1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 220 /* The stable and unstable tree heads */ 221 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 222 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 223 static struct rb_root *root_stable_tree = one_stable_tree; 224 static struct rb_root *root_unstable_tree = one_unstable_tree; 225 226 /* Recently migrated nodes of stable tree, pending proper placement */ 227 static LIST_HEAD(migrate_nodes); 228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 229 230 #define MM_SLOTS_HASH_BITS 10 231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 232 233 static struct mm_slot ksm_mm_head = { 234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 235 }; 236 static struct ksm_scan ksm_scan = { 237 .mm_slot = &ksm_mm_head, 238 }; 239 240 static struct kmem_cache *rmap_item_cache; 241 static struct kmem_cache *stable_node_cache; 242 static struct kmem_cache *mm_slot_cache; 243 244 /* The number of nodes in the stable tree */ 245 static unsigned long ksm_pages_shared; 246 247 /* The number of page slots additionally sharing those nodes */ 248 static unsigned long ksm_pages_sharing; 249 250 /* The number of nodes in the unstable tree */ 251 static unsigned long ksm_pages_unshared; 252 253 /* The number of rmap_items in use: to calculate pages_volatile */ 254 static unsigned long ksm_rmap_items; 255 256 /* The number of stable_node chains */ 257 static unsigned long ksm_stable_node_chains; 258 259 /* The number of stable_node dups linked to the stable_node chains */ 260 static unsigned long ksm_stable_node_dups; 261 262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 263 static int ksm_stable_node_chains_prune_millisecs = 2000; 264 265 /* Maximum number of page slots sharing a stable node */ 266 static int ksm_max_page_sharing = 256; 267 268 /* Number of pages ksmd should scan in one batch */ 269 static unsigned int ksm_thread_pages_to_scan = 100; 270 271 /* Milliseconds ksmd should sleep between batches */ 272 static unsigned int ksm_thread_sleep_millisecs = 20; 273 274 /* Checksum of an empty (zeroed) page */ 275 static unsigned int zero_checksum __read_mostly; 276 277 /* Whether to merge empty (zeroed) pages with actual zero pages */ 278 static bool ksm_use_zero_pages __read_mostly; 279 280 #ifdef CONFIG_NUMA 281 /* Zeroed when merging across nodes is not allowed */ 282 static unsigned int ksm_merge_across_nodes = 1; 283 static int ksm_nr_node_ids = 1; 284 #else 285 #define ksm_merge_across_nodes 1U 286 #define ksm_nr_node_ids 1 287 #endif 288 289 #define KSM_RUN_STOP 0 290 #define KSM_RUN_MERGE 1 291 #define KSM_RUN_UNMERGE 2 292 #define KSM_RUN_OFFLINE 4 293 static unsigned long ksm_run = KSM_RUN_STOP; 294 static void wait_while_offlining(void); 295 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 int ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 482 else 483 ret = VM_FAULT_WRITE; 484 put_page(page); 485 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 486 /* 487 * We must loop because handle_mm_fault() may back out if there's 488 * any difficulty e.g. if pte accessed bit gets updated concurrently. 489 * 490 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 491 * COW has been broken, even if the vma does not permit VM_WRITE; 492 * but note that a concurrent fault might break PageKsm for us. 493 * 494 * VM_FAULT_SIGBUS could occur if we race with truncation of the 495 * backing file, which also invalidates anonymous pages: that's 496 * okay, that truncation will have unmapped the PageKsm for us. 497 * 498 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 499 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 500 * current task has TIF_MEMDIE set, and will be OOM killed on return 501 * to user; and ksmd, having no mm, would never be chosen for that. 502 * 503 * But if the mm is in a limited mem_cgroup, then the fault may fail 504 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 505 * even ksmd can fail in this way - though it's usually breaking ksm 506 * just to undo a merge it made a moment before, so unlikely to oom. 507 * 508 * That's a pity: we might therefore have more kernel pages allocated 509 * than we're counting as nodes in the stable tree; but ksm_do_scan 510 * will retry to break_cow on each pass, so should recover the page 511 * in due course. The important thing is to not let VM_MERGEABLE 512 * be cleared while any such pages might remain in the area. 513 */ 514 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 515 } 516 517 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 518 unsigned long addr) 519 { 520 struct vm_area_struct *vma; 521 if (ksm_test_exit(mm)) 522 return NULL; 523 vma = find_vma(mm, addr); 524 if (!vma || vma->vm_start > addr) 525 return NULL; 526 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 527 return NULL; 528 return vma; 529 } 530 531 static void break_cow(struct rmap_item *rmap_item) 532 { 533 struct mm_struct *mm = rmap_item->mm; 534 unsigned long addr = rmap_item->address; 535 struct vm_area_struct *vma; 536 537 /* 538 * It is not an accident that whenever we want to break COW 539 * to undo, we also need to drop a reference to the anon_vma. 540 */ 541 put_anon_vma(rmap_item->anon_vma); 542 543 down_read(&mm->mmap_sem); 544 vma = find_mergeable_vma(mm, addr); 545 if (vma) 546 break_ksm(vma, addr); 547 up_read(&mm->mmap_sem); 548 } 549 550 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 551 { 552 struct mm_struct *mm = rmap_item->mm; 553 unsigned long addr = rmap_item->address; 554 struct vm_area_struct *vma; 555 struct page *page; 556 557 down_read(&mm->mmap_sem); 558 vma = find_mergeable_vma(mm, addr); 559 if (!vma) 560 goto out; 561 562 page = follow_page(vma, addr, FOLL_GET); 563 if (IS_ERR_OR_NULL(page)) 564 goto out; 565 if (PageAnon(page)) { 566 flush_anon_page(vma, page, addr); 567 flush_dcache_page(page); 568 } else { 569 put_page(page); 570 out: 571 page = NULL; 572 } 573 up_read(&mm->mmap_sem); 574 return page; 575 } 576 577 /* 578 * This helper is used for getting right index into array of tree roots. 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 581 * every node has its own stable and unstable tree. 582 */ 583 static inline int get_kpfn_nid(unsigned long kpfn) 584 { 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 586 } 587 588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 589 struct rb_root *root) 590 { 591 struct stable_node *chain = alloc_stable_node(); 592 VM_BUG_ON(is_stable_node_chain(dup)); 593 if (likely(chain)) { 594 INIT_HLIST_HEAD(&chain->hlist); 595 chain->chain_prune_time = jiffies; 596 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 598 chain->nid = -1; /* debug */ 599 #endif 600 ksm_stable_node_chains++; 601 602 /* 603 * Put the stable node chain in the first dimension of 604 * the stable tree and at the same time remove the old 605 * stable node. 606 */ 607 rb_replace_node(&dup->node, &chain->node, root); 608 609 /* 610 * Move the old stable node to the second dimension 611 * queued in the hlist_dup. The invariant is that all 612 * dup stable_nodes in the chain->hlist point to pages 613 * that are wrprotected and have the exact same 614 * content. 615 */ 616 stable_node_chain_add_dup(dup, chain); 617 } 618 return chain; 619 } 620 621 static inline void free_stable_node_chain(struct stable_node *chain, 622 struct rb_root *root) 623 { 624 rb_erase(&chain->node, root); 625 free_stable_node(chain); 626 ksm_stable_node_chains--; 627 } 628 629 static void remove_node_from_stable_tree(struct stable_node *stable_node) 630 { 631 struct rmap_item *rmap_item; 632 633 /* check it's not STABLE_NODE_CHAIN or negative */ 634 BUG_ON(stable_node->rmap_hlist_len < 0); 635 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 637 if (rmap_item->hlist.next) 638 ksm_pages_sharing--; 639 else 640 ksm_pages_shared--; 641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 642 stable_node->rmap_hlist_len--; 643 put_anon_vma(rmap_item->anon_vma); 644 rmap_item->address &= PAGE_MASK; 645 cond_resched(); 646 } 647 648 /* 649 * We need the second aligned pointer of the migrate_nodes 650 * list_head to stay clear from the rb_parent_color union 651 * (aligned and different than any node) and also different 652 * from &migrate_nodes. This will verify that future list.h changes 653 * don't break STABLE_NODE_DUP_HEAD. 654 */ 655 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ 656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 658 #endif 659 660 if (stable_node->head == &migrate_nodes) 661 list_del(&stable_node->list); 662 else 663 stable_node_dup_del(stable_node); 664 free_stable_node(stable_node); 665 } 666 667 /* 668 * get_ksm_page: checks if the page indicated by the stable node 669 * is still its ksm page, despite having held no reference to it. 670 * In which case we can trust the content of the page, and it 671 * returns the gotten page; but if the page has now been zapped, 672 * remove the stale node from the stable tree and return NULL. 673 * But beware, the stable node's page might be being migrated. 674 * 675 * You would expect the stable_node to hold a reference to the ksm page. 676 * But if it increments the page's count, swapping out has to wait for 677 * ksmd to come around again before it can free the page, which may take 678 * seconds or even minutes: much too unresponsive. So instead we use a 679 * "keyhole reference": access to the ksm page from the stable node peeps 680 * out through its keyhole to see if that page still holds the right key, 681 * pointing back to this stable node. This relies on freeing a PageAnon 682 * page to reset its page->mapping to NULL, and relies on no other use of 683 * a page to put something that might look like our key in page->mapping. 684 * is on its way to being freed; but it is an anomaly to bear in mind. 685 */ 686 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 687 { 688 struct page *page; 689 void *expected_mapping; 690 unsigned long kpfn; 691 692 expected_mapping = (void *)((unsigned long)stable_node | 693 PAGE_MAPPING_KSM); 694 again: 695 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 696 page = pfn_to_page(kpfn); 697 if (READ_ONCE(page->mapping) != expected_mapping) 698 goto stale; 699 700 /* 701 * We cannot do anything with the page while its refcount is 0. 702 * Usually 0 means free, or tail of a higher-order page: in which 703 * case this node is no longer referenced, and should be freed; 704 * however, it might mean that the page is under page_freeze_refs(). 