm_stable_node *chain = alloc_stable_node();
631 	VM_BUG_ON(is_stable_node_chain(dup));
632 	if (likely(chain)) {
633 		INIT_HLIST_HEAD(&chain->hlist);
634 		chain->chain_prune_time = jiffies;
635 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
636 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
637 		chain->nid = NUMA_NO_NODE; /* debug */
638 #endif
639 		ksm_stable_node_chains++;
640 
641 		/*
642 		 * Put the stable node chain in the first dimension of
643 		 * the stable tree and at the same time remove the old
644 		 * stable node.
645 		 */
646 		rb_replace_node(&dup->node, &chain->node, root);
647 
648 		/*
649 		 * Move the old stable node to the second dimension
650 		 * queued in the hlist_dup. The invariant is that all
651 		 * dup stable_nodes in the chain->hlist point to pages
652 		 * that are write protected and have the exact same
653 		 * content.
654 		 */
655 		stable_node_chain_add_dup(dup, chain);
656 	}
657 	return chain;
658 }
659 
660 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
661 					  struct rb_root *root)
662 {
663 	rb_erase(&chain->node, root);
664 	free_stable_node(chain);
665 	ksm_stable_node_chains--;
666 }
667 
668 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
669 {
670 	struct ksm_rmap_item *rmap_item;
671 
672 	/* check it's not STABLE_NODE_CHAIN or negative */
673 	BUG_ON(stable_node->rmap_hlist_len < 0);
674 
675 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
676 		if (rmap_item->hlist.next) {
677 			ksm_pages_sharing--;
678 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
679 		} else {
680 			ksm_pages_shared--;
681 		}
682 
683 		rmap_item->mm->ksm_merging_pages--;
684 
685 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
686 		stable_node->rmap_hlist_len--;
687 		put_anon_vma(rmap_item->anon_vma);
688 		rmap_item->address &= PAGE_MASK;
689 		cond_resched();
690 	}
691 
692 	/*
693 	 * We need the second aligned pointer of the migrate_nodes
694 	 * list_head to stay clear from the rb_parent_color union
695 	 * (aligned and different than any node) and also different
696 	 * from &migrate_nodes. This will verify that future list.h changes
697 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
698 	 */
699 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
700 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
701 
702 	trace_ksm_remove_ksm_page(stable_node->kpfn);
703 	if (stable_node->head == &migrate_nodes)
704 		list_del(&stable_node->list);
705 	else
706 		stable_node_dup_del(stable_node);
707 	free_stable_node(stable_node);
708 }
709 
710 enum get_ksm_page_flags {
711 	GET_KSM_PAGE_NOLOCK,
712 	GET_KSM_PAGE_LOCK,
713 	GET_KSM_PAGE_TRYLOCK
714 };
715 
716 /*
717  * get_ksm_page: checks if the page indicated by the stable node
718  * is still its ksm page, despite having held no reference to it.
719  * In which case we can trust the content of the page, and it
720  * returns the gotten page; but if the page has now been zapped,
721  * remove the stale node from the stable tree and return NULL.
722  * But beware, the stable node's page might be being migrated.
723  *
724  * You would expect the stable_node to hold a reference to the ksm page.
725  * But if it increments the page's count, swapping out has to wait for
726  * ksmd to come around again before it can free the page, which may take
727  * seconds or even minutes: much too unresponsive.  So instead we use a
728  * "keyhole reference": access to the ksm page from the stable node peeps
729  * out through its keyhole to see if that page still holds the right key,
730  * pointing back to this stable node.  This relies on freeing a PageAnon
731  * page to reset its page->mapping to NULL, and relies on no other use of
732  * a page to put something that might look like our key in page->mapping.
733  * is on its way to being freed; but it is an anomaly to bear in mind.
734  */
735 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
736 				 enum get_ksm_page_flags flags)
737 {
738 	struct page *page;
739 	void *expected_mapping;
740 	unsigned long kpfn;
741 
742 	expected_mapping = (void *)((unsigned long)stable_node |
743 					PAGE_MAPPING_KSM);
744 again:
745 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
746 	page = pfn_to_page(kpfn);
747 	if (READ_ONCE(page->mapping) != expected_mapping)
748 		goto stale;
749 
750 	/*
751 	 * We cannot do anything with the page while its refcount is 0.
752 	 * Usually 0 means free, or tail of a higher-order page: in which
753 	 * case this node is no longer referenced, and should be freed;
754 	 * however, it might mean that the page is under page_ref_freeze().
755 	 * The __remove_mapping() case is easy, again the node is now stale;
756 	 * the same is in reuse_ksm_page() case; but if page is swapcache
757 	 * in folio_migrate_mapping(), it might still be our page,
758 	 * in which case it's essential to keep the node.
759 	 */
760 	while (!get_page_unless_zero(page)) {
761 		/*
762 		 * Another check for page->mapping != expected_mapping would
763 		 * work here too.  We have chosen the !PageSwapCache test to
764 		 * optimize the common case, when the page is or is about to
765 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
766 		 * in the ref_freeze section of __remove_mapping(); but Anon
767 		 * page->mapping reset to NULL later, in free_pages_prepare().
768 		 */
769 		if (!PageSwapCache(page))
770 			goto stale;
771 		cpu_relax();
772 	}
773 
774 	if (READ_ONCE(page->mapping) != expected_mapping) {
775 		put_page(page);
776 		goto stale;
777 	}
778 
779 	if (flags == GET_KSM_PAGE_TRYLOCK) {
780 		if (!trylock_page(page)) {
781 			put_page(page);
782 			return ERR_PTR(-EBUSY);
783 		}
784 	} else if (flags == GET_KSM_PAGE_LOCK)
785 		lock_page(page);
786 
787 	if (flags != GET_KSM_PAGE_NOLOCK) {
788 		if (READ_ONCE(page->mapping) != expected_mapping) {
789 			unlock_page(page);
790 			put_page(page);
791 			goto stale;
792 		}
793 	}
794 	return page;
795 
796 stale:
797 	/*
798 	 * We come here from above when page->mapping or !PageSwapCache
799 	 * suggests that the node is stale; but it might be under migration.
800 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
801 	 * before checking whether node->kpfn has been changed.
802 	 */
803 	smp_rmb();
804 	if (READ_ONCE(stable_node->kpfn) != kpfn)
805 		goto again;
806 	remove_node_from_stable_tree(stable_node);
807 	return NULL;
808 }
809 
810 /*
811  * Removing rmap_item from stable or unstable tree.
812  * This function will clean the information from the stable/unstable tree.
813  */
814 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
815 {
816 	if (rmap_item->address & STABLE_FLAG) {
817 		struct ksm_stable_node *stable_node;
818 		struct page *page;
819 
820 		stable_node = rmap_item->head;
821 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
822 		if (!page)
823 			goto out;
824 
825 		hlist_del(&rmap_item->hlist);
826 		unlock_page(page);
827 		put_page(page);
828 
829 		if (!hlist_empty(&stable_node->hlist))
830 			ksm_pages_sharing--;
831 		else
832 			ksm_pages_shared--;
833 
834 		rmap_item->mm->ksm_merging_pages--;
835 
836 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
837 		stable_node->rmap_hlist_len--;
838 
839 		put_anon_vma(rmap_item->anon_vma);
840 		rmap_item->head = NULL;
841 		rmap_item->address &= PAGE_MASK;
842 
843 	} else if (rmap_item->address & UNSTABLE_FLAG) {
844 		unsigned char age;
845 		/*
846 		 * Usually ksmd can and must skip the rb_erase, because
847 		 * root_unstable_tree was already reset to RB_ROOT.
848 		 * But be careful when an mm is exiting: do the rb_erase
849 		 * if this rmap_item was inserted by this scan, rather
850 		 * than left over from before.
851 		 */
852 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
853 		BUG_ON(age > 1);
854 		if (!age)
855 			rb_erase(&rmap_item->node,
856 				 root_unstable_tree + NUMA(rmap_item->nid));
857 		ksm_pages_unshared--;
858 		rmap_item->address &= PAGE_MASK;
859 	}
860 out:
861 	cond_resched();		/* we're called from many long loops */
862 }
863 
864 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
865 {
866 	while (*rmap_list) {
867 		struct ksm_rmap_item *rmap_item = *rmap_list;
868 		*rmap_list = rmap_item->rmap_list;
869 		remove_rmap_item_from_tree(rmap_item);
870 		free_rmap_item(rmap_item);
871 	}
872 }
873 
874 /*
875  * Though it's very tempting to unmerge rmap_items from stable tree rather
876  * than check every pte of a given vma, the locking doesn't quite work for
877  * that - an rmap_item is assigned to the stable tree after inserting ksm
878  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
879  * rmap_items from parent to child at fork time (so as not to waste time
880  * if exit comes before the next scan reaches it).
881  *
882  * Similarly, although we'd like to remove rmap_items (so updating counts
883  * and freeing memory) when unmerging an area, it's easier to leave that
884  * to the next pass of ksmd - consider, for example, how ksmd might be
885  * in cmp_and_merge_page on one of the rmap_items we would be removing.
886  */
887 static int unmerge_ksm_pages(struct vm_area_struct *vma,
888 			     unsigned long start, unsigned long end, bool lock_vma)
889 {
890 	unsigned long addr;
891 	int err = 0;
892 
893 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
894 		if (ksm_test_exit(vma->vm_mm))
895 			break;
896 		if (signal_pending(current))
897 			err = -ERESTARTSYS;
898 		else
899 			err = break_ksm(vma, addr, lock_vma);
900 	}
901 	return err;
902 }
903 
904 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
905 {
906 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
907 }
908 
909 static inline struct ksm_stable_node *page_stable_node(struct page *page)
910 {
911 	return folio_stable_node(page_folio(page));
912 }
913 
914 static inline void set_page_stable_node(struct page *page,
915 					struct ksm_stable_node *stable_node)
916 {
917 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
918 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
919 }
920 
921 #ifdef CONFIG_SYSFS
922 /*
923  * Only called through the sysfs control interface:
924  */
925 static int remove_stable_node(struct ksm_stable_node *stable_node)
926 {
927 	struct page *page;
928 	int err;
929 
930 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
931 	if (!page) {
932 		/*
933 		 * get_ksm_page did remove_node_from_stable_tree itself.
934 		 */
935 		return 0;
936 	}
937 
938 	/*
939 	 * Page could be still mapped if this races with __mmput() running in
940 	 * between ksm_exit() and exit_mmap(). Just refuse to let
941 	 * merge_across_nodes/max_page_sharing be switched.
942 	 */
943 	err = -EBUSY;
944 	if (!page_mapped(page)) {
945 		/*
946 		 * The stable node did not yet appear stale to get_ksm_page(),
947 		 * since that allows for an unmapped ksm page to be recognized
948 		 * right up until it is freed; but the node is safe to remove.
949 		 * This page might be in an LRU cache waiting to be freed,
950 		 * or it might be PageSwapCache (perhaps under writeback),
951 		 * or it might have been removed from swapcache a moment ago.
