xref: /linux/mm/ksm.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225 
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229 
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232 
233 static struct mm_slot ksm_mm_head = {
234 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237 	.mm_slot = &ksm_mm_head,
238 };
239 
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243 
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246 
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249 
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252 
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255 
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258 
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261 
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static int ksm_stable_node_chains_prune_millisecs = 2000;
264 
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267 
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270 
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273 
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276 
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279 
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes	1U
286 #define ksm_nr_node_ids		1
287 #endif
288 
289 #define KSM_RUN_STOP	0
290 #define KSM_RUN_MERGE	1
291 #define KSM_RUN_UNMERGE	2
292 #define KSM_RUN_OFFLINE	4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295 
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299 
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 		sizeof(struct __struct), __alignof__(struct __struct),\
302 		(__flags), NULL)
303 
304 static int __init ksm_slab_init(void)
305 {
306 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 	if (!rmap_item_cache)
308 		goto out;
309 
310 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 	if (!stable_node_cache)
312 		goto out_free1;
313 
314 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 	if (!mm_slot_cache)
316 		goto out_free2;
317 
318 	return 0;
319 
320 out_free2:
321 	kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 	kmem_cache_destroy(rmap_item_cache);
324 out:
325 	return -ENOMEM;
326 }
327 
328 static void __init ksm_slab_free(void)
329 {
330 	kmem_cache_destroy(mm_slot_cache);
331 	kmem_cache_destroy(stable_node_cache);
332 	kmem_cache_destroy(rmap_item_cache);
333 	mm_slot_cache = NULL;
334 }
335 
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340 
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 	return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345 
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 					     struct stable_node *chain)
348 {
349 	VM_BUG_ON(is_stable_node_dup(dup));
350 	dup->head = STABLE_NODE_DUP_HEAD;
351 	VM_BUG_ON(!is_stable_node_chain(chain));
352 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 	ksm_stable_node_dups++;
354 }
355 
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 	VM_BUG_ON(!is_stable_node_dup(dup));
359 	hlist_del(&dup->hlist_dup);
360 	ksm_stable_node_dups--;
361 }
362 
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 	VM_BUG_ON(is_stable_node_chain(dup));
366 	if (is_stable_node_dup(dup))
367 		__stable_node_dup_del(dup);
368 	else
369 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 	dup->head = NULL;
372 #endif
373 }
374 
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 	struct rmap_item *rmap_item;
378 
379 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 						__GFP_NORETRY | __GFP_NOWARN);
381 	if (rmap_item)
382 		ksm_rmap_items++;
383 	return rmap_item;
384 }
385 
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 	ksm_rmap_items--;
389 	rmap_item->mm = NULL;	/* debug safety */
390 	kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392 
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 	/*
396 	 * The allocation can take too long with GFP_KERNEL when memory is under
397 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398 	 * grants access to memory reserves, helping to avoid this problem.
399 	 */
400 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402 
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 	VM_BUG_ON(stable_node->rmap_hlist_len &&
406 		  !is_stable_node_chain(stable_node));
407 	kmem_cache_free(stable_node_cache, stable_node);
408 }
409 
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 	if (!mm_slot_cache)	/* initialization failed */
413 		return NULL;
414 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416 
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 	kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421 
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 	struct mm_slot *slot;
425 
426 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 		if (slot->mm == mm)
428 			return slot;
429 
430 	return NULL;
431 }
432 
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 				    struct mm_slot *mm_slot)
435 {
436 	mm_slot->mm = mm;
437 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439 
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 	return atomic_read(&mm->mm_users) == 0;
451 }
452 
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
457  *		put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 	struct page *page;
471 	int ret = 0;
472 
473 	do {
474 		cond_resched();
475 		page = follow_page(vma, addr,
476 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 		if (IS_ERR_OR_NULL(page))
478 			break;
479 		if (PageKsm(page))
480 			ret = handle_mm_fault(vma, addr,
481 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
482 		else
483 			ret = VM_FAULT_WRITE;
484 		put_page(page);
485 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
486 	/*
487 	 * We must loop because handle_mm_fault() may back out if there's
488 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
489 	 *
490 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
491 	 * COW has been broken, even if the vma does not permit VM_WRITE;
492 	 * but note that a concurrent fault might break PageKsm for us.
493 	 *
494 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
495 	 * backing file, which also invalidates anonymous pages: that's
496 	 * okay, that truncation will have unmapped the PageKsm for us.
497 	 *
498 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
499 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
500 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
501 	 * to user; and ksmd, having no mm, would never be chosen for that.
502 	 *
503 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
504 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
505 	 * even ksmd can fail in this way - though it's usually breaking ksm
506 	 * just to undo a merge it made a moment before, so unlikely to oom.
507 	 *
508 	 * That's a pity: we might therefore have more kernel pages allocated
509 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
510 	 * will retry to break_cow on each pass, so should recover the page
511 	 * in due course.  The important thing is to not let VM_MERGEABLE
512 	 * be cleared while any such pages might remain in the area.
513 	 */
514 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
515 }
516 
517 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
518 		unsigned long addr)
519 {
520 	struct vm_area_struct *vma;
521 	if (ksm_test_exit(mm))
522 		return NULL;
523 	vma = find_vma(mm, addr);
524 	if (!vma || vma->vm_start > addr)
525 		return NULL;
526 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 		return NULL;
528 	return vma;
529 }
530 
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533 	struct mm_struct *mm = rmap_item->mm;
534 	unsigned long addr = rmap_item->address;
535 	struct vm_area_struct *vma;
536 
537 	/*
538 	 * It is not an accident that whenever we want to break COW
539 	 * to undo, we also need to drop a reference to the anon_vma.
540 	 */
541 	put_anon_vma(rmap_item->anon_vma);
542 
543 	down_read(&mm->mmap_sem);
544 	vma = find_mergeable_vma(mm, addr);
545 	if (vma)
546 		break_ksm(vma, addr);
547 	up_read(&mm->mmap_sem);
548 }
549 
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552 	struct mm_struct *mm = rmap_item->mm;
553 	unsigned long addr = rmap_item->address;
554 	struct vm_area_struct *vma;
555 	struct page *page;
556 
557 	down_read(&mm->mmap_sem);
558 	vma = find_mergeable_vma(mm, addr);
559 	if (!vma)
560 		goto out;
561 
562 	page = follow_page(vma, addr, FOLL_GET);
563 	if (IS_ERR_OR_NULL(page))
564 		goto out;
565 	if (PageAnon(page)) {
566 		flush_anon_page(vma, page, addr);
567 		flush_dcache_page(page);
568 	} else {
569 		put_page(page);
570 out:
571 		page = NULL;
572 	}
573 	up_read(&mm->mmap_sem);
574 	return page;
575 }
576 
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587 
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 						   struct rb_root *root)
590 {
591 	struct stable_node *chain = alloc_stable_node();
592 	VM_BUG_ON(is_stable_node_chain(dup));
593 	if (likely(chain)) {
594 		INIT_HLIST_HEAD(&chain->hlist);
595 		chain->chain_prune_time = jiffies;
596 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 		chain->nid = -1; /* debug */
599 #endif
600 		ksm_stable_node_chains++;
601 
602 		/*
603 		 * Put the stable node chain in the first dimension of
604 		 * the stable tree and at the same time remove the old
605 		 * stable node.
606 		 */
607 		rb_replace_node(&dup->node, &chain->node, root);
608 
609 		/*
610 		 * Move the old stable node to the second dimension
611 		 * queued in the hlist_dup. The invariant is that all
612 		 * dup stable_nodes in the chain->hlist point to pages
613 		 * that are wrprotected and have the exact same
614 		 * content.
615 		 */
616 		stable_node_chain_add_dup(dup, chain);
617 	}
618 	return chain;
619 }
620 
621 static inline void free_stable_node_chain(struct stable_node *chain,
622 					  struct rb_root *root)
623 {
624 	rb_erase(&chain->node, root);
625 	free_stable_node(chain);
626 	ksm_stable_node_chains--;
627 }
628 
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631 	struct rmap_item *rmap_item;
632 
633 	/* check it's not STABLE_NODE_CHAIN or negative */
634 	BUG_ON(stable_node->rmap_hlist_len < 0);
635 
636 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637 		if (rmap_item->hlist.next)
638 			ksm_pages_sharing--;
639 		else
640 			ksm_pages_shared--;
641 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642 		stable_node->rmap_hlist_len--;
643 		put_anon_vma(rmap_item->anon_vma);
644 		rmap_item->address &= PAGE_MASK;
645 		cond_resched();
646 	}
647 
648 	/*
649 	 * We need the second aligned pointer of the migrate_nodes
650 	 * list_head to stay clear from the rb_parent_color union
651 	 * (aligned and different than any node) and also different
652 	 * from &migrate_nodes. This will verify that future list.h changes
653 	 * don't break STABLE_NODE_DUP_HEAD.
654 	 */
655 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
656 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
657 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
658 #endif
659 
660 	if (stable_node->head == &migrate_nodes)
661 		list_del(&stable_node->list);
662 	else
663 		stable_node_dup_del(stable_node);
664 	free_stable_node(stable_node);
665 }
666 
667 /*
668  * get_ksm_page: checks if the page indicated by the stable node
669  * is still its ksm page, despite having held no reference to it.
670  * In which case we can trust the content of the page, and it
671  * returns the gotten page; but if the page has now been zapped,
672  * remove the stale node from the stable tree and return NULL.
673  * But beware, the stable node's page might be being migrated.
674  *
675  * You would expect the stable_node to hold a reference to the ksm page.
676  * But if it increments the page's count, swapping out has to wait for
677  * ksmd to come around again before it can free the page, which may take
678  * seconds or even minutes: much too unresponsive.  So instead we use a
679  * "keyhole reference": access to the ksm page from the stable node peeps
680  * out through its keyhole to see if that page still holds the right key,
681  * pointing back to this stable node.  This relies on freeing a PageAnon
682  * page to reset its page->mapping to NULL, and relies on no other use of
683  * a page to put something that might look like our key in page->mapping.
684  * is on its way to being freed; but it is an anomaly to bear in mind.
685  */
686 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
687 {
688 	struct page *page;
689 	void *expected_mapping;
690 	unsigned long kpfn;
691 
692 	expected_mapping = (void *)((unsigned long)stable_node |
693 					PAGE_MAPPING_KSM);
694 again:
695 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
696 	page = pfn_to_page(kpfn);
697 	if (READ_ONCE(page->mapping) != expected_mapping)
698 		goto stale;
699 
700 	/*
701 	 * We cannot do anything with the page while its refcount is 0.
702 	 * Usually 0 means free, or tail of a higher-order page: in which
703 	 * case this node is no longer referenced, and should be freed;
704 	 * however, it might mean that the page is under page_freeze_refs().
705 	 * The __remove_mapping() case is easy, again the node is now stale;
706 	 * but if page is swapcache in migrate_page_move_mapping(), it might
707 	 * still be our page, in which case it's essential to keep the node.
708 	 */
709 	while (!get_page_unless_zero(page)) {
710 		/*
711 		 * Another check for page->mapping != expected_mapping would
712 		 * work here too.  We have chosen the !PageSwapCache test to
713 		 * optimize the common case, when the page is or is about to
714 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
715 		 * in the freeze_refs section of __remove_mapping(); but Anon
716 		 * page->mapping reset to NULL later, in free_pages_prepare().
717 		 */
718 		if (!PageSwapCache(page))
719 			goto stale;
720 		cpu_relax();
721 	}
722 
723 	if (READ_ONCE(page->mapping) != expected_mapping) {
724 		put_page(page);
725 		goto stale;
726 	}
727 
728 	if (lock_it) {
729 		lock_page(page);
730 		if (READ_ONCE(page->mapping) != expected_mapping) {
731 			unlock_page(page);
732 			put_page(page);
733 			goto stale;
734 		}
735 	}
736 	return page;
737 
738 stale:
739 	/*
740 	 * We come here from above when page->mapping or !PageSwapCache
741 	 * suggests that the node is stale; but it might be under migration.