705 * The __remove_mapping() case is easy, again the node is now stale; 706 * but if page is swapcache in migrate_page_move_mapping(), it might 707 * still be our page, in which case it's essential to keep the node. 708 */ 709 while (!get_page_unless_zero(page)) { 710 /* 711 * Another check for page->mapping != expected_mapping would 712 * work here too. We have chosen the !PageSwapCache test to 713 * optimize the common case, when the page is or is about to 714 * be freed: PageSwapCache is cleared (under spin_lock_irq) 715 * in the freeze_refs section of __remove_mapping(); but Anon 716 * page->mapping reset to NULL later, in free_pages_prepare(). 717 */ 718 if (!PageSwapCache(page)) 719 goto stale; 720 cpu_relax(); 721 } 722 723 if (READ_ONCE(page->mapping) != expected_mapping) { 724 put_page(page); 725 goto stale; 726 } 727 728 if (lock_it) { 729 lock_page(page); 730 if (READ_ONCE(page->mapping) != expected_mapping) { 731 unlock_page(page); 732 put_page(page); 733 goto stale; 734 } 735 } 736 return page; 737 738 stale: 739 /* 740 * We come here from above when page->mapping or !PageSwapCache 741 * suggests that the node is stale; but it might be under migration. 742 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 743 * before checking whether node->kpfn has been changed. 744 */ 745 smp_rmb(); 746 if (READ_ONCE(stable_node->kpfn) != kpfn) 747 goto again; 748 remove_node_from_stable_tree(stable_node); 749 return NULL; 750 } 751 752 /* 753 * Removing rmap_item from stable or unstable tree. 754 * This function will clean the information from the stable/unstable tree. 755 */ 756 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 757 { 758 if (rmap_item->address & STABLE_FLAG) { 759 struct stable_node *stable_node; 760 struct page *page; 761 762 stable_node = rmap_item->head; 763 page = get_ksm_page(stable_node, true); 764 if (!page) 765 goto out; 766 767 hlist_del(&rmap_item->hlist); 768 unlock_page(page); 769 put_page(page); 770 771 if (!hlist_empty(&stable_node->hlist)) 772 ksm_pages_sharing--; 773 else 774 ksm_pages_shared--; 775 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 776 stable_node->rmap_hlist_len--; 777 778 put_anon_vma(rmap_item->anon_vma); 779 rmap_item->address &= PAGE_MASK; 780 781 } else if (rmap_item->address & UNSTABLE_FLAG) { 782 unsigned char age; 783 /* 784 * Usually ksmd can and must skip the rb_erase, because 785 * root_unstable_tree was already reset to RB_ROOT. 786 * But be careful when an mm is exiting: do the rb_erase 787 * if this rmap_item was inserted by this scan, rather 788 * than left over from before. 789 */ 790 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 791 BUG_ON(age > 1); 792 if (!age) 793 rb_erase(&rmap_item->node, 794 root_unstable_tree + NUMA(rmap_item->nid)); 795 ksm_pages_unshared--; 796 rmap_item->address &= PAGE_MASK; 797 } 798 out: 799 cond_resched(); /* we're called from many long loops */ 800 } 801 802 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 803 struct rmap_item **rmap_list) 804 { 805 while (*rmap_list) { 806 struct rmap_item *rmap_item = *rmap_list; 807 *rmap_list = rmap_item->rmap_list; 808 remove_rmap_item_from_tree(rmap_item); 809 free_rmap_item(rmap_item); 810 } 811 } 812 813 /* 814 * Though it's very tempting to unmerge rmap_items from stable tree rather 815 * than check every pte of a given vma, the locking doesn't quite work for 816 * that - an rmap_item is assigned to the stable tree after inserting ksm 817 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 818 * rmap_items from parent to child at fork time (so as not to waste time 819 * if exit comes before the next scan reaches it). 820 * 821 * Similarly, although we'd like to remove rmap_items (so updating counts 822 * and freeing memory) when unmerging an area, it's easier to leave that 823 * to the next pass of ksmd - consider, for example, how ksmd might be 824 * in cmp_and_merge_page on one of the rmap_items we would be removing. 825 */ 826 static int unmerge_ksm_pages(struct vm_area_struct *vma, 827 unsigned long start, unsigned long end) 828 { 829 unsigned long addr; 830 int err = 0; 831 832 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 833 if (ksm_test_exit(vma->vm_mm)) 834 break; 835 if (signal_pending(current)) 836 err = -ERESTARTSYS; 837 else 838 err = break_ksm(vma, addr); 839 } 840 return err; 841 } 842 843 #ifdef CONFIG_SYSFS 844 /* 845 * Only called through the sysfs control interface: 846 */ 847 static int remove_stable_node(struct stable_node *stable_node) 848 { 849 struct page *page; 850 int err; 851 852 page = get_ksm_page(stable_node, true); 853 if (!page) { 854 /* 855 * get_ksm_page did remove_node_from_stable_tree itself. 856 */ 857 return 0; 858 } 859 860 if (WARN_ON_ONCE(page_mapped(page))) { 861 /* 862 * This should not happen: but if it does, just refuse to let 863 * merge_across_nodes be switched - there is no need to panic. 864 */ 865 err = -EBUSY; 866 } else { 867 /* 868 * The stable node did not yet appear stale to get_ksm_page(), 869 * since that allows for an unmapped ksm page to be recognized 870 * right up until it is freed; but the node is safe to remove. 871 * This page might be in a pagevec waiting to be freed, 872 * or it might be PageSwapCache (perhaps under writeback), 873 * or it might have been removed from swapcache a moment ago. 874 */ 875 set_page_stable_node(page, NULL); 876 remove_node_from_stable_tree(stable_node); 877 err = 0; 878 } 879 880 unlock_page(page); 881 put_page(page); 882 return err; 883 } 884 885 static int remove_stable_node_chain(struct stable_node *stable_node, 886 struct rb_root *root) 887 { 888 struct stable_node *dup; 889 struct hlist_node *hlist_safe; 890 891 if (!is_stable_node_chain(stable_node)) { 892 VM_BUG_ON(is_stable_node_dup(stable_node)); 893 if (remove_stable_node(stable_node)) 894 return true; 895 else 896 return false; 897 } 898 899 hlist_for_each_entry_safe(dup, hlist_safe, 900 &stable_node->hlist, hlist_dup) { 901 VM_BUG_ON(!is_stable_node_dup(dup)); 902 if (remove_stable_node(dup)) 903 return true; 904 } 905 BUG_ON(!hlist_empty(&stable_node->hlist)); 906 free_stable_node_chain(stable_node, root); 907 return false; 908 } 909 910 static int remove_all_stable_nodes(void) 911 { 912 struct stable_node *stable_node, *next; 913 int nid; 914 int err = 0; 915 916 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 917 while (root_stable_tree[nid].rb_node) { 918 stable_node = rb_entry(root_stable_tree[nid].rb_node, 919 struct stable_node, node); 920 if (remove_stable_node_chain(stable_node, 921 root_stable_tree + nid)) { 922 err = -EBUSY; 923 break; /* proceed to next nid */ 924 } 925 cond_resched(); 926 } 927 } 928 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 929 if (remove_stable_node(stable_node)) 930 err = -EBUSY; 931 cond_resched(); 932 } 933 return err; 934 } 935 936 static int unmerge_and_remove_all_rmap_items(void) 937 { 938 struct mm_slot *mm_slot; 939 struct mm_struct *mm; 940 struct vm_area_struct *vma; 941 int err = 0; 942 943 spin_lock(&ksm_mmlist_lock); 944 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 945 struct mm_slot, mm_list); 946 spin_unlock(&ksm_mmlist_lock); 947 948 for (mm_slot = ksm_scan.mm_slot; 949 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 950 mm = mm_slot->mm; 951 down_read(&mm->mmap_sem); 952 for (vma = mm->mmap; vma; vma = vma->vm_next) { 953 if (ksm_test_exit(mm)) 954 break; 955 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 956 continue; 957 err = unmerge_ksm_pages(vma, 958 vma->vm_start, vma->vm_end); 959 if (err) 960 goto error; 961 } 962 963 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 964 up_read(&mm->mmap_sem); 965 966 spin_lock(&ksm_mmlist_lock); 967 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 968 struct mm_slot, mm_list); 969 if (ksm_test_exit(mm)) { 970 hash_del(&mm_slot->link); 971 list_del(&mm_slot->mm_list); 972 spin_unlock(&ksm_mmlist_lock); 973 974 free_mm_slot(mm_slot); 975 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 976 mmdrop(mm); 977 } else 978 spin_unlock(&ksm_mmlist_lock); 979 } 980 981 /* Clean up stable nodes, but don't worry if some are still busy */ 982 remove_all_stable_nodes(); 983 ksm_scan.seqnr = 0; 984 return 0; 985 986 error: 987 up_read(&mm->mmap_sem); 988 spin_lock(&ksm_mmlist_lock); 989 ksm_scan.mm_slot = &ksm_mm_head; 990 spin_unlock(&ksm_mmlist_lock); 991 return err; 992 } 993 #endif /* CONFIG_SYSFS */ 994 995 static u32 calc_checksum(struct page *page) 996 { 997 u32 checksum; 998 void *addr = kmap_atomic(page); 999 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 1000 kunmap_atomic(addr); 1001 return checksum; 1002 } 1003 1004 static int memcmp_pages(struct page *page1, struct page *page2) 1005 { 1006 char *addr1, *addr2; 1007 int ret; 1008 1009 addr1 = kmap_atomic(page1); 1010 addr2 = kmap_atomic(page2); 1011 ret = memcmp(addr1, addr2, PAGE_SIZE); 1012 kunmap_atomic(addr2); 1013 kunmap_atomic(addr1); 1014 return ret; 1015 } 1016 1017 static inline int pages_identical(struct page *page1, struct page *page2) 1018 { 1019 return !memcmp_pages(page1, page2); 1020 } 1021 1022 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1023 pte_t *orig_pte) 1024 { 1025 struct mm_struct *mm = vma->vm_mm; 1026 struct page_vma_mapped_walk pvmw = { 1027 .page = page, 1028 .vma = vma, 1029 }; 1030 int swapped; 1031 int err = -EFAULT; 1032 unsigned long mmun_start; /* For mmu_notifiers */ 1033 unsigned long mmun_end; /* For mmu_notifiers */ 1034 1035 pvmw.address = page_address_in_vma(page, vma); 1036 if (pvmw.address == -EFAULT) 1037 goto out; 1038 1039 BUG_ON(PageTransCompound(page)); 1040 1041 mmun_start = pvmw.address; 1042 mmun_end = pvmw.address + PAGE_SIZE; 1043 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1044 1045 if (!page_vma_mapped_walk(&pvmw)) 1046 goto out_mn; 1047 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1048 goto out_unlock; 1049 1050 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1051 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1052 mm_tlb_flush_pending(mm)) { 1053 pte_t entry; 1054 1055 swapped = PageSwapCache(page); 1056 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1057 /* 1058 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1059 * take any lock, therefore the check that we are going to make 1060 * with the pagecount against the mapcount is racey and 1061 * O_DIRECT can happen right after the check. 