952 		 */
953 		set_page_stable_node(page, NULL);
954 		remove_node_from_stable_tree(stable_node);
955 		err = 0;
956 	}
957 
958 	unlock_page(page);
959 	put_page(page);
960 	return err;
961 }
962 
963 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
964 				    struct rb_root *root)
965 {
966 	struct ksm_stable_node *dup;
967 	struct hlist_node *hlist_safe;
968 
969 	if (!is_stable_node_chain(stable_node)) {
970 		VM_BUG_ON(is_stable_node_dup(stable_node));
971 		if (remove_stable_node(stable_node))
972 			return true;
973 		else
974 			return false;
975 	}
976 
977 	hlist_for_each_entry_safe(dup, hlist_safe,
978 				  &stable_node->hlist, hlist_dup) {
979 		VM_BUG_ON(!is_stable_node_dup(dup));
980 		if (remove_stable_node(dup))
981 			return true;
982 	}
983 	BUG_ON(!hlist_empty(&stable_node->hlist));
984 	free_stable_node_chain(stable_node, root);
985 	return false;
986 }
987 
988 static int remove_all_stable_nodes(void)
989 {
990 	struct ksm_stable_node *stable_node, *next;
991 	int nid;
992 	int err = 0;
993 
994 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
995 		while (root_stable_tree[nid].rb_node) {
996 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
997 						struct ksm_stable_node, node);
998 			if (remove_stable_node_chain(stable_node,
999 						     root_stable_tree + nid)) {
1000 				err = -EBUSY;
1001 				break;	/* proceed to next nid */
1002 			}
1003 			cond_resched();
1004 		}
1005 	}
1006 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1007 		if (remove_stable_node(stable_node))
1008 			err = -EBUSY;
1009 		cond_resched();
1010 	}
1011 	return err;
1012 }
1013 
1014 static int unmerge_and_remove_all_rmap_items(void)
1015 {
1016 	struct ksm_mm_slot *mm_slot;
1017 	struct mm_slot *slot;
1018 	struct mm_struct *mm;
1019 	struct vm_area_struct *vma;
1020 	int err = 0;
1021 
1022 	spin_lock(&ksm_mmlist_lock);
1023 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1024 			  struct mm_slot, mm_node);
1025 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1026 	spin_unlock(&ksm_mmlist_lock);
1027 
1028 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1029 	     mm_slot = ksm_scan.mm_slot) {
1030 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1031 
1032 		mm = mm_slot->slot.mm;
1033 		mmap_read_lock(mm);
1034 
1035 		/*
1036 		 * Exit right away if mm is exiting to avoid lockdep issue in
1037 		 * the maple tree
1038 		 */
1039 		if (ksm_test_exit(mm))
1040 			goto mm_exiting;
1041 
1042 		for_each_vma(vmi, vma) {
1043 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1044 				continue;
1045 			err = unmerge_ksm_pages(vma,
1046 						vma->vm_start, vma->vm_end, false);
1047 			if (err)
1048 				goto error;
1049 		}
1050 
1051 mm_exiting:
1052 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1053 		mmap_read_unlock(mm);
1054 
1055 		spin_lock(&ksm_mmlist_lock);
1056 		slot = list_entry(mm_slot->slot.mm_node.next,
1057 				  struct mm_slot, mm_node);
1058 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1059 		if (ksm_test_exit(mm)) {
1060 			hash_del(&mm_slot->slot.hash);
1061 			list_del(&mm_slot->slot.mm_node);
1062 			spin_unlock(&ksm_mmlist_lock);
1063 
1064 			mm_slot_free(mm_slot_cache, mm_slot);
1065 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1066 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1067 			mmdrop(mm);
1068 		} else
1069 			spin_unlock(&ksm_mmlist_lock);
1070 	}
1071 
1072 	/* Clean up stable nodes, but don't worry if some are still busy */
1073 	remove_all_stable_nodes();
1074 	ksm_scan.seqnr = 0;
1075 	return 0;
1076 
1077 error:
1078 	mmap_read_unlock(mm);
1079 	spin_lock(&ksm_mmlist_lock);
1080 	ksm_scan.mm_slot = &ksm_mm_head;
1081 	spin_unlock(&ksm_mmlist_lock);
1082 	return err;
1083 }
1084 #endif /* CONFIG_SYSFS */
1085 
1086 static u32 calc_checksum(struct page *page)
1087 {
1088 	u32 checksum;
1089 	void *addr = kmap_atomic(page);
1090 	checksum = xxhash(addr, PAGE_SIZE, 0);
1091 	kunmap_atomic(addr);
1092 	return checksum;
1093 }
1094 
1095 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1096 			      pte_t *orig_pte)
1097 {
1098 	struct mm_struct *mm = vma->vm_mm;
1099 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1100 	int swapped;
1101 	int err = -EFAULT;
1102 	struct mmu_notifier_range range;
1103 	bool anon_exclusive;
1104 	pte_t entry;
1105 
1106 	pvmw.address = page_address_in_vma(page, vma);
1107 	if (pvmw.address == -EFAULT)
1108 		goto out;
1109 
1110 	BUG_ON(PageTransCompound(page));
1111 
1112 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1113 				pvmw.address + PAGE_SIZE);
1114 	mmu_notifier_invalidate_range_start(&range);
1115 
1116 	if (!page_vma_mapped_walk(&pvmw))
1117 		goto out_mn;
1118 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1119 		goto out_unlock;
1120 
1121 	anon_exclusive = PageAnonExclusive(page);
1122 	entry = ptep_get(pvmw.pte);
1123 	if (pte_write(entry) || pte_dirty(entry) ||
1124 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1125 		swapped = PageSwapCache(page);
1126 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1127 		/*
1128 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1129 		 * take any lock, therefore the check that we are going to make
1130 		 * with the pagecount against the mapcount is racy and
1131 		 * O_DIRECT can happen right after the check.
1132 		 * So we clear the pte and flush the tlb before the check
1133 		 * this assure us that no O_DIRECT can happen after the check
1134 		 * or in the middle of the check.
1135 		 *
1136 		 * No need to notify as we are downgrading page table to read
1137 		 * only not changing it to point to a new page.
1138 		 *
1139 		 * See Documentation/mm/mmu_notifier.rst
1140 		 */
1141 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1142 		/*
1143 		 * Check that no O_DIRECT or similar I/O is in progress on the
1144 		 * page
1145 		 */
1146 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1147 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1148 			goto out_unlock;
1149 		}
1150 
1151 		/* See page_try_share_anon_rmap(): clear PTE first. */
1152 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1153 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1154 			goto out_unlock;
1155 		}
1156 
1157 		if (pte_dirty(entry))
1158 			set_page_dirty(page);
1159 		entry = pte_mkclean(entry);
1160 
1161 		if (pte_write(entry))
1162 			entry = pte_wrprotect(entry);
1163 
1164 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1165 	}
1166 	*orig_pte = entry;
1167 	err = 0;
1168 
1169 out_unlock:
1170 	page_vma_mapped_walk_done(&pvmw);
1171 out_mn:
1172 	mmu_notifier_invalidate_range_end(&range);
1173 out:
1174 	return err;
1175 }
1176 
1177 /**
1178  * replace_page - replace page in vma by new ksm page
1179  * @vma:      vma that holds the pte pointing to page
1180  * @page:     the page we are replacing by kpage
1181  * @kpage:    the ksm page we replace page by
1182  * @orig_pte: the original value of the pte
1183  *
1184  * Returns 0 on success, -EFAULT on failure.
1185  */
1186 static int replace_page(struct vm_area_struct *vma, struct page *page,
1187 			struct page *kpage, pte_t orig_pte)
1188 {
1189 	struct mm_struct *mm = vma->vm_mm;
1190 	struct folio *folio;
1191 	pmd_t *pmd;
1192 	pmd_t pmde;
1193 	pte_t *ptep;
1194 	pte_t newpte;
1195 	spinlock_t *ptl;
1196 	unsigned long addr;
1197 	int err = -EFAULT;
1198 	struct mmu_notifier_range range;
1199 
1200 	addr = page_address_in_vma(page, vma);
1201 	if (addr == -EFAULT)
1202 		goto out;
1203 
1204 	pmd = mm_find_pmd(mm, addr);
1205 	if (!pmd)
1206 		goto out;
1207 	/*
1208 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1209 	 * without holding anon_vma lock for write.  So when looking for a
1210 	 * genuine pmde (in which to find pte), test present and !THP together.
1211 	 */
1212 	pmde = pmdp_get_lockless(pmd);
1213 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1214 		goto out;
1215 
1216 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1217 				addr + PAGE_SIZE);
1218 	mmu_notifier_invalidate_range_start(&range);
1219 
1220 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1221 	if (!ptep)
1222 		goto out_mn;
1223 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1224 		pte_unmap_unlock(ptep, ptl);
1225 		goto out_mn;
1226 	}
1227 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1228 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1229 
1230 	/*
1231 	 * No need to check ksm_use_zero_pages here: we can only have a
1232 	 * zero_page here if ksm_use_zero_pages was enabled already.
1233 	 */
1234 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1235 		get_page(kpage);
1236 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1237 		newpte = mk_pte(kpage, vma->vm_page_prot);
1238 	} else {
1239 		/*
1240 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1241 		 * we can easily track all KSM-placed zero pages by checking if
1242 		 * the dirty bit in zero page's PTE is set.
1243 		 */
1244 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1245 		ksm_zero_pages++;
1246 		mm->ksm_zero_pages++;
1247 		/*
1248 		 * We're replacing an anonymous page with a zero page, which is
1249 		 * not anonymous. We need to do proper accounting otherwise we
1250 		 * will get wrong values in /proc, and a BUG message in dmesg
1251 		 * when tearing down the mm.
1252 		 */
1253 		dec_mm_counter(mm, MM_ANONPAGES);
1254 	}
1255 
1256 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1257 	/*
1258 	 * No need to notify as we are replacing a read only page with another
1259 	 * read only page with the same content.
1260 	 *
1261 	 * See Documentation/mm/mmu_notifier.rst
1262 	 */
1263 	ptep_clear_flush(vma, addr, ptep);
1264 	set_pte_at_notify(mm, addr, ptep, newpte);
1265 
1266 	folio = page_folio(page);
1267 	page_remove_rmap(page, vma, false);
1268 	if (!folio_mapped(folio))
1269 		folio_free_swap(folio);
1270 	folio_put(folio);
1271 
1272 	pte_unmap_unlock(ptep, ptl);
1273 	err = 0;
1274 out_mn:
1275 	mmu_notifier_invalidate_range_end(&range);
1276 out:
1277 	return err;
1278 }
1279 
1280 /*
1281  * try_to_merge_one_page - take two pages and merge them into one
1282  * @vma: the vma that holds the pte pointing to page
1283  * @page: the PageAnon page that we want to replace with kpage
1284  * @kpage: the PageKsm page that we want to map instead of page,
1285  *         or NULL the first time when we want to use page as kpage.
1286  *
1287  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1288  */
1289 static int try_to_merge_one_page(struct vm_area_struct *vma,
1290 				 struct page *page, struct page *kpage)
1291 {
1292 	pte_t orig_pte = __pte(0);
1293 	int err = -EFAULT;
1294 
1295 	if (page == kpage)			/* ksm page forked */
1296 		return 0;
1297 
1298 	if (!PageAnon(page))
1299 		goto out;
1300 
1301 	/*
1302 	 * We need the page lock to read a stable PageSwapCache in
1303 	 * write_protect_page().  We use trylock_page() instead of
1304 	 * lock_page() because we don't want to wait here - we
1305 	 * prefer to continue scanning and merging different pages,
1306 	 * then come back to this page when it is unlocked.
1307 	 */
1308 	if (!trylock_page(page))
1309 		goto out;
1310 
1311 	if (PageTransCompound(page)) {
1312 		if (split_huge_page(page))
1313 			goto out_unlock;
1314 	}
1315 
1316 	/*
1317 	 * If this anonymous page is mapped only here, its pte may need
1318 	 * to be write-protected.  If it's mapped elsewhere, all of its
1319 	 * ptes are necessarily already write-protected.  But in either
1320 	 * case, we need to lock and check page_count is not raised.
1321 	 */
1322 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1323 		if (!kpage) {
1324 			/*
1325 			 * While we hold page lock, upgrade page from
1326 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1327 			 * stable_tree_insert() will update stable_node.
1328 			 */
1329 			set_page_stable_node(page, NULL);
1330 			mark_page_accessed(page);
1331 			/*
1332 			 * Page reclaim just frees a clean page with no dirty
1333 			 * ptes: make sure that the ksm page would be swapped.
1334 			 */
1335 			if (!PageDirty(page))
1336 				SetPageDirty(page);
1337 			err = 0;
1338 		} else if (pages_identical(page, kpage))
1339 			err = replace_page(vma, page, kpage, orig_pte);
1340 	}
1341 
1342 out_unlock:
1343 	unlock_page(page);
1344 out:
1345 	return err;
1346 }
1347 
1348 /*
1349  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1350  * but no new kernel page is allocated: kpage must already be a ksm page.
