1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same :c:type:`struct stable_node` structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 300 static DEFINE_MUTEX(ksm_thread_mutex); 301 static DEFINE_SPINLOCK(ksm_mmlist_lock); 302 303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 304 sizeof(struct __struct), __alignof__(struct __struct),\ 305 (__flags), NULL) 306 307 static int __init ksm_slab_init(void) 308 { 309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 310 if (!rmap_item_cache) 311 goto out; 312 313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 314 if (!stable_node_cache) 315 goto out_free1; 316 317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 318 if (!mm_slot_cache) 319 goto out_free2; 320 321 return 0; 322 323 out_free2: 324 kmem_cache_destroy(stable_node_cache); 325 out_free1: 326 kmem_cache_destroy(rmap_item_cache); 327 out: 328 return -ENOMEM; 329 } 330 331 static void __init ksm_slab_free(void) 332 { 333 kmem_cache_destroy(mm_slot_cache); 334 kmem_cache_destroy(stable_node_cache); 335 kmem_cache_destroy(rmap_item_cache); 336 mm_slot_cache = NULL; 337 } 338 339 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 340 { 341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 342 } 343 344 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 345 { 346 return dup->head == STABLE_NODE_DUP_HEAD; 347 } 348 349 static inline void stable_node_chain_add_dup(struct stable_node *dup, 350 struct stable_node *chain) 351 { 352 VM_BUG_ON(is_stable_node_dup(dup)); 353 dup->head = STABLE_NODE_DUP_HEAD; 354 VM_BUG_ON(!is_stable_node_chain(chain)); 355 hlist_add_head(&dup->hlist_dup, &chain->hlist); 356 ksm_stable_node_dups++; 357 } 358 359 static inline void __stable_node_dup_del(struct stable_node *dup) 360 { 361 VM_BUG_ON(!is_stable_node_dup(dup)); 362 hlist_del(&dup->hlist_dup); 363 ksm_stable_node_dups--; 364 } 365 366 static inline void stable_node_dup_del(struct stable_node *dup) 367 { 368 VM_BUG_ON(is_stable_node_chain(dup)); 369 if (is_stable_node_dup(dup)) 370 __stable_node_dup_del(dup); 371 else 372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 373 #ifdef CONFIG_DEBUG_VM 374 dup->head = NULL; 375 #endif 376 } 377 378 static inline struct rmap_item *alloc_rmap_item(void) 379 { 380 struct rmap_item *rmap_item; 381 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 383 __GFP_NORETRY | __GFP_NOWARN); 384 if (rmap_item) 385 ksm_rmap_items++; 386 return rmap_item; 387 } 388 389 static inline void free_rmap_item(struct rmap_item *rmap_item) 390 { 391 ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 396 static inline struct stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 406 static inline void free_stable_node(struct stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 413 static inline struct mm_slot *alloc_mm_slot(void) 414 { 415 if (!mm_slot_cache) /* initialization failed */ 416 return NULL; 417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 418 } 419 420 static inline void free_mm_slot(struct mm_slot *mm_slot) 421 { 422 kmem_cache_free(mm_slot_cache, mm_slot); 423 } 424 425 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 430 if (slot->mm == mm) 431 return slot; 432 433 return NULL; 434 } 435 436 static void insert_to_mm_slots_hash(struct mm_struct *mm, 437 struct mm_slot *mm_slot) 438 { 439 mm_slot->mm = mm; 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 441 } 442 443 /* 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 445 * page tables after it has passed through ksm_exit() - which, if necessary, 446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 447 * a special flag: they can just back out as soon as mm_users goes to zero. 448 * ksm_test_exit() is used throughout to make this test for exit: in some 449 * places for correctness, in some places just to avoid unnecessary work. 450 */ 451 static inline bool ksm_test_exit(struct mm_struct *mm) 452 { 453 return atomic_read(&mm->mm_users) == 0; 454 } 455 456 /* 457 * We use break_ksm to break COW on a ksm page: it's a stripped down 458 * 459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 460 * put_page(page); 461 * 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 463 * in case the application has unmapped and remapped mm,addr meanwhile. 