742 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
743 	 * before checking whether node->kpfn has been changed.
744 	 */
745 	smp_rmb();
746 	if (READ_ONCE(stable_node->kpfn) != kpfn)
747 		goto again;
748 	remove_node_from_stable_tree(stable_node);
749 	return NULL;
750 }
751 
752 /*
753  * Removing rmap_item from stable or unstable tree.
754  * This function will clean the information from the stable/unstable tree.
755  */
756 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
757 {
758 	if (rmap_item->address & STABLE_FLAG) {
759 		struct stable_node *stable_node;
760 		struct page *page;
761 
762 		stable_node = rmap_item->head;
763 		page = get_ksm_page(stable_node, true);
764 		if (!page)
765 			goto out;
766 
767 		hlist_del(&rmap_item->hlist);
768 		unlock_page(page);
769 		put_page(page);
770 
771 		if (!hlist_empty(&stable_node->hlist))
772 			ksm_pages_sharing--;
773 		else
774 			ksm_pages_shared--;
775 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
776 		stable_node->rmap_hlist_len--;
777 
778 		put_anon_vma(rmap_item->anon_vma);
779 		rmap_item->address &= PAGE_MASK;
780 
781 	} else if (rmap_item->address & UNSTABLE_FLAG) {
782 		unsigned char age;
783 		/*
784 		 * Usually ksmd can and must skip the rb_erase, because
785 		 * root_unstable_tree was already reset to RB_ROOT.
786 		 * But be careful when an mm is exiting: do the rb_erase
787 		 * if this rmap_item was inserted by this scan, rather
788 		 * than left over from before.
789 		 */
790 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
791 		BUG_ON(age > 1);
792 		if (!age)
793 			rb_erase(&rmap_item->node,
794 				 root_unstable_tree + NUMA(rmap_item->nid));
795 		ksm_pages_unshared--;
796 		rmap_item->address &= PAGE_MASK;
797 	}
798 out:
799 	cond_resched();		/* we're called from many long loops */
800 }
801 
802 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
803 				       struct rmap_item **rmap_list)
804 {
805 	while (*rmap_list) {
806 		struct rmap_item *rmap_item = *rmap_list;
807 		*rmap_list = rmap_item->rmap_list;
808 		remove_rmap_item_from_tree(rmap_item);
809 		free_rmap_item(rmap_item);
810 	}
811 }
812 
813 /*
814  * Though it's very tempting to unmerge rmap_items from stable tree rather
815  * than check every pte of a given vma, the locking doesn't quite work for
816  * that - an rmap_item is assigned to the stable tree after inserting ksm
817  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
818  * rmap_items from parent to child at fork time (so as not to waste time
819  * if exit comes before the next scan reaches it).
820  *
821  * Similarly, although we'd like to remove rmap_items (so updating counts
822  * and freeing memory) when unmerging an area, it's easier to leave that
823  * to the next pass of ksmd - consider, for example, how ksmd might be
824  * in cmp_and_merge_page on one of the rmap_items we would be removing.
825  */
826 static int unmerge_ksm_pages(struct vm_area_struct *vma,
827 			     unsigned long start, unsigned long end)
828 {
829 	unsigned long addr;
830 	int err = 0;
831 
832 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
833 		if (ksm_test_exit(vma->vm_mm))
834 			break;
835 		if (signal_pending(current))
836 			err = -ERESTARTSYS;
837 		else
838 			err = break_ksm(vma, addr);
839 	}
840 	return err;
841 }
842 
843 #ifdef CONFIG_SYSFS
844 /*
845  * Only called through the sysfs control interface:
846  */
847 static int remove_stable_node(struct stable_node *stable_node)
848 {
849 	struct page *page;
850 	int err;
851 
852 	page = get_ksm_page(stable_node, true);
853 	if (!page) {
854 		/*
855 		 * get_ksm_page did remove_node_from_stable_tree itself.
856 		 */
857 		return 0;
858 	}
859 
860 	if (WARN_ON_ONCE(page_mapped(page))) {
861 		/*
862 		 * This should not happen: but if it does, just refuse to let
863 		 * merge_across_nodes be switched - there is no need to panic.
864 		 */
865 		err = -EBUSY;
866 	} else {
867 		/*
868 		 * The stable node did not yet appear stale to get_ksm_page(),
869 		 * since that allows for an unmapped ksm page to be recognized
870 		 * right up until it is freed; but the node is safe to remove.
871 		 * This page might be in a pagevec waiting to be freed,
872 		 * or it might be PageSwapCache (perhaps under writeback),
873 		 * or it might have been removed from swapcache a moment ago.
874 		 */
875 		set_page_stable_node(page, NULL);
876 		remove_node_from_stable_tree(stable_node);
877 		err = 0;
878 	}
879 
880 	unlock_page(page);
881 	put_page(page);
882 	return err;
883 }
884 
885 static int remove_stable_node_chain(struct stable_node *stable_node,
886 				    struct rb_root *root)
887 {
888 	struct stable_node *dup;
889 	struct hlist_node *hlist_safe;
890 
891 	if (!is_stable_node_chain(stable_node)) {
892 		VM_BUG_ON(is_stable_node_dup(stable_node));
893 		if (remove_stable_node(stable_node))
894 			return true;
895 		else
896 			return false;
897 	}
898 
899 	hlist_for_each_entry_safe(dup, hlist_safe,
900 				  &stable_node->hlist, hlist_dup) {
901 		VM_BUG_ON(!is_stable_node_dup(dup));
902 		if (remove_stable_node(dup))
903 			return true;
904 	}
905 	BUG_ON(!hlist_empty(&stable_node->hlist));
906 	free_stable_node_chain(stable_node, root);
907 	return false;
908 }
909 
910 static int remove_all_stable_nodes(void)
911 {
912 	struct stable_node *stable_node, *next;
913 	int nid;
914 	int err = 0;
915 
916 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
917 		while (root_stable_tree[nid].rb_node) {
918 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
919 						struct stable_node, node);
920 			if (remove_stable_node_chain(stable_node,
921 						     root_stable_tree + nid)) {
922 				err = -EBUSY;
923 				break;	/* proceed to next nid */
924 			}
925 			cond_resched();
926 		}
927 	}
928 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
929 		if (remove_stable_node(stable_node))
930 			err = -EBUSY;
931 		cond_resched();
932 	}
933 	return err;
934 }
935 
936 static int unmerge_and_remove_all_rmap_items(void)
937 {
938 	struct mm_slot *mm_slot;
939 	struct mm_struct *mm;
940 	struct vm_area_struct *vma;
941 	int err = 0;
942 
943 	spin_lock(&ksm_mmlist_lock);
944 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
945 						struct mm_slot, mm_list);
946 	spin_unlock(&ksm_mmlist_lock);
947 
948 	for (mm_slot = ksm_scan.mm_slot;
949 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
950 		mm = mm_slot->mm;
951 		down_read(&mm->mmap_sem);
952 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
953 			if (ksm_test_exit(mm))
954 				break;
955 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
956 				continue;
957 			err = unmerge_ksm_pages(vma,
958 						vma->vm_start, vma->vm_end);
959 			if (err)
960 				goto error;
961 		}
962 
963 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
964 		up_read(&mm->mmap_sem);
965 
966 		spin_lock(&ksm_mmlist_lock);
967 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
968 						struct mm_slot, mm_list);
969 		if (ksm_test_exit(mm)) {
970 			hash_del(&mm_slot->link);
971 			list_del(&mm_slot->mm_list);
972 			spin_unlock(&ksm_mmlist_lock);
973 
974 			free_mm_slot(mm_slot);
975 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
976 			mmdrop(mm);
977 		} else
978 			spin_unlock(&ksm_mmlist_lock);
979 	}
980 
981 	/* Clean up stable nodes, but don't worry if some are still busy */
982 	remove_all_stable_nodes();
983 	ksm_scan.seqnr = 0;
984 	return 0;
985 
986 error:
987 	up_read(&mm->mmap_sem);
988 	spin_lock(&ksm_mmlist_lock);
989 	ksm_scan.mm_slot = &ksm_mm_head;
990 	spin_unlock(&ksm_mmlist_lock);
991 	return err;
992 }
993 #endif /* CONFIG_SYSFS */
994 
995 static u32 calc_checksum(struct page *page)
996 {
997 	u32 checksum;
998 	void *addr = kmap_atomic(page);
999 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1000 	kunmap_atomic(addr);
1001 	return checksum;
1002 }
1003 
1004 static int memcmp_pages(struct page *page1, struct page *page2)
1005 {
1006 	char *addr1, *addr2;
1007 	int ret;
1008 
1009 	addr1 = kmap_atomic(page1);
1010 	addr2 = kmap_atomic(page2);
1011 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1012 	kunmap_atomic(addr2);
1013 	kunmap_atomic(addr1);
1014 	return ret;
1015 }
1016 
1017 static inline int pages_identical(struct page *page1, struct page *page2)
1018 {
1019 	return !memcmp_pages(page1, page2);
1020 }
1021 
1022 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1023 			      pte_t *orig_pte)
1024 {
1025 	struct mm_struct *mm = vma->vm_mm;
1026 	struct page_vma_mapped_walk pvmw = {
1027 		.page = page,
1028 		.vma = vma,
1029 	};
1030 	int swapped;
1031 	int err = -EFAULT;
1032 	unsigned long mmun_start;	/* For mmu_notifiers */
1033 	unsigned long mmun_end;		/* For mmu_notifiers */
1034 
1035 	pvmw.address = page_address_in_vma(page, vma);
1036 	if (pvmw.address == -EFAULT)
1037 		goto out;
1038 
1039 	BUG_ON(PageTransCompound(page));
1040 
1041 	mmun_start = pvmw.address;
1042 	mmun_end   = pvmw.address + PAGE_SIZE;
1043 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1044 
1045 	if (!page_vma_mapped_walk(&pvmw))
1046 		goto out_mn;
1047 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1048 		goto out_unlock;
1049 
1050 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1051 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1052 						mm_tlb_flush_pending(mm)) {
1053 		pte_t entry;
1054 
1055 		swapped = PageSwapCache(page);
1056 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1057 		/*
1058 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1059 		 * take any lock, therefore the check that we are going to make
1060 		 * with the pagecount against the mapcount is racey and
1061 		 * O_DIRECT can happen right after the check.
1062 		 * So we clear the pte and flush the tlb before the check
1063 		 * this assure us that no O_DIRECT can happen after the check
1064 		 * or in the middle of the check.
1065 		 *
1066 		 * No need to notify as we are downgrading page table to read
1067 		 * only not changing it to point to a new page.
1068 		 *
1069 		 * See Documentation/vm/mmu_notifier.rst
1070 		 */
1071 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1072 		/*
1073 		 * Check that no O_DIRECT or similar I/O is in progress on the
1074 		 * page
1075 		 */
1076 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1077 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1078 			goto out_unlock;
1079 		}
1080 		if (pte_dirty(entry))
1081 			set_page_dirty(page);
1082 
1083 		if (pte_protnone(entry))
1084 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1085 		else
1086 			entry = pte_mkclean(pte_wrprotect(entry));
1087 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1088 	}
1089 	*orig_pte = *pvmw.pte;
1090 	err = 0;
1091 
1092 out_unlock:
1093 	page_vma_mapped_walk_done(&pvmw);
1094 out_mn:
1095 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1096 out:
1097 	return err;
1098 }
1099 
1100 /**
1101  * replace_page - replace page in vma by new ksm page
1102  * @vma:      vma that holds the pte pointing to page
1103  * @page:     the page we are replacing by kpage
1104  * @kpage:    the ksm page we replace page by
1105  * @orig_pte: the original value of the pte
1106  *
1107  * Returns 0 on success, -EFAULT on failure.
