xref: /linux/mm/ksm.c (revision 630ae80ea1dd253609cb50cff87f3248f901aca3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 #include "mm_slot.h"
46 
47 #ifdef CONFIG_NUMA
48 #define NUMA(x)		(x)
49 #define DO_NUMA(x)	do { (x); } while (0)
50 #else
51 #define NUMA(x)		(0)
52 #define DO_NUMA(x)	do { } while (0)
53 #endif
54 
55 /**
56  * DOC: Overview
57  *
58  * A few notes about the KSM scanning process,
59  * to make it easier to understand the data structures below:
60  *
61  * In order to reduce excessive scanning, KSM sorts the memory pages by their
62  * contents into a data structure that holds pointers to the pages' locations.
63  *
64  * Since the contents of the pages may change at any moment, KSM cannot just
65  * insert the pages into a normal sorted tree and expect it to find anything.
66  * Therefore KSM uses two data structures - the stable and the unstable tree.
67  *
68  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
69  * by their contents.  Because each such page is write-protected, searching on
70  * this tree is fully assured to be working (except when pages are unmapped),
71  * and therefore this tree is called the stable tree.
72  *
73  * The stable tree node includes information required for reverse
74  * mapping from a KSM page to virtual addresses that map this page.
75  *
76  * In order to avoid large latencies of the rmap walks on KSM pages,
77  * KSM maintains two types of nodes in the stable tree:
78  *
79  * * the regular nodes that keep the reverse mapping structures in a
80  *   linked list
81  * * the "chains" that link nodes ("dups") that represent the same
82  *   write protected memory content, but each "dup" corresponds to a
83  *   different KSM page copy of that content
84  *
85  * Internally, the regular nodes, "dups" and "chains" are represented
86  * using the same struct ksm_stable_node structure.
87  *
88  * In addition to the stable tree, KSM uses a second data structure called the
89  * unstable tree: this tree holds pointers to pages which have been found to
90  * be "unchanged for a period of time".  The unstable tree sorts these pages
91  * by their contents, but since they are not write-protected, KSM cannot rely
92  * upon the unstable tree to work correctly - the unstable tree is liable to
93  * be corrupted as its contents are modified, and so it is called unstable.
94  *
95  * KSM solves this problem by several techniques:
96  *
97  * 1) The unstable tree is flushed every time KSM completes scanning all
98  *    memory areas, and then the tree is rebuilt again from the beginning.
99  * 2) KSM will only insert into the unstable tree, pages whose hash value
100  *    has not changed since the previous scan of all memory areas.
101  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
102  *    colors of the nodes and not on their contents, assuring that even when
103  *    the tree gets "corrupted" it won't get out of balance, so scanning time
104  *    remains the same (also, searching and inserting nodes in an rbtree uses
105  *    the same algorithm, so we have no overhead when we flush and rebuild).
106  * 4) KSM never flushes the stable tree, which means that even if it were to
107  *    take 10 attempts to find a page in the unstable tree, once it is found,
108  *    it is secured in the stable tree.  (When we scan a new page, we first
109  *    compare it against the stable tree, and then against the unstable tree.)
110  *
111  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
112  * stable trees and multiple unstable trees: one of each for each NUMA node.
113  */
114 
115 /**
116  * struct ksm_mm_slot - ksm information per mm that is being scanned
117  * @slot: hash lookup from mm to mm_slot
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  */
120 struct ksm_mm_slot {
121 	struct mm_slot slot;
122 	struct ksm_rmap_item *rmap_list;
123 };
124 
125 /**
126  * struct ksm_scan - cursor for scanning
127  * @mm_slot: the current mm_slot we are scanning
128  * @address: the next address inside that to be scanned
129  * @rmap_list: link to the next rmap to be scanned in the rmap_list
130  * @seqnr: count of completed full scans (needed when removing unstable node)
131  *
132  * There is only the one ksm_scan instance of this cursor structure.
133  */
134 struct ksm_scan {
135 	struct ksm_mm_slot *mm_slot;
136 	unsigned long address;
137 	struct ksm_rmap_item **rmap_list;
138 	unsigned long seqnr;
139 };
140 
141 /**
142  * struct ksm_stable_node - node of the stable rbtree
143  * @node: rb node of this ksm page in the stable tree
144  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
145  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
146  * @list: linked into migrate_nodes, pending placement in the proper node tree
147  * @hlist: hlist head of rmap_items using this ksm page
148  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
149  * @chain_prune_time: time of the last full garbage collection
150  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
151  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
152  */
153 struct ksm_stable_node {
154 	union {
155 		struct rb_node node;	/* when node of stable tree */
156 		struct {		/* when listed for migration */
157 			struct list_head *head;
158 			struct {
159 				struct hlist_node hlist_dup;
160 				struct list_head list;
161 			};
162 		};
163 	};
164 	struct hlist_head hlist;
165 	union {
166 		unsigned long kpfn;
167 		unsigned long chain_prune_time;
168 	};
169 	/*
170 	 * STABLE_NODE_CHAIN can be any negative number in
171 	 * rmap_hlist_len negative range, but better not -1 to be able
172 	 * to reliably detect underflows.
173 	 */
174 #define STABLE_NODE_CHAIN -1024
175 	int rmap_hlist_len;
176 #ifdef CONFIG_NUMA
177 	int nid;
178 #endif
179 };
180 
181 /**
182  * struct ksm_rmap_item - reverse mapping item for virtual addresses
183  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
184  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
185  * @nid: NUMA node id of unstable tree in which linked (may not match page)
186  * @mm: the memory structure this rmap_item is pointing into
187  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
188  * @oldchecksum: previous checksum of the page at that virtual address
189  * @node: rb node of this rmap_item in the unstable tree
190  * @head: pointer to stable_node heading this list in the stable tree
191  * @hlist: link into hlist of rmap_items hanging off that stable_node
192  */
193 struct ksm_rmap_item {
194 	struct ksm_rmap_item *rmap_list;
195 	union {
196 		struct anon_vma *anon_vma;	/* when stable */
197 #ifdef CONFIG_NUMA
198 		int nid;		/* when node of unstable tree */
199 #endif
200 	};
201 	struct mm_struct *mm;
202 	unsigned long address;		/* + low bits used for flags below */
203 	unsigned int oldchecksum;	/* when unstable */
204 	union {
205 		struct rb_node node;	/* when node of unstable tree */
206 		struct {		/* when listed from stable tree */
207 			struct ksm_stable_node *head;
208 			struct hlist_node hlist;
209 		};
210 	};
211 };
212 
213 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
214 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
215 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
216 
217 /* The stable and unstable tree heads */
218 static struct rb_root one_stable_tree[1] = { RB_ROOT };
219 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
220 static struct rb_root *root_stable_tree = one_stable_tree;
221 static struct rb_root *root_unstable_tree = one_unstable_tree;
222 
223 /* Recently migrated nodes of stable tree, pending proper placement */
224 static LIST_HEAD(migrate_nodes);
225 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
226 
227 #define MM_SLOTS_HASH_BITS 10
228 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
229 
230 static struct ksm_mm_slot ksm_mm_head = {
231 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
232 };
233 static struct ksm_scan ksm_scan = {
234 	.mm_slot = &ksm_mm_head,
235 };
236 
237 static struct kmem_cache *rmap_item_cache;
238 static struct kmem_cache *stable_node_cache;
239 static struct kmem_cache *mm_slot_cache;
240 
241 /* The number of nodes in the stable tree */
242 static unsigned long ksm_pages_shared;
243 
244 /* The number of page slots additionally sharing those nodes */
245 static unsigned long ksm_pages_sharing;
246 
247 /* The number of nodes in the unstable tree */
248 static unsigned long ksm_pages_unshared;
249 
250 /* The number of rmap_items in use: to calculate pages_volatile */
251 static unsigned long ksm_rmap_items;
252 
253 /* The number of stable_node chains */
254 static unsigned long ksm_stable_node_chains;
255 
256 /* The number of stable_node dups linked to the stable_node chains */
257 static unsigned long ksm_stable_node_dups;
258 
259 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
260 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
261 
262 /* Maximum number of page slots sharing a stable node */
263 static int ksm_max_page_sharing = 256;
264 
265 /* Number of pages ksmd should scan in one batch */
266 static unsigned int ksm_thread_pages_to_scan = 100;
267 
268 /* Milliseconds ksmd should sleep between batches */
269 static unsigned int ksm_thread_sleep_millisecs = 20;
270 
271 /* Checksum of an empty (zeroed) page */
272 static unsigned int zero_checksum __read_mostly;
273 
274 /* Whether to merge empty (zeroed) pages with actual zero pages */
275 static bool ksm_use_zero_pages __read_mostly;
276 
277 #ifdef CONFIG_NUMA
278 /* Zeroed when merging across nodes is not allowed */
279 static unsigned int ksm_merge_across_nodes = 1;
280 static int ksm_nr_node_ids = 1;
281 #else
282 #define ksm_merge_across_nodes	1U
283 #define ksm_nr_node_ids		1
284 #endif
285 
286 #define KSM_RUN_STOP	0
287 #define KSM_RUN_MERGE	1
288 #define KSM_RUN_UNMERGE	2
289 #define KSM_RUN_OFFLINE	4
290 static unsigned long ksm_run = KSM_RUN_STOP;
291 static void wait_while_offlining(void);
292 
293 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
295 static DEFINE_MUTEX(ksm_thread_mutex);
296 static DEFINE_SPINLOCK(ksm_mmlist_lock);
297 
298 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
299 		sizeof(struct __struct), __alignof__(struct __struct),\
300 		(__flags), NULL)
301 
302 static int __init ksm_slab_init(void)
303 {
304 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
305 	if (!rmap_item_cache)
306 		goto out;
307 
308 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
309 	if (!stable_node_cache)
310 		goto out_free1;
311 
312 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
313 	if (!mm_slot_cache)
314 		goto out_free2;
315 
316 	return 0;
317 
318 out_free2:
319 	kmem_cache_destroy(stable_node_cache);
320 out_free1:
321 	kmem_cache_destroy(rmap_item_cache);
322 out:
323 	return -ENOMEM;
324 }
325 
326 static void __init ksm_slab_free(void)
327 {
328 	kmem_cache_destroy(mm_slot_cache);
329 	kmem_cache_destroy(stable_node_cache);
330 	kmem_cache_destroy(rmap_item_cache);
331 	mm_slot_cache = NULL;
332 }
333 
334 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
335 {
336 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
337 }
338 
339 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
340 {
341 	return dup->head == STABLE_NODE_DUP_HEAD;
342 }
343 
344 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
345 					     struct ksm_stable_node *chain)
346 {
347 	VM_BUG_ON(is_stable_node_dup(dup));
348 	dup->head = STABLE_NODE_DUP_HEAD;
349 	VM_BUG_ON(!is_stable_node_chain(chain));
350 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
351 	ksm_stable_node_dups++;
352 }
353 
354 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
355 {
356 	VM_BUG_ON(!is_stable_node_dup(dup));
357 	hlist_del(&dup->hlist_dup);
358 	ksm_stable_node_dups--;
359 }
360 
361 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363 	VM_BUG_ON(is_stable_node_chain(dup));
364 	if (is_stable_node_dup(dup))
365 		__stable_node_dup_del(dup);
366 	else
367 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
368 #ifdef CONFIG_DEBUG_VM
369 	dup->head = NULL;
370 #endif
371 }
372 
373 static inline struct ksm_rmap_item *alloc_rmap_item(void)
374 {
375 	struct ksm_rmap_item *rmap_item;
376 
377 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
378 						__GFP_NORETRY | __GFP_NOWARN);
379 	if (rmap_item)
380 		ksm_rmap_items++;
381 	return rmap_item;
382 }
383 
384 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
385 {
386 	ksm_rmap_items--;
387 	rmap_item->mm->ksm_rmap_items--;
388 	rmap_item->mm = NULL;	/* debug safety */
389 	kmem_cache_free(rmap_item_cache, rmap_item);
390 }
391 
392 static inline struct ksm_stable_node *alloc_stable_node(void)
393 {
394 	/*
395 	 * The allocation can take too long with GFP_KERNEL when memory is under
396 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
397 	 * grants access to memory reserves, helping to avoid this problem.
398 	 */
399 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
400 }
401 
402 static inline void free_stable_node(struct ksm_stable_node *stable_node)
403 {
404 	VM_BUG_ON(stable_node->rmap_hlist_len &&
405 		  !is_stable_node_chain(stable_node));
406 	kmem_cache_free(stable_node_cache, stable_node);
407 }
408 
409 /*
410  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
411  * page tables after it has passed through ksm_exit() - which, if necessary,
412  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
413  * a special flag: they can just back out as soon as mm_users goes to zero.
414  * ksm_test_exit() is used throughout to make this test for exit: in some
415  * places for correctness, in some places just to avoid unnecessary work.
416  */
417 static inline bool ksm_test_exit(struct mm_struct *mm)
418 {
419 	return atomic_read(&mm->mm_users) == 0;
420 }
421 
422 /*
423  * We use break_ksm to break COW on a ksm page: it's a stripped down
424  *
425  *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
426  *		put_page(page);
427  *
428  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
429  * in case the application has unmapped and remapped mm,addr meanwhile.
430  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
431  * mmap of /dev/mem, where we would not want to touch it.