464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 466 * 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 468 * of the process that owns 'vma'. We also do not want to enforce 469 * protection keys here anyway. 470 */ 471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 472 { 473 struct page *page; 474 vm_fault_t ret = 0; 475 476 do { 477 cond_resched(); 478 page = follow_page(vma, addr, 479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 480 if (IS_ERR_OR_NULL(page)) 481 break; 482 if (PageKsm(page)) 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 485 else 486 ret = VM_FAULT_WRITE; 487 put_page(page); 488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 489 /* 490 * We must loop because handle_mm_fault() may back out if there's 491 * any difficulty e.g. if pte accessed bit gets updated concurrently. 492 * 493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 494 * COW has been broken, even if the vma does not permit VM_WRITE; 495 * but note that a concurrent fault might break PageKsm for us. 496 * 497 * VM_FAULT_SIGBUS could occur if we race with truncation of the 498 * backing file, which also invalidates anonymous pages: that's 499 * okay, that truncation will have unmapped the PageKsm for us. 500 * 501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 503 * current task has TIF_MEMDIE set, and will be OOM killed on return 504 * to user; and ksmd, having no mm, would never be chosen for that. 505 * 506 * But if the mm is in a limited mem_cgroup, then the fault may fail 507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 508 * even ksmd can fail in this way - though it's usually breaking ksm 509 * just to undo a merge it made a moment before, so unlikely to oom. 510 * 511 * That's a pity: we might therefore have more kernel pages allocated 512 * than we're counting as nodes in the stable tree; but ksm_do_scan 513 * will retry to break_cow on each pass, so should recover the page 514 * in due course. The important thing is to not let VM_MERGEABLE 515 * be cleared while any such pages might remain in the area. 516 */ 517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 518 } 519 520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 521 unsigned long addr) 522 { 523 struct vm_area_struct *vma; 524 if (ksm_test_exit(mm)) 525 return NULL; 526 vma = find_vma(mm, addr); 527 if (!vma || vma->vm_start > addr) 528 return NULL; 529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 530 return NULL; 531 return vma; 532 } 533 534 static void break_cow(struct rmap_item *rmap_item) 535 { 536 struct mm_struct *mm = rmap_item->mm; 537 unsigned long addr = rmap_item->address; 538 struct vm_area_struct *vma; 539 540 /* 541 * It is not an accident that whenever we want to break COW 542 * to undo, we also need to drop a reference to the anon_vma. 543 */ 544 put_anon_vma(rmap_item->anon_vma); 545 546 down_read(&mm->mmap_sem); 547 vma = find_mergeable_vma(mm, addr); 548 if (vma) 549 break_ksm(vma, addr); 550 up_read(&mm->mmap_sem); 551 } 552 553 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 554 { 555 struct mm_struct *mm = rmap_item->mm; 556 unsigned long addr = rmap_item->address; 557 struct vm_area_struct *vma; 558 struct page *page; 559 560 down_read(&mm->mmap_sem); 561 vma = find_mergeable_vma(mm, addr); 562 if (!vma) 563 goto out; 564 565 page = follow_page(vma, addr, FOLL_GET); 566 if (IS_ERR_OR_NULL(page)) 567 goto out; 568 if (PageAnon(page)) { 569 flush_anon_page(vma, page, addr); 570 flush_dcache_page(page); 571 } else { 572 put_page(page); 573 out: 574 page = NULL; 575 } 576 up_read(&mm->mmap_sem); 577 return page; 578 } 579 580 /* 581 * This helper is used for getting right index into array of tree roots. 