1108  */
1109 static int replace_page(struct vm_area_struct *vma, struct page *page,
1110 			struct page *kpage, pte_t orig_pte)
1111 {
1112 	struct mm_struct *mm = vma->vm_mm;
1113 	pmd_t *pmd;
1114 	pte_t *ptep;
1115 	pte_t newpte;
1116 	spinlock_t *ptl;
1117 	unsigned long addr;
1118 	int err = -EFAULT;
1119 	unsigned long mmun_start;	/* For mmu_notifiers */
1120 	unsigned long mmun_end;		/* For mmu_notifiers */
1121 
1122 	addr = page_address_in_vma(page, vma);
1123 	if (addr == -EFAULT)
1124 		goto out;
1125 
1126 	pmd = mm_find_pmd(mm, addr);
1127 	if (!pmd)
1128 		goto out;
1129 
1130 	mmun_start = addr;
1131 	mmun_end   = addr + PAGE_SIZE;
1132 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1133 
1134 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1135 	if (!pte_same(*ptep, orig_pte)) {
1136 		pte_unmap_unlock(ptep, ptl);
1137 		goto out_mn;
1138 	}
1139 
1140 	/*
1141 	 * No need to check ksm_use_zero_pages here: we can only have a
1142 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1143 	 */
1144 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1145 		get_page(kpage);
1146 		page_add_anon_rmap(kpage, vma, addr, false);
1147 		newpte = mk_pte(kpage, vma->vm_page_prot);
1148 	} else {
1149 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1150 					       vma->vm_page_prot));
1151 		/*
1152 		 * We're replacing an anonymous page with a zero page, which is
1153 		 * not anonymous. We need to do proper accounting otherwise we
1154 		 * will get wrong values in /proc, and a BUG message in dmesg
1155 		 * when tearing down the mm.
1156 		 */
1157 		dec_mm_counter(mm, MM_ANONPAGES);
1158 	}
1159 
1160 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1161 	/*
1162 	 * No need to notify as we are replacing a read only page with another
1163 	 * read only page with the same content.
1164 	 *
1165 	 * See Documentation/vm/mmu_notifier.rst
1166 	 */
1167 	ptep_clear_flush(vma, addr, ptep);
1168 	set_pte_at_notify(mm, addr, ptep, newpte);
1169 
1170 	page_remove_rmap(page, false);
1171 	if (!page_mapped(page))
1172 		try_to_free_swap(page);
1173 	put_page(page);
1174 
1175 	pte_unmap_unlock(ptep, ptl);
1176 	err = 0;
1177 out_mn:
1178 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1179 out:
1180 	return err;
1181 }
1182 
1183 /*
1184  * try_to_merge_one_page - take two pages and merge them into one
1185  * @vma: the vma that holds the pte pointing to page
1186  * @page: the PageAnon page that we want to replace with kpage
1187  * @kpage: the PageKsm page that we want to map instead of page,
1188  *         or NULL the first time when we want to use page as kpage.
1189  *
1190  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1191  */
1192 static int try_to_merge_one_page(struct vm_area_struct *vma,
1193 				 struct page *page, struct page *kpage)
1194 {
1195 	pte_t orig_pte = __pte(0);
1196 	int err = -EFAULT;
1197 
1198 	if (page == kpage)			/* ksm page forked */
1199 		return 0;
1200 
1201 	if (!PageAnon(page))
1202 		goto out;
1203 
1204 	/*
1205 	 * We need the page lock to read a stable PageSwapCache in
1206 	 * write_protect_page().  We use trylock_page() instead of
1207 	 * lock_page() because we don't want to wait here - we
1208 	 * prefer to continue scanning and merging different pages,
1209 	 * then come back to this page when it is unlocked.
1210 	 */
1211 	if (!trylock_page(page))
1212 		goto out;
1213 
1214 	if (PageTransCompound(page)) {
1215 		if (split_huge_page(page))
1216 			goto out_unlock;
1217 	}
1218 
1219 	/*
1220 	 * If this anonymous page is mapped only here, its pte may need
1221 	 * to be write-protected.  If it's mapped elsewhere, all of its
1222 	 * ptes are necessarily already write-protected.  But in either
1223 	 * case, we need to lock and check page_count is not raised.
1224 	 */
1225 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1226 		if (!kpage) {
1227 			/*
1228 			 * While we hold page lock, upgrade page from
1229 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1230 			 * stable_tree_insert() will update stable_node.
1231 			 */
1232 			set_page_stable_node(page, NULL);
1233 			mark_page_accessed(page);
1234 			/*
1235 			 * Page reclaim just frees a clean page with no dirty
1236 			 * ptes: make sure that the ksm page would be swapped.
1237 			 */
1238 			if (!PageDirty(page))
1239 				SetPageDirty(page);
1240 			err = 0;
1241 		} else if (pages_identical(page, kpage))
1242 			err = replace_page(vma, page, kpage, orig_pte);
1243 	}
1244 
1245 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1246 		munlock_vma_page(page);
1247 		if (!PageMlocked(kpage)) {
1248 			unlock_page(page);
1249 			lock_page(kpage);
1250 			mlock_vma_page(kpage);
1251 			page = kpage;		/* for final unlock */
1252 		}
1253 	}
1254 
1255 out_unlock:
1256 	unlock_page(page);
1257 out:
1258 	return err;
1259 }
1260 
1261 /*
1262  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1263  * but no new kernel page is allocated: kpage must already be a ksm page.
1264  *
1265  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266  */
1267 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1268 				      struct page *page, struct page *kpage)
1269 {
1270 	struct mm_struct *mm = rmap_item->mm;
1271 	struct vm_area_struct *vma;
1272 	int err = -EFAULT;
1273 
1274 	down_read(&mm->mmap_sem);
1275 	vma = find_mergeable_vma(mm, rmap_item->address);
1276 	if (!vma)
1277 		goto out;
1278 
1279 	err = try_to_merge_one_page(vma, page, kpage);
1280 	if (err)
1281 		goto out;
1282 
1283 	/* Unstable nid is in union with stable anon_vma: remove first */
1284 	remove_rmap_item_from_tree(rmap_item);
1285 
1286 	/* Must get reference to anon_vma while still holding mmap_sem */
1287 	rmap_item->anon_vma = vma->anon_vma;
1288 	get_anon_vma(vma->anon_vma);
1289 out:
1290 	up_read(&mm->mmap_sem);
1291 	return err;
1292 }
1293 
1294 /*
1295  * try_to_merge_two_pages - take two identical pages and prepare them
1296  * to be merged into one page.
1297  *
1298  * This function returns the kpage if we successfully merged two identical
1299  * pages into one ksm page, NULL otherwise.
1300  *
1301  * Note that this function upgrades page to ksm page: if one of the pages
1302  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1303  */
1304 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1305 					   struct page *page,
1306 					   struct rmap_item *tree_rmap_item,
1307 					   struct page *tree_page)
1308 {
1309 	int err;
1310 
1311 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1312 	if (!err) {
1313 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1314 							tree_page, page);
1315 		/*
1316 		 * If that fails, we have a ksm page with only one pte
1317 		 * pointing to it: so break it.
1318 		 */
1319 		if (err)
1320 			break_cow(rmap_item);
1321 	}
1322 	return err ? NULL : page;
1323 }
1324 
1325 static __always_inline
1326 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1327 {
1328 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1329 	/*
1330 	 * Check that at least one mapping still exists, otherwise
1331 	 * there's no much point to merge and share with this
1332 	 * stable_node, as the underlying tree_page of the other
1333 	 * sharer is going to be freed soon.
1334 	 */
1335 	return stable_node->rmap_hlist_len &&
1336 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1337 }
1338 
1339 static __always_inline
1340 bool is_page_sharing_candidate(struct stable_node *stable_node)
1341 {
1342 	return __is_page_sharing_candidate(stable_node, 0);
1343 }
1344 
1345 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1346 				    struct stable_node **_stable_node,
1347 				    struct rb_root *root,
1348 				    bool prune_stale_stable_nodes)
1349 {
1350 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1351 	struct hlist_node *hlist_safe;
1352 	struct page *_tree_page, *tree_page = NULL;
1353 	int nr = 0;
1354 	int found_rmap_hlist_len;
1355 
1356 	if (!prune_stale_stable_nodes ||
1357 	    time_before(jiffies, stable_node->chain_prune_time +
1358 			msecs_to_jiffies(
1359 				ksm_stable_node_chains_prune_millisecs)))
1360 		prune_stale_stable_nodes = false;
1361 	else
1362 		stable_node->chain_prune_time = jiffies;
1363 
1364 	hlist_for_each_entry_safe(dup, hlist_safe,
1365 				  &stable_node->hlist, hlist_dup) {
1366 		cond_resched();
1367 		/*
1368 		 * We must walk all stable_node_dup to prune the stale
1369 		 * stable nodes during lookup.
1370 		 *
1371 		 * get_ksm_page can drop the nodes from the
1372 		 * stable_node->hlist if they point to freed pages
1373 		 * (that's why we do a _safe walk). The "dup"
1374 		 * stable_node parameter itself will be freed from
1375 		 * under us if it returns NULL.
1376 		 */
1377 		_tree_page = get_ksm_page(dup, false);
1378 		if (!_tree_page)
1379 			continue;
1380 		nr += 1;
1381 		if (is_page_sharing_candidate(dup)) {
1382 			if (!found ||
1383 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1384 				if (found)
1385 					put_page(tree_page);
1386 				found = dup;
1387 				found_rmap_hlist_len = found->rmap_hlist_len;
1388 				tree_page = _tree_page;
1389 
1390 				/* skip put_page for found dup */
1391 				if (!prune_stale_stable_nodes)
1392 					break;
1393 				continue;
1394 			}
1395 		}
1396 		put_page(_tree_page);
1397 	}
1398 
1399 	if (found) {
1400 		/*
1401 		 * nr is counting all dups in the chain only if
1402 		 * prune_stale_stable_nodes is true, otherwise we may
1403 		 * break the loop at nr == 1 even if there are
1404 		 * multiple entries.
1405 		 */
1406 		if (prune_stale_stable_nodes && nr == 1) {
1407 			/*
1408 			 * If there's not just one entry it would
1409 			 * corrupt memory, better BUG_ON. In KSM
1410 			 * context with no lock held it's not even
1411 			 * fatal.
1412 			 */
1413 			BUG_ON(stable_node->hlist.first->next);
1414 
1415 			/*
1416 			 * There's just one entry and it is below the
1417 			 * deduplication limit so drop the chain.
1418 			 */
1419 			rb_replace_node(&stable_node->node, &found->node,
1420 					root);
1421 			free_stable_node(stable_node);
1422 			ksm_stable_node_chains--;
1423 			ksm_stable_node_dups--;
1424 			/*
1425 			 * NOTE: the caller depends on the stable_node
1426 			 * to be equal to stable_node_dup if the chain
1427 			 * was collapsed.
1428 			 */
1429 			*_stable_node = found;
1430 			/*
1431 			 * Just for robustneess as stable_node is
1432 			 * otherwise left as a stable pointer, the
1433 			 * compiler shall optimize it away at build
1434 			 * time.
1435 			 */
1436 			stable_node = NULL;
1437 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1438 			   __is_page_sharing_candidate(found, 1)) {
1439 			/*
1440 			 * If the found stable_node dup can accept one
1441 			 * more future merge (in addition to the one
1442 			 * that is underway) and is not at the head of
1443 			 * the chain, put it there so next search will
1444 			 * be quicker in the !prune_stale_stable_nodes
1445 			 * case.