1351  *
1352  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1353  */
1354 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1355 				      struct page *page, struct page *kpage)
1356 {
1357 	struct mm_struct *mm = rmap_item->mm;
1358 	struct vm_area_struct *vma;
1359 	int err = -EFAULT;
1360 
1361 	mmap_read_lock(mm);
1362 	vma = find_mergeable_vma(mm, rmap_item->address);
1363 	if (!vma)
1364 		goto out;
1365 
1366 	err = try_to_merge_one_page(vma, page, kpage);
1367 	if (err)
1368 		goto out;
1369 
1370 	/* Unstable nid is in union with stable anon_vma: remove first */
1371 	remove_rmap_item_from_tree(rmap_item);
1372 
1373 	/* Must get reference to anon_vma while still holding mmap_lock */
1374 	rmap_item->anon_vma = vma->anon_vma;
1375 	get_anon_vma(vma->anon_vma);
1376 out:
1377 	mmap_read_unlock(mm);
1378 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1379 				rmap_item, mm, err);
1380 	return err;
1381 }
1382 
1383 /*
1384  * try_to_merge_two_pages - take two identical pages and prepare them
1385  * to be merged into one page.
1386  *
1387  * This function returns the kpage if we successfully merged two identical
1388  * pages into one ksm page, NULL otherwise.
1389  *
1390  * Note that this function upgrades page to ksm page: if one of the pages
1391  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1392  */
1393 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1394 					   struct page *page,
1395 					   struct ksm_rmap_item *tree_rmap_item,
1396 					   struct page *tree_page)
1397 {
1398 	int err;
1399 
1400 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1401 	if (!err) {
1402 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1403 							tree_page, page);
1404 		/*
1405 		 * If that fails, we have a ksm page with only one pte
1406 		 * pointing to it: so break it.
1407 		 */
1408 		if (err)
1409 			break_cow(rmap_item);
1410 	}
1411 	return err ? NULL : page;
1412 }
1413 
1414 static __always_inline
1415 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1416 {
1417 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1418 	/*
1419 	 * Check that at least one mapping still exists, otherwise
1420 	 * there's no much point to merge and share with this
1421 	 * stable_node, as the underlying tree_page of the other
1422 	 * sharer is going to be freed soon.
1423 	 */
1424 	return stable_node->rmap_hlist_len &&
1425 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1426 }
1427 
1428 static __always_inline
1429 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1430 {
1431 	return __is_page_sharing_candidate(stable_node, 0);
1432 }
1433 
1434 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1435 				    struct ksm_stable_node **_stable_node,
1436 				    struct rb_root *root,
1437 				    bool prune_stale_stable_nodes)
1438 {
1439 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1440 	struct hlist_node *hlist_safe;
1441 	struct page *_tree_page, *tree_page = NULL;
1442 	int nr = 0;
1443 	int found_rmap_hlist_len;
1444 
1445 	if (!prune_stale_stable_nodes ||
1446 	    time_before(jiffies, stable_node->chain_prune_time +
1447 			msecs_to_jiffies(
1448 				ksm_stable_node_chains_prune_millisecs)))
1449 		prune_stale_stable_nodes = false;
1450 	else
1451 		stable_node->chain_prune_time = jiffies;
1452 
1453 	hlist_for_each_entry_safe(dup, hlist_safe,
1454 				  &stable_node->hlist, hlist_dup) {
1455 		cond_resched();
1456 		/*
1457 		 * We must walk all stable_node_dup to prune the stale
1458 		 * stable nodes during lookup.
1459 		 *
1460 		 * get_ksm_page can drop the nodes from the
1461 		 * stable_node->hlist if they point to freed pages
1462 		 * (that's why we do a _safe walk). The "dup"
1463 		 * stable_node parameter itself will be freed from
1464 		 * under us if it returns NULL.
1465 		 */
1466 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1467 		if (!_tree_page)
1468 			continue;
1469 		nr += 1;
1470 		if (is_page_sharing_candidate(dup)) {
1471 			if (!found ||
1472 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1473 				if (found)
1474 					put_page(tree_page);
1475 				found = dup;
1476 				found_rmap_hlist_len = found->rmap_hlist_len;
1477 				tree_page = _tree_page;
1478 
1479 				/* skip put_page for found dup */
1480 				if (!prune_stale_stable_nodes)
1481 					break;
1482 				continue;
1483 			}
1484 		}
1485 		put_page(_tree_page);
1486 	}
1487 
1488 	if (found) {
1489 		/*
1490 		 * nr is counting all dups in the chain only if
1491 		 * prune_stale_stable_nodes is true, otherwise we may
1492 		 * break the loop at nr == 1 even if there are
1493 		 * multiple entries.
1494 		 */
1495 		if (prune_stale_stable_nodes && nr == 1) {
1496 			/*
1497 			 * If there's not just one entry it would
1498 			 * corrupt memory, better BUG_ON. In KSM
1499 			 * context with no lock held it's not even
1500 			 * fatal.
1501 			 */
1502 			BUG_ON(stable_node->hlist.first->next);
1503 
1504 			/*
1505 			 * There's just one entry and it is below the
1506 			 * deduplication limit so drop the chain.
1507 			 */
1508 			rb_replace_node(&stable_node->node, &found->node,
1509 					root);
1510 			free_stable_node(stable_node);
1511 			ksm_stable_node_chains--;
1512 			ksm_stable_node_dups--;
1513 			/*
1514 			 * NOTE: the caller depends on the stable_node
1515 			 * to be equal to stable_node_dup if the chain
1516 			 * was collapsed.
1517 			 */
1518 			*_stable_node = found;
1519 			/*
1520 			 * Just for robustness, as stable_node is
1521 			 * otherwise left as a stable pointer, the
1522 			 * compiler shall optimize it away at build
1523 			 * time.
1524 			 */
1525 			stable_node = NULL;
1526 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1527 			   __is_page_sharing_candidate(found, 1)) {
1528 			/*
1529 			 * If the found stable_node dup can accept one
1530 			 * more future merge (in addition to the one
1531 			 * that is underway) and is not at the head of
1532 			 * the chain, put it there so next search will
1533 			 * be quicker in the !prune_stale_stable_nodes
1534 			 * case.
1535 			 *
1536 			 * NOTE: it would be inaccurate to use nr > 1
1537 			 * instead of checking the hlist.first pointer
1538 			 * directly, because in the
1539 			 * prune_stale_stable_nodes case "nr" isn't
1540 			 * the position of the found dup in the chain,
1541 			 * but the total number of dups in the chain.
1542 			 */
1543 			hlist_del(&found->hlist_dup);
1544 			hlist_add_head(&found->hlist_dup,
1545 				       &stable_node->hlist);
1546 		}
1547 	}
1548 
1549 	*_stable_node_dup = found;
1550 	return tree_page;
1551 }
1552 
1553 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1554 					       struct rb_root *root)
1555 {
1556 	if (!is_stable_node_chain(stable_node))
1557 		return stable_node;
1558 	if (hlist_empty(&stable_node->hlist)) {
1559 		free_stable_node_chain(stable_node, root);
1560 		return NULL;
1561 	}
1562 	return hlist_entry(stable_node->hlist.first,
1563 			   typeof(*stable_node), hlist_dup);
1564 }
1565 
1566 /*
1567  * Like for get_ksm_page, this function can free the *_stable_node and
1568  * *_stable_node_dup if the returned tree_page is NULL.
1569  *
1570  * It can also free and overwrite *_stable_node with the found
1571  * stable_node_dup if the chain is collapsed (in which case
1572  * *_stable_node will be equal to *_stable_node_dup like if the chain
1573  * never existed). It's up to the caller to verify tree_page is not
1574  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1575  *
1576  * *_stable_node_dup is really a second output parameter of this
1577  * function and will be overwritten in all cases, the caller doesn't
1578  * need to initialize it.
1579  */
1580 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1581 					struct ksm_stable_node **_stable_node,
1582 					struct rb_root *root,
1583 					bool prune_stale_stable_nodes)
1584 {
1585 	struct ksm_stable_node *stable_node = *_stable_node;
1586 	if (!is_stable_node_chain(stable_node)) {
1587 		if (is_page_sharing_candidate(stable_node)) {
1588 			*_stable_node_dup = stable_node;
1589 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1590 		}
1591 		/*
1592 		 * _stable_node_dup set to NULL means the stable_node
1593 		 * reached the ksm_max_page_sharing limit.
1594 		 */
1595 		*_stable_node_dup = NULL;
1596 		return NULL;
1597 	}
1598 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1599 			       prune_stale_stable_nodes);
1600 }
1601 
1602 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1603 						struct ksm_stable_node **s_n,
1604 						struct rb_root *root)
1605 {
1606 	return __stable_node_chain(s_n_d, s_n, root, true);
1607 }
1608 
1609 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1610 					  struct ksm_stable_node *s_n,
1611 					  struct rb_root *root)
1612 {
1613 	struct ksm_stable_node *old_stable_node = s_n;
1614 	struct page *tree_page;
1615 
1616 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1617 	/* not pruning dups so s_n cannot have changed */
1618 	VM_BUG_ON(s_n != old_stable_node);
1619 	return tree_page;
1620 }
1621 
1622 /*
1623  * stable_tree_search - search for page inside the stable tree
1624  *
1625  * This function checks if there is a page inside the stable tree
1626  * with identical content to the page that we are scanning right now.
1627  *
1628  * This function returns the stable tree node of identical content if found,
1629  * NULL otherwise.
1630  */
1631 static struct page *stable_tree_search(struct page *page)
1632 {
1633 	int nid;
1634 	struct rb_root *root;
1635 	struct rb_node **new;
1636 	struct rb_node *parent;
1637 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1638 	struct ksm_stable_node *page_node;
1639 
1640 	page_node = page_stable_node(page);
1641 	if (page_node && page_node->head != &migrate_nodes) {
1642 		/* ksm page forked */
1643 		get_page(page);
1644 		return page;
1645 	}
1646 
1647 	nid = get_kpfn_nid(page_to_pfn(page));
1648 	root = root_stable_tree + nid;
1649 again:
1650 	new = &root->rb_node;
1651 	parent = NULL;
1652 
1653 	while (*new) {
1654 		struct page *tree_page;
1655 		int ret;
1656 
1657 		cond_resched();
1658 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1659 		stable_node_any = NULL;
1660 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1661 		/*
1662 		 * NOTE: stable_node may have been freed by
1663 		 * chain_prune() if the returned stable_node_dup is
1664 		 * not NULL. stable_node_dup may have been inserted in
1665 		 * the rbtree instead as a regular stable_node (in
1666 		 * order to collapse the stable_node chain if a single
1667 		 * stable_node dup was found in it). In such case the
1668 		 * stable_node is overwritten by the callee to point
1669 		 * to the stable_node_dup that was collapsed in the
1670 		 * stable rbtree and stable_node will be equal to
1671 		 * stable_node_dup like if the chain never existed.
1672 		 */
1673 		if (!stable_node_dup) {
1674 			/*
1675 			 * Either all stable_node dups were full in
1676 			 * this stable_node chain, or this chain was
1677 			 * empty and should be rb_erased.
1678 			 */
1679 			stable_node_any = stable_node_dup_any(stable_node,
1680 							      root);
1681 			if (!stable_node_any) {
1682 				/* rb_erase just run */
1683 				goto again;
1684 			}
1685 			/*
1686 			 * Take any of the stable_node dups page of
1687 			 * this stable_node chain to let the tree walk
1688 			 * continue. All KSM pages belonging to the
1689 			 * stable_node dups in a stable_node chain
1690 			 * have the same content and they're
1691 			 * write protected at all times. Any will work
1692 			 * fine to continue the walk.
1693 			 */
1694 			tree_page = get_ksm_page(stable_node_any,
1695 						 GET_KSM_PAGE_NOLOCK);
1696 		}
1697 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1698 		if (!tree_page) {
1699 			/*
1700 			 * If we walked over a stale stable_node,
1701 			 * get_ksm_page() will call rb_erase() and it
1702 			 * may rebalance the tree from under us. So
1703 			 * restart the search from scratch. Returning
1704 			 * NULL would be safe too, but we'd generate
1705 			 * false negative insertions just because some
1706 			 * stable_node was stale.
