1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 45 #ifdef CONFIG_NUMA 46 #define NUMA(x) (x) 47 #define DO_NUMA(x) do { (x); } while (0) 48 #else 49 #define NUMA(x) (0) 50 #define DO_NUMA(x) do { } while (0) 51 #endif 52 53 /** 54 * DOC: Overview 55 * 56 * A few notes about the KSM scanning process, 57 * to make it easier to understand the data structures below: 58 * 59 * In order to reduce excessive scanning, KSM sorts the memory pages by their 60 * contents into a data structure that holds pointers to the pages' locations. 61 * 62 * Since the contents of the pages may change at any moment, KSM cannot just 63 * insert the pages into a normal sorted tree and expect it to find anything. 64 * Therefore KSM uses two data structures - the stable and the unstable tree. 65 * 66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 67 * by their contents. Because each such page is write-protected, searching on 68 * this tree is fully assured to be working (except when pages are unmapped), 69 * and therefore this tree is called the stable tree. 70 * 71 * The stable tree node includes information required for reverse 72 * mapping from a KSM page to virtual addresses that map this page. 73 * 74 * In order to avoid large latencies of the rmap walks on KSM pages, 75 * KSM maintains two types of nodes in the stable tree: 76 * 77 * * the regular nodes that keep the reverse mapping structures in a 78 * linked list 79 * * the "chains" that link nodes ("dups") that represent the same 80 * write protected memory content, but each "dup" corresponds to a 81 * different KSM page copy of that content 82 * 83 * Internally, the regular nodes, "dups" and "chains" are represented 84 * using the same struct stable_node structure. 85 * 86 * In addition to the stable tree, KSM uses a second data structure called the 87 * unstable tree: this tree holds pointers to pages which have been found to 88 * be "unchanged for a period of time". The unstable tree sorts these pages 89 * by their contents, but since they are not write-protected, KSM cannot rely 90 * upon the unstable tree to work correctly - the unstable tree is liable to 91 * be corrupted as its contents are modified, and so it is called unstable. 92 * 93 * KSM solves this problem by several techniques: 94 * 95 * 1) The unstable tree is flushed every time KSM completes scanning all 96 * memory areas, and then the tree is rebuilt again from the beginning. 97 * 2) KSM will only insert into the unstable tree, pages whose hash value 98 * has not changed since the previous scan of all memory areas. 99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 100 * colors of the nodes and not on their contents, assuring that even when 101 * the tree gets "corrupted" it won't get out of balance, so scanning time 102 * remains the same (also, searching and inserting nodes in an rbtree uses 103 * the same algorithm, so we have no overhead when we flush and rebuild). 104 * 4) KSM never flushes the stable tree, which means that even if it were to 105 * take 10 attempts to find a page in the unstable tree, once it is found, 106 * it is secured in the stable tree. (When we scan a new page, we first 107 * compare it against the stable tree, and then against the unstable tree.) 108 * 109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 110 * stable trees and multiple unstable trees: one of each for each NUMA node. 111 */ 112 113 /** 114 * struct mm_slot - ksm information per mm that is being scanned 115 * @link: link to the mm_slots hash list 116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 118 * @mm: the mm that this information is valid for 119 */ 120 struct mm_slot { 121 struct hlist_node link; 122 struct list_head mm_list; 123 struct rmap_item *rmap_list; 124 struct mm_struct *mm; 125 }; 126 127 /** 128 * struct ksm_scan - cursor for scanning 129 * @mm_slot: the current mm_slot we are scanning 130 * @address: the next address inside that to be scanned 131 * @rmap_list: link to the next rmap to be scanned in the rmap_list 132 * @seqnr: count of completed full scans (needed when removing unstable node) 133 * 134 * There is only the one ksm_scan instance of this cursor structure. 135 */ 136 struct ksm_scan { 137 struct mm_slot *mm_slot; 138 unsigned long address; 139 struct rmap_item **rmap_list; 140 unsigned long seqnr; 141 }; 142 143 /** 144 * struct stable_node - node of the stable rbtree 145 * @node: rb node of this ksm page in the stable tree 146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 148 * @list: linked into migrate_nodes, pending placement in the proper node tree 149 * @hlist: hlist head of rmap_items using this ksm page 150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 151 * @chain_prune_time: time of the last full garbage collection 152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 154 */ 155 struct stable_node { 156 union { 157 struct rb_node node; /* when node of stable tree */ 158 struct { /* when listed for migration */ 159 struct list_head *head; 160 struct { 161 struct hlist_node hlist_dup; 162 struct list_head list; 163 }; 164 }; 165 }; 166 struct hlist_head hlist; 167 union { 168 unsigned long kpfn; 169 unsigned long chain_prune_time; 170 }; 171 /* 172 * STABLE_NODE_CHAIN can be any negative number in 173 * rmap_hlist_len negative range, but better not -1 to be able 174 * to reliably detect underflows. 175 */ 176 #define STABLE_NODE_CHAIN -1024 177 int rmap_hlist_len; 178 #ifdef CONFIG_NUMA 179 int nid; 180 #endif 181 }; 182 183 /** 184 * struct rmap_item - reverse mapping item for virtual addresses 185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 187 * @nid: NUMA node id of unstable tree in which linked (may not match page) 188 * @mm: the memory structure this rmap_item is pointing into 189 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 190 * @oldchecksum: previous checksum of the page at that virtual address 191 * @node: rb node of this rmap_item in the unstable tree 192 * @head: pointer to stable_node heading this list in the stable tree 193 * @hlist: link into hlist of rmap_items hanging off that stable_node 194 */ 195 struct rmap_item { 196 struct rmap_item *rmap_list; 197 union { 198 struct anon_vma *anon_vma; /* when stable */ 199 #ifdef CONFIG_NUMA 200 int nid; /* when node of unstable tree */ 201 #endif 202 }; 203 struct mm_struct *mm; 204 unsigned long address; /* + low bits used for flags below */ 205 unsigned int oldchecksum; /* when unstable */ 206 union { 207 struct rb_node node; /* when node of unstable tree */ 208 struct { /* when listed from stable tree */ 209 struct stable_node *head; 210 struct hlist_node hlist; 211 }; 212 }; 213 }; 214 215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 218 219 /* The stable and unstable tree heads */ 220 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 221 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 222 static struct rb_root *root_stable_tree = one_stable_tree; 223 static struct rb_root *root_unstable_tree = one_unstable_tree; 224 225 /* Recently migrated nodes of stable tree, pending proper placement */ 226 static LIST_HEAD(migrate_nodes); 227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 228 229 #define MM_SLOTS_HASH_BITS 10 230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 231 232 static struct mm_slot ksm_mm_head = { 233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 234 }; 235 static struct ksm_scan ksm_scan = { 236 .mm_slot = &ksm_mm_head, 237 }; 238 239 static struct kmem_cache *rmap_item_cache; 240 static struct kmem_cache *stable_node_cache; 241 static struct kmem_cache *mm_slot_cache; 242 243 /* The number of nodes in the stable tree */ 244 static unsigned long ksm_pages_shared; 245 246 /* The number of page slots additionally sharing those nodes */ 247 static unsigned long ksm_pages_sharing; 248 249 /* The number of nodes in the unstable tree */ 250 static unsigned long ksm_pages_unshared; 251 252 /* The number of rmap_items in use: to calculate pages_volatile */ 253 static unsigned long ksm_rmap_items; 254 255 /* The number of stable_node chains */ 256 static unsigned long ksm_stable_node_chains; 257 258 /* The number of stable_node dups linked to the stable_node chains */ 259 static unsigned long ksm_stable_node_dups; 260 261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 263 264 /* Maximum number of page slots sharing a stable node */ 265 static int ksm_max_page_sharing = 256; 266 267 /* Number of pages ksmd should scan in one batch */ 268 static unsigned int ksm_thread_pages_to_scan = 100; 269 270 /* Milliseconds ksmd should sleep between batches */ 271 static unsigned int ksm_thread_sleep_millisecs = 20; 272 273 /* Checksum of an empty (zeroed) page */ 274 static unsigned int zero_checksum __read_mostly; 275 276 /* Whether to merge empty (zeroed) pages with actual zero pages */ 277 static bool ksm_use_zero_pages __read_mostly; 278 279 #ifdef CONFIG_NUMA 280 /* Zeroed when merging across nodes is not allowed */ 281 static unsigned int ksm_merge_across_nodes = 1; 282 static int ksm_nr_node_ids = 1; 283 #else 284 #define ksm_merge_across_nodes 1U 285 #define ksm_nr_node_ids 1 286 #endif 287 288 #define KSM_RUN_STOP 0 289 #define KSM_RUN_MERGE 1 290 #define KSM_RUN_UNMERGE 2 291 #define KSM_RUN_OFFLINE 4 292 static unsigned long ksm_run = KSM_RUN_STOP; 293 static void wait_while_offlining(void); 294 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 297 static DEFINE_MUTEX(ksm_thread_mutex); 298 static DEFINE_SPINLOCK(ksm_mmlist_lock); 299 300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 301 sizeof(struct __struct), __alignof__(struct __struct),\ 302 (__flags), NULL) 303 304 static int __init ksm_slab_init(void) 305 { 306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 307 if (!rmap_item_cache) 308 goto out; 309 310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 311 if (!stable_node_cache) 312 goto out_free1; 313 314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 315 if (!mm_slot_cache) 316 goto out_free2; 317 318 return 0; 319 320 out_free2: 321 kmem_cache_destroy(stable_node_cache); 322 out_free1: 323 kmem_cache_destroy(rmap_item_cache); 324 out: 325 return -ENOMEM; 326 } 327 328 static void __init ksm_slab_free(void) 329 { 330 kmem_cache_destroy(mm_slot_cache); 331 kmem_cache_destroy(stable_node_cache); 332 kmem_cache_destroy(rmap_item_cache); 333 mm_slot_cache = NULL; 334 } 335 336 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 337 { 338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 339 } 340 341 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 342 { 343 return dup->head == STABLE_NODE_DUP_HEAD; 344 } 345 346 static inline void stable_node_chain_add_dup(struct stable_node *dup, 347 struct stable_node *chain) 348 { 349 VM_BUG_ON(is_stable_node_dup(dup)); 350 dup->head = STABLE_NODE_DUP_HEAD; 351 VM_BUG_ON(!is_stable_node_chain(chain)); 352 hlist_add_head(&dup->hlist_dup, &chain->hlist); 353 ksm_stable_node_dups++; 354 } 355 356 static inline void __stable_node_dup_del(struct stable_node *dup) 357 { 358 VM_BUG_ON(!is_stable_node_dup(dup)); 359 hlist_del(&dup->hlist_dup); 360 ksm_stable_node_dups--; 361 } 362 363 static inline void stable_node_dup_del(struct stable_node *dup) 364 { 365 VM_BUG_ON(is_stable_node_chain(dup)); 366 if (is_stable_node_dup(dup)) 367 __stable_node_dup_del(dup); 368 else 369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 370 #ifdef CONFIG_DEBUG_VM 371 dup->head = NULL; 372 #endif 373 } 374 375 static inline struct rmap_item *alloc_rmap_item(void) 376 { 377 struct rmap_item *rmap_item; 378 379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 380 __GFP_NORETRY | __GFP_NOWARN); 381 if (rmap_item) 382 ksm_rmap_items++; 383 return rmap_item; 384 } 385 386 static inline void free_rmap_item(struct rmap_item *rmap_item) 387 { 388 ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 static inline struct mm_slot *alloc_mm_slot(void) 411 { 412 if (!mm_slot_cache) /* initialization failed */ 413 return NULL; 414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 415 } 416 417 static inline void free_mm_slot(struct mm_slot *mm_slot) 418 { 419 kmem_cache_free(mm_slot_cache, mm_slot); 420 } 421 422 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 423 { 424 struct mm_slot *slot; 425 426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 427 if (slot->mm == mm) 428 return slot; 429 430 return NULL; 431 } 432 433 static void insert_to_mm_slots_hash(struct mm_struct *mm, 434 struct mm_slot *mm_slot) 435 { 436 mm_slot->mm = mm; 437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 438 } 439 440 /* 441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 442 * page tables after it has passed through ksm_exit() - which, if necessary, 443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 444 * a special flag: they can just back out as soon as mm_users goes to zero. 445 * ksm_test_exit() is used throughout to make this test for exit: in some 446 * places for correctness, in some places just to avoid unnecessary work. 447 */ 448 static inline bool ksm_test_exit(struct mm_struct *mm) 449 { 450 return atomic_read(&mm->mm_users) == 0; 451 } 452 453 /* 454 * We use break_ksm to break COW on a ksm page: it's a stripped down 455 * 456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 457 * put_page(page); 458 * 459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 460 * in case the application has unmapped and remapped mm,addr meanwhile. 