1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/cputime.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #define CREATE_TRACE_POINTS 49 #include <trace/events/ksm.h> 50 51 #ifdef CONFIG_NUMA 52 #define NUMA(x) (x) 53 #define DO_NUMA(x) do { (x); } while (0) 54 #else 55 #define NUMA(x) (0) 56 #define DO_NUMA(x) do { } while (0) 57 #endif 58 59 typedef u8 rmap_age_t; 60 61 /** 62 * DOC: Overview 63 * 64 * A few notes about the KSM scanning process, 65 * to make it easier to understand the data structures below: 66 * 67 * In order to reduce excessive scanning, KSM sorts the memory pages by their 68 * contents into a data structure that holds pointers to the pages' locations. 69 * 70 * Since the contents of the pages may change at any moment, KSM cannot just 71 * insert the pages into a normal sorted tree and expect it to find anything. 72 * Therefore KSM uses two data structures - the stable and the unstable tree. 73 * 74 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 75 * by their contents. Because each such page is write-protected, searching on 76 * this tree is fully assured to be working (except when pages are unmapped), 77 * and therefore this tree is called the stable tree. 78 * 79 * The stable tree node includes information required for reverse 80 * mapping from a KSM page to virtual addresses that map this page. 81 * 82 * In order to avoid large latencies of the rmap walks on KSM pages, 83 * KSM maintains two types of nodes in the stable tree: 84 * 85 * * the regular nodes that keep the reverse mapping structures in a 86 * linked list 87 * * the "chains" that link nodes ("dups") that represent the same 88 * write protected memory content, but each "dup" corresponds to a 89 * different KSM page copy of that content 90 * 91 * Internally, the regular nodes, "dups" and "chains" are represented 92 * using the same struct ksm_stable_node structure. 93 * 94 * In addition to the stable tree, KSM uses a second data structure called the 95 * unstable tree: this tree holds pointers to pages which have been found to 96 * be "unchanged for a period of time". The unstable tree sorts these pages 97 * by their contents, but since they are not write-protected, KSM cannot rely 98 * upon the unstable tree to work correctly - the unstable tree is liable to 99 * be corrupted as its contents are modified, and so it is called unstable. 100 * 101 * KSM solves this problem by several techniques: 102 * 103 * 1) The unstable tree is flushed every time KSM completes scanning all 104 * memory areas, and then the tree is rebuilt again from the beginning. 105 * 2) KSM will only insert into the unstable tree, pages whose hash value 106 * has not changed since the previous scan of all memory areas. 107 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 108 * colors of the nodes and not on their contents, assuring that even when 109 * the tree gets "corrupted" it won't get out of balance, so scanning time 110 * remains the same (also, searching and inserting nodes in an rbtree uses 111 * the same algorithm, so we have no overhead when we flush and rebuild). 112 * 4) KSM never flushes the stable tree, which means that even if it were to 113 * take 10 attempts to find a page in the unstable tree, once it is found, 114 * it is secured in the stable tree. (When we scan a new page, we first 115 * compare it against the stable tree, and then against the unstable tree.) 116 * 117 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 118 * stable trees and multiple unstable trees: one of each for each NUMA node. 119 */ 120 121 /** 122 * struct ksm_mm_slot - ksm information per mm that is being scanned 123 * @slot: hash lookup from mm to mm_slot 124 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 125 */ 126 struct ksm_mm_slot { 127 struct mm_slot slot; 128 struct ksm_rmap_item *rmap_list; 129 }; 130 131 /** 132 * struct ksm_scan - cursor for scanning 133 * @mm_slot: the current mm_slot we are scanning 134 * @address: the next address inside that to be scanned 135 * @rmap_list: link to the next rmap to be scanned in the rmap_list 136 * @seqnr: count of completed full scans (needed when removing unstable node) 137 * 138 * There is only the one ksm_scan instance of this cursor structure. 139 */ 140 struct ksm_scan { 141 struct ksm_mm_slot *mm_slot; 142 unsigned long address; 143 struct ksm_rmap_item **rmap_list; 144 unsigned long seqnr; 145 }; 146 147 /** 148 * struct ksm_stable_node - node of the stable rbtree 149 * @node: rb node of this ksm page in the stable tree 150 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 151 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 152 * @list: linked into migrate_nodes, pending placement in the proper node tree 153 * @hlist: hlist head of rmap_items using this ksm page 154 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 155 * @chain_prune_time: time of the last full garbage collection 156 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 157 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 158 */ 159 struct ksm_stable_node { 160 union { 161 struct rb_node node; /* when node of stable tree */ 162 struct { /* when listed for migration */ 163 struct list_head *head; 164 struct { 165 struct hlist_node hlist_dup; 166 struct list_head list; 167 }; 168 }; 169 }; 170 struct hlist_head hlist; 171 union { 172 unsigned long kpfn; 173 unsigned long chain_prune_time; 174 }; 175 /* 176 * STABLE_NODE_CHAIN can be any negative number in 177 * rmap_hlist_len negative range, but better not -1 to be able 178 * to reliably detect underflows. 179 */ 180 #define STABLE_NODE_CHAIN -1024 181 int rmap_hlist_len; 182 #ifdef CONFIG_NUMA 183 int nid; 184 #endif 185 }; 186 187 /** 188 * struct ksm_rmap_item - reverse mapping item for virtual addresses 189 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 190 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 191 * @nid: NUMA node id of unstable tree in which linked (may not match page) 192 * @mm: the memory structure this rmap_item is pointing into 193 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 194 * @oldchecksum: previous checksum of the page at that virtual address 195 * @node: rb node of this rmap_item in the unstable tree 196 * @head: pointer to stable_node heading this list in the stable tree 197 * @hlist: link into hlist of rmap_items hanging off that stable_node 198 * @age: number of scan iterations since creation 199 * @remaining_skips: how many scans to skip 200 */ 201 struct ksm_rmap_item { 202 struct ksm_rmap_item *rmap_list; 203 union { 204 struct anon_vma *anon_vma; /* when stable */ 205 #ifdef CONFIG_NUMA 206 int nid; /* when node of unstable tree */ 207 #endif 208 }; 209 struct mm_struct *mm; 210 unsigned long address; /* + low bits used for flags below */ 211 unsigned int oldchecksum; /* when unstable */ 212 rmap_age_t age; 213 rmap_age_t remaining_skips; 214 union { 215 struct rb_node node; /* when node of unstable tree */ 216 struct { /* when listed from stable tree */ 217 struct ksm_stable_node *head; 218 struct hlist_node hlist; 219 }; 220 }; 221 }; 222 223 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 224 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 225 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 226 227 /* The stable and unstable tree heads */ 228 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 229 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 230 static struct rb_root *root_stable_tree = one_stable_tree; 231 static struct rb_root *root_unstable_tree = one_unstable_tree; 232 233 /* Recently migrated nodes of stable tree, pending proper placement */ 234 static LIST_HEAD(migrate_nodes); 235 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 236 237 #define MM_SLOTS_HASH_BITS 10 238 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 239 240 static struct ksm_mm_slot ksm_mm_head = { 241 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 242 }; 243 static struct ksm_scan ksm_scan = { 244 .mm_slot = &ksm_mm_head, 245 }; 246 247 static struct kmem_cache *rmap_item_cache; 248 static struct kmem_cache *stable_node_cache; 249 static struct kmem_cache *mm_slot_cache; 250 251 /* Default number of pages to scan per batch */ 252 #define DEFAULT_PAGES_TO_SCAN 100 253 254 /* The number of pages scanned */ 255 static unsigned long ksm_pages_scanned; 256 257 /* The number of nodes in the stable tree */ 258 static unsigned long ksm_pages_shared; 259 260 /* The number of page slots additionally sharing those nodes */ 261 static unsigned long ksm_pages_sharing; 262 263 /* The number of nodes in the unstable tree */ 264 static unsigned long ksm_pages_unshared; 265 266 /* The number of rmap_items in use: to calculate pages_volatile */ 267 static unsigned long ksm_rmap_items; 268 269 /* The number of stable_node chains */ 270 static unsigned long ksm_stable_node_chains; 271 272 /* The number of stable_node dups linked to the stable_node chains */ 273 static unsigned long ksm_stable_node_dups; 274 275 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 276 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 277 278 /* Maximum number of page slots sharing a stable node */ 279 static int ksm_max_page_sharing = 256; 280 281 /* Number of pages ksmd should scan in one batch */ 282 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 283 284 /* Milliseconds ksmd should sleep between batches */ 285 static unsigned int ksm_thread_sleep_millisecs = 20; 286 287 /* Checksum of an empty (zeroed) page */ 288 static unsigned int zero_checksum __read_mostly; 289 290 /* Whether to merge empty (zeroed) pages with actual zero pages */ 291 static bool ksm_use_zero_pages __read_mostly; 292 293 /* Skip pages that couldn't be de-duplicated previously */ 294 /* Default to true at least temporarily, for testing */ 295 static bool ksm_smart_scan = true; 296 297 /* The number of zero pages which is placed by KSM */ 298 atomic_long_t ksm_zero_pages = ATOMIC_LONG_INIT(0); 299 300 /* The number of pages that have been skipped due to "smart scanning" */ 301 static unsigned long ksm_pages_skipped; 302 303 /* Don't scan more than max pages per batch. */ 304 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 305 306 /* Min CPU for scanning pages per scan */ 307 #define KSM_ADVISOR_MIN_CPU 10 308 309 /* Max CPU for scanning pages per scan */ 310 static unsigned int ksm_advisor_max_cpu = 70; 311 312 /* Target scan time in seconds to analyze all KSM candidate pages. */ 313 static unsigned long ksm_advisor_target_scan_time = 200; 314 315 /* Exponentially weighted moving average. */ 316 #define EWMA_WEIGHT 30 317 318 /** 319 * struct advisor_ctx - metadata for KSM advisor 320 * @start_scan: start time of the current scan 321 * @scan_time: scan time of previous scan 322 * @change: change in percent to pages_to_scan parameter 323 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 324 */ 325 struct advisor_ctx { 326 ktime_t start_scan; 327 unsigned long scan_time; 328 unsigned long change; 329 unsigned long long cpu_time; 330 }; 331 static struct advisor_ctx advisor_ctx; 332 333 /* Define different advisor's */ 334 enum ksm_advisor_type { 335 KSM_ADVISOR_NONE, 336 KSM_ADVISOR_SCAN_TIME, 337 }; 338 static enum ksm_advisor_type ksm_advisor; 339 340 #ifdef CONFIG_SYSFS 341 /* 342 * Only called through the sysfs control interface: 343 */ 344 345 /* At least scan this many pages per batch. */ 346 static unsigned long ksm_advisor_min_pages_to_scan = 500; 347 348 static void set_advisor_defaults(void) 349 { 350 if (ksm_advisor == KSM_ADVISOR_NONE) { 351 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 352 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 353 advisor_ctx = (const struct advisor_ctx){ 0 }; 354 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 355 } 356 } 357 #endif /* CONFIG_SYSFS */ 358 359 static inline void advisor_start_scan(void) 360 { 361 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 362 advisor_ctx.start_scan = ktime_get(); 363 } 364 365 /* 366 * Use previous scan time if available, otherwise use current scan time as an 367 * approximation for the previous scan time. 368 */ 369 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 370 unsigned long scan_time) 371 { 372 return ctx->scan_time ? ctx->scan_time : scan_time; 373 } 374 375 /* Calculate exponential weighted moving average */ 376 static unsigned long ewma(unsigned long prev, unsigned long curr) 377 { 378 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 379 } 380 381 /* 382 * The scan time advisor is based on the current scan rate and the target 383 * scan rate. 384 * 385 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 386 * 387 * To avoid perturbations it calculates a change factor of previous changes. 388 * A new change factor is calculated for each iteration and it uses an 389 * exponentially weighted moving average. The new pages_to_scan value is 390 * multiplied with that change factor: 391 * 392 * new_pages_to_scan *= change facor 393 * 394 * The new_pages_to_scan value is limited by the cpu min and max values. It 395 * calculates the cpu percent for the last scan and calculates the new 396 * estimated cpu percent cost for the next scan. That value is capped by the 397 * cpu min and max setting. 398 * 399 * In addition the new pages_to_scan value is capped by the max and min 400 * limits. 