1707 			 */
1708 			goto again;
1709 		}
1710 
1711 		ret = memcmp_pages(page, tree_page);
1712 		put_page(tree_page);
1713 
1714 		parent = *new;
1715 		if (ret < 0)
1716 			new = &parent->rb_left;
1717 		else if (ret > 0)
1718 			new = &parent->rb_right;
1719 		else {
1720 			if (page_node) {
1721 				VM_BUG_ON(page_node->head != &migrate_nodes);
1722 				/*
1723 				 * Test if the migrated page should be merged
1724 				 * into a stable node dup. If the mapcount is
1725 				 * 1 we can migrate it with another KSM page
1726 				 * without adding it to the chain.
1727 				 */
1728 				if (page_mapcount(page) > 1)
1729 					goto chain_append;
1730 			}
1731 
1732 			if (!stable_node_dup) {
1733 				/*
1734 				 * If the stable_node is a chain and
1735 				 * we got a payload match in memcmp
1736 				 * but we cannot merge the scanned
1737 				 * page in any of the existing
1738 				 * stable_node dups because they're
1739 				 * all full, we need to wait the
1740 				 * scanned page to find itself a match
1741 				 * in the unstable tree to create a
1742 				 * brand new KSM page to add later to
1743 				 * the dups of this stable_node.
1744 				 */
1745 				return NULL;
1746 			}
1747 
1748 			/*
1749 			 * Lock and unlock the stable_node's page (which
1750 			 * might already have been migrated) so that page
1751 			 * migration is sure to notice its raised count.
1752 			 * It would be more elegant to return stable_node
1753 			 * than kpage, but that involves more changes.
1754 			 */
1755 			tree_page = get_ksm_page(stable_node_dup,
1756 						 GET_KSM_PAGE_TRYLOCK);
1757 
1758 			if (PTR_ERR(tree_page) == -EBUSY)
1759 				return ERR_PTR(-EBUSY);
1760 
1761 			if (unlikely(!tree_page))
1762 				/*
1763 				 * The tree may have been rebalanced,
1764 				 * so re-evaluate parent and new.
1765 				 */
1766 				goto again;
1767 			unlock_page(tree_page);
1768 
1769 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1770 			    NUMA(stable_node_dup->nid)) {
1771 				put_page(tree_page);
1772 				goto replace;
1773 			}
1774 			return tree_page;
1775 		}
1776 	}
1777 
1778 	if (!page_node)
1779 		return NULL;
1780 
1781 	list_del(&page_node->list);
1782 	DO_NUMA(page_node->nid = nid);
1783 	rb_link_node(&page_node->node, parent, new);
1784 	rb_insert_color(&page_node->node, root);
1785 out:
1786 	if (is_page_sharing_candidate(page_node)) {
1787 		get_page(page);
1788 		return page;
1789 	} else
1790 		return NULL;
1791 
1792 replace:
1793 	/*
1794 	 * If stable_node was a chain and chain_prune collapsed it,
1795 	 * stable_node has been updated to be the new regular
1796 	 * stable_node. A collapse of the chain is indistinguishable
1797 	 * from the case there was no chain in the stable
1798 	 * rbtree. Otherwise stable_node is the chain and
1799 	 * stable_node_dup is the dup to replace.
1800 	 */
1801 	if (stable_node_dup == stable_node) {
1802 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1803 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1804 		/* there is no chain */
1805 		if (page_node) {
1806 			VM_BUG_ON(page_node->head != &migrate_nodes);
1807 			list_del(&page_node->list);
1808 			DO_NUMA(page_node->nid = nid);
1809 			rb_replace_node(&stable_node_dup->node,
1810 					&page_node->node,
1811 					root);
1812 			if (is_page_sharing_candidate(page_node))
1813 				get_page(page);
1814 			else
1815 				page = NULL;
1816 		} else {
1817 			rb_erase(&stable_node_dup->node, root);
1818 			page = NULL;
1819 		}
1820 	} else {
1821 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1822 		__stable_node_dup_del(stable_node_dup);
1823 		if (page_node) {
1824 			VM_BUG_ON(page_node->head != &migrate_nodes);
1825 			list_del(&page_node->list);
1826 			DO_NUMA(page_node->nid = nid);
1827 			stable_node_chain_add_dup(page_node, stable_node);
1828 			if (is_page_sharing_candidate(page_node))
1829 				get_page(page);
1830 			else
1831 				page = NULL;
1832 		} else {
1833 			page = NULL;
1834 		}
1835 	}
1836 	stable_node_dup->head = &migrate_nodes;
1837 	list_add(&stable_node_dup->list, stable_node_dup->head);
1838 	return page;
1839 
1840 chain_append:
1841 	/* stable_node_dup could be null if it reached the limit */
1842 	if (!stable_node_dup)
1843 		stable_node_dup = stable_node_any;
1844 	/*
1845 	 * If stable_node was a chain and chain_prune collapsed it,
1846 	 * stable_node has been updated to be the new regular
1847 	 * stable_node. A collapse of the chain is indistinguishable
1848 	 * from the case there was no chain in the stable
1849 	 * rbtree. Otherwise stable_node is the chain and
1850 	 * stable_node_dup is the dup to replace.
1851 	 */
1852 	if (stable_node_dup == stable_node) {
1853 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1854 		/* chain is missing so create it */
1855 		stable_node = alloc_stable_node_chain(stable_node_dup,
1856 						      root);
1857 		if (!stable_node)
1858 			return NULL;
1859 	}
1860 	/*
1861 	 * Add this stable_node dup that was
1862 	 * migrated to the stable_node chain
1863 	 * of the current nid for this page
1864 	 * content.
1865 	 */
1866 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1867 	VM_BUG_ON(page_node->head != &migrate_nodes);
1868 	list_del(&page_node->list);
1869 	DO_NUMA(page_node->nid = nid);
1870 	stable_node_chain_add_dup(page_node, stable_node);
1871 	goto out;
1872 }
1873 
1874 /*
1875  * stable_tree_insert - insert stable tree node pointing to new ksm page
1876  * into the stable tree.
1877  *
1878  * This function returns the stable tree node just allocated on success,
1879  * NULL otherwise.
1880  */
1881 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1882 {
1883 	int nid;
1884 	unsigned long kpfn;
1885 	struct rb_root *root;
1886 	struct rb_node **new;
1887 	struct rb_node *parent;
1888 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1889 	bool need_chain = false;
1890 
1891 	kpfn = page_to_pfn(kpage);
1892 	nid = get_kpfn_nid(kpfn);
1893 	root = root_stable_tree + nid;
1894 again:
1895 	parent = NULL;
1896 	new = &root->rb_node;
1897 
1898 	while (*new) {
1899 		struct page *tree_page;
1900 		int ret;
1901 
1902 		cond_resched();
1903 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1904 		stable_node_any = NULL;
1905 		tree_page = chain(&stable_node_dup, stable_node, root);
1906 		if (!stable_node_dup) {
1907 			/*
1908 			 * Either all stable_node dups were full in
1909 			 * this stable_node chain, or this chain was
1910 			 * empty and should be rb_erased.
1911 			 */
1912 			stable_node_any = stable_node_dup_any(stable_node,
1913 							      root);
1914 			if (!stable_node_any) {
1915 				/* rb_erase just run */
1916 				goto again;
1917 			}
1918 			/*
1919 			 * Take any of the stable_node dups page of
1920 			 * this stable_node chain to let the tree walk
1921 			 * continue. All KSM pages belonging to the
1922 			 * stable_node dups in a stable_node chain
1923 			 * have the same content and they're
1924 			 * write protected at all times. Any will work
1925 			 * fine to continue the walk.
1926 			 */
1927 			tree_page = get_ksm_page(stable_node_any,
1928 						 GET_KSM_PAGE_NOLOCK);
1929 		}
1930 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1931 		if (!tree_page) {
1932 			/*
1933 			 * If we walked over a stale stable_node,
1934 			 * get_ksm_page() will call rb_erase() and it
1935 			 * may rebalance the tree from under us. So
1936 			 * restart the search from scratch. Returning
1937 			 * NULL would be safe too, but we'd generate
1938 			 * false negative insertions just because some
1939 			 * stable_node was stale.
1940 			 */
1941 			goto again;
1942 		}
1943 
1944 		ret = memcmp_pages(kpage, tree_page);
1945 		put_page(tree_page);
1946 
1947 		parent = *new;
1948 		if (ret < 0)
1949 			new = &parent->rb_left;
1950 		else if (ret > 0)
1951 			new = &parent->rb_right;
1952 		else {
1953 			need_chain = true;
1954 			break;
1955 		}
1956 	}
1957 
1958 	stable_node_dup = alloc_stable_node();
1959 	if (!stable_node_dup)
1960 		return NULL;
1961 
1962 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1963 	stable_node_dup->kpfn = kpfn;
1964 	set_page_stable_node(kpage, stable_node_dup);
1965 	stable_node_dup->rmap_hlist_len = 0;
1966 	DO_NUMA(stable_node_dup->nid = nid);
1967 	if (!need_chain) {
1968 		rb_link_node(&stable_node_dup->node, parent, new);
1969 		rb_insert_color(&stable_node_dup->node, root);
1970 	} else {
1971 		if (!is_stable_node_chain(stable_node)) {
1972 			struct ksm_stable_node *orig = stable_node;
1973 			/* chain is missing so create it */
1974 			stable_node = alloc_stable_node_chain(orig, root);
1975 			if (!stable_node) {
1976 				free_stable_node(stable_node_dup);
1977 				return NULL;
1978 			}
1979 		}
1980 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1981 	}
1982 
1983 	return stable_node_dup;
1984 }
1985 
1986 /*
1987  * unstable_tree_search_insert - search for identical page,
1988  * else insert rmap_item into the unstable tree.
1989  *
1990  * This function searches for a page in the unstable tree identical to the
1991  * page currently being scanned; and if no identical page is found in the
1992  * tree, we insert rmap_item as a new object into the unstable tree.
1993  *
1994  * This function returns pointer to rmap_item found to be identical
1995  * to the currently scanned page, NULL otherwise.
1996  *
1997  * This function does both searching and inserting, because they share
1998  * the same walking algorithm in an rbtree.
1999  */
2000 static
2001 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2002 					      struct page *page,
2003 					      struct page **tree_pagep)
2004 {
2005 	struct rb_node **new;
2006 	struct rb_root *root;
2007 	struct rb_node *parent = NULL;
2008 	int nid;
2009 
2010 	nid = get_kpfn_nid(page_to_pfn(page));
2011 	root = root_unstable_tree + nid;
2012 	new = &root->rb_node;
2013 
2014 	while (*new) {
2015 		struct ksm_rmap_item *tree_rmap_item;
2016 		struct page *tree_page;
2017 		int ret;
2018 
2019 		cond_resched();
2020 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2021 		tree_page = get_mergeable_page(tree_rmap_item);
2022 		if (!tree_page)
2023 			return NULL;
2024 
2025 		/*
2026 		 * Don't substitute a ksm page for a forked page.
2027 		 */
2028 		if (page == tree_page) {
2029 			put_page(tree_page);
2030 			return NULL;
2031 		}
2032 
2033 		ret = memcmp_pages(page, tree_page);
2034 
2035 		parent = *new;
2036 		if (ret < 0) {
2037 			put_page(tree_page);
2038 			new = &parent->rb_left;
2039 		} else if (ret > 0) {
2040 			put_page(tree_page);
2041 			new = &parent->rb_right;
2042 		} else if (!ksm_merge_across_nodes &&
2043 			   page_to_nid(tree_page) != nid) {
2044 			/*
2045 			 * If tree_page has been migrated to another NUMA node,
2046 			 * it will be flushed out and put in the right unstable
2047 			 * tree next time: only merge with it when across_nodes.