461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 462 * mmap of /dev/mem, where we would not want to touch it. 463 * 464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 465 * of the process that owns 'vma'. We also do not want to enforce 466 * protection keys here anyway. 467 */ 468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 469 { 470 struct page *page; 471 vm_fault_t ret = 0; 472 473 do { 474 cond_resched(); 475 page = follow_page(vma, addr, 476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 477 if (IS_ERR_OR_NULL(page)) 478 break; 479 if (PageKsm(page)) 480 ret = handle_mm_fault(vma, addr, 481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 482 NULL); 483 else 484 ret = VM_FAULT_WRITE; 485 put_page(page); 486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop because handle_mm_fault() may back out if there's 489 * any difficulty e.g. if pte accessed bit gets updated concurrently. 490 * 491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 492 * COW has been broken, even if the vma does not permit VM_WRITE; 493 * but note that a concurrent fault might break PageKsm for us. 494 * 495 * VM_FAULT_SIGBUS could occur if we race with truncation of the 496 * backing file, which also invalidates anonymous pages: that's 497 * okay, that truncation will have unmapped the PageKsm for us. 498 * 499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 501 * current task has TIF_MEMDIE set, and will be OOM killed on return 502 * to user; and ksmd, having no mm, would never be chosen for that. 503 * 504 * But if the mm is in a limited mem_cgroup, then the fault may fail 505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 506 * even ksmd can fail in this way - though it's usually breaking ksm 507 * just to undo a merge it made a moment before, so unlikely to oom. 508 * 509 * That's a pity: we might therefore have more kernel pages allocated 510 * than we're counting as nodes in the stable tree; but ksm_do_scan 511 * will retry to break_cow on each pass, so should recover the page 512 * in due course. The important thing is to not let VM_MERGEABLE 513 * be cleared while any such pages might remain in the area. 514 */ 515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 516 } 517 518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 519 unsigned long addr) 520 { 521 struct vm_area_struct *vma; 522 if (ksm_test_exit(mm)) 523 return NULL; 524 vma = vma_lookup(mm, addr); 525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 526 return NULL; 527 return vma; 528 } 529 530 static void break_cow(struct rmap_item *rmap_item) 531 { 532 struct mm_struct *mm = rmap_item->mm; 533 unsigned long addr = rmap_item->address; 534 struct vm_area_struct *vma; 535 536 /* 537 * It is not an accident that whenever we want to break COW 538 * to undo, we also need to drop a reference to the anon_vma. 539 */ 540 put_anon_vma(rmap_item->anon_vma); 541 542 mmap_read_lock(mm); 543 vma = find_mergeable_vma(mm, addr); 544 if (vma) 545 break_ksm(vma, addr); 546 mmap_read_unlock(mm); 547 } 548 549 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 550 { 551 struct mm_struct *mm = rmap_item->mm; 552 unsigned long addr = rmap_item->address; 553 struct vm_area_struct *vma; 554 struct page *page; 555 556 mmap_read_lock(mm); 557 vma = find_mergeable_vma(mm, addr); 558 if (!vma) 559 goto out; 560 561 page = follow_page(vma, addr, FOLL_GET); 562 if (IS_ERR_OR_NULL(page)) 563 goto out; 564 if (PageAnon(page)) { 565 flush_anon_page(vma, page, addr); 566 flush_dcache_page(page); 567 } else { 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 588 struct rb_root *root) 589 { 590 struct stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct stable_node *stable_node) 629 { 630 struct rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 641 stable_node->rmap_hlist_len--; 642 put_anon_vma(rmap_item->anon_vma); 643 rmap_item->address &= PAGE_MASK; 644 cond_resched(); 645 } 646 647 /* 648 * We need the second aligned pointer of the migrate_nodes 649 * list_head to stay clear from the rb_parent_color union 650 * (aligned and different than any node) and also different 651 * from &migrate_nodes. This will verify that future list.h changes 652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 653 */ 654 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 656 657 if (stable_node->head == &migrate_nodes) 658 list_del(&stable_node->list); 659 else 660 stable_node_dup_del(stable_node); 661 free_stable_node(stable_node); 662 } 663 664 enum get_ksm_page_flags { 665 GET_KSM_PAGE_NOLOCK, 666 GET_KSM_PAGE_LOCK, 667 GET_KSM_PAGE_TRYLOCK 668 }; 669 670 /* 671 * get_ksm_page: checks if the page indicated by the stable node 672 * is still its ksm page, despite having held no reference to it. 673 * In which case we can trust the content of the page, and it 674 * returns the gotten page; but if the page has now been zapped, 675 * remove the stale node from the stable tree and return NULL. 676 * But beware, the stable node's page might be being migrated. 677 * 678 * You would expect the stable_node to hold a reference to the ksm page. 679 * But if it increments the page's count, swapping out has to wait for 680 * ksmd to come around again before it can free the page, which may take 681 * seconds or even minutes: much too unresponsive. So instead we use a 682 * "keyhole reference": access to the ksm page from the stable node peeps 683 * out through its keyhole to see if that page still holds the right key, 684 * pointing back to this stable node. This relies on freeing a PageAnon 685 * page to reset its page->mapping to NULL, and relies on no other use of 686 * a page to put something that might look like our key in page->mapping. 687 * is on its way to being freed; but it is an anomaly to bear in mind. 688 */ 689 static struct page *get_ksm_page(struct stable_node *stable_node, 690 enum get_ksm_page_flags flags) 691 { 692 struct page *page; 693 void *expected_mapping; 694 unsigned long kpfn; 695 696 expected_mapping = (void *)((unsigned long)stable_node | 697 PAGE_MAPPING_KSM); 698 again: 699 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 700 page = pfn_to_page(kpfn); 701 if (READ_ONCE(page->mapping) != expected_mapping) 702 goto stale; 703 704 /* 705 * We cannot do anything with the page while its refcount is 0. 706 * Usually 0 means free, or tail of a higher-order page: in which 707 * case this node is no longer referenced, and should be freed; 708 * however, it might mean that the page is under page_ref_freeze(). 709 * The __remove_mapping() case is easy, again the node is now stale; 710 * the same is in reuse_ksm_page() case; but if page is swapcache 711 * in migrate_page_move_mapping(), it might still be our page, 712 * in which case it's essential to keep the node. 713 */ 714 while (!get_page_unless_zero(page)) { 715 /* 716 * Another check for page->mapping != expected_mapping would 717 * work here too. We have chosen the !PageSwapCache test to 718 * optimize the common case, when the page is or is about to 719 * be freed: PageSwapCache is cleared (under spin_lock_irq) 720 * in the ref_freeze section of __remove_mapping(); but Anon 721 * page->mapping reset to NULL later, in free_pages_prepare(). 722 */ 723 if (!PageSwapCache(page)) 724 goto stale; 725 cpu_relax(); 726 } 727 728 if (READ_ONCE(page->mapping) != expected_mapping) { 729 put_page(page); 730 goto stale; 731 } 732 733 if (flags == GET_KSM_PAGE_TRYLOCK) { 734 if (!trylock_page(page)) { 735 put_page(page); 736 return ERR_PTR(-EBUSY); 737 } 738 } else if (flags == GET_KSM_PAGE_LOCK) 739 lock_page(page); 740 741 if (flags != GET_KSM_PAGE_NOLOCK) { 742 if (READ_ONCE(page->mapping) != expected_mapping) { 743 unlock_page(page); 744 put_page(page); 745 goto stale; 746 } 747 } 748 return page; 749 750 stale: 751 /* 752 * We come here from above when page->mapping or !PageSwapCache 753 * suggests that the node is stale; but it might be under migration. 754 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 755 * before checking whether node->kpfn has been changed. 756 */ 757 smp_rmb(); 758 if (READ_ONCE(stable_node->kpfn) != kpfn) 759 goto again; 760 remove_node_from_stable_tree(stable_node); 761 return NULL; 762 } 763 764 /* 765 * Removing rmap_item from stable or unstable tree. 766 * This function will clean the information from the stable/unstable tree. 767 */ 768 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 769 { 770 if (rmap_item->address & STABLE_FLAG) { 771 struct stable_node *stable_node; 772 struct page *page; 773 774 stable_node = rmap_item->head; 775 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 776 if (!page) 777 goto out; 778 779 hlist_del(&rmap_item->hlist); 780 unlock_page(page); 781 put_page(page); 782 783 if (!hlist_empty(&stable_node->hlist)) 784 ksm_pages_sharing--; 785 else 786 ksm_pages_shared--; 787 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 788 stable_node->rmap_hlist_len--; 789 790 put_anon_vma(rmap_item->anon_vma); 791 rmap_item->head = NULL; 792 rmap_item->address &= PAGE_MASK; 793 794 } else if (rmap_item->address & UNSTABLE_FLAG) { 795 unsigned char age; 796 /* 797 * Usually ksmd can and must skip the rb_erase, because 798 * root_unstable_tree was already reset to RB_ROOT. 799 * But be careful when an mm is exiting: do the rb_erase 800 * if this rmap_item was inserted by this scan, rather 801 * than left over from before. 802 */ 803 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 804 BUG_ON(age > 1); 805 if (!age) 806 rb_erase(&rmap_item->node, 807 root_unstable_tree + NUMA(rmap_item->nid)); 808 ksm_pages_unshared--; 809 rmap_item->address &= PAGE_MASK; 810 } 811 out: 812 cond_resched(); /* we're called from many long loops */ 813 } 814 815 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 816 { 817 while (*rmap_list) { 818 struct rmap_item *rmap_item = *rmap_list; 819 *rmap_list = rmap_item->rmap_list; 820 remove_rmap_item_from_tree(rmap_item); 821 free_rmap_item(rmap_item); 822 } 823 } 824 825 /* 826 * Though it's very tempting to unmerge rmap_items from stable tree rather 827 * than check every pte of a given vma, the locking doesn't quite work for 828 * that - an rmap_item is assigned to the stable tree after inserting ksm 829 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 830 * rmap_items from parent to child at fork time (so as not to waste time 831 * if exit comes before the next scan reaches it). 