401 */ 402 static void scan_time_advisor(void) 403 { 404 unsigned int cpu_percent; 405 unsigned long cpu_time; 406 unsigned long cpu_time_diff; 407 unsigned long cpu_time_diff_ms; 408 unsigned long pages; 409 unsigned long per_page_cost; 410 unsigned long factor; 411 unsigned long change; 412 unsigned long last_scan_time; 413 unsigned long scan_time; 414 415 /* Convert scan time to seconds */ 416 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 417 MSEC_PER_SEC); 418 scan_time = scan_time ? scan_time : 1; 419 420 /* Calculate CPU consumption of ksmd background thread */ 421 cpu_time = task_sched_runtime(current); 422 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 423 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 424 425 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 426 cpu_percent = cpu_percent ? cpu_percent : 1; 427 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 428 429 /* Calculate scan time as percentage of target scan time */ 430 factor = ksm_advisor_target_scan_time * 100 / scan_time; 431 factor = factor ? factor : 1; 432 433 /* 434 * Calculate scan time as percentage of last scan time and use 435 * exponentially weighted average to smooth it 436 */ 437 change = scan_time * 100 / last_scan_time; 438 change = change ? change : 1; 439 change = ewma(advisor_ctx.change, change); 440 441 /* Calculate new scan rate based on target scan rate. */ 442 pages = ksm_thread_pages_to_scan * 100 / factor; 443 /* Update pages_to_scan by weighted change percentage. */ 444 pages = pages * change / 100; 445 446 /* Cap new pages_to_scan value */ 447 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 448 per_page_cost = per_page_cost ? per_page_cost : 1; 449 450 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 451 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 452 pages = min(pages, ksm_advisor_max_pages_to_scan); 453 454 /* Update advisor context */ 455 advisor_ctx.change = change; 456 advisor_ctx.scan_time = scan_time; 457 advisor_ctx.cpu_time = cpu_time; 458 459 ksm_thread_pages_to_scan = pages; 460 trace_ksm_advisor(scan_time, pages, cpu_percent); 461 } 462 463 static void advisor_stop_scan(void) 464 { 465 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 466 scan_time_advisor(); 467 } 468 469 #ifdef CONFIG_NUMA 470 /* Zeroed when merging across nodes is not allowed */ 471 static unsigned int ksm_merge_across_nodes = 1; 472 static int ksm_nr_node_ids = 1; 473 #else 474 #define ksm_merge_across_nodes 1U 475 #define ksm_nr_node_ids 1 476 #endif 477 478 #define KSM_RUN_STOP 0 479 #define KSM_RUN_MERGE 1 480 #define KSM_RUN_UNMERGE 2 481 #define KSM_RUN_OFFLINE 4 482 static unsigned long ksm_run = KSM_RUN_STOP; 483 static void wait_while_offlining(void); 484 485 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 487 static DEFINE_MUTEX(ksm_thread_mutex); 488 static DEFINE_SPINLOCK(ksm_mmlist_lock); 489 490 static int __init ksm_slab_init(void) 491 { 492 rmap_item_cache = KMEM_CACHE(ksm_rmap_item, 0); 493 if (!rmap_item_cache) 494 goto out; 495 496 stable_node_cache = KMEM_CACHE(ksm_stable_node, 0); 497 if (!stable_node_cache) 498 goto out_free1; 499 500 mm_slot_cache = KMEM_CACHE(ksm_mm_slot, 0); 501 if (!mm_slot_cache) 502 goto out_free2; 503 504 return 0; 505 506 out_free2: 507 kmem_cache_destroy(stable_node_cache); 508 out_free1: 509 kmem_cache_destroy(rmap_item_cache); 510 out: 511 return -ENOMEM; 512 } 513 514 static void __init ksm_slab_free(void) 515 { 516 kmem_cache_destroy(mm_slot_cache); 517 kmem_cache_destroy(stable_node_cache); 518 kmem_cache_destroy(rmap_item_cache); 519 mm_slot_cache = NULL; 520 } 521 522 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 523 { 524 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 525 } 526 527 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 528 { 529 return dup->head == STABLE_NODE_DUP_HEAD; 530 } 531 532 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 533 struct ksm_stable_node *chain) 534 { 535 VM_BUG_ON(is_stable_node_dup(dup)); 536 dup->head = STABLE_NODE_DUP_HEAD; 537 VM_BUG_ON(!is_stable_node_chain(chain)); 538 hlist_add_head(&dup->hlist_dup, &chain->hlist); 539 ksm_stable_node_dups++; 540 } 541 542 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 543 { 544 VM_BUG_ON(!is_stable_node_dup(dup)); 545 hlist_del(&dup->hlist_dup); 546 ksm_stable_node_dups--; 547 } 548 549 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 550 { 551 VM_BUG_ON(is_stable_node_chain(dup)); 552 if (is_stable_node_dup(dup)) 553 __stable_node_dup_del(dup); 554 else 555 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 556 #ifdef CONFIG_DEBUG_VM 557 dup->head = NULL; 558 #endif 559 } 560 561 static inline struct ksm_rmap_item *alloc_rmap_item(void) 562 { 563 struct ksm_rmap_item *rmap_item; 564 565 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 566 __GFP_NORETRY | __GFP_NOWARN); 567 if (rmap_item) 568 ksm_rmap_items++; 569 return rmap_item; 570 } 571 572 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 573 { 574 ksm_rmap_items--; 575 rmap_item->mm->ksm_rmap_items--; 576 rmap_item->mm = NULL; /* debug safety */ 577 kmem_cache_free(rmap_item_cache, rmap_item); 578 } 579 580 static inline struct ksm_stable_node *alloc_stable_node(void) 581 { 582 /* 583 * The allocation can take too long with GFP_KERNEL when memory is under 584 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 585 * grants access to memory reserves, helping to avoid this problem. 586 */ 587 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 588 } 589 590 static inline void free_stable_node(struct ksm_stable_node *stable_node) 591 { 592 VM_BUG_ON(stable_node->rmap_hlist_len && 593 !is_stable_node_chain(stable_node)); 594 kmem_cache_free(stable_node_cache, stable_node); 595 } 596 597 /* 598 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 599 * page tables after it has passed through ksm_exit() - which, if necessary, 600 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 601 * a special flag: they can just back out as soon as mm_users goes to zero. 602 * ksm_test_exit() is used throughout to make this test for exit: in some 603 * places for correctness, in some places just to avoid unnecessary work. 604 */ 605 static inline bool ksm_test_exit(struct mm_struct *mm) 606 { 607 return atomic_read(&mm->mm_users) == 0; 608 } 609 610 /* 611 * We use break_ksm to break COW on a ksm page by triggering unsharing, 612 * such that the ksm page will get replaced by an exclusive anonymous page. 613 * 614 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 615 * in case the application has unmapped and remapped mm,addr meanwhile. 616 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 617 * mmap of /dev/mem, where we would not want to touch it. 618 * 619 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 620 * of the process that owns 'vma'. We also do not want to enforce 621 * protection keys here anyway. 622 */ 623 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 624 { 625 vm_fault_t ret = 0; 626 627 if (lock_vma) 628 vma_start_write(vma); 629 630 do { 631 bool ksm_page = false; 632 struct folio_walk fw; 633 struct folio *folio; 634 635 cond_resched(); 636 folio = folio_walk_start(&fw, vma, addr, 637 FW_MIGRATION | FW_ZEROPAGE); 638 if (folio) { 639 /* Small folio implies FW_LEVEL_PTE. */ 640 if (!folio_test_large(folio) && 641 (folio_test_ksm(folio) || is_ksm_zero_pte(fw.pte))) 642 ksm_page = true; 643 folio_walk_end(&fw, vma); 644 } 645 646 if (!ksm_page) 647 return 0; 648 ret = handle_mm_fault(vma, addr, 649 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 650 NULL); 651 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 652 /* 653 * We must loop until we no longer find a KSM page because 654 * handle_mm_fault() may back out if there's any difficulty e.g. if 655 * pte accessed bit gets updated concurrently. 656 * 657 * VM_FAULT_SIGBUS could occur if we race with truncation of the 658 * backing file, which also invalidates anonymous pages: that's 659 * okay, that truncation will have unmapped the KSM page for us. 660 * 661 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 662 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 663 * current task has TIF_MEMDIE set, and will be OOM killed on return 664 * to user; and ksmd, having no mm, would never be chosen for that. 665 * 666 * But if the mm is in a limited mem_cgroup, then the fault may fail 667 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 668 * even ksmd can fail in this way - though it's usually breaking ksm 669 * just to undo a merge it made a moment before, so unlikely to oom. 670 * 671 * That's a pity: we might therefore have more kernel pages allocated 672 * than we're counting as nodes in the stable tree; but ksm_do_scan 673 * will retry to break_cow on each pass, so should recover the page 674 * in due course. The important thing is to not let VM_MERGEABLE 675 * be cleared while any such pages might remain in the area. 676 */ 677 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 678 } 679 680 static bool ksm_compatible(const struct file *file, vm_flags_t vm_flags) 681 { 682 if (vm_flags & (VM_SHARED | VM_MAYSHARE | VM_SPECIAL | 683 VM_HUGETLB | VM_DROPPABLE)) 684 return false; /* just ignore the advice */ 685 686 if (file_is_dax(file)) 687 return false; 688 689 #ifdef VM_SAO 690 if (vm_flags & VM_SAO) 691 return false; 692 #endif 693 #ifdef VM_SPARC_ADI 694 if (vm_flags & VM_SPARC_ADI) 695 return false; 696 #endif 697 698 return true; 699 } 700 701 static bool vma_ksm_compatible(struct vm_area_struct *vma) 702 { 703 return ksm_compatible(vma->vm_file, vma->vm_flags); 704 } 705 706 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 707 unsigned long addr) 708 { 709 struct vm_area_struct *vma; 710 if (ksm_test_exit(mm)) 711 return NULL; 712 vma = vma_lookup(mm, addr); 713 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 714 return NULL; 715 return vma; 716 } 717 718 static void break_cow(struct ksm_rmap_item *rmap_item) 719 { 720 struct mm_struct *mm = rmap_item->mm; 721 unsigned long addr = rmap_item->address; 722 struct vm_area_struct *vma; 723 724 /* 725 * It is not an accident that whenever we want to break COW 726 * to undo, we also need to drop a reference to the anon_vma. 727 */ 728 put_anon_vma(rmap_item->anon_vma); 729 730 mmap_read_lock(mm); 731 vma = find_mergeable_vma(mm, addr); 732 if (vma) 733 break_ksm(vma, addr, false); 734 mmap_read_unlock(mm); 735 } 736 737 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 738 { 739 struct mm_struct *mm = rmap_item->mm; 740 unsigned long addr = rmap_item->address; 741 struct vm_area_struct *vma; 742 struct page *page = NULL; 743 struct folio_walk fw; 744 struct folio *folio; 745 746 mmap_read_lock(mm); 747 vma = find_mergeable_vma(mm, addr); 748 if (!vma) 749 goto out; 750 751 folio = folio_walk_start(&fw, vma, addr, 0); 752 if (folio) { 753 if (!folio_is_zone_device(folio) && 754 folio_test_anon(folio)) { 755 folio_get(folio); 756 page = fw.page; 757 } 758 folio_walk_end(&fw, vma); 759 } 760 out: 761 if (page) { 762 flush_anon_page(vma, page, addr); 763 flush_dcache_page(page); 764 } 765 mmap_read_unlock(mm); 766 return page; 767 } 768 769 /* 770 * This helper is used for getting right index into array of tree roots. 771 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 772 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 773 * every node has its own stable and unstable tree. 774 */ 775 static inline int get_kpfn_nid(unsigned long kpfn) 776 { 777 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 778 } 779 780 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 781 struct rb_root *root) 782 { 783 struct ksm_stable_node *chain = alloc_stable_node(); 784 VM_BUG_ON(is_stable_node_chain(dup)); 785 if (likely(chain)) { 786 INIT_HLIST_HEAD(&chain->hlist); 787 chain->chain_prune_time = jiffies; 788 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 789 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 790 chain->nid = NUMA_NO_NODE; /* debug */ 791 #endif 792 ksm_stable_node_chains++; 793 794 /* 795 * Put the stable node chain in the first dimension of 796 * the stable tree and at the same time remove the old 797 * stable node. 798 */ 799 rb_replace_node(&dup->node, &chain->node, root); 800 801 /* 802 * Move the old stable node to the second dimension 803 * queued in the hlist_dup. The invariant is that all 804 * dup stable_nodes in the chain->hlist point to pages 805 * that are write protected and have the exact same 806 * content. 807 */ 808 stable_node_chain_add_dup(dup, chain); 809 } 810 return chain; 811 } 812 813 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 814 struct rb_root *root) 815 { 816 rb_erase(&chain->node, root); 817 free_stable_node(chain); 818 ksm_stable_node_chains--; 819 } 820 821 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 822 { 823 struct ksm_rmap_item *rmap_item; 824 825 /* check it's not STABLE_NODE_CHAIN or negative */ 826 BUG_ON(stable_node->rmap_hlist_len < 0); 827 828 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 829 if (rmap_item->hlist.next) { 830 ksm_pages_sharing--; 831 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 832 } else { 833 ksm_pages_shared--; 834 } 835 836 rmap_item->mm->ksm_merging_pages--; 837 838 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 839 stable_node->rmap_hlist_len--; 840 put_anon_vma(rmap_item->anon_vma); 841 rmap_item->address &= PAGE_MASK; 842 cond_resched(); 843 } 844 845 /* 846 * We need the second aligned pointer of the migrate_nodes 847 * list_head to stay clear from the rb_parent_color union 848 * (aligned and different than any node) and also different 849 * from &migrate_nodes. This will verify that future list.h changes 850 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 851 */ 852 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 853 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 854 855 trace_ksm_remove_ksm_page(stable_node->kpfn); 856 if (stable_node->head == &migrate_nodes) 857 list_del(&stable_node->list); 858 else 859 stable_node_dup_del(stable_node); 860 free_stable_node(stable_node); 861 } 862 863 enum ksm_get_folio_flags { 864 KSM_GET_FOLIO_NOLOCK, 865 KSM_GET_FOLIO_LOCK, 866 KSM_GET_FOLIO_TRYLOCK 867 }; 868 869 /* 870 * ksm_get_folio: checks if the page indicated by the stable node 871 * is still its ksm page, despite having held no reference to it. 872 * In which case we can trust the content of the page, and it 873 * returns the gotten page; but if the page has now been zapped, 874 * remove the stale node from the stable tree and return NULL. 875 * But beware, the stable node's page might be being migrated. 876 * 877 * You would expect the stable_node to hold a reference to the ksm page. 878 * But if it increments the page's count, swapping out has to wait for 879 * ksmd to come around again before it can free the page, which may take 880 * seconds or even minutes: much too unresponsive. So instead we use a 881 * "keyhole reference": access to the ksm page from the stable node peeps 882 * out through its keyhole to see if that page still holds the right key, 883 * pointing back to this stable node. This relies on freeing a PageAnon 884 * page to reset its page->mapping to NULL, and relies on no other use of 885 * a page to put something that might look like our key in page->mapping. 886 * is on its way to being freed; but it is an anomaly to bear in mind. 887 */ 888 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 889 enum ksm_get_folio_flags flags) 890 { 891 struct folio *folio; 892 void *expected_mapping; 893 unsigned long kpfn; 894 895 expected_mapping = (void *)((unsigned long)stable_node | 896 FOLIO_MAPPING_KSM); 897 again: 898 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 899 folio = pfn_folio(kpfn); 900 if (READ_ONCE(folio->mapping) != expected_mapping) 901 goto stale; 902 903 /* 904 * We cannot do anything with the page while its refcount is 0. 