2048 			 */
2049 			put_page(tree_page);
2050 			return NULL;
2051 		} else {
2052 			*tree_pagep = tree_page;
2053 			return tree_rmap_item;
2054 		}
2055 	}
2056 
2057 	rmap_item->address |= UNSTABLE_FLAG;
2058 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2059 	DO_NUMA(rmap_item->nid = nid);
2060 	rb_link_node(&rmap_item->node, parent, new);
2061 	rb_insert_color(&rmap_item->node, root);
2062 
2063 	ksm_pages_unshared++;
2064 	return NULL;
2065 }
2066 
2067 /*
2068  * stable_tree_append - add another rmap_item to the linked list of
2069  * rmap_items hanging off a given node of the stable tree, all sharing
2070  * the same ksm page.
2071  */
2072 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2073 			       struct ksm_stable_node *stable_node,
2074 			       bool max_page_sharing_bypass)
2075 {
2076 	/*
2077 	 * rmap won't find this mapping if we don't insert the
2078 	 * rmap_item in the right stable_node
2079 	 * duplicate. page_migration could break later if rmap breaks,
2080 	 * so we can as well crash here. We really need to check for
2081 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2082 	 * for other negative values as an underflow if detected here
2083 	 * for the first time (and not when decreasing rmap_hlist_len)
2084 	 * would be sign of memory corruption in the stable_node.
2085 	 */
2086 	BUG_ON(stable_node->rmap_hlist_len < 0);
2087 
2088 	stable_node->rmap_hlist_len++;
2089 	if (!max_page_sharing_bypass)
2090 		/* possibly non fatal but unexpected overflow, only warn */
2091 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2092 			     ksm_max_page_sharing);
2093 
2094 	rmap_item->head = stable_node;
2095 	rmap_item->address |= STABLE_FLAG;
2096 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2097 
2098 	if (rmap_item->hlist.next)
2099 		ksm_pages_sharing++;
2100 	else
2101 		ksm_pages_shared++;
2102 
2103 	rmap_item->mm->ksm_merging_pages++;
2104 }
2105 
2106 /*
2107  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2108  * if not, compare checksum to previous and if it's the same, see if page can
2109  * be inserted into the unstable tree, or merged with a page already there and
2110  * both transferred to the stable tree.
2111  *
2112  * @page: the page that we are searching identical page to.
2113  * @rmap_item: the reverse mapping into the virtual address of this page
2114  */
2115 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2116 {
2117 	struct mm_struct *mm = rmap_item->mm;
2118 	struct ksm_rmap_item *tree_rmap_item;
2119 	struct page *tree_page = NULL;
2120 	struct ksm_stable_node *stable_node;
2121 	struct page *kpage;
2122 	unsigned int checksum;
2123 	int err;
2124 	bool max_page_sharing_bypass = false;
2125 
2126 	stable_node = page_stable_node(page);
2127 	if (stable_node) {
2128 		if (stable_node->head != &migrate_nodes &&
2129 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2130 		    NUMA(stable_node->nid)) {
2131 			stable_node_dup_del(stable_node);
2132 			stable_node->head = &migrate_nodes;
2133 			list_add(&stable_node->list, stable_node->head);
2134 		}
2135 		if (stable_node->head != &migrate_nodes &&
2136 		    rmap_item->head == stable_node)
2137 			return;
2138 		/*
2139 		 * If it's a KSM fork, allow it to go over the sharing limit
2140 		 * without warnings.
2141 		 */
2142 		if (!is_page_sharing_candidate(stable_node))
2143 			max_page_sharing_bypass = true;
2144 	}
2145 
2146 	/* We first start with searching the page inside the stable tree */
2147 	kpage = stable_tree_search(page);
2148 	if (kpage == page && rmap_item->head == stable_node) {
2149 		put_page(kpage);
2150 		return;
2151 	}
2152 
2153 	remove_rmap_item_from_tree(rmap_item);
2154 
2155 	if (kpage) {
2156 		if (PTR_ERR(kpage) == -EBUSY)
2157 			return;
2158 
2159 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2160 		if (!err) {
2161 			/*
2162 			 * The page was successfully merged:
2163 			 * add its rmap_item to the stable tree.
2164 			 */
2165 			lock_page(kpage);
2166 			stable_tree_append(rmap_item, page_stable_node(kpage),
2167 					   max_page_sharing_bypass);
2168 			unlock_page(kpage);
2169 		}
2170 		put_page(kpage);
2171 		return;
2172 	}
2173 
2174 	/*
2175 	 * If the hash value of the page has changed from the last time
2176 	 * we calculated it, this page is changing frequently: therefore we
2177 	 * don't want to insert it in the unstable tree, and we don't want
2178 	 * to waste our time searching for something identical to it there.
2179 	 */
2180 	checksum = calc_checksum(page);
2181 	if (rmap_item->oldchecksum != checksum) {
2182 		rmap_item->oldchecksum = checksum;
2183 		return;
2184 	}
2185 
2186 	/*
2187 	 * Same checksum as an empty page. We attempt to merge it with the
2188 	 * appropriate zero page if the user enabled this via sysfs.
2189 	 */
2190 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2191 		struct vm_area_struct *vma;
2192 
2193 		mmap_read_lock(mm);
2194 		vma = find_mergeable_vma(mm, rmap_item->address);
2195 		if (vma) {
2196 			err = try_to_merge_one_page(vma, page,
2197 					ZERO_PAGE(rmap_item->address));
2198 			trace_ksm_merge_one_page(
2199 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2200 				rmap_item, mm, err);
2201 		} else {
2202 			/*
2203 			 * If the vma is out of date, we do not need to
2204 			 * continue.
2205 			 */
2206 			err = 0;
2207 		}
2208 		mmap_read_unlock(mm);
2209 		/*
2210 		 * In case of failure, the page was not really empty, so we
2211 		 * need to continue. Otherwise we're done.
2212 		 */
2213 		if (!err)
2214 			return;
2215 	}
2216 	tree_rmap_item =
2217 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2218 	if (tree_rmap_item) {
2219 		bool split;
2220 
2221 		kpage = try_to_merge_two_pages(rmap_item, page,
2222 						tree_rmap_item, tree_page);
2223 		/*
2224 		 * If both pages we tried to merge belong to the same compound
2225 		 * page, then we actually ended up increasing the reference
2226 		 * count of the same compound page twice, and split_huge_page
2227 		 * failed.
2228 		 * Here we set a flag if that happened, and we use it later to
2229 		 * try split_huge_page again. Since we call put_page right
2230 		 * afterwards, the reference count will be correct and
2231 		 * split_huge_page should succeed.
2232 		 */
2233 		split = PageTransCompound(page)
2234 			&& compound_head(page) == compound_head(tree_page);
2235 		put_page(tree_page);
2236 		if (kpage) {
2237 			/*
2238 			 * The pages were successfully merged: insert new
2239 			 * node in the stable tree and add both rmap_items.
2240 			 */
2241 			lock_page(kpage);
2242 			stable_node = stable_tree_insert(kpage);
2243 			if (stable_node) {
2244 				stable_tree_append(tree_rmap_item, stable_node,
2245 						   false);
2246 				stable_tree_append(rmap_item, stable_node,
2247 						   false);
2248 			}
2249 			unlock_page(kpage);
2250 
2251 			/*
2252 			 * If we fail to insert the page into the stable tree,
2253 			 * we will have 2 virtual addresses that are pointing
2254 			 * to a ksm page left outside the stable tree,
2255 			 * in which case we need to break_cow on both.
2256 			 */
2257 			if (!stable_node) {
2258 				break_cow(tree_rmap_item);
2259 				break_cow(rmap_item);
2260 			}
2261 		} else if (split) {
2262 			/*
2263 			 * We are here if we tried to merge two pages and
2264 			 * failed because they both belonged to the same
2265 			 * compound page. We will split the page now, but no
2266 			 * merging will take place.
2267 			 * We do not want to add the cost of a full lock; if
2268 			 * the page is locked, it is better to skip it and
2269 			 * perhaps try again later.
2270 			 */
2271 			if (!trylock_page(page))
2272 				return;
2273 			split_huge_page(page);
2274 			unlock_page(page);
2275 		}
2276 	}
2277 }
2278 
2279 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2280 					    struct ksm_rmap_item **rmap_list,
2281 					    unsigned long addr)
2282 {
2283 	struct ksm_rmap_item *rmap_item;
2284 
2285 	while (*rmap_list) {
2286 		rmap_item = *rmap_list;
2287 		if ((rmap_item->address & PAGE_MASK) == addr)
2288 			return rmap_item;
2289 		if (rmap_item->address > addr)
2290 			break;
2291 		*rmap_list = rmap_item->rmap_list;
2292 		remove_rmap_item_from_tree(rmap_item);
2293 		free_rmap_item(rmap_item);
2294 	}
2295 
2296 	rmap_item = alloc_rmap_item();
2297 	if (rmap_item) {
2298 		/* It has already been zeroed */
2299 		rmap_item->mm = mm_slot->slot.mm;
2300 		rmap_item->mm->ksm_rmap_items++;
2301 		rmap_item->address = addr;
2302 		rmap_item->rmap_list = *rmap_list;
2303 		*rmap_list = rmap_item;
2304 	}
2305 	return rmap_item;
2306 }
2307 
2308 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2309 {
2310 	struct mm_struct *mm;
2311 	struct ksm_mm_slot *mm_slot;
2312 	struct mm_slot *slot;
2313 	struct vm_area_struct *vma;
2314 	struct ksm_rmap_item *rmap_item;
2315 	struct vma_iterator vmi;
2316 	int nid;
2317 
2318 	if (list_empty(&ksm_mm_head.slot.mm_node))
2319 		return NULL;
2320 
2321 	mm_slot = ksm_scan.mm_slot;
2322 	if (mm_slot == &ksm_mm_head) {
2323 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2324 
2325 		/*
2326 		 * A number of pages can hang around indefinitely in per-cpu
2327 		 * LRU cache, raised page count preventing write_protect_page
2328 		 * from merging them.  Though it doesn't really matter much,
2329 		 * it is puzzling to see some stuck in pages_volatile until
2330 		 * other activity jostles them out, and they also prevented
2331 		 * LTP's KSM test from succeeding deterministically; so drain
2332 		 * them here (here rather than on entry to ksm_do_scan(),
2333 		 * so we don't IPI too often when pages_to_scan is set low).
2334 		 */
2335 		lru_add_drain_all();
2336 
2337 		/*
2338 		 * Whereas stale stable_nodes on the stable_tree itself
2339 		 * get pruned in the regular course of stable_tree_search(),
2340 		 * those moved out to the migrate_nodes list can accumulate:
2341 		 * so prune them once before each full scan.
2342 		 */
2343 		if (!ksm_merge_across_nodes) {
2344 			struct ksm_stable_node *stable_node, *next;
2345 			struct page *page;
2346 
2347 			list_for_each_entry_safe(stable_node, next,
2348 						 &migrate_nodes, list) {
2349 				page = get_ksm_page(stable_node,
2350 						    GET_KSM_PAGE_NOLOCK);
2351 				if (page)
2352 					put_page(page);
2353 				cond_resched();
2354 			}
2355 		}
2356 
2357 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2358 			root_unstable_tree[nid] = RB_ROOT;
2359 
2360 		spin_lock(&ksm_mmlist_lock);
2361 		slot = list_entry(mm_slot->slot.mm_node.next,
2362 				  struct mm_slot, mm_node);
2363 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2364 		ksm_scan.mm_slot = mm_slot;
2365 		spin_unlock(&ksm_mmlist_lock);
2366 		/*
2367 		 * Although we tested list_empty() above, a racing __ksm_exit
2368 		 * of the last mm on the list may have removed it since then.