1062 * So we clear the pte and flush the tlb before the check 1063 * this assure us that no O_DIRECT can happen after the check 1064 * or in the middle of the check. 1065 * 1066 * No need to notify as we are downgrading page table to read 1067 * only not changing it to point to a new page. 1068 * 1069 * See Documentation/vm/mmu_notifier.rst 1070 */ 1071 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1072 /* 1073 * Check that no O_DIRECT or similar I/O is in progress on the 1074 * page 1075 */ 1076 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1077 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1078 goto out_unlock; 1079 } 1080 if (pte_dirty(entry)) 1081 set_page_dirty(page); 1082 1083 if (pte_protnone(entry)) 1084 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1085 else 1086 entry = pte_mkclean(pte_wrprotect(entry)); 1087 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1088 } 1089 *orig_pte = *pvmw.pte; 1090 err = 0; 1091 1092 out_unlock: 1093 page_vma_mapped_walk_done(&pvmw); 1094 out_mn: 1095 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1096 out: 1097 return err; 1098 } 1099 1100 /** 1101 * replace_page - replace page in vma by new ksm page 1102 * @vma: vma that holds the pte pointing to page 1103 * @page: the page we are replacing by kpage 1104 * @kpage: the ksm page we replace page by 1105 * @orig_pte: the original value of the pte 1106 * 1107 * Returns 0 on success, -EFAULT on failure. 1108 */ 1109 static int replace_page(struct vm_area_struct *vma, struct page *page, 1110 struct page *kpage, pte_t orig_pte) 1111 { 1112 struct mm_struct *mm = vma->vm_mm; 1113 pmd_t *pmd; 1114 pte_t *ptep; 1115 pte_t newpte; 1116 spinlock_t *ptl; 1117 unsigned long addr; 1118 int err = -EFAULT; 1119 unsigned long mmun_start; /* For mmu_notifiers */ 1120 unsigned long mmun_end; /* For mmu_notifiers */ 1121 1122 addr = page_address_in_vma(page, vma); 1123 if (addr == -EFAULT) 1124 goto out; 1125 1126 pmd = mm_find_pmd(mm, addr); 1127 if (!pmd) 1128 goto out; 1129 1130 mmun_start = addr; 1131 mmun_end = addr + PAGE_SIZE; 1132 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1133 1134 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1135 if (!pte_same(*ptep, orig_pte)) { 1136 pte_unmap_unlock(ptep, ptl); 1137 goto out_mn; 1138 } 1139 1140 /* 1141 * No need to check ksm_use_zero_pages here: we can only have a 1142 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1143 */ 1144 if (!is_zero_pfn(page_to_pfn(kpage))) { 1145 get_page(kpage); 1146 page_add_anon_rmap(kpage, vma, addr, false); 1147 newpte = mk_pte(kpage, vma->vm_page_prot); 1148 } else { 1149 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1150 vma->vm_page_prot)); 1151 /* 1152 * We're replacing an anonymous page with a zero page, which is 1153 * not anonymous. We need to do proper accounting otherwise we 1154 * will get wrong values in /proc, and a BUG message in dmesg 1155 * when tearing down the mm. 1156 */ 1157 dec_mm_counter(mm, MM_ANONPAGES); 1158 } 1159 1160 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1161 /* 1162 * No need to notify as we are replacing a read only page with another 1163 * read only page with the same content. 1164 * 1165 * See Documentation/vm/mmu_notifier.rst 1166 */ 1167 ptep_clear_flush(vma, addr, ptep); 1168 set_pte_at_notify(mm, addr, ptep, newpte); 1169 1170 page_remove_rmap(page, false); 1171 if (!page_mapped(page)) 1172 try_to_free_swap(page); 1173 put_page(page); 1174 1175 pte_unmap_unlock(ptep, ptl); 1176 err = 0; 1177 out_mn: 1178 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1179 out: 1180 return err; 1181 } 1182 1183 /* 1184 * try_to_merge_one_page - take two pages and merge them into one 1185 * @vma: the vma that holds the pte pointing to page 1186 * @page: the PageAnon page that we want to replace with kpage 1187 * @kpage: the PageKsm page that we want to map instead of page, 1188 * or NULL the first time when we want to use page as kpage. 1189 * 1190 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1191 */ 1192 static int try_to_merge_one_page(struct vm_area_struct *vma, 1193 struct page *page, struct page *kpage) 1194 { 1195 pte_t orig_pte = __pte(0); 1196 int err = -EFAULT; 1197 1198 if (page == kpage) /* ksm page forked */ 1199 return 0; 1200 1201 if (!PageAnon(page)) 1202 goto out; 1203 1204 /* 1205 * We need the page lock to read a stable PageSwapCache in 1206 * write_protect_page(). We use trylock_page() instead of 1207 * lock_page() because we don't want to wait here - we 1208 * prefer to continue scanning and merging different pages, 1209 * then come back to this page when it is unlocked. 1210 */ 1211 if (!trylock_page(page)) 1212 goto out; 1213 1214 if (PageTransCompound(page)) { 1215 if (split_huge_page(page)) 1216 goto out_unlock; 1217 } 1218 1219 /* 1220 * If this anonymous page is mapped only here, its pte may need 1221 * to be write-protected. If it's mapped elsewhere, all of its 1222 * ptes are necessarily already write-protected. But in either 1223 * case, we need to lock and check page_count is not raised. 1224 */ 1225 if (write_protect_page(vma, page, &orig_pte) == 0) { 1226 if (!kpage) { 1227 /* 1228 * While we hold page lock, upgrade page from 1229 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1230 * stable_tree_insert() will update stable_node. 1231 */ 1232 set_page_stable_node(page, NULL); 1233 mark_page_accessed(page); 1234 /* 1235 * Page reclaim just frees a clean page with no dirty 1236 * ptes: make sure that the ksm page would be swapped. 1237 */ 1238 if (!PageDirty(page)) 1239 SetPageDirty(page); 1240 err = 0; 1241 } else if (pages_identical(page, kpage)) 1242 err = replace_page(vma, page, kpage, orig_pte); 1243 } 1244 1245 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1246 munlock_vma_page(page); 1247 if (!PageMlocked(kpage)) { 1248 unlock_page(page); 1249 lock_page(kpage); 1250 mlock_vma_page(kpage); 1251 page = kpage; /* for final unlock */ 1252 } 1253 } 1254 1255 out_unlock: 1256 unlock_page(page); 1257 out: 1258 return err; 1259 } 1260 1261 /* 1262 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1263 * but no new kernel page is allocated: kpage must already be a ksm page. 1264 * 1265 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1266 */ 1267 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1268 struct page *page, struct page *kpage) 1269 { 1270 struct mm_struct *mm = rmap_item->mm; 1271 struct vm_area_struct *vma; 1272 int err = -EFAULT; 1273 1274 down_read(&mm->mmap_sem); 1275 vma = find_mergeable_vma(mm, rmap_item->address); 1276 if (!vma) 1277 goto out; 1278 1279 err = try_to_merge_one_page(vma, page, kpage); 1280 if (err) 1281 goto out; 1282 1283 /* Unstable nid is in union with stable anon_vma: remove first */ 1284 remove_rmap_item_from_tree(rmap_item); 1285 1286 /* Must get reference to anon_vma while still holding mmap_sem */ 1287 rmap_item->anon_vma = vma->anon_vma; 1288 get_anon_vma(vma->anon_vma); 1289 out: 1290 up_read(&mm->mmap_sem); 1291 return err; 1292 } 1293 1294 /* 1295 * try_to_merge_two_pages - take two identical pages and prepare them 1296 * to be merged into one page. 1297 * 1298 * This function returns the kpage if we successfully merged two identical 1299 * pages into one ksm page, NULL otherwise. 1300 * 1301 * Note that this function upgrades page to ksm page: if one of the pages 1302 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1303 */ 1304 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1305 struct page *page, 1306 struct rmap_item *tree_rmap_item, 1307 struct page *tree_page) 1308 { 1309 int err; 1310 1311 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1312 if (!err) { 1313 err = try_to_merge_with_ksm_page(tree_rmap_item, 1314 tree_page, page); 1315 /* 1316 * If that fails, we have a ksm page with only one pte 1317 * pointing to it: so break it. 1318 */ 1319 if (err) 1320 break_cow(rmap_item); 1321 } 1322 return err ? NULL : page; 1323 } 1324 1325 static __always_inline 1326 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1327 { 1328 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1329 /* 1330 * Check that at least one mapping still exists, otherwise 1331 * there's no much point to merge and share with this 1332 * stable_node, as the underlying tree_page of the other 1333 * sharer is going to be freed soon. 1334 */ 1335 return stable_node->rmap_hlist_len && 1336 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1337 } 1338 1339 static __always_inline 1340 bool is_page_sharing_candidate(struct stable_node *stable_node) 1341 { 1342 return __is_page_sharing_candidate(stable_node, 0); 1343 } 1344 1345 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1346 struct stable_node **_stable_node, 1347 struct rb_root *root, 1348 bool prune_stale_stable_nodes) 1349 { 1350 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1351 struct hlist_node *hlist_safe; 1352 struct page *_tree_page, *tree_page = NULL; 1353 int nr = 0; 1354 int found_rmap_hlist_len; 1355 1356 if (!prune_stale_stable_nodes || 1357 time_before(jiffies, stable_node->chain_prune_time + 1358 msecs_to_jiffies( 1359 ksm_stable_node_chains_prune_millisecs))) 1360 prune_stale_stable_nodes = false; 1361 else 1362 stable_node->chain_prune_time = jiffies; 1363 1364 hlist_for_each_entry_safe(dup, hlist_safe, 1365 &stable_node->hlist, hlist_dup) { 1366 cond_resched(); 1367 /* 1368 * We must walk all stable_node_dup to prune the stale 1369 * stable nodes during lookup. 1370 * 1371 * get_ksm_page can drop the nodes from the 1372 * stable_node->hlist if they point to freed pages 1373 * (that's why we do a _safe walk). The "dup" 1374 * stable_node parameter itself will be freed from 1375 * under us if it returns NULL. 1376 */ 1377 _tree_page = get_ksm_page(dup, false); 1378 if (!_tree_page) 1379 continue; 1380 nr += 1; 1381 if (is_page_sharing_candidate(dup)) { 1382 if (!found || 1383 dup->rmap_hlist_len > found_rmap_hlist_len) { 1384 if (found) 1385 put_page(tree_page); 1386 found = dup; 1387 found_rmap_hlist_len = found->rmap_hlist_len; 1388 tree_page = _tree_page; 1389 1390 /* skip put_page for found dup */ 1391 if (!prune_stale_stable_nodes) 1392 break; 1393 continue; 1394 } 1395 } 1396 put_page(_tree_page); 1397 } 1398 1399 if (found) { 1400 /* 1401 * nr is counting all dups in the chain only if 1402 * prune_stale_stable_nodes is true, otherwise we may 1403 * break the loop at nr == 1 even if there are 1404 * multiple entries. 