432  *
433  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
434  * of the process that owns 'vma'.  We also do not want to enforce
435  * protection keys here anyway.
436  */
437 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
438 {
439 	struct page *page;
440 	vm_fault_t ret = 0;
441 
442 	do {
443 		cond_resched();
444 		page = follow_page(vma, addr,
445 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
446 		if (IS_ERR_OR_NULL(page))
447 			break;
448 		if (PageKsm(page))
449 			ret = handle_mm_fault(vma, addr,
450 					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
451 					      NULL);
452 		else
453 			ret = VM_FAULT_WRITE;
454 		put_page(page);
455 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
456 	/*
457 	 * We must loop because handle_mm_fault() may back out if there's
458 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
459 	 *
460 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
461 	 * COW has been broken, even if the vma does not permit VM_WRITE;
462 	 * but note that a concurrent fault might break PageKsm for us.
463 	 *
464 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
465 	 * backing file, which also invalidates anonymous pages: that's
466 	 * okay, that truncation will have unmapped the PageKsm for us.
467 	 *
468 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
469 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
470 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
471 	 * to user; and ksmd, having no mm, would never be chosen for that.
472 	 *
473 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
474 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
475 	 * even ksmd can fail in this way - though it's usually breaking ksm
476 	 * just to undo a merge it made a moment before, so unlikely to oom.
477 	 *
478 	 * That's a pity: we might therefore have more kernel pages allocated
479 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
480 	 * will retry to break_cow on each pass, so should recover the page
481 	 * in due course.  The important thing is to not let VM_MERGEABLE
482 	 * be cleared while any such pages might remain in the area.
483 	 */
484 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
485 }
486 
487 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
488 		unsigned long addr)
489 {
490 	struct vm_area_struct *vma;
491 	if (ksm_test_exit(mm))
492 		return NULL;
493 	vma = vma_lookup(mm, addr);
494 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
495 		return NULL;
496 	return vma;
497 }
498 
499 static void break_cow(struct ksm_rmap_item *rmap_item)
500 {
501 	struct mm_struct *mm = rmap_item->mm;
502 	unsigned long addr = rmap_item->address;
503 	struct vm_area_struct *vma;
504 
505 	/*
506 	 * It is not an accident that whenever we want to break COW
507 	 * to undo, we also need to drop a reference to the anon_vma.
508 	 */
509 	put_anon_vma(rmap_item->anon_vma);
510 
511 	mmap_read_lock(mm);
512 	vma = find_mergeable_vma(mm, addr);
513 	if (vma)
514 		break_ksm(vma, addr);
515 	mmap_read_unlock(mm);
516 }
517 
518 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
519 {
520 	struct mm_struct *mm = rmap_item->mm;
521 	unsigned long addr = rmap_item->address;
522 	struct vm_area_struct *vma;
523 	struct page *page;
524 
525 	mmap_read_lock(mm);
526 	vma = find_mergeable_vma(mm, addr);
527 	if (!vma)
528 		goto out;
529 
530 	page = follow_page(vma, addr, FOLL_GET);
531 	if (IS_ERR_OR_NULL(page))
532 		goto out;
533 	if (is_zone_device_page(page))
534 		goto out_putpage;
535 	if (PageAnon(page)) {
536 		flush_anon_page(vma, page, addr);
537 		flush_dcache_page(page);
538 	} else {
539 out_putpage:
540 		put_page(page);
541 out:
542 		page = NULL;
543 	}
544 	mmap_read_unlock(mm);
545 	return page;
546 }
547 
548 /*
549  * This helper is used for getting right index into array of tree roots.
550  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
551  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
552  * every node has its own stable and unstable tree.
553  */
554 static inline int get_kpfn_nid(unsigned long kpfn)
555 {
556 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
557 }
558 
559 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
560 						   struct rb_root *root)
561 {
562 	struct ksm_stable_node *chain = alloc_stable_node();
563 	VM_BUG_ON(is_stable_node_chain(dup));
564 	if (likely(chain)) {
565 		INIT_HLIST_HEAD(&chain->hlist);
566 		chain->chain_prune_time = jiffies;
567 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
568 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
569 		chain->nid = NUMA_NO_NODE; /* debug */
570 #endif
571 		ksm_stable_node_chains++;
572 
573 		/*
574 		 * Put the stable node chain in the first dimension of
575 		 * the stable tree and at the same time remove the old
576 		 * stable node.
577 		 */
578 		rb_replace_node(&dup->node, &chain->node, root);
579 
580 		/*
581 		 * Move the old stable node to the second dimension
582 		 * queued in the hlist_dup. The invariant is that all
583 		 * dup stable_nodes in the chain->hlist point to pages
584 		 * that are write protected and have the exact same
585 		 * content.
586 		 */
587 		stable_node_chain_add_dup(dup, chain);
588 	}
589 	return chain;
590 }
591 
592 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
593 					  struct rb_root *root)
594 {
595 	rb_erase(&chain->node, root);
596 	free_stable_node(chain);
597 	ksm_stable_node_chains--;
598 }
599 
600 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
601 {
602 	struct ksm_rmap_item *rmap_item;
603 
604 	/* check it's not STABLE_NODE_CHAIN or negative */
605 	BUG_ON(stable_node->rmap_hlist_len < 0);
606 
607 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
608 		if (rmap_item->hlist.next)
609 			ksm_pages_sharing--;
610 		else
611 			ksm_pages_shared--;
612 
613 		rmap_item->mm->ksm_merging_pages--;
614 
615 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
616 		stable_node->rmap_hlist_len--;
617 		put_anon_vma(rmap_item->anon_vma);
618 		rmap_item->address &= PAGE_MASK;
619 		cond_resched();
620 	}
621 
622 	/*
623 	 * We need the second aligned pointer of the migrate_nodes
624 	 * list_head to stay clear from the rb_parent_color union
625 	 * (aligned and different than any node) and also different
626 	 * from &migrate_nodes. This will verify that future list.h changes
627 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
628 	 */
629 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
630 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
631 
632 	if (stable_node->head == &migrate_nodes)
633 		list_del(&stable_node->list);
634 	else
635 		stable_node_dup_del(stable_node);
636 	free_stable_node(stable_node);
637 }
638 
639 enum get_ksm_page_flags {
640 	GET_KSM_PAGE_NOLOCK,
641 	GET_KSM_PAGE_LOCK,
642 	GET_KSM_PAGE_TRYLOCK
643 };
644 
645 /*
646  * get_ksm_page: checks if the page indicated by the stable node
647  * is still its ksm page, despite having held no reference to it.
648  * In which case we can trust the content of the page, and it
649  * returns the gotten page; but if the page has now been zapped,
650  * remove the stale node from the stable tree and return NULL.
651  * But beware, the stable node's page might be being migrated.
652  *
653  * You would expect the stable_node to hold a reference to the ksm page.
654  * But if it increments the page's count, swapping out has to wait for
655  * ksmd to come around again before it can free the page, which may take
656  * seconds or even minutes: much too unresponsive.  So instead we use a
657  * "keyhole reference": access to the ksm page from the stable node peeps
658  * out through its keyhole to see if that page still holds the right key,
659  * pointing back to this stable node.  This relies on freeing a PageAnon
660  * page to reset its page->mapping to NULL, and relies on no other use of
661  * a page to put something that might look like our key in page->mapping.
662  * is on its way to being freed; but it is an anomaly to bear in mind.
663  */
664 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
665 				 enum get_ksm_page_flags flags)
666 {
667 	struct page *page;
668 	void *expected_mapping;
669 	unsigned long kpfn;
670 
671 	expected_mapping = (void *)((unsigned long)stable_node |
672 					PAGE_MAPPING_KSM);
673 again:
674 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
675 	page = pfn_to_page(kpfn);
676 	if (READ_ONCE(page->mapping) != expected_mapping)
677 		goto stale;
678 
679 	/*
680 	 * We cannot do anything with the page while its refcount is 0.
681 	 * Usually 0 means free, or tail of a higher-order page: in which
682 	 * case this node is no longer referenced, and should be freed;
683 	 * however, it might mean that the page is under page_ref_freeze().
684 	 * The __remove_mapping() case is easy, again the node is now stale;
685 	 * the same is in reuse_ksm_page() case; but if page is swapcache
686 	 * in folio_migrate_mapping(), it might still be our page,
687 	 * in which case it's essential to keep the node.
688 	 */
689 	while (!get_page_unless_zero(page)) {
690 		/*
691 		 * Another check for page->mapping != expected_mapping would
692 		 * work here too.  We have chosen the !PageSwapCache test to
693 		 * optimize the common case, when the page is or is about to
694 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
695 		 * in the ref_freeze section of __remove_mapping(); but Anon
696 		 * page->mapping reset to NULL later, in free_pages_prepare().
697 		 */
698 		if (!PageSwapCache(page))
699 			goto stale;
700 		cpu_relax();
701 	}
702 
703 	if (READ_ONCE(page->mapping) != expected_mapping) {
704 		put_page(page);
705 		goto stale;
706 	}
707 
708 	if (flags == GET_KSM_PAGE_TRYLOCK) {
709 		if (!trylock_page(page)) {
710 			put_page(page);
711 			return ERR_PTR(-EBUSY);
712 		}
713 	} else if (flags == GET_KSM_PAGE_LOCK)
714 		lock_page(page);
715 
716 	if (flags != GET_KSM_PAGE_NOLOCK) {
717 		if (READ_ONCE(page->mapping) != expected_mapping) {
718 			unlock_page(page);
719 			put_page(page);
720 			goto stale;
721 		}
722 	}
723 	return page;
724 
725 stale:
726 	/*
727 	 * We come here from above when page->mapping or !PageSwapCache
728 	 * suggests that the node is stale; but it might be under migration.
729 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
730 	 * before checking whether node->kpfn has been changed.
731 	 */
732 	smp_rmb();
733 	if (READ_ONCE(stable_node->kpfn) != kpfn)
734 		goto again;
735 	remove_node_from_stable_tree(stable_node);
736 	return NULL;
737 }
738 
739 /*
740  * Removing rmap_item from stable or unstable tree.
741  * This function will clean the information from the stable/unstable tree.
742  */
743 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
744 {
745 	if (rmap_item->address & STABLE_FLAG) {
746 		struct ksm_stable_node *stable_node;
747 		struct page *page;
748 
749 		stable_node = rmap_item->head;
750 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
751 		if (!page)
752 			goto out;
753 
754 		hlist_del(&rmap_item->hlist);
755 		unlock_page(page);
756 		put_page(page);
757 
758 		if (!hlist_empty(&stable_node->hlist))
759 			ksm_pages_sharing--;
760 		else
761 			ksm_pages_shared--;
762 
763 		rmap_item->mm->ksm_merging_pages--;
764 
765 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 		stable_node->rmap_hlist_len--;
767 
768 		put_anon_vma(rmap_item->anon_vma);
769 		rmap_item->head = NULL;
770 		rmap_item->address &= PAGE_MASK;
771 
772 	} else if (rmap_item->address & UNSTABLE_FLAG) {
773 		unsigned char age;
774 		/*
775 		 * Usually ksmd can and must skip the rb_erase, because
776 		 * root_unstable_tree was already reset to RB_ROOT.
777 		 * But be careful when an mm is exiting: do the rb_erase
778 		 * if this rmap_item was inserted by this scan, rather
779 		 * than left over from before.
780 		 */
781 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
782 		BUG_ON(age > 1);
783 		if (!age)
784 			rb_erase(&rmap_item->node,
785 				 root_unstable_tree + NUMA(rmap_item->nid));
786 		ksm_pages_unshared--;
787 		rmap_item->address &= PAGE_MASK;
788 	}
789 out:
790 	cond_resched();		/* we're called from many long loops */
791 }
792 
793 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
794 {
795 	while (*rmap_list) {
796 		struct ksm_rmap_item *rmap_item = *rmap_list;
797 		*rmap_list = rmap_item->rmap_list;
798 		remove_rmap_item_from_tree(rmap_item);
799 		free_rmap_item(rmap_item);
800 	}
801 }
802 
803 /*
804  * Though it's very tempting to unmerge rmap_items from stable tree rather
805  * than check every pte of a given vma, the locking doesn't quite work for
806  * that - an rmap_item is assigned to the stable tree after inserting ksm
807  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
808  * rmap_items from parent to child at fork time (so as not to waste time
809  * if exit comes before the next scan reaches it).
810  *
811  * Similarly, although we'd like to remove rmap_items (so updating counts
812  * and freeing memory) when unmerging an area, it's easier to leave that
813  * to the next pass of ksmd - consider, for example, how ksmd might be
814  * in cmp_and_merge_page on one of the rmap_items we would be removing.
815  */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 			     unsigned long start, unsigned long end)
818 {
819 	unsigned long addr;
820 	int err = 0;
821 
822 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 		if (ksm_test_exit(vma->vm_mm))
824 			break;
825 		if (signal_pending(current))
826 			err = -ERESTARTSYS;
827 		else
828 			err = break_ksm(vma, addr);
829 	}
830 	return err;
831 }
832 
833 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
834 {
835 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
836 }
837 
838 static inline struct ksm_stable_node *page_stable_node(struct page *page)
839 {
840 	return folio_stable_node(page_folio(page));
841 }
842 
843 static inline void set_page_stable_node(struct page *page,
844 					struct ksm_stable_node *stable_node)
845 {
846 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
847 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
848 }
849 
850 #ifdef CONFIG_SYSFS
851 /*
852  * Only called through the sysfs control interface:
853  */
854 static int remove_stable_node(struct ksm_stable_node *stable_node)
855 {
856 	struct page *page;
857 	int err;
858 
859 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
860 	if (!page) {
861 		/*
862 		 * get_ksm_page did remove_node_from_stable_tree itself.