832 * 833 * Similarly, although we'd like to remove rmap_items (so updating counts 834 * and freeing memory) when unmerging an area, it's easier to leave that 835 * to the next pass of ksmd - consider, for example, how ksmd might be 836 * in cmp_and_merge_page on one of the rmap_items we would be removing. 837 */ 838 static int unmerge_ksm_pages(struct vm_area_struct *vma, 839 unsigned long start, unsigned long end) 840 { 841 unsigned long addr; 842 int err = 0; 843 844 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 845 if (ksm_test_exit(vma->vm_mm)) 846 break; 847 if (signal_pending(current)) 848 err = -ERESTARTSYS; 849 else 850 err = break_ksm(vma, addr); 851 } 852 return err; 853 } 854 855 static inline struct stable_node *page_stable_node(struct page *page) 856 { 857 return PageKsm(page) ? page_rmapping(page) : NULL; 858 } 859 860 static inline void set_page_stable_node(struct page *page, 861 struct stable_node *stable_node) 862 { 863 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 864 } 865 866 #ifdef CONFIG_SYSFS 867 /* 868 * Only called through the sysfs control interface: 869 */ 870 static int remove_stable_node(struct stable_node *stable_node) 871 { 872 struct page *page; 873 int err; 874 875 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 876 if (!page) { 877 /* 878 * get_ksm_page did remove_node_from_stable_tree itself. 879 */ 880 return 0; 881 } 882 883 /* 884 * Page could be still mapped if this races with __mmput() running in 885 * between ksm_exit() and exit_mmap(). Just refuse to let 886 * merge_across_nodes/max_page_sharing be switched. 887 */ 888 err = -EBUSY; 889 if (!page_mapped(page)) { 890 /* 891 * The stable node did not yet appear stale to get_ksm_page(), 892 * since that allows for an unmapped ksm page to be recognized 893 * right up until it is freed; but the node is safe to remove. 894 * This page might be in a pagevec waiting to be freed, 895 * or it might be PageSwapCache (perhaps under writeback), 896 * or it might have been removed from swapcache a moment ago. 897 */ 898 set_page_stable_node(page, NULL); 899 remove_node_from_stable_tree(stable_node); 900 err = 0; 901 } 902 903 unlock_page(page); 904 put_page(page); 905 return err; 906 } 907 908 static int remove_stable_node_chain(struct stable_node *stable_node, 909 struct rb_root *root) 910 { 911 struct stable_node *dup; 912 struct hlist_node *hlist_safe; 913 914 if (!is_stable_node_chain(stable_node)) { 915 VM_BUG_ON(is_stable_node_dup(stable_node)); 916 if (remove_stable_node(stable_node)) 917 return true; 918 else 919 return false; 920 } 921 922 hlist_for_each_entry_safe(dup, hlist_safe, 923 &stable_node->hlist, hlist_dup) { 924 VM_BUG_ON(!is_stable_node_dup(dup)); 925 if (remove_stable_node(dup)) 926 return true; 927 } 928 BUG_ON(!hlist_empty(&stable_node->hlist)); 929 free_stable_node_chain(stable_node, root); 930 return false; 931 } 932 933 static int remove_all_stable_nodes(void) 934 { 935 struct stable_node *stable_node, *next; 936 int nid; 937 int err = 0; 938 939 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 940 while (root_stable_tree[nid].rb_node) { 941 stable_node = rb_entry(root_stable_tree[nid].rb_node, 942 struct stable_node, node); 943 if (remove_stable_node_chain(stable_node, 944 root_stable_tree + nid)) { 945 err = -EBUSY; 946 break; /* proceed to next nid */ 947 } 948 cond_resched(); 949 } 950 } 951 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 952 if (remove_stable_node(stable_node)) 953 err = -EBUSY; 954 cond_resched(); 955 } 956 return err; 957 } 958 959 static int unmerge_and_remove_all_rmap_items(void) 960 { 961 struct mm_slot *mm_slot; 962 struct mm_struct *mm; 963 struct vm_area_struct *vma; 964 int err = 0; 965 966 spin_lock(&ksm_mmlist_lock); 967 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 968 struct mm_slot, mm_list); 969 spin_unlock(&ksm_mmlist_lock); 970 971 for (mm_slot = ksm_scan.mm_slot; 972 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 973 mm = mm_slot->mm; 974 mmap_read_lock(mm); 975 for (vma = mm->mmap; vma; vma = vma->vm_next) { 976 if (ksm_test_exit(mm)) 977 break; 978 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 979 continue; 980 err = unmerge_ksm_pages(vma, 981 vma->vm_start, vma->vm_end); 982 if (err) 983 goto error; 984 } 985 986 remove_trailing_rmap_items(&mm_slot->rmap_list); 987 mmap_read_unlock(mm); 988 989 spin_lock(&ksm_mmlist_lock); 990 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 991 struct mm_slot, mm_list); 992 if (ksm_test_exit(mm)) { 993 hash_del(&mm_slot->link); 994 list_del(&mm_slot->mm_list); 995 spin_unlock(&ksm_mmlist_lock); 996 997 free_mm_slot(mm_slot); 998 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 999 mmdrop(mm); 1000 } else 1001 spin_unlock(&ksm_mmlist_lock); 1002 } 1003 1004 /* Clean up stable nodes, but don't worry if some are still busy */ 1005 remove_all_stable_nodes(); 1006 ksm_scan.seqnr = 0; 1007 return 0; 1008 1009 error: 1010 mmap_read_unlock(mm); 1011 spin_lock(&ksm_mmlist_lock); 1012 ksm_scan.mm_slot = &ksm_mm_head; 1013 spin_unlock(&ksm_mmlist_lock); 1014 return err; 1015 } 1016 #endif /* CONFIG_SYSFS */ 1017 1018 static u32 calc_checksum(struct page *page) 1019 { 1020 u32 checksum; 1021 void *addr = kmap_atomic(page); 1022 checksum = xxhash(addr, PAGE_SIZE, 0); 1023 kunmap_atomic(addr); 1024 return checksum; 1025 } 1026 1027 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1028 pte_t *orig_pte) 1029 { 1030 struct mm_struct *mm = vma->vm_mm; 1031 struct page_vma_mapped_walk pvmw = { 1032 .page = page, 1033 .vma = vma, 1034 }; 1035 int swapped; 1036 int err = -EFAULT; 1037 struct mmu_notifier_range range; 1038 1039 pvmw.address = page_address_in_vma(page, vma); 1040 if (pvmw.address == -EFAULT) 1041 goto out; 1042 1043 BUG_ON(PageTransCompound(page)); 1044 1045 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1046 pvmw.address, 1047 pvmw.address + PAGE_SIZE); 1048 mmu_notifier_invalidate_range_start(&range); 1049 1050 if (!page_vma_mapped_walk(&pvmw)) 1051 goto out_mn; 1052 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1053 goto out_unlock; 1054 1055 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1056 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1057 mm_tlb_flush_pending(mm)) { 1058 pte_t entry; 1059 1060 swapped = PageSwapCache(page); 1061 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1062 /* 1063 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1064 * take any lock, therefore the check that we are going to make 1065 * with the pagecount against the mapcount is racy and 1066 * O_DIRECT can happen right after the check. 1067 * So we clear the pte and flush the tlb before the check 1068 * this assure us that no O_DIRECT can happen after the check 1069 * or in the middle of the check. 1070 * 1071 * No need to notify as we are downgrading page table to read 1072 * only not changing it to point to a new page. 1073 * 1074 * See Documentation/vm/mmu_notifier.rst 1075 */ 1076 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1077 /* 1078 * Check that no O_DIRECT or similar I/O is in progress on the 1079 * page 1080 */ 1081 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1082 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1083 goto out_unlock; 1084 } 1085 if (pte_dirty(entry)) 1086 set_page_dirty(page); 1087 1088 if (pte_protnone(entry)) 1089 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1090 else 1091 entry = pte_mkclean(pte_wrprotect(entry)); 1092 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1093 } 1094 *orig_pte = *pvmw.pte; 1095 err = 0; 1096 1097 out_unlock: 1098 page_vma_mapped_walk_done(&pvmw); 1099 out_mn: 1100 mmu_notifier_invalidate_range_end(&range); 1101 out: 1102 return err; 1103 } 1104 1105 /** 1106 * replace_page - replace page in vma by new ksm page 1107 * @vma: vma that holds the pte pointing to page 1108 * @page: the page we are replacing by kpage 1109 * @kpage: the ksm page we replace page by 1110 * @orig_pte: the original value of the pte 1111 * 1112 * Returns 0 on success, -EFAULT on failure. 1113 */ 1114 static int replace_page(struct vm_area_struct *vma, struct page *page, 1115 struct page *kpage, pte_t orig_pte) 1116 { 1117 struct mm_struct *mm = vma->vm_mm; 1118 pmd_t *pmd; 1119 pte_t *ptep; 1120 pte_t newpte; 1121 spinlock_t *ptl; 1122 unsigned long addr; 1123 int err = -EFAULT; 1124 struct mmu_notifier_range range; 1125 1126 addr = page_address_in_vma(page, vma); 1127 if (addr == -EFAULT) 1128 goto out; 1129 1130 pmd = mm_find_pmd(mm, addr); 1131 if (!pmd) 1132 goto out; 1133 1134 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1135 addr + PAGE_SIZE); 1136 mmu_notifier_invalidate_range_start(&range); 1137 1138 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1139 if (!pte_same(*ptep, orig_pte)) { 1140 pte_unmap_unlock(ptep, ptl); 1141 goto out_mn; 1142 } 1143 1144 /* 1145 * No need to check ksm_use_zero_pages here: we can only have a 1146 * zero_page here if ksm_use_zero_pages was enabled already. 1147 */ 1148 if (!is_zero_pfn(page_to_pfn(kpage))) { 1149 get_page(kpage); 1150 page_add_anon_rmap(kpage, vma, addr, false); 1151 newpte = mk_pte(kpage, vma->vm_page_prot); 1152 } else { 1153 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1154 vma->vm_page_prot)); 1155 /* 1156 * We're replacing an anonymous page with a zero page, which is 1157 * not anonymous. We need to do proper accounting otherwise we 1158 * will get wrong values in /proc, and a BUG message in dmesg 1159 * when tearing down the mm. 1160 */ 1161 dec_mm_counter(mm, MM_ANONPAGES); 1162 } 1163 1164 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1165 /* 1166 * No need to notify as we are replacing a read only page with another 1167 * read only page with the same content. 1168 * 1169 * See Documentation/vm/mmu_notifier.rst 1170 */ 1171 ptep_clear_flush(vma, addr, ptep); 1172 set_pte_at_notify(mm, addr, ptep, newpte); 1173 1174 page_remove_rmap(page, false); 1175 if (!page_mapped(page)) 1176 try_to_free_swap(page); 1177 put_page(page); 1178 1179 pte_unmap_unlock(ptep, ptl); 1180 err = 0; 1181 out_mn: 1182 mmu_notifier_invalidate_range_end(&range); 1183 out: 1184 return err; 1185 } 1186 1187 /* 1188 * try_to_merge_one_page - take two pages and merge them into one 1189 * @vma: the vma that holds the pte pointing to page 1190 * @page: the PageAnon page that we want to replace with kpage 1191 * @kpage: the PageKsm page that we want to map instead of page, 1192 * or NULL the first time when we want to use page as kpage. 1193 * 1194 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1195 */ 1196 static int try_to_merge_one_page(struct vm_area_struct *vma, 1197 struct page *page, struct page *kpage) 1198 { 1199 pte_t orig_pte = __pte(0); 1200 int err = -EFAULT; 1201 1202 if (page == kpage) /* ksm page forked */ 1203 return 0; 1204 1205 if (!PageAnon(page)) 1206 goto out; 1207 1208 /* 1209 * We need the page lock to read a stable PageSwapCache in 1210 * write_protect_page(). We use trylock_page() instead of 1211 * lock_page() because we don't want to wait here - we 1212 * prefer to continue scanning and merging different pages, 1213 * then come back to this page when it is unlocked. 