582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 583 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 584 * every node has its own stable and unstable tree. 585 */ 586 static inline int get_kpfn_nid(unsigned long kpfn) 587 { 588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 589 } 590 591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 592 struct rb_root *root) 593 { 594 struct stable_node *chain = alloc_stable_node(); 595 VM_BUG_ON(is_stable_node_chain(dup)); 596 if (likely(chain)) { 597 INIT_HLIST_HEAD(&chain->hlist); 598 chain->chain_prune_time = jiffies; 599 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 601 chain->nid = NUMA_NO_NODE; /* debug */ 602 #endif 603 ksm_stable_node_chains++; 604 605 /* 606 * Put the stable node chain in the first dimension of 607 * the stable tree and at the same time remove the old 608 * stable node. 609 */ 610 rb_replace_node(&dup->node, &chain->node, root); 611 612 /* 613 * Move the old stable node to the second dimension 614 * queued in the hlist_dup. The invariant is that all 615 * dup stable_nodes in the chain->hlist point to pages 616 * that are wrprotected and have the exact same 617 * content. 618 */ 619 stable_node_chain_add_dup(dup, chain); 620 } 621 return chain; 622 } 623 624 static inline void free_stable_node_chain(struct stable_node *chain, 625 struct rb_root *root) 626 { 627 rb_erase(&chain->node, root); 628 free_stable_node(chain); 629 ksm_stable_node_chains--; 630 } 631 632 static void remove_node_from_stable_tree(struct stable_node *stable_node) 633 { 634 struct rmap_item *rmap_item; 635 636 /* check it's not STABLE_NODE_CHAIN or negative */ 637 BUG_ON(stable_node->rmap_hlist_len < 0); 638 639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 640 if (rmap_item->hlist.next) 641 ksm_pages_sharing--; 642 else 643 ksm_pages_shared--; 644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 645 stable_node->rmap_hlist_len--; 646 put_anon_vma(rmap_item->anon_vma); 647 rmap_item->address &= PAGE_MASK; 648 cond_resched(); 649 } 650 651 /* 652 * We need the second aligned pointer of the migrate_nodes 653 * list_head to stay clear from the rb_parent_color union 654 * (aligned and different than any node) and also different 655 * from &migrate_nodes. This will verify that future list.h changes 656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 657 */ 658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 661 #endif 662 663 if (stable_node->head == &migrate_nodes) 664 list_del(&stable_node->list); 665 else 666 stable_node_dup_del(stable_node); 667 free_stable_node(stable_node); 668 } 669 670 /* 671 * get_ksm_page: checks if the page indicated by the stable node 672 * is still its ksm page, despite having held no reference to it. 673 * In which case we can trust the content of the page, and it 674 * returns the gotten page; but if the page has now been zapped, 675 * remove the stale node from the stable tree and return NULL. 676 * But beware, the stable node's page might be being migrated. 677 * 678 * You would expect the stable_node to hold a reference to the ksm page. 679 * But if it increments the page's count, swapping out has to wait for 680 * ksmd to come around again before it can free the page, which may take 681 * seconds or even minutes: much too unresponsive. So instead we use a 682 * "keyhole reference": access to the ksm page from the stable node peeps 683 * out through its keyhole to see if that page still holds the right key, 684 * pointing back to this stable node. This relies on freeing a PageAnon 685 * page to reset its page->mapping to NULL, and relies on no other use of 686 * a page to put something that might look like our key in page->mapping. 687 * is on its way to being freed; but it is an anomaly to bear in mind. 688 */ 689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 690 { 691 struct page *page; 692 void *expected_mapping; 693 unsigned long kpfn; 694 695 expected_mapping = (void *)((unsigned long)stable_node | 696 PAGE_MAPPING_KSM); 697 again: 698 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 699 page = pfn_to_page(kpfn); 700 if (READ_ONCE(page->mapping) != expected_mapping) 701 goto stale; 702 703 /* 704 * We cannot do anything with the page while its refcount is 0. 705 * Usually 0 means free, or tail of a higher-order page: in which 706 * case this node is no longer referenced, and should be freed; 707 * however, it might mean that the page is under page_ref_freeze(). 