1405 */ 1406 if (prune_stale_stable_nodes && nr == 1) { 1407 /* 1408 * If there's not just one entry it would 1409 * corrupt memory, better BUG_ON. In KSM 1410 * context with no lock held it's not even 1411 * fatal. 1412 */ 1413 BUG_ON(stable_node->hlist.first->next); 1414 1415 /* 1416 * There's just one entry and it is below the 1417 * deduplication limit so drop the chain. 1418 */ 1419 rb_replace_node(&stable_node->node, &found->node, 1420 root); 1421 free_stable_node(stable_node); 1422 ksm_stable_node_chains--; 1423 ksm_stable_node_dups--; 1424 /* 1425 * NOTE: the caller depends on the stable_node 1426 * to be equal to stable_node_dup if the chain 1427 * was collapsed. 1428 */ 1429 *_stable_node = found; 1430 /* 1431 * Just for robustneess as stable_node is 1432 * otherwise left as a stable pointer, the 1433 * compiler shall optimize it away at build 1434 * time. 1435 */ 1436 stable_node = NULL; 1437 } else if (stable_node->hlist.first != &found->hlist_dup && 1438 __is_page_sharing_candidate(found, 1)) { 1439 /* 1440 * If the found stable_node dup can accept one 1441 * more future merge (in addition to the one 1442 * that is underway) and is not at the head of 1443 * the chain, put it there so next search will 1444 * be quicker in the !prune_stale_stable_nodes 1445 * case. 1446 * 1447 * NOTE: it would be inaccurate to use nr > 1 1448 * instead of checking the hlist.first pointer 1449 * directly, because in the 1450 * prune_stale_stable_nodes case "nr" isn't 1451 * the position of the found dup in the chain, 1452 * but the total number of dups in the chain. 1453 */ 1454 hlist_del(&found->hlist_dup); 1455 hlist_add_head(&found->hlist_dup, 1456 &stable_node->hlist); 1457 } 1458 } 1459 1460 *_stable_node_dup = found; 1461 return tree_page; 1462 } 1463 1464 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1465 struct rb_root *root) 1466 { 1467 if (!is_stable_node_chain(stable_node)) 1468 return stable_node; 1469 if (hlist_empty(&stable_node->hlist)) { 1470 free_stable_node_chain(stable_node, root); 1471 return NULL; 1472 } 1473 return hlist_entry(stable_node->hlist.first, 1474 typeof(*stable_node), hlist_dup); 1475 } 1476 1477 /* 1478 * Like for get_ksm_page, this function can free the *_stable_node and 1479 * *_stable_node_dup if the returned tree_page is NULL. 1480 * 1481 * It can also free and overwrite *_stable_node with the found 1482 * stable_node_dup if the chain is collapsed (in which case 1483 * *_stable_node will be equal to *_stable_node_dup like if the chain 1484 * never existed). It's up to the caller to verify tree_page is not 1485 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1486 * 1487 * *_stable_node_dup is really a second output parameter of this 1488 * function and will be overwritten in all cases, the caller doesn't 1489 * need to initialize it. 1490 */ 1491 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1492 struct stable_node **_stable_node, 1493 struct rb_root *root, 1494 bool prune_stale_stable_nodes) 1495 { 1496 struct stable_node *stable_node = *_stable_node; 1497 if (!is_stable_node_chain(stable_node)) { 1498 if (is_page_sharing_candidate(stable_node)) { 1499 *_stable_node_dup = stable_node; 1500 return get_ksm_page(stable_node, false); 1501 } 1502 /* 1503 * _stable_node_dup set to NULL means the stable_node 1504 * reached the ksm_max_page_sharing limit. 1505 */ 1506 *_stable_node_dup = NULL; 1507 return NULL; 1508 } 1509 return stable_node_dup(_stable_node_dup, _stable_node, root, 1510 prune_stale_stable_nodes); 1511 } 1512 1513 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1514 struct stable_node **s_n, 1515 struct rb_root *root) 1516 { 1517 return __stable_node_chain(s_n_d, s_n, root, true); 1518 } 1519 1520 static __always_inline struct page *chain(struct stable_node **s_n_d, 1521 struct stable_node *s_n, 1522 struct rb_root *root) 1523 { 1524 struct stable_node *old_stable_node = s_n; 1525 struct page *tree_page; 1526 1527 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1528 /* not pruning dups so s_n cannot have changed */ 1529 VM_BUG_ON(s_n != old_stable_node); 1530 return tree_page; 1531 } 1532 1533 /* 1534 * stable_tree_search - search for page inside the stable tree 1535 * 1536 * This function checks if there is a page inside the stable tree 1537 * with identical content to the page that we are scanning right now. 1538 * 1539 * This function returns the stable tree node of identical content if found, 1540 * NULL otherwise. 1541 */ 1542 static struct page *stable_tree_search(struct page *page) 1543 { 1544 int nid; 1545 struct rb_root *root; 1546 struct rb_node **new; 1547 struct rb_node *parent; 1548 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1549 struct stable_node *page_node; 1550 1551 page_node = page_stable_node(page); 1552 if (page_node && page_node->head != &migrate_nodes) { 1553 /* ksm page forked */ 1554 get_page(page); 1555 return page; 1556 } 1557 1558 nid = get_kpfn_nid(page_to_pfn(page)); 1559 root = root_stable_tree + nid; 1560 again: 1561 new = &root->rb_node; 1562 parent = NULL; 1563 1564 while (*new) { 1565 struct page *tree_page; 1566 int ret; 1567 1568 cond_resched(); 1569 stable_node = rb_entry(*new, struct stable_node, node); 1570 stable_node_any = NULL; 1571 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1572 /* 1573 * NOTE: stable_node may have been freed by 1574 * chain_prune() if the returned stable_node_dup is 1575 * not NULL. stable_node_dup may have been inserted in 1576 * the rbtree instead as a regular stable_node (in 1577 * order to collapse the stable_node chain if a single 1578 * stable_node dup was found in it). In such case the 1579 * stable_node is overwritten by the calleee to point 1580 * to the stable_node_dup that was collapsed in the 1581 * stable rbtree and stable_node will be equal to 1582 * stable_node_dup like if the chain never existed. 1583 */ 1584 if (!stable_node_dup) { 1585 /* 1586 * Either all stable_node dups were full in 1587 * this stable_node chain, or this chain was 1588 * empty and should be rb_erased. 1589 */ 1590 stable_node_any = stable_node_dup_any(stable_node, 1591 root); 1592 if (!stable_node_any) { 1593 /* rb_erase just run */ 1594 goto again; 1595 } 1596 /* 1597 * Take any of the stable_node dups page of 1598 * this stable_node chain to let the tree walk 1599 * continue. All KSM pages belonging to the 1600 * stable_node dups in a stable_node chain 1601 * have the same content and they're 1602 * wrprotected at all times. Any will work 1603 * fine to continue the walk. 1604 */ 1605 tree_page = get_ksm_page(stable_node_any, false); 1606 } 1607 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1608 if (!tree_page) { 1609 /* 1610 * If we walked over a stale stable_node, 1611 * get_ksm_page() will call rb_erase() and it 1612 * may rebalance the tree from under us. So 1613 * restart the search from scratch. Returning 1614 * NULL would be safe too, but we'd generate 1615 * false negative insertions just because some 1616 * stable_node was stale. 1617 */ 1618 goto again; 1619 } 1620 1621 ret = memcmp_pages(page, tree_page); 1622 put_page(tree_page); 1623 1624 parent = *new; 1625 if (ret < 0) 1626 new = &parent->rb_left; 1627 else if (ret > 0) 1628 new = &parent->rb_right; 1629 else { 1630 if (page_node) { 1631 VM_BUG_ON(page_node->head != &migrate_nodes); 1632 /* 1633 * Test if the migrated page should be merged 1634 * into a stable node dup. If the mapcount is 1635 * 1 we can migrate it with another KSM page 1636 * without adding it to the chain. 1637 */ 1638 if (page_mapcount(page) > 1) 1639 goto chain_append; 1640 } 1641 1642 if (!stable_node_dup) { 1643 /* 1644 * If the stable_node is a chain and 1645 * we got a payload match in memcmp 1646 * but we cannot merge the scanned 1647 * page in any of the existing 1648 * stable_node dups because they're 1649 * all full, we need to wait the 1650 * scanned page to find itself a match 1651 * in the unstable tree to create a 1652 * brand new KSM page to add later to 1653 * the dups of this stable_node. 1654 */ 1655 return NULL; 1656 } 1657 1658 /* 1659 * Lock and unlock the stable_node's page (which 1660 * might already have been migrated) so that page 1661 * migration is sure to notice its raised count. 1662 * It would be more elegant to return stable_node 1663 * than kpage, but that involves more changes. 1664 */ 1665 tree_page = get_ksm_page(stable_node_dup, true); 1666 if (unlikely(!tree_page)) 1667 /* 1668 * The tree may have been rebalanced, 1669 * so re-evaluate parent and new. 1670 */ 1671 goto again; 1672 unlock_page(tree_page); 1673 1674 if (get_kpfn_nid(stable_node_dup->kpfn) != 1675 NUMA(stable_node_dup->nid)) { 1676 put_page(tree_page); 1677 goto replace; 1678 } 1679 return tree_page; 1680 } 1681 } 1682 1683 if (!page_node) 1684 return NULL; 1685 1686 list_del(&page_node->list); 1687 DO_NUMA(page_node->nid = nid); 1688 rb_link_node(&page_node->node, parent, new); 1689 rb_insert_color(&page_node->node, root); 1690 out: 1691 if (is_page_sharing_candidate(page_node)) { 1692 get_page(page); 1693 return page; 1694 } else 1695 return NULL; 1696 1697 replace: 1698 /* 1699 * If stable_node was a chain and chain_prune collapsed it, 1700 * stable_node has been updated to be the new regular 1701 * stable_node. A collapse of the chain is indistinguishable 1702 * from the case there was no chain in the stable 1703 * rbtree. Otherwise stable_node is the chain and 1704 * stable_node_dup is the dup to replace. 1705 */ 1706 if (stable_node_dup == stable_node) { 1707 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1708 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1709 /* there is no chain */ 1710 if (page_node) { 1711 VM_BUG_ON(page_node->head != &migrate_nodes); 1712 list_del(&page_node->list); 1713 DO_NUMA(page_node->nid = nid); 1714 rb_replace_node(&stable_node_dup->node, 1715 &page_node->node, 1716 root); 1717 if (is_page_sharing_candidate(page_node)) 1718 get_page(page); 1719 else 1720 page = NULL; 1721 } else { 1722 rb_erase(&stable_node_dup->node, root); 1723 page = NULL; 1724 } 1725 } else { 1726 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1727 __stable_node_dup_del(stable_node_dup); 1728 if (page_node) { 1729 VM_BUG_ON(page_node->head != &migrate_nodes); 1730 list_del(&page_node->list); 1731 DO_NUMA(page_node->nid = nid); 1732 stable_node_chain_add_dup(page_node, stable_node); 1733 if (is_page_sharing_candidate(page_node)) 1734 get_page(page); 1735 else 1736 page = NULL; 1737 } else { 1738 page = NULL; 1739 } 1740 } 1741 stable_node_dup->head = &migrate_nodes; 1742 list_add(&stable_node_dup->list, stable_node_dup->head); 1743 return page; 1744 1745 chain_append: 1746 /* stable_node_dup could be null if it reached the limit */ 1747 if (!stable_node_dup) 1748 stable_node_dup = stable_node_any; 1749 /* 1750 * If stable_node was a chain and chain_prune collapsed it, 1751 * stable_node has been updated to be the new regular 1752 * stable_node. A collapse of the chain is indistinguishable 1753 * from the case there was no chain in the stable 1754 * rbtree. Otherwise stable_node is the chain and 1755 * stable_node_dup is the dup to replace. 