863 		 */
864 		return 0;
865 	}
866 
867 	/*
868 	 * Page could be still mapped if this races with __mmput() running in
869 	 * between ksm_exit() and exit_mmap(). Just refuse to let
870 	 * merge_across_nodes/max_page_sharing be switched.
871 	 */
872 	err = -EBUSY;
873 	if (!page_mapped(page)) {
874 		/*
875 		 * The stable node did not yet appear stale to get_ksm_page(),
876 		 * since that allows for an unmapped ksm page to be recognized
877 		 * right up until it is freed; but the node is safe to remove.
878 		 * This page might be in a pagevec waiting to be freed,
879 		 * or it might be PageSwapCache (perhaps under writeback),
880 		 * or it might have been removed from swapcache a moment ago.
881 		 */
882 		set_page_stable_node(page, NULL);
883 		remove_node_from_stable_tree(stable_node);
884 		err = 0;
885 	}
886 
887 	unlock_page(page);
888 	put_page(page);
889 	return err;
890 }
891 
892 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
893 				    struct rb_root *root)
894 {
895 	struct ksm_stable_node *dup;
896 	struct hlist_node *hlist_safe;
897 
898 	if (!is_stable_node_chain(stable_node)) {
899 		VM_BUG_ON(is_stable_node_dup(stable_node));
900 		if (remove_stable_node(stable_node))
901 			return true;
902 		else
903 			return false;
904 	}
905 
906 	hlist_for_each_entry_safe(dup, hlist_safe,
907 				  &stable_node->hlist, hlist_dup) {
908 		VM_BUG_ON(!is_stable_node_dup(dup));
909 		if (remove_stable_node(dup))
910 			return true;
911 	}
912 	BUG_ON(!hlist_empty(&stable_node->hlist));
913 	free_stable_node_chain(stable_node, root);
914 	return false;
915 }
916 
917 static int remove_all_stable_nodes(void)
918 {
919 	struct ksm_stable_node *stable_node, *next;
920 	int nid;
921 	int err = 0;
922 
923 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
924 		while (root_stable_tree[nid].rb_node) {
925 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
926 						struct ksm_stable_node, node);
927 			if (remove_stable_node_chain(stable_node,
928 						     root_stable_tree + nid)) {
929 				err = -EBUSY;
930 				break;	/* proceed to next nid */
931 			}
932 			cond_resched();
933 		}
934 	}
935 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
936 		if (remove_stable_node(stable_node))
937 			err = -EBUSY;
938 		cond_resched();
939 	}
940 	return err;
941 }
942 
943 static int unmerge_and_remove_all_rmap_items(void)
944 {
945 	struct ksm_mm_slot *mm_slot;
946 	struct mm_slot *slot;
947 	struct mm_struct *mm;
948 	struct vm_area_struct *vma;
949 	int err = 0;
950 
951 	spin_lock(&ksm_mmlist_lock);
952 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
953 			  struct mm_slot, mm_node);
954 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
955 	spin_unlock(&ksm_mmlist_lock);
956 
957 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
958 	     mm_slot = ksm_scan.mm_slot) {
959 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
960 
961 		mm = mm_slot->slot.mm;
962 		mmap_read_lock(mm);
963 		for_each_vma(vmi, vma) {
964 			if (ksm_test_exit(mm))
965 				break;
966 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
967 				continue;
968 			err = unmerge_ksm_pages(vma,
969 						vma->vm_start, vma->vm_end);
970 			if (err)
971 				goto error;
972 		}
973 
974 		remove_trailing_rmap_items(&mm_slot->rmap_list);
975 		mmap_read_unlock(mm);
976 
977 		spin_lock(&ksm_mmlist_lock);
978 		slot = list_entry(mm_slot->slot.mm_node.next,
979 				  struct mm_slot, mm_node);
980 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
981 		if (ksm_test_exit(mm)) {
982 			hash_del(&mm_slot->slot.hash);
983 			list_del(&mm_slot->slot.mm_node);
984 			spin_unlock(&ksm_mmlist_lock);
985 
986 			mm_slot_free(mm_slot_cache, mm_slot);
987 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
988 			mmdrop(mm);
989 		} else
990 			spin_unlock(&ksm_mmlist_lock);
991 	}
992 
993 	/* Clean up stable nodes, but don't worry if some are still busy */
994 	remove_all_stable_nodes();
995 	ksm_scan.seqnr = 0;
996 	return 0;
997 
998 error:
999 	mmap_read_unlock(mm);
1000 	spin_lock(&ksm_mmlist_lock);
1001 	ksm_scan.mm_slot = &ksm_mm_head;
1002 	spin_unlock(&ksm_mmlist_lock);
1003 	return err;
1004 }
1005 #endif /* CONFIG_SYSFS */
1006 
1007 static u32 calc_checksum(struct page *page)
1008 {
1009 	u32 checksum;
1010 	void *addr = kmap_atomic(page);
1011 	checksum = xxhash(addr, PAGE_SIZE, 0);
1012 	kunmap_atomic(addr);
1013 	return checksum;
1014 }
1015 
1016 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1017 			      pte_t *orig_pte)
1018 {
1019 	struct mm_struct *mm = vma->vm_mm;
1020 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1021 	int swapped;
1022 	int err = -EFAULT;
1023 	struct mmu_notifier_range range;
1024 	bool anon_exclusive;
1025 
1026 	pvmw.address = page_address_in_vma(page, vma);
1027 	if (pvmw.address == -EFAULT)
1028 		goto out;
1029 
1030 	BUG_ON(PageTransCompound(page));
1031 
1032 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1033 				pvmw.address,
1034 				pvmw.address + PAGE_SIZE);
1035 	mmu_notifier_invalidate_range_start(&range);
1036 
1037 	if (!page_vma_mapped_walk(&pvmw))
1038 		goto out_mn;
1039 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040 		goto out_unlock;
1041 
1042 	anon_exclusive = PageAnonExclusive(page);
1043 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1044 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1045 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1046 		pte_t entry;
1047 
1048 		swapped = PageSwapCache(page);
1049 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1050 		/*
1051 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1052 		 * take any lock, therefore the check that we are going to make
1053 		 * with the pagecount against the mapcount is racy and
1054 		 * O_DIRECT can happen right after the check.
1055 		 * So we clear the pte and flush the tlb before the check
1056 		 * this assure us that no O_DIRECT can happen after the check
1057 		 * or in the middle of the check.
1058 		 *
1059 		 * No need to notify as we are downgrading page table to read
1060 		 * only not changing it to point to a new page.
1061 		 *
1062 		 * See Documentation/mm/mmu_notifier.rst
1063 		 */
1064 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1065 		/*
1066 		 * Check that no O_DIRECT or similar I/O is in progress on the
1067 		 * page
1068 		 */
1069 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1070 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1071 			goto out_unlock;
1072 		}
1073 
1074 		/* See page_try_share_anon_rmap(): clear PTE first. */
1075 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1076 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1077 			goto out_unlock;
1078 		}
1079 
1080 		if (pte_dirty(entry))
1081 			set_page_dirty(page);
1082 
1083 		if (pte_protnone(entry))
1084 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1085 		else
1086 			entry = pte_mkclean(pte_wrprotect(entry));
1087 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1088 	}
1089 	*orig_pte = *pvmw.pte;
1090 	err = 0;
1091 
1092 out_unlock:
1093 	page_vma_mapped_walk_done(&pvmw);
1094 out_mn:
1095 	mmu_notifier_invalidate_range_end(&range);
1096 out:
1097 	return err;
1098 }
1099 
1100 /**
1101  * replace_page - replace page in vma by new ksm page
1102  * @vma:      vma that holds the pte pointing to page
1103  * @page:     the page we are replacing by kpage
1104  * @kpage:    the ksm page we replace page by
1105  * @orig_pte: the original value of the pte
1106  *
1107  * Returns 0 on success, -EFAULT on failure.
1108  */
1109 static int replace_page(struct vm_area_struct *vma, struct page *page,
1110 			struct page *kpage, pte_t orig_pte)
1111 {
1112 	struct mm_struct *mm = vma->vm_mm;
1113 	struct folio *folio;
1114 	pmd_t *pmd;
1115 	pmd_t pmde;
1116 	pte_t *ptep;
1117 	pte_t newpte;
1118 	spinlock_t *ptl;
1119 	unsigned long addr;
1120 	int err = -EFAULT;
1121 	struct mmu_notifier_range range;
1122 
1123 	addr = page_address_in_vma(page, vma);
1124 	if (addr == -EFAULT)
1125 		goto out;
1126 
1127 	pmd = mm_find_pmd(mm, addr);
1128 	if (!pmd)
1129 		goto out;
1130 	/*
1131 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1132 	 * without holding anon_vma lock for write.  So when looking for a
1133 	 * genuine pmde (in which to find pte), test present and !THP together.
1134 	 */
1135 	pmde = *pmd;
1136 	barrier();
1137 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1138 		goto out;
1139 
1140 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1141 				addr + PAGE_SIZE);
1142 	mmu_notifier_invalidate_range_start(&range);
1143 
1144 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1145 	if (!pte_same(*ptep, orig_pte)) {
1146 		pte_unmap_unlock(ptep, ptl);
1147 		goto out_mn;
1148 	}
1149 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1150 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1151 
1152 	/*
1153 	 * No need to check ksm_use_zero_pages here: we can only have a
1154 	 * zero_page here if ksm_use_zero_pages was enabled already.
1155 	 */
1156 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1157 		get_page(kpage);
1158 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1159 		newpte = mk_pte(kpage, vma->vm_page_prot);
1160 	} else {
1161 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162 					       vma->vm_page_prot));
1163 		/*
1164 		 * We're replacing an anonymous page with a zero page, which is
1165 		 * not anonymous. We need to do proper accounting otherwise we
1166 		 * will get wrong values in /proc, and a BUG message in dmesg
1167 		 * when tearing down the mm.
1168 		 */
1169 		dec_mm_counter(mm, MM_ANONPAGES);
1170 	}
1171 
1172 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1173 	/*
1174 	 * No need to notify as we are replacing a read only page with another
1175 	 * read only page with the same content.
1176 	 *
1177 	 * See Documentation/mm/mmu_notifier.rst
1178 	 */
1179 	ptep_clear_flush(vma, addr, ptep);
1180 	set_pte_at_notify(mm, addr, ptep, newpte);
1181 
1182 	folio = page_folio(page);
1183 	page_remove_rmap(page, vma, false);
1184 	if (!folio_mapped(folio))
1185 		folio_free_swap(folio);
1186 	folio_put(folio);
1187 
1188 	pte_unmap_unlock(ptep, ptl);
1189 	err = 0;
1190 out_mn:
1191 	mmu_notifier_invalidate_range_end(&range);
1192 out:
1193 	return err;
1194 }
1195 
1196 /*
1197  * try_to_merge_one_page - take two pages and merge them into one
1198  * @vma: the vma that holds the pte pointing to page
1199  * @page: the PageAnon page that we want to replace with kpage
1200  * @kpage: the PageKsm page that we want to map instead of page,
1201  *         or NULL the first time when we want to use page as kpage.
1202  *
1203  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1204  */
1205 static int try_to_merge_one_page(struct vm_area_struct *vma,
1206 				 struct page *page, struct page *kpage)
1207 {
1208 	pte_t orig_pte = __pte(0);
1209 	int err = -EFAULT;
1210 
1211 	if (page == kpage)			/* ksm page forked */
1212 		return 0;
1213 
1214 	if (!PageAnon(page))
1215 		goto out;
1216 
1217 	/*
1218 	 * We need the page lock to read a stable PageSwapCache in
1219 	 * write_protect_page().  We use trylock_page() instead of
1220 	 * lock_page() because we don't want to wait here - we
1221 	 * prefer to continue scanning and merging different pages,
1222 	 * then come back to this page when it is unlocked.
1223 	 */
1224 	if (!trylock_page(page))
1225 		goto out;
1226 
1227 	if (PageTransCompound(page)) {
1228 		if (split_huge_page(page))
1229 			goto out_unlock;
1230 	}
1231 
1232 	/*
1233 	 * If this anonymous page is mapped only here, its pte may need
1234 	 * to be write-protected.  If it's mapped elsewhere, all of its
1235 	 * ptes are necessarily already write-protected.  But in either
1236 	 * case, we need to lock and check page_count is not raised.
1237 	 */
1238 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1239 		if (!kpage) {
1240 			/*
1241 			 * While we hold page lock, upgrade page from
1242 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1243 			 * stable_tree_insert() will update stable_node.
1244 			 */
1245 			set_page_stable_node(page, NULL);
1246 			mark_page_accessed(page);
1247 			/*
1248 			 * Page reclaim just frees a clean page with no dirty
1249 			 * ptes: make sure that the ksm page would be swapped.