905 * Usually 0 means free, or tail of a higher-order page: in which 906 * case this node is no longer referenced, and should be freed; 907 * however, it might mean that the page is under page_ref_freeze(). 908 * The __remove_mapping() case is easy, again the node is now stale; 909 * the same is in reuse_ksm_page() case; but if page is swapcache 910 * in folio_migrate_mapping(), it might still be our page, 911 * in which case it's essential to keep the node. 912 */ 913 while (!folio_try_get(folio)) { 914 /* 915 * Another check for folio->mapping != expected_mapping 916 * would work here too. We have chosen to test the 917 * swapcache flag to optimize the common case, when the 918 * folio is or is about to be freed: the swapcache flag 919 * is cleared (under spin_lock_irq) in the ref_freeze 920 * section of __remove_mapping(); but anon folio->mapping 921 * is reset to NULL later, in free_pages_prepare(). 922 */ 923 if (!folio_test_swapcache(folio)) 924 goto stale; 925 cpu_relax(); 926 } 927 928 if (READ_ONCE(folio->mapping) != expected_mapping) { 929 folio_put(folio); 930 goto stale; 931 } 932 933 if (flags == KSM_GET_FOLIO_TRYLOCK) { 934 if (!folio_trylock(folio)) { 935 folio_put(folio); 936 return ERR_PTR(-EBUSY); 937 } 938 } else if (flags == KSM_GET_FOLIO_LOCK) 939 folio_lock(folio); 940 941 if (flags != KSM_GET_FOLIO_NOLOCK) { 942 if (READ_ONCE(folio->mapping) != expected_mapping) { 943 folio_unlock(folio); 944 folio_put(folio); 945 goto stale; 946 } 947 } 948 return folio; 949 950 stale: 951 /* 952 * We come here from above when folio->mapping or the swapcache flag 953 * suggests that the node is stale; but it might be under migration. 954 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 955 * before checking whether node->kpfn has been changed. 956 */ 957 smp_rmb(); 958 if (READ_ONCE(stable_node->kpfn) != kpfn) 959 goto again; 960 remove_node_from_stable_tree(stable_node); 961 return NULL; 962 } 963 964 /* 965 * Removing rmap_item from stable or unstable tree. 966 * This function will clean the information from the stable/unstable tree. 967 */ 968 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 969 { 970 if (rmap_item->address & STABLE_FLAG) { 971 struct ksm_stable_node *stable_node; 972 struct folio *folio; 973 974 stable_node = rmap_item->head; 975 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 976 if (!folio) 977 goto out; 978 979 hlist_del(&rmap_item->hlist); 980 folio_unlock(folio); 981 folio_put(folio); 982 983 if (!hlist_empty(&stable_node->hlist)) 984 ksm_pages_sharing--; 985 else 986 ksm_pages_shared--; 987 988 rmap_item->mm->ksm_merging_pages--; 989 990 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 991 stable_node->rmap_hlist_len--; 992 993 put_anon_vma(rmap_item->anon_vma); 994 rmap_item->head = NULL; 995 rmap_item->address &= PAGE_MASK; 996 997 } else if (rmap_item->address & UNSTABLE_FLAG) { 998 unsigned char age; 999 /* 1000 * Usually ksmd can and must skip the rb_erase, because 1001 * root_unstable_tree was already reset to RB_ROOT. 1002 * But be careful when an mm is exiting: do the rb_erase 1003 * if this rmap_item was inserted by this scan, rather 1004 * than left over from before. 1005 */ 1006 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1007 BUG_ON(age > 1); 1008 if (!age) 1009 rb_erase(&rmap_item->node, 1010 root_unstable_tree + NUMA(rmap_item->nid)); 1011 ksm_pages_unshared--; 1012 rmap_item->address &= PAGE_MASK; 1013 } 1014 out: 1015 cond_resched(); /* we're called from many long loops */ 1016 } 1017 1018 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1019 { 1020 while (*rmap_list) { 1021 struct ksm_rmap_item *rmap_item = *rmap_list; 1022 *rmap_list = rmap_item->rmap_list; 1023 remove_rmap_item_from_tree(rmap_item); 1024 free_rmap_item(rmap_item); 1025 } 1026 } 1027 1028 /* 1029 * Though it's very tempting to unmerge rmap_items from stable tree rather 1030 * than check every pte of a given vma, the locking doesn't quite work for 1031 * that - an rmap_item is assigned to the stable tree after inserting ksm 1032 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1033 * rmap_items from parent to child at fork time (so as not to waste time 1034 * if exit comes before the next scan reaches it). 1035 * 1036 * Similarly, although we'd like to remove rmap_items (so updating counts 1037 * and freeing memory) when unmerging an area, it's easier to leave that 1038 * to the next pass of ksmd - consider, for example, how ksmd might be 1039 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1040 */ 1041 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1042 unsigned long start, unsigned long end, bool lock_vma) 1043 { 1044 unsigned long addr; 1045 int err = 0; 1046 1047 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1048 if (ksm_test_exit(vma->vm_mm)) 1049 break; 1050 if (signal_pending(current)) 1051 err = -ERESTARTSYS; 1052 else 1053 err = break_ksm(vma, addr, lock_vma); 1054 } 1055 return err; 1056 } 1057 1058 static inline 1059 struct ksm_stable_node *folio_stable_node(const struct folio *folio) 1060 { 1061 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1062 } 1063 1064 static inline void folio_set_stable_node(struct folio *folio, 1065 struct ksm_stable_node *stable_node) 1066 { 1067 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1068 folio->mapping = (void *)((unsigned long)stable_node | FOLIO_MAPPING_KSM); 1069 } 1070 1071 #ifdef CONFIG_SYSFS 1072 /* 1073 * Only called through the sysfs control interface: 1074 */ 1075 static int remove_stable_node(struct ksm_stable_node *stable_node) 1076 { 1077 struct folio *folio; 1078 int err; 1079 1080 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1081 if (!folio) { 1082 /* 1083 * ksm_get_folio did remove_node_from_stable_tree itself. 1084 */ 1085 return 0; 1086 } 1087 1088 /* 1089 * Page could be still mapped if this races with __mmput() running in 1090 * between ksm_exit() and exit_mmap(). Just refuse to let 1091 * merge_across_nodes/max_page_sharing be switched. 1092 */ 1093 err = -EBUSY; 1094 if (!folio_mapped(folio)) { 1095 /* 1096 * The stable node did not yet appear stale to ksm_get_folio(), 1097 * since that allows for an unmapped ksm folio to be recognized 1098 * right up until it is freed; but the node is safe to remove. 1099 * This folio might be in an LRU cache waiting to be freed, 1100 * or it might be in the swapcache (perhaps under writeback), 1101 * or it might have been removed from swapcache a moment ago. 1102 */ 1103 folio_set_stable_node(folio, NULL); 1104 remove_node_from_stable_tree(stable_node); 1105 err = 0; 1106 } 1107 1108 folio_unlock(folio); 1109 folio_put(folio); 1110 return err; 1111 } 1112 1113 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1114 struct rb_root *root) 1115 { 1116 struct ksm_stable_node *dup; 1117 struct hlist_node *hlist_safe; 1118 1119 if (!is_stable_node_chain(stable_node)) { 1120 VM_BUG_ON(is_stable_node_dup(stable_node)); 1121 if (remove_stable_node(stable_node)) 1122 return true; 1123 else 1124 return false; 1125 } 1126 1127 hlist_for_each_entry_safe(dup, hlist_safe, 1128 &stable_node->hlist, hlist_dup) { 1129 VM_BUG_ON(!is_stable_node_dup(dup)); 1130 if (remove_stable_node(dup)) 1131 return true; 1132 } 1133 BUG_ON(!hlist_empty(&stable_node->hlist)); 1134 free_stable_node_chain(stable_node, root); 1135 return false; 1136 } 1137 1138 static int remove_all_stable_nodes(void) 1139 { 1140 struct ksm_stable_node *stable_node, *next; 1141 int nid; 1142 int err = 0; 1143 1144 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1145 while (root_stable_tree[nid].rb_node) { 1146 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1147 struct ksm_stable_node, node); 1148 if (remove_stable_node_chain(stable_node, 1149 root_stable_tree + nid)) { 1150 err = -EBUSY; 1151 break; /* proceed to next nid */ 1152 } 1153 cond_resched(); 1154 } 1155 } 1156 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1157 if (remove_stable_node(stable_node)) 1158 err = -EBUSY; 1159 cond_resched(); 1160 } 1161 return err; 1162 } 1163 1164 static int unmerge_and_remove_all_rmap_items(void) 1165 { 1166 struct ksm_mm_slot *mm_slot; 1167 struct mm_slot *slot; 1168 struct mm_struct *mm; 1169 struct vm_area_struct *vma; 1170 int err = 0; 1171 1172 spin_lock(&ksm_mmlist_lock); 1173 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1174 struct mm_slot, mm_node); 1175 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1176 spin_unlock(&ksm_mmlist_lock); 1177 1178 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1179 mm_slot = ksm_scan.mm_slot) { 1180 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1181 1182 mm = mm_slot->slot.mm; 1183 mmap_read_lock(mm); 1184 1185 /* 1186 * Exit right away if mm is exiting to avoid lockdep issue in 1187 * the maple tree 1188 */ 1189 if (ksm_test_exit(mm)) 1190 goto mm_exiting; 1191 1192 for_each_vma(vmi, vma) { 1193 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1194 continue; 1195 err = unmerge_ksm_pages(vma, 1196 vma->vm_start, vma->vm_end, false); 1197 if (err) 1198 goto error; 1199 } 1200 1201 mm_exiting: 1202 remove_trailing_rmap_items(&mm_slot->rmap_list); 1203 mmap_read_unlock(mm); 1204 1205 spin_lock(&ksm_mmlist_lock); 1206 slot = list_entry(mm_slot->slot.mm_node.next, 1207 struct mm_slot, mm_node); 1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1209 if (ksm_test_exit(mm)) { 1210 hash_del(&mm_slot->slot.hash); 1211 list_del(&mm_slot->slot.mm_node); 1212 spin_unlock(&ksm_mmlist_lock); 1213 1214 mm_slot_free(mm_slot_cache, mm_slot); 1215 mm_flags_clear(MMF_VM_MERGEABLE, mm); 1216 mm_flags_clear(MMF_VM_MERGE_ANY, mm); 1217 mmdrop(mm); 1218 } else 1219 spin_unlock(&ksm_mmlist_lock); 1220 } 1221 1222 /* Clean up stable nodes, but don't worry if some are still busy */ 1223 remove_all_stable_nodes(); 1224 ksm_scan.seqnr = 0; 1225 return 0; 1226 1227 error: 1228 mmap_read_unlock(mm); 1229 spin_lock(&ksm_mmlist_lock); 1230 ksm_scan.mm_slot = &ksm_mm_head; 1231 spin_unlock(&ksm_mmlist_lock); 1232 return err; 1233 } 1234 #endif /* CONFIG_SYSFS */ 1235 1236 static u32 calc_checksum(struct page *page) 1237 { 1238 u32 checksum; 1239 void *addr = kmap_local_page(page); 1240 checksum = xxhash(addr, PAGE_SIZE, 0); 1241 kunmap_local(addr); 1242 return checksum; 1243 } 1244 1245 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1246 pte_t *orig_pte) 1247 { 1248 struct mm_struct *mm = vma->vm_mm; 1249 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1250 int swapped; 1251 int err = -EFAULT; 1252 struct mmu_notifier_range range; 1253 bool anon_exclusive; 1254 pte_t entry; 1255 1256 if (WARN_ON_ONCE(folio_test_large(folio))) 1257 return err; 1258 1259 pvmw.address = page_address_in_vma(folio, folio_page(folio, 0), vma); 1260 if (pvmw.address == -EFAULT) 1261 goto out; 1262 1263 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1264 pvmw.address + PAGE_SIZE); 1265 mmu_notifier_invalidate_range_start(&range); 1266 1267 if (!page_vma_mapped_walk(&pvmw)) 1268 goto out_mn; 1269 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1270 goto out_unlock; 1271 1272 entry = ptep_get(pvmw.pte); 1273 /* 1274 * Handle PFN swap PTEs, such as device-exclusive ones, that actually 1275 * map pages: give up just like the next folio_walk would. 1276 */ 1277 if (unlikely(!pte_present(entry))) 1278 goto out_unlock; 1279 1280 anon_exclusive = PageAnonExclusive(&folio->page); 1281 if (pte_write(entry) || pte_dirty(entry) || 1282 anon_exclusive || mm_tlb_flush_pending(mm)) { 1283 swapped = folio_test_swapcache(folio); 1284 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1285 /* 1286 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1287 * take any lock, therefore the check that we are going to make 1288 * with the pagecount against the mapcount is racy and 1289 * O_DIRECT can happen right after the check. 1290 * So we clear the pte and flush the tlb before the check 1291 * this assure us that no O_DIRECT can happen after the check 1292 * or in the middle of the check. 1293 * 1294 * No need to notify as we are downgrading page table to read 1295 * only not changing it to point to a new page. 1296 * 1297 * See Documentation/mm/mmu_notifier.rst 1298 */ 1299 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1300 /* 1301 * Check that no O_DIRECT or similar I/O is in progress on the 1302 * page 1303 */ 1304 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1305 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1306 goto out_unlock; 1307 } 1308 1309 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1310 if (anon_exclusive && 1311 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1312 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1313 goto out_unlock; 1314 } 1315 1316 if (pte_dirty(entry)) 1317 folio_mark_dirty(folio); 1318 entry = pte_mkclean(entry); 1319 1320 if (pte_write(entry)) 1321 entry = pte_wrprotect(entry); 1322 1323 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1324 } 1325 *orig_pte = entry; 1326 err = 0; 1327 1328 out_unlock: 1329 page_vma_mapped_walk_done(&pvmw); 1330 out_mn: 1331 mmu_notifier_invalidate_range_end(&range); 1332 out: 1333 return err; 1334 } 1335 1336 /** 1337 * replace_page - replace page in vma by new ksm page 1338 * @vma: vma that holds the pte pointing to page 1339 * @page: the page we are replacing by kpage 1340 * @kpage: the ksm page we replace page by 1341 * @orig_pte: the original value of the pte 1342 * 1343 * Returns 0 on success, -EFAULT on failure. 1344 */ 1345 static int replace_page(struct vm_area_struct *vma, struct page *page, 1346 struct page *kpage, pte_t orig_pte) 1347 { 1348 struct folio *kfolio = page_folio(kpage); 1349 struct mm_struct *mm = vma->vm_mm; 1350 struct folio *folio = page_folio(page); 1351 pmd_t *pmd; 1352 pmd_t pmde; 1353 pte_t *ptep; 1354 pte_t newpte; 1355 spinlock_t *ptl; 1356 unsigned long addr; 1357 int err = -EFAULT; 1358 struct mmu_notifier_range range; 1359 1360 addr = page_address_in_vma(folio, page, vma); 1361 if (addr == -EFAULT) 1362 goto out; 1363 1364 pmd = mm_find_pmd(mm, addr); 1365 if (!pmd) 1366 goto out; 1367 /* 1368 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1369 * without holding anon_vma lock for write. So when looking for a 1370 * genuine pmde (in which to find pte), test present and !THP together. 