708 * The __remove_mapping() case is easy, again the node is now stale; 709 * the same is in reuse_ksm_page() case; but if page is swapcache 710 * in migrate_page_move_mapping(), it might still be our page, 711 * in which case it's essential to keep the node. 712 */ 713 while (!get_page_unless_zero(page)) { 714 /* 715 * Another check for page->mapping != expected_mapping would 716 * work here too. We have chosen the !PageSwapCache test to 717 * optimize the common case, when the page is or is about to 718 * be freed: PageSwapCache is cleared (under spin_lock_irq) 719 * in the ref_freeze section of __remove_mapping(); but Anon 720 * page->mapping reset to NULL later, in free_pages_prepare(). 721 */ 722 if (!PageSwapCache(page)) 723 goto stale; 724 cpu_relax(); 725 } 726 727 if (READ_ONCE(page->mapping) != expected_mapping) { 728 put_page(page); 729 goto stale; 730 } 731 732 if (lock_it) { 733 lock_page(page); 734 if (READ_ONCE(page->mapping) != expected_mapping) { 735 unlock_page(page); 736 put_page(page); 737 goto stale; 738 } 739 } 740 return page; 741 742 stale: 743 /* 744 * We come here from above when page->mapping or !PageSwapCache 745 * suggests that the node is stale; but it might be under migration. 746 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 747 * before checking whether node->kpfn has been changed. 748 */ 749 smp_rmb(); 750 if (READ_ONCE(stable_node->kpfn) != kpfn) 751 goto again; 752 remove_node_from_stable_tree(stable_node); 753 return NULL; 754 } 755 756 /* 757 * Removing rmap_item from stable or unstable tree. 758 * This function will clean the information from the stable/unstable tree. 759 */ 760 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 761 { 762 if (rmap_item->address & STABLE_FLAG) { 763 struct stable_node *stable_node; 764 struct page *page; 765 766 stable_node = rmap_item->head; 767 page = get_ksm_page(stable_node, true); 768 if (!page) 769 goto out; 770 771 hlist_del(&rmap_item->hlist); 772 unlock_page(page); 773 put_page(page); 774 775 if (!hlist_empty(&stable_node->hlist)) 776 ksm_pages_sharing--; 777 else 778 ksm_pages_shared--; 779 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 780 stable_node->rmap_hlist_len--; 781 782 put_anon_vma(rmap_item->anon_vma); 783 rmap_item->address &= PAGE_MASK; 784 785 } else if (rmap_item->address & UNSTABLE_FLAG) { 786 unsigned char age; 787 /* 788 * Usually ksmd can and must skip the rb_erase, because 789 * root_unstable_tree was already reset to RB_ROOT. 790 * But be careful when an mm is exiting: do the rb_erase 791 * if this rmap_item was inserted by this scan, rather 792 * than left over from before. 793 */ 794 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 795 BUG_ON(age > 1); 796 if (!age) 797 rb_erase(&rmap_item->node, 798 root_unstable_tree + NUMA(rmap_item->nid)); 799 ksm_pages_unshared--; 800 rmap_item->address &= PAGE_MASK; 801 } 802 out: 803 cond_resched(); /* we're called from many long loops */ 804 } 805 806 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 807 struct rmap_item **rmap_list) 808 { 809 while (*rmap_list) { 810 struct rmap_item *rmap_item = *rmap_list; 811 *rmap_list = rmap_item->rmap_list; 812 remove_rmap_item_from_tree(rmap_item); 813 free_rmap_item(rmap_item); 814 } 815 } 816 817 /* 818 * Though it's very tempting to unmerge rmap_items from stable tree rather 819 * than check every pte of a given vma, the locking doesn't quite work for 820 * that - an rmap_item is assigned to the stable tree after inserting ksm 821 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 822 * rmap_items from parent to child at fork time (so as not to waste time 823 * if exit comes before the next scan reaches it). 824 * 825 * Similarly, although we'd like to remove rmap_items (so updating counts 826 * and freeing memory) when unmerging an area, it's easier to leave that 827 * to the next pass of ksmd - consider, for example, how ksmd might be 828 * in cmp_and_merge_page on one of the rmap_items we would be removing. 829 */ 830 static int unmerge_ksm_pages(struct vm_area_struct *vma, 831 unsigned long start, unsigned long end) 832 { 833 unsigned long addr; 834 int err = 0; 835 836 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 837 if (ksm_test_exit(vma->vm_mm)) 838 break; 839 if (signal_pending(current)) 840 err = -ERESTARTSYS; 841 else 842 err = break_ksm(vma, addr); 843 } 844 return err; 845 } 846 847 static inline struct stable_node *page_stable_node(struct page *page) 848 { 849 return PageKsm(page) ? page_rmapping(page) : NULL; 850 } 851 852 static inline void set_page_stable_node(struct page *page, 853 struct stable_node *stable_node) 854 { 855 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 856 } 857 858 #ifdef CONFIG_SYSFS 859 /* 860 * Only called through the sysfs control interface: 861 */ 862 static int remove_stable_node(struct stable_node *stable_node) 863 { 864 struct page *page; 865 int err; 866 867 page = get_ksm_page(stable_node, true); 868 if (!page) { 869 /* 870 * get_ksm_page did remove_node_from_stable_tree itself. 