1756 */ 1757 if (stable_node_dup == stable_node) { 1758 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1759 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1760 /* chain is missing so create it */ 1761 stable_node = alloc_stable_node_chain(stable_node_dup, 1762 root); 1763 if (!stable_node) 1764 return NULL; 1765 } 1766 /* 1767 * Add this stable_node dup that was 1768 * migrated to the stable_node chain 1769 * of the current nid for this page 1770 * content. 1771 */ 1772 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1773 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1774 VM_BUG_ON(page_node->head != &migrate_nodes); 1775 list_del(&page_node->list); 1776 DO_NUMA(page_node->nid = nid); 1777 stable_node_chain_add_dup(page_node, stable_node); 1778 goto out; 1779 } 1780 1781 /* 1782 * stable_tree_insert - insert stable tree node pointing to new ksm page 1783 * into the stable tree. 1784 * 1785 * This function returns the stable tree node just allocated on success, 1786 * NULL otherwise. 1787 */ 1788 static struct stable_node *stable_tree_insert(struct page *kpage) 1789 { 1790 int nid; 1791 unsigned long kpfn; 1792 struct rb_root *root; 1793 struct rb_node **new; 1794 struct rb_node *parent; 1795 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1796 bool need_chain = false; 1797 1798 kpfn = page_to_pfn(kpage); 1799 nid = get_kpfn_nid(kpfn); 1800 root = root_stable_tree + nid; 1801 again: 1802 parent = NULL; 1803 new = &root->rb_node; 1804 1805 while (*new) { 1806 struct page *tree_page; 1807 int ret; 1808 1809 cond_resched(); 1810 stable_node = rb_entry(*new, struct stable_node, node); 1811 stable_node_any = NULL; 1812 tree_page = chain(&stable_node_dup, stable_node, root); 1813 if (!stable_node_dup) { 1814 /* 1815 * Either all stable_node dups were full in 1816 * this stable_node chain, or this chain was 1817 * empty and should be rb_erased. 1818 */ 1819 stable_node_any = stable_node_dup_any(stable_node, 1820 root); 1821 if (!stable_node_any) { 1822 /* rb_erase just run */ 1823 goto again; 1824 } 1825 /* 1826 * Take any of the stable_node dups page of 1827 * this stable_node chain to let the tree walk 1828 * continue. All KSM pages belonging to the 1829 * stable_node dups in a stable_node chain 1830 * have the same content and they're 1831 * wrprotected at all times. Any will work 1832 * fine to continue the walk. 1833 */ 1834 tree_page = get_ksm_page(stable_node_any, false); 1835 } 1836 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1837 if (!tree_page) { 1838 /* 1839 * If we walked over a stale stable_node, 1840 * get_ksm_page() will call rb_erase() and it 1841 * may rebalance the tree from under us. So 1842 * restart the search from scratch. Returning 1843 * NULL would be safe too, but we'd generate 1844 * false negative insertions just because some 1845 * stable_node was stale. 1846 */ 1847 goto again; 1848 } 1849 1850 ret = memcmp_pages(kpage, tree_page); 1851 put_page(tree_page); 1852 1853 parent = *new; 1854 if (ret < 0) 1855 new = &parent->rb_left; 1856 else if (ret > 0) 1857 new = &parent->rb_right; 1858 else { 1859 need_chain = true; 1860 break; 1861 } 1862 } 1863 1864 stable_node_dup = alloc_stable_node(); 1865 if (!stable_node_dup) 1866 return NULL; 1867 1868 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1869 stable_node_dup->kpfn = kpfn; 1870 set_page_stable_node(kpage, stable_node_dup); 1871 stable_node_dup->rmap_hlist_len = 0; 1872 DO_NUMA(stable_node_dup->nid = nid); 1873 if (!need_chain) { 1874 rb_link_node(&stable_node_dup->node, parent, new); 1875 rb_insert_color(&stable_node_dup->node, root); 1876 } else { 1877 if (!is_stable_node_chain(stable_node)) { 1878 struct stable_node *orig = stable_node; 1879 /* chain is missing so create it */ 1880 stable_node = alloc_stable_node_chain(orig, root); 1881 if (!stable_node) { 1882 free_stable_node(stable_node_dup); 1883 return NULL; 1884 } 1885 } 1886 stable_node_chain_add_dup(stable_node_dup, stable_node); 1887 } 1888 1889 return stable_node_dup; 1890 } 1891 1892 /* 1893 * unstable_tree_search_insert - search for identical page, 1894 * else insert rmap_item into the unstable tree. 1895 * 1896 * This function searches for a page in the unstable tree identical to the 1897 * page currently being scanned; and if no identical page is found in the 1898 * tree, we insert rmap_item as a new object into the unstable tree. 1899 * 1900 * This function returns pointer to rmap_item found to be identical 1901 * to the currently scanned page, NULL otherwise. 1902 * 1903 * This function does both searching and inserting, because they share 1904 * the same walking algorithm in an rbtree. 1905 */ 1906 static 1907 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1908 struct page *page, 1909 struct page **tree_pagep) 1910 { 1911 struct rb_node **new; 1912 struct rb_root *root; 1913 struct rb_node *parent = NULL; 1914 int nid; 1915 1916 nid = get_kpfn_nid(page_to_pfn(page)); 1917 root = root_unstable_tree + nid; 1918 new = &root->rb_node; 1919 1920 while (*new) { 1921 struct rmap_item *tree_rmap_item; 1922 struct page *tree_page; 1923 int ret; 1924 1925 cond_resched(); 1926 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1927 tree_page = get_mergeable_page(tree_rmap_item); 1928 if (!tree_page) 1929 return NULL; 1930 1931 /* 1932 * Don't substitute a ksm page for a forked page. 1933 */ 1934 if (page == tree_page) { 1935 put_page(tree_page); 1936 return NULL; 1937 } 1938 1939 ret = memcmp_pages(page, tree_page); 1940 1941 parent = *new; 1942 if (ret < 0) { 1943 put_page(tree_page); 1944 new = &parent->rb_left; 1945 } else if (ret > 0) { 1946 put_page(tree_page); 1947 new = &parent->rb_right; 1948 } else if (!ksm_merge_across_nodes && 1949 page_to_nid(tree_page) != nid) { 1950 /* 1951 * If tree_page has been migrated to another NUMA node, 1952 * it will be flushed out and put in the right unstable 1953 * tree next time: only merge with it when across_nodes. 1954 */ 1955 put_page(tree_page); 1956 return NULL; 1957 } else { 1958 *tree_pagep = tree_page; 1959 return tree_rmap_item; 1960 } 1961 } 1962 1963 rmap_item->address |= UNSTABLE_FLAG; 1964 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1965 DO_NUMA(rmap_item->nid = nid); 1966 rb_link_node(&rmap_item->node, parent, new); 1967 rb_insert_color(&rmap_item->node, root); 1968 1969 ksm_pages_unshared++; 1970 return NULL; 1971 } 1972 1973 /* 1974 * stable_tree_append - add another rmap_item to the linked list of 1975 * rmap_items hanging off a given node of the stable tree, all sharing 1976 * the same ksm page. 1977 */ 1978 static void stable_tree_append(struct rmap_item *rmap_item, 1979 struct stable_node *stable_node, 1980 bool max_page_sharing_bypass) 1981 { 1982 /* 1983 * rmap won't find this mapping if we don't insert the 1984 * rmap_item in the right stable_node 1985 * duplicate. page_migration could break later if rmap breaks, 1986 * so we can as well crash here. We really need to check for 1987 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1988 * for other negative values as an undeflow if detected here 1989 * for the first time (and not when decreasing rmap_hlist_len) 1990 * would be sign of memory corruption in the stable_node. 1991 */ 1992 BUG_ON(stable_node->rmap_hlist_len < 0); 1993 1994 stable_node->rmap_hlist_len++; 1995 if (!max_page_sharing_bypass) 1996 /* possibly non fatal but unexpected overflow, only warn */ 1997 WARN_ON_ONCE(stable_node->rmap_hlist_len > 1998 ksm_max_page_sharing); 1999 2000 rmap_item->head = stable_node; 2001 rmap_item->address |= STABLE_FLAG; 2002 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2003 2004 if (rmap_item->hlist.next) 2005 ksm_pages_sharing++; 2006 else 2007 ksm_pages_shared++; 2008 } 2009 2010 /* 2011 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2012 * if not, compare checksum to previous and if it's the same, see if page can 2013 * be inserted into the unstable tree, or merged with a page already there and 2014 * both transferred to the stable tree. 2015 * 2016 * @page: the page that we are searching identical page to. 2017 * @rmap_item: the reverse mapping into the virtual address of this page 2018 */ 2019 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2020 { 2021 struct mm_struct *mm = rmap_item->mm; 2022 struct rmap_item *tree_rmap_item; 2023 struct page *tree_page = NULL; 2024 struct stable_node *stable_node; 2025 struct page *kpage; 2026 unsigned int checksum; 2027 int err; 2028 bool max_page_sharing_bypass = false; 2029 2030 stable_node = page_stable_node(page); 2031 if (stable_node) { 2032 if (stable_node->head != &migrate_nodes && 2033 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2034 NUMA(stable_node->nid)) { 2035 stable_node_dup_del(stable_node); 2036 stable_node->head = &migrate_nodes; 2037 list_add(&stable_node->list, stable_node->head); 2038 } 2039 if (stable_node->head != &migrate_nodes && 2040 rmap_item->head == stable_node) 2041 return; 2042 /* 2043 * If it's a KSM fork, allow it to go over the sharing limit 2044 * without warnings. 2045 */ 2046 if (!is_page_sharing_candidate(stable_node)) 2047 max_page_sharing_bypass = true; 2048 } 2049 2050 /* We first start with searching the page inside the stable tree */ 2051 kpage = stable_tree_search(page); 2052 if (kpage == page && rmap_item->head == stable_node) { 2053 put_page(kpage); 2054 return; 2055 } 2056 2057 remove_rmap_item_from_tree(rmap_item); 2058 2059 if (kpage) { 2060 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2061 if (!err) { 2062 /* 2063 * The page was successfully merged: 2064 * add its rmap_item to the stable tree. 2065 */ 2066 lock_page(kpage); 2067 stable_tree_append(rmap_item, page_stable_node(kpage), 2068 max_page_sharing_bypass); 2069 unlock_page(kpage); 2070 } 2071 put_page(kpage); 2072 return; 2073 } 2074 2075 /* 2076 * If the hash value of the page has changed from the last time 2077 * we calculated it, this page is changing frequently: therefore we 2078 * don't want to insert it in the unstable tree, and we don't want 2079 * to waste our time searching for something identical to it there. 