1371 */ 1372 pmde = pmdp_get_lockless(pmd); 1373 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1374 goto out; 1375 1376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1377 addr + PAGE_SIZE); 1378 mmu_notifier_invalidate_range_start(&range); 1379 1380 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1381 if (!ptep) 1382 goto out_mn; 1383 if (!pte_same(ptep_get(ptep), orig_pte)) { 1384 pte_unmap_unlock(ptep, ptl); 1385 goto out_mn; 1386 } 1387 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1388 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1389 kfolio); 1390 1391 /* 1392 * No need to check ksm_use_zero_pages here: we can only have a 1393 * zero_page here if ksm_use_zero_pages was enabled already. 1394 */ 1395 if (!is_zero_pfn(page_to_pfn(kpage))) { 1396 folio_get(kfolio); 1397 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1398 newpte = mk_pte(kpage, vma->vm_page_prot); 1399 } else { 1400 /* 1401 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1402 * we can easily track all KSM-placed zero pages by checking if 1403 * the dirty bit in zero page's PTE is set. 1404 */ 1405 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1406 ksm_map_zero_page(mm); 1407 /* 1408 * We're replacing an anonymous page with a zero page, which is 1409 * not anonymous. We need to do proper accounting otherwise we 1410 * will get wrong values in /proc, and a BUG message in dmesg 1411 * when tearing down the mm. 1412 */ 1413 dec_mm_counter(mm, MM_ANONPAGES); 1414 } 1415 1416 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1417 /* 1418 * No need to notify as we are replacing a read only page with another 1419 * read only page with the same content. 1420 * 1421 * See Documentation/mm/mmu_notifier.rst 1422 */ 1423 ptep_clear_flush(vma, addr, ptep); 1424 set_pte_at(mm, addr, ptep, newpte); 1425 1426 folio_remove_rmap_pte(folio, page, vma); 1427 if (!folio_mapped(folio)) 1428 folio_free_swap(folio); 1429 folio_put(folio); 1430 1431 pte_unmap_unlock(ptep, ptl); 1432 err = 0; 1433 out_mn: 1434 mmu_notifier_invalidate_range_end(&range); 1435 out: 1436 return err; 1437 } 1438 1439 /* 1440 * try_to_merge_one_page - take two pages and merge them into one 1441 * @vma: the vma that holds the pte pointing to page 1442 * @page: the PageAnon page that we want to replace with kpage 1443 * @kpage: the KSM page that we want to map instead of page, 1444 * or NULL the first time when we want to use page as kpage. 1445 * 1446 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1447 */ 1448 static int try_to_merge_one_page(struct vm_area_struct *vma, 1449 struct page *page, struct page *kpage) 1450 { 1451 struct folio *folio = page_folio(page); 1452 pte_t orig_pte = __pte(0); 1453 int err = -EFAULT; 1454 1455 if (page == kpage) /* ksm page forked */ 1456 return 0; 1457 1458 if (!folio_test_anon(folio)) 1459 goto out; 1460 1461 /* 1462 * We need the folio lock to read a stable swapcache flag in 1463 * write_protect_page(). We trylock because we don't want to wait 1464 * here - we prefer to continue scanning and merging different 1465 * pages, then come back to this page when it is unlocked. 1466 */ 1467 if (!folio_trylock(folio)) 1468 goto out; 1469 1470 if (folio_test_large(folio)) { 1471 if (split_huge_page(page)) 1472 goto out_unlock; 1473 folio = page_folio(page); 1474 } 1475 1476 /* 1477 * If this anonymous page is mapped only here, its pte may need 1478 * to be write-protected. If it's mapped elsewhere, all of its 1479 * ptes are necessarily already write-protected. But in either 1480 * case, we need to lock and check page_count is not raised. 1481 */ 1482 if (write_protect_page(vma, folio, &orig_pte) == 0) { 1483 if (!kpage) { 1484 /* 1485 * While we hold folio lock, upgrade folio from 1486 * anon to a NULL stable_node with the KSM flag set: 1487 * stable_tree_insert() will update stable_node. 1488 */ 1489 folio_set_stable_node(folio, NULL); 1490 folio_mark_accessed(folio); 1491 /* 1492 * Page reclaim just frees a clean folio with no dirty 1493 * ptes: make sure that the ksm page would be swapped. 1494 */ 1495 if (!folio_test_dirty(folio)) 1496 folio_mark_dirty(folio); 1497 err = 0; 1498 } else if (pages_identical(page, kpage)) 1499 err = replace_page(vma, page, kpage, orig_pte); 1500 } 1501 1502 out_unlock: 1503 folio_unlock(folio); 1504 out: 1505 return err; 1506 } 1507 1508 /* 1509 * This function returns 0 if the pages were merged or if they are 1510 * no longer merging candidates (e.g., VMA stale), -EFAULT otherwise. 1511 */ 1512 static int try_to_merge_with_zero_page(struct ksm_rmap_item *rmap_item, 1513 struct page *page) 1514 { 1515 struct mm_struct *mm = rmap_item->mm; 1516 int err = -EFAULT; 1517 1518 /* 1519 * Same checksum as an empty page. We attempt to merge it with the 1520 * appropriate zero page if the user enabled this via sysfs. 1521 */ 1522 if (ksm_use_zero_pages && (rmap_item->oldchecksum == zero_checksum)) { 1523 struct vm_area_struct *vma; 1524 1525 mmap_read_lock(mm); 1526 vma = find_mergeable_vma(mm, rmap_item->address); 1527 if (vma) { 1528 err = try_to_merge_one_page(vma, page, 1529 ZERO_PAGE(rmap_item->address)); 1530 trace_ksm_merge_one_page( 1531 page_to_pfn(ZERO_PAGE(rmap_item->address)), 1532 rmap_item, mm, err); 1533 } else { 1534 /* 1535 * If the vma is out of date, we do not need to 1536 * continue. 1537 */ 1538 err = 0; 1539 } 1540 mmap_read_unlock(mm); 1541 } 1542 1543 return err; 1544 } 1545 1546 /* 1547 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1548 * but no new kernel page is allocated: kpage must already be a ksm page. 1549 * 1550 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1551 */ 1552 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1553 struct page *page, struct page *kpage) 1554 { 1555 struct mm_struct *mm = rmap_item->mm; 1556 struct vm_area_struct *vma; 1557 int err = -EFAULT; 1558 1559 mmap_read_lock(mm); 1560 vma = find_mergeable_vma(mm, rmap_item->address); 1561 if (!vma) 1562 goto out; 1563 1564 err = try_to_merge_one_page(vma, page, kpage); 1565 if (err) 1566 goto out; 1567 1568 /* Unstable nid is in union with stable anon_vma: remove first */ 1569 remove_rmap_item_from_tree(rmap_item); 1570 1571 /* Must get reference to anon_vma while still holding mmap_lock */ 1572 rmap_item->anon_vma = vma->anon_vma; 1573 get_anon_vma(vma->anon_vma); 1574 out: 1575 mmap_read_unlock(mm); 1576 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1577 rmap_item, mm, err); 1578 return err; 1579 } 1580 1581 /* 1582 * try_to_merge_two_pages - take two identical pages and prepare them 1583 * to be merged into one page. 1584 * 1585 * This function returns the kpage if we successfully merged two identical 1586 * pages into one ksm page, NULL otherwise. 1587 * 1588 * Note that this function upgrades page to ksm page: if one of the pages 1589 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1590 */ 1591 static struct folio *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1592 struct page *page, 1593 struct ksm_rmap_item *tree_rmap_item, 1594 struct page *tree_page) 1595 { 1596 int err; 1597 1598 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1599 if (!err) { 1600 err = try_to_merge_with_ksm_page(tree_rmap_item, 1601 tree_page, page); 1602 /* 1603 * If that fails, we have a ksm page with only one pte 1604 * pointing to it: so break it. 1605 */ 1606 if (err) 1607 break_cow(rmap_item); 1608 } 1609 return err ? NULL : page_folio(page); 1610 } 1611 1612 static __always_inline 1613 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1614 { 1615 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1616 /* 1617 * Check that at least one mapping still exists, otherwise 1618 * there's no much point to merge and share with this 1619 * stable_node, as the underlying tree_page of the other 1620 * sharer is going to be freed soon. 1621 */ 1622 return stable_node->rmap_hlist_len && 1623 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1624 } 1625 1626 static __always_inline 1627 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1628 { 1629 return __is_page_sharing_candidate(stable_node, 0); 1630 } 1631 1632 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1633 struct ksm_stable_node **_stable_node, 1634 struct rb_root *root, 1635 bool prune_stale_stable_nodes) 1636 { 1637 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1638 struct hlist_node *hlist_safe; 1639 struct folio *folio, *tree_folio = NULL; 1640 int found_rmap_hlist_len; 1641 1642 if (!prune_stale_stable_nodes || 1643 time_before(jiffies, stable_node->chain_prune_time + 1644 msecs_to_jiffies( 1645 ksm_stable_node_chains_prune_millisecs))) 1646 prune_stale_stable_nodes = false; 1647 else 1648 stable_node->chain_prune_time = jiffies; 1649 1650 hlist_for_each_entry_safe(dup, hlist_safe, 1651 &stable_node->hlist, hlist_dup) { 1652 cond_resched(); 1653 /* 1654 * We must walk all stable_node_dup to prune the stale 1655 * stable nodes during lookup. 1656 * 1657 * ksm_get_folio can drop the nodes from the 1658 * stable_node->hlist if they point to freed pages 1659 * (that's why we do a _safe walk). The "dup" 1660 * stable_node parameter itself will be freed from 1661 * under us if it returns NULL. 1662 */ 1663 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1664 if (!folio) 1665 continue; 1666 /* Pick the best candidate if possible. */ 1667 if (!found || (is_page_sharing_candidate(dup) && 1668 (!is_page_sharing_candidate(found) || 1669 dup->rmap_hlist_len > found_rmap_hlist_len))) { 1670 if (found) 1671 folio_put(tree_folio); 1672 found = dup; 1673 found_rmap_hlist_len = found->rmap_hlist_len; 1674 tree_folio = folio; 1675 /* skip put_page for found candidate */ 1676 if (!prune_stale_stable_nodes && 1677 is_page_sharing_candidate(found)) 1678 break; 1679 continue; 1680 } 1681 folio_put(folio); 1682 } 1683 1684 if (found) { 1685 if (hlist_is_singular_node(&found->hlist_dup, &stable_node->hlist)) { 1686 /* 1687 * If there's not just one entry it would 1688 * corrupt memory, better BUG_ON. In KSM 1689 * context with no lock held it's not even 1690 * fatal. 1691 */ 1692 BUG_ON(stable_node->hlist.first->next); 1693 1694 /* 1695 * There's just one entry and it is below the 1696 * deduplication limit so drop the chain. 1697 */ 1698 rb_replace_node(&stable_node->node, &found->node, 1699 root); 1700 free_stable_node(stable_node); 1701 ksm_stable_node_chains--; 1702 ksm_stable_node_dups--; 1703 /* 1704 * NOTE: the caller depends on the stable_node 1705 * to be equal to stable_node_dup if the chain 1706 * was collapsed. 1707 */ 1708 *_stable_node = found; 1709 /* 1710 * Just for robustness, as stable_node is 1711 * otherwise left as a stable pointer, the 1712 * compiler shall optimize it away at build 1713 * time. 1714 */ 1715 stable_node = NULL; 1716 } else if (stable_node->hlist.first != &found->hlist_dup && 1717 __is_page_sharing_candidate(found, 1)) { 1718 /* 1719 * If the found stable_node dup can accept one 1720 * more future merge (in addition to the one 1721 * that is underway) and is not at the head of 1722 * the chain, put it there so next search will 1723 * be quicker in the !prune_stale_stable_nodes 1724 * case. 1725 * 1726 * NOTE: it would be inaccurate to use nr > 1 1727 * instead of checking the hlist.first pointer 1728 * directly, because in the 1729 * prune_stale_stable_nodes case "nr" isn't 1730 * the position of the found dup in the chain, 1731 * but the total number of dups in the chain. 1732 */ 1733 hlist_del(&found->hlist_dup); 1734 hlist_add_head(&found->hlist_dup, 1735 &stable_node->hlist); 1736 } 1737 } else { 1738 /* Its hlist must be empty if no one found. */ 1739 free_stable_node_chain(stable_node, root); 1740 } 1741 1742 *_stable_node_dup = found; 1743 return tree_folio; 1744 } 1745 1746 /* 1747 * Like for ksm_get_folio, this function can free the *_stable_node and 1748 * *_stable_node_dup if the returned tree_page is NULL. 1749 * 1750 * It can also free and overwrite *_stable_node with the found 1751 * stable_node_dup if the chain is collapsed (in which case 1752 * *_stable_node will be equal to *_stable_node_dup like if the chain 1753 * never existed). It's up to the caller to verify tree_page is not 1754 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1755 * 1756 * *_stable_node_dup is really a second output parameter of this 1757 * function and will be overwritten in all cases, the caller doesn't 1758 * need to initialize it. 1759 */ 1760 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1761 struct ksm_stable_node **_stable_node, 1762 struct rb_root *root, 1763 bool prune_stale_stable_nodes) 1764 { 1765 struct ksm_stable_node *stable_node = *_stable_node; 1766 1767 if (!is_stable_node_chain(stable_node)) { 1768 *_stable_node_dup = stable_node; 1769 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1770 } 1771 return stable_node_dup(_stable_node_dup, _stable_node, root, 1772 prune_stale_stable_nodes); 1773 } 1774 1775 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1776 struct ksm_stable_node **s_n, 1777 struct rb_root *root) 1778 { 1779 return __stable_node_chain(s_n_d, s_n, root, true); 1780 } 1781 1782 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1783 struct ksm_stable_node **s_n, 1784 struct rb_root *root) 1785 { 1786 return __stable_node_chain(s_n_d, s_n, root, false); 1787 } 1788 1789 /* 1790 * stable_tree_search - search for page inside the stable tree 1791 * 1792 * This function checks if there is a page inside the stable tree 1793 * with identical content to the page that we are scanning right now. 1794 * 1795 * This function returns the stable tree node of identical content if found, 1796 * -EBUSY if the stable node's page is being migrated, NULL otherwise. 1797 */ 1798 static struct folio *stable_tree_search(struct page *page) 1799 { 1800 int nid; 1801 struct rb_root *root; 1802 struct rb_node **new; 1803 struct rb_node *parent; 1804 struct ksm_stable_node *stable_node, *stable_node_dup; 1805 struct ksm_stable_node *page_node; 1806 struct folio *folio; 1807 1808 folio = page_folio(page); 1809 page_node = folio_stable_node(folio); 1810 if (page_node && page_node->head != &migrate_nodes) { 1811 /* ksm page forked */ 1812 folio_get(folio); 1813 return folio; 1814 } 1815 1816 nid = get_kpfn_nid(folio_pfn(folio)); 1817 root = root_stable_tree + nid; 1818 again: 1819 new = &root->rb_node; 1820 parent = NULL; 1821 1822 while (*new) { 1823 struct folio *tree_folio; 1824 int ret; 1825 1826 cond_resched(); 1827 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1828 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1829 if (!tree_folio) { 1830 /* 1831 * If we walked over a stale stable_node, 1832 * ksm_get_folio() will call rb_erase() and it 1833 * may rebalance the tree from under us. So 1834 * restart the search from scratch. Returning 1835 * NULL would be safe too, but we'd generate 1836 * false negative insertions just because some 1837 * stable_node was stale. 