871 */ 872 return 0; 873 } 874 875 if (WARN_ON_ONCE(page_mapped(page))) { 876 /* 877 * This should not happen: but if it does, just refuse to let 878 * merge_across_nodes be switched - there is no need to panic. 879 */ 880 err = -EBUSY; 881 } else { 882 /* 883 * The stable node did not yet appear stale to get_ksm_page(), 884 * since that allows for an unmapped ksm page to be recognized 885 * right up until it is freed; but the node is safe to remove. 886 * This page might be in a pagevec waiting to be freed, 887 * or it might be PageSwapCache (perhaps under writeback), 888 * or it might have been removed from swapcache a moment ago. 889 */ 890 set_page_stable_node(page, NULL); 891 remove_node_from_stable_tree(stable_node); 892 err = 0; 893 } 894 895 unlock_page(page); 896 put_page(page); 897 return err; 898 } 899 900 static int remove_stable_node_chain(struct stable_node *stable_node, 901 struct rb_root *root) 902 { 903 struct stable_node *dup; 904 struct hlist_node *hlist_safe; 905 906 if (!is_stable_node_chain(stable_node)) { 907 VM_BUG_ON(is_stable_node_dup(stable_node)); 908 if (remove_stable_node(stable_node)) 909 return true; 910 else 911 return false; 912 } 913 914 hlist_for_each_entry_safe(dup, hlist_safe, 915 &stable_node->hlist, hlist_dup) { 916 VM_BUG_ON(!is_stable_node_dup(dup)); 917 if (remove_stable_node(dup)) 918 return true; 919 } 920 BUG_ON(!hlist_empty(&stable_node->hlist)); 921 free_stable_node_chain(stable_node, root); 922 return false; 923 } 924 925 static int remove_all_stable_nodes(void) 926 { 927 struct stable_node *stable_node, *next; 928 int nid; 929 int err = 0; 930 931 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 932 while (root_stable_tree[nid].rb_node) { 933 stable_node = rb_entry(root_stable_tree[nid].rb_node, 934 struct stable_node, node); 935 if (remove_stable_node_chain(stable_node, 936 root_stable_tree + nid)) { 937 err = -EBUSY; 938 break; /* proceed to next nid */ 939 } 940 cond_resched(); 941 } 942 } 943 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 944 if (remove_stable_node(stable_node)) 945 err = -EBUSY; 946 cond_resched(); 947 } 948 return err; 949 } 950 951 static int unmerge_and_remove_all_rmap_items(void) 952 { 953 struct mm_slot *mm_slot; 954 struct mm_struct *mm; 955 struct vm_area_struct *vma; 956 int err = 0; 957 958 spin_lock(&ksm_mmlist_lock); 959 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 960 struct mm_slot, mm_list); 961 spin_unlock(&ksm_mmlist_lock); 962 963 for (mm_slot = ksm_scan.mm_slot; 964 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 965 mm = mm_slot->mm; 966 down_read(&mm->mmap_sem); 967 for (vma = mm->mmap; vma; vma = vma->vm_next) { 968 if (ksm_test_exit(mm)) 969 break; 970 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 971 continue; 972 err = unmerge_ksm_pages(vma, 973 vma->vm_start, vma->vm_end); 974 if (err) 975 goto error; 976 } 977 978 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 979 up_read(&mm->mmap_sem); 980 981 spin_lock(&ksm_mmlist_lock); 982 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 983 struct mm_slot, mm_list); 984 if (ksm_test_exit(mm)) { 985 hash_del(&mm_slot->link); 986 list_del(&mm_slot->mm_list); 987 spin_unlock(&ksm_mmlist_lock); 988 989 free_mm_slot(mm_slot); 990 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 991 mmdrop(mm); 992 } else 993 spin_unlock(&ksm_mmlist_lock); 994 } 995 996 /* Clean up stable nodes, but don't worry if some are still busy */ 997 remove_all_stable_nodes(); 998 ksm_scan.seqnr = 0; 999 return 0; 1000 1001 error: 1002 up_read(&mm->mmap_sem); 1003 spin_lock(&ksm_mmlist_lock); 1004 ksm_scan.mm_slot = &ksm_mm_head; 1005 spin_unlock(&ksm_mmlist_lock); 1006 return err; 1007 } 1008 #endif /* CONFIG_SYSFS */ 1009 1010 static u32 calc_checksum(struct page *page) 1011 { 1012 u32 checksum; 