1446 			 *
1447 			 * NOTE: it would be inaccurate to use nr > 1
1448 			 * instead of checking the hlist.first pointer
1449 			 * directly, because in the
1450 			 * prune_stale_stable_nodes case "nr" isn't
1451 			 * the position of the found dup in the chain,
1452 			 * but the total number of dups in the chain.
1453 			 */
1454 			hlist_del(&found->hlist_dup);
1455 			hlist_add_head(&found->hlist_dup,
1456 				       &stable_node->hlist);
1457 		}
1458 	}
1459 
1460 	*_stable_node_dup = found;
1461 	return tree_page;
1462 }
1463 
1464 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1465 					       struct rb_root *root)
1466 {
1467 	if (!is_stable_node_chain(stable_node))
1468 		return stable_node;
1469 	if (hlist_empty(&stable_node->hlist)) {
1470 		free_stable_node_chain(stable_node, root);
1471 		return NULL;
1472 	}
1473 	return hlist_entry(stable_node->hlist.first,
1474 			   typeof(*stable_node), hlist_dup);
1475 }
1476 
1477 /*
1478  * Like for get_ksm_page, this function can free the *_stable_node and
1479  * *_stable_node_dup if the returned tree_page is NULL.
1480  *
1481  * It can also free and overwrite *_stable_node with the found
1482  * stable_node_dup if the chain is collapsed (in which case
1483  * *_stable_node will be equal to *_stable_node_dup like if the chain
1484  * never existed). It's up to the caller to verify tree_page is not
1485  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1486  *
1487  * *_stable_node_dup is really a second output parameter of this
1488  * function and will be overwritten in all cases, the caller doesn't
1489  * need to initialize it.
1490  */
1491 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1492 					struct stable_node **_stable_node,
1493 					struct rb_root *root,
1494 					bool prune_stale_stable_nodes)
1495 {
1496 	struct stable_node *stable_node = *_stable_node;
1497 	if (!is_stable_node_chain(stable_node)) {
1498 		if (is_page_sharing_candidate(stable_node)) {
1499 			*_stable_node_dup = stable_node;
1500 			return get_ksm_page(stable_node, false);
1501 		}
1502 		/*
1503 		 * _stable_node_dup set to NULL means the stable_node
1504 		 * reached the ksm_max_page_sharing limit.
1505 		 */
1506 		*_stable_node_dup = NULL;
1507 		return NULL;
1508 	}
1509 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1510 			       prune_stale_stable_nodes);
1511 }
1512 
1513 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1514 						struct stable_node **s_n,
1515 						struct rb_root *root)
1516 {
1517 	return __stable_node_chain(s_n_d, s_n, root, true);
1518 }
1519 
1520 static __always_inline struct page *chain(struct stable_node **s_n_d,
1521 					  struct stable_node *s_n,
1522 					  struct rb_root *root)
1523 {
1524 	struct stable_node *old_stable_node = s_n;
1525 	struct page *tree_page;
1526 
1527 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1528 	/* not pruning dups so s_n cannot have changed */
1529 	VM_BUG_ON(s_n != old_stable_node);
1530 	return tree_page;
1531 }
1532 
1533 /*
1534  * stable_tree_search - search for page inside the stable tree
1535  *
1536  * This function checks if there is a page inside the stable tree
1537  * with identical content to the page that we are scanning right now.
1538  *
1539  * This function returns the stable tree node of identical content if found,
1540  * NULL otherwise.
1541  */
1542 static struct page *stable_tree_search(struct page *page)
1543 {
1544 	int nid;
1545 	struct rb_root *root;
1546 	struct rb_node **new;
1547 	struct rb_node *parent;
1548 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1549 	struct stable_node *page_node;
1550 
1551 	page_node = page_stable_node(page);
1552 	if (page_node && page_node->head != &migrate_nodes) {
1553 		/* ksm page forked */
1554 		get_page(page);
1555 		return page;
1556 	}
1557 
1558 	nid = get_kpfn_nid(page_to_pfn(page));
1559 	root = root_stable_tree + nid;
1560 again:
1561 	new = &root->rb_node;
1562 	parent = NULL;
1563 
1564 	while (*new) {
1565 		struct page *tree_page;
1566 		int ret;
1567 
1568 		cond_resched();
1569 		stable_node = rb_entry(*new, struct stable_node, node);
1570 		stable_node_any = NULL;
1571 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1572 		/*
1573 		 * NOTE: stable_node may have been freed by
1574 		 * chain_prune() if the returned stable_node_dup is
1575 		 * not NULL. stable_node_dup may have been inserted in
1576 		 * the rbtree instead as a regular stable_node (in
1577 		 * order to collapse the stable_node chain if a single
1578 		 * stable_node dup was found in it). In such case the
1579 		 * stable_node is overwritten by the calleee to point
1580 		 * to the stable_node_dup that was collapsed in the
1581 		 * stable rbtree and stable_node will be equal to
1582 		 * stable_node_dup like if the chain never existed.
1583 		 */
1584 		if (!stable_node_dup) {
1585 			/*
1586 			 * Either all stable_node dups were full in
1587 			 * this stable_node chain, or this chain was
1588 			 * empty and should be rb_erased.
1589 			 */
1590 			stable_node_any = stable_node_dup_any(stable_node,
1591 							      root);
1592 			if (!stable_node_any) {
1593 				/* rb_erase just run */
1594 				goto again;
1595 			}
1596 			/*
1597 			 * Take any of the stable_node dups page of
1598 			 * this stable_node chain to let the tree walk
1599 			 * continue. All KSM pages belonging to the
1600 			 * stable_node dups in a stable_node chain
1601 			 * have the same content and they're
1602 			 * wrprotected at all times. Any will work
1603 			 * fine to continue the walk.
1604 			 */
1605 			tree_page = get_ksm_page(stable_node_any, false);
1606 		}
1607 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1608 		if (!tree_page) {
1609 			/*
1610 			 * If we walked over a stale stable_node,
1611 			 * get_ksm_page() will call rb_erase() and it
1612 			 * may rebalance the tree from under us. So
1613 			 * restart the search from scratch. Returning
1614 			 * NULL would be safe too, but we'd generate
1615 			 * false negative insertions just because some
1616 			 * stable_node was stale.
1617 			 */
1618 			goto again;
1619 		}
1620 
1621 		ret = memcmp_pages(page, tree_page);
1622 		put_page(tree_page);
1623 
1624 		parent = *new;
1625 		if (ret < 0)
1626 			new = &parent->rb_left;
1627 		else if (ret > 0)
1628 			new = &parent->rb_right;
1629 		else {
1630 			if (page_node) {
1631 				VM_BUG_ON(page_node->head != &migrate_nodes);
1632 				/*
1633 				 * Test if the migrated page should be merged
1634 				 * into a stable node dup. If the mapcount is
1635 				 * 1 we can migrate it with another KSM page
1636 				 * without adding it to the chain.
1637 				 */
1638 				if (page_mapcount(page) > 1)
1639 					goto chain_append;
1640 			}
1641 
1642 			if (!stable_node_dup) {
1643 				/*
1644 				 * If the stable_node is a chain and
1645 				 * we got a payload match in memcmp
1646 				 * but we cannot merge the scanned
1647 				 * page in any of the existing
1648 				 * stable_node dups because they're
1649 				 * all full, we need to wait the
1650 				 * scanned page to find itself a match
1651 				 * in the unstable tree to create a
1652 				 * brand new KSM page to add later to
1653 				 * the dups of this stable_node.
1654 				 */
1655 				return NULL;
1656 			}
1657 
1658 			/*
1659 			 * Lock and unlock the stable_node's page (which
1660 			 * might already have been migrated) so that page
1661 			 * migration is sure to notice its raised count.
1662 			 * It would be more elegant to return stable_node
1663 			 * than kpage, but that involves more changes.
1664 			 */
1665 			tree_page = get_ksm_page(stable_node_dup, true);
1666 			if (unlikely(!tree_page))
1667 				/*
1668 				 * The tree may have been rebalanced,
1669 				 * so re-evaluate parent and new.
1670 				 */
1671 				goto again;
1672 			unlock_page(tree_page);
1673 
1674 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1675 			    NUMA(stable_node_dup->nid)) {
1676 				put_page(tree_page);
1677 				goto replace;
1678 			}
1679 			return tree_page;
1680 		}
1681 	}
1682 
1683 	if (!page_node)
1684 		return NULL;
1685 
1686 	list_del(&page_node->list);
1687 	DO_NUMA(page_node->nid = nid);
1688 	rb_link_node(&page_node->node, parent, new);
1689 	rb_insert_color(&page_node->node, root);
1690 out:
1691 	if (is_page_sharing_candidate(page_node)) {
1692 		get_page(page);
1693 		return page;
1694 	} else
1695 		return NULL;
1696 
1697 replace:
1698 	/*
1699 	 * If stable_node was a chain and chain_prune collapsed it,
1700 	 * stable_node has been updated to be the new regular
1701 	 * stable_node. A collapse of the chain is indistinguishable
1702 	 * from the case there was no chain in the stable
1703 	 * rbtree. Otherwise stable_node is the chain and
1704 	 * stable_node_dup is the dup to replace.
1705 	 */
1706 	if (stable_node_dup == stable_node) {
1707 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1708 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1709 		/* there is no chain */
1710 		if (page_node) {
1711 			VM_BUG_ON(page_node->head != &migrate_nodes);
1712 			list_del(&page_node->list);
1713 			DO_NUMA(page_node->nid = nid);
1714 			rb_replace_node(&stable_node_dup->node,
1715 					&page_node->node,
1716 					root);
1717 			if (is_page_sharing_candidate(page_node))
1718 				get_page(page);
1719 			else
1720 				page = NULL;
1721 		} else {
1722 			rb_erase(&stable_node_dup->node, root);
1723 			page = NULL;
1724 		}
1725 	} else {
1726 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1727 		__stable_node_dup_del(stable_node_dup);
1728 		if (page_node) {
1729 			VM_BUG_ON(page_node->head != &migrate_nodes);
1730 			list_del(&page_node->list);
1731 			DO_NUMA(page_node->nid = nid);
1732 			stable_node_chain_add_dup(page_node, stable_node);
1733 			if (is_page_sharing_candidate(page_node))
1734 				get_page(page);
1735 			else
1736 				page = NULL;
1737 		} else {
1738 			page = NULL;
1739 		}
1740 	}
1741 	stable_node_dup->head = &migrate_nodes;
1742 	list_add(&stable_node_dup->list, stable_node_dup->head);
1743 	return page;
1744 
1745 chain_append:
1746 	/* stable_node_dup could be null if it reached the limit */
1747 	if (!stable_node_dup)
1748 		stable_node_dup = stable_node_any;
1749 	/*
1750 	 * If stable_node was a chain and chain_prune collapsed it,
1751 	 * stable_node has been updated to be the new regular
1752 	 * stable_node. A collapse of the chain is indistinguishable
1753 	 * from the case there was no chain in the stable
1754 	 * rbtree. Otherwise stable_node is the chain and
1755 	 * stable_node_dup is the dup to replace.
1756 	 */
1757 	if (stable_node_dup == stable_node) {
1758 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1759 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1760 		/* chain is missing so create it */
1761 		stable_node = alloc_stable_node_chain(stable_node_dup,
1762 						      root);
1763 		if (!stable_node)
1764 			return NULL;
1765 	}
1766 	/*
1767 	 * Add this stable_node dup that was
1768 	 * migrated to the stable_node chain
1769 	 * of the current nid for this page
1770 	 * content.
1771 	 */
1772 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1773 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1774 	VM_BUG_ON(page_node->head != &migrate_nodes);
1775 	list_del(&page_node->list);
1776 	DO_NUMA(page_node->nid = nid);
1777 	stable_node_chain_add_dup(page_node, stable_node);
1778 	goto out;
1779 }
1780 
1781 /*
1782  * stable_tree_insert - insert stable tree node pointing to new ksm page
1783  * into the stable tree.