1838 */ 1839 goto again; 1840 } 1841 1842 ret = memcmp_pages(page, &tree_folio->page); 1843 folio_put(tree_folio); 1844 1845 parent = *new; 1846 if (ret < 0) 1847 new = &parent->rb_left; 1848 else if (ret > 0) 1849 new = &parent->rb_right; 1850 else { 1851 if (page_node) { 1852 VM_BUG_ON(page_node->head != &migrate_nodes); 1853 /* 1854 * If the mapcount of our migrated KSM folio is 1855 * at most 1, we can merge it with another 1856 * KSM folio where we know that we have space 1857 * for one more mapping without exceeding the 1858 * ksm_max_page_sharing limit: see 1859 * chain_prune(). This way, we can avoid adding 1860 * this stable node to the chain. 1861 */ 1862 if (folio_mapcount(folio) > 1) 1863 goto chain_append; 1864 } 1865 1866 if (!is_page_sharing_candidate(stable_node_dup)) { 1867 /* 1868 * If the stable_node is a chain and 1869 * we got a payload match in memcmp 1870 * but we cannot merge the scanned 1871 * page in any of the existing 1872 * stable_node dups because they're 1873 * all full, we need to wait the 1874 * scanned page to find itself a match 1875 * in the unstable tree to create a 1876 * brand new KSM page to add later to 1877 * the dups of this stable_node. 1878 */ 1879 return NULL; 1880 } 1881 1882 /* 1883 * Lock and unlock the stable_node's page (which 1884 * might already have been migrated) so that page 1885 * migration is sure to notice its raised count. 1886 * It would be more elegant to return stable_node 1887 * than kpage, but that involves more changes. 1888 */ 1889 tree_folio = ksm_get_folio(stable_node_dup, 1890 KSM_GET_FOLIO_TRYLOCK); 1891 1892 if (PTR_ERR(tree_folio) == -EBUSY) 1893 return ERR_PTR(-EBUSY); 1894 1895 if (unlikely(!tree_folio)) 1896 /* 1897 * The tree may have been rebalanced, 1898 * so re-evaluate parent and new. 1899 */ 1900 goto again; 1901 folio_unlock(tree_folio); 1902 1903 if (get_kpfn_nid(stable_node_dup->kpfn) != 1904 NUMA(stable_node_dup->nid)) { 1905 folio_put(tree_folio); 1906 goto replace; 1907 } 1908 return tree_folio; 1909 } 1910 } 1911 1912 if (!page_node) 1913 return NULL; 1914 1915 list_del(&page_node->list); 1916 DO_NUMA(page_node->nid = nid); 1917 rb_link_node(&page_node->node, parent, new); 1918 rb_insert_color(&page_node->node, root); 1919 out: 1920 if (is_page_sharing_candidate(page_node)) { 1921 folio_get(folio); 1922 return folio; 1923 } else 1924 return NULL; 1925 1926 replace: 1927 /* 1928 * If stable_node was a chain and chain_prune collapsed it, 1929 * stable_node has been updated to be the new regular 1930 * stable_node. A collapse of the chain is indistinguishable 1931 * from the case there was no chain in the stable 1932 * rbtree. Otherwise stable_node is the chain and 1933 * stable_node_dup is the dup to replace. 1934 */ 1935 if (stable_node_dup == stable_node) { 1936 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1937 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1938 /* there is no chain */ 1939 if (page_node) { 1940 VM_BUG_ON(page_node->head != &migrate_nodes); 1941 list_del(&page_node->list); 1942 DO_NUMA(page_node->nid = nid); 1943 rb_replace_node(&stable_node_dup->node, 1944 &page_node->node, 1945 root); 1946 if (is_page_sharing_candidate(page_node)) 1947 folio_get(folio); 1948 else 1949 folio = NULL; 1950 } else { 1951 rb_erase(&stable_node_dup->node, root); 1952 folio = NULL; 1953 } 1954 } else { 1955 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1956 __stable_node_dup_del(stable_node_dup); 1957 if (page_node) { 1958 VM_BUG_ON(page_node->head != &migrate_nodes); 1959 list_del(&page_node->list); 1960 DO_NUMA(page_node->nid = nid); 1961 stable_node_chain_add_dup(page_node, stable_node); 1962 if (is_page_sharing_candidate(page_node)) 1963 folio_get(folio); 1964 else 1965 folio = NULL; 1966 } else { 1967 folio = NULL; 1968 } 1969 } 1970 stable_node_dup->head = &migrate_nodes; 1971 list_add(&stable_node_dup->list, stable_node_dup->head); 1972 return folio; 1973 1974 chain_append: 1975 /* 1976 * If stable_node was a chain and chain_prune collapsed it, 1977 * stable_node has been updated to be the new regular 1978 * stable_node. A collapse of the chain is indistinguishable 1979 * from the case there was no chain in the stable 1980 * rbtree. Otherwise stable_node is the chain and 1981 * stable_node_dup is the dup to replace. 1982 */ 1983 if (stable_node_dup == stable_node) { 1984 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1985 /* chain is missing so create it */ 1986 stable_node = alloc_stable_node_chain(stable_node_dup, 1987 root); 1988 if (!stable_node) 1989 return NULL; 1990 } 1991 /* 1992 * Add this stable_node dup that was 1993 * migrated to the stable_node chain 1994 * of the current nid for this page 1995 * content. 1996 */ 1997 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1998 VM_BUG_ON(page_node->head != &migrate_nodes); 1999 list_del(&page_node->list); 2000 DO_NUMA(page_node->nid = nid); 2001 stable_node_chain_add_dup(page_node, stable_node); 2002 goto out; 2003 } 2004 2005 /* 2006 * stable_tree_insert - insert stable tree node pointing to new ksm page 2007 * into the stable tree. 2008 * 2009 * This function returns the stable tree node just allocated on success, 2010 * NULL otherwise. 2011 */ 2012 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2013 { 2014 int nid; 2015 unsigned long kpfn; 2016 struct rb_root *root; 2017 struct rb_node **new; 2018 struct rb_node *parent; 2019 struct ksm_stable_node *stable_node, *stable_node_dup; 2020 bool need_chain = false; 2021 2022 kpfn = folio_pfn(kfolio); 2023 nid = get_kpfn_nid(kpfn); 2024 root = root_stable_tree + nid; 2025 again: 2026 parent = NULL; 2027 new = &root->rb_node; 2028 2029 while (*new) { 2030 struct folio *tree_folio; 2031 int ret; 2032 2033 cond_resched(); 2034 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2035 tree_folio = chain(&stable_node_dup, &stable_node, root); 2036 if (!tree_folio) { 2037 /* 2038 * If we walked over a stale stable_node, 2039 * ksm_get_folio() will call rb_erase() and it 2040 * may rebalance the tree from under us. So 2041 * restart the search from scratch. Returning 2042 * NULL would be safe too, but we'd generate 2043 * false negative insertions just because some 2044 * stable_node was stale. 2045 */ 2046 goto again; 2047 } 2048 2049 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2050 folio_put(tree_folio); 2051 2052 parent = *new; 2053 if (ret < 0) 2054 new = &parent->rb_left; 2055 else if (ret > 0) 2056 new = &parent->rb_right; 2057 else { 2058 need_chain = true; 2059 break; 2060 } 2061 } 2062 2063 stable_node_dup = alloc_stable_node(); 2064 if (!stable_node_dup) 2065 return NULL; 2066 2067 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2068 stable_node_dup->kpfn = kpfn; 2069 stable_node_dup->rmap_hlist_len = 0; 2070 DO_NUMA(stable_node_dup->nid = nid); 2071 if (!need_chain) { 2072 rb_link_node(&stable_node_dup->node, parent, new); 2073 rb_insert_color(&stable_node_dup->node, root); 2074 } else { 2075 if (!is_stable_node_chain(stable_node)) { 2076 struct ksm_stable_node *orig = stable_node; 2077 /* chain is missing so create it */ 2078 stable_node = alloc_stable_node_chain(orig, root); 2079 if (!stable_node) { 2080 free_stable_node(stable_node_dup); 2081 return NULL; 2082 } 2083 } 2084 stable_node_chain_add_dup(stable_node_dup, stable_node); 2085 } 2086 2087 folio_set_stable_node(kfolio, stable_node_dup); 2088 2089 return stable_node_dup; 2090 } 2091 2092 /* 2093 * unstable_tree_search_insert - search for identical page, 2094 * else insert rmap_item into the unstable tree. 2095 * 2096 * This function searches for a page in the unstable tree identical to the 2097 * page currently being scanned; and if no identical page is found in the 2098 * tree, we insert rmap_item as a new object into the unstable tree. 2099 * 2100 * This function returns pointer to rmap_item found to be identical 2101 * to the currently scanned page, NULL otherwise. 2102 * 2103 * This function does both searching and inserting, because they share 2104 * the same walking algorithm in an rbtree. 2105 */ 2106 static 2107 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2108 struct page *page, 2109 struct page **tree_pagep) 2110 { 2111 struct rb_node **new; 2112 struct rb_root *root; 2113 struct rb_node *parent = NULL; 2114 int nid; 2115 2116 nid = get_kpfn_nid(page_to_pfn(page)); 2117 root = root_unstable_tree + nid; 2118 new = &root->rb_node; 2119 2120 while (*new) { 2121 struct ksm_rmap_item *tree_rmap_item; 2122 struct page *tree_page; 2123 int ret; 2124 2125 cond_resched(); 2126 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2127 tree_page = get_mergeable_page(tree_rmap_item); 2128 if (!tree_page) 2129 return NULL; 2130 2131 /* 2132 * Don't substitute a ksm page for a forked page. 2133 */ 2134 if (page == tree_page) { 2135 put_page(tree_page); 2136 return NULL; 2137 } 2138 2139 ret = memcmp_pages(page, tree_page); 2140 2141 parent = *new; 2142 if (ret < 0) { 2143 put_page(tree_page); 2144 new = &parent->rb_left; 2145 } else if (ret > 0) { 2146 put_page(tree_page); 2147 new = &parent->rb_right; 2148 } else if (!ksm_merge_across_nodes && 2149 page_to_nid(tree_page) != nid) { 2150 /* 2151 * If tree_page has been migrated to another NUMA node, 2152 * it will be flushed out and put in the right unstable 2153 * tree next time: only merge with it when across_nodes. 2154 */ 2155 put_page(tree_page); 2156 return NULL; 2157 } else { 2158 *tree_pagep = tree_page; 2159 return tree_rmap_item; 2160 } 2161 } 2162 2163 rmap_item->address |= UNSTABLE_FLAG; 2164 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2165 DO_NUMA(rmap_item->nid = nid); 2166 rb_link_node(&rmap_item->node, parent, new); 2167 rb_insert_color(&rmap_item->node, root); 2168 2169 ksm_pages_unshared++; 2170 return NULL; 2171 } 2172 2173 /* 2174 * stable_tree_append - add another rmap_item to the linked list of 2175 * rmap_items hanging off a given node of the stable tree, all sharing 2176 * the same ksm page. 2177 */ 2178 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2179 struct ksm_stable_node *stable_node, 2180 bool max_page_sharing_bypass) 2181 { 2182 /* 2183 * rmap won't find this mapping if we don't insert the 2184 * rmap_item in the right stable_node 2185 * duplicate. page_migration could break later if rmap breaks, 2186 * so we can as well crash here. We really need to check for 2187 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2188 * for other negative values as an underflow if detected here 2189 * for the first time (and not when decreasing rmap_hlist_len) 2190 * would be sign of memory corruption in the stable_node. 2191 */ 2192 BUG_ON(stable_node->rmap_hlist_len < 0); 2193 2194 stable_node->rmap_hlist_len++; 2195 if (!max_page_sharing_bypass) 2196 /* possibly non fatal but unexpected overflow, only warn */ 2197 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2198 ksm_max_page_sharing); 2199 2200 rmap_item->head = stable_node; 2201 rmap_item->address |= STABLE_FLAG; 2202 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2203 2204 if (rmap_item->hlist.next) 2205 ksm_pages_sharing++; 2206 else 2207 ksm_pages_shared++; 2208 2209 rmap_item->mm->ksm_merging_pages++; 2210 } 2211 2212 /* 2213 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2214 * if not, compare checksum to previous and if it's the same, see if page can 2215 * be inserted into the unstable tree, or merged with a page already there and 2216 * both transferred to the stable tree. 2217 * 2218 * @page: the page that we are searching identical page to. 2219 * @rmap_item: the reverse mapping into the virtual address of this page 2220 */ 2221 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2222 { 2223 struct folio *folio = page_folio(page); 2224 struct ksm_rmap_item *tree_rmap_item; 2225 struct page *tree_page = NULL; 2226 struct ksm_stable_node *stable_node; 2227 struct folio *kfolio; 2228 unsigned int checksum; 2229 int err; 2230 bool max_page_sharing_bypass = false; 2231 2232 stable_node = folio_stable_node(folio); 2233 if (stable_node) { 2234 if (stable_node->head != &migrate_nodes && 2235 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2236 NUMA(stable_node->nid)) { 2237 stable_node_dup_del(stable_node); 2238 stable_node->head = &migrate_nodes; 2239 list_add(&stable_node->list, stable_node->head); 2240 } 2241 if (stable_node->head != &migrate_nodes && 2242 rmap_item->head == stable_node) 2243 return; 2244 /* 2245 * If it's a KSM fork, allow it to go over the sharing limit 2246 * without warnings. 2247 */ 2248 if (!is_page_sharing_candidate(stable_node)) 2249 max_page_sharing_bypass = true; 2250 } else { 2251 remove_rmap_item_from_tree(rmap_item); 2252 2253 /* 2254 * If the hash value of the page has changed from the last time 2255 * we calculated it, this page is changing frequently: therefore we 2256 * don't want to insert it in the unstable tree, and we don't want 2257 * to waste our time searching for something identical to it there. 2258 */ 2259 checksum = calc_checksum(page); 2260 if (rmap_item->oldchecksum != checksum) { 2261 rmap_item->oldchecksum = checksum; 2262 return; 2263 } 2264 2265 if (!try_to_merge_with_zero_page(rmap_item, page)) 2266 return; 2267 } 2268 2269 /* Start by searching for the folio in the stable tree */ 2270 kfolio = stable_tree_search(page); 2271 if (kfolio == folio && rmap_item->head == stable_node) { 2272 folio_put(kfolio); 2273 return; 2274 } 2275 2276 remove_rmap_item_from_tree(rmap_item); 2277 2278 if (kfolio) { 2279 if (kfolio == ERR_PTR(-EBUSY)) 2280 return; 2281 2282 err = try_to_merge_with_ksm_page(rmap_item, page, &kfolio->page); 2283 if (!err) { 2284 /* 2285 * The page was successfully merged: 2286 * add its rmap_item to the stable tree. 2287 */ 2288 folio_lock(kfolio); 2289 stable_tree_append(rmap_item, folio_stable_node(kfolio), 2290 max_page_sharing_bypass); 2291 folio_unlock(kfolio); 2292 } 2293 folio_put(kfolio); 2294 return; 2295 } 2296 2297 tree_rmap_item = 2298 unstable_tree_search_insert(rmap_item, page, &tree_page); 2299 if (tree_rmap_item) { 2300 bool split; 2301 2302 kfolio = try_to_merge_two_pages(rmap_item, page, 2303 tree_rmap_item, tree_page); 2304 /* 2305 * If both pages we tried to merge belong to the same compound 2306 * page, then we actually ended up increasing the reference 2307 * count of the same compound page twice, and split_huge_page 2308 * failed. 