1214 */ 1215 if (!trylock_page(page)) 1216 goto out; 1217 1218 if (PageTransCompound(page)) { 1219 if (split_huge_page(page)) 1220 goto out_unlock; 1221 } 1222 1223 /* 1224 * If this anonymous page is mapped only here, its pte may need 1225 * to be write-protected. If it's mapped elsewhere, all of its 1226 * ptes are necessarily already write-protected. But in either 1227 * case, we need to lock and check page_count is not raised. 1228 */ 1229 if (write_protect_page(vma, page, &orig_pte) == 0) { 1230 if (!kpage) { 1231 /* 1232 * While we hold page lock, upgrade page from 1233 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1234 * stable_tree_insert() will update stable_node. 1235 */ 1236 set_page_stable_node(page, NULL); 1237 mark_page_accessed(page); 1238 /* 1239 * Page reclaim just frees a clean page with no dirty 1240 * ptes: make sure that the ksm page would be swapped. 1241 */ 1242 if (!PageDirty(page)) 1243 SetPageDirty(page); 1244 err = 0; 1245 } else if (pages_identical(page, kpage)) 1246 err = replace_page(vma, page, kpage, orig_pte); 1247 } 1248 1249 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1250 munlock_vma_page(page); 1251 if (!PageMlocked(kpage)) { 1252 unlock_page(page); 1253 lock_page(kpage); 1254 mlock_vma_page(kpage); 1255 page = kpage; /* for final unlock */ 1256 } 1257 } 1258 1259 out_unlock: 1260 unlock_page(page); 1261 out: 1262 return err; 1263 } 1264 1265 /* 1266 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1267 * but no new kernel page is allocated: kpage must already be a ksm page. 1268 * 1269 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1270 */ 1271 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1272 struct page *page, struct page *kpage) 1273 { 1274 struct mm_struct *mm = rmap_item->mm; 1275 struct vm_area_struct *vma; 1276 int err = -EFAULT; 1277 1278 mmap_read_lock(mm); 1279 vma = find_mergeable_vma(mm, rmap_item->address); 1280 if (!vma) 1281 goto out; 1282 1283 err = try_to_merge_one_page(vma, page, kpage); 1284 if (err) 1285 goto out; 1286 1287 /* Unstable nid is in union with stable anon_vma: remove first */ 1288 remove_rmap_item_from_tree(rmap_item); 1289 1290 /* Must get reference to anon_vma while still holding mmap_lock */ 1291 rmap_item->anon_vma = vma->anon_vma; 1292 get_anon_vma(vma->anon_vma); 1293 out: 1294 mmap_read_unlock(mm); 1295 return err; 1296 } 1297 1298 /* 1299 * try_to_merge_two_pages - take two identical pages and prepare them 1300 * to be merged into one page. 1301 * 1302 * This function returns the kpage if we successfully merged two identical 1303 * pages into one ksm page, NULL otherwise. 1304 * 1305 * Note that this function upgrades page to ksm page: if one of the pages 1306 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1307 */ 1308 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1309 struct page *page, 1310 struct rmap_item *tree_rmap_item, 1311 struct page *tree_page) 1312 { 1313 int err; 1314 1315 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1316 if (!err) { 1317 err = try_to_merge_with_ksm_page(tree_rmap_item, 1318 tree_page, page); 1319 /* 1320 * If that fails, we have a ksm page with only one pte 1321 * pointing to it: so break it. 1322 */ 1323 if (err) 1324 break_cow(rmap_item); 1325 } 1326 return err ? NULL : page; 1327 } 1328 1329 static __always_inline 1330 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1331 { 1332 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1333 /* 1334 * Check that at least one mapping still exists, otherwise 1335 * there's no much point to merge and share with this 1336 * stable_node, as the underlying tree_page of the other 1337 * sharer is going to be freed soon. 1338 */ 1339 return stable_node->rmap_hlist_len && 1340 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1341 } 1342 1343 static __always_inline 1344 bool is_page_sharing_candidate(struct stable_node *stable_node) 1345 { 1346 return __is_page_sharing_candidate(stable_node, 0); 1347 } 1348 1349 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1350 struct stable_node **_stable_node, 1351 struct rb_root *root, 1352 bool prune_stale_stable_nodes) 1353 { 1354 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1355 struct hlist_node *hlist_safe; 1356 struct page *_tree_page, *tree_page = NULL; 1357 int nr = 0; 1358 int found_rmap_hlist_len; 1359 1360 if (!prune_stale_stable_nodes || 1361 time_before(jiffies, stable_node->chain_prune_time + 1362 msecs_to_jiffies( 1363 ksm_stable_node_chains_prune_millisecs))) 1364 prune_stale_stable_nodes = false; 1365 else 1366 stable_node->chain_prune_time = jiffies; 1367 1368 hlist_for_each_entry_safe(dup, hlist_safe, 1369 &stable_node->hlist, hlist_dup) { 1370 cond_resched(); 1371 /* 1372 * We must walk all stable_node_dup to prune the stale 1373 * stable nodes during lookup. 1374 * 1375 * get_ksm_page can drop the nodes from the 1376 * stable_node->hlist if they point to freed pages 1377 * (that's why we do a _safe walk). The "dup" 1378 * stable_node parameter itself will be freed from 1379 * under us if it returns NULL. 1380 */ 1381 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1382 if (!_tree_page) 1383 continue; 1384 nr += 1; 1385 if (is_page_sharing_candidate(dup)) { 1386 if (!found || 1387 dup->rmap_hlist_len > found_rmap_hlist_len) { 1388 if (found) 1389 put_page(tree_page); 1390 found = dup; 1391 found_rmap_hlist_len = found->rmap_hlist_len; 1392 tree_page = _tree_page; 1393 1394 /* skip put_page for found dup */ 1395 if (!prune_stale_stable_nodes) 1396 break; 1397 continue; 1398 } 1399 } 1400 put_page(_tree_page); 1401 } 1402 1403 if (found) { 1404 /* 1405 * nr is counting all dups in the chain only if 1406 * prune_stale_stable_nodes is true, otherwise we may 1407 * break the loop at nr == 1 even if there are 1408 * multiple entries. 1409 */ 1410 if (prune_stale_stable_nodes && nr == 1) { 1411 /* 1412 * If there's not just one entry it would 1413 * corrupt memory, better BUG_ON. In KSM 1414 * context with no lock held it's not even 1415 * fatal. 1416 */ 1417 BUG_ON(stable_node->hlist.first->next); 1418 1419 /* 1420 * There's just one entry and it is below the 1421 * deduplication limit so drop the chain. 1422 */ 1423 rb_replace_node(&stable_node->node, &found->node, 1424 root); 1425 free_stable_node(stable_node); 1426 ksm_stable_node_chains--; 1427 ksm_stable_node_dups--; 1428 /* 1429 * NOTE: the caller depends on the stable_node 1430 * to be equal to stable_node_dup if the chain 1431 * was collapsed. 1432 */ 1433 *_stable_node = found; 1434 /* 1435 * Just for robustness, as stable_node is 1436 * otherwise left as a stable pointer, the 1437 * compiler shall optimize it away at build 1438 * time. 1439 */ 1440 stable_node = NULL; 1441 } else if (stable_node->hlist.first != &found->hlist_dup && 1442 __is_page_sharing_candidate(found, 1)) { 1443 /* 1444 * If the found stable_node dup can accept one 1445 * more future merge (in addition to the one 1446 * that is underway) and is not at the head of 1447 * the chain, put it there so next search will 1448 * be quicker in the !prune_stale_stable_nodes 1449 * case. 1450 * 1451 * NOTE: it would be inaccurate to use nr > 1 1452 * instead of checking the hlist.first pointer 1453 * directly, because in the 1454 * prune_stale_stable_nodes case "nr" isn't 1455 * the position of the found dup in the chain, 1456 * but the total number of dups in the chain. 1457 */ 1458 hlist_del(&found->hlist_dup); 1459 hlist_add_head(&found->hlist_dup, 1460 &stable_node->hlist); 1461 } 1462 } 1463 1464 *_stable_node_dup = found; 1465 return tree_page; 1466 } 1467 1468 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1469 struct rb_root *root) 1470 { 1471 if (!is_stable_node_chain(stable_node)) 1472 return stable_node; 1473 if (hlist_empty(&stable_node->hlist)) { 1474 free_stable_node_chain(stable_node, root); 1475 return NULL; 1476 } 1477 return hlist_entry(stable_node->hlist.first, 1478 typeof(*stable_node), hlist_dup); 1479 } 1480 1481 /* 1482 * Like for get_ksm_page, this function can free the *_stable_node and 1483 * *_stable_node_dup if the returned tree_page is NULL. 1484 * 1485 * It can also free and overwrite *_stable_node with the found 1486 * stable_node_dup if the chain is collapsed (in which case 1487 * *_stable_node will be equal to *_stable_node_dup like if the chain 1488 * never existed). It's up to the caller to verify tree_page is not 1489 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1490 * 1491 * *_stable_node_dup is really a second output parameter of this 1492 * function and will be overwritten in all cases, the caller doesn't 1493 * need to initialize it. 1494 */ 1495 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1496 struct stable_node **_stable_node, 1497 struct rb_root *root, 1498 bool prune_stale_stable_nodes) 1499 { 1500 struct stable_node *stable_node = *_stable_node; 1501 if (!is_stable_node_chain(stable_node)) { 1502 if (is_page_sharing_candidate(stable_node)) { 1503 *_stable_node_dup = stable_node; 1504 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1505 } 1506 /* 1507 * _stable_node_dup set to NULL means the stable_node 1508 * reached the ksm_max_page_sharing limit. 1509 */ 1510 *_stable_node_dup = NULL; 1511 return NULL; 1512 } 1513 return stable_node_dup(_stable_node_dup, _stable_node, root, 1514 prune_stale_stable_nodes); 1515 } 1516 1517 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1518 struct stable_node **s_n, 1519 struct rb_root *root) 1520 { 1521 return __stable_node_chain(s_n_d, s_n, root, true); 1522 } 1523 1524 static __always_inline struct page *chain(struct stable_node **s_n_d, 1525 struct stable_node *s_n, 1526 struct rb_root *root) 1527 { 1528 struct stable_node *old_stable_node = s_n; 1529 struct page *tree_page; 1530 1531 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1532 /* not pruning dups so s_n cannot have changed */ 1533 VM_BUG_ON(s_n != old_stable_node); 1534 return tree_page; 1535 } 1536 1537 /* 1538 * stable_tree_search - search for page inside the stable tree 1539 * 1540 * This function checks if there is a page inside the stable tree 1541 * with identical content to the page that we are scanning right now. 1542 * 1543 * This function returns the stable tree node of identical content if found, 1544 * NULL otherwise. 1545 */ 1546 static struct page *stable_tree_search(struct page *page) 1547 { 1548 int nid; 1549 struct rb_root *root; 1550 struct rb_node **new; 1551 struct rb_node *parent; 1552 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1553 struct stable_node *page_node; 1554 1555 page_node = page_stable_node(page); 1556 if (page_node && page_node->head != &migrate_nodes) { 1557 /* ksm page forked */ 1558 get_page(page); 1559 return page; 1560 } 1561 1562 nid = get_kpfn_nid(page_to_pfn(page)); 1563 root = root_stable_tree + nid; 1564 again: 1565 new = &root->rb_node; 1566 parent = NULL; 1567 1568 while (*new) { 1569 struct page *tree_page; 1570 int ret; 1571 1572 cond_resched(); 1573 stable_node = rb_entry(*new, struct stable_node, node); 1574 stable_node_any = NULL; 1575 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1576 /* 1577 * NOTE: stable_node may have been freed by 1578 * chain_prune() if the returned stable_node_dup is 1579 * not NULL. stable_node_dup may have been inserted in 1580 * the rbtree instead as a regular stable_node (in 1581 * order to collapse the stable_node chain if a single 1582 * stable_node dup was found in it). In such case the 1583 * stable_node is overwritten by the calleee to point 1584 * to the stable_node_dup that was collapsed in the 1585 * stable rbtree and stable_node will be equal to 1586 * stable_node_dup like if the chain never existed. 1587 */ 1588 if (!stable_node_dup) { 1589 /* 1590 * Either all stable_node dups were full in 1591 * this stable_node chain, or this chain was 1592 * empty and should be rb_erased. 