1250 			 */
1251 			if (!PageDirty(page))
1252 				SetPageDirty(page);
1253 			err = 0;
1254 		} else if (pages_identical(page, kpage))
1255 			err = replace_page(vma, page, kpage, orig_pte);
1256 	}
1257 
1258 out_unlock:
1259 	unlock_page(page);
1260 out:
1261 	return err;
1262 }
1263 
1264 /*
1265  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1266  * but no new kernel page is allocated: kpage must already be a ksm page.
1267  *
1268  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1269  */
1270 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1271 				      struct page *page, struct page *kpage)
1272 {
1273 	struct mm_struct *mm = rmap_item->mm;
1274 	struct vm_area_struct *vma;
1275 	int err = -EFAULT;
1276 
1277 	mmap_read_lock(mm);
1278 	vma = find_mergeable_vma(mm, rmap_item->address);
1279 	if (!vma)
1280 		goto out;
1281 
1282 	err = try_to_merge_one_page(vma, page, kpage);
1283 	if (err)
1284 		goto out;
1285 
1286 	/* Unstable nid is in union with stable anon_vma: remove first */
1287 	remove_rmap_item_from_tree(rmap_item);
1288 
1289 	/* Must get reference to anon_vma while still holding mmap_lock */
1290 	rmap_item->anon_vma = vma->anon_vma;
1291 	get_anon_vma(vma->anon_vma);
1292 out:
1293 	mmap_read_unlock(mm);
1294 	return err;
1295 }
1296 
1297 /*
1298  * try_to_merge_two_pages - take two identical pages and prepare them
1299  * to be merged into one page.
1300  *
1301  * This function returns the kpage if we successfully merged two identical
1302  * pages into one ksm page, NULL otherwise.
1303  *
1304  * Note that this function upgrades page to ksm page: if one of the pages
1305  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1306  */
1307 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1308 					   struct page *page,
1309 					   struct ksm_rmap_item *tree_rmap_item,
1310 					   struct page *tree_page)
1311 {
1312 	int err;
1313 
1314 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1315 	if (!err) {
1316 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1317 							tree_page, page);
1318 		/*
1319 		 * If that fails, we have a ksm page with only one pte
1320 		 * pointing to it: so break it.
1321 		 */
1322 		if (err)
1323 			break_cow(rmap_item);
1324 	}
1325 	return err ? NULL : page;
1326 }
1327 
1328 static __always_inline
1329 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1330 {
1331 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1332 	/*
1333 	 * Check that at least one mapping still exists, otherwise
1334 	 * there's no much point to merge and share with this
1335 	 * stable_node, as the underlying tree_page of the other
1336 	 * sharer is going to be freed soon.
1337 	 */
1338 	return stable_node->rmap_hlist_len &&
1339 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1340 }
1341 
1342 static __always_inline
1343 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1344 {
1345 	return __is_page_sharing_candidate(stable_node, 0);
1346 }
1347 
1348 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1349 				    struct ksm_stable_node **_stable_node,
1350 				    struct rb_root *root,
1351 				    bool prune_stale_stable_nodes)
1352 {
1353 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1354 	struct hlist_node *hlist_safe;
1355 	struct page *_tree_page, *tree_page = NULL;
1356 	int nr = 0;
1357 	int found_rmap_hlist_len;
1358 
1359 	if (!prune_stale_stable_nodes ||
1360 	    time_before(jiffies, stable_node->chain_prune_time +
1361 			msecs_to_jiffies(
1362 				ksm_stable_node_chains_prune_millisecs)))
1363 		prune_stale_stable_nodes = false;
1364 	else
1365 		stable_node->chain_prune_time = jiffies;
1366 
1367 	hlist_for_each_entry_safe(dup, hlist_safe,
1368 				  &stable_node->hlist, hlist_dup) {
1369 		cond_resched();
1370 		/*
1371 		 * We must walk all stable_node_dup to prune the stale
1372 		 * stable nodes during lookup.
1373 		 *
1374 		 * get_ksm_page can drop the nodes from the
1375 		 * stable_node->hlist if they point to freed pages
1376 		 * (that's why we do a _safe walk). The "dup"
1377 		 * stable_node parameter itself will be freed from
1378 		 * under us if it returns NULL.
1379 		 */
1380 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1381 		if (!_tree_page)
1382 			continue;
1383 		nr += 1;
1384 		if (is_page_sharing_candidate(dup)) {
1385 			if (!found ||
1386 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1387 				if (found)
1388 					put_page(tree_page);
1389 				found = dup;
1390 				found_rmap_hlist_len = found->rmap_hlist_len;
1391 				tree_page = _tree_page;
1392 
1393 				/* skip put_page for found dup */
1394 				if (!prune_stale_stable_nodes)
1395 					break;
1396 				continue;
1397 			}
1398 		}
1399 		put_page(_tree_page);
1400 	}
1401 
1402 	if (found) {
1403 		/*
1404 		 * nr is counting all dups in the chain only if
1405 		 * prune_stale_stable_nodes is true, otherwise we may
1406 		 * break the loop at nr == 1 even if there are
1407 		 * multiple entries.
1408 		 */
1409 		if (prune_stale_stable_nodes && nr == 1) {
1410 			/*
1411 			 * If there's not just one entry it would
1412 			 * corrupt memory, better BUG_ON. In KSM
1413 			 * context with no lock held it's not even
1414 			 * fatal.
1415 			 */
1416 			BUG_ON(stable_node->hlist.first->next);
1417 
1418 			/*
1419 			 * There's just one entry and it is below the
1420 			 * deduplication limit so drop the chain.
1421 			 */
1422 			rb_replace_node(&stable_node->node, &found->node,
1423 					root);
1424 			free_stable_node(stable_node);
1425 			ksm_stable_node_chains--;
1426 			ksm_stable_node_dups--;
1427 			/*
1428 			 * NOTE: the caller depends on the stable_node
1429 			 * to be equal to stable_node_dup if the chain
1430 			 * was collapsed.
1431 			 */
1432 			*_stable_node = found;
1433 			/*
1434 			 * Just for robustness, as stable_node is
1435 			 * otherwise left as a stable pointer, the
1436 			 * compiler shall optimize it away at build
1437 			 * time.
1438 			 */
1439 			stable_node = NULL;
1440 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1441 			   __is_page_sharing_candidate(found, 1)) {
1442 			/*
1443 			 * If the found stable_node dup can accept one
1444 			 * more future merge (in addition to the one
1445 			 * that is underway) and is not at the head of
1446 			 * the chain, put it there so next search will
1447 			 * be quicker in the !prune_stale_stable_nodes
1448 			 * case.
1449 			 *
1450 			 * NOTE: it would be inaccurate to use nr > 1
1451 			 * instead of checking the hlist.first pointer
1452 			 * directly, because in the
1453 			 * prune_stale_stable_nodes case "nr" isn't
1454 			 * the position of the found dup in the chain,
1455 			 * but the total number of dups in the chain.
1456 			 */
1457 			hlist_del(&found->hlist_dup);
1458 			hlist_add_head(&found->hlist_dup,
1459 				       &stable_node->hlist);
1460 		}
1461 	}
1462 
1463 	*_stable_node_dup = found;
1464 	return tree_page;
1465 }
1466 
1467 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1468 					       struct rb_root *root)
1469 {
1470 	if (!is_stable_node_chain(stable_node))
1471 		return stable_node;
1472 	if (hlist_empty(&stable_node->hlist)) {
1473 		free_stable_node_chain(stable_node, root);
1474 		return NULL;
1475 	}
1476 	return hlist_entry(stable_node->hlist.first,
1477 			   typeof(*stable_node), hlist_dup);
1478 }
1479 
1480 /*
1481  * Like for get_ksm_page, this function can free the *_stable_node and
1482  * *_stable_node_dup if the returned tree_page is NULL.
1483  *
1484  * It can also free and overwrite *_stable_node with the found
1485  * stable_node_dup if the chain is collapsed (in which case
1486  * *_stable_node will be equal to *_stable_node_dup like if the chain
1487  * never existed). It's up to the caller to verify tree_page is not
1488  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1489  *
1490  * *_stable_node_dup is really a second output parameter of this
1491  * function and will be overwritten in all cases, the caller doesn't
1492  * need to initialize it.
1493  */
1494 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1495 					struct ksm_stable_node **_stable_node,
1496 					struct rb_root *root,
1497 					bool prune_stale_stable_nodes)
1498 {
1499 	struct ksm_stable_node *stable_node = *_stable_node;
1500 	if (!is_stable_node_chain(stable_node)) {
1501 		if (is_page_sharing_candidate(stable_node)) {
1502 			*_stable_node_dup = stable_node;
1503 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1504 		}
1505 		/*
1506 		 * _stable_node_dup set to NULL means the stable_node
1507 		 * reached the ksm_max_page_sharing limit.
1508 		 */
1509 		*_stable_node_dup = NULL;
1510 		return NULL;
1511 	}
1512 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1513 			       prune_stale_stable_nodes);
1514 }
1515 
1516 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1517 						struct ksm_stable_node **s_n,
1518 						struct rb_root *root)
1519 {
1520 	return __stable_node_chain(s_n_d, s_n, root, true);
1521 }
1522 
1523 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1524 					  struct ksm_stable_node *s_n,
1525 					  struct rb_root *root)
1526 {
1527 	struct ksm_stable_node *old_stable_node = s_n;
1528 	struct page *tree_page;
1529 
1530 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1531 	/* not pruning dups so s_n cannot have changed */
1532 	VM_BUG_ON(s_n != old_stable_node);
1533 	return tree_page;
1534 }
1535 
1536 /*
1537  * stable_tree_search - search for page inside the stable tree
1538  *
1539  * This function checks if there is a page inside the stable tree
1540  * with identical content to the page that we are scanning right now.
1541  *
1542  * This function returns the stable tree node of identical content if found,
1543  * NULL otherwise.
1544  */
1545 static struct page *stable_tree_search(struct page *page)
1546 {
1547 	int nid;
1548 	struct rb_root *root;
1549 	struct rb_node **new;
1550 	struct rb_node *parent;
1551 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1552 	struct ksm_stable_node *page_node;
1553 
1554 	page_node = page_stable_node(page);
1555 	if (page_node && page_node->head != &migrate_nodes) {
1556 		/* ksm page forked */
1557 		get_page(page);
1558 		return page;
1559 	}
1560 
1561 	nid = get_kpfn_nid(page_to_pfn(page));
1562 	root = root_stable_tree + nid;
1563 again:
1564 	new = &root->rb_node;
1565 	parent = NULL;
1566 
1567 	while (*new) {
1568 		struct page *tree_page;
1569 		int ret;
1570 
1571 		cond_resched();
1572 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1573 		stable_node_any = NULL;
1574 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1575 		/*
1576 		 * NOTE: stable_node may have been freed by
1577 		 * chain_prune() if the returned stable_node_dup is
1578 		 * not NULL. stable_node_dup may have been inserted in
1579 		 * the rbtree instead as a regular stable_node (in
1580 		 * order to collapse the stable_node chain if a single
1581 		 * stable_node dup was found in it). In such case the
1582 		 * stable_node is overwritten by the callee to point
1583 		 * to the stable_node_dup that was collapsed in the
1584 		 * stable rbtree and stable_node will be equal to
1585 		 * stable_node_dup like if the chain never existed.
1586 		 */
1587 		if (!stable_node_dup) {
1588 			/*
1589 			 * Either all stable_node dups were full in
1590 			 * this stable_node chain, or this chain was
1591 			 * empty and should be rb_erased.
1592 			 */
1593 			stable_node_any = stable_node_dup_any(stable_node,
1594 							      root);
1595 			if (!stable_node_any) {
1596 				/* rb_erase just run */
1597 				goto again;
1598 			}
1599 			/*
1600 			 * Take any of the stable_node dups page of
1601 			 * this stable_node chain to let the tree walk
1602 			 * continue. All KSM pages belonging to the
1603 			 * stable_node dups in a stable_node chain
1604 			 * have the same content and they're
1605 			 * write protected at all times. Any will work
1606 			 * fine to continue the walk.
1607 			 */
1608 			tree_page = get_ksm_page(stable_node_any,
1609 						 GET_KSM_PAGE_NOLOCK);
1610 		}
1611 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1612 		if (!tree_page) {
1613 			/*
1614 			 * If we walked over a stale stable_node,
1615 			 * get_ksm_page() will call rb_erase() and it
1616 			 * may rebalance the tree from under us. So
1617 			 * restart the search from scratch. Returning
1618 			 * NULL would be safe too, but we'd generate
1619 			 * false negative insertions just because some
1620 			 * stable_node was stale.
1621 			 */
1622 			goto again;
1623 		}
1624 
1625 		ret = memcmp_pages(page, tree_page);
1626 		put_page(tree_page);
1627 
1628 		parent = *new;
1629 		if (ret < 0)
1630 			new = &parent->rb_left;
1631 		else if (ret > 0)
1632 			new = &parent->rb_right;
1633 		else {
1634 			if (page_node) {
1635 				VM_BUG_ON(page_node->head != &migrate_nodes);
1636 				/*
1637 				 * Test if the migrated page should be merged
1638 				 * into a stable node dup. If the mapcount is
1639 				 * 1 we can migrate it with another KSM page
1640 				 * without adding it to the chain.