2309 * Here we set a flag if that happened, and we use it later to 2310 * try split_huge_page again. Since we call put_page right 2311 * afterwards, the reference count will be correct and 2312 * split_huge_page should succeed. 2313 */ 2314 split = PageTransCompound(page) 2315 && compound_head(page) == compound_head(tree_page); 2316 put_page(tree_page); 2317 if (kfolio) { 2318 /* 2319 * The pages were successfully merged: insert new 2320 * node in the stable tree and add both rmap_items. 2321 */ 2322 folio_lock(kfolio); 2323 stable_node = stable_tree_insert(kfolio); 2324 if (stable_node) { 2325 stable_tree_append(tree_rmap_item, stable_node, 2326 false); 2327 stable_tree_append(rmap_item, stable_node, 2328 false); 2329 } 2330 folio_unlock(kfolio); 2331 2332 /* 2333 * If we fail to insert the page into the stable tree, 2334 * we will have 2 virtual addresses that are pointing 2335 * to a ksm page left outside the stable tree, 2336 * in which case we need to break_cow on both. 2337 */ 2338 if (!stable_node) { 2339 break_cow(tree_rmap_item); 2340 break_cow(rmap_item); 2341 } 2342 } else if (split) { 2343 /* 2344 * We are here if we tried to merge two pages and 2345 * failed because they both belonged to the same 2346 * compound page. We will split the page now, but no 2347 * merging will take place. 2348 * We do not want to add the cost of a full lock; if 2349 * the page is locked, it is better to skip it and 2350 * perhaps try again later. 2351 */ 2352 if (!folio_trylock(folio)) 2353 return; 2354 split_huge_page(page); 2355 folio = page_folio(page); 2356 folio_unlock(folio); 2357 } 2358 } 2359 } 2360 2361 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2362 struct ksm_rmap_item **rmap_list, 2363 unsigned long addr) 2364 { 2365 struct ksm_rmap_item *rmap_item; 2366 2367 while (*rmap_list) { 2368 rmap_item = *rmap_list; 2369 if ((rmap_item->address & PAGE_MASK) == addr) 2370 return rmap_item; 2371 if (rmap_item->address > addr) 2372 break; 2373 *rmap_list = rmap_item->rmap_list; 2374 remove_rmap_item_from_tree(rmap_item); 2375 free_rmap_item(rmap_item); 2376 } 2377 2378 rmap_item = alloc_rmap_item(); 2379 if (rmap_item) { 2380 /* It has already been zeroed */ 2381 rmap_item->mm = mm_slot->slot.mm; 2382 rmap_item->mm->ksm_rmap_items++; 2383 rmap_item->address = addr; 2384 rmap_item->rmap_list = *rmap_list; 2385 *rmap_list = rmap_item; 2386 } 2387 return rmap_item; 2388 } 2389 2390 /* 2391 * Calculate skip age for the ksm page age. The age determines how often 2392 * de-duplicating has already been tried unsuccessfully. If the age is 2393 * smaller, the scanning of this page is skipped for less scans. 2394 * 2395 * @age: rmap_item age of page 2396 */ 2397 static unsigned int skip_age(rmap_age_t age) 2398 { 2399 if (age <= 3) 2400 return 1; 2401 if (age <= 5) 2402 return 2; 2403 if (age <= 8) 2404 return 4; 2405 2406 return 8; 2407 } 2408 2409 /* 2410 * Determines if a page should be skipped for the current scan. 2411 * 2412 * @folio: folio containing the page to check 2413 * @rmap_item: associated rmap_item of page 2414 */ 2415 static bool should_skip_rmap_item(struct folio *folio, 2416 struct ksm_rmap_item *rmap_item) 2417 { 2418 rmap_age_t age; 2419 2420 if (!ksm_smart_scan) 2421 return false; 2422 2423 /* 2424 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2425 * will essentially ignore them, but we still have to process them 2426 * properly. 2427 */ 2428 if (folio_test_ksm(folio)) 2429 return false; 2430 2431 age = rmap_item->age; 2432 if (age != U8_MAX) 2433 rmap_item->age++; 2434 2435 /* 2436 * Smaller ages are not skipped, they need to get a chance to go 2437 * through the different phases of the KSM merging. 2438 */ 2439 if (age < 3) 2440 return false; 2441 2442 /* 2443 * Are we still allowed to skip? If not, then don't skip it 2444 * and determine how much more often we are allowed to skip next. 2445 */ 2446 if (!rmap_item->remaining_skips) { 2447 rmap_item->remaining_skips = skip_age(age); 2448 return false; 2449 } 2450 2451 /* Skip this page */ 2452 ksm_pages_skipped++; 2453 rmap_item->remaining_skips--; 2454 remove_rmap_item_from_tree(rmap_item); 2455 return true; 2456 } 2457 2458 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2459 { 2460 struct mm_struct *mm; 2461 struct ksm_mm_slot *mm_slot; 2462 struct mm_slot *slot; 2463 struct vm_area_struct *vma; 2464 struct ksm_rmap_item *rmap_item; 2465 struct vma_iterator vmi; 2466 int nid; 2467 2468 if (list_empty(&ksm_mm_head.slot.mm_node)) 2469 return NULL; 2470 2471 mm_slot = ksm_scan.mm_slot; 2472 if (mm_slot == &ksm_mm_head) { 2473 advisor_start_scan(); 2474 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2475 2476 /* 2477 * A number of pages can hang around indefinitely in per-cpu 2478 * LRU cache, raised page count preventing write_protect_page 2479 * from merging them. Though it doesn't really matter much, 2480 * it is puzzling to see some stuck in pages_volatile until 2481 * other activity jostles them out, and they also prevented 2482 * LTP's KSM test from succeeding deterministically; so drain 2483 * them here (here rather than on entry to ksm_do_scan(), 2484 * so we don't IPI too often when pages_to_scan is set low). 2485 */ 2486 lru_add_drain_all(); 2487 2488 /* 2489 * Whereas stale stable_nodes on the stable_tree itself 2490 * get pruned in the regular course of stable_tree_search(), 2491 * those moved out to the migrate_nodes list can accumulate: 2492 * so prune them once before each full scan. 2493 */ 2494 if (!ksm_merge_across_nodes) { 2495 struct ksm_stable_node *stable_node, *next; 2496 struct folio *folio; 2497 2498 list_for_each_entry_safe(stable_node, next, 2499 &migrate_nodes, list) { 2500 folio = ksm_get_folio(stable_node, 2501 KSM_GET_FOLIO_NOLOCK); 2502 if (folio) 2503 folio_put(folio); 2504 cond_resched(); 2505 } 2506 } 2507 2508 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2509 root_unstable_tree[nid] = RB_ROOT; 2510 2511 spin_lock(&ksm_mmlist_lock); 2512 slot = list_entry(mm_slot->slot.mm_node.next, 2513 struct mm_slot, mm_node); 2514 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2515 ksm_scan.mm_slot = mm_slot; 2516 spin_unlock(&ksm_mmlist_lock); 2517 /* 2518 * Although we tested list_empty() above, a racing __ksm_exit 2519 * of the last mm on the list may have removed it since then. 2520 */ 2521 if (mm_slot == &ksm_mm_head) 2522 return NULL; 2523 next_mm: 2524 ksm_scan.address = 0; 2525 ksm_scan.rmap_list = &mm_slot->rmap_list; 2526 } 2527 2528 slot = &mm_slot->slot; 2529 mm = slot->mm; 2530 vma_iter_init(&vmi, mm, ksm_scan.address); 2531 2532 mmap_read_lock(mm); 2533 if (ksm_test_exit(mm)) 2534 goto no_vmas; 2535 2536 for_each_vma(vmi, vma) { 2537 if (!(vma->vm_flags & VM_MERGEABLE)) 2538 continue; 2539 if (ksm_scan.address < vma->vm_start) 2540 ksm_scan.address = vma->vm_start; 2541 if (!vma->anon_vma) 2542 ksm_scan.address = vma->vm_end; 2543 2544 while (ksm_scan.address < vma->vm_end) { 2545 struct page *tmp_page = NULL; 2546 struct folio_walk fw; 2547 struct folio *folio; 2548 2549 if (ksm_test_exit(mm)) 2550 break; 2551 2552 folio = folio_walk_start(&fw, vma, ksm_scan.address, 0); 2553 if (folio) { 2554 if (!folio_is_zone_device(folio) && 2555 folio_test_anon(folio)) { 2556 folio_get(folio); 2557 tmp_page = fw.page; 2558 } 2559 folio_walk_end(&fw, vma); 2560 } 2561 2562 if (tmp_page) { 2563 flush_anon_page(vma, tmp_page, ksm_scan.address); 2564 flush_dcache_page(tmp_page); 2565 rmap_item = get_next_rmap_item(mm_slot, 2566 ksm_scan.rmap_list, ksm_scan.address); 2567 if (rmap_item) { 2568 ksm_scan.rmap_list = 2569 &rmap_item->rmap_list; 2570 2571 if (should_skip_rmap_item(folio, rmap_item)) { 2572 folio_put(folio); 2573 goto next_page; 2574 } 2575 2576 ksm_scan.address += PAGE_SIZE; 2577 *page = tmp_page; 2578 } else { 2579 folio_put(folio); 2580 } 2581 mmap_read_unlock(mm); 2582 return rmap_item; 2583 } 2584 next_page: 2585 ksm_scan.address += PAGE_SIZE; 2586 cond_resched(); 2587 } 2588 } 2589 2590 if (ksm_test_exit(mm)) { 2591 no_vmas: 2592 ksm_scan.address = 0; 2593 ksm_scan.rmap_list = &mm_slot->rmap_list; 2594 } 2595 /* 2596 * Nuke all the rmap_items that are above this current rmap: 2597 * because there were no VM_MERGEABLE vmas with such addresses. 2598 */ 2599 remove_trailing_rmap_items(ksm_scan.rmap_list); 2600 2601 spin_lock(&ksm_mmlist_lock); 2602 slot = list_entry(mm_slot->slot.mm_node.next, 2603 struct mm_slot, mm_node); 2604 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2605 if (ksm_scan.address == 0) { 2606 /* 2607 * We've completed a full scan of all vmas, holding mmap_lock 2608 * throughout, and found no VM_MERGEABLE: so do the same as 2609 * __ksm_exit does to remove this mm from all our lists now. 2610 * This applies either when cleaning up after __ksm_exit 2611 * (but beware: we can reach here even before __ksm_exit), 2612 * or when all VM_MERGEABLE areas have been unmapped (and 2613 * mmap_lock then protects against race with MADV_MERGEABLE). 2614 */ 2615 hash_del(&mm_slot->slot.hash); 2616 list_del(&mm_slot->slot.mm_node); 2617 spin_unlock(&ksm_mmlist_lock); 2618 2619 mm_slot_free(mm_slot_cache, mm_slot); 2620 mm_flags_clear(MMF_VM_MERGEABLE, mm); 2621 mm_flags_clear(MMF_VM_MERGE_ANY, mm); 2622 mmap_read_unlock(mm); 2623 mmdrop(mm); 2624 } else { 2625 mmap_read_unlock(mm); 2626 /* 2627 * mmap_read_unlock(mm) first because after 2628 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2629 * already have been freed under us by __ksm_exit() 2630 * because the "mm_slot" is still hashed and 2631 * ksm_scan.mm_slot doesn't point to it anymore. 2632 */ 2633 spin_unlock(&ksm_mmlist_lock); 2634 } 2635 2636 /* Repeat until we've completed scanning the whole list */ 2637 mm_slot = ksm_scan.mm_slot; 2638 if (mm_slot != &ksm_mm_head) 2639 goto next_mm; 2640 2641 advisor_stop_scan(); 2642 2643 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2644 ksm_scan.seqnr++; 2645 return NULL; 2646 } 2647 2648 /** 2649 * ksm_do_scan - the ksm scanner main worker function. 2650 * @scan_npages: number of pages we want to scan before we return. 2651 */ 2652 static void ksm_do_scan(unsigned int scan_npages) 2653 { 2654 struct ksm_rmap_item *rmap_item; 2655 struct page *page; 2656 2657 while (scan_npages-- && likely(!freezing(current))) { 2658 cond_resched(); 2659 rmap_item = scan_get_next_rmap_item(&page); 2660 if (!rmap_item) 2661 return; 2662 cmp_and_merge_page(page, rmap_item); 2663 put_page(page); 2664 ksm_pages_scanned++; 2665 } 2666 } 2667 2668 static int ksmd_should_run(void) 2669 { 2670 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2671 } 2672 2673 static int ksm_scan_thread(void *nothing) 2674 { 2675 unsigned int sleep_ms; 2676 2677 set_freezable(); 2678 set_user_nice(current, 5); 2679 2680 while (!kthread_should_stop()) { 2681 mutex_lock(&ksm_thread_mutex); 2682 wait_while_offlining(); 2683 if (ksmd_should_run()) 2684 ksm_do_scan(ksm_thread_pages_to_scan); 2685 mutex_unlock(&ksm_thread_mutex); 2686 2687 if (ksmd_should_run()) { 2688 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2689 wait_event_freezable_timeout(ksm_iter_wait, 2690 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2691 msecs_to_jiffies(sleep_ms)); 2692 } else { 2693 wait_event_freezable(ksm_thread_wait, 2694 ksmd_should_run() || kthread_should_stop()); 2695 } 2696 } 2697 return 0; 2698 } 2699 2700 static bool __ksm_should_add_vma(const struct file *file, vm_flags_t vm_flags) 2701 { 2702 if (vm_flags & VM_MERGEABLE) 2703 return false; 2704 2705 return ksm_compatible(file, vm_flags); 2706 } 2707 2708 static void __ksm_add_vma(struct vm_area_struct *vma) 2709 { 2710 if (__ksm_should_add_vma(vma->vm_file, vma->vm_flags)) 2711 vm_flags_set(vma, VM_MERGEABLE); 2712 } 2713 2714 static int __ksm_del_vma(struct vm_area_struct *vma) 2715 { 2716 int err; 2717 2718 if (!(vma->vm_flags & VM_MERGEABLE)) 2719 return 0; 2720 2721 if (vma->anon_vma) { 2722 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2723 if (err) 2724 return err; 2725 } 2726 2727 vm_flags_clear(vma, VM_MERGEABLE); 2728 return 0; 2729 } 2730 /** 2731 * ksm_vma_flags - Update VMA flags to mark as mergeable if compatible 2732 * 2733 * @mm: Proposed VMA's mm_struct 2734 * @file: Proposed VMA's file-backed mapping, if any. 2735 * @vm_flags: Proposed VMA"s flags. 2736 * 2737 * Returns: @vm_flags possibly updated to mark mergeable. 2738 */ 2739 vm_flags_t ksm_vma_flags(const struct mm_struct *mm, const struct file *file, 2740 vm_flags_t vm_flags) 2741 { 2742 if (mm_flags_test(MMF_VM_MERGE_ANY, mm) && 2743 __ksm_should_add_vma(file, vm_flags)) 2744 vm_flags |= VM_MERGEABLE; 2745 2746 return vm_flags; 2747 } 2748 2749 static void ksm_add_vmas(struct mm_struct *mm) 2750 { 2751 struct vm_area_struct *vma; 2752 2753 VMA_ITERATOR(vmi, mm, 0); 2754 for_each_vma(vmi, vma) 2755 __ksm_add_vma(vma); 2756 } 2757 2758 static int ksm_del_vmas(struct mm_struct *mm) 2759 { 2760 struct vm_area_struct *vma; 2761 int err; 2762 2763 VMA_ITERATOR(vmi, mm, 0); 2764 for_each_vma(vmi, vma) { 2765 err = __ksm_del_vma(vma); 2766 if (err) 2767 return err; 2768 } 2769 return 0; 2770 } 2771 2772 /** 2773 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2774 * compatible VMA's 2775 * 2776 * @mm: Pointer to mm 2777 * 2778 * Returns 0 on success, otherwise error code 2779 */ 2780 int ksm_enable_merge_any(struct mm_struct *mm) 2781 { 2782 int err; 2783 2784 if (mm_flags_test(MMF_VM_MERGE_ANY, mm)) 2785 return 0; 2786 2787 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) { 2788 err = __ksm_enter(mm); 2789 if (err) 2790 return err; 2791 } 2792 2793 mm_flags_set(MMF_VM_MERGE_ANY, mm); 2794 ksm_add_vmas(mm); 2795 2796 return 0; 2797 } 2798 2799 /** 2800 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2801 * previously enabled via ksm_enable_merge_any(). 2802 * 2803 * Disabling merging implies unmerging any merged pages, like setting 2804 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2805 * merging on all compatible VMA's remains enabled. 