1593 */ 1594 stable_node_any = stable_node_dup_any(stable_node, 1595 root); 1596 if (!stable_node_any) { 1597 /* rb_erase just run */ 1598 goto again; 1599 } 1600 /* 1601 * Take any of the stable_node dups page of 1602 * this stable_node chain to let the tree walk 1603 * continue. All KSM pages belonging to the 1604 * stable_node dups in a stable_node chain 1605 * have the same content and they're 1606 * write protected at all times. Any will work 1607 * fine to continue the walk. 1608 */ 1609 tree_page = get_ksm_page(stable_node_any, 1610 GET_KSM_PAGE_NOLOCK); 1611 } 1612 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1613 if (!tree_page) { 1614 /* 1615 * If we walked over a stale stable_node, 1616 * get_ksm_page() will call rb_erase() and it 1617 * may rebalance the tree from under us. So 1618 * restart the search from scratch. Returning 1619 * NULL would be safe too, but we'd generate 1620 * false negative insertions just because some 1621 * stable_node was stale. 1622 */ 1623 goto again; 1624 } 1625 1626 ret = memcmp_pages(page, tree_page); 1627 put_page(tree_page); 1628 1629 parent = *new; 1630 if (ret < 0) 1631 new = &parent->rb_left; 1632 else if (ret > 0) 1633 new = &parent->rb_right; 1634 else { 1635 if (page_node) { 1636 VM_BUG_ON(page_node->head != &migrate_nodes); 1637 /* 1638 * Test if the migrated page should be merged 1639 * into a stable node dup. If the mapcount is 1640 * 1 we can migrate it with another KSM page 1641 * without adding it to the chain. 1642 */ 1643 if (page_mapcount(page) > 1) 1644 goto chain_append; 1645 } 1646 1647 if (!stable_node_dup) { 1648 /* 1649 * If the stable_node is a chain and 1650 * we got a payload match in memcmp 1651 * but we cannot merge the scanned 1652 * page in any of the existing 1653 * stable_node dups because they're 1654 * all full, we need to wait the 1655 * scanned page to find itself a match 1656 * in the unstable tree to create a 1657 * brand new KSM page to add later to 1658 * the dups of this stable_node. 1659 */ 1660 return NULL; 1661 } 1662 1663 /* 1664 * Lock and unlock the stable_node's page (which 1665 * might already have been migrated) so that page 1666 * migration is sure to notice its raised count. 1667 * It would be more elegant to return stable_node 1668 * than kpage, but that involves more changes. 1669 */ 1670 tree_page = get_ksm_page(stable_node_dup, 1671 GET_KSM_PAGE_TRYLOCK); 1672 1673 if (PTR_ERR(tree_page) == -EBUSY) 1674 return ERR_PTR(-EBUSY); 1675 1676 if (unlikely(!tree_page)) 1677 /* 1678 * The tree may have been rebalanced, 1679 * so re-evaluate parent and new. 1680 */ 1681 goto again; 1682 unlock_page(tree_page); 1683 1684 if (get_kpfn_nid(stable_node_dup->kpfn) != 1685 NUMA(stable_node_dup->nid)) { 1686 put_page(tree_page); 1687 goto replace; 1688 } 1689 return tree_page; 1690 } 1691 } 1692 1693 if (!page_node) 1694 return NULL; 1695 1696 list_del(&page_node->list); 1697 DO_NUMA(page_node->nid = nid); 1698 rb_link_node(&page_node->node, parent, new); 1699 rb_insert_color(&page_node->node, root); 1700 out: 1701 if (is_page_sharing_candidate(page_node)) { 1702 get_page(page); 1703 return page; 1704 } else 1705 return NULL; 1706 1707 replace: 1708 /* 1709 * If stable_node was a chain and chain_prune collapsed it, 1710 * stable_node has been updated to be the new regular 1711 * stable_node. A collapse of the chain is indistinguishable 1712 * from the case there was no chain in the stable 1713 * rbtree. Otherwise stable_node is the chain and 1714 * stable_node_dup is the dup to replace. 1715 */ 1716 if (stable_node_dup == stable_node) { 1717 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1718 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1719 /* there is no chain */ 1720 if (page_node) { 1721 VM_BUG_ON(page_node->head != &migrate_nodes); 1722 list_del(&page_node->list); 1723 DO_NUMA(page_node->nid = nid); 1724 rb_replace_node(&stable_node_dup->node, 1725 &page_node->node, 1726 root); 1727 if (is_page_sharing_candidate(page_node)) 1728 get_page(page); 1729 else 1730 page = NULL; 1731 } else { 1732 rb_erase(&stable_node_dup->node, root); 1733 page = NULL; 1734 } 1735 } else { 1736 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1737 __stable_node_dup_del(stable_node_dup); 1738 if (page_node) { 1739 VM_BUG_ON(page_node->head != &migrate_nodes); 1740 list_del(&page_node->list); 1741 DO_NUMA(page_node->nid = nid); 1742 stable_node_chain_add_dup(page_node, stable_node); 1743 if (is_page_sharing_candidate(page_node)) 1744 get_page(page); 1745 else 1746 page = NULL; 1747 } else { 1748 page = NULL; 1749 } 1750 } 1751 stable_node_dup->head = &migrate_nodes; 1752 list_add(&stable_node_dup->list, stable_node_dup->head); 1753 return page; 1754 1755 chain_append: 1756 /* stable_node_dup could be null if it reached the limit */ 1757 if (!stable_node_dup) 1758 stable_node_dup = stable_node_any; 1759 /* 1760 * If stable_node was a chain and chain_prune collapsed it, 1761 * stable_node has been updated to be the new regular 1762 * stable_node. A collapse of the chain is indistinguishable 1763 * from the case there was no chain in the stable 1764 * rbtree. Otherwise stable_node is the chain and 1765 * stable_node_dup is the dup to replace. 1766 */ 1767 if (stable_node_dup == stable_node) { 1768 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1769 /* chain is missing so create it */ 1770 stable_node = alloc_stable_node_chain(stable_node_dup, 1771 root); 1772 if (!stable_node) 1773 return NULL; 1774 } 1775 /* 1776 * Add this stable_node dup that was 1777 * migrated to the stable_node chain 1778 * of the current nid for this page 1779 * content. 1780 */ 1781 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1782 VM_BUG_ON(page_node->head != &migrate_nodes); 1783 list_del(&page_node->list); 1784 DO_NUMA(page_node->nid = nid); 1785 stable_node_chain_add_dup(page_node, stable_node); 1786 goto out; 1787 } 1788 1789 /* 1790 * stable_tree_insert - insert stable tree node pointing to new ksm page 1791 * into the stable tree. 1792 * 1793 * This function returns the stable tree node just allocated on success, 1794 * NULL otherwise. 1795 */ 1796 static struct stable_node *stable_tree_insert(struct page *kpage) 1797 { 1798 int nid; 1799 unsigned long kpfn; 1800 struct rb_root *root; 1801 struct rb_node **new; 1802 struct rb_node *parent; 1803 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1804 bool need_chain = false; 1805 1806 kpfn = page_to_pfn(kpage); 1807 nid = get_kpfn_nid(kpfn); 1808 root = root_stable_tree + nid; 1809 again: 1810 parent = NULL; 1811 new = &root->rb_node; 1812 1813 while (*new) { 1814 struct page *tree_page; 1815 int ret; 1816 1817 cond_resched(); 1818 stable_node = rb_entry(*new, struct stable_node, node); 1819 stable_node_any = NULL; 1820 tree_page = chain(&stable_node_dup, stable_node, root); 1821 if (!stable_node_dup) { 1822 /* 1823 * Either all stable_node dups were full in 1824 * this stable_node chain, or this chain was 1825 * empty and should be rb_erased. 1826 */ 1827 stable_node_any = stable_node_dup_any(stable_node, 1828 root); 1829 if (!stable_node_any) { 1830 /* rb_erase just run */ 1831 goto again; 1832 } 1833 /* 1834 * Take any of the stable_node dups page of 1835 * this stable_node chain to let the tree walk 1836 * continue. All KSM pages belonging to the 1837 * stable_node dups in a stable_node chain 1838 * have the same content and they're 1839 * write protected at all times. Any will work 1840 * fine to continue the walk. 1841 */ 1842 tree_page = get_ksm_page(stable_node_any, 1843 GET_KSM_PAGE_NOLOCK); 1844 } 1845 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1846 if (!tree_page) { 1847 /* 1848 * If we walked over a stale stable_node, 1849 * get_ksm_page() will call rb_erase() and it 1850 * may rebalance the tree from under us. So 1851 * restart the search from scratch. Returning 1852 * NULL would be safe too, but we'd generate 1853 * false negative insertions just because some 1854 * stable_node was stale. 1855 */ 1856 goto again; 1857 } 1858 1859 ret = memcmp_pages(kpage, tree_page); 1860 put_page(tree_page); 1861 1862 parent = *new; 1863 if (ret < 0) 1864 new = &parent->rb_left; 1865 else if (ret > 0) 1866 new = &parent->rb_right; 1867 else { 1868 need_chain = true; 1869 break; 1870 } 1871 } 1872 1873 stable_node_dup = alloc_stable_node(); 1874 if (!stable_node_dup) 1875 return NULL; 1876 1877 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1878 stable_node_dup->kpfn = kpfn; 1879 set_page_stable_node(kpage, stable_node_dup); 1880 stable_node_dup->rmap_hlist_len = 0; 1881 DO_NUMA(stable_node_dup->nid = nid); 1882 if (!need_chain) { 1883 rb_link_node(&stable_node_dup->node, parent, new); 1884 rb_insert_color(&stable_node_dup->node, root); 1885 } else { 1886 if (!is_stable_node_chain(stable_node)) { 1887 struct stable_node *orig = stable_node; 1888 /* chain is missing so create it */ 1889 stable_node = alloc_stable_node_chain(orig, root); 1890 if (!stable_node) { 1891 free_stable_node(stable_node_dup); 1892 return NULL; 1893 } 1894 } 1895 stable_node_chain_add_dup(stable_node_dup, stable_node); 1896 } 1897 1898 return stable_node_dup; 1899 } 1900 1901 /* 1902 * unstable_tree_search_insert - search for identical page, 1903 * else insert rmap_item into the unstable tree. 1904 * 1905 * This function searches for a page in the unstable tree identical to the 1906 * page currently being scanned; and if no identical page is found in the 1907 * tree, we insert rmap_item as a new object into the unstable tree. 1908 * 1909 * This function returns pointer to rmap_item found to be identical 1910 * to the currently scanned page, NULL otherwise. 1911 * 1912 * This function does both searching and inserting, because they share 1913 * the same walking algorithm in an rbtree. 1914 */ 1915 static 1916 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1917 struct page *page, 1918 struct page **tree_pagep) 1919 { 1920 struct rb_node **new; 1921 struct rb_root *root; 1922 struct rb_node *parent = NULL; 1923 int nid; 1924 1925 nid = get_kpfn_nid(page_to_pfn(page)); 1926 root = root_unstable_tree + nid; 1927 new = &root->rb_node; 1928 1929 while (*new) { 1930 struct rmap_item *tree_rmap_item; 1931 struct page *tree_page; 1932 int ret; 1933 1934 cond_resched(); 1935 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1936 tree_page = get_mergeable_page(tree_rmap_item); 1937 if (!tree_page) 1938 return NULL; 1939 1940 /* 1941 * Don't substitute a ksm page for a forked page. 1942 */ 1943 if (page == tree_page) { 1944 put_page(tree_page); 1945 return NULL; 1946 } 1947 1948 ret = memcmp_pages(page, tree_page); 1949 1950 parent = *new; 1951 if (ret < 0) { 1952 put_page(tree_page); 1953 new = &parent->rb_left; 1954 } else if (ret > 0) { 1955 put_page(tree_page); 1956 new = &parent->rb_right; 1957 } else if (!ksm_merge_across_nodes && 1958 page_to_nid(tree_page) != nid) { 1959 /* 1960 * If tree_page has been migrated to another NUMA node, 1961 * it will be flushed out and put in the right unstable 1962 * tree next time: only merge with it when across_nodes. 