1641 				 */
1642 				if (page_mapcount(page) > 1)
1643 					goto chain_append;
1644 			}
1645 
1646 			if (!stable_node_dup) {
1647 				/*
1648 				 * If the stable_node is a chain and
1649 				 * we got a payload match in memcmp
1650 				 * but we cannot merge the scanned
1651 				 * page in any of the existing
1652 				 * stable_node dups because they're
1653 				 * all full, we need to wait the
1654 				 * scanned page to find itself a match
1655 				 * in the unstable tree to create a
1656 				 * brand new KSM page to add later to
1657 				 * the dups of this stable_node.
1658 				 */
1659 				return NULL;
1660 			}
1661 
1662 			/*
1663 			 * Lock and unlock the stable_node's page (which
1664 			 * might already have been migrated) so that page
1665 			 * migration is sure to notice its raised count.
1666 			 * It would be more elegant to return stable_node
1667 			 * than kpage, but that involves more changes.
1668 			 */
1669 			tree_page = get_ksm_page(stable_node_dup,
1670 						 GET_KSM_PAGE_TRYLOCK);
1671 
1672 			if (PTR_ERR(tree_page) == -EBUSY)
1673 				return ERR_PTR(-EBUSY);
1674 
1675 			if (unlikely(!tree_page))
1676 				/*
1677 				 * The tree may have been rebalanced,
1678 				 * so re-evaluate parent and new.
1679 				 */
1680 				goto again;
1681 			unlock_page(tree_page);
1682 
1683 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1684 			    NUMA(stable_node_dup->nid)) {
1685 				put_page(tree_page);
1686 				goto replace;
1687 			}
1688 			return tree_page;
1689 		}
1690 	}
1691 
1692 	if (!page_node)
1693 		return NULL;
1694 
1695 	list_del(&page_node->list);
1696 	DO_NUMA(page_node->nid = nid);
1697 	rb_link_node(&page_node->node, parent, new);
1698 	rb_insert_color(&page_node->node, root);
1699 out:
1700 	if (is_page_sharing_candidate(page_node)) {
1701 		get_page(page);
1702 		return page;
1703 	} else
1704 		return NULL;
1705 
1706 replace:
1707 	/*
1708 	 * If stable_node was a chain and chain_prune collapsed it,
1709 	 * stable_node has been updated to be the new regular
1710 	 * stable_node. A collapse of the chain is indistinguishable
1711 	 * from the case there was no chain in the stable
1712 	 * rbtree. Otherwise stable_node is the chain and
1713 	 * stable_node_dup is the dup to replace.
1714 	 */
1715 	if (stable_node_dup == stable_node) {
1716 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1717 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1718 		/* there is no chain */
1719 		if (page_node) {
1720 			VM_BUG_ON(page_node->head != &migrate_nodes);
1721 			list_del(&page_node->list);
1722 			DO_NUMA(page_node->nid = nid);
1723 			rb_replace_node(&stable_node_dup->node,
1724 					&page_node->node,
1725 					root);
1726 			if (is_page_sharing_candidate(page_node))
1727 				get_page(page);
1728 			else
1729 				page = NULL;
1730 		} else {
1731 			rb_erase(&stable_node_dup->node, root);
1732 			page = NULL;
1733 		}
1734 	} else {
1735 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1736 		__stable_node_dup_del(stable_node_dup);
1737 		if (page_node) {
1738 			VM_BUG_ON(page_node->head != &migrate_nodes);
1739 			list_del(&page_node->list);
1740 			DO_NUMA(page_node->nid = nid);
1741 			stable_node_chain_add_dup(page_node, stable_node);
1742 			if (is_page_sharing_candidate(page_node))
1743 				get_page(page);
1744 			else
1745 				page = NULL;
1746 		} else {
1747 			page = NULL;
1748 		}
1749 	}
1750 	stable_node_dup->head = &migrate_nodes;
1751 	list_add(&stable_node_dup->list, stable_node_dup->head);
1752 	return page;
1753 
1754 chain_append:
1755 	/* stable_node_dup could be null if it reached the limit */
1756 	if (!stable_node_dup)
1757 		stable_node_dup = stable_node_any;
1758 	/*
1759 	 * If stable_node was a chain and chain_prune collapsed it,
1760 	 * stable_node has been updated to be the new regular
1761 	 * stable_node. A collapse of the chain is indistinguishable
1762 	 * from the case there was no chain in the stable
1763 	 * rbtree. Otherwise stable_node is the chain and
1764 	 * stable_node_dup is the dup to replace.
1765 	 */
1766 	if (stable_node_dup == stable_node) {
1767 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1768 		/* chain is missing so create it */
1769 		stable_node = alloc_stable_node_chain(stable_node_dup,
1770 						      root);
1771 		if (!stable_node)
1772 			return NULL;
1773 	}
1774 	/*
1775 	 * Add this stable_node dup that was
1776 	 * migrated to the stable_node chain
1777 	 * of the current nid for this page
1778 	 * content.
1779 	 */
1780 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1781 	VM_BUG_ON(page_node->head != &migrate_nodes);
1782 	list_del(&page_node->list);
1783 	DO_NUMA(page_node->nid = nid);
1784 	stable_node_chain_add_dup(page_node, stable_node);
1785 	goto out;
1786 }
1787 
1788 /*
1789  * stable_tree_insert - insert stable tree node pointing to new ksm page
1790  * into the stable tree.
1791  *
1792  * This function returns the stable tree node just allocated on success,
1793  * NULL otherwise.
1794  */
1795 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1796 {
1797 	int nid;
1798 	unsigned long kpfn;
1799 	struct rb_root *root;
1800 	struct rb_node **new;
1801 	struct rb_node *parent;
1802 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1803 	bool need_chain = false;
1804 
1805 	kpfn = page_to_pfn(kpage);
1806 	nid = get_kpfn_nid(kpfn);
1807 	root = root_stable_tree + nid;
1808 again:
1809 	parent = NULL;
1810 	new = &root->rb_node;
1811 
1812 	while (*new) {
1813 		struct page *tree_page;
1814 		int ret;
1815 
1816 		cond_resched();
1817 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1818 		stable_node_any = NULL;
1819 		tree_page = chain(&stable_node_dup, stable_node, root);
1820 		if (!stable_node_dup) {
1821 			/*
1822 			 * Either all stable_node dups were full in
1823 			 * this stable_node chain, or this chain was
1824 			 * empty and should be rb_erased.
1825 			 */
1826 			stable_node_any = stable_node_dup_any(stable_node,
1827 							      root);
1828 			if (!stable_node_any) {
1829 				/* rb_erase just run */
1830 				goto again;
1831 			}
1832 			/*
1833 			 * Take any of the stable_node dups page of
1834 			 * this stable_node chain to let the tree walk
1835 			 * continue. All KSM pages belonging to the
1836 			 * stable_node dups in a stable_node chain
1837 			 * have the same content and they're
1838 			 * write protected at all times. Any will work
1839 			 * fine to continue the walk.
1840 			 */
1841 			tree_page = get_ksm_page(stable_node_any,
1842 						 GET_KSM_PAGE_NOLOCK);
1843 		}
1844 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1845 		if (!tree_page) {
1846 			/*
1847 			 * If we walked over a stale stable_node,
1848 			 * get_ksm_page() will call rb_erase() and it
1849 			 * may rebalance the tree from under us. So
1850 			 * restart the search from scratch. Returning
1851 			 * NULL would be safe too, but we'd generate
1852 			 * false negative insertions just because some
1853 			 * stable_node was stale.
1854 			 */
1855 			goto again;
1856 		}
1857 
1858 		ret = memcmp_pages(kpage, tree_page);
1859 		put_page(tree_page);
1860 
1861 		parent = *new;
1862 		if (ret < 0)
1863 			new = &parent->rb_left;
1864 		else if (ret > 0)
1865 			new = &parent->rb_right;
1866 		else {
1867 			need_chain = true;
1868 			break;
1869 		}
1870 	}
1871 
1872 	stable_node_dup = alloc_stable_node();
1873 	if (!stable_node_dup)
1874 		return NULL;
1875 
1876 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1877 	stable_node_dup->kpfn = kpfn;
1878 	set_page_stable_node(kpage, stable_node_dup);
1879 	stable_node_dup->rmap_hlist_len = 0;
1880 	DO_NUMA(stable_node_dup->nid = nid);
1881 	if (!need_chain) {
1882 		rb_link_node(&stable_node_dup->node, parent, new);
1883 		rb_insert_color(&stable_node_dup->node, root);
1884 	} else {
1885 		if (!is_stable_node_chain(stable_node)) {
1886 			struct ksm_stable_node *orig = stable_node;
1887 			/* chain is missing so create it */
1888 			stable_node = alloc_stable_node_chain(orig, root);
1889 			if (!stable_node) {
1890 				free_stable_node(stable_node_dup);
1891 				return NULL;
1892 			}
1893 		}
1894 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1895 	}
1896 
1897 	return stable_node_dup;
1898 }
1899 
1900 /*
1901  * unstable_tree_search_insert - search for identical page,
1902  * else insert rmap_item into the unstable tree.
1903  *
1904  * This function searches for a page in the unstable tree identical to the
1905  * page currently being scanned; and if no identical page is found in the
1906  * tree, we insert rmap_item as a new object into the unstable tree.
1907  *
1908  * This function returns pointer to rmap_item found to be identical
1909  * to the currently scanned page, NULL otherwise.
1910  *
1911  * This function does both searching and inserting, because they share
1912  * the same walking algorithm in an rbtree.
1913  */
1914 static
1915 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1916 					      struct page *page,
1917 					      struct page **tree_pagep)
1918 {
1919 	struct rb_node **new;
1920 	struct rb_root *root;
1921 	struct rb_node *parent = NULL;
1922 	int nid;
1923 
1924 	nid = get_kpfn_nid(page_to_pfn(page));
1925 	root = root_unstable_tree + nid;
1926 	new = &root->rb_node;
1927 
1928 	while (*new) {
1929 		struct ksm_rmap_item *tree_rmap_item;
1930 		struct page *tree_page;
1931 		int ret;
1932 
1933 		cond_resched();
1934 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1935 		tree_page = get_mergeable_page(tree_rmap_item);
1936 		if (!tree_page)
1937 			return NULL;
1938 
1939 		/*
1940 		 * Don't substitute a ksm page for a forked page.
1941 		 */
1942 		if (page == tree_page) {
1943 			put_page(tree_page);
1944 			return NULL;
1945 		}
1946 
1947 		ret = memcmp_pages(page, tree_page);
1948 
1949 		parent = *new;
1950 		if (ret < 0) {
1951 			put_page(tree_page);
1952 			new = &parent->rb_left;
1953 		} else if (ret > 0) {
1954 			put_page(tree_page);
1955 			new = &parent->rb_right;
1956 		} else if (!ksm_merge_across_nodes &&
1957 			   page_to_nid(tree_page) != nid) {
1958 			/*
1959 			 * If tree_page has been migrated to another NUMA node,
1960 			 * it will be flushed out and put in the right unstable
1961 			 * tree next time: only merge with it when across_nodes.
1962 			 */
1963 			put_page(tree_page);
1964 			return NULL;
1965 		} else {
1966 			*tree_pagep = tree_page;
1967 			return tree_rmap_item;
1968 		}
1969 	}
1970 
1971 	rmap_item->address |= UNSTABLE_FLAG;
1972 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1973 	DO_NUMA(rmap_item->nid = nid);
1974 	rb_link_node(&rmap_item->node, parent, new);
1975 	rb_insert_color(&rmap_item->node, root);
1976 
1977 	ksm_pages_unshared++;
1978 	return NULL;
1979 }
1980 
1981 /*
1982  * stable_tree_append - add another rmap_item to the linked list of
1983  * rmap_items hanging off a given node of the stable tree, all sharing
1984  * the same ksm page.
1985  */
1986 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
1987 			       struct ksm_stable_node *stable_node,
1988 			       bool max_page_sharing_bypass)
1989 {
1990 	/*
1991 	 * rmap won't find this mapping if we don't insert the
1992 	 * rmap_item in the right stable_node
1993 	 * duplicate. page_migration could break later if rmap breaks,
1994 	 * so we can as well crash here. We really need to check for
1995 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1996 	 * for other negative values as an underflow if detected here
1997 	 * for the first time (and not when decreasing rmap_hlist_len)
1998 	 * would be sign of memory corruption in the stable_node.
1999 	 */
2000 	BUG_ON(stable_node->rmap_hlist_len < 0);
2001 
2002 	stable_node->rmap_hlist_len++;
2003 	if (!max_page_sharing_bypass)
2004 		/* possibly non fatal but unexpected overflow, only warn */
2005 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2006 			     ksm_max_page_sharing);
2007 
2008 	rmap_item->head = stable_node;
2009 	rmap_item->address |= STABLE_FLAG;
2010 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2011 
2012 	if (rmap_item->hlist.next)
2013 		ksm_pages_sharing++;
2014 	else
2015 		ksm_pages_shared++;
2016 
2017 	rmap_item->mm->ksm_merging_pages++;
2018 }
2019 
2020 /*
2021  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2022  * if not, compare checksum to previous and if it's the same, see if page can
2023  * be inserted into the unstable tree, or merged with a page already there and
2024  * both transferred to the stable tree.
2025  *
2026  * @page: the page that we are searching identical page to.