2806 * 2807 * @mm: Pointer to mm 2808 * 2809 * Returns 0 on success, otherwise error code 2810 */ 2811 int ksm_disable_merge_any(struct mm_struct *mm) 2812 { 2813 int err; 2814 2815 if (!mm_flags_test(MMF_VM_MERGE_ANY, mm)) 2816 return 0; 2817 2818 err = ksm_del_vmas(mm); 2819 if (err) { 2820 ksm_add_vmas(mm); 2821 return err; 2822 } 2823 2824 mm_flags_clear(MMF_VM_MERGE_ANY, mm); 2825 return 0; 2826 } 2827 2828 int ksm_disable(struct mm_struct *mm) 2829 { 2830 mmap_assert_write_locked(mm); 2831 2832 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) 2833 return 0; 2834 if (mm_flags_test(MMF_VM_MERGE_ANY, mm)) 2835 return ksm_disable_merge_any(mm); 2836 return ksm_del_vmas(mm); 2837 } 2838 2839 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2840 unsigned long end, int advice, vm_flags_t *vm_flags) 2841 { 2842 struct mm_struct *mm = vma->vm_mm; 2843 int err; 2844 2845 switch (advice) { 2846 case MADV_MERGEABLE: 2847 if (vma->vm_flags & VM_MERGEABLE) 2848 return 0; 2849 if (!vma_ksm_compatible(vma)) 2850 return 0; 2851 2852 if (!mm_flags_test(MMF_VM_MERGEABLE, mm)) { 2853 err = __ksm_enter(mm); 2854 if (err) 2855 return err; 2856 } 2857 2858 *vm_flags |= VM_MERGEABLE; 2859 break; 2860 2861 case MADV_UNMERGEABLE: 2862 if (!(*vm_flags & VM_MERGEABLE)) 2863 return 0; /* just ignore the advice */ 2864 2865 if (vma->anon_vma) { 2866 err = unmerge_ksm_pages(vma, start, end, true); 2867 if (err) 2868 return err; 2869 } 2870 2871 *vm_flags &= ~VM_MERGEABLE; 2872 break; 2873 } 2874 2875 return 0; 2876 } 2877 EXPORT_SYMBOL_GPL(ksm_madvise); 2878 2879 int __ksm_enter(struct mm_struct *mm) 2880 { 2881 struct ksm_mm_slot *mm_slot; 2882 struct mm_slot *slot; 2883 int needs_wakeup; 2884 2885 mm_slot = mm_slot_alloc(mm_slot_cache); 2886 if (!mm_slot) 2887 return -ENOMEM; 2888 2889 slot = &mm_slot->slot; 2890 2891 /* Check ksm_run too? Would need tighter locking */ 2892 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2893 2894 spin_lock(&ksm_mmlist_lock); 2895 mm_slot_insert(mm_slots_hash, mm, slot); 2896 /* 2897 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2898 * insert just behind the scanning cursor, to let the area settle 2899 * down a little; when fork is followed by immediate exec, we don't 2900 * want ksmd to waste time setting up and tearing down an rmap_list. 2901 * 2902 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2903 * scanning cursor, otherwise KSM pages in newly forked mms will be 2904 * missed: then we might as well insert at the end of the list. 2905 */ 2906 if (ksm_run & KSM_RUN_UNMERGE) 2907 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2908 else 2909 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2910 spin_unlock(&ksm_mmlist_lock); 2911 2912 mm_flags_set(MMF_VM_MERGEABLE, mm); 2913 mmgrab(mm); 2914 2915 if (needs_wakeup) 2916 wake_up_interruptible(&ksm_thread_wait); 2917 2918 trace_ksm_enter(mm); 2919 return 0; 2920 } 2921 2922 void __ksm_exit(struct mm_struct *mm) 2923 { 2924 struct ksm_mm_slot *mm_slot; 2925 struct mm_slot *slot; 2926 int easy_to_free = 0; 2927 2928 /* 2929 * This process is exiting: if it's straightforward (as is the 2930 * case when ksmd was never running), free mm_slot immediately. 2931 * But if it's at the cursor or has rmap_items linked to it, use 2932 * mmap_lock to synchronize with any break_cows before pagetables 2933 * are freed, and leave the mm_slot on the list for ksmd to free. 2934 * Beware: ksm may already have noticed it exiting and freed the slot. 2935 */ 2936 2937 spin_lock(&ksm_mmlist_lock); 2938 slot = mm_slot_lookup(mm_slots_hash, mm); 2939 if (slot) { 2940 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2941 if (ksm_scan.mm_slot != mm_slot) { 2942 if (!mm_slot->rmap_list) { 2943 hash_del(&slot->hash); 2944 list_del(&slot->mm_node); 2945 easy_to_free = 1; 2946 } else { 2947 list_move(&slot->mm_node, 2948 &ksm_scan.mm_slot->slot.mm_node); 2949 } 2950 } 2951 } 2952 spin_unlock(&ksm_mmlist_lock); 2953 2954 if (easy_to_free) { 2955 mm_slot_free(mm_slot_cache, mm_slot); 2956 mm_flags_clear(MMF_VM_MERGE_ANY, mm); 2957 mm_flags_clear(MMF_VM_MERGEABLE, mm); 2958 mmdrop(mm); 2959 } else if (mm_slot) { 2960 mmap_write_lock(mm); 2961 mmap_write_unlock(mm); 2962 } 2963 2964 trace_ksm_exit(mm); 2965 } 2966 2967 struct folio *ksm_might_need_to_copy(struct folio *folio, 2968 struct vm_area_struct *vma, unsigned long addr) 2969 { 2970 struct page *page = folio_page(folio, 0); 2971 struct anon_vma *anon_vma = folio_anon_vma(folio); 2972 struct folio *new_folio; 2973 2974 if (folio_test_large(folio)) 2975 return folio; 2976 2977 if (folio_test_ksm(folio)) { 2978 if (folio_stable_node(folio) && 2979 !(ksm_run & KSM_RUN_UNMERGE)) 2980 return folio; /* no need to copy it */ 2981 } else if (!anon_vma) { 2982 return folio; /* no need to copy it */ 2983 } else if (folio->index == linear_page_index(vma, addr) && 2984 anon_vma->root == vma->anon_vma->root) { 2985 return folio; /* still no need to copy it */ 2986 } 2987 if (PageHWPoison(page)) 2988 return ERR_PTR(-EHWPOISON); 2989 if (!folio_test_uptodate(folio)) 2990 return folio; /* let do_swap_page report the error */ 2991 2992 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 2993 if (new_folio && 2994 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 2995 folio_put(new_folio); 2996 new_folio = NULL; 2997 } 2998 if (new_folio) { 2999 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 3000 addr, vma)) { 3001 folio_put(new_folio); 3002 return ERR_PTR(-EHWPOISON); 3003 } 3004 folio_set_dirty(new_folio); 3005 __folio_mark_uptodate(new_folio); 3006 __folio_set_locked(new_folio); 3007 #ifdef CONFIG_SWAP 3008 count_vm_event(KSM_SWPIN_COPY); 3009 #endif 3010 } 3011 3012 return new_folio; 3013 } 3014 3015 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3016 { 3017 struct ksm_stable_node *stable_node; 3018 struct ksm_rmap_item *rmap_item; 3019 int search_new_forks = 0; 3020 3021 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3022 3023 /* 3024 * Rely on the page lock to protect against concurrent modifications 3025 * to that page's node of the stable tree. 3026 */ 3027 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3028 3029 stable_node = folio_stable_node(folio); 3030 if (!stable_node) 3031 return; 3032 again: 3033 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3034 struct anon_vma *anon_vma = rmap_item->anon_vma; 3035 struct anon_vma_chain *vmac; 3036 struct vm_area_struct *vma; 3037 3038 cond_resched(); 3039 if (!anon_vma_trylock_read(anon_vma)) { 3040 if (rwc->try_lock) { 3041 rwc->contended = true; 3042 return; 3043 } 3044 anon_vma_lock_read(anon_vma); 3045 } 3046 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3047 0, ULONG_MAX) { 3048 unsigned long addr; 3049 3050 cond_resched(); 3051 vma = vmac->vma; 3052 3053 /* Ignore the stable/unstable/sqnr flags */ 3054 addr = rmap_item->address & PAGE_MASK; 3055 3056 if (addr < vma->vm_start || addr >= vma->vm_end) 3057 continue; 3058 /* 3059 * Initially we examine only the vma which covers this 3060 * rmap_item; but later, if there is still work to do, 3061 * we examine covering vmas in other mms: in case they 3062 * were forked from the original since ksmd passed. 3063 */ 3064 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3065 continue; 3066 3067 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3068 continue; 3069 3070 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3071 anon_vma_unlock_read(anon_vma); 3072 return; 3073 } 3074 if (rwc->done && rwc->done(folio)) { 3075 anon_vma_unlock_read(anon_vma); 3076 return; 3077 } 3078 } 3079 anon_vma_unlock_read(anon_vma); 3080 } 3081 if (!search_new_forks++) 3082 goto again; 3083 } 3084 3085 #ifdef CONFIG_MEMORY_FAILURE 3086 /* 3087 * Collect processes when the error hit an ksm page. 3088 */ 3089 void collect_procs_ksm(const struct folio *folio, const struct page *page, 3090 struct list_head *to_kill, int force_early) 3091 { 3092 struct ksm_stable_node *stable_node; 3093 struct ksm_rmap_item *rmap_item; 3094 struct vm_area_struct *vma; 3095 struct task_struct *tsk; 3096 3097 stable_node = folio_stable_node(folio); 3098 if (!stable_node) 3099 return; 3100 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3101 struct anon_vma *av = rmap_item->anon_vma; 3102 3103 anon_vma_lock_read(av); 3104 rcu_read_lock(); 3105 for_each_process(tsk) { 3106 struct anon_vma_chain *vmac; 3107 unsigned long addr; 3108 struct task_struct *t = 3109 task_early_kill(tsk, force_early); 3110 if (!t) 3111 continue; 3112 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3113 ULONG_MAX) 3114 { 3115 vma = vmac->vma; 3116 if (vma->vm_mm == t->mm) { 3117 addr = rmap_item->address & PAGE_MASK; 3118 add_to_kill_ksm(t, page, vma, to_kill, 3119 addr); 3120 } 3121 } 3122 } 3123 rcu_read_unlock(); 3124 anon_vma_unlock_read(av); 3125 } 3126 } 3127 #endif 3128 3129 #ifdef CONFIG_MIGRATION 3130 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3131 { 3132 struct ksm_stable_node *stable_node; 3133 3134 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3135 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3136 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3137 3138 stable_node = folio_stable_node(folio); 3139 if (stable_node) { 3140 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3141 stable_node->kpfn = folio_pfn(newfolio); 3142 /* 3143 * newfolio->mapping was set in advance; now we need smp_wmb() 3144 * to make sure that the new stable_node->kpfn is visible 3145 * to ksm_get_folio() before it can see that folio->mapping 3146 * has gone stale (or that the swapcache flag has been cleared). 3147 */ 3148 smp_wmb(); 3149 folio_set_stable_node(folio, NULL); 3150 } 3151 } 3152 #endif /* CONFIG_MIGRATION */ 3153 3154 #ifdef CONFIG_MEMORY_HOTREMOVE 3155 static void wait_while_offlining(void) 3156 { 3157 while (ksm_run & KSM_RUN_OFFLINE) { 3158 mutex_unlock(&ksm_thread_mutex); 3159 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3160 TASK_UNINTERRUPTIBLE); 3161 mutex_lock(&ksm_thread_mutex); 3162 } 3163 } 3164 3165 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3166 unsigned long start_pfn, 3167 unsigned long end_pfn) 3168 { 3169 if (stable_node->kpfn >= start_pfn && 3170 stable_node->kpfn < end_pfn) { 3171 /* 3172 * Don't ksm_get_folio, page has already gone: 3173 * which is why we keep kpfn instead of page* 3174 */ 3175 remove_node_from_stable_tree(stable_node); 3176 return true; 3177 } 3178 return false; 3179 } 3180 3181 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3182 unsigned long start_pfn, 3183 unsigned long end_pfn, 3184 struct rb_root *root) 3185 { 3186 struct ksm_stable_node *dup; 3187 struct hlist_node *hlist_safe; 3188 3189 if (!is_stable_node_chain(stable_node)) { 3190 VM_BUG_ON(is_stable_node_dup(stable_node)); 3191 return stable_node_dup_remove_range(stable_node, start_pfn, 3192 end_pfn); 3193 } 3194 3195 hlist_for_each_entry_safe(dup, hlist_safe, 3196 &stable_node->hlist, hlist_dup) { 3197 VM_BUG_ON(!is_stable_node_dup(dup)); 3198 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3199 } 3200 if (hlist_empty(&stable_node->hlist)) { 3201 free_stable_node_chain(stable_node, root); 3202 return true; /* notify caller that tree was rebalanced */ 3203 } else 3204 return false; 3205 } 3206 3207 static void ksm_check_stable_tree(unsigned long start_pfn, 3208 unsigned long end_pfn) 3209 { 3210 struct ksm_stable_node *stable_node, *next; 3211 struct rb_node *node; 3212 int nid; 3213 3214 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3215 node = rb_first(root_stable_tree + nid); 3216 while (node) { 3217 stable_node = rb_entry(node, struct ksm_stable_node, node); 3218 if (stable_node_chain_remove_range(stable_node, 3219 start_pfn, end_pfn, 3220 root_stable_tree + 3221 nid)) 3222 node = rb_first(root_stable_tree + nid); 3223 else 3224 node = rb_next(node); 3225 cond_resched(); 3226 } 3227 } 3228 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3229 if (stable_node->kpfn >= start_pfn && 3230 stable_node->kpfn < end_pfn) 3231 remove_node_from_stable_tree(stable_node); 3232 cond_resched(); 3233 } 3234 } 3235 3236 static int ksm_memory_callback(struct notifier_block *self, 3237 unsigned long action, void *arg) 3238 { 3239 struct memory_notify *mn = arg; 3240 3241 switch (action) { 3242 case MEM_GOING_OFFLINE: 3243 /* 3244 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3245 * and remove_all_stable_nodes() while memory is going offline: 3246 * it is unsafe for them to touch the stable tree at this time. 3247 * But unmerge_ksm_pages(), rmap lookups and other entry points 3248 * which do not need the ksm_thread_mutex are all safe. 3249 */ 3250 mutex_lock(&ksm_thread_mutex); 3251 ksm_run |= KSM_RUN_OFFLINE; 3252 mutex_unlock(&ksm_thread_mutex); 3253 break; 3254 3255 case MEM_OFFLINE: 3256 /* 3257 * Most of the work is done by page migration; but there might 3258 * be a few stable_nodes left over, still pointing to struct 3259 * pages which have been offlined: prune those from the tree, 3260 * otherwise ksm_get_folio() might later try to access a 3261 * non-existent struct page. 3262 */ 3263 ksm_check_stable_tree(mn->start_pfn, 3264 mn->start_pfn + mn->nr_pages); 3265 fallthrough; 3266 case MEM_CANCEL_OFFLINE: 3267 mutex_lock(&ksm_thread_mutex); 3268 ksm_run &= ~KSM_RUN_OFFLINE; 3269 mutex_unlock(&ksm_thread_mutex); 3270 3271 smp_mb(); /* wake_up_bit advises this */ 3272 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3273 break; 3274 } 3275 return NOTIFY_OK; 3276 } 3277 #else 3278 static void wait_while_offlining(void) 3279 { 3280 } 3281 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3282 3283 #ifdef CONFIG_PROC_FS 3284 /* 3285 * The process is mergeable only if any VMA is currently 3286 * applicable to KSM. 3287 * 3288 * The mmap lock must be held in read mode. 3289 */ 3290 bool ksm_process_mergeable(struct mm_struct *mm) 3291 { 3292 struct vm_area_struct *vma; 3293 3294 mmap_assert_locked(mm); 3295 VMA_ITERATOR(vmi, mm, 0); 3296 for_each_vma(vmi, vma) 3297 if (vma->vm_flags & VM_MERGEABLE) 3298 return true; 3299 3300 return false; 3301 } 3302 3303 long ksm_process_profit(struct mm_struct *mm) 3304 { 3305 return (long)(mm->ksm_merging_pages + mm_ksm_zero_pages(mm)) * PAGE_SIZE - 3306 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3307 } 3308 #endif /* CONFIG_PROC_FS */ 3309 3310 #ifdef CONFIG_SYSFS 3311 /* 3312 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3313 */ 3314 3315 #define KSM_ATTR_RO(_name) \ 3316 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3317 #define KSM_ATTR(_name) \ 3318 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3319 3320 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3321 struct kobj_attribute *attr, char *buf) 3322 { 3323 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3324 } 3325 3326 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3327 struct kobj_attribute *attr, 3328 const char *buf, size_t count) 3329 { 3330 unsigned int msecs; 3331 int err; 3332 3333 err = kstrtouint(buf, 10, &msecs); 3334 if (err) 3335 return -EINVAL; 3336 3337 ksm_thread_sleep_millisecs = msecs; 3338 wake_up_interruptible(&ksm_iter_wait); 3339 3340 return count; 3341 } 3342 KSM_ATTR(sleep_millisecs); 3343 3344 static ssize_t pages_to_scan_show(struct kobject *kobj, 3345 struct kobj_attribute *attr, char *buf) 3346 { 3347 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3348 } 3349 3350 static ssize_t pages_to_scan_store(struct kobject *kobj, 3351 struct kobj_attribute *attr, 3352 const char *buf, size_t count) 3353 { 3354 unsigned int nr_pages; 3355 int err; 3356 3357 if (ksm_advisor != KSM_ADVISOR_NONE) 3358 return -EINVAL; 3359 3360 err = kstrtouint(buf, 10, &nr_pages); 3361 if (err) 3362 return -EINVAL; 3363 3364 ksm_thread_pages_to_scan = nr_pages; 3365 3366 return count; 3367 } 3368 KSM_ATTR(pages_to_scan); 3369 3370 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3371 char *buf) 3372 { 3373 return sysfs_emit(buf, "%lu\n", ksm_run); 3374 } 3375 3376 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3377 const char *buf, size_t count) 3378 { 3379 unsigned int flags; 3380 int err; 3381 3382 err = kstrtouint(buf, 10, &flags); 3383 if (err) 3384 return -EINVAL; 3385 if (flags > KSM_RUN_UNMERGE) 3386 return -EINVAL; 3387 3388 /* 3389 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3390 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3391 * breaking COW to free the pages_shared (but leaves mm_slots 3392 * on the list for when ksmd may be set running again). 