2080 */ 2081 checksum = calc_checksum(page); 2082 if (rmap_item->oldchecksum != checksum) { 2083 rmap_item->oldchecksum = checksum; 2084 return; 2085 } 2086 2087 /* 2088 * Same checksum as an empty page. We attempt to merge it with the 2089 * appropriate zero page if the user enabled this via sysfs. 2090 */ 2091 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2092 struct vm_area_struct *vma; 2093 2094 down_read(&mm->mmap_sem); 2095 vma = find_mergeable_vma(mm, rmap_item->address); 2096 err = try_to_merge_one_page(vma, page, 2097 ZERO_PAGE(rmap_item->address)); 2098 up_read(&mm->mmap_sem); 2099 /* 2100 * In case of failure, the page was not really empty, so we 2101 * need to continue. Otherwise we're done. 2102 */ 2103 if (!err) 2104 return; 2105 } 2106 tree_rmap_item = 2107 unstable_tree_search_insert(rmap_item, page, &tree_page); 2108 if (tree_rmap_item) { 2109 bool split; 2110 2111 kpage = try_to_merge_two_pages(rmap_item, page, 2112 tree_rmap_item, tree_page); 2113 /* 2114 * If both pages we tried to merge belong to the same compound 2115 * page, then we actually ended up increasing the reference 2116 * count of the same compound page twice, and split_huge_page 2117 * failed. 2118 * Here we set a flag if that happened, and we use it later to 2119 * try split_huge_page again. Since we call put_page right 2120 * afterwards, the reference count will be correct and 2121 * split_huge_page should succeed. 2122 */ 2123 split = PageTransCompound(page) 2124 && compound_head(page) == compound_head(tree_page); 2125 put_page(tree_page); 2126 if (kpage) { 2127 /* 2128 * The pages were successfully merged: insert new 2129 * node in the stable tree and add both rmap_items. 2130 */ 2131 lock_page(kpage); 2132 stable_node = stable_tree_insert(kpage); 2133 if (stable_node) { 2134 stable_tree_append(tree_rmap_item, stable_node, 2135 false); 2136 stable_tree_append(rmap_item, stable_node, 2137 false); 2138 } 2139 unlock_page(kpage); 2140 2141 /* 2142 * If we fail to insert the page into the stable tree, 2143 * we will have 2 virtual addresses that are pointing 2144 * to a ksm page left outside the stable tree, 2145 * in which case we need to break_cow on both. 2146 */ 2147 if (!stable_node) { 2148 break_cow(tree_rmap_item); 2149 break_cow(rmap_item); 2150 } 2151 } else if (split) { 2152 /* 2153 * We are here if we tried to merge two pages and 2154 * failed because they both belonged to the same 2155 * compound page. We will split the page now, but no 2156 * merging will take place. 2157 * We do not want to add the cost of a full lock; if 2158 * the page is locked, it is better to skip it and 2159 * perhaps try again later. 2160 */ 2161 if (!trylock_page(page)) 2162 return; 2163 split_huge_page(page); 2164 unlock_page(page); 2165 } 2166 } 2167 } 2168 2169 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2170 struct rmap_item **rmap_list, 2171 unsigned long addr) 2172 { 2173 struct rmap_item *rmap_item; 2174 2175 while (*rmap_list) { 2176 rmap_item = *rmap_list; 2177 if ((rmap_item->address & PAGE_MASK) == addr) 2178 return rmap_item; 2179 if (rmap_item->address > addr) 2180 break; 2181 *rmap_list = rmap_item->rmap_list; 2182 remove_rmap_item_from_tree(rmap_item); 2183 free_rmap_item(rmap_item); 2184 } 2185 2186 rmap_item = alloc_rmap_item(); 2187 if (rmap_item) { 2188 /* It has already been zeroed */ 2189 rmap_item->mm = mm_slot->mm; 2190 rmap_item->address = addr; 2191 rmap_item->rmap_list = *rmap_list; 2192 *rmap_list = rmap_item; 2193 } 2194 return rmap_item; 2195 } 2196 2197 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2198 { 2199 struct mm_struct *mm; 2200 struct mm_slot *slot; 2201 struct vm_area_struct *vma; 2202 struct rmap_item *rmap_item; 2203 int nid; 2204 2205 if (list_empty(&ksm_mm_head.mm_list)) 2206 return NULL; 2207 2208 slot = ksm_scan.mm_slot; 2209 if (slot == &ksm_mm_head) { 2210 /* 2211 * A number of pages can hang around indefinitely on per-cpu 2212 * pagevecs, raised page count preventing write_protect_page 2213 * from merging them. Though it doesn't really matter much, 2214 * it is puzzling to see some stuck in pages_volatile until 2215 * other activity jostles them out, and they also prevented 2216 * LTP's KSM test from succeeding deterministically; so drain 2217 * them here (here rather than on entry to ksm_do_scan(), 2218 * so we don't IPI too often when pages_to_scan is set low). 2219 */ 2220 lru_add_drain_all(); 2221 2222 /* 2223 * Whereas stale stable_nodes on the stable_tree itself 2224 * get pruned in the regular course of stable_tree_search(), 2225 * those moved out to the migrate_nodes list can accumulate: 2226 * so prune them once before each full scan. 2227 */ 2228 if (!ksm_merge_across_nodes) { 2229 struct stable_node *stable_node, *next; 2230 struct page *page; 2231 2232 list_for_each_entry_safe(stable_node, next, 2233 &migrate_nodes, list) { 2234 page = get_ksm_page(stable_node, false); 2235 if (page) 2236 put_page(page); 2237 cond_resched(); 2238 } 2239 } 2240 2241 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2242 root_unstable_tree[nid] = RB_ROOT; 2243 2244 spin_lock(&ksm_mmlist_lock); 2245 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2246 ksm_scan.mm_slot = slot; 2247 spin_unlock(&ksm_mmlist_lock); 2248 /* 2249 * Although we tested list_empty() above, a racing __ksm_exit 2250 * of the last mm on the list may have removed it since then. 2251 */ 2252 if (slot == &ksm_mm_head) 2253 return NULL; 2254 next_mm: 2255 ksm_scan.address = 0; 2256 ksm_scan.rmap_list = &slot->rmap_list; 2257 } 2258 2259 mm = slot->mm; 2260 down_read(&mm->mmap_sem); 2261 if (ksm_test_exit(mm)) 2262 vma = NULL; 2263 else 2264 vma = find_vma(mm, ksm_scan.address); 2265 2266 for (; vma; vma = vma->vm_next) { 2267 if (!(vma->vm_flags & VM_MERGEABLE)) 2268 continue; 2269 if (ksm_scan.address < vma->vm_start) 2270 ksm_scan.address = vma->vm_start; 2271 if (!vma->anon_vma) 2272 ksm_scan.address = vma->vm_end; 2273 2274 while (ksm_scan.address < vma->vm_end) { 2275 if (ksm_test_exit(mm)) 2276 break; 2277 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2278 if (IS_ERR_OR_NULL(*page)) { 2279 ksm_scan.address += PAGE_SIZE; 2280 cond_resched(); 2281 continue; 2282 } 2283 if (PageAnon(*page)) { 2284 flush_anon_page(vma, *page, ksm_scan.address); 2285 flush_dcache_page(*page); 2286 rmap_item = get_next_rmap_item(slot, 2287 ksm_scan.rmap_list, ksm_scan.address); 2288 if (rmap_item) { 2289 ksm_scan.rmap_list = 2290 &rmap_item->rmap_list; 2291 ksm_scan.address += PAGE_SIZE; 2292 } else 2293 put_page(*page); 2294 up_read(&mm->mmap_sem); 2295 return rmap_item; 2296 } 2297 put_page(*page); 2298 ksm_scan.address += PAGE_SIZE; 2299 cond_resched(); 2300 } 2301 } 2302 2303 if (ksm_test_exit(mm)) { 2304 ksm_scan.address = 0; 2305 ksm_scan.rmap_list = &slot->rmap_list; 2306 } 2307 /* 2308 * Nuke all the rmap_items that are above this current rmap: 2309 * because there were no VM_MERGEABLE vmas with such addresses. 2310 */ 2311 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2312 2313 spin_lock(&ksm_mmlist_lock); 2314 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2315 struct mm_slot, mm_list); 2316 if (ksm_scan.address == 0) { 2317 /* 2318 * We've completed a full scan of all vmas, holding mmap_sem 2319 * throughout, and found no VM_MERGEABLE: so do the same as 2320 * __ksm_exit does to remove this mm from all our lists now. 2321 * This applies either when cleaning up after __ksm_exit 2322 * (but beware: we can reach here even before __ksm_exit), 2323 * or when all VM_MERGEABLE areas have been unmapped (and 2324 * mmap_sem then protects against race with MADV_MERGEABLE). 2325 */ 2326 hash_del(&slot->link); 2327 list_del(&slot->mm_list); 2328 spin_unlock(&ksm_mmlist_lock); 2329 2330 free_mm_slot(slot); 2331 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2332 up_read(&mm->mmap_sem); 2333 mmdrop(mm); 2334 } else { 2335 up_read(&mm->mmap_sem); 2336 /* 2337 * up_read(&mm->mmap_sem) first because after 2338 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2339 * already have been freed under us by __ksm_exit() 2340 * because the "mm_slot" is still hashed and 2341 * ksm_scan.mm_slot doesn't point to it anymore. 2342 */ 2343 spin_unlock(&ksm_mmlist_lock); 2344 } 2345 2346 /* Repeat until we've completed scanning the whole list */ 2347 slot = ksm_scan.mm_slot; 2348 if (slot != &ksm_mm_head) 2349 goto next_mm; 2350 2351 ksm_scan.seqnr++; 2352 return NULL; 2353 } 2354 2355 /** 2356 * ksm_do_scan - the ksm scanner main worker function. 2357 * @scan_npages: number of pages we want to scan before we return. 2358 */ 2359 static void ksm_do_scan(unsigned int scan_npages) 2360 { 2361 struct rmap_item *rmap_item; 2362 struct page *uninitialized_var(page); 2363 2364 while (scan_npages-- && likely(!freezing(current))) { 2365 cond_resched(); 2366 rmap_item = scan_get_next_rmap_item(&page); 2367 if (!rmap_item) 2368 return; 2369 cmp_and_merge_page(page, rmap_item); 2370 put_page(page); 2371 } 2372 } 2373 2374 static int ksmd_should_run(void) 2375 { 2376 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2377 } 2378 2379 static int ksm_scan_thread(void *nothing) 2380 { 2381 set_freezable(); 2382 set_user_nice(current, 5); 2383 2384 while (!kthread_should_stop()) { 2385 mutex_lock(&ksm_thread_mutex); 2386 wait_while_offlining(); 2387 if (ksmd_should_run()) 2388 ksm_do_scan(ksm_thread_pages_to_scan); 2389 mutex_unlock(&ksm_thread_mutex); 2390 2391 try_to_freeze(); 2392 2393 if (ksmd_should_run()) { 2394 schedule_timeout_interruptible( 2395 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2396 } else { 2397 wait_event_freezable(ksm_thread_wait, 2398 ksmd_should_run() || kthread_should_stop()); 2399 } 2400 } 2401 return 0; 2402 } 2403 2404 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2405 unsigned long end, int advice, unsigned long *vm_flags) 2406 { 2407 struct mm_struct *mm = vma->vm_mm; 2408 int err; 2409 2410 switch (advice) { 2411 case MADV_MERGEABLE: 2412 /* 2413 * Be somewhat over-protective for now! 2414 */ 2415 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2416 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2417 VM_HUGETLB | VM_MIXEDMAP)) 2418 return 0; /* just ignore the advice */ 2419 2420 #ifdef VM_SAO 2421 if (*vm_flags & VM_SAO) 2422 return 0; 2423 #endif 2424 #ifdef VM_SPARC_ADI 2425 if (*vm_flags & VM_SPARC_ADI) 2426 return 0; 2427 #endif 2428 2429 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2430 err = __ksm_enter(mm); 2431 if (err) 2432 return err; 2433 } 2434 2435 *vm_flags |= VM_MERGEABLE; 2436 break; 2437 2438 case MADV_UNMERGEABLE: 2439 if (!