1784  *
1785  * This function returns the stable tree node just allocated on success,
1786  * NULL otherwise.
1787  */
1788 static struct stable_node *stable_tree_insert(struct page *kpage)
1789 {
1790 	int nid;
1791 	unsigned long kpfn;
1792 	struct rb_root *root;
1793 	struct rb_node **new;
1794 	struct rb_node *parent;
1795 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1796 	bool need_chain = false;
1797 
1798 	kpfn = page_to_pfn(kpage);
1799 	nid = get_kpfn_nid(kpfn);
1800 	root = root_stable_tree + nid;
1801 again:
1802 	parent = NULL;
1803 	new = &root->rb_node;
1804 
1805 	while (*new) {
1806 		struct page *tree_page;
1807 		int ret;
1808 
1809 		cond_resched();
1810 		stable_node = rb_entry(*new, struct stable_node, node);
1811 		stable_node_any = NULL;
1812 		tree_page = chain(&stable_node_dup, stable_node, root);
1813 		if (!stable_node_dup) {
1814 			/*
1815 			 * Either all stable_node dups were full in
1816 			 * this stable_node chain, or this chain was
1817 			 * empty and should be rb_erased.
1818 			 */
1819 			stable_node_any = stable_node_dup_any(stable_node,
1820 							      root);
1821 			if (!stable_node_any) {
1822 				/* rb_erase just run */
1823 				goto again;
1824 			}
1825 			/*
1826 			 * Take any of the stable_node dups page of
1827 			 * this stable_node chain to let the tree walk
1828 			 * continue. All KSM pages belonging to the
1829 			 * stable_node dups in a stable_node chain
1830 			 * have the same content and they're
1831 			 * wrprotected at all times. Any will work
1832 			 * fine to continue the walk.
1833 			 */
1834 			tree_page = get_ksm_page(stable_node_any, false);
1835 		}
1836 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1837 		if (!tree_page) {
1838 			/*
1839 			 * If we walked over a stale stable_node,
1840 			 * get_ksm_page() will call rb_erase() and it
1841 			 * may rebalance the tree from under us. So
1842 			 * restart the search from scratch. Returning
1843 			 * NULL would be safe too, but we'd generate
1844 			 * false negative insertions just because some
1845 			 * stable_node was stale.
1846 			 */
1847 			goto again;
1848 		}
1849 
1850 		ret = memcmp_pages(kpage, tree_page);
1851 		put_page(tree_page);
1852 
1853 		parent = *new;
1854 		if (ret < 0)
1855 			new = &parent->rb_left;
1856 		else if (ret > 0)
1857 			new = &parent->rb_right;
1858 		else {
1859 			need_chain = true;
1860 			break;
1861 		}
1862 	}
1863 
1864 	stable_node_dup = alloc_stable_node();
1865 	if (!stable_node_dup)
1866 		return NULL;
1867 
1868 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1869 	stable_node_dup->kpfn = kpfn;
1870 	set_page_stable_node(kpage, stable_node_dup);
1871 	stable_node_dup->rmap_hlist_len = 0;
1872 	DO_NUMA(stable_node_dup->nid = nid);
1873 	if (!need_chain) {
1874 		rb_link_node(&stable_node_dup->node, parent, new);
1875 		rb_insert_color(&stable_node_dup->node, root);
1876 	} else {
1877 		if (!is_stable_node_chain(stable_node)) {
1878 			struct stable_node *orig = stable_node;
1879 			/* chain is missing so create it */
1880 			stable_node = alloc_stable_node_chain(orig, root);
1881 			if (!stable_node) {
1882 				free_stable_node(stable_node_dup);
1883 				return NULL;
1884 			}
1885 		}
1886 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1887 	}
1888 
1889 	return stable_node_dup;
1890 }
1891 
1892 /*
1893  * unstable_tree_search_insert - search for identical page,
1894  * else insert rmap_item into the unstable tree.
1895  *
1896  * This function searches for a page in the unstable tree identical to the
1897  * page currently being scanned; and if no identical page is found in the
1898  * tree, we insert rmap_item as a new object into the unstable tree.
1899  *
1900  * This function returns pointer to rmap_item found to be identical
1901  * to the currently scanned page, NULL otherwise.
1902  *
1903  * This function does both searching and inserting, because they share
1904  * the same walking algorithm in an rbtree.
1905  */
1906 static
1907 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1908 					      struct page *page,
1909 					      struct page **tree_pagep)
1910 {
1911 	struct rb_node **new;
1912 	struct rb_root *root;
1913 	struct rb_node *parent = NULL;
1914 	int nid;
1915 
1916 	nid = get_kpfn_nid(page_to_pfn(page));
1917 	root = root_unstable_tree + nid;
1918 	new = &root->rb_node;
1919 
1920 	while (*new) {
1921 		struct rmap_item *tree_rmap_item;
1922 		struct page *tree_page;
1923 		int ret;
1924 
1925 		cond_resched();
1926 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1927 		tree_page = get_mergeable_page(tree_rmap_item);
1928 		if (!tree_page)
1929 			return NULL;
1930 
1931 		/*
1932 		 * Don't substitute a ksm page for a forked page.
1933 		 */
1934 		if (page == tree_page) {
1935 			put_page(tree_page);
1936 			return NULL;
1937 		}
1938 
1939 		ret = memcmp_pages(page, tree_page);
1940 
1941 		parent = *new;
1942 		if (ret < 0) {
1943 			put_page(tree_page);
1944 			new = &parent->rb_left;
1945 		} else if (ret > 0) {
1946 			put_page(tree_page);
1947 			new = &parent->rb_right;
1948 		} else if (!ksm_merge_across_nodes &&
1949 			   page_to_nid(tree_page) != nid) {
1950 			/*
1951 			 * If tree_page has been migrated to another NUMA node,
1952 			 * it will be flushed out and put in the right unstable
1953 			 * tree next time: only merge with it when across_nodes.
1954 			 */
1955 			put_page(tree_page);
1956 			return NULL;
1957 		} else {
1958 			*tree_pagep = tree_page;
1959 			return tree_rmap_item;
1960 		}
1961 	}
1962 
1963 	rmap_item->address |= UNSTABLE_FLAG;
1964 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1965 	DO_NUMA(rmap_item->nid = nid);
1966 	rb_link_node(&rmap_item->node, parent, new);
1967 	rb_insert_color(&rmap_item->node, root);
1968 
1969 	ksm_pages_unshared++;
1970 	return NULL;
1971 }
1972 
1973 /*
1974  * stable_tree_append - add another rmap_item to the linked list of
1975  * rmap_items hanging off a given node of the stable tree, all sharing
1976  * the same ksm page.
1977  */
1978 static void stable_tree_append(struct rmap_item *rmap_item,
1979 			       struct stable_node *stable_node,
1980 			       bool max_page_sharing_bypass)
1981 {
1982 	/*
1983 	 * rmap won't find this mapping if we don't insert the
1984 	 * rmap_item in the right stable_node
1985 	 * duplicate. page_migration could break later if rmap breaks,
1986 	 * so we can as well crash here. We really need to check for
1987 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1988 	 * for other negative values as an undeflow if detected here
1989 	 * for the first time (and not when decreasing rmap_hlist_len)
1990 	 * would be sign of memory corruption in the stable_node.
1991 	 */
1992 	BUG_ON(stable_node->rmap_hlist_len < 0);
1993 
1994 	stable_node->rmap_hlist_len++;
1995 	if (!max_page_sharing_bypass)
1996 		/* possibly non fatal but unexpected overflow, only warn */
1997 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
1998 			     ksm_max_page_sharing);
1999 
2000 	rmap_item->head = stable_node;
2001 	rmap_item->address |= STABLE_FLAG;
2002 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2003 
2004 	if (rmap_item->hlist.next)
2005 		ksm_pages_sharing++;
2006 	else
2007 		ksm_pages_shared++;
2008 }
2009 
2010 /*
2011  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2012  * if not, compare checksum to previous and if it's the same, see if page can
2013  * be inserted into the unstable tree, or merged with a page already there and
2014  * both transferred to the stable tree.
2015  *
2016  * @page: the page that we are searching identical page to.
2017  * @rmap_item: the reverse mapping into the virtual address of this page
2018  */
2019 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2020 {
2021 	struct mm_struct *mm = rmap_item->mm;
2022 	struct rmap_item *tree_rmap_item;
2023 	struct page *tree_page = NULL;
2024 	struct stable_node *stable_node;
2025 	struct page *kpage;
2026 	unsigned int checksum;
2027 	int err;
2028 	bool max_page_sharing_bypass = false;
2029 
2030 	stable_node = page_stable_node(page);
2031 	if (stable_node) {
2032 		if (stable_node->head != &migrate_nodes &&
2033 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2034 		    NUMA(stable_node->nid)) {
2035 			stable_node_dup_del(stable_node);
2036 			stable_node->head = &migrate_nodes;
2037 			list_add(&stable_node->list, stable_node->head);
2038 		}
2039 		if (stable_node->head != &migrate_nodes &&
2040 		    rmap_item->head == stable_node)
2041 			return;
2042 		/*
2043 		 * If it's a KSM fork, allow it to go over the sharing limit
2044 		 * without warnings.
2045 		 */
2046 		if (!is_page_sharing_candidate(stable_node))
2047 			max_page_sharing_bypass = true;
2048 	}
2049 
2050 	/* We first start with searching the page inside the stable tree */
2051 	kpage = stable_tree_search(page);
2052 	if (kpage == page && rmap_item->head == stable_node) {
2053 		put_page(kpage);
2054 		return;
2055 	}
2056 
2057 	remove_rmap_item_from_tree(rmap_item);
2058 
2059 	if (kpage) {
2060 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2061 		if (!err) {
2062 			/*
2063 			 * The page was successfully merged:
2064 			 * add its rmap_item to the stable tree.
2065 			 */
2066 			lock_page(kpage);
2067 			stable_tree_append(rmap_item, page_stable_node(kpage),
2068 					   max_page_sharing_bypass);
2069 			unlock_page(kpage);
2070 		}
2071 		put_page(kpage);
2072 		return;
2073 	}
2074 
2075 	/*
2076 	 * If the hash value of the page has changed from the last time
2077 	 * we calculated it, this page is changing frequently: therefore we
2078 	 * don't want to insert it in the unstable tree, and we don't want
2079 	 * to waste our time searching for something identical to it there.
2080 	 */
2081 	checksum = calc_checksum(page);
2082 	if (rmap_item->oldchecksum != checksum) {
2083 		rmap_item->oldchecksum = checksum;
2084 		return;
2085 	}
2086 
2087 	/*
2088 	 * Same checksum as an empty page. We attempt to merge it with the
2089 	 * appropriate zero page if the user enabled this via sysfs.
2090 	 */
2091 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2092 		struct vm_area_struct *vma;
2093 
2094 		down_read(&mm->mmap_sem);
2095 		vma = find_mergeable_vma(mm, rmap_item->address);
2096 		err = try_to_merge_one_page(vma, page,
2097 					    ZERO_PAGE(rmap_item->address));
2098 		up_read(&mm->mmap_sem);
2099 		/*
2100 		 * In case of failure, the page was not really empty, so we
2101 		 * need to continue. Otherwise we're done.
2102 		 */
2103 		if (!err)
2104 			return;
2105 	}
2106 	tree_rmap_item =
2107 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2108 	if (tree_rmap_item) {
2109 		bool split;
2110 
2111 		kpage = try_to_merge_two_pages(rmap_item, page,
2112 						tree_rmap_item, tree_page);
2113 		/*
2114 		 * If both pages we tried to merge belong to the same compound
2115 		 * page, then we actually ended up increasing the reference
2116 		 * count of the same compound page twice, and split_huge_page
2117 		 * failed.