2027  * @rmap_item: the reverse mapping into the virtual address of this page
2028  */
2029 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2030 {
2031 	struct mm_struct *mm = rmap_item->mm;
2032 	struct ksm_rmap_item *tree_rmap_item;
2033 	struct page *tree_page = NULL;
2034 	struct ksm_stable_node *stable_node;
2035 	struct page *kpage;
2036 	unsigned int checksum;
2037 	int err;
2038 	bool max_page_sharing_bypass = false;
2039 
2040 	stable_node = page_stable_node(page);
2041 	if (stable_node) {
2042 		if (stable_node->head != &migrate_nodes &&
2043 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2044 		    NUMA(stable_node->nid)) {
2045 			stable_node_dup_del(stable_node);
2046 			stable_node->head = &migrate_nodes;
2047 			list_add(&stable_node->list, stable_node->head);
2048 		}
2049 		if (stable_node->head != &migrate_nodes &&
2050 		    rmap_item->head == stable_node)
2051 			return;
2052 		/*
2053 		 * If it's a KSM fork, allow it to go over the sharing limit
2054 		 * without warnings.
2055 		 */
2056 		if (!is_page_sharing_candidate(stable_node))
2057 			max_page_sharing_bypass = true;
2058 	}
2059 
2060 	/* We first start with searching the page inside the stable tree */
2061 	kpage = stable_tree_search(page);
2062 	if (kpage == page && rmap_item->head == stable_node) {
2063 		put_page(kpage);
2064 		return;
2065 	}
2066 
2067 	remove_rmap_item_from_tree(rmap_item);
2068 
2069 	if (kpage) {
2070 		if (PTR_ERR(kpage) == -EBUSY)
2071 			return;
2072 
2073 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2074 		if (!err) {
2075 			/*
2076 			 * The page was successfully merged:
2077 			 * add its rmap_item to the stable tree.
2078 			 */
2079 			lock_page(kpage);
2080 			stable_tree_append(rmap_item, page_stable_node(kpage),
2081 					   max_page_sharing_bypass);
2082 			unlock_page(kpage);
2083 		}
2084 		put_page(kpage);
2085 		return;
2086 	}
2087 
2088 	/*
2089 	 * If the hash value of the page has changed from the last time
2090 	 * we calculated it, this page is changing frequently: therefore we
2091 	 * don't want to insert it in the unstable tree, and we don't want
2092 	 * to waste our time searching for something identical to it there.
2093 	 */
2094 	checksum = calc_checksum(page);
2095 	if (rmap_item->oldchecksum != checksum) {
2096 		rmap_item->oldchecksum = checksum;
2097 		return;
2098 	}
2099 
2100 	/*
2101 	 * Same checksum as an empty page. We attempt to merge it with the
2102 	 * appropriate zero page if the user enabled this via sysfs.
2103 	 */
2104 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105 		struct vm_area_struct *vma;
2106 
2107 		mmap_read_lock(mm);
2108 		vma = find_mergeable_vma(mm, rmap_item->address);
2109 		if (vma) {
2110 			err = try_to_merge_one_page(vma, page,
2111 					ZERO_PAGE(rmap_item->address));
2112 		} else {
2113 			/*
2114 			 * If the vma is out of date, we do not need to
2115 			 * continue.
2116 			 */
2117 			err = 0;
2118 		}
2119 		mmap_read_unlock(mm);
2120 		/*
2121 		 * In case of failure, the page was not really empty, so we
2122 		 * need to continue. Otherwise we're done.
2123 		 */
2124 		if (!err)
2125 			return;
2126 	}
2127 	tree_rmap_item =
2128 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2129 	if (tree_rmap_item) {
2130 		bool split;
2131 
2132 		kpage = try_to_merge_two_pages(rmap_item, page,
2133 						tree_rmap_item, tree_page);
2134 		/*
2135 		 * If both pages we tried to merge belong to the same compound
2136 		 * page, then we actually ended up increasing the reference
2137 		 * count of the same compound page twice, and split_huge_page
2138 		 * failed.
2139 		 * Here we set a flag if that happened, and we use it later to
2140 		 * try split_huge_page again. Since we call put_page right
2141 		 * afterwards, the reference count will be correct and
2142 		 * split_huge_page should succeed.
2143 		 */
2144 		split = PageTransCompound(page)
2145 			&& compound_head(page) == compound_head(tree_page);
2146 		put_page(tree_page);
2147 		if (kpage) {
2148 			/*
2149 			 * The pages were successfully merged: insert new
2150 			 * node in the stable tree and add both rmap_items.
2151 			 */
2152 			lock_page(kpage);
2153 			stable_node = stable_tree_insert(kpage);
2154 			if (stable_node) {
2155 				stable_tree_append(tree_rmap_item, stable_node,
2156 						   false);
2157 				stable_tree_append(rmap_item, stable_node,
2158 						   false);
2159 			}
2160 			unlock_page(kpage);
2161 
2162 			/*
2163 			 * If we fail to insert the page into the stable tree,
2164 			 * we will have 2 virtual addresses that are pointing
2165 			 * to a ksm page left outside the stable tree,
2166 			 * in which case we need to break_cow on both.
2167 			 */
2168 			if (!stable_node) {
2169 				break_cow(tree_rmap_item);
2170 				break_cow(rmap_item);
2171 			}
2172 		} else if (split) {
2173 			/*
2174 			 * We are here if we tried to merge two pages and
2175 			 * failed because they both belonged to the same
2176 			 * compound page. We will split the page now, but no
2177 			 * merging will take place.
2178 			 * We do not want to add the cost of a full lock; if
2179 			 * the page is locked, it is better to skip it and
2180 			 * perhaps try again later.
2181 			 */
2182 			if (!trylock_page(page))
2183 				return;
2184 			split_huge_page(page);
2185 			unlock_page(page);
2186 		}
2187 	}
2188 }
2189 
2190 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2191 					    struct ksm_rmap_item **rmap_list,
2192 					    unsigned long addr)
2193 {
2194 	struct ksm_rmap_item *rmap_item;
2195 
2196 	while (*rmap_list) {
2197 		rmap_item = *rmap_list;
2198 		if ((rmap_item->address & PAGE_MASK) == addr)
2199 			return rmap_item;
2200 		if (rmap_item->address > addr)
2201 			break;
2202 		*rmap_list = rmap_item->rmap_list;
2203 		remove_rmap_item_from_tree(rmap_item);
2204 		free_rmap_item(rmap_item);
2205 	}
2206 
2207 	rmap_item = alloc_rmap_item();
2208 	if (rmap_item) {
2209 		/* It has already been zeroed */
2210 		rmap_item->mm = mm_slot->slot.mm;
2211 		rmap_item->mm->ksm_rmap_items++;
2212 		rmap_item->address = addr;
2213 		rmap_item->rmap_list = *rmap_list;
2214 		*rmap_list = rmap_item;
2215 	}
2216 	return rmap_item;
2217 }
2218 
2219 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2220 {
2221 	struct mm_struct *mm;
2222 	struct ksm_mm_slot *mm_slot;
2223 	struct mm_slot *slot;
2224 	struct vm_area_struct *vma;
2225 	struct ksm_rmap_item *rmap_item;
2226 	struct vma_iterator vmi;
2227 	int nid;
2228 
2229 	if (list_empty(&ksm_mm_head.slot.mm_node))
2230 		return NULL;
2231 
2232 	mm_slot = ksm_scan.mm_slot;
2233 	if (mm_slot == &ksm_mm_head) {
2234 		/*
2235 		 * A number of pages can hang around indefinitely on per-cpu
2236 		 * pagevecs, raised page count preventing write_protect_page
2237 		 * from merging them.  Though it doesn't really matter much,
2238 		 * it is puzzling to see some stuck in pages_volatile until
2239 		 * other activity jostles them out, and they also prevented
2240 		 * LTP's KSM test from succeeding deterministically; so drain
2241 		 * them here (here rather than on entry to ksm_do_scan(),
2242 		 * so we don't IPI too often when pages_to_scan is set low).
2243 		 */
2244 		lru_add_drain_all();
2245 
2246 		/*
2247 		 * Whereas stale stable_nodes on the stable_tree itself
2248 		 * get pruned in the regular course of stable_tree_search(),
2249 		 * those moved out to the migrate_nodes list can accumulate:
2250 		 * so prune them once before each full scan.
2251 		 */
2252 		if (!ksm_merge_across_nodes) {
2253 			struct ksm_stable_node *stable_node, *next;
2254 			struct page *page;
2255 
2256 			list_for_each_entry_safe(stable_node, next,
2257 						 &migrate_nodes, list) {
2258 				page = get_ksm_page(stable_node,
2259 						    GET_KSM_PAGE_NOLOCK);
2260 				if (page)
2261 					put_page(page);
2262 				cond_resched();
2263 			}
2264 		}
2265 
2266 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2267 			root_unstable_tree[nid] = RB_ROOT;
2268 
2269 		spin_lock(&ksm_mmlist_lock);
2270 		slot = list_entry(mm_slot->slot.mm_node.next,
2271 				  struct mm_slot, mm_node);
2272 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2273 		ksm_scan.mm_slot = mm_slot;
2274 		spin_unlock(&ksm_mmlist_lock);
2275 		/*
2276 		 * Although we tested list_empty() above, a racing __ksm_exit
2277 		 * of the last mm on the list may have removed it since then.
2278 		 */
2279 		if (mm_slot == &ksm_mm_head)
2280 			return NULL;
2281 next_mm:
2282 		ksm_scan.address = 0;
2283 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2284 	}
2285 
2286 	slot = &mm_slot->slot;
2287 	mm = slot->mm;
2288 	vma_iter_init(&vmi, mm, ksm_scan.address);
2289 
2290 	mmap_read_lock(mm);
2291 	if (ksm_test_exit(mm))
2292 		goto no_vmas;
2293 
2294 	for_each_vma(vmi, vma) {
2295 		if (!(vma->vm_flags & VM_MERGEABLE))
2296 			continue;
2297 		if (ksm_scan.address < vma->vm_start)
2298 			ksm_scan.address = vma->vm_start;
2299 		if (!vma->anon_vma)
2300 			ksm_scan.address = vma->vm_end;
2301 
2302 		while (ksm_scan.address < vma->vm_end) {
2303 			if (ksm_test_exit(mm))
2304 				break;
2305 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2306 			if (IS_ERR_OR_NULL(*page)) {
2307 				ksm_scan.address += PAGE_SIZE;
2308 				cond_resched();
2309 				continue;
2310 			}
2311 			if (is_zone_device_page(*page))
2312 				goto next_page;
2313 			if (PageAnon(*page)) {
2314 				flush_anon_page(vma, *page, ksm_scan.address);
2315 				flush_dcache_page(*page);
2316 				rmap_item = get_next_rmap_item(mm_slot,
2317 					ksm_scan.rmap_list, ksm_scan.address);
2318 				if (rmap_item) {
2319 					ksm_scan.rmap_list =
2320 							&rmap_item->rmap_list;
2321 					ksm_scan.address += PAGE_SIZE;
2322 				} else
2323 					put_page(*page);
2324 				mmap_read_unlock(mm);
2325 				return rmap_item;
2326 			}
2327 next_page:
2328 			put_page(*page);
2329 			ksm_scan.address += PAGE_SIZE;
2330 			cond_resched();
2331 		}
2332 	}
2333 
2334 	if (ksm_test_exit(mm)) {
2335 no_vmas:
2336 		ksm_scan.address = 0;
2337 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2338 	}
2339 	/*
2340 	 * Nuke all the rmap_items that are above this current rmap:
2341 	 * because there were no VM_MERGEABLE vmas with such addresses.
2342 	 */
2343 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2344 
2345 	spin_lock(&ksm_mmlist_lock);
2346 	slot = list_entry(mm_slot->slot.mm_node.next,
2347 			  struct mm_slot, mm_node);
2348 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2349 	if (ksm_scan.address == 0) {
2350 		/*
2351 		 * We've completed a full scan of all vmas, holding mmap_lock
2352 		 * throughout, and found no VM_MERGEABLE: so do the same as
2353 		 * __ksm_exit does to remove this mm from all our lists now.
2354 		 * This applies either when cleaning up after __ksm_exit
2355 		 * (but beware: we can reach here even before __ksm_exit),
2356 		 * or when all VM_MERGEABLE areas have been unmapped (and
2357 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2358 		 */
2359 		hash_del(&mm_slot->slot.hash);
2360 		list_del(&mm_slot->slot.mm_node);
2361 		spin_unlock(&ksm_mmlist_lock);
2362 
2363 		mm_slot_free(mm_slot_cache, mm_slot);
2364 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2365 		mmap_read_unlock(mm);
2366 		mmdrop(mm);
2367 	} else {
2368 		mmap_read_unlock(mm);
2369 		/*
2370 		 * mmap_read_unlock(mm) first because after
2371 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372 		 * already have been freed under us by __ksm_exit()
2373 		 * because the "mm_slot" is still hashed and
2374 		 * ksm_scan.mm_slot doesn't point to it anymore.
2375 		 */
2376 		spin_unlock(&ksm_mmlist_lock);
2377 	}
2378 
2379 	/* Repeat until we've completed scanning the whole list */
2380 	mm_slot = ksm_scan.mm_slot;
2381 	if (mm_slot != &ksm_mm_head)
2382 		goto next_mm;
2383 
2384 	ksm_scan.seqnr++;
2385 	return NULL;
2386 }
2387 
2388 /**
2389  * ksm_do_scan  - the ksm scanner main worker function.
2390  * @scan_npages:  number of pages we want to scan before we return.