2369 		 */
2370 		if (mm_slot == &ksm_mm_head)
2371 			return NULL;
2372 next_mm:
2373 		ksm_scan.address = 0;
2374 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2375 	}
2376 
2377 	slot = &mm_slot->slot;
2378 	mm = slot->mm;
2379 	vma_iter_init(&vmi, mm, ksm_scan.address);
2380 
2381 	mmap_read_lock(mm);
2382 	if (ksm_test_exit(mm))
2383 		goto no_vmas;
2384 
2385 	for_each_vma(vmi, vma) {
2386 		if (!(vma->vm_flags & VM_MERGEABLE))
2387 			continue;
2388 		if (ksm_scan.address < vma->vm_start)
2389 			ksm_scan.address = vma->vm_start;
2390 		if (!vma->anon_vma)
2391 			ksm_scan.address = vma->vm_end;
2392 
2393 		while (ksm_scan.address < vma->vm_end) {
2394 			if (ksm_test_exit(mm))
2395 				break;
2396 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2397 			if (IS_ERR_OR_NULL(*page)) {
2398 				ksm_scan.address += PAGE_SIZE;
2399 				cond_resched();
2400 				continue;
2401 			}
2402 			if (is_zone_device_page(*page))
2403 				goto next_page;
2404 			if (PageAnon(*page)) {
2405 				flush_anon_page(vma, *page, ksm_scan.address);
2406 				flush_dcache_page(*page);
2407 				rmap_item = get_next_rmap_item(mm_slot,
2408 					ksm_scan.rmap_list, ksm_scan.address);
2409 				if (rmap_item) {
2410 					ksm_scan.rmap_list =
2411 							&rmap_item->rmap_list;
2412 					ksm_scan.address += PAGE_SIZE;
2413 				} else
2414 					put_page(*page);
2415 				mmap_read_unlock(mm);
2416 				return rmap_item;
2417 			}
2418 next_page:
2419 			put_page(*page);
2420 			ksm_scan.address += PAGE_SIZE;
2421 			cond_resched();
2422 		}
2423 	}
2424 
2425 	if (ksm_test_exit(mm)) {
2426 no_vmas:
2427 		ksm_scan.address = 0;
2428 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2429 	}
2430 	/*
2431 	 * Nuke all the rmap_items that are above this current rmap:
2432 	 * because there were no VM_MERGEABLE vmas with such addresses.
2433 	 */
2434 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2435 
2436 	spin_lock(&ksm_mmlist_lock);
2437 	slot = list_entry(mm_slot->slot.mm_node.next,
2438 			  struct mm_slot, mm_node);
2439 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2440 	if (ksm_scan.address == 0) {
2441 		/*
2442 		 * We've completed a full scan of all vmas, holding mmap_lock
2443 		 * throughout, and found no VM_MERGEABLE: so do the same as
2444 		 * __ksm_exit does to remove this mm from all our lists now.
2445 		 * This applies either when cleaning up after __ksm_exit
2446 		 * (but beware: we can reach here even before __ksm_exit),
2447 		 * or when all VM_MERGEABLE areas have been unmapped (and
2448 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2449 		 */
2450 		hash_del(&mm_slot->slot.hash);
2451 		list_del(&mm_slot->slot.mm_node);
2452 		spin_unlock(&ksm_mmlist_lock);
2453 
2454 		mm_slot_free(mm_slot_cache, mm_slot);
2455 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2456 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2457 		mmap_read_unlock(mm);
2458 		mmdrop(mm);
2459 	} else {
2460 		mmap_read_unlock(mm);
2461 		/*
2462 		 * mmap_read_unlock(mm) first because after
2463 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2464 		 * already have been freed under us by __ksm_exit()
2465 		 * because the "mm_slot" is still hashed and
2466 		 * ksm_scan.mm_slot doesn't point to it anymore.
2467 		 */
2468 		spin_unlock(&ksm_mmlist_lock);
2469 	}
2470 
2471 	/* Repeat until we've completed scanning the whole list */
2472 	mm_slot = ksm_scan.mm_slot;
2473 	if (mm_slot != &ksm_mm_head)
2474 		goto next_mm;
2475 
2476 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2477 	ksm_scan.seqnr++;
2478 	return NULL;
2479 }
2480 
2481 /**
2482  * ksm_do_scan  - the ksm scanner main worker function.
2483  * @scan_npages:  number of pages we want to scan before we return.
2484  */
2485 static void ksm_do_scan(unsigned int scan_npages)
2486 {
2487 	struct ksm_rmap_item *rmap_item;
2488 	struct page *page;
2489 	unsigned int npages = scan_npages;
2490 
2491 	while (npages-- && likely(!freezing(current))) {
2492 		cond_resched();
2493 		rmap_item = scan_get_next_rmap_item(&page);
2494 		if (!rmap_item)
2495 			return;
2496 		cmp_and_merge_page(page, rmap_item);
2497 		put_page(page);
2498 	}
2499 
2500 	ksm_pages_scanned += scan_npages - npages;
2501 }
2502 
2503 static int ksmd_should_run(void)
2504 {
2505 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2506 }
2507 
2508 static int ksm_scan_thread(void *nothing)
2509 {
2510 	unsigned int sleep_ms;
2511 
2512 	set_freezable();
2513 	set_user_nice(current, 5);
2514 
2515 	while (!kthread_should_stop()) {
2516 		mutex_lock(&ksm_thread_mutex);
2517 		wait_while_offlining();
2518 		if (ksmd_should_run())
2519 			ksm_do_scan(ksm_thread_pages_to_scan);
2520 		mutex_unlock(&ksm_thread_mutex);
2521 
2522 		try_to_freeze();
2523 
2524 		if (ksmd_should_run()) {
2525 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2526 			wait_event_interruptible_timeout(ksm_iter_wait,
2527 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2528 				msecs_to_jiffies(sleep_ms));
2529 		} else {
2530 			wait_event_freezable(ksm_thread_wait,
2531 				ksmd_should_run() || kthread_should_stop());
2532 		}
2533 	}
2534 	return 0;
2535 }
2536 
2537 static void __ksm_add_vma(struct vm_area_struct *vma)
2538 {
2539 	unsigned long vm_flags = vma->vm_flags;
2540 
2541 	if (vm_flags & VM_MERGEABLE)
2542 		return;
2543 
2544 	if (vma_ksm_compatible(vma))
2545 		vm_flags_set(vma, VM_MERGEABLE);
2546 }
2547 
2548 static int __ksm_del_vma(struct vm_area_struct *vma)
2549 {
2550 	int err;
2551 
2552 	if (!(vma->vm_flags & VM_MERGEABLE))
2553 		return 0;
2554 
2555 	if (vma->anon_vma) {
2556 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2557 		if (err)
2558 			return err;
2559 	}
2560 
2561 	vm_flags_clear(vma, VM_MERGEABLE);
2562 	return 0;
2563 }
2564 /**
2565  * ksm_add_vma - Mark vma as mergeable if compatible
2566  *
2567  * @vma:  Pointer to vma
2568  */
2569 void ksm_add_vma(struct vm_area_struct *vma)
2570 {
2571 	struct mm_struct *mm = vma->vm_mm;
2572 
2573 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2574 		__ksm_add_vma(vma);
2575 }
2576 
2577 static void ksm_add_vmas(struct mm_struct *mm)
2578 {
2579 	struct vm_area_struct *vma;
2580 
2581 	VMA_ITERATOR(vmi, mm, 0);
2582 	for_each_vma(vmi, vma)
2583 		__ksm_add_vma(vma);
2584 }
2585 
2586 static int ksm_del_vmas(struct mm_struct *mm)
2587 {
2588 	struct vm_area_struct *vma;
2589 	int err;
2590 
2591 	VMA_ITERATOR(vmi, mm, 0);
2592 	for_each_vma(vmi, vma) {
2593 		err = __ksm_del_vma(vma);
2594 		if (err)
2595 			return err;
2596 	}
2597 	return 0;
2598 }
2599 
2600 /**
2601  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2602  *                        compatible VMA's
2603  *
2604  * @mm:  Pointer to mm
2605  *
2606  * Returns 0 on success, otherwise error code
2607  */
2608 int ksm_enable_merge_any(struct mm_struct *mm)
2609 {
2610 	int err;
2611 
2612 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2613 		return 0;
2614 
2615 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2616 		err = __ksm_enter(mm);
2617 		if (err)
2618 			return err;
2619 	}
2620 
2621 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2622 	ksm_add_vmas(mm);
2623 
2624 	return 0;
2625 }
2626 
2627 /**
2628  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2629  *			   previously enabled via ksm_enable_merge_any().
2630  *
2631  * Disabling merging implies unmerging any merged pages, like setting
2632  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2633  * merging on all compatible VMA's remains enabled.
2634  *
2635  * @mm: Pointer to mm
2636  *
2637  * Returns 0 on success, otherwise error code
2638  */
2639 int ksm_disable_merge_any(struct mm_struct *mm)
2640 {
2641 	int err;
2642 
2643 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2644 		return 0;
2645 
2646 	err = ksm_del_vmas(mm);
2647 	if (err) {
2648 		ksm_add_vmas(mm);
2649 		return err;
2650 	}
2651 
2652 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2653 	return 0;
2654 }
2655 
2656 int ksm_disable(struct mm_struct *mm)
2657 {
2658 	mmap_assert_write_locked(mm);
2659 
2660 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2661 		return 0;
2662 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2663 		return ksm_disable_merge_any(mm);
2664 	return ksm_del_vmas(mm);
2665 }
2666 
2667 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2668 		unsigned long end, int advice, unsigned long *vm_flags)
2669 {
2670 	struct mm_struct *mm = vma->vm_mm;
2671 	int err;
2672 
2673 	switch (advice) {
2674 	case MADV_MERGEABLE:
2675 		if (vma->vm_flags & VM_MERGEABLE)
2676 			return 0;
2677 		if (!vma_ksm_compatible(vma))
2678 			return 0;
2679 
2680 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2681 			err = __ksm_enter(mm);
2682 			if (err)
2683 				return err;
2684 		}
2685 
2686 		*vm_flags |= VM_MERGEABLE;
2687 		break;
2688 
2689 	case MADV_UNMERGEABLE:
2690 		if (!(*vm_flags & VM_MERGEABLE))
2691 			return 0;		/* just ignore the advice */
2692 
2693 		if (vma->anon_vma) {
2694 			err = unmerge_ksm_pages(vma, start, end, true);
2695 			if (err)
2696 				return err;
2697 		}
2698 
2699 		*vm_flags &= ~VM_MERGEABLE;
2700 		break;
2701 	}
2702 
2703 	return 0;
2704 }
2705 EXPORT_SYMBOL_GPL(ksm_madvise);
2706 
2707 int __ksm_enter(struct mm_struct *mm)
2708 {
2709 	struct ksm_mm_slot *mm_slot;
2710 	struct mm_slot *slot;
2711 	int needs_wakeup;
2712 
2713 	mm_slot = mm_slot_alloc(mm_slot_cache);
2714 	if (!mm_slot)
2715 		return -ENOMEM;
2716 
2717 	slot = &mm_slot->slot;
2718 
2719 	/* Check ksm_run too?  Would need tighter locking */
2720 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2721 
2722 	spin_lock(&ksm_mmlist_lock);
2723 	mm_slot_insert(mm_slots_hash, mm, slot);
2724 	/*
2725 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2726 	 * insert just behind the scanning cursor, to let the area settle
2727 	 * down a little; when fork is followed by immediate exec, we don't
2728 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2729 	 *
2730 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2731 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2732 	 * missed: then we might as well insert at the end of the list.
2733 	 */
2734 	if (ksm_run & KSM_RUN_UNMERGE)
2735 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2736 	else
2737 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2738 	spin_unlock(&ksm_mmlist_lock);
2739 
2740 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2741 	mmgrab(mm);
2742 
2743 	if (needs_wakeup)
2744 		wake_up_interruptible(&ksm_thread_wait);
2745 
2746 	trace_ksm_enter(mm);
2747 	return 0;
2748 }
2749 
2750 void __ksm_exit(struct mm_struct *mm)
2751 {
2752 	struct ksm_mm_slot *mm_slot;
2753 	struct mm_slot *slot;
2754 	int easy_to_free = 0;
2755 
2756 	/*
2757 	 * This process is exiting: if it's straightforward (as is the
2758 	 * case when ksmd was never running), free mm_slot immediately.