2118 		 * Here we set a flag if that happened, and we use it later to
2119 		 * try split_huge_page again. Since we call put_page right
2120 		 * afterwards, the reference count will be correct and
2121 		 * split_huge_page should succeed.
2122 		 */
2123 		split = PageTransCompound(page)
2124 			&& compound_head(page) == compound_head(tree_page);
2125 		put_page(tree_page);
2126 		if (kpage) {
2127 			/*
2128 			 * The pages were successfully merged: insert new
2129 			 * node in the stable tree and add both rmap_items.
2130 			 */
2131 			lock_page(kpage);
2132 			stable_node = stable_tree_insert(kpage);
2133 			if (stable_node) {
2134 				stable_tree_append(tree_rmap_item, stable_node,
2135 						   false);
2136 				stable_tree_append(rmap_item, stable_node,
2137 						   false);
2138 			}
2139 			unlock_page(kpage);
2140 
2141 			/*
2142 			 * If we fail to insert the page into the stable tree,
2143 			 * we will have 2 virtual addresses that are pointing
2144 			 * to a ksm page left outside the stable tree,
2145 			 * in which case we need to break_cow on both.
2146 			 */
2147 			if (!stable_node) {
2148 				break_cow(tree_rmap_item);
2149 				break_cow(rmap_item);
2150 			}
2151 		} else if (split) {
2152 			/*
2153 			 * We are here if we tried to merge two pages and
2154 			 * failed because they both belonged to the same
2155 			 * compound page. We will split the page now, but no
2156 			 * merging will take place.
2157 			 * We do not want to add the cost of a full lock; if
2158 			 * the page is locked, it is better to skip it and
2159 			 * perhaps try again later.
2160 			 */
2161 			if (!trylock_page(page))
2162 				return;
2163 			split_huge_page(page);
2164 			unlock_page(page);
2165 		}
2166 	}
2167 }
2168 
2169 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2170 					    struct rmap_item **rmap_list,
2171 					    unsigned long addr)
2172 {
2173 	struct rmap_item *rmap_item;
2174 
2175 	while (*rmap_list) {
2176 		rmap_item = *rmap_list;
2177 		if ((rmap_item->address & PAGE_MASK) == addr)
2178 			return rmap_item;
2179 		if (rmap_item->address > addr)
2180 			break;
2181 		*rmap_list = rmap_item->rmap_list;
2182 		remove_rmap_item_from_tree(rmap_item);
2183 		free_rmap_item(rmap_item);
2184 	}
2185 
2186 	rmap_item = alloc_rmap_item();
2187 	if (rmap_item) {
2188 		/* It has already been zeroed */
2189 		rmap_item->mm = mm_slot->mm;
2190 		rmap_item->address = addr;
2191 		rmap_item->rmap_list = *rmap_list;
2192 		*rmap_list = rmap_item;
2193 	}
2194 	return rmap_item;
2195 }
2196 
2197 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2198 {
2199 	struct mm_struct *mm;
2200 	struct mm_slot *slot;
2201 	struct vm_area_struct *vma;
2202 	struct rmap_item *rmap_item;
2203 	int nid;
2204 
2205 	if (list_empty(&ksm_mm_head.mm_list))
2206 		return NULL;
2207 
2208 	slot = ksm_scan.mm_slot;
2209 	if (slot == &ksm_mm_head) {
2210 		/*
2211 		 * A number of pages can hang around indefinitely on per-cpu
2212 		 * pagevecs, raised page count preventing write_protect_page
2213 		 * from merging them.  Though it doesn't really matter much,
2214 		 * it is puzzling to see some stuck in pages_volatile until
2215 		 * other activity jostles them out, and they also prevented
2216 		 * LTP's KSM test from succeeding deterministically; so drain
2217 		 * them here (here rather than on entry to ksm_do_scan(),
2218 		 * so we don't IPI too often when pages_to_scan is set low).
2219 		 */
2220 		lru_add_drain_all();
2221 
2222 		/*
2223 		 * Whereas stale stable_nodes on the stable_tree itself
2224 		 * get pruned in the regular course of stable_tree_search(),
2225 		 * those moved out to the migrate_nodes list can accumulate:
2226 		 * so prune them once before each full scan.
2227 		 */
2228 		if (!ksm_merge_across_nodes) {
2229 			struct stable_node *stable_node, *next;
2230 			struct page *page;
2231 
2232 			list_for_each_entry_safe(stable_node, next,
2233 						 &migrate_nodes, list) {
2234 				page = get_ksm_page(stable_node, false);
2235 				if (page)
2236 					put_page(page);
2237 				cond_resched();
2238 			}
2239 		}
2240 
2241 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2242 			root_unstable_tree[nid] = RB_ROOT;
2243 
2244 		spin_lock(&ksm_mmlist_lock);
2245 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2246 		ksm_scan.mm_slot = slot;
2247 		spin_unlock(&ksm_mmlist_lock);
2248 		/*
2249 		 * Although we tested list_empty() above, a racing __ksm_exit
2250 		 * of the last mm on the list may have removed it since then.
2251 		 */
2252 		if (slot == &ksm_mm_head)
2253 			return NULL;
2254 next_mm:
2255 		ksm_scan.address = 0;
2256 		ksm_scan.rmap_list = &slot->rmap_list;
2257 	}
2258 
2259 	mm = slot->mm;
2260 	down_read(&mm->mmap_sem);
2261 	if (ksm_test_exit(mm))
2262 		vma = NULL;
2263 	else
2264 		vma = find_vma(mm, ksm_scan.address);
2265 
2266 	for (; vma; vma = vma->vm_next) {
2267 		if (!(vma->vm_flags & VM_MERGEABLE))
2268 			continue;
2269 		if (ksm_scan.address < vma->vm_start)
2270 			ksm_scan.address = vma->vm_start;
2271 		if (!vma->anon_vma)
2272 			ksm_scan.address = vma->vm_end;
2273 
2274 		while (ksm_scan.address < vma->vm_end) {
2275 			if (ksm_test_exit(mm))
2276 				break;
2277 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2278 			if (IS_ERR_OR_NULL(*page)) {
2279 				ksm_scan.address += PAGE_SIZE;
2280 				cond_resched();
2281 				continue;
2282 			}
2283 			if (PageAnon(*page)) {
2284 				flush_anon_page(vma, *page, ksm_scan.address);
2285 				flush_dcache_page(*page);
2286 				rmap_item = get_next_rmap_item(slot,
2287 					ksm_scan.rmap_list, ksm_scan.address);
2288 				if (rmap_item) {
2289 					ksm_scan.rmap_list =
2290 							&rmap_item->rmap_list;
2291 					ksm_scan.address += PAGE_SIZE;
2292 				} else
2293 					put_page(*page);
2294 				up_read(&mm->mmap_sem);
2295 				return rmap_item;
2296 			}
2297 			put_page(*page);
2298 			ksm_scan.address += PAGE_SIZE;
2299 			cond_resched();
2300 		}
2301 	}
2302 
2303 	if (ksm_test_exit(mm)) {
2304 		ksm_scan.address = 0;
2305 		ksm_scan.rmap_list = &slot->rmap_list;
2306 	}
2307 	/*
2308 	 * Nuke all the rmap_items that are above this current rmap:
2309 	 * because there were no VM_MERGEABLE vmas with such addresses.
2310 	 */
2311 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2312 
2313 	spin_lock(&ksm_mmlist_lock);
2314 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2315 						struct mm_slot, mm_list);
2316 	if (ksm_scan.address == 0) {
2317 		/*
2318 		 * We've completed a full scan of all vmas, holding mmap_sem
2319 		 * throughout, and found no VM_MERGEABLE: so do the same as
2320 		 * __ksm_exit does to remove this mm from all our lists now.
2321 		 * This applies either when cleaning up after __ksm_exit
2322 		 * (but beware: we can reach here even before __ksm_exit),
2323 		 * or when all VM_MERGEABLE areas have been unmapped (and
2324 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2325 		 */
2326 		hash_del(&slot->link);
2327 		list_del(&slot->mm_list);
2328 		spin_unlock(&ksm_mmlist_lock);
2329 
2330 		free_mm_slot(slot);
2331 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2332 		up_read(&mm->mmap_sem);
2333 		mmdrop(mm);
2334 	} else {
2335 		up_read(&mm->mmap_sem);
2336 		/*
2337 		 * up_read(&mm->mmap_sem) first because after
2338 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2339 		 * already have been freed under us by __ksm_exit()
2340 		 * because the "mm_slot" is still hashed and
2341 		 * ksm_scan.mm_slot doesn't point to it anymore.
2342 		 */
2343 		spin_unlock(&ksm_mmlist_lock);
2344 	}
2345 
2346 	/* Repeat until we've completed scanning the whole list */
2347 	slot = ksm_scan.mm_slot;
2348 	if (slot != &ksm_mm_head)
2349 		goto next_mm;
2350 
2351 	ksm_scan.seqnr++;
2352 	return NULL;
2353 }
2354 
2355 /**
2356  * ksm_do_scan  - the ksm scanner main worker function.
2357  * @scan_npages:  number of pages we want to scan before we return.
2358  */
2359 static void ksm_do_scan(unsigned int scan_npages)
2360 {
2361 	struct rmap_item *rmap_item;
2362 	struct page *uninitialized_var(page);
2363 
2364 	while (scan_npages-- && likely(!freezing(current))) {
2365 		cond_resched();
2366 		rmap_item = scan_get_next_rmap_item(&page);
2367 		if (!rmap_item)
2368 			return;
2369 		cmp_and_merge_page(page, rmap_item);
2370 		put_page(page);
2371 	}
2372 }
2373 
2374 static int ksmd_should_run(void)
2375 {
2376 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2377 }
2378 
2379 static int ksm_scan_thread(void *nothing)
2380 {
2381 	set_freezable();
2382 	set_user_nice(current, 5);
2383 
2384 	while (!kthread_should_stop()) {
2385 		mutex_lock(&ksm_thread_mutex);
2386 		wait_while_offlining();
2387 		if (ksmd_should_run())
2388 			ksm_do_scan(ksm_thread_pages_to_scan);
2389 		mutex_unlock(&ksm_thread_mutex);
2390 
2391 		try_to_freeze();
2392 
2393 		if (ksmd_should_run()) {
2394 			schedule_timeout_interruptible(
2395 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
2396 		} else {
2397 			wait_event_freezable(ksm_thread_wait,
2398 				ksmd_should_run() || kthread_should_stop());
2399 		}
2400 	}
2401 	return 0;
2402 }
2403 
2404 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2405 		unsigned long end, int advice, unsigned long *vm_flags)
2406 {
2407 	struct mm_struct *mm = vma->vm_mm;
2408 	int err;
2409 
2410 	switch (advice) {
2411 	case MADV_MERGEABLE:
2412 		/*
2413 		 * Be somewhat over-protective for now!