(*vm_flags & VM_MERGEABLE)) 2440 return 0; /* just ignore the advice */ 2441 2442 if (vma->anon_vma) { 2443 err = unmerge_ksm_pages(vma, start, end); 2444 if (err) 2445 return err; 2446 } 2447 2448 *vm_flags &= ~VM_MERGEABLE; 2449 break; 2450 } 2451 2452 return 0; 2453 } 2454 2455 int __ksm_enter(struct mm_struct *mm) 2456 { 2457 struct mm_slot *mm_slot; 2458 int needs_wakeup; 2459 2460 mm_slot = alloc_mm_slot(); 2461 if (!mm_slot) 2462 return -ENOMEM; 2463 2464 /* Check ksm_run too? Would need tighter locking */ 2465 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2466 2467 spin_lock(&ksm_mmlist_lock); 2468 insert_to_mm_slots_hash(mm, mm_slot); 2469 /* 2470 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2471 * insert just behind the scanning cursor, to let the area settle 2472 * down a little; when fork is followed by immediate exec, we don't 2473 * want ksmd to waste time setting up and tearing down an rmap_list. 2474 * 2475 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2476 * scanning cursor, otherwise KSM pages in newly forked mms will be 2477 * missed: then we might as well insert at the end of the list. 2478 */ 2479 if (ksm_run & KSM_RUN_UNMERGE) 2480 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2481 else 2482 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2483 spin_unlock(&ksm_mmlist_lock); 2484 2485 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2486 mmgrab(mm); 2487 2488 if (needs_wakeup) 2489 wake_up_interruptible(&ksm_thread_wait); 2490 2491 return 0; 2492 } 2493 2494 void __ksm_exit(struct mm_struct *mm) 2495 { 2496 struct mm_slot *mm_slot; 2497 int easy_to_free = 0; 2498 2499 /* 2500 * This process is exiting: if it's straightforward (as is the 2501 * case when ksmd was never running), free mm_slot immediately. 2502 * But if it's at the cursor or has rmap_items linked to it, use 2503 * mmap_sem to synchronize with any break_cows before pagetables 2504 * are freed, and leave the mm_slot on the list for ksmd to free. 2505 * Beware: ksm may already have noticed it exiting and freed the slot. 2506 */ 2507 2508 spin_lock(&ksm_mmlist_lock); 2509 mm_slot = get_mm_slot(mm); 2510 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2511 if (!mm_slot->rmap_list) { 2512 hash_del(&mm_slot->link); 2513 list_del(&mm_slot->mm_list); 2514 easy_to_free = 1; 2515 } else { 2516 list_move(&mm_slot->mm_list, 2517 &ksm_scan.mm_slot->mm_list); 2518 } 2519 } 2520 spin_unlock(&ksm_mmlist_lock); 2521 2522 if (easy_to_free) { 2523 free_mm_slot(mm_slot); 2524 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2525 mmdrop(mm); 2526 } else if (mm_slot) { 2527 down_write(&mm->mmap_sem); 2528 up_write(&mm->mmap_sem); 2529 } 2530 } 2531 2532 struct page *ksm_might_need_to_copy(struct page *page, 2533 struct vm_area_struct *vma, unsigned long address) 2534 { 2535 struct anon_vma *anon_vma = page_anon_vma(page); 2536 struct page *new_page; 2537 2538 if (PageKsm(page)) { 2539 if (page_stable_node(page) && 2540 !(ksm_run & KSM_RUN_UNMERGE)) 2541 return page; /* no need to copy it */ 2542 } else if (!anon_vma) { 2543 return page; /* no need to copy it */ 2544 } else if (anon_vma->root == vma->anon_vma->root && 2545 page->index == linear_page_index(vma, address)) { 2546 return page; /* still no need to copy it */ 2547 } 2548 if (!PageUptodate(page)) 2549 return page; /* let do_swap_page report the error */ 2550 2551 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2552 if (new_page) { 2553 copy_user_highpage(new_page, page, address, vma); 2554 2555 SetPageDirty(new_page); 2556 __SetPageUptodate(new_page); 2557 __SetPageLocked(new_page); 2558 } 2559 2560 return new_page; 2561 } 2562 2563 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2564 { 2565 struct stable_node *stable_node; 2566 struct rmap_item *rmap_item; 2567 int search_new_forks = 0; 2568 2569 VM_BUG_ON_PAGE(!PageKsm(page), page); 2570 2571 /* 2572 * Rely on the page lock to protect against concurrent modifications 2573 * to that page's node of the stable tree. 2574 */ 2575 VM_BUG_ON_PAGE(!PageLocked(page), page); 2576 2577 stable_node = page_stable_node(page); 2578 if (!stable_node) 2579 return; 2580 again: 2581 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2582 struct anon_vma *anon_vma = rmap_item->anon_vma; 2583 struct anon_vma_chain *vmac; 2584 struct vm_area_struct *vma; 2585 2586 cond_resched(); 2587 anon_vma_lock_read(anon_vma); 2588 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2589 0, ULONG_MAX) { 2590 cond_resched(); 2591 vma = vmac->vma; 2592 if (rmap_item->address < vma->vm_start || 2593 rmap_item->address >= vma->vm_end) 2594 continue; 2595 /* 2596 * Initially we examine only the vma which covers this 2597 * rmap_item; but later, if there is still work to do, 2598 * we examine covering vmas in other mms: in case they 2599 * were forked from the original since ksmd passed. 2600 */ 2601 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2602 continue; 2603 2604 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2605 continue; 2606 2607 if (!rwc->rmap_one(page, vma, 2608 rmap_item->address, rwc->arg)) { 2609 anon_vma_unlock_read(anon_vma); 2610 return; 2611 } 2612 if (rwc->done && rwc->done(page)) { 2613 anon_vma_unlock_read(anon_vma); 2614 return; 2615 } 2616 } 2617 anon_vma_unlock_read(anon_vma); 2618 } 2619 if (!search_new_forks++) 2620 goto again; 2621 } 2622 2623 #ifdef CONFIG_MIGRATION 2624 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2625 { 2626 struct stable_node *stable_node; 2627 2628 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2629 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2630 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2631 2632 stable_node = page_stable_node(newpage); 2633 if (stable_node) { 2634 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2635 stable_node->kpfn = page_to_pfn(newpage); 2636 /* 2637 * newpage->mapping was set in advance; now we need smp_wmb() 2638 * to make sure that the new stable_node->kpfn is visible 2639 * to get_ksm_page() before it can see that oldpage->mapping 2640 * has gone stale (or that PageSwapCache has been cleared). 2641 */ 2642 smp_wmb(); 2643 set_page_stable_node(oldpage, NULL); 2644 } 2645 } 2646 #endif /* CONFIG_MIGRATION */ 2647 2648 #ifdef CONFIG_MEMORY_HOTREMOVE 2649 static void wait_while_offlining(void) 2650 { 2651 while (ksm_run & KSM_RUN_OFFLINE) { 2652 mutex_unlock(&ksm_thread_mutex); 2653 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2654 TASK_UNINTERRUPTIBLE); 2655 mutex_lock(&ksm_thread_mutex); 2656 } 2657 } 2658 2659 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2660 unsigned long start_pfn, 2661 unsigned long end_pfn) 2662 { 2663 if (stable_node->kpfn >= start_pfn && 2664 stable_node->kpfn < end_pfn) { 2665 /* 2666 * Don't get_ksm_page, page has already gone: 2667 * which is why we keep kpfn instead of page* 2668 */ 2669 remove_node_from_stable_tree(stable_node); 2670 return true; 2671 } 2672 return false; 2673 } 2674 2675 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2676 unsigned long start_pfn, 2677 unsigned long end_pfn, 2678 struct rb_root *root) 2679 { 2680 struct stable_node *dup; 2681 struct hlist_node *hlist_safe; 2682 2683 if (!is_stable_node_chain(stable_node)) { 2684 VM_BUG_ON(is_stable_node_dup(stable_node)); 2685 return stable_node_dup_remove_range(stable_node, start_pfn, 2686 end_pfn); 2687 } 2688 2689 hlist_for_each_entry_safe(dup, hlist_safe, 2690 &stable_node->hlist, hlist_dup) { 2691 VM_BUG_ON(!is_stable_node_dup(dup)); 2692 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2693 } 2694 if (hlist_empty(&stable_node->hlist)) { 2695 free_stable_node_chain(stable_node, root); 2696 return true; /* notify caller that tree was rebalanced */ 2697 } else 2698 return false; 2699 } 2700 2701 static void ksm_check_stable_tree(unsigned long start_pfn, 2702 unsigned long end_pfn) 2703 { 2704 struct stable_node *stable_node, *next; 2705 struct rb_node *node; 2706 int nid; 2707 2708 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2709 node = rb_first(root_stable_tree + nid); 2710 while (node) { 2711 stable_node = rb_entry(node, struct stable_node, node); 2712 if (stable_node_chain_remove_range(stable_node, 2713 start_pfn, end_pfn, 2714 root_stable_tree + 2715 nid)) 2716 node = rb_first(root_stable_tree + nid); 2717 else 2718 node = rb_next(node); 2719 cond_resched(); 2720 } 2721 } 2722 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2723 if (stable_node->kpfn >= start_pfn && 2724 stable_node->kpfn < end_pfn) 2725 remove_node_from_stable_tree(stable_node); 2726 cond_resched(); 2727 } 2728 } 2729 2730 static int ksm_memory_callback(struct notifier_block *self, 2731 unsigned long action, void *arg) 2732 { 2733 struct memory_notify *mn = arg; 2734 2735 switch (action) { 2736 case MEM_GOING_OFFLINE: 2737 /* 2738 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2739 * and remove_all_stable_nodes() while memory is going offline: 2740 * it is unsafe for them to touch the stable tree at this time. 2741 * But unmerge_ksm_pages(), rmap lookups and other entry points 2742 * which do not need the ksm_thread_mutex are all safe. 2743 */ 2744 mutex_lock(&ksm_thread_mutex); 2745 ksm_run |= KSM_RUN_OFFLINE; 2746 mutex_unlock(&ksm_thread_mutex); 2747 break; 2748 2749 case MEM_OFFLINE: 2750 /* 2751 * Most of the work is done by page migration; but there might 2752 * be a few stable_nodes left over, still pointing to struct 2753 * pages which have been offlined: prune those from the tree, 2754 * otherwise get_ksm_page() might later try to access a 2755 * non-existent struct page. 2756 */ 2757 ksm_check_stable_tree(mn->start_pfn, 2758 mn->start_pfn + mn->nr_pages); 2759 /* fallthrough */ 2760 2761 case MEM_CANCEL_OFFLINE: 2762 mutex_lock(&ksm_thread_mutex); 2763 ksm_run &= ~KSM_RUN_OFFLINE; 2764 mutex_unlock(&ksm_thread_mutex); 2765 2766 smp_mb(); /* wake_up_bit advises this */ 2767 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2768 break; 2769 } 2770 return NOTIFY_OK; 2771 } 2772 #else 2773 static void wait_while_offlining(void) 