2391  */
2392 static void ksm_do_scan(unsigned int scan_npages)
2393 {
2394 	struct ksm_rmap_item *rmap_item;
2395 	struct page *page;
2396 
2397 	while (scan_npages-- && likely(!freezing(current))) {
2398 		cond_resched();
2399 		rmap_item = scan_get_next_rmap_item(&page);
2400 		if (!rmap_item)
2401 			return;
2402 		cmp_and_merge_page(page, rmap_item);
2403 		put_page(page);
2404 	}
2405 }
2406 
2407 static int ksmd_should_run(void)
2408 {
2409 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2410 }
2411 
2412 static int ksm_scan_thread(void *nothing)
2413 {
2414 	unsigned int sleep_ms;
2415 
2416 	set_freezable();
2417 	set_user_nice(current, 5);
2418 
2419 	while (!kthread_should_stop()) {
2420 		mutex_lock(&ksm_thread_mutex);
2421 		wait_while_offlining();
2422 		if (ksmd_should_run())
2423 			ksm_do_scan(ksm_thread_pages_to_scan);
2424 		mutex_unlock(&ksm_thread_mutex);
2425 
2426 		try_to_freeze();
2427 
2428 		if (ksmd_should_run()) {
2429 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430 			wait_event_interruptible_timeout(ksm_iter_wait,
2431 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432 				msecs_to_jiffies(sleep_ms));
2433 		} else {
2434 			wait_event_freezable(ksm_thread_wait,
2435 				ksmd_should_run() || kthread_should_stop());
2436 		}
2437 	}
2438 	return 0;
2439 }
2440 
2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442 		unsigned long end, int advice, unsigned long *vm_flags)
2443 {
2444 	struct mm_struct *mm = vma->vm_mm;
2445 	int err;
2446 
2447 	switch (advice) {
2448 	case MADV_MERGEABLE:
2449 		/*
2450 		 * Be somewhat over-protective for now!
2451 		 */
2452 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2453 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2454 				 VM_HUGETLB | VM_MIXEDMAP))
2455 			return 0;		/* just ignore the advice */
2456 
2457 		if (vma_is_dax(vma))
2458 			return 0;
2459 
2460 #ifdef VM_SAO
2461 		if (*vm_flags & VM_SAO)
2462 			return 0;
2463 #endif
2464 #ifdef VM_SPARC_ADI
2465 		if (*vm_flags & VM_SPARC_ADI)
2466 			return 0;
2467 #endif
2468 
2469 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470 			err = __ksm_enter(mm);
2471 			if (err)
2472 				return err;
2473 		}
2474 
2475 		*vm_flags |= VM_MERGEABLE;
2476 		break;
2477 
2478 	case MADV_UNMERGEABLE:
2479 		if (!(*vm_flags & VM_MERGEABLE))
2480 			return 0;		/* just ignore the advice */
2481 
2482 		if (vma->anon_vma) {
2483 			err = unmerge_ksm_pages(vma, start, end);
2484 			if (err)
2485 				return err;
2486 		}
2487 
2488 		*vm_flags &= ~VM_MERGEABLE;
2489 		break;
2490 	}
2491 
2492 	return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(ksm_madvise);
2495 
2496 int __ksm_enter(struct mm_struct *mm)
2497 {
2498 	struct ksm_mm_slot *mm_slot;
2499 	struct mm_slot *slot;
2500 	int needs_wakeup;
2501 
2502 	mm_slot = mm_slot_alloc(mm_slot_cache);
2503 	if (!mm_slot)
2504 		return -ENOMEM;
2505 
2506 	slot = &mm_slot->slot;
2507 
2508 	/* Check ksm_run too?  Would need tighter locking */
2509 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2510 
2511 	spin_lock(&ksm_mmlist_lock);
2512 	mm_slot_insert(mm_slots_hash, mm, slot);
2513 	/*
2514 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2515 	 * insert just behind the scanning cursor, to let the area settle
2516 	 * down a little; when fork is followed by immediate exec, we don't
2517 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2518 	 *
2519 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2520 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2521 	 * missed: then we might as well insert at the end of the list.
2522 	 */
2523 	if (ksm_run & KSM_RUN_UNMERGE)
2524 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2525 	else
2526 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2527 	spin_unlock(&ksm_mmlist_lock);
2528 
2529 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2530 	mmgrab(mm);
2531 
2532 	if (needs_wakeup)
2533 		wake_up_interruptible(&ksm_thread_wait);
2534 
2535 	return 0;
2536 }
2537 
2538 void __ksm_exit(struct mm_struct *mm)
2539 {
2540 	struct ksm_mm_slot *mm_slot;
2541 	struct mm_slot *slot;
2542 	int easy_to_free = 0;
2543 
2544 	/*
2545 	 * This process is exiting: if it's straightforward (as is the
2546 	 * case when ksmd was never running), free mm_slot immediately.
2547 	 * But if it's at the cursor or has rmap_items linked to it, use
2548 	 * mmap_lock to synchronize with any break_cows before pagetables
2549 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2550 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2551 	 */
2552 
2553 	spin_lock(&ksm_mmlist_lock);
2554 	slot = mm_slot_lookup(mm_slots_hash, mm);
2555 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2556 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2557 		if (!mm_slot->rmap_list) {
2558 			hash_del(&slot->hash);
2559 			list_del(&slot->mm_node);
2560 			easy_to_free = 1;
2561 		} else {
2562 			list_move(&slot->mm_node,
2563 				  &ksm_scan.mm_slot->slot.mm_node);
2564 		}
2565 	}
2566 	spin_unlock(&ksm_mmlist_lock);
2567 
2568 	if (easy_to_free) {
2569 		mm_slot_free(mm_slot_cache, mm_slot);
2570 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2571 		mmdrop(mm);
2572 	} else if (mm_slot) {
2573 		mmap_write_lock(mm);
2574 		mmap_write_unlock(mm);
2575 	}
2576 }
2577 
2578 struct page *ksm_might_need_to_copy(struct page *page,
2579 			struct vm_area_struct *vma, unsigned long address)
2580 {
2581 	struct folio *folio = page_folio(page);
2582 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2583 	struct page *new_page;
2584 
2585 	if (PageKsm(page)) {
2586 		if (page_stable_node(page) &&
2587 		    !(ksm_run & KSM_RUN_UNMERGE))
2588 			return page;	/* no need to copy it */
2589 	} else if (!anon_vma) {
2590 		return page;		/* no need to copy it */
2591 	} else if (page->index == linear_page_index(vma, address) &&
2592 			anon_vma->root == vma->anon_vma->root) {
2593 		return page;		/* still no need to copy it */
2594 	}
2595 	if (!PageUptodate(page))
2596 		return page;		/* let do_swap_page report the error */
2597 
2598 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2599 	if (new_page &&
2600 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2601 		put_page(new_page);
2602 		new_page = NULL;
2603 	}
2604 	if (new_page) {
2605 		copy_user_highpage(new_page, page, address, vma);
2606 
2607 		SetPageDirty(new_page);
2608 		__SetPageUptodate(new_page);
2609 		__SetPageLocked(new_page);
2610 #ifdef CONFIG_SWAP
2611 		count_vm_event(KSM_SWPIN_COPY);
2612 #endif
2613 	}
2614 
2615 	return new_page;
2616 }
2617 
2618 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2619 {
2620 	struct ksm_stable_node *stable_node;
2621 	struct ksm_rmap_item *rmap_item;
2622 	int search_new_forks = 0;
2623 
2624 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2625 
2626 	/*
2627 	 * Rely on the page lock to protect against concurrent modifications
2628 	 * to that page's node of the stable tree.
2629 	 */
2630 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2631 
2632 	stable_node = folio_stable_node(folio);
2633 	if (!stable_node)
2634 		return;
2635 again:
2636 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2637 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2638 		struct anon_vma_chain *vmac;
2639 		struct vm_area_struct *vma;
2640 
2641 		cond_resched();
2642 		if (!anon_vma_trylock_read(anon_vma)) {
2643 			if (rwc->try_lock) {
2644 				rwc->contended = true;
2645 				return;
2646 			}
2647 			anon_vma_lock_read(anon_vma);
2648 		}
2649 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2650 					       0, ULONG_MAX) {
2651 			unsigned long addr;
2652 
2653 			cond_resched();
2654 			vma = vmac->vma;
2655 
2656 			/* Ignore the stable/unstable/sqnr flags */
2657 			addr = rmap_item->address & PAGE_MASK;
2658 
2659 			if (addr < vma->vm_start || addr >= vma->vm_end)
2660 				continue;
2661 			/*
2662 			 * Initially we examine only the vma which covers this
2663 			 * rmap_item; but later, if there is still work to do,
2664 			 * we examine covering vmas in other mms: in case they
2665 			 * were forked from the original since ksmd passed.
2666 			 */
2667 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2668 				continue;
2669 
2670 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2671 				continue;
2672 
2673 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2674 				anon_vma_unlock_read(anon_vma);
2675 				return;
2676 			}
2677 			if (rwc->done && rwc->done(folio)) {
2678 				anon_vma_unlock_read(anon_vma);
2679 				return;
2680 			}
2681 		}
2682 		anon_vma_unlock_read(anon_vma);
2683 	}
2684 	if (!search_new_forks++)
2685 		goto again;
2686 }
2687 
2688 #ifdef CONFIG_MIGRATION
2689 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2690 {
2691 	struct ksm_stable_node *stable_node;
2692 
2693 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2694 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2695 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2696 
2697 	stable_node = folio_stable_node(folio);
2698 	if (stable_node) {
2699 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2700 		stable_node->kpfn = folio_pfn(newfolio);
2701 		/*
2702 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2703 		 * to make sure that the new stable_node->kpfn is visible
2704 		 * to get_ksm_page() before it can see that folio->mapping
2705 		 * has gone stale (or that folio_test_swapcache has been cleared).
2706 		 */
2707 		smp_wmb();
2708 		set_page_stable_node(&folio->page, NULL);
2709 	}
2710 }
2711 #endif /* CONFIG_MIGRATION */
2712 
2713 #ifdef CONFIG_MEMORY_HOTREMOVE
2714 static void wait_while_offlining(void)
2715 {
2716 	while (ksm_run & KSM_RUN_OFFLINE) {
2717 		mutex_unlock(&ksm_thread_mutex);
2718 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2719 			    TASK_UNINTERRUPTIBLE);
2720 		mutex_lock(&ksm_thread_mutex);
2721 	}
2722 }
2723 
2724 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2725 					 unsigned long start_pfn,
2726 					 unsigned long end_pfn)
2727 {
2728 	if (stable_node->kpfn >= start_pfn &&
2729 	    stable_node->kpfn < end_pfn) {
2730 		/*
2731 		 * Don't get_ksm_page, page has already gone:
2732 		 * which is why we keep kpfn instead of page*
2733 		 */
2734 		remove_node_from_stable_tree(stable_node);
2735 		return true;
2736 	}
2737 	return false;
2738 }
2739 
2740 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2741 					   unsigned long start_pfn,
2742 					   unsigned long end_pfn,
2743 					   struct rb_root *root)
2744 {
2745 	struct ksm_stable_node *dup;
2746 	struct hlist_node *hlist_safe;
2747 
2748 	if (!is_stable_node_chain(stable_node)) {
2749 		VM_BUG_ON(is_stable_node_dup(stable_node));
2750 		return stable_node_dup_remove_range(stable_node, start_pfn,
2751 						    end_pfn);
2752 	}
2753 
2754 	hlist_for_each_entry_safe(dup, hlist_safe,
2755 				  &stable_node->hlist, hlist_dup) {
2756 		VM_BUG_ON(!is_stable_node_dup(dup));
2757 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2758 	}
2759 	if (hlist_empty(&stable_node->hlist)) {
2760 		free_stable_node_chain(stable_node, root);
2761 		return true; /* notify caller that tree was rebalanced */
2762 	} else
2763 		return false;
2764 }
2765 
2766 static void ksm_check_stable_tree(unsigned long start_pfn,
2767 				  unsigned long end_pfn)
2768 {
2769 	struct ksm_stable_node *stable_node, *next;
2770 	struct rb_node *node;
2771 	int nid;
2772 
2773 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2774 		node = rb_first(root_stable_tree + nid);
2775 		while (node) {
2776 			stable_node = rb_entry(node, struct ksm_stable_node, node);
2777 			if (stable_node_chain_remove_range(stable_node,
2778 							   start_pfn, end_pfn,
2779 							   root_stable_tree +
2780 							   nid))
2781 				node = rb_first(root_stable_tree + nid);
2782 			else
2783 				node = rb_next(node);
2784 			cond_resched();
2785 		}
2786 	}
2787 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2788 		if (stable_node->kpfn >= start_pfn &&
2789 		    stable_node->kpfn < end_pfn)
2790 			remove_node_from_stable_tree(stable_node);
2791 		cond_resched();
2792 	}
2793 }
2794 
2795 static int ksm_memory_callback(struct notifier_block *self,
2796 			       unsigned long action, void *arg)
2797 {
2798 	struct memory_notify *mn = arg;
2799 
2800 	switch (action) {
2801 	case MEM_GOING_OFFLINE:
2802 		/*
2803 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2804 		 * and remove_all_stable_nodes() while memory is going offline:
2805 		 * it is unsafe for them to touch the stable tree at this time.