2414 		 */
2415 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2416 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2417 				 VM_HUGETLB | VM_MIXEDMAP))
2418 			return 0;		/* just ignore the advice */
2419 
2420 #ifdef VM_SAO
2421 		if (*vm_flags & VM_SAO)
2422 			return 0;
2423 #endif
2424 #ifdef VM_SPARC_ADI
2425 		if (*vm_flags & VM_SPARC_ADI)
2426 			return 0;
2427 #endif
2428 
2429 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2430 			err = __ksm_enter(mm);
2431 			if (err)
2432 				return err;
2433 		}
2434 
2435 		*vm_flags |= VM_MERGEABLE;
2436 		break;
2437 
2438 	case MADV_UNMERGEABLE:
2439 		if (!(*vm_flags & VM_MERGEABLE))
2440 			return 0;		/* just ignore the advice */
2441 
2442 		if (vma->anon_vma) {
2443 			err = unmerge_ksm_pages(vma, start, end);
2444 			if (err)
2445 				return err;
2446 		}
2447 
2448 		*vm_flags &= ~VM_MERGEABLE;
2449 		break;
2450 	}
2451 
2452 	return 0;
2453 }
2454 
2455 int __ksm_enter(struct mm_struct *mm)
2456 {
2457 	struct mm_slot *mm_slot;
2458 	int needs_wakeup;
2459 
2460 	mm_slot = alloc_mm_slot();
2461 	if (!mm_slot)
2462 		return -ENOMEM;
2463 
2464 	/* Check ksm_run too?  Would need tighter locking */
2465 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2466 
2467 	spin_lock(&ksm_mmlist_lock);
2468 	insert_to_mm_slots_hash(mm, mm_slot);
2469 	/*
2470 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2471 	 * insert just behind the scanning cursor, to let the area settle
2472 	 * down a little; when fork is followed by immediate exec, we don't
2473 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2474 	 *
2475 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2476 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2477 	 * missed: then we might as well insert at the end of the list.
2478 	 */
2479 	if (ksm_run & KSM_RUN_UNMERGE)
2480 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2481 	else
2482 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2483 	spin_unlock(&ksm_mmlist_lock);
2484 
2485 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2486 	mmgrab(mm);
2487 
2488 	if (needs_wakeup)
2489 		wake_up_interruptible(&ksm_thread_wait);
2490 
2491 	return 0;
2492 }
2493 
2494 void __ksm_exit(struct mm_struct *mm)
2495 {
2496 	struct mm_slot *mm_slot;
2497 	int easy_to_free = 0;
2498 
2499 	/*
2500 	 * This process is exiting: if it's straightforward (as is the
2501 	 * case when ksmd was never running), free mm_slot immediately.
2502 	 * But if it's at the cursor or has rmap_items linked to it, use
2503 	 * mmap_sem to synchronize with any break_cows before pagetables
2504 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2505 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2506 	 */
2507 
2508 	spin_lock(&ksm_mmlist_lock);
2509 	mm_slot = get_mm_slot(mm);
2510 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2511 		if (!mm_slot->rmap_list) {
2512 			hash_del(&mm_slot->link);
2513 			list_del(&mm_slot->mm_list);
2514 			easy_to_free = 1;
2515 		} else {
2516 			list_move(&mm_slot->mm_list,
2517 				  &ksm_scan.mm_slot->mm_list);
2518 		}
2519 	}
2520 	spin_unlock(&ksm_mmlist_lock);
2521 
2522 	if (easy_to_free) {
2523 		free_mm_slot(mm_slot);
2524 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2525 		mmdrop(mm);
2526 	} else if (mm_slot) {
2527 		down_write(&mm->mmap_sem);
2528 		up_write(&mm->mmap_sem);
2529 	}
2530 }
2531 
2532 struct page *ksm_might_need_to_copy(struct page *page,
2533 			struct vm_area_struct *vma, unsigned long address)
2534 {
2535 	struct anon_vma *anon_vma = page_anon_vma(page);
2536 	struct page *new_page;
2537 
2538 	if (PageKsm(page)) {
2539 		if (page_stable_node(page) &&
2540 		    !(ksm_run & KSM_RUN_UNMERGE))
2541 			return page;	/* no need to copy it */
2542 	} else if (!anon_vma) {
2543 		return page;		/* no need to copy it */
2544 	} else if (anon_vma->root == vma->anon_vma->root &&
2545 		 page->index == linear_page_index(vma, address)) {
2546 		return page;		/* still no need to copy it */
2547 	}
2548 	if (!PageUptodate(page))
2549 		return page;		/* let do_swap_page report the error */
2550 
2551 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2552 	if (new_page) {
2553 		copy_user_highpage(new_page, page, address, vma);
2554 
2555 		SetPageDirty(new_page);
2556 		__SetPageUptodate(new_page);
2557 		__SetPageLocked(new_page);
2558 	}
2559 
2560 	return new_page;
2561 }
2562 
2563 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2564 {
2565 	struct stable_node *stable_node;
2566 	struct rmap_item *rmap_item;
2567 	int search_new_forks = 0;
2568 
2569 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2570 
2571 	/*
2572 	 * Rely on the page lock to protect against concurrent modifications
2573 	 * to that page's node of the stable tree.
2574 	 */
2575 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2576 
2577 	stable_node = page_stable_node(page);
2578 	if (!stable_node)
2579 		return;
2580 again:
2581 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2582 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2583 		struct anon_vma_chain *vmac;
2584 		struct vm_area_struct *vma;
2585 
2586 		cond_resched();
2587 		anon_vma_lock_read(anon_vma);
2588 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2589 					       0, ULONG_MAX) {
2590 			cond_resched();
2591 			vma = vmac->vma;
2592 			if (rmap_item->address < vma->vm_start ||
2593 			    rmap_item->address >= vma->vm_end)
2594 				continue;
2595 			/*
2596 			 * Initially we examine only the vma which covers this
2597 			 * rmap_item; but later, if there is still work to do,
2598 			 * we examine covering vmas in other mms: in case they
2599 			 * were forked from the original since ksmd passed.
2600 			 */
2601 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2602 				continue;
2603 
2604 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2605 				continue;
2606 
2607 			if (!rwc->rmap_one(page, vma,
2608 					rmap_item->address, rwc->arg)) {
2609 				anon_vma_unlock_read(anon_vma);
2610 				return;
2611 			}
2612 			if (rwc->done && rwc->done(page)) {
2613 				anon_vma_unlock_read(anon_vma);
2614 				return;
2615 			}
2616 		}
2617 		anon_vma_unlock_read(anon_vma);
2618 	}
2619 	if (!search_new_forks++)
2620 		goto again;
2621 }
2622 
2623 #ifdef CONFIG_MIGRATION
2624 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2625 {
2626 	struct stable_node *stable_node;
2627 
2628 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2629 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2630 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2631 
2632 	stable_node = page_stable_node(newpage);
2633 	if (stable_node) {
2634 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2635 		stable_node->kpfn = page_to_pfn(newpage);
2636 		/*
2637 		 * newpage->mapping was set in advance; now we need smp_wmb()
2638 		 * to make sure that the new stable_node->kpfn is visible
2639 		 * to get_ksm_page() before it can see that oldpage->mapping
2640 		 * has gone stale (or that PageSwapCache has been cleared).
2641 		 */
2642 		smp_wmb();
2643 		set_page_stable_node(oldpage, NULL);
2644 	}
2645 }
2646 #endif /* CONFIG_MIGRATION */
2647 
2648 #ifdef CONFIG_MEMORY_HOTREMOVE
2649 static void wait_while_offlining(void)
2650 {
2651 	while (ksm_run & KSM_RUN_OFFLINE) {
2652 		mutex_unlock(&ksm_thread_mutex);
2653 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2654 			    TASK_UNINTERRUPTIBLE);
2655 		mutex_lock(&ksm_thread_mutex);
2656 	}
2657 }
2658 
2659 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2660 					 unsigned long start_pfn,
2661 					 unsigned long end_pfn)
2662 {
2663 	if (stable_node->kpfn >= start_pfn &&
2664 	    stable_node->kpfn < end_pfn) {
2665 		/*
2666 		 * Don't get_ksm_page, page has already gone:
2667 		 * which is why we keep kpfn instead of page*
2668 		 */
2669 		remove_node_from_stable_tree(stable_node);
2670 		return true;
2671 	}
2672 	return false;
2673 }
2674 
2675 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2676 					   unsigned long start_pfn,
2677 					   unsigned long end_pfn,
2678 					   struct rb_root *root)
2679 {
2680 	struct stable_node *dup;
2681 	struct hlist_node *hlist_safe;
2682 
2683 	if (!is_stable_node_chain(stable_node)) {
2684 		VM_BUG_ON(is_stable_node_dup(stable_node));
2685 		return stable_node_dup_remove_range(stable_node, start_pfn,
2686 						    end_pfn);
2687 	}
2688 
2689 	hlist_for_each_entry_safe(dup, hlist_safe,
2690 				  &stable_node->hlist, hlist_dup) {
2691 		VM_BUG_ON(!is_stable_node_dup(dup));
2692 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2693 	}
2694 	if (hlist_empty(&stable_node->hlist)) {
2695 		free_stable_node_chain(stable_node, root);
2696 		return true; /* notify caller that tree was rebalanced */
2697 	} else
2698 		return false;
2699 }
2700 
2701 static void ksm_check_stable_tree(unsigned long start_pfn,
2702 				  unsigned long end_pfn)
2703 {
2704 	struct stable_node *stable_node, *next;
2705 	struct rb_node *node;
2706 	int nid;
2707 
2708 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2709 		node = rb_first(root_stable_tree + nid);
2710 		while (node) {
2711 			stable_node = rb_entry(node, struct stable_node, node);
2712 			if (stable_node_chain_remove_range(stable_node,
2713 							   start_pfn, end_pfn,
2714 							   root_stable_tree +
2715 							   nid))
2716 				node = rb_first(root_stable_tree + nid);
2717 			else
2718 				node = rb_next(node);
2719 			cond_resched();
2720 		}
2721 	}
2722 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2723 		if (stable_node->kpfn >= start_pfn &&
2724 		    stable_node->kpfn < end_pfn)
2725 			remove_node_from_stable_tree(stable_node);
2726 		cond_resched();
2727 	}
2728 }
2729 
2730 static int ksm_memory_callback(struct notifier_block *self,
2731 			       unsigned long action, void *arg)
2732 {
2733 	struct memory_notify *mn = arg;
2734 
2735 	switch (action) {
2736 	case MEM_GOING_OFFLINE:
2737 		/*
2738 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2739 		 * and remove_all_stable_nodes() while memory is going offline:
2740 		 * it is unsafe for them to touch the stable tree at this time.
2741 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2742 		 * which do not need the ksm_thread_mutex are all safe.
2743 		 */
2744 		mutex_lock(&ksm_thread_mutex);
2745 		ksm_run |= KSM_RUN_OFFLINE;
2746 		mutex_unlock(&ksm_thread_mutex);
2747 		break;
2748 
2749 	case MEM_OFFLINE:
2750 		/*
2751 		 * Most of the work is done by page migration; but there might
2752 		 * be a few stable_nodes left over, still pointing to struct
2753 		 * pages which have been offlined: prune those from the tree,
2754 		 * otherwise get_ksm_page() might later try to access a
2755 		 * non-existent struct page.