1013 void *addr = kmap_atomic(page); 1014 checksum = xxhash(addr, PAGE_SIZE, 0); 1015 kunmap_atomic(addr); 1016 return checksum; 1017 } 1018 1019 static int memcmp_pages(struct page *page1, struct page *page2) 1020 { 1021 char *addr1, *addr2; 1022 int ret; 1023 1024 addr1 = kmap_atomic(page1); 1025 addr2 = kmap_atomic(page2); 1026 ret = memcmp(addr1, addr2, PAGE_SIZE); 1027 kunmap_atomic(addr2); 1028 kunmap_atomic(addr1); 1029 return ret; 1030 } 1031 1032 static inline int pages_identical(struct page *page1, struct page *page2) 1033 { 1034 return !memcmp_pages(page1, page2); 1035 } 1036 1037 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1038 pte_t *orig_pte) 1039 { 1040 struct mm_struct *mm = vma->vm_mm; 1041 struct page_vma_mapped_walk pvmw = { 1042 .page = page, 1043 .vma = vma, 1044 }; 1045 int swapped; 1046 int err = -EFAULT; 1047 struct mmu_notifier_range range; 1048 1049 pvmw.address = page_address_in_vma(page, vma); 1050 if (pvmw.address == -EFAULT) 1051 goto out; 1052 1053 BUG_ON(PageTransCompound(page)); 1054 1055 mmu_notifier_range_init(&range, mm, pvmw.address, 1056 pvmw.address + PAGE_SIZE); 1057 mmu_notifier_invalidate_range_start(&range); 1058 1059 if (!page_vma_mapped_walk(&pvmw)) 1060 goto out_mn; 1061 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1062 goto out_unlock; 1063 1064 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1065 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1066 mm_tlb_flush_pending(mm)) { 1067 pte_t entry; 1068 1069 swapped = PageSwapCache(page); 1070 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1071 /* 1072 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1073 * take any lock, therefore the check that we are going to make 1074 * with the pagecount against the mapcount is racey and 1075 * O_DIRECT can happen right after the check. 1076 * So we clear the pte and flush the tlb before the check 1077 * this assure us that no O_DIRECT can happen after the check 1078 * or in the middle of the check. 1079 * 1080 * No need to notify as we are downgrading page table to read 1081 * only not changing it to point to a new page. 1082 * 1083 * See Documentation/vm/mmu_notifier.rst 1084 */ 1085 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1086 /* 1087 * Check that no O_DIRECT or similar I/O is in progress on the 1088 * page 1089 */ 1090 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1091 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1092 goto out_unlock; 1093 } 1094 if (pte_dirty(entry)) 1095 set_page_dirty(page); 1096 1097 if (pte_protnone(entry)) 1098 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1099 else 1100 entry = pte_mkclean(pte_wrprotect(entry)); 1101 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1102 } 1103 *orig_pte = *pvmw.pte; 1104 err = 0; 1105 1106 out_unlock: 1107 page_vma_mapped_walk_done(&pvmw); 1108 out_mn: 1109 mmu_notifier_invalidate_range_end(&range); 1110 out: 1111 return err; 1112 } 1113 1114 /** 1115 * replace_page - replace page in vma by new ksm page 1116 * @vma: vma that holds the pte pointing to page 1117 * @page: the page we are replacing by kpage 1118 * @kpage: the ksm page we replace page by 1119 * @orig_pte: the original value of the pte 1120 * 1121 * Returns 0 on success, -EFAULT on failure. 1122 */ 1123 static int replace_page(struct vm_area_struct *vma, struct page *page, 1124 struct page *kpage, pte_t orig_pte) 1125 { 1126 struct mm_struct *mm = vma->vm_mm; 1127 pmd_t *pmd; 1128 pte_t *ptep; 1129 pte_t newpte; 1130 spinlock_t *ptl; 1131 unsigned long addr; 1132 int err = -EFAULT; 1133 struct mmu_notifier_range range; 1134 1135 addr = page_address_in_vma(page, vma); 1136 if (addr == -EFAULT) 1137 goto out; 1138 1139 pmd = mm_find_pmd(mm, addr); 1140 if (!pmd) 1141 goto out; 1142 1143 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE); 1144 mmu_notifier_invalidate_range_start(&range); 1145 1146 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1147 if (!pte_same(*ptep, orig_pte)) { 1148 pte_unmap_unlock(ptep, ptl); 1149 goto out_mn; 1150 } 1151 1152 /* 1153 * No need to check ksm_use_zero_pages here: we can only have a 1154 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1155 */ 1156 if (!is_zero_pfn(page_to_pfn(kpage))) { 1157 get_page(kpage); 