2759 	 * But if it's at the cursor or has rmap_items linked to it, use
2760 	 * mmap_lock to synchronize with any break_cows before pagetables
2761 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2762 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2763 	 */
2764 
2765 	spin_lock(&ksm_mmlist_lock);
2766 	slot = mm_slot_lookup(mm_slots_hash, mm);
2767 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2768 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2769 		if (!mm_slot->rmap_list) {
2770 			hash_del(&slot->hash);
2771 			list_del(&slot->mm_node);
2772 			easy_to_free = 1;
2773 		} else {
2774 			list_move(&slot->mm_node,
2775 				  &ksm_scan.mm_slot->slot.mm_node);
2776 		}
2777 	}
2778 	spin_unlock(&ksm_mmlist_lock);
2779 
2780 	if (easy_to_free) {
2781 		mm_slot_free(mm_slot_cache, mm_slot);
2782 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2783 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2784 		mmdrop(mm);
2785 	} else if (mm_slot) {
2786 		mmap_write_lock(mm);
2787 		mmap_write_unlock(mm);
2788 	}
2789 
2790 	trace_ksm_exit(mm);
2791 }
2792 
2793 struct page *ksm_might_need_to_copy(struct page *page,
2794 			struct vm_area_struct *vma, unsigned long address)
2795 {
2796 	struct folio *folio = page_folio(page);
2797 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2798 	struct page *new_page;
2799 
2800 	if (PageKsm(page)) {
2801 		if (page_stable_node(page) &&
2802 		    !(ksm_run & KSM_RUN_UNMERGE))
2803 			return page;	/* no need to copy it */
2804 	} else if (!anon_vma) {
2805 		return page;		/* no need to copy it */
2806 	} else if (page->index == linear_page_index(vma, address) &&
2807 			anon_vma->root == vma->anon_vma->root) {
2808 		return page;		/* still no need to copy it */
2809 	}
2810 	if (PageHWPoison(page))
2811 		return ERR_PTR(-EHWPOISON);
2812 	if (!PageUptodate(page))
2813 		return page;		/* let do_swap_page report the error */
2814 
2815 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2816 	if (new_page &&
2817 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2818 		put_page(new_page);
2819 		new_page = NULL;
2820 	}
2821 	if (new_page) {
2822 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2823 			put_page(new_page);
2824 			memory_failure_queue(page_to_pfn(page), 0);
2825 			return ERR_PTR(-EHWPOISON);
2826 		}
2827 		SetPageDirty(new_page);
2828 		__SetPageUptodate(new_page);
2829 		__SetPageLocked(new_page);
2830 #ifdef CONFIG_SWAP
2831 		count_vm_event(KSM_SWPIN_COPY);
2832 #endif
2833 	}
2834 
2835 	return new_page;
2836 }
2837 
2838 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2839 {
2840 	struct ksm_stable_node *stable_node;
2841 	struct ksm_rmap_item *rmap_item;
2842 	int search_new_forks = 0;
2843 
2844 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2845 
2846 	/*
2847 	 * Rely on the page lock to protect against concurrent modifications
2848 	 * to that page's node of the stable tree.
2849 	 */
2850 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2851 
2852 	stable_node = folio_stable_node(folio);
2853 	if (!stable_node)
2854 		return;
2855 again:
2856 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2857 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2858 		struct anon_vma_chain *vmac;
2859 		struct vm_area_struct *vma;
2860 
2861 		cond_resched();
2862 		if (!anon_vma_trylock_read(anon_vma)) {
2863 			if (rwc->try_lock) {
2864 				rwc->contended = true;
2865 				return;
2866 			}
2867 			anon_vma_lock_read(anon_vma);
2868 		}
2869 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2870 					       0, ULONG_MAX) {
2871 			unsigned long addr;
2872 
2873 			cond_resched();
2874 			vma = vmac->vma;
2875 
2876 			/* Ignore the stable/unstable/sqnr flags */
2877 			addr = rmap_item->address & PAGE_MASK;
2878 
2879 			if (addr < vma->vm_start || addr >= vma->vm_end)
2880 				continue;
2881 			/*
2882 			 * Initially we examine only the vma which covers this
2883 			 * rmap_item; but later, if there is still work to do,
2884 			 * we examine covering vmas in other mms: in case they
2885 			 * were forked from the original since ksmd passed.
2886 			 */
2887 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2888 				continue;
2889 
2890 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2891 				continue;
2892 
2893 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2894 				anon_vma_unlock_read(anon_vma);
2895 				return;
2896 			}
2897 			if (rwc->done && rwc->done(folio)) {
2898 				anon_vma_unlock_read(anon_vma);
2899 				return;
2900 			}
2901 		}
2902 		anon_vma_unlock_read(anon_vma);
2903 	}
2904 	if (!search_new_forks++)
2905 		goto again;
2906 }
2907 
2908 #ifdef CONFIG_MEMORY_FAILURE
2909 /*
2910  * Collect processes when the error hit an ksm page.
2911  */
2912 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2913 		       int force_early)
2914 {
2915 	struct ksm_stable_node *stable_node;
2916 	struct ksm_rmap_item *rmap_item;
2917 	struct folio *folio = page_folio(page);
2918 	struct vm_area_struct *vma;
2919 	struct task_struct *tsk;
2920 
2921 	stable_node = folio_stable_node(folio);
2922 	if (!stable_node)
2923 		return;
2924 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2925 		struct anon_vma *av = rmap_item->anon_vma;
2926 
2927 		anon_vma_lock_read(av);
2928 		rcu_read_lock();
2929 		for_each_process(tsk) {
2930 			struct anon_vma_chain *vmac;
2931 			unsigned long addr;
2932 			struct task_struct *t =
2933 				task_early_kill(tsk, force_early);
2934 			if (!t)
2935 				continue;
2936 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2937 						       ULONG_MAX)
2938 			{
2939 				vma = vmac->vma;
2940 				if (vma->vm_mm == t->mm) {
2941 					addr = rmap_item->address & PAGE_MASK;
2942 					add_to_kill_ksm(t, page, vma, to_kill,
2943 							addr);
2944 				}
2945 			}
2946 		}
2947 		rcu_read_unlock();
2948 		anon_vma_unlock_read(av);
2949 	}
2950 }
2951 #endif
2952 
2953 #ifdef CONFIG_MIGRATION
2954 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2955 {
2956 	struct ksm_stable_node *stable_node;
2957 
2958 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2959 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2960 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2961 
2962 	stable_node = folio_stable_node(folio);
2963 	if (stable_node) {
2964 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2965 		stable_node->kpfn = folio_pfn(newfolio);
2966 		/*
2967 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2968 		 * to make sure that the new stable_node->kpfn is visible
2969 		 * to get_ksm_page() before it can see that folio->mapping
2970 		 * has gone stale (or that folio_test_swapcache has been cleared).
2971 		 */
2972 		smp_wmb();
2973 		set_page_stable_node(&folio->page, NULL);
2974 	}
2975 }
2976 #endif /* CONFIG_MIGRATION */
2977 
2978 #ifdef CONFIG_MEMORY_HOTREMOVE
2979 static void wait_while_offlining(void)
2980 {
2981 	while (ksm_run & KSM_RUN_OFFLINE) {
2982 		mutex_unlock(&ksm_thread_mutex);
2983 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2984 			    TASK_UNINTERRUPTIBLE);
2985 		mutex_lock(&ksm_thread_mutex);
2986 	}
2987 }
2988 
2989 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2990 					 unsigned long start_pfn,
2991 					 unsigned long end_pfn)
2992 {
2993 	if (stable_node->kpfn >= start_pfn &&
2994 	    stable_node->kpfn < end_pfn) {
2995 		/*
2996 		 * Don't get_ksm_page, page has already gone:
2997 		 * which is why we keep kpfn instead of page*
2998 		 */
2999 		remove_node_from_stable_tree(stable_node);
3000 		return true;
3001 	}
3002 	return false;
3003 }
3004 
3005 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3006 					   unsigned long start_pfn,
3007 					   unsigned long end_pfn,
3008 					   struct rb_root *root)
3009 {
3010 	struct ksm_stable_node *dup;
3011 	struct hlist_node *hlist_safe;
3012 
3013 	if (!is_stable_node_chain(stable_node)) {
3014 		VM_BUG_ON(is_stable_node_dup(stable_node));
3015 		return stable_node_dup_remove_range(stable_node, start_pfn,
3016 						    end_pfn);
3017 	}
3018 
3019 	hlist_for_each_entry_safe(dup, hlist_safe,
3020 				  &stable_node->hlist, hlist_dup) {
3021 		VM_BUG_ON(!is_stable_node_dup(dup));
3022 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3023 	}
3024 	if (hlist_empty(&stable_node->hlist)) {
3025 		free_stable_node_chain(stable_node, root);
3026 		return true; /* notify caller that tree was rebalanced */
3027 	} else
3028 		return false;
3029 }
3030 
3031 static void ksm_check_stable_tree(unsigned long start_pfn,
3032 				  unsigned long end_pfn)
3033 {
3034 	struct ksm_stable_node *stable_node, *next;
3035 	struct rb_node *node;
3036 	int nid;
3037 
3038 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3039 		node = rb_first(root_stable_tree + nid);
3040 		while (node) {
3041 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3042 			if (stable_node_chain_remove_range(stable_node,
3043 							   start_pfn, end_pfn,
3044 							   root_stable_tree +
3045 							   nid))
3046 				node = rb_first(root_stable_tree + nid);
3047 			else
3048 				node = rb_next(node);
3049 			cond_resched();
3050 		}
3051 	}
3052 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3053 		if (stable_node->kpfn >= start_pfn &&
3054 		    stable_node->kpfn < end_pfn)
3055 			remove_node_from_stable_tree(stable_node);
3056 		cond_resched();
3057 	}
3058 }
3059 
3060 static int ksm_memory_callback(struct notifier_block *self,
3061 			       unsigned long action, void *arg)
3062 {
3063 	struct memory_notify *mn = arg;
3064 
3065 	switch (action) {
3066 	case MEM_GOING_OFFLINE:
3067 		/*
3068 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3069 		 * and remove_all_stable_nodes() while memory is going offline:
3070 		 * it is unsafe for them to touch the stable tree at this time.
3071 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3072 		 * which do not need the ksm_thread_mutex are all safe.
3073 		 */
3074 		mutex_lock(&ksm_thread_mutex);
3075 		ksm_run |= KSM_RUN_OFFLINE;
3076 		mutex_unlock(&ksm_thread_mutex);
3077 		break;
3078 
3079 	case MEM_OFFLINE:
3080 		/*
3081 		 * Most of the work is done by page migration; but there might
3082 		 * be a few stable_nodes left over, still pointing to struct
3083 		 * pages which have been offlined: prune those from the tree,
3084 		 * otherwise get_ksm_page() might later try to access a
3085 		 * non-existent struct page.
3086 		 */
3087 		ksm_check_stable_tree(mn->start_pfn,
3088 				      mn->start_pfn + mn->nr_pages);
3089 		fallthrough;
3090 	case MEM_CANCEL_OFFLINE:
3091 		mutex_lock(&ksm_thread_mutex);
3092 		ksm_run &= ~KSM_RUN_OFFLINE;
3093 		mutex_unlock(&ksm_thread_mutex);
3094 
3095 		smp_mb();	/* wake_up_bit advises this */
3096 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3097 		break;
3098 	}
3099 	return NOTIFY_OK;
3100 }
3101 #else
3102 static void wait_while_offlining(void)
3103 {
3104 }
3105 #endif /* CONFIG_MEMORY_HOTREMOVE */
3106 
3107 #ifdef CONFIG_PROC_FS
3108 long ksm_process_profit(struct mm_struct *mm)
3109 {
3110 	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3111 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3112 }
3113 #endif /* CONFIG_PROC_FS */
3114 
3115 #ifdef CONFIG_SYSFS
3116 /*
3117  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3118  */
3119 
3120 #define KSM_ATTR_RO(_name) \
3121 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3122 #define KSM_ATTR(_name) \
3123 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3124 
3125 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3126 				    struct kobj_attribute *attr, char *buf)
3127 {
3128 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3129 }
3130 
3131 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3132 				     struct kobj_attribute *attr,
3133 				     const char *buf, size_t count)
3134 {
3135 	unsigned int msecs;
3136 	int err;
3137 
3138 	err = kstrtouint(buf, 10, &msecs);
3139 	if (err)
3140 		return -EINVAL;
3141 
3142 	ksm_thread_sleep_millisecs = msecs;
3143 	wake_up_interruptible(&ksm_iter_wait);
3144 
3145 	return count;
3146 }
3147 KSM_ATTR(sleep_millisecs);
3148 
3149 static ssize_t pages_to_scan_show(struct kobject *kobj,
3150 				  struct kobj_attribute *attr, char *buf)
3151 {
3152 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3153 }
3154 
3155 static ssize_t pages_to_scan_store(struct kobject *kobj,
3156 				   struct kobj_attribute *attr,
3157 				   const char *buf, size_t count)
3158 {
3159 	unsigned int nr_pages;
3160 	int err;
3161 
3162 	err = kstrtouint(buf, 10, &nr_pages);
3163 	if (err)
3164 		return -EINVAL;
3165 
3166 	ksm_thread_pages_to_scan = nr_pages;
3167 
3168 	return count;
3169 }
3170 KSM_ATTR(pages_to_scan);
3171 
3172 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3173 			char *buf)
3174 {
3175 	return sysfs_emit(buf, "%lu\n", ksm_run);
3176 }
3177 
3178 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3179 			 const char *buf, size_t count)
3180 {
3181 	unsigned int flags;
3182 	int err;
3183 
3184 	err = kstrtouint(buf, 10, &flags);
3185 	if (err)
3186 		return -EINVAL;
3187 	if (flags > KSM_RUN_UNMERGE)
3188 		return -EINVAL;
3189 
3190 	/*
3191 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3192 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3193 	 * breaking COW to free the pages_shared (but leaves mm_slots
3194 	 * on the list for when ksmd may be set running again).