2774 { 2775 } 2776 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2777 2778 #ifdef CONFIG_SYSFS 2779 /* 2780 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2781 */ 2782 2783 #define KSM_ATTR_RO(_name) \ 2784 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2785 #define KSM_ATTR(_name) \ 2786 static struct kobj_attribute _name##_attr = \ 2787 __ATTR(_name, 0644, _name##_show, _name##_store) 2788 2789 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2790 struct kobj_attribute *attr, char *buf) 2791 { 2792 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2793 } 2794 2795 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2796 struct kobj_attribute *attr, 2797 const char *buf, size_t count) 2798 { 2799 unsigned long msecs; 2800 int err; 2801 2802 err = kstrtoul(buf, 10, &msecs); 2803 if (err || msecs > UINT_MAX) 2804 return -EINVAL; 2805 2806 ksm_thread_sleep_millisecs = msecs; 2807 2808 return count; 2809 } 2810 KSM_ATTR(sleep_millisecs); 2811 2812 static ssize_t pages_to_scan_show(struct kobject *kobj, 2813 struct kobj_attribute *attr, char *buf) 2814 { 2815 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2816 } 2817 2818 static ssize_t pages_to_scan_store(struct kobject *kobj, 2819 struct kobj_attribute *attr, 2820 const char *buf, size_t count) 2821 { 2822 int err; 2823 unsigned long nr_pages; 2824 2825 err = kstrtoul(buf, 10, &nr_pages); 2826 if (err || nr_pages > UINT_MAX) 2827 return -EINVAL; 2828 2829 ksm_thread_pages_to_scan = nr_pages; 2830 2831 return count; 2832 } 2833 KSM_ATTR(pages_to_scan); 2834 2835 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2836 char *buf) 2837 { 2838 return sprintf(buf, "%lu\n", ksm_run); 2839 } 2840 2841 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2842 const char *buf, size_t count) 2843 { 2844 int err; 2845 unsigned long flags; 2846 2847 err = kstrtoul(buf, 10, &flags); 2848 if (err || flags > UINT_MAX) 2849 return -EINVAL; 2850 if (flags > KSM_RUN_UNMERGE) 2851 return -EINVAL; 2852 2853 /* 2854 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2855 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2856 * breaking COW to free the pages_shared (but leaves mm_slots 2857 * on the list for when ksmd may be set running again). 2858 */ 2859 2860 mutex_lock(&ksm_thread_mutex); 2861 wait_while_offlining(); 2862 if (ksm_run != flags) { 2863 ksm_run = flags; 2864 if (flags & KSM_RUN_UNMERGE) { 2865 set_current_oom_origin(); 2866 err = unmerge_and_remove_all_rmap_items(); 2867 clear_current_oom_origin(); 2868 if (err) { 2869 ksm_run = KSM_RUN_STOP; 2870 count = err; 2871 } 2872 } 2873 } 2874 mutex_unlock(&ksm_thread_mutex); 2875 2876 if (flags & KSM_RUN_MERGE) 2877 wake_up_interruptible(&ksm_thread_wait); 2878 2879 return count; 2880 } 2881 KSM_ATTR(run); 2882 2883 #ifdef CONFIG_NUMA 2884 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2885 struct kobj_attribute *attr, char *buf) 2886 { 2887 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2888 } 2889 2890 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2891 struct kobj_attribute *attr, 2892 const char *buf, size_t count) 2893 { 2894 int err; 2895 unsigned long knob; 2896 2897 err = kstrtoul(buf, 10, &knob); 2898 if (err) 2899 return err; 2900 if (knob > 1) 2901 return -EINVAL; 2902 2903 mutex_lock(&ksm_thread_mutex); 2904 wait_while_offlining(); 2905 if (ksm_merge_across_nodes != knob) { 2906 if (ksm_pages_shared || remove_all_stable_nodes()) 2907 err = -EBUSY; 2908 else if (root_stable_tree == one_stable_tree) { 2909 struct rb_root *buf; 2910 /* 2911 * This is the first time that we switch away from the 2912 * default of merging across nodes: must now allocate 2913 * a buffer to hold as many roots as may be needed. 2914 * Allocate stable and unstable together: 2915 * MAXSMP NODES_SHIFT 10 will use 16kB. 2916 */ 2917 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2918 GFP_KERNEL); 2919 /* Let us assume that RB_ROOT is NULL is zero */ 2920 if (!buf) 2921 err = -ENOMEM; 2922 else { 2923 root_stable_tree = buf; 2924 root_unstable_tree = buf + nr_node_ids; 2925 /* Stable tree is empty but not the unstable */ 2926 root_unstable_tree[0] = one_unstable_tree[0]; 2927 } 2928 } 2929 if (!err) { 2930 ksm_merge_across_nodes = knob; 2931 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2932 } 2933 } 2934 mutex_unlock(&ksm_thread_mutex); 2935 2936 return err ? err : count; 2937 } 2938 KSM_ATTR(merge_across_nodes); 2939 #endif 2940 2941 static ssize_t use_zero_pages_show(struct kobject *kobj, 2942 struct kobj_attribute *attr, char *buf) 2943 { 2944 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2945 } 2946 static ssize_t use_zero_pages_store(struct kobject *kobj, 2947 struct kobj_attribute *attr, 2948 const char *buf, size_t count) 2949 { 2950 int err; 2951 bool value; 2952 2953 err = kstrtobool(buf, &value); 2954 if (err) 2955 return -EINVAL; 2956 2957 ksm_use_zero_pages = value; 2958 2959 return count; 2960 } 2961 KSM_ATTR(use_zero_pages); 2962 2963 static ssize_t max_page_sharing_show(struct kobject *kobj, 2964 struct kobj_attribute *attr, char *buf) 2965 { 2966 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2967 } 2968 2969 static ssize_t max_page_sharing_store(struct kobject *kobj, 2970 struct kobj_attribute *attr, 2971 const char *buf, size_t count) 2972 { 2973 int err; 2974 int knob; 2975 2976 err = kstrtoint(buf, 10, &knob); 2977 if (err) 2978 return err; 2979 /* 2980 * When a KSM page is created it is shared by 2 mappings. This 2981 * being a signed comparison, it implicitly verifies it's not 2982 * negative. 2983 */ 2984 if (knob < 2) 2985 return -EINVAL; 2986 2987 if (READ_ONCE(ksm_max_page_sharing) == knob) 2988 return count; 2989 2990 mutex_lock(&ksm_thread_mutex); 2991 wait_while_offlining(); 2992 if (ksm_max_page_sharing != knob) { 2993 if (ksm_pages_shared || remove_all_stable_nodes()) 2994 err = -EBUSY; 2995 else 2996 ksm_max_page_sharing = knob; 2997 } 2998 mutex_unlock(&ksm_thread_mutex); 2999 3000 return err ? err : count; 3001 } 3002 KSM_ATTR(max_page_sharing); 3003 3004 static ssize_t pages_shared_show(struct kobject *kobj, 3005 struct kobj_attribute *attr, char *buf) 3006 { 3007 return sprintf(buf, "%lu\n", ksm_pages_shared); 3008 } 3009 KSM_ATTR_RO(pages_shared); 3010 3011 static ssize_t pages_sharing_show(struct kobject *kobj, 3012 struct kobj_attribute *attr, char *buf) 3013 { 3014 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3015 } 3016 KSM_ATTR_RO(pages_sharing); 3017 3018 static ssize_t pages_unshared_show(struct kobject *kobj, 3019 struct kobj_attribute *attr, char *buf) 3020 { 3021 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3022 } 3023 KSM_ATTR_RO(pages_unshared); 3024 3025 static ssize_t pages_volatile_show(struct kobject *kobj, 3026 struct kobj_attribute *attr, char *buf) 3027 { 3028 long ksm_pages_volatile; 3029 3030 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3031 - ksm_pages_sharing - ksm_pages_unshared; 3032 /* 3033 * It was not worth any locking to calculate that statistic, 3034 * but it might therefore sometimes be negative: conceal that. 3035 */ 3036 if (ksm_pages_volatile < 0) 3037 ksm_pages_volatile = 0; 3038 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3039 } 3040 KSM_ATTR_RO(pages_volatile); 3041 3042 static ssize_t stable_node_dups_show(struct kobject *kobj, 3043 struct kobj_attribute *attr, char *buf) 3044 { 3045 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3046 } 3047 KSM_ATTR_RO(stable_node_dups); 3048 3049 static ssize_t stable_node_chains_show(struct kobject *kobj, 3050 struct kobj_attribute *attr, char *buf) 3051 { 3052 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3053 } 3054 KSM_ATTR_RO(stable_node_chains); 3055 3056 static ssize_t 3057 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3058 struct kobj_attribute *attr, 3059 char *buf) 3060 { 3061 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3062 } 3063 3064 static ssize_t 3065 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3066 struct kobj_attribute *attr, 3067 const char *buf, size_t count) 3068 { 3069 unsigned long msecs; 3070 int err; 3071 3072 err = kstrtoul(buf, 10, &msecs); 3073 if (err || msecs > UINT_MAX) 3074 return -EINVAL; 3075 3076 ksm_stable_node_chains_prune_millisecs = msecs; 3077 3078 return count; 3079 } 3080 KSM_ATTR(stable_node_chains_prune_millisecs); 3081 3082 static ssize_t full_scans_show(struct kobject *kobj, 3083 struct kobj_attribute *attr, char *buf) 3084 { 3085 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3086 } 3087 KSM_ATTR_RO(full_scans); 3088 3089 static struct attribute *ksm_attrs[] = { 3090 &sleep_millisecs_attr.attr, 3091 &pages_to_scan_attr.attr, 3092 &run_attr.attr, 3093 &pages_shared_attr.attr, 3094 &pages_sharing_attr.attr, 3095 &pages_unshared_attr.attr, 3096 &pages_volatile_attr.attr, 3097 &full_scans_attr.attr, 3098 #ifdef CONFIG_NUMA 3099 &merge_across_nodes_attr.attr, 3100 #endif 3101 &max_page_sharing_attr.attr, 3102 &stable_node_chains_attr.attr, 3103 &stable_node_dups_attr.attr, 3104 &stable_node_chains_prune_millisecs_attr.attr, 3105 &use_zero_pages_attr.attr, 3106 NULL, 3107 }; 3108 3109 static const struct attribute_group ksm_attr_group = { 3110 .attrs = ksm_attrs, 3111 .name = "ksm", 3112 }; 3113 #endif /* CONFIG_SYSFS */ 3114 3115 static int __init ksm_init(void) 3116 { 3117 struct task_struct *ksm_thread; 3118 int err; 3119 3120 /* The correct value depends on page size and endianness */ 3121 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3122 /* Default to false for backwards compatibility */ 3123 ksm_use_zero_pages = false; 3124 3125 err = ksm_slab_init(); 3126 if (err) 3127 goto out; 3128 3129 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3130 if (IS_ERR(ksm_thread)) { 3131 pr_err("ksm: creating kthread failed\n"); 3132 err = PTR_ERR(ksm_thread); 3133 goto out_free; 3134 } 3135 3136 #ifdef CONFIG_SYSFS 3137 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3138 if (err) { 3139 pr_err("ksm: register sysfs failed\n"); 3140 kthread_stop(ksm_thread); 3141 goto out_free; 3142 } 3143 #else 3144 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3145 3146 #endif /* CONFIG_SYSFS */ 3147 3148 #ifdef CONFIG_MEMORY_HOTREMOVE 3149 /* There is no significance to this priority 100 */ 3150 hotplug_memory_notifier(ksm_memory_callback, 100); 3151 #endif 3152 return 0; 3153 3154 out_free: 3155 ksm_slab_free(); 3156 out: 3157 return err; 3158 } 3159 subsys_initcall(ksm_init); 3160