1158 page_add_anon_rmap(kpage, vma, addr, false); 1159 newpte = mk_pte(kpage, vma->vm_page_prot); 1160 } else { 1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1162 vma->vm_page_prot)); 1163 /* 1164 * We're replacing an anonymous page with a zero page, which is 1165 * not anonymous. We need to do proper accounting otherwise we 1166 * will get wrong values in /proc, and a BUG message in dmesg 1167 * when tearing down the mm. 1168 */ 1169 dec_mm_counter(mm, MM_ANONPAGES); 1170 } 1171 1172 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1173 /* 1174 * No need to notify as we are replacing a read only page with another 1175 * read only page with the same content. 1176 * 1177 * See Documentation/vm/mmu_notifier.rst 1178 */ 1179 ptep_clear_flush(vma, addr, ptep); 1180 set_pte_at_notify(mm, addr, ptep, newpte); 1181 1182 page_remove_rmap(page, false); 1183 if (!page_mapped(page)) 1184 try_to_free_swap(page); 1185 put_page(page); 1186 1187 pte_unmap_unlock(ptep, ptl); 1188 err = 0; 1189 out_mn: 1190 mmu_notifier_invalidate_range_end(&range); 1191 out: 1192 return err; 1193 } 1194 1195 /* 1196 * try_to_merge_one_page - take two pages and merge them into one 1197 * @vma: the vma that holds the pte pointing to page 1198 * @page: the PageAnon page that we want to replace with kpage 1199 * @kpage: the PageKsm page that we want to map instead of page, 1200 * or NULL the first time when we want to use page as kpage. 1201 * 1202 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1203 */ 1204 static int try_to_merge_one_page(struct vm_area_struct *vma, 1205 struct page *page, struct page *kpage) 1206 { 1207 pte_t orig_pte = __pte(0); 1208 int err = -EFAULT; 1209 1210 if (page == kpage) /* ksm page forked */ 1211 return 0; 1212 1213 if (!PageAnon(page)) 1214 goto out; 1215 1216 /* 1217 * We need the page lock to read a stable PageSwapCache in 1218 * write_protect_page(). We use trylock_page() instead of 1219 * lock_page() because we don't want to wait here - we 1220 * prefer to continue scanning and merging different pages, 1221 * then come back to this page when it is unlocked. 1222 */ 1223 if (!trylock_page(page)) 1224 goto out; 1225 1226 if (PageTransCompound(page)) { 1227 if (split_huge_page(page)) 1228 goto out_unlock; 1229 } 1230 1231 /* 1232 * If this anonymous page is mapped only here, its pte may need 1233 * to be write-protected. If it's mapped elsewhere, all of its 1234 * ptes are necessarily already write-protected. But in either 1235 * case, we need to lock and check page_count is not raised. 1236 */ 1237 if (write_protect_page(vma, page, &orig_pte) == 0) { 1238 if (!kpage) { 1239 /* 1240 * While we hold page lock, upgrade page from 1241 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1242 * stable_tree_insert() will update stable_node. 1243 */ 1244 set_page_stable_node(page, NULL); 1245 mark_page_accessed(page); 1246 /* 1247 * Page reclaim just frees a clean page with no dirty 1248 * ptes: make sure that the ksm page would be swapped. 1249 */ 1250 if (!PageDirty(page)) 1251 SetPageDirty(page); 1252 err = 0; 1253 } else if (pages_identical(page, kpage)) 1254 err = replace_page(vma, page, kpage, orig_pte); 1255 } 1256 1257 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1258 munlock_vma_page(page); 1259 if (!PageMlocked(kpage)) { 1260 unlock_page(page); 1261 lock_page(kpage); 1262 mlock_vma_page(kpage); 1263 page = kpage; /* for final unlock */ 1264 } 1265 } 1266 1267 out_unlock: 1268 unlock_page(page); 1269 out: 1270 return err; 1271 } 1272 1273 /* 1274 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1275 * but no new kernel page is allocated: kpage must already be a ksm page. 1276 * 1277 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1278 */ 1279 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1280 struct page *page, struct page *kpage) 1281 { 1282 struct mm_struct *mm = rmap_item->mm; 1283 struct vm_area_struct *vma; 1284 int err = -EFAULT; 1285 1286 down_read(&mm->mmap_sem); 1287 vma = find_mergeable_vma(mm, rmap_item->address); 1288 if (!vma) 1289 goto out; 1290 1291 err = try_to_merge_one_page(vma, page, kpage); 1292 if (err) 1293 goto out; 1294 1295 /* Unstable nid is in union with stable anon_vma: remove first */ 1296 remove_rmap_item_from_tree(rmap_item); 1297 1298 /* Must get reference to anon_vma while still holding mmap_sem */ 1299 rmap_item->anon_vma = vma->anon_vma; 1300 get_anon_vma(vma->anon_vma); 1301 out: 1302 up_read(&mm->mmap_sem); 1303 return err; 1304 } 1305 1306 /* 1307 * try_to_merge_two_pages - take two identical pages and prepare them 1308 * to be merged into one page. 1309 * 1310 * This function returns the kpage if we successfully merged two identical 1311 * pages into one ksm page, NULL otherwise. 