3195 	 */
3196 
3197 	mutex_lock(&ksm_thread_mutex);
3198 	wait_while_offlining();
3199 	if (ksm_run != flags) {
3200 		ksm_run = flags;
3201 		if (flags & KSM_RUN_UNMERGE) {
3202 			set_current_oom_origin();
3203 			err = unmerge_and_remove_all_rmap_items();
3204 			clear_current_oom_origin();
3205 			if (err) {
3206 				ksm_run = KSM_RUN_STOP;
3207 				count = err;
3208 			}
3209 		}
3210 	}
3211 	mutex_unlock(&ksm_thread_mutex);
3212 
3213 	if (flags & KSM_RUN_MERGE)
3214 		wake_up_interruptible(&ksm_thread_wait);
3215 
3216 	return count;
3217 }
3218 KSM_ATTR(run);
3219 
3220 #ifdef CONFIG_NUMA
3221 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3222 				       struct kobj_attribute *attr, char *buf)
3223 {
3224 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3225 }
3226 
3227 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3228 				   struct kobj_attribute *attr,
3229 				   const char *buf, size_t count)
3230 {
3231 	int err;
3232 	unsigned long knob;
3233 
3234 	err = kstrtoul(buf, 10, &knob);
3235 	if (err)
3236 		return err;
3237 	if (knob > 1)
3238 		return -EINVAL;
3239 
3240 	mutex_lock(&ksm_thread_mutex);
3241 	wait_while_offlining();
3242 	if (ksm_merge_across_nodes != knob) {
3243 		if (ksm_pages_shared || remove_all_stable_nodes())
3244 			err = -EBUSY;
3245 		else if (root_stable_tree == one_stable_tree) {
3246 			struct rb_root *buf;
3247 			/*
3248 			 * This is the first time that we switch away from the
3249 			 * default of merging across nodes: must now allocate
3250 			 * a buffer to hold as many roots as may be needed.
3251 			 * Allocate stable and unstable together:
3252 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3253 			 */
3254 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3255 				      GFP_KERNEL);
3256 			/* Let us assume that RB_ROOT is NULL is zero */
3257 			if (!buf)
3258 				err = -ENOMEM;
3259 			else {
3260 				root_stable_tree = buf;
3261 				root_unstable_tree = buf + nr_node_ids;
3262 				/* Stable tree is empty but not the unstable */
3263 				root_unstable_tree[0] = one_unstable_tree[0];
3264 			}
3265 		}
3266 		if (!err) {
3267 			ksm_merge_across_nodes = knob;
3268 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3269 		}
3270 	}
3271 	mutex_unlock(&ksm_thread_mutex);
3272 
3273 	return err ? err : count;
3274 }
3275 KSM_ATTR(merge_across_nodes);
3276 #endif
3277 
3278 static ssize_t use_zero_pages_show(struct kobject *kobj,
3279 				   struct kobj_attribute *attr, char *buf)
3280 {
3281 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3282 }
3283 static ssize_t use_zero_pages_store(struct kobject *kobj,
3284 				   struct kobj_attribute *attr,
3285 				   const char *buf, size_t count)
3286 {
3287 	int err;
3288 	bool value;
3289 
3290 	err = kstrtobool(buf, &value);
3291 	if (err)
3292 		return -EINVAL;
3293 
3294 	ksm_use_zero_pages = value;
3295 
3296 	return count;
3297 }
3298 KSM_ATTR(use_zero_pages);
3299 
3300 static ssize_t max_page_sharing_show(struct kobject *kobj,
3301 				     struct kobj_attribute *attr, char *buf)
3302 {
3303 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3304 }
3305 
3306 static ssize_t max_page_sharing_store(struct kobject *kobj,
3307 				      struct kobj_attribute *attr,
3308 				      const char *buf, size_t count)
3309 {
3310 	int err;
3311 	int knob;
3312 
3313 	err = kstrtoint(buf, 10, &knob);
3314 	if (err)
3315 		return err;
3316 	/*
3317 	 * When a KSM page is created it is shared by 2 mappings. This
3318 	 * being a signed comparison, it implicitly verifies it's not
3319 	 * negative.
3320 	 */
3321 	if (knob < 2)
3322 		return -EINVAL;
3323 
3324 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3325 		return count;
3326 
3327 	mutex_lock(&ksm_thread_mutex);
3328 	wait_while_offlining();
3329 	if (ksm_max_page_sharing != knob) {
3330 		if (ksm_pages_shared || remove_all_stable_nodes())
3331 			err = -EBUSY;
3332 		else
3333 			ksm_max_page_sharing = knob;
3334 	}
3335 	mutex_unlock(&ksm_thread_mutex);
3336 
3337 	return err ? err : count;
3338 }
3339 KSM_ATTR(max_page_sharing);
3340 
3341 static ssize_t pages_scanned_show(struct kobject *kobj,
3342 				  struct kobj_attribute *attr, char *buf)
3343 {
3344 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3345 }
3346 KSM_ATTR_RO(pages_scanned);
3347 
3348 static ssize_t pages_shared_show(struct kobject *kobj,
3349 				 struct kobj_attribute *attr, char *buf)
3350 {
3351 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3352 }
3353 KSM_ATTR_RO(pages_shared);
3354 
3355 static ssize_t pages_sharing_show(struct kobject *kobj,
3356 				  struct kobj_attribute *attr, char *buf)
3357 {
3358 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3359 }
3360 KSM_ATTR_RO(pages_sharing);
3361 
3362 static ssize_t pages_unshared_show(struct kobject *kobj,
3363 				   struct kobj_attribute *attr, char *buf)
3364 {
3365 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3366 }
3367 KSM_ATTR_RO(pages_unshared);
3368 
3369 static ssize_t pages_volatile_show(struct kobject *kobj,
3370 				   struct kobj_attribute *attr, char *buf)
3371 {
3372 	long ksm_pages_volatile;
3373 
3374 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3375 				- ksm_pages_sharing - ksm_pages_unshared;
3376 	/*
3377 	 * It was not worth any locking to calculate that statistic,
3378 	 * but it might therefore sometimes be negative: conceal that.
3379 	 */
3380 	if (ksm_pages_volatile < 0)
3381 		ksm_pages_volatile = 0;
3382 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3383 }
3384 KSM_ATTR_RO(pages_volatile);
3385 
3386 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3387 				struct kobj_attribute *attr, char *buf)
3388 {
3389 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3390 }
3391 KSM_ATTR_RO(ksm_zero_pages);
3392 
3393 static ssize_t general_profit_show(struct kobject *kobj,
3394 				   struct kobj_attribute *attr, char *buf)
3395 {
3396 	long general_profit;
3397 
3398 	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3399 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3400 
3401 	return sysfs_emit(buf, "%ld\n", general_profit);
3402 }
3403 KSM_ATTR_RO(general_profit);
3404 
3405 static ssize_t stable_node_dups_show(struct kobject *kobj,
3406 				     struct kobj_attribute *attr, char *buf)
3407 {
3408 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3409 }
3410 KSM_ATTR_RO(stable_node_dups);
3411 
3412 static ssize_t stable_node_chains_show(struct kobject *kobj,
3413 				       struct kobj_attribute *attr, char *buf)
3414 {
3415 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3416 }
3417 KSM_ATTR_RO(stable_node_chains);
3418 
3419 static ssize_t
3420 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3421 					struct kobj_attribute *attr,
3422 					char *buf)
3423 {
3424 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3425 }
3426 
3427 static ssize_t
3428 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3429 					 struct kobj_attribute *attr,
3430 					 const char *buf, size_t count)
3431 {
3432 	unsigned int msecs;
3433 	int err;
3434 
3435 	err = kstrtouint(buf, 10, &msecs);
3436 	if (err)
3437 		return -EINVAL;
3438 
3439 	ksm_stable_node_chains_prune_millisecs = msecs;
3440 
3441 	return count;
3442 }
3443 KSM_ATTR(stable_node_chains_prune_millisecs);
3444 
3445 static ssize_t full_scans_show(struct kobject *kobj,
3446 			       struct kobj_attribute *attr, char *buf)
3447 {
3448 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3449 }
3450 KSM_ATTR_RO(full_scans);
3451 
3452 static struct attribute *ksm_attrs[] = {
3453 	&sleep_millisecs_attr.attr,
3454 	&pages_to_scan_attr.attr,
3455 	&run_attr.attr,
3456 	&pages_scanned_attr.attr,
3457 	&pages_shared_attr.attr,
3458 	&pages_sharing_attr.attr,
3459 	&pages_unshared_attr.attr,
3460 	&pages_volatile_attr.attr,
3461 	&ksm_zero_pages_attr.attr,
3462 	&full_scans_attr.attr,
3463 #ifdef CONFIG_NUMA
3464 	&merge_across_nodes_attr.attr,
3465 #endif
3466 	&max_page_sharing_attr.attr,
3467 	&stable_node_chains_attr.attr,
3468 	&stable_node_dups_attr.attr,
3469 	&stable_node_chains_prune_millisecs_attr.attr,
3470 	&use_zero_pages_attr.attr,
3471 	&general_profit_attr.attr,
3472 	NULL,
3473 };
3474 
3475 static const struct attribute_group ksm_attr_group = {
3476 	.attrs = ksm_attrs,
3477 	.name = "ksm",
3478 };
3479 #endif /* CONFIG_SYSFS */
3480 
3481 static int __init ksm_init(void)
3482 {
3483 	struct task_struct *ksm_thread;
3484 	int err;
3485 
3486 	/* The correct value depends on page size and endianness */
3487 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3488 	/* Default to false for backwards compatibility */
3489 	ksm_use_zero_pages = false;
3490 
3491 	err = ksm_slab_init();
3492 	if (err)
3493 		goto out;
3494 
3495 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3496 	if (IS_ERR(ksm_thread)) {
3497 		pr_err("ksm: creating kthread failed\n");
3498 		err = PTR_ERR(ksm_thread);
3499 		goto out_free;
3500 	}
3501 
3502 #ifdef CONFIG_SYSFS
3503 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3504 	if (err) {
3505 		pr_err("ksm: register sysfs failed\n");
3506 		kthread_stop(ksm_thread);
3507 		goto out_free;
3508 	}
3509 #else
3510 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3511 
3512 #endif /* CONFIG_SYSFS */
3513 
3514 #ifdef CONFIG_MEMORY_HOTREMOVE
3515 	/* There is no significance to this priority 100 */
3516 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3517 #endif
3518 	return 0;
3519 
3520 out_free:
3521 	ksm_slab_free();
3522 out:
3523 	return err;
3524 }
3525 subsys_initcall(ksm_init);
3526