2756 		 */
2757 		ksm_check_stable_tree(mn->start_pfn,
2758 				      mn->start_pfn + mn->nr_pages);
2759 		/* fallthrough */
2760 
2761 	case MEM_CANCEL_OFFLINE:
2762 		mutex_lock(&ksm_thread_mutex);
2763 		ksm_run &= ~KSM_RUN_OFFLINE;
2764 		mutex_unlock(&ksm_thread_mutex);
2765 
2766 		smp_mb();	/* wake_up_bit advises this */
2767 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2768 		break;
2769 	}
2770 	return NOTIFY_OK;
2771 }
2772 #else
2773 static void wait_while_offlining(void)
2774 {
2775 }
2776 #endif /* CONFIG_MEMORY_HOTREMOVE */
2777 
2778 #ifdef CONFIG_SYSFS
2779 /*
2780  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2781  */
2782 
2783 #define KSM_ATTR_RO(_name) \
2784 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2785 #define KSM_ATTR(_name) \
2786 	static struct kobj_attribute _name##_attr = \
2787 		__ATTR(_name, 0644, _name##_show, _name##_store)
2788 
2789 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2790 				    struct kobj_attribute *attr, char *buf)
2791 {
2792 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2793 }
2794 
2795 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2796 				     struct kobj_attribute *attr,
2797 				     const char *buf, size_t count)
2798 {
2799 	unsigned long msecs;
2800 	int err;
2801 
2802 	err = kstrtoul(buf, 10, &msecs);
2803 	if (err || msecs > UINT_MAX)
2804 		return -EINVAL;
2805 
2806 	ksm_thread_sleep_millisecs = msecs;
2807 
2808 	return count;
2809 }
2810 KSM_ATTR(sleep_millisecs);
2811 
2812 static ssize_t pages_to_scan_show(struct kobject *kobj,
2813 				  struct kobj_attribute *attr, char *buf)
2814 {
2815 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2816 }
2817 
2818 static ssize_t pages_to_scan_store(struct kobject *kobj,
2819 				   struct kobj_attribute *attr,
2820 				   const char *buf, size_t count)
2821 {
2822 	int err;
2823 	unsigned long nr_pages;
2824 
2825 	err = kstrtoul(buf, 10, &nr_pages);
2826 	if (err || nr_pages > UINT_MAX)
2827 		return -EINVAL;
2828 
2829 	ksm_thread_pages_to_scan = nr_pages;
2830 
2831 	return count;
2832 }
2833 KSM_ATTR(pages_to_scan);
2834 
2835 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2836 			char *buf)
2837 {
2838 	return sprintf(buf, "%lu\n", ksm_run);
2839 }
2840 
2841 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2842 			 const char *buf, size_t count)
2843 {
2844 	int err;
2845 	unsigned long flags;
2846 
2847 	err = kstrtoul(buf, 10, &flags);
2848 	if (err || flags > UINT_MAX)
2849 		return -EINVAL;
2850 	if (flags > KSM_RUN_UNMERGE)
2851 		return -EINVAL;
2852 
2853 	/*
2854 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2855 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2856 	 * breaking COW to free the pages_shared (but leaves mm_slots
2857 	 * on the list for when ksmd may be set running again).
2858 	 */
2859 
2860 	mutex_lock(&ksm_thread_mutex);
2861 	wait_while_offlining();
2862 	if (ksm_run != flags) {
2863 		ksm_run = flags;
2864 		if (flags & KSM_RUN_UNMERGE) {
2865 			set_current_oom_origin();
2866 			err = unmerge_and_remove_all_rmap_items();
2867 			clear_current_oom_origin();
2868 			if (err) {
2869 				ksm_run = KSM_RUN_STOP;
2870 				count = err;
2871 			}
2872 		}
2873 	}
2874 	mutex_unlock(&ksm_thread_mutex);
2875 
2876 	if (flags & KSM_RUN_MERGE)
2877 		wake_up_interruptible(&ksm_thread_wait);
2878 
2879 	return count;
2880 }
2881 KSM_ATTR(run);
2882 
2883 #ifdef CONFIG_NUMA
2884 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2885 				struct kobj_attribute *attr, char *buf)
2886 {
2887 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2888 }
2889 
2890 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2891 				   struct kobj_attribute *attr,
2892 				   const char *buf, size_t count)
2893 {
2894 	int err;
2895 	unsigned long knob;
2896 
2897 	err = kstrtoul(buf, 10, &knob);
2898 	if (err)
2899 		return err;
2900 	if (knob > 1)
2901 		return -EINVAL;
2902 
2903 	mutex_lock(&ksm_thread_mutex);
2904 	wait_while_offlining();
2905 	if (ksm_merge_across_nodes != knob) {
2906 		if (ksm_pages_shared || remove_all_stable_nodes())
2907 			err = -EBUSY;
2908 		else if (root_stable_tree == one_stable_tree) {
2909 			struct rb_root *buf;
2910 			/*
2911 			 * This is the first time that we switch away from the
2912 			 * default of merging across nodes: must now allocate
2913 			 * a buffer to hold as many roots as may be needed.
2914 			 * Allocate stable and unstable together:
2915 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2916 			 */
2917 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2918 				      GFP_KERNEL);
2919 			/* Let us assume that RB_ROOT is NULL is zero */
2920 			if (!buf)
2921 				err = -ENOMEM;
2922 			else {
2923 				root_stable_tree = buf;
2924 				root_unstable_tree = buf + nr_node_ids;
2925 				/* Stable tree is empty but not the unstable */
2926 				root_unstable_tree[0] = one_unstable_tree[0];
2927 			}
2928 		}
2929 		if (!err) {
2930 			ksm_merge_across_nodes = knob;
2931 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2932 		}
2933 	}
2934 	mutex_unlock(&ksm_thread_mutex);
2935 
2936 	return err ? err : count;
2937 }
2938 KSM_ATTR(merge_across_nodes);
2939 #endif
2940 
2941 static ssize_t use_zero_pages_show(struct kobject *kobj,
2942 				struct kobj_attribute *attr, char *buf)
2943 {
2944 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2945 }
2946 static ssize_t use_zero_pages_store(struct kobject *kobj,
2947 				   struct kobj_attribute *attr,
2948 				   const char *buf, size_t count)
2949 {
2950 	int err;
2951 	bool value;
2952 
2953 	err = kstrtobool(buf, &value);
2954 	if (err)
2955 		return -EINVAL;
2956 
2957 	ksm_use_zero_pages = value;
2958 
2959 	return count;
2960 }
2961 KSM_ATTR(use_zero_pages);
2962 
2963 static ssize_t max_page_sharing_show(struct kobject *kobj,
2964 				     struct kobj_attribute *attr, char *buf)
2965 {
2966 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2967 }
2968 
2969 static ssize_t max_page_sharing_store(struct kobject *kobj,
2970 				      struct kobj_attribute *attr,
2971 				      const char *buf, size_t count)
2972 {
2973 	int err;
2974 	int knob;
2975 
2976 	err = kstrtoint(buf, 10, &knob);
2977 	if (err)
2978 		return err;
2979 	/*
2980 	 * When a KSM page is created it is shared by 2 mappings. This
2981 	 * being a signed comparison, it implicitly verifies it's not
2982 	 * negative.
2983 	 */
2984 	if (knob < 2)
2985 		return -EINVAL;
2986 
2987 	if (READ_ONCE(ksm_max_page_sharing) == knob)
2988 		return count;
2989 
2990 	mutex_lock(&ksm_thread_mutex);
2991 	wait_while_offlining();
2992 	if (ksm_max_page_sharing != knob) {
2993 		if (ksm_pages_shared || remove_all_stable_nodes())
2994 			err = -EBUSY;
2995 		else
2996 			ksm_max_page_sharing = knob;
2997 	}
2998 	mutex_unlock(&ksm_thread_mutex);
2999 
3000 	return err ? err : count;
3001 }
3002 KSM_ATTR(max_page_sharing);
3003 
3004 static ssize_t pages_shared_show(struct kobject *kobj,
3005 				 struct kobj_attribute *attr, char *buf)
3006 {
3007 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3008 }
3009 KSM_ATTR_RO(pages_shared);
3010 
3011 static ssize_t pages_sharing_show(struct kobject *kobj,
3012 				  struct kobj_attribute *attr, char *buf)
3013 {
3014 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3015 }
3016 KSM_ATTR_RO(pages_sharing);
3017 
3018 static ssize_t pages_unshared_show(struct kobject *kobj,
3019 				   struct kobj_attribute *attr, char *buf)
3020 {
3021 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3022 }
3023 KSM_ATTR_RO(pages_unshared);
3024 
3025 static ssize_t pages_volatile_show(struct kobject *kobj,
3026 				   struct kobj_attribute *attr, char *buf)
3027 {
3028 	long ksm_pages_volatile;
3029 
3030 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3031 				- ksm_pages_sharing - ksm_pages_unshared;
3032 	/*
3033 	 * It was not worth any locking to calculate that statistic,
3034 	 * but it might therefore sometimes be negative: conceal that.
3035 	 */
3036 	if (ksm_pages_volatile < 0)
3037 		ksm_pages_volatile = 0;
3038 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3039 }
3040 KSM_ATTR_RO(pages_volatile);
3041 
3042 static ssize_t stable_node_dups_show(struct kobject *kobj,
3043 				     struct kobj_attribute *attr, char *buf)
3044 {
3045 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3046 }
3047 KSM_ATTR_RO(stable_node_dups);
3048 
3049 static ssize_t stable_node_chains_show(struct kobject *kobj,
3050 				       struct kobj_attribute *attr, char *buf)
3051 {
3052 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3053 }
3054 KSM_ATTR_RO(stable_node_chains);
3055 
3056 static ssize_t
3057 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3058 					struct kobj_attribute *attr,
3059 					char *buf)
3060 {
3061 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3062 }
3063 
3064 static ssize_t
3065 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3066 					 struct kobj_attribute *attr,
3067 					 const char *buf, size_t count)
3068 {
3069 	unsigned long msecs;
3070 	int err;
3071 
3072 	err = kstrtoul(buf, 10, &msecs);
3073 	if (err || msecs > UINT_MAX)
3074 		return -EINVAL;
3075 
3076 	ksm_stable_node_chains_prune_millisecs = msecs;
3077 
3078 	return count;
3079 }
3080 KSM_ATTR(stable_node_chains_prune_millisecs);
3081 
3082 static ssize_t full_scans_show(struct kobject *kobj,
3083 			       struct kobj_attribute *attr, char *buf)
3084 {
3085 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3086 }
3087 KSM_ATTR_RO(full_scans);
3088 
3089 static struct attribute *ksm_attrs[] = {
3090 	&sleep_millisecs_attr.attr,
3091 	&pages_to_scan_attr.attr,
3092 	&run_attr.attr,
3093 	&pages_shared_attr.attr,
3094 	&pages_sharing_attr.attr,
3095 	&pages_unshared_attr.attr,
3096 	&pages_volatile_attr.attr,
3097 	&full_scans_attr.attr,
3098 #ifdef CONFIG_NUMA
3099 	&merge_across_nodes_attr.attr,
3100 #endif
3101 	&max_page_sharing_attr.attr,
3102 	&stable_node_chains_attr.attr,
3103 	&stable_node_dups_attr.attr,
3104 	&stable_node_chains_prune_millisecs_attr.attr,
3105 	&use_zero_pages_attr.attr,
3106 	NULL,
3107 };
3108 
3109 static const struct attribute_group ksm_attr_group = {
3110 	.attrs = ksm_attrs,
3111 	.name = "ksm",
3112 };
3113 #endif /* CONFIG_SYSFS */
3114 
3115 static int __init ksm_init(void)
3116 {
3117 	struct task_struct *ksm_thread;
3118 	int err;
3119 
3120 	/* The correct value depends on page size and endianness */
3121 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3122 	/* Default to false for backwards compatibility */
3123 	ksm_use_zero_pages = false;
3124 
3125 	err = ksm_slab_init();
3126 	if (err)
3127 		goto out;
3128 
3129 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3130 	if (IS_ERR(ksm_thread)) {
3131 		pr_err("ksm: creating kthread failed\n");
3132 		err = PTR_ERR(ksm_thread);
3133 		goto out_free;
3134 	}
3135 
3136 #ifdef CONFIG_SYSFS
3137 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3138 	if (err) {
3139 		pr_err("ksm: register sysfs failed\n");
3140 		kthread_stop(ksm_thread);
3141 		goto out_free;
3142 	}
3143 #else
3144 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3145 
3146 #endif /* CONFIG_SYSFS */
3147 
3148 #ifdef CONFIG_MEMORY_HOTREMOVE
3149 	/* There is no significance to this priority 100 */
3150 	hotplug_memory_notifier(ksm_memory_callback, 100);
3151 #endif
3152 	return 0;
3153 
3154 out_free:
3155 	ksm_slab_free();
3156 out:
3157 	return err;
3158 }
3159 subsys_initcall(ksm_init);
3160