3393 */ 3394 3395 mutex_lock(&ksm_thread_mutex); 3396 wait_while_offlining(); 3397 if (ksm_run != flags) { 3398 ksm_run = flags; 3399 if (flags & KSM_RUN_UNMERGE) { 3400 set_current_oom_origin(); 3401 err = unmerge_and_remove_all_rmap_items(); 3402 clear_current_oom_origin(); 3403 if (err) { 3404 ksm_run = KSM_RUN_STOP; 3405 count = err; 3406 } 3407 } 3408 } 3409 mutex_unlock(&ksm_thread_mutex); 3410 3411 if (flags & KSM_RUN_MERGE) 3412 wake_up_interruptible(&ksm_thread_wait); 3413 3414 return count; 3415 } 3416 KSM_ATTR(run); 3417 3418 #ifdef CONFIG_NUMA 3419 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3420 struct kobj_attribute *attr, char *buf) 3421 { 3422 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3423 } 3424 3425 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3426 struct kobj_attribute *attr, 3427 const char *buf, size_t count) 3428 { 3429 int err; 3430 unsigned long knob; 3431 3432 err = kstrtoul(buf, 10, &knob); 3433 if (err) 3434 return err; 3435 if (knob > 1) 3436 return -EINVAL; 3437 3438 mutex_lock(&ksm_thread_mutex); 3439 wait_while_offlining(); 3440 if (ksm_merge_across_nodes != knob) { 3441 if (ksm_pages_shared || remove_all_stable_nodes()) 3442 err = -EBUSY; 3443 else if (root_stable_tree == one_stable_tree) { 3444 struct rb_root *buf; 3445 /* 3446 * This is the first time that we switch away from the 3447 * default of merging across nodes: must now allocate 3448 * a buffer to hold as many roots as may be needed. 3449 * Allocate stable and unstable together: 3450 * MAXSMP NODES_SHIFT 10 will use 16kB. 3451 */ 3452 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3453 GFP_KERNEL); 3454 /* Let us assume that RB_ROOT is NULL is zero */ 3455 if (!buf) 3456 err = -ENOMEM; 3457 else { 3458 root_stable_tree = buf; 3459 root_unstable_tree = buf + nr_node_ids; 3460 /* Stable tree is empty but not the unstable */ 3461 root_unstable_tree[0] = one_unstable_tree[0]; 3462 } 3463 } 3464 if (!err) { 3465 ksm_merge_across_nodes = knob; 3466 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3467 } 3468 } 3469 mutex_unlock(&ksm_thread_mutex); 3470 3471 return err ? err : count; 3472 } 3473 KSM_ATTR(merge_across_nodes); 3474 #endif 3475 3476 static ssize_t use_zero_pages_show(struct kobject *kobj, 3477 struct kobj_attribute *attr, char *buf) 3478 { 3479 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3480 } 3481 static ssize_t use_zero_pages_store(struct kobject *kobj, 3482 struct kobj_attribute *attr, 3483 const char *buf, size_t count) 3484 { 3485 int err; 3486 bool value; 3487 3488 err = kstrtobool(buf, &value); 3489 if (err) 3490 return -EINVAL; 3491 3492 ksm_use_zero_pages = value; 3493 3494 return count; 3495 } 3496 KSM_ATTR(use_zero_pages); 3497 3498 static ssize_t max_page_sharing_show(struct kobject *kobj, 3499 struct kobj_attribute *attr, char *buf) 3500 { 3501 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3502 } 3503 3504 static ssize_t max_page_sharing_store(struct kobject *kobj, 3505 struct kobj_attribute *attr, 3506 const char *buf, size_t count) 3507 { 3508 int err; 3509 int knob; 3510 3511 err = kstrtoint(buf, 10, &knob); 3512 if (err) 3513 return err; 3514 /* 3515 * When a KSM page is created it is shared by 2 mappings. This 3516 * being a signed comparison, it implicitly verifies it's not 3517 * negative. 3518 */ 3519 if (knob < 2) 3520 return -EINVAL; 3521 3522 if (READ_ONCE(ksm_max_page_sharing) == knob) 3523 return count; 3524 3525 mutex_lock(&ksm_thread_mutex); 3526 wait_while_offlining(); 3527 if (ksm_max_page_sharing != knob) { 3528 if (ksm_pages_shared || remove_all_stable_nodes()) 3529 err = -EBUSY; 3530 else 3531 ksm_max_page_sharing = knob; 3532 } 3533 mutex_unlock(&ksm_thread_mutex); 3534 3535 return err ? err : count; 3536 } 3537 KSM_ATTR(max_page_sharing); 3538 3539 static ssize_t pages_scanned_show(struct kobject *kobj, 3540 struct kobj_attribute *attr, char *buf) 3541 { 3542 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3543 } 3544 KSM_ATTR_RO(pages_scanned); 3545 3546 static ssize_t pages_shared_show(struct kobject *kobj, 3547 struct kobj_attribute *attr, char *buf) 3548 { 3549 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3550 } 3551 KSM_ATTR_RO(pages_shared); 3552 3553 static ssize_t pages_sharing_show(struct kobject *kobj, 3554 struct kobj_attribute *attr, char *buf) 3555 { 3556 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3557 } 3558 KSM_ATTR_RO(pages_sharing); 3559 3560 static ssize_t pages_unshared_show(struct kobject *kobj, 3561 struct kobj_attribute *attr, char *buf) 3562 { 3563 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3564 } 3565 KSM_ATTR_RO(pages_unshared); 3566 3567 static ssize_t pages_volatile_show(struct kobject *kobj, 3568 struct kobj_attribute *attr, char *buf) 3569 { 3570 long ksm_pages_volatile; 3571 3572 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3573 - ksm_pages_sharing - ksm_pages_unshared; 3574 /* 3575 * It was not worth any locking to calculate that statistic, 3576 * but it might therefore sometimes be negative: conceal that. 3577 */ 3578 if (ksm_pages_volatile < 0) 3579 ksm_pages_volatile = 0; 3580 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3581 } 3582 KSM_ATTR_RO(pages_volatile); 3583 3584 static ssize_t pages_skipped_show(struct kobject *kobj, 3585 struct kobj_attribute *attr, char *buf) 3586 { 3587 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3588 } 3589 KSM_ATTR_RO(pages_skipped); 3590 3591 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3592 struct kobj_attribute *attr, char *buf) 3593 { 3594 return sysfs_emit(buf, "%ld\n", atomic_long_read(&ksm_zero_pages)); 3595 } 3596 KSM_ATTR_RO(ksm_zero_pages); 3597 3598 static ssize_t general_profit_show(struct kobject *kobj, 3599 struct kobj_attribute *attr, char *buf) 3600 { 3601 long general_profit; 3602 3603 general_profit = (ksm_pages_sharing + atomic_long_read(&ksm_zero_pages)) * PAGE_SIZE - 3604 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3605 3606 return sysfs_emit(buf, "%ld\n", general_profit); 3607 } 3608 KSM_ATTR_RO(general_profit); 3609 3610 static ssize_t stable_node_dups_show(struct kobject *kobj, 3611 struct kobj_attribute *attr, char *buf) 3612 { 3613 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3614 } 3615 KSM_ATTR_RO(stable_node_dups); 3616 3617 static ssize_t stable_node_chains_show(struct kobject *kobj, 3618 struct kobj_attribute *attr, char *buf) 3619 { 3620 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3621 } 3622 KSM_ATTR_RO(stable_node_chains); 3623 3624 static ssize_t 3625 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3626 struct kobj_attribute *attr, 3627 char *buf) 3628 { 3629 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3630 } 3631 3632 static ssize_t 3633 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3634 struct kobj_attribute *attr, 3635 const char *buf, size_t count) 3636 { 3637 unsigned int msecs; 3638 int err; 3639 3640 err = kstrtouint(buf, 10, &msecs); 3641 if (err) 3642 return -EINVAL; 3643 3644 ksm_stable_node_chains_prune_millisecs = msecs; 3645 3646 return count; 3647 } 3648 KSM_ATTR(stable_node_chains_prune_millisecs); 3649 3650 static ssize_t full_scans_show(struct kobject *kobj, 3651 struct kobj_attribute *attr, char *buf) 3652 { 3653 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3654 } 3655 KSM_ATTR_RO(full_scans); 3656 3657 static ssize_t smart_scan_show(struct kobject *kobj, 3658 struct kobj_attribute *attr, char *buf) 3659 { 3660 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3661 } 3662 3663 static ssize_t smart_scan_store(struct kobject *kobj, 3664 struct kobj_attribute *attr, 3665 const char *buf, size_t count) 3666 { 3667 int err; 3668 bool value; 3669 3670 err = kstrtobool(buf, &value); 3671 if (err) 3672 return -EINVAL; 3673 3674 ksm_smart_scan = value; 3675 return count; 3676 } 3677 KSM_ATTR(smart_scan); 3678 3679 static ssize_t advisor_mode_show(struct kobject *kobj, 3680 struct kobj_attribute *attr, char *buf) 3681 { 3682 const char *output; 3683 3684 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3685 output = "none [scan-time]"; 3686 else 3687 output = "[none] scan-time"; 3688 3689 return sysfs_emit(buf, "%s\n", output); 3690 } 3691 3692 static ssize_t advisor_mode_store(struct kobject *kobj, 3693 struct kobj_attribute *attr, const char *buf, 3694 size_t count) 3695 { 3696 enum ksm_advisor_type curr_advisor = ksm_advisor; 3697 3698 if (sysfs_streq("scan-time", buf)) 3699 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3700 else if (sysfs_streq("none", buf)) 3701 ksm_advisor = KSM_ADVISOR_NONE; 3702 else 3703 return -EINVAL; 3704 3705 /* Set advisor default values */ 3706 if (curr_advisor != ksm_advisor) 3707 set_advisor_defaults(); 3708 3709 return count; 3710 } 3711 KSM_ATTR(advisor_mode); 3712 3713 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3714 struct kobj_attribute *attr, char *buf) 3715 { 3716 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3717 } 3718 3719 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3720 struct kobj_attribute *attr, 3721 const char *buf, size_t count) 3722 { 3723 int err; 3724 unsigned long value; 3725 3726 err = kstrtoul(buf, 10, &value); 3727 if (err) 3728 return -EINVAL; 3729 3730 ksm_advisor_max_cpu = value; 3731 return count; 3732 } 3733 KSM_ATTR(advisor_max_cpu); 3734 3735 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3736 struct kobj_attribute *attr, char *buf) 3737 { 3738 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3739 } 3740 3741 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3742 struct kobj_attribute *attr, 3743 const char *buf, size_t count) 3744 { 3745 int err; 3746 unsigned long value; 3747 3748 err = kstrtoul(buf, 10, &value); 3749 if (err) 3750 return -EINVAL; 3751 3752 ksm_advisor_min_pages_to_scan = value; 3753 return count; 3754 } 3755 KSM_ATTR(advisor_min_pages_to_scan); 3756 3757 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3758 struct kobj_attribute *attr, char *buf) 3759 { 3760 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3761 } 3762 3763 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3764 struct kobj_attribute *attr, 3765 const char *buf, size_t count) 3766 { 3767 int err; 3768 unsigned long value; 3769 3770 err = kstrtoul(buf, 10, &value); 3771 if (err) 3772 return -EINVAL; 3773 3774 ksm_advisor_max_pages_to_scan = value; 3775 return count; 3776 } 3777 KSM_ATTR(advisor_max_pages_to_scan); 3778 3779 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3780 struct kobj_attribute *attr, char *buf) 3781 { 3782 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3783 } 3784 3785 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3786 struct kobj_attribute *attr, 3787 const char *buf, size_t count) 3788 { 3789 int err; 3790 unsigned long value; 3791 3792 err = kstrtoul(buf, 10, &value); 3793 if (err) 3794 return -EINVAL; 3795 if (value < 1) 3796 return -EINVAL; 3797 3798 ksm_advisor_target_scan_time = value; 3799 return count; 3800 } 3801 KSM_ATTR(advisor_target_scan_time); 3802 3803 static struct attribute *ksm_attrs[] = { 3804 &sleep_millisecs_attr.attr, 3805 &pages_to_scan_attr.attr, 3806 &run_attr.attr, 3807 &pages_scanned_attr.attr, 3808 &pages_shared_attr.attr, 3809 &pages_sharing_attr.attr, 3810 &pages_unshared_attr.attr, 3811 &pages_volatile_attr.attr, 3812 &pages_skipped_attr.attr, 3813 &ksm_zero_pages_attr.attr, 3814 &full_scans_attr.attr, 3815 #ifdef CONFIG_NUMA 3816 &merge_across_nodes_attr.attr, 3817 #endif 3818 &max_page_sharing_attr.attr, 3819 &stable_node_chains_attr.attr, 3820 &stable_node_dups_attr.attr, 3821 &stable_node_chains_prune_millisecs_attr.attr, 3822 &use_zero_pages_attr.attr, 3823 &general_profit_attr.attr, 3824 &smart_scan_attr.attr, 3825 &advisor_mode_attr.attr, 3826 &advisor_max_cpu_attr.attr, 3827 &advisor_min_pages_to_scan_attr.attr, 3828 &advisor_max_pages_to_scan_attr.attr, 3829 &advisor_target_scan_time_attr.attr, 3830 NULL, 3831 }; 3832 3833 static const struct attribute_group ksm_attr_group = { 3834 .attrs = ksm_attrs, 3835 .name = "ksm", 3836 }; 3837 #endif /* CONFIG_SYSFS */ 3838 3839 static int __init ksm_init(void) 3840 { 3841 struct task_struct *ksm_thread; 3842 int err; 3843 3844 /* The correct value depends on page size and endianness */ 3845 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3846 /* Default to false for backwards compatibility */ 3847 ksm_use_zero_pages = false; 3848 3849 err = ksm_slab_init(); 3850 if (err) 3851 goto out; 3852 3853 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3854 if (IS_ERR(ksm_thread)) { 3855 pr_err("ksm: creating kthread failed\n"); 3856 err = PTR_ERR(ksm_thread); 3857 goto out_free; 3858 } 3859 3860 #ifdef CONFIG_SYSFS 3861 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3862 if (err) { 3863 pr_err("ksm: register sysfs failed\n"); 3864 kthread_stop(ksm_thread); 3865 goto out_free; 3866 } 3867 #else 3868 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3869 3870 #endif /* CONFIG_SYSFS */ 3871 3872 #ifdef CONFIG_MEMORY_HOTREMOVE 3873 /* There is no significance to this priority 100 */ 3874 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3875 #endif 3876 return 0; 3877 3878 out_free: 3879 ksm_slab_free(); 3880 out: 3881 return err; 3882 } 3883 subsys_initcall(ksm_init); 3884