1963 */ 1964 put_page(tree_page); 1965 return NULL; 1966 } else { 1967 *tree_pagep = tree_page; 1968 return tree_rmap_item; 1969 } 1970 } 1971 1972 rmap_item->address |= UNSTABLE_FLAG; 1973 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1974 DO_NUMA(rmap_item->nid = nid); 1975 rb_link_node(&rmap_item->node, parent, new); 1976 rb_insert_color(&rmap_item->node, root); 1977 1978 ksm_pages_unshared++; 1979 return NULL; 1980 } 1981 1982 /* 1983 * stable_tree_append - add another rmap_item to the linked list of 1984 * rmap_items hanging off a given node of the stable tree, all sharing 1985 * the same ksm page. 1986 */ 1987 static void stable_tree_append(struct rmap_item *rmap_item, 1988 struct stable_node *stable_node, 1989 bool max_page_sharing_bypass) 1990 { 1991 /* 1992 * rmap won't find this mapping if we don't insert the 1993 * rmap_item in the right stable_node 1994 * duplicate. page_migration could break later if rmap breaks, 1995 * so we can as well crash here. We really need to check for 1996 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1997 * for other negative values as an underflow if detected here 1998 * for the first time (and not when decreasing rmap_hlist_len) 1999 * would be sign of memory corruption in the stable_node. 2000 */ 2001 BUG_ON(stable_node->rmap_hlist_len < 0); 2002 2003 stable_node->rmap_hlist_len++; 2004 if (!max_page_sharing_bypass) 2005 /* possibly non fatal but unexpected overflow, only warn */ 2006 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2007 ksm_max_page_sharing); 2008 2009 rmap_item->head = stable_node; 2010 rmap_item->address |= STABLE_FLAG; 2011 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2012 2013 if (rmap_item->hlist.next) 2014 ksm_pages_sharing++; 2015 else 2016 ksm_pages_shared++; 2017 } 2018 2019 /* 2020 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2021 * if not, compare checksum to previous and if it's the same, see if page can 2022 * be inserted into the unstable tree, or merged with a page already there and 2023 * both transferred to the stable tree. 2024 * 2025 * @page: the page that we are searching identical page to. 2026 * @rmap_item: the reverse mapping into the virtual address of this page 2027 */ 2028 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2029 { 2030 struct mm_struct *mm = rmap_item->mm; 2031 struct rmap_item *tree_rmap_item; 2032 struct page *tree_page = NULL; 2033 struct stable_node *stable_node; 2034 struct page *kpage; 2035 unsigned int checksum; 2036 int err; 2037 bool max_page_sharing_bypass = false; 2038 2039 stable_node = page_stable_node(page); 2040 if (stable_node) { 2041 if (stable_node->head != &migrate_nodes && 2042 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2043 NUMA(stable_node->nid)) { 2044 stable_node_dup_del(stable_node); 2045 stable_node->head = &migrate_nodes; 2046 list_add(&stable_node->list, stable_node->head); 2047 } 2048 if (stable_node->head != &migrate_nodes && 2049 rmap_item->head == stable_node) 2050 return; 2051 /* 2052 * If it's a KSM fork, allow it to go over the sharing limit 2053 * without warnings. 2054 */ 2055 if (!is_page_sharing_candidate(stable_node)) 2056 max_page_sharing_bypass = true; 2057 } 2058 2059 /* We first start with searching the page inside the stable tree */ 2060 kpage = stable_tree_search(page); 2061 if (kpage == page && rmap_item->head == stable_node) { 2062 put_page(kpage); 2063 return; 2064 } 2065 2066 remove_rmap_item_from_tree(rmap_item); 2067 2068 if (kpage) { 2069 if (PTR_ERR(kpage) == -EBUSY) 2070 return; 2071 2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2073 if (!err) { 2074 /* 2075 * The page was successfully merged: 2076 * add its rmap_item to the stable tree. 2077 */ 2078 lock_page(kpage); 2079 stable_tree_append(rmap_item, page_stable_node(kpage), 2080 max_page_sharing_bypass); 2081 unlock_page(kpage); 2082 } 2083 put_page(kpage); 2084 return; 2085 } 2086 2087 /* 2088 * If the hash value of the page has changed from the last time 2089 * we calculated it, this page is changing frequently: therefore we 2090 * don't want to insert it in the unstable tree, and we don't want 2091 * to waste our time searching for something identical to it there. 2092 */ 2093 checksum = calc_checksum(page); 2094 if (rmap_item->oldchecksum != checksum) { 2095 rmap_item->oldchecksum = checksum; 2096 return; 2097 } 2098 2099 /* 2100 * Same checksum as an empty page. We attempt to merge it with the 2101 * appropriate zero page if the user enabled this via sysfs. 2102 */ 2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2104 struct vm_area_struct *vma; 2105 2106 mmap_read_lock(mm); 2107 vma = find_mergeable_vma(mm, rmap_item->address); 2108 if (vma) { 2109 err = try_to_merge_one_page(vma, page, 2110 ZERO_PAGE(rmap_item->address)); 2111 } else { 2112 /* 2113 * If the vma is out of date, we do not need to 2114 * continue. 2115 */ 2116 err = 0; 2117 } 2118 mmap_read_unlock(mm); 2119 /* 2120 * In case of failure, the page was not really empty, so we 2121 * need to continue. Otherwise we're done. 2122 */ 2123 if (!err) 2124 return; 2125 } 2126 tree_rmap_item = 2127 unstable_tree_search_insert(rmap_item, page, &tree_page); 2128 if (tree_rmap_item) { 2129 bool split; 2130 2131 kpage = try_to_merge_two_pages(rmap_item, page, 2132 tree_rmap_item, tree_page); 2133 /* 2134 * If both pages we tried to merge belong to the same compound 2135 * page, then we actually ended up increasing the reference 2136 * count of the same compound page twice, and split_huge_page 2137 * failed. 2138 * Here we set a flag if that happened, and we use it later to 2139 * try split_huge_page again. Since we call put_page right 2140 * afterwards, the reference count will be correct and 2141 * split_huge_page should succeed. 2142 */ 2143 split = PageTransCompound(page) 2144 && compound_head(page) == compound_head(tree_page); 2145 put_page(tree_page); 2146 if (kpage) { 2147 /* 2148 * The pages were successfully merged: insert new 2149 * node in the stable tree and add both rmap_items. 2150 */ 2151 lock_page(kpage); 2152 stable_node = stable_tree_insert(kpage); 2153 if (stable_node) { 2154 stable_tree_append(tree_rmap_item, stable_node, 2155 false); 2156 stable_tree_append(rmap_item, stable_node, 2157 false); 2158 } 2159 unlock_page(kpage); 2160 2161 /* 2162 * If we fail to insert the page into the stable tree, 2163 * we will have 2 virtual addresses that are pointing 2164 * to a ksm page left outside the stable tree, 2165 * in which case we need to break_cow on both. 2166 */ 2167 if (!stable_node) { 2168 break_cow(tree_rmap_item); 2169 break_cow(rmap_item); 2170 } 2171 } else if (split) { 2172 /* 2173 * We are here if we tried to merge two pages and 2174 * failed because they both belonged to the same 2175 * compound page. We will split the page now, but no 2176 * merging will take place. 2177 * We do not want to add the cost of a full lock; if 2178 * the page is locked, it is better to skip it and 2179 * perhaps try again later. 2180 */ 2181 if (!trylock_page(page)) 2182 return; 2183 split_huge_page(page); 2184 unlock_page(page); 2185 } 2186 } 2187 } 2188 2189 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2190 struct rmap_item **rmap_list, 2191 unsigned long addr) 2192 { 2193 struct rmap_item *rmap_item; 2194 2195 while (*rmap_list) { 2196 rmap_item = *rmap_list; 2197 if ((rmap_item->address & PAGE_MASK) == addr) 2198 return rmap_item; 2199 if (rmap_item->address > addr) 2200 break; 2201 *rmap_list = rmap_item->rmap_list; 2202 remove_rmap_item_from_tree(rmap_item); 2203 free_rmap_item(rmap_item); 2204 } 2205 2206 rmap_item = alloc_rmap_item(); 2207 if (rmap_item) { 2208 /* It has already been zeroed */ 2209 rmap_item->mm = mm_slot->mm; 2210 rmap_item->address = addr; 2211 rmap_item->rmap_list = *rmap_list; 2212 *rmap_list = rmap_item; 2213 } 2214 return rmap_item; 2215 } 2216 2217 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2218 { 2219 struct mm_struct *mm; 2220 struct mm_slot *slot; 2221 struct vm_area_struct *vma; 2222 struct rmap_item *rmap_item; 2223 int nid; 2224 2225 if (list_empty(&ksm_mm_head.mm_list)) 2226 return NULL; 2227 2228 slot = ksm_scan.mm_slot; 2229 if (slot == &ksm_mm_head) { 2230 /* 2231 * A number of pages can hang around indefinitely on per-cpu 2232 * pagevecs, raised page count preventing write_protect_page 2233 * from merging them. Though it doesn't really matter much, 2234 * it is puzzling to see some stuck in pages_volatile until 2235 * other activity jostles them out, and they also prevented 2236 * LTP's KSM test from succeeding deterministically; so drain 2237 * them here (here rather than on entry to ksm_do_scan(), 2238 * so we don't IPI too often when pages_to_scan is set low). 2239 */ 2240 lru_add_drain_all(); 2241 2242 /* 2243 * Whereas stale stable_nodes on the stable_tree itself 2244 * get pruned in the regular course of stable_tree_search(), 2245 * those moved out to the migrate_nodes list can accumulate: 2246 * so prune them once before each full scan. 2247 */ 2248 if (!ksm_merge_across_nodes) { 2249 struct stable_node *stable_node, *next; 2250 struct page *page; 2251 2252 list_for_each_entry_safe(stable_node, next, 2253 &migrate_nodes, list) { 2254 page = get_ksm_page(stable_node, 2255 GET_KSM_PAGE_NOLOCK); 2256 if (page) 2257 put_page(page); 2258 cond_resched(); 2259 } 2260 } 2261 2262 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2263 root_unstable_tree[nid] = RB_ROOT; 2264 2265 spin_lock(&ksm_mmlist_lock); 2266 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2267 ksm_scan.mm_slot = slot; 2268 spin_unlock(&ksm_mmlist_lock); 2269 /* 2270 * Although we tested list_empty() above, a racing __ksm_exit 2271 * of the last mm on the list may have removed it since then. 2272 */ 2273 if (slot == &ksm_mm_head) 2274 return NULL; 2275 next_mm: 2276 ksm_scan.address = 0; 2277 ksm_scan.rmap_list = &slot->rmap_list; 2278 } 2279 2280 mm = slot->mm; 2281 mmap_read_lock(mm); 2282 if (ksm_test_exit(mm)) 2283 vma = NULL; 2284 else 2285 vma = find_vma(mm, ksm_scan.address); 2286 2287 for (; vma; vma = vma->vm_next) { 2288 if (!(vma->vm_flags & VM_MERGEABLE)) 2289 continue; 2290 if (ksm_scan.address < vma->vm_start) 2291 ksm_scan.address = vma->vm_start; 2292 if (!vma->anon_vma) 2293 ksm_scan.address = vma->vm_end; 2294 2295 while (ksm_scan.address < vma->vm_end) { 2296 if (ksm_test_exit(mm)) 2297 break; 2298 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2299 if (IS_ERR_OR_NULL(*page)) { 2300 ksm_scan.address += PAGE_SIZE; 2301 cond_resched(); 2302 continue; 2303 } 2304 if (PageAnon(*page)) { 2305 flush_anon_page(vma, *page, ksm_scan.address); 2306 flush_dcache_page(*page); 2307 rmap_item = get_next_rmap_item(slot, 2308 ksm_scan.rmap_list, ksm_scan.address); 2309 if (rmap_item) { 2310 ksm_scan.rmap_list = 2311 &rmap_item->rmap_list; 2312 ksm_scan.address += PAGE_SIZE; 2313 } else 2314 put_page(*page); 2315 mmap_read_unlock(mm); 2316 return rmap_item; 2317 } 2318 put_page(*page); 2319 ksm_scan.address += PAGE_SIZE; 2320 cond_resched(); 2321 } 2322 } 2323 2324 if (ksm_test_exit(mm)) { 2325 ksm_scan.address = 0; 2326 ksm_scan.rmap_list = &slot->rmap_list; 2327 } 2328 /* 2329 * Nuke all the rmap_items that are above this current rmap: 2330 * because there were no VM_MERGEABLE vmas with such addresses. 2331 */ 2332 remove_trailing_rmap_items(ksm_scan.rmap_list); 2333 2334 spin_lock(&ksm_mmlist_lock); 2335 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2336 struct mm_slot, mm_list); 2337 if (ksm_scan.address == 0) { 2338 /* 2339 * We've completed a full scan of all vmas, holding mmap_lock 2340 * throughout, and found no VM_MERGEABLE: so do the same as 2341 * __ksm_exit does to remove this mm from all our lists now. 2342 * This applies either when cleaning up after __ksm_exit 2343 * (but beware: we can reach here even before __ksm_exit), 2344 * or when all VM_MERGEABLE areas have been unmapped (and 2345 * mmap_lock then protects against race with MADV_MERGEABLE). 2346 */ 2347 hash_del(&slot->link); 2348 list_del(&slot->mm_list); 2349 spin_unlock(&ksm_mmlist_lock); 2350 2351 free_mm_slot(slot); 2352 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2353 mmap_read_unlock(mm); 2354 mmdrop(mm); 2355 } else { 2356 mmap_read_unlock(mm); 2357 /* 2358 * mmap_read_unlock(mm) first because after 2359 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2360 * already have been freed under us by __ksm_exit() 2361 * because the "mm_slot" is still hashed and 2362 * ksm_scan.mm_slot doesn't point to it anymore. 