2806 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2807 		 * which do not need the ksm_thread_mutex are all safe.
2808 		 */
2809 		mutex_lock(&ksm_thread_mutex);
2810 		ksm_run |= KSM_RUN_OFFLINE;
2811 		mutex_unlock(&ksm_thread_mutex);
2812 		break;
2813 
2814 	case MEM_OFFLINE:
2815 		/*
2816 		 * Most of the work is done by page migration; but there might
2817 		 * be a few stable_nodes left over, still pointing to struct
2818 		 * pages which have been offlined: prune those from the tree,
2819 		 * otherwise get_ksm_page() might later try to access a
2820 		 * non-existent struct page.
2821 		 */
2822 		ksm_check_stable_tree(mn->start_pfn,
2823 				      mn->start_pfn + mn->nr_pages);
2824 		fallthrough;
2825 	case MEM_CANCEL_OFFLINE:
2826 		mutex_lock(&ksm_thread_mutex);
2827 		ksm_run &= ~KSM_RUN_OFFLINE;
2828 		mutex_unlock(&ksm_thread_mutex);
2829 
2830 		smp_mb();	/* wake_up_bit advises this */
2831 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2832 		break;
2833 	}
2834 	return NOTIFY_OK;
2835 }
2836 #else
2837 static void wait_while_offlining(void)
2838 {
2839 }
2840 #endif /* CONFIG_MEMORY_HOTREMOVE */
2841 
2842 #ifdef CONFIG_SYSFS
2843 /*
2844  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2845  */
2846 
2847 #define KSM_ATTR_RO(_name) \
2848 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2849 #define KSM_ATTR(_name) \
2850 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2851 
2852 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2853 				    struct kobj_attribute *attr, char *buf)
2854 {
2855 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2856 }
2857 
2858 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2859 				     struct kobj_attribute *attr,
2860 				     const char *buf, size_t count)
2861 {
2862 	unsigned int msecs;
2863 	int err;
2864 
2865 	err = kstrtouint(buf, 10, &msecs);
2866 	if (err)
2867 		return -EINVAL;
2868 
2869 	ksm_thread_sleep_millisecs = msecs;
2870 	wake_up_interruptible(&ksm_iter_wait);
2871 
2872 	return count;
2873 }
2874 KSM_ATTR(sleep_millisecs);
2875 
2876 static ssize_t pages_to_scan_show(struct kobject *kobj,
2877 				  struct kobj_attribute *attr, char *buf)
2878 {
2879 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2880 }
2881 
2882 static ssize_t pages_to_scan_store(struct kobject *kobj,
2883 				   struct kobj_attribute *attr,
2884 				   const char *buf, size_t count)
2885 {
2886 	unsigned int nr_pages;
2887 	int err;
2888 
2889 	err = kstrtouint(buf, 10, &nr_pages);
2890 	if (err)
2891 		return -EINVAL;
2892 
2893 	ksm_thread_pages_to_scan = nr_pages;
2894 
2895 	return count;
2896 }
2897 KSM_ATTR(pages_to_scan);
2898 
2899 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2900 			char *buf)
2901 {
2902 	return sysfs_emit(buf, "%lu\n", ksm_run);
2903 }
2904 
2905 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2906 			 const char *buf, size_t count)
2907 {
2908 	unsigned int flags;
2909 	int err;
2910 
2911 	err = kstrtouint(buf, 10, &flags);
2912 	if (err)
2913 		return -EINVAL;
2914 	if (flags > KSM_RUN_UNMERGE)
2915 		return -EINVAL;
2916 
2917 	/*
2918 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2919 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2920 	 * breaking COW to free the pages_shared (but leaves mm_slots
2921 	 * on the list for when ksmd may be set running again).
2922 	 */
2923 
2924 	mutex_lock(&ksm_thread_mutex);
2925 	wait_while_offlining();
2926 	if (ksm_run != flags) {
2927 		ksm_run = flags;
2928 		if (flags & KSM_RUN_UNMERGE) {
2929 			set_current_oom_origin();
2930 			err = unmerge_and_remove_all_rmap_items();
2931 			clear_current_oom_origin();
2932 			if (err) {
2933 				ksm_run = KSM_RUN_STOP;
2934 				count = err;
2935 			}
2936 		}
2937 	}
2938 	mutex_unlock(&ksm_thread_mutex);
2939 
2940 	if (flags & KSM_RUN_MERGE)
2941 		wake_up_interruptible(&ksm_thread_wait);
2942 
2943 	return count;
2944 }
2945 KSM_ATTR(run);
2946 
2947 #ifdef CONFIG_NUMA
2948 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2949 				       struct kobj_attribute *attr, char *buf)
2950 {
2951 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2952 }
2953 
2954 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2955 				   struct kobj_attribute *attr,
2956 				   const char *buf, size_t count)
2957 {
2958 	int err;
2959 	unsigned long knob;
2960 
2961 	err = kstrtoul(buf, 10, &knob);
2962 	if (err)
2963 		return err;
2964 	if (knob > 1)
2965 		return -EINVAL;
2966 
2967 	mutex_lock(&ksm_thread_mutex);
2968 	wait_while_offlining();
2969 	if (ksm_merge_across_nodes != knob) {
2970 		if (ksm_pages_shared || remove_all_stable_nodes())
2971 			err = -EBUSY;
2972 		else if (root_stable_tree == one_stable_tree) {
2973 			struct rb_root *buf;
2974 			/*
2975 			 * This is the first time that we switch away from the
2976 			 * default of merging across nodes: must now allocate
2977 			 * a buffer to hold as many roots as may be needed.
2978 			 * Allocate stable and unstable together:
2979 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2980 			 */
2981 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2982 				      GFP_KERNEL);
2983 			/* Let us assume that RB_ROOT is NULL is zero */
2984 			if (!buf)
2985 				err = -ENOMEM;
2986 			else {
2987 				root_stable_tree = buf;
2988 				root_unstable_tree = buf + nr_node_ids;
2989 				/* Stable tree is empty but not the unstable */
2990 				root_unstable_tree[0] = one_unstable_tree[0];
2991 			}
2992 		}
2993 		if (!err) {
2994 			ksm_merge_across_nodes = knob;
2995 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2996 		}
2997 	}
2998 	mutex_unlock(&ksm_thread_mutex);
2999 
3000 	return err ? err : count;
3001 }
3002 KSM_ATTR(merge_across_nodes);
3003 #endif
3004 
3005 static ssize_t use_zero_pages_show(struct kobject *kobj,
3006 				   struct kobj_attribute *attr, char *buf)
3007 {
3008 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3009 }
3010 static ssize_t use_zero_pages_store(struct kobject *kobj,
3011 				   struct kobj_attribute *attr,
3012 				   const char *buf, size_t count)
3013 {
3014 	int err;
3015 	bool value;
3016 
3017 	err = kstrtobool(buf, &value);
3018 	if (err)
3019 		return -EINVAL;
3020 
3021 	ksm_use_zero_pages = value;
3022 
3023 	return count;
3024 }
3025 KSM_ATTR(use_zero_pages);
3026 
3027 static ssize_t max_page_sharing_show(struct kobject *kobj,
3028 				     struct kobj_attribute *attr, char *buf)
3029 {
3030 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3031 }
3032 
3033 static ssize_t max_page_sharing_store(struct kobject *kobj,
3034 				      struct kobj_attribute *attr,
3035 				      const char *buf, size_t count)
3036 {
3037 	int err;
3038 	int knob;
3039 
3040 	err = kstrtoint(buf, 10, &knob);
3041 	if (err)
3042 		return err;
3043 	/*
3044 	 * When a KSM page is created it is shared by 2 mappings. This
3045 	 * being a signed comparison, it implicitly verifies it's not
3046 	 * negative.
3047 	 */
3048 	if (knob < 2)
3049 		return -EINVAL;
3050 
3051 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3052 		return count;
3053 
3054 	mutex_lock(&ksm_thread_mutex);
3055 	wait_while_offlining();
3056 	if (ksm_max_page_sharing != knob) {
3057 		if (ksm_pages_shared || remove_all_stable_nodes())
3058 			err = -EBUSY;
3059 		else
3060 			ksm_max_page_sharing = knob;
3061 	}
3062 	mutex_unlock(&ksm_thread_mutex);
3063 
3064 	return err ? err : count;
3065 }
3066 KSM_ATTR(max_page_sharing);
3067 
3068 static ssize_t pages_shared_show(struct kobject *kobj,
3069 				 struct kobj_attribute *attr, char *buf)
3070 {
3071 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3072 }
3073 KSM_ATTR_RO(pages_shared);
3074 
3075 static ssize_t pages_sharing_show(struct kobject *kobj,
3076 				  struct kobj_attribute *attr, char *buf)
3077 {
3078 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3079 }
3080 KSM_ATTR_RO(pages_sharing);
3081 
3082 static ssize_t pages_unshared_show(struct kobject *kobj,
3083 				   struct kobj_attribute *attr, char *buf)
3084 {
3085 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3086 }
3087 KSM_ATTR_RO(pages_unshared);
3088 
3089 static ssize_t pages_volatile_show(struct kobject *kobj,
3090 				   struct kobj_attribute *attr, char *buf)
3091 {
3092 	long ksm_pages_volatile;
3093 
3094 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3095 				- ksm_pages_sharing - ksm_pages_unshared;
3096 	/*
3097 	 * It was not worth any locking to calculate that statistic,
3098 	 * but it might therefore sometimes be negative: conceal that.
3099 	 */
3100 	if (ksm_pages_volatile < 0)
3101 		ksm_pages_volatile = 0;
3102 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3103 }
3104 KSM_ATTR_RO(pages_volatile);
3105 
3106 static ssize_t stable_node_dups_show(struct kobject *kobj,
3107 				     struct kobj_attribute *attr, char *buf)
3108 {
3109 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3110 }
3111 KSM_ATTR_RO(stable_node_dups);
3112 
3113 static ssize_t stable_node_chains_show(struct kobject *kobj,
3114 				       struct kobj_attribute *attr, char *buf)
3115 {
3116 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3117 }
3118 KSM_ATTR_RO(stable_node_chains);
3119 
3120 static ssize_t
3121 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3122 					struct kobj_attribute *attr,
3123 					char *buf)
3124 {
3125 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3126 }
3127 
3128 static ssize_t
3129 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3130 					 struct kobj_attribute *attr,
3131 					 const char *buf, size_t count)
3132 {
3133 	unsigned int msecs;
3134 	int err;
3135 
3136 	err = kstrtouint(buf, 10, &msecs);
3137 	if (err)
3138 		return -EINVAL;
3139 
3140 	ksm_stable_node_chains_prune_millisecs = msecs;
3141 
3142 	return count;
3143 }
3144 KSM_ATTR(stable_node_chains_prune_millisecs);
3145 
3146 static ssize_t full_scans_show(struct kobject *kobj,
3147 			       struct kobj_attribute *attr, char *buf)
3148 {
3149 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3150 }
3151 KSM_ATTR_RO(full_scans);
3152 
3153 static struct attribute *ksm_attrs[] = {
3154 	&sleep_millisecs_attr.attr,
3155 	&pages_to_scan_attr.attr,
3156 	&run_attr.attr,
3157 	&pages_shared_attr.attr,
3158 	&pages_sharing_attr.attr,
3159 	&pages_unshared_attr.attr,
3160 	&pages_volatile_attr.attr,
3161 	&full_scans_attr.attr,
3162 #ifdef CONFIG_NUMA
3163 	&merge_across_nodes_attr.attr,
3164 #endif
3165 	&max_page_sharing_attr.attr,
3166 	&stable_node_chains_attr.attr,
3167 	&stable_node_dups_attr.attr,
3168 	&stable_node_chains_prune_millisecs_attr.attr,
3169 	&use_zero_pages_attr.attr,
3170 	NULL,
3171 };
3172 
3173 static const struct attribute_group ksm_attr_group = {
3174 	.attrs = ksm_attrs,
3175 	.name = "ksm",
3176 };
3177 #endif /* CONFIG_SYSFS */
3178 
3179 static int __init ksm_init(void)
3180 {
3181 	struct task_struct *ksm_thread;
3182 	int err;
3183 
3184 	/* The correct value depends on page size and endianness */
3185 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3186 	/* Default to false for backwards compatibility */
3187 	ksm_use_zero_pages = false;
3188 
3189 	err = ksm_slab_init();
3190 	if (err)
3191 		goto out;
3192 
3193 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3194 	if (IS_ERR(ksm_thread)) {
3195 		pr_err("ksm: creating kthread failed\n");
3196 		err = PTR_ERR(ksm_thread);
3197 		goto out_free;
3198 	}
3199 
3200 #ifdef CONFIG_SYSFS
3201 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3202 	if (err) {
3203 		pr_err("ksm: register sysfs failed\n");
3204 		kthread_stop(ksm_thread);
3205 		goto out_free;
3206 	}
3207 #else
3208 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3209 
3210 #endif /* CONFIG_SYSFS */
3211 
3212 #ifdef CONFIG_MEMORY_HOTREMOVE
3213 	/* There is no significance to this priority 100 */
3214 	hotplug_memory_notifier(ksm_memory_callback, 100);
3215 #endif
3216 	return 0;
3217 
3218 out_free:
3219 	ksm_slab_free();
3220 out:
3221 	return err;
3222 }
3223 subsys_initcall(ksm_init);
3224