2363 */ 2364 spin_unlock(&ksm_mmlist_lock); 2365 } 2366 2367 /* Repeat until we've completed scanning the whole list */ 2368 slot = ksm_scan.mm_slot; 2369 if (slot != &ksm_mm_head) 2370 goto next_mm; 2371 2372 ksm_scan.seqnr++; 2373 return NULL; 2374 } 2375 2376 /** 2377 * ksm_do_scan - the ksm scanner main worker function. 2378 * @scan_npages: number of pages we want to scan before we return. 2379 */ 2380 static void ksm_do_scan(unsigned int scan_npages) 2381 { 2382 struct rmap_item *rmap_item; 2383 struct page *page; 2384 2385 while (scan_npages-- && likely(!freezing(current))) { 2386 cond_resched(); 2387 rmap_item = scan_get_next_rmap_item(&page); 2388 if (!rmap_item) 2389 return; 2390 cmp_and_merge_page(page, rmap_item); 2391 put_page(page); 2392 } 2393 } 2394 2395 static int ksmd_should_run(void) 2396 { 2397 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2398 } 2399 2400 static int ksm_scan_thread(void *nothing) 2401 { 2402 unsigned int sleep_ms; 2403 2404 set_freezable(); 2405 set_user_nice(current, 5); 2406 2407 while (!kthread_should_stop()) { 2408 mutex_lock(&ksm_thread_mutex); 2409 wait_while_offlining(); 2410 if (ksmd_should_run()) 2411 ksm_do_scan(ksm_thread_pages_to_scan); 2412 mutex_unlock(&ksm_thread_mutex); 2413 2414 try_to_freeze(); 2415 2416 if (ksmd_should_run()) { 2417 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2418 wait_event_interruptible_timeout(ksm_iter_wait, 2419 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2420 msecs_to_jiffies(sleep_ms)); 2421 } else { 2422 wait_event_freezable(ksm_thread_wait, 2423 ksmd_should_run() || kthread_should_stop()); 2424 } 2425 } 2426 return 0; 2427 } 2428 2429 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2430 unsigned long end, int advice, unsigned long *vm_flags) 2431 { 2432 struct mm_struct *mm = vma->vm_mm; 2433 int err; 2434 2435 switch (advice) { 2436 case MADV_MERGEABLE: 2437 /* 2438 * Be somewhat over-protective for now! 2439 */ 2440 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2441 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2442 VM_HUGETLB | VM_MIXEDMAP)) 2443 return 0; /* just ignore the advice */ 2444 2445 if (vma_is_dax(vma)) 2446 return 0; 2447 2448 #ifdef VM_SAO 2449 if (*vm_flags & VM_SAO) 2450 return 0; 2451 #endif 2452 #ifdef VM_SPARC_ADI 2453 if (*vm_flags & VM_SPARC_ADI) 2454 return 0; 2455 #endif 2456 2457 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2458 err = __ksm_enter(mm); 2459 if (err) 2460 return err; 2461 } 2462 2463 *vm_flags |= VM_MERGEABLE; 2464 break; 2465 2466 case MADV_UNMERGEABLE: 2467 if (!(*vm_flags & VM_MERGEABLE)) 2468 return 0; /* just ignore the advice */ 2469 2470 if (vma->anon_vma) { 2471 err = unmerge_ksm_pages(vma, start, end); 2472 if (err) 2473 return err; 2474 } 2475 2476 *vm_flags &= ~VM_MERGEABLE; 2477 break; 2478 } 2479 2480 return 0; 2481 } 2482 EXPORT_SYMBOL_GPL(ksm_madvise); 2483 2484 int __ksm_enter(struct mm_struct *mm) 2485 { 2486 struct mm_slot *mm_slot; 2487 int needs_wakeup; 2488 2489 mm_slot = alloc_mm_slot(); 2490 if (!mm_slot) 2491 return -ENOMEM; 2492 2493 /* Check ksm_run too? Would need tighter locking */ 2494 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2495 2496 spin_lock(&ksm_mmlist_lock); 2497 insert_to_mm_slots_hash(mm, mm_slot); 2498 /* 2499 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2500 * insert just behind the scanning cursor, to let the area settle 2501 * down a little; when fork is followed by immediate exec, we don't 2502 * want ksmd to waste time setting up and tearing down an rmap_list. 2503 * 2504 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2505 * scanning cursor, otherwise KSM pages in newly forked mms will be 2506 * missed: then we might as well insert at the end of the list. 2507 */ 2508 if (ksm_run & KSM_RUN_UNMERGE) 2509 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2510 else 2511 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2512 spin_unlock(&ksm_mmlist_lock); 2513 2514 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2515 mmgrab(mm); 2516 2517 if (needs_wakeup) 2518 wake_up_interruptible(&ksm_thread_wait); 2519 2520 return 0; 2521 } 2522 2523 void __ksm_exit(struct mm_struct *mm) 2524 { 2525 struct mm_slot *mm_slot; 2526 int easy_to_free = 0; 2527 2528 /* 2529 * This process is exiting: if it's straightforward (as is the 2530 * case when ksmd was never running), free mm_slot immediately. 2531 * But if it's at the cursor or has rmap_items linked to it, use 2532 * mmap_lock to synchronize with any break_cows before pagetables 2533 * are freed, and leave the mm_slot on the list for ksmd to free. 2534 * Beware: ksm may already have noticed it exiting and freed the slot. 2535 */ 2536 2537 spin_lock(&ksm_mmlist_lock); 2538 mm_slot = get_mm_slot(mm); 2539 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2540 if (!mm_slot->rmap_list) { 2541 hash_del(&mm_slot->link); 2542 list_del(&mm_slot->mm_list); 2543 easy_to_free = 1; 2544 } else { 2545 list_move(&mm_slot->mm_list, 2546 &ksm_scan.mm_slot->mm_list); 2547 } 2548 } 2549 spin_unlock(&ksm_mmlist_lock); 2550 2551 if (easy_to_free) { 2552 free_mm_slot(mm_slot); 2553 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2554 mmdrop(mm); 2555 } else if (mm_slot) { 2556 mmap_write_lock(mm); 2557 mmap_write_unlock(mm); 2558 } 2559 } 2560 2561 struct page *ksm_might_need_to_copy(struct page *page, 2562 struct vm_area_struct *vma, unsigned long address) 2563 { 2564 struct anon_vma *anon_vma = page_anon_vma(page); 2565 struct page *new_page; 2566 2567 if (PageKsm(page)) { 2568 if (page_stable_node(page) && 2569 !(ksm_run & KSM_RUN_UNMERGE)) 2570 return page; /* no need to copy it */ 2571 } else if (!anon_vma) { 2572 return page; /* no need to copy it */ 2573 } else if (anon_vma->root == vma->anon_vma->root && 2574 page->index == linear_page_index(vma, address)) { 2575 return page; /* still no need to copy it */ 2576 } 2577 if (!PageUptodate(page)) 2578 return page; /* let do_swap_page report the error */ 2579 2580 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2581 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2582 put_page(new_page); 2583 new_page = NULL; 2584 } 2585 if (new_page) { 2586 copy_user_highpage(new_page, page, address, vma); 2587 2588 SetPageDirty(new_page); 2589 __SetPageUptodate(new_page); 2590 __SetPageLocked(new_page); 2591 } 2592 2593 return new_page; 2594 } 2595 2596 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2597 { 2598 struct stable_node *stable_node; 2599 struct rmap_item *rmap_item; 2600 int search_new_forks = 0; 2601 2602 VM_BUG_ON_PAGE(!PageKsm(page), page); 2603 2604 /* 2605 * Rely on the page lock to protect against concurrent modifications 2606 * to that page's node of the stable tree. 2607 */ 2608 VM_BUG_ON_PAGE(!PageLocked(page), page); 2609 2610 stable_node = page_stable_node(page); 2611 if (!stable_node) 2612 return; 2613 again: 2614 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2615 struct anon_vma *anon_vma = rmap_item->anon_vma; 2616 struct anon_vma_chain *vmac; 2617 struct vm_area_struct *vma; 2618 2619 cond_resched(); 2620 anon_vma_lock_read(anon_vma); 2621 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2622 0, ULONG_MAX) { 2623 unsigned long addr; 2624 2625 cond_resched(); 2626 vma = vmac->vma; 2627 2628 /* Ignore the stable/unstable/sqnr flags */ 2629 addr = rmap_item->address & PAGE_MASK; 2630 2631 if (addr < vma->vm_start || addr >= vma->vm_end) 2632 continue; 2633 /* 2634 * Initially we examine only the vma which covers this 2635 * rmap_item; but later, if there is still work to do, 2636 * we examine covering vmas in other mms: in case they 2637 * were forked from the original since ksmd passed. 2638 */ 2639 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2640 continue; 2641 2642 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2643 continue; 2644 2645 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2646 anon_vma_unlock_read(anon_vma); 2647 return; 2648 } 2649 if (rwc->done && rwc->done(page)) { 2650 anon_vma_unlock_read(anon_vma); 2651 return; 2652 } 2653 } 2654 anon_vma_unlock_read(anon_vma); 2655 } 2656 if (!search_new_forks++) 2657 goto again; 2658 } 2659 2660 #ifdef CONFIG_MIGRATION 2661 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2662 { 2663 struct stable_node *stable_node; 2664 2665 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2666 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2667 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2668 2669 stable_node = page_stable_node(newpage); 2670 if (stable_node) { 2671 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2672 stable_node->kpfn = page_to_pfn(newpage); 2673 /* 2674 * newpage->mapping was set in advance; now we need smp_wmb() 2675 * to make sure that the new stable_node->kpfn is visible 2676 * to get_ksm_page() before it can see that oldpage->mapping 2677 * has gone stale (or that PageSwapCache has been cleared). 2678 */ 2679 smp_wmb(); 2680 set_page_stable_node(oldpage, NULL); 2681 } 2682 } 2683 #endif /* CONFIG_MIGRATION */ 2684 2685 #ifdef CONFIG_MEMORY_HOTREMOVE 2686 static void wait_while_offlining(void) 2687 { 2688 while (ksm_run & KSM_RUN_OFFLINE) { 2689 mutex_unlock(&ksm_thread_mutex); 2690 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2691 TASK_UNINTERRUPTIBLE); 2692 mutex_lock(&ksm_thread_mutex); 2693 } 2694 } 2695 2696 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2697 unsigned long start_pfn, 2698 unsigned long end_pfn) 2699 { 2700 if (stable_node->kpfn >= start_pfn && 2701 stable_node->kpfn < end_pfn) { 2702 /* 2703 * Don't get_ksm_page, page has already gone: 2704 * which is why we keep kpfn instead of page* 2705 */ 2706 remove_node_from_stable_tree(stable_node); 2707 return true; 2708 } 2709 return false; 2710 } 2711 2712 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2713 unsigned long start_pfn, 2714 unsigned long end_pfn, 2715 struct rb_root *root) 2716 { 2717 struct stable_node *dup; 2718 struct hlist_node *hlist_safe; 2719 2720 if (!is_stable_node_chain(stable_node)) { 2721 VM_BUG_ON(is_stable_node_dup(stable_node)); 2722 return stable_node_dup_remove_range(stable_node, start_pfn, 2723 end_pfn); 2724 } 2725 2726 hlist_for_each_entry_safe(dup, hlist_safe, 2727 &stable_node->hlist, hlist_dup) { 2728 VM_BUG_ON(!is_stable_node_dup(dup)); 2729 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2730 } 2731 if (hlist_empty(&stable_node->hlist)) { 2732 free_stable_node_chain(stable_node, root); 2733 return true; /* notify caller that tree was rebalanced */ 2734 } else 2735 return false; 2736 } 2737 2738 static void ksm_check_stable_tree(unsigned long start_pfn, 2739 unsigned long end_pfn) 2740 { 2741 struct stable_node *stable_node, *next; 2742 struct rb_node *node; 2743 int nid; 2744 2745 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2746 node = rb_first(root_stable_tree + nid); 2747 while (node) { 2748 stable_node = rb_entry(node, struct stable_node, node); 2749 if (stable_node_chain_remove_range(stable_node, 2750 start_pfn, end_pfn, 2751 root_stable_tree + 2752 nid)) 2753 node = rb_first(root_stable_tree + nid); 2754 else 2755 node = rb_next(node); 2756 cond_resched(); 2757 } 2758 } 2759 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2760 if (stable_node->kpfn >= start_pfn && 2761 stable_node->kpfn < end_pfn) 2762 remove_node_from_stable_tree(stable_node); 2763 cond_resched(); 2764 } 2765 } 2766 2767 static int ksm_memory_callback(struct notifier_block *self, 2768 unsigned long action, void *arg) 2769 { 2770 struct memory_notify *mn = arg; 2771 2772 switch (action) { 2773 case MEM_GOING_OFFLINE: 2774 /* 2775 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2776 * and remove_all_stable_nodes() while memory is going offline: 2777 * it is unsafe for them to touch the stable tree at this time. 2778 * But unmerge_ksm_pages(), rmap lookups and other entry points 2779 * which do not need the ksm_thread_mutex are all safe. 2780 */ 2781 mutex_lock(&ksm_thread_mutex); 2782 ksm_run |= KSM_RUN_OFFLINE; 2783 mutex_unlock(&ksm_thread_mutex); 2784 break; 2785 2786 case MEM_OFFLINE: 2787 /* 2788 * Most of the work is done by page migration; but there might 2789 * be a few stable_nodes left over, still pointing to struct 2790 * pages which have been offlined: prune those from the tree, 2791 * otherwise get_ksm_page() might later try to access a 2792 * non-existent struct page. 2793 */ 2794 ksm_check_stable_tree(mn->start_pfn, 2795 mn->start_pfn + mn->nr_pages); 2796 fallthrough; 2797 case MEM_CANCEL_OFFLINE: 2798 mutex_lock(&ksm_thread_mutex); 2799 ksm_run &= ~KSM_RUN_OFFLINE; 2800 mutex_unlock(&ksm_thread_mutex); 2801 2802 smp_mb(); /* wake_up_bit advises this */ 2803 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2804 break; 2805 } 2806 return NOTIFY_OK; 2807 } 2808 #else 2809 static void wait_while_offlining(void) 2810 { 2811 } 2812 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2813 2814 #ifdef CONFIG_SYSFS 2815 /* 2816 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2817 */ 2818 2819 #define KSM_ATTR_RO(_name) \ 2820 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2821 #define KSM_ATTR(_name) \ 2822 static struct kobj_attribute _name##_attr = \ 2823 __ATTR(_name, 0644, _name##_show, _name##_store) 2824 2825 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2826 struct kobj_attribute *attr, char *buf) 2827 { 2828 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2829 } 2830 2831 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2832 struct kobj_attribute *attr, 2833 const char *buf, size_t count) 2834 { 2835 unsigned int msecs; 2836 int err; 2837 2838 err = kstrtouint(buf, 10, &msecs); 2839 if (err) 2840 return -EINVAL; 2841 2842 ksm_thread_sleep_millisecs = msecs; 2843 wake_up_interruptible(&ksm_iter_wait); 2844 2845 return count; 2846 } 2847 KSM_ATTR(sleep_millisecs); 2848 2849 static ssize_t pages_to_scan_show(struct kobject *kobj, 2850 struct kobj_attribute *attr, char *buf) 2851 { 2852 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2853 } 2854 2855 static ssize_t pages_to_scan_store(struct kobject *kobj, 2856 struct kobj_attribute *attr, 2857 const char *buf, size_t count) 2858 { 2859 unsigned int nr_pages; 2860 int err; 2861 2862 err = kstrtouint(buf, 10, &nr_pages); 2863 if (err) 2864 return -EINVAL; 2865 2866 ksm_thread_pages_to_scan = nr_pages; 2867 2868 return count; 2869 } 2870 KSM_ATTR(pages_to_scan); 2871 2872 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2873 char *buf) 2874 { 2875 return sysfs_emit(buf, "%lu\n", ksm_run); 2876 } 2877 2878 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2879 const char *buf, size_t count) 2880 { 2881 unsigned int flags; 2882 int err; 2883 2884 err = kstrtouint(buf, 10, &flags); 2885 if (err) 2886 return -EINVAL; 2887 if (flags > KSM_RUN_UNMERGE) 2888 return -EINVAL; 2889 2890 /* 2891 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2892 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2893 * breaking COW to free the pages_shared (but leaves mm_slots 2894 * on the list for when ksmd may be set running again). 2895 */ 2896 2897 mutex_lock(&ksm_thread_mutex); 2898 wait_while_offlining(); 2899 if (ksm_run != flags) { 2900 ksm_run = flags; 2901 if (flags & KSM_RUN_UNMERGE) { 2902 set_current_oom_origin(); 2903 err = unmerge_and_remove_all_rmap_items(); 2904 clear_current_oom_origin(); 2905 if (err) { 2906 ksm_run = KSM_RUN_STOP; 2907 count = err; 2908 } 2909 } 2910 } 2911 mutex_unlock(&ksm_thread_mutex); 2912 2913 if (flags & KSM_RUN_MERGE) 2914 wake_up_interruptible(&ksm_thread_wait); 2915 2916 return count; 2917 } 2918 KSM_ATTR(run); 2919 2920 #ifdef CONFIG_NUMA 2921 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2922 struct kobj_attribute *attr, char *buf) 2923 { 2924 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2925 } 2926 2927 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2928 struct kobj_attribute *attr, 2929 const char *buf, size_t count) 2930 { 2931 int err; 2932 unsigned long knob; 2933 2934 err = kstrtoul(buf, 10, &knob); 2935 if (err) 2936 return err; 2937 if (knob > 1) 2938 return -EINVAL; 2939 2940 mutex_lock(&ksm_thread_mutex); 2941 wait_while_offlining(); 2942 if (ksm_merge_across_nodes != knob) { 2943 if (ksm_pages_shared || remove_all_stable_nodes()) 2944 err = -EBUSY; 2945 else if (root_stable_tree == one_stable_tree) { 2946 struct rb_root *buf; 2947 /* 2948 * This is the first time that we switch away from the 2949 * default of merging across nodes: must now allocate 2950 * a buffer to hold as many roots as may be needed. 2951 * Allocate stable and unstable together: 2952 * MAXSMP NODES_SHIFT 10 will use 16kB. 2953 */ 2954 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2955 GFP_KERNEL); 2956 /* Let us assume that RB_ROOT is NULL is zero */ 2957 if (!buf) 2958 err = -ENOMEM; 2959 else { 2960 root_stable_tree = buf; 2961 root_unstable_tree = buf + nr_node_ids; 2962 /* Stable tree is empty but not the unstable */ 2963 root_unstable_tree[0] = one_unstable_tree[0]; 2964 } 2965 } 2966 if (!err) { 2967 ksm_merge_across_nodes = knob; 2968 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2969 } 2970 } 2971 mutex_unlock(&ksm_thread_mutex); 2972 2973 return err ? err : count; 2974 } 2975 KSM_ATTR(merge_across_nodes); 2976 #endif 2977 2978 static ssize_t use_zero_pages_show(struct kobject *kobj, 2979 struct kobj_attribute *attr, char *buf) 2980 { 2981 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2982 } 2983 static ssize_t use_zero_pages_store(struct kobject *kobj, 2984 struct kobj_attribute *attr, 2985 const char *buf, size_t count) 2986 { 2987 int err; 2988 bool value; 2989 2990 err = kstrtobool(buf, &value); 2991 if (err) 2992 return -EINVAL; 2993 2994 ksm_use_zero_pages = value; 2995 2996 return count; 2997 } 2998 KSM_ATTR(use_zero_pages); 2999 3000 static ssize_t max_page_sharing_show(struct kobject *kobj, 3001 struct kobj_attribute *attr, char *buf) 3002 { 3003 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3004 } 3005 3006 static ssize_t max_page_sharing_store(struct kobject *kobj, 3007 struct kobj_attribute *attr, 3008 const char *buf, size_t count) 3009 { 3010 int err; 3011 int knob; 3012 3013 err = kstrtoint(buf, 10, &knob); 3014 if (err) 3015 return err; 3016 /* 3017 * When a KSM page is created it is shared by 2 mappings. This 3018 * being a signed comparison, it implicitly verifies it's not 3019 * negative. 3020 */ 3021 if (knob < 2) 3022 return -EINVAL; 3023 3024 if (READ_ONCE(ksm_max_page_sharing) == knob) 3025 return count; 3026 3027 mutex_lock(&ksm_thread_mutex); 3028 wait_while_offlining(); 3029 if (ksm_max_page_sharing != knob) { 3030 if (ksm_pages_shared || remove_all_stable_nodes()) 3031 err = -EBUSY; 3032 else 3033 ksm_max_page_sharing = knob; 3034 } 3035 mutex_unlock(&ksm_thread_mutex); 3036 3037 return err ? err : count; 3038 } 3039 KSM_ATTR(max_page_sharing); 3040 3041 static ssize_t pages_shared_show(struct kobject *kobj, 3042 struct kobj_attribute *attr, char *buf) 3043 { 3044 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3045 } 3046 KSM_ATTR_RO(pages_shared); 3047 3048 static ssize_t pages_sharing_show(struct kobject *kobj, 3049 struct kobj_attribute *attr, char *buf) 3050 { 3051 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3052 } 3053 KSM_ATTR_RO(pages_sharing); 3054 3055 static ssize_t pages_unshared_show(struct kobject *kobj, 3056 struct kobj_attribute *attr, char *buf) 3057 { 3058 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3059 } 3060 KSM_ATTR_RO(pages_unshared); 3061 3062 static ssize_t pages_volatile_show(struct kobject *kobj, 3063 struct kobj_attribute *attr, char *buf) 3064 { 3065 long ksm_pages_volatile; 3066 3067 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3068 - ksm_pages_sharing - ksm_pages_unshared; 3069 /* 3070 * It was not worth any locking to calculate that statistic, 3071 * but it might therefore sometimes be negative: conceal that. 3072 */ 3073 if (ksm_pages_volatile < 0) 3074 ksm_pages_volatile = 0; 3075 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3076 } 3077 KSM_ATTR_RO(pages_volatile); 3078 3079 static ssize_t stable_node_dups_show(struct kobject *kobj, 3080 struct kobj_attribute *attr, char *buf) 3081 { 3082 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3083 } 3084 KSM_ATTR_RO(stable_node_dups); 3085 3086 static ssize_t stable_node_chains_show(struct kobject *kobj, 3087 struct kobj_attribute *attr, char *buf) 3088 { 3089 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3090 } 3091 KSM_ATTR_RO(stable_node_chains); 3092 3093 static ssize_t 3094 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3095 struct kobj_attribute *attr, 3096 char *buf) 3097 { 3098 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3099 } 3100 3101 static ssize_t 3102 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3103 struct kobj_attribute *attr, 3104 const char *buf, size_t count) 3105 { 3106 unsigned int msecs; 3107 int err; 3108 3109 err = kstrtouint(buf, 10, &msecs); 3110 if (err) 3111 return -EINVAL; 3112 3113 ksm_stable_node_chains_prune_millisecs = msecs; 3114 3115 return count; 3116 } 3117 KSM_ATTR(stable_node_chains_prune_millisecs); 3118 3119 static ssize_t full_scans_show(struct kobject *kobj, 3120 struct kobj_attribute *attr, char *buf) 3121 { 3122 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3123 } 3124 KSM_ATTR_RO(full_scans); 3125 3126 static struct attribute *ksm_attrs[] = { 3127 &sleep_millisecs_attr.attr, 3128 &pages_to_scan_attr.attr, 3129 &run_attr.attr, 3130 &pages_shared_attr.attr, 3131 &pages_sharing_attr.attr, 3132 &pages_unshared_attr.attr, 3133 &pages_volatile_attr.attr, 3134 &full_scans_attr.attr, 3135 #ifdef CONFIG_NUMA 3136 &merge_across_nodes_attr.attr, 3137 #endif 3138 &max_page_sharing_attr.attr, 3139 &stable_node_chains_attr.attr, 3140 &stable_node_dups_attr.attr, 3141 &stable_node_chains_prune_millisecs_attr.attr, 3142 &use_zero_pages_attr.attr, 3143 NULL, 3144 }; 3145 3146 static const struct attribute_group ksm_attr_group = { 3147 .attrs = ksm_attrs, 3148 .name = "ksm", 3149 }; 3150 #endif /* CONFIG_SYSFS */ 3151 3152 static int __init ksm_init(void) 3153 { 3154 struct task_struct *ksm_thread; 3155 int err; 3156 3157 /* The correct value depends on page size and endianness */ 3158 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3159 /* Default to false for backwards compatibility */ 3160 ksm_use_zero_pages = false; 3161 3162 err = ksm_slab_init(); 3163 if (err) 3164 goto out; 3165 3166 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3167 if (IS_ERR(ksm_thread)) { 3168 pr_err("ksm: creating kthread failed\n"); 3169 err = PTR_ERR(ksm_thread); 3170 goto out_free; 3171 } 3172 3173 #ifdef CONFIG_SYSFS 3174 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3175 if (err) { 3176 pr_err("ksm: register sysfs failed\n"); 3177 kthread_stop(ksm_thread); 3178 goto out_free; 3179 } 3180 #else 3181 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3182 3183 #endif /* CONFIG_SYSFS */ 3184 3185 #ifdef CONFIG_MEMORY_HOTREMOVE 3186 /* There is no significance to this priority 100 */ 3187 hotplug_memory_notifier(ksm_memory_callback, 100); 3188 #endif 3189 return 0; 3190 3191 out_free: 3192 ksm_slab_free(); 3193 out: 3194 return err; 3195 } 3196 subsys_initcall(ksm_init); 3197