1312 * 1313 * Note that this function upgrades page to ksm page: if one of the pages 1314 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1315 */ 1316 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1317 struct page *page, 1318 struct rmap_item *tree_rmap_item, 1319 struct page *tree_page) 1320 { 1321 int err; 1322 1323 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1324 if (!err) { 1325 err = try_to_merge_with_ksm_page(tree_rmap_item, 1326 tree_page, page); 1327 /* 1328 * If that fails, we have a ksm page with only one pte 1329 * pointing to it: so break it. 1330 */ 1331 if (err) 1332 break_cow(rmap_item); 1333 } 1334 return err ? NULL : page; 1335 } 1336 1337 static __always_inline 1338 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1339 { 1340 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1341 /* 1342 * Check that at least one mapping still exists, otherwise 1343 * there's no much point to merge and share with this 1344 * stable_node, as the underlying tree_page of the other 1345 * sharer is going to be freed soon. 1346 */ 1347 return stable_node->rmap_hlist_len && 1348 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1349 } 1350 1351 static __always_inline 1352 bool is_page_sharing_candidate(struct stable_node *stable_node) 1353 { 1354 return __is_page_sharing_candidate(stable_node, 0); 1355 } 1356 1357 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1358 struct stable_node **_stable_node, 1359 struct rb_root *root, 1360 bool prune_stale_stable_nodes) 1361 { 1362 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1363 struct hlist_node *hlist_safe; 1364 struct page *_tree_page, *tree_page = NULL; 1365 int nr = 0; 1366 int found_rmap_hlist_len; 1367 1368 if (!prune_stale_stable_nodes || 1369 time_before(jiffies, stable_node->chain_prune_time + 1370 msecs_to_jiffies( 1371 ksm_stable_node_chains_prune_millisecs))) 1372 prune_stale_stable_nodes = false; 1373 else 1374 stable_node->chain_prune_time = jiffies; 1375 1376 hlist_for_each_entry_safe(dup, hlist_safe, 1377 &stable_node->hlist, hlist_dup) { 1378 cond_resched(); 1379 /* 1380 * We must walk all stable_node_dup to prune the stale 1381 * stable nodes during lookup. 1382 * 1383 * get_ksm_page can drop the nodes from the 1384 * stable_node->hlist if they point to freed pages 1385 * (that's why we do a _safe walk). The "dup" 1386 * stable_node parameter itself will be freed from 1387 * under us if it returns NULL. 1388 */ 1389 _tree_page = get_ksm_page(dup, false); 1390 if (!_tree_page) 1391 continue; 1392 nr += 1; 1393 if (is_page_sharing_candidate(dup)) { 1394 if (!found || 1395 dup->rmap_hlist_len > found_rmap_hlist_len) { 1396 if (found) 1397 put_page(tree_page); 1398 found = dup; 1399 found_rmap_hlist_len = found->rmap_hlist_len; 1400 tree_page = _tree_page; 1401 1402 /* skip put_page for found dup */ 1403 if (!prune_stale_stable_nodes) 1404 break; 1405 continue; 1406 } 1407 } 1408 put_page(_tree_page); 1409 } 1410 1411 if (found) { 1412 /* 1413 * nr is counting all dups in the chain only if 1414 * prune_stale_stable_nodes is true, otherwise we may 1415 * break the loop at nr == 1 even if there are 1416 * multiple entries. 1417 */ 1418 if (prune_stale_stable_nodes && nr == 1) { 1419 /* 1420 * If there's not just one entry it would 1421 * corrupt memory, better BUG_ON. In KSM 1422 * context with no lock held it's not even 1423 * fatal. 1424 */ 1425 BUG_ON(stable_node->hlist.first->next); 1426 1427 /* 1428 * There's just one entry and it is below the 1429 * deduplication limit so drop the chain. 1430 */ 1431 rb_replace_node(&stable_node->node, &found->node, 1432 root); 1433 free_stable_node(stable_node); 1434 ksm_stable_node_chains--; 1435 ksm_stable_node_dups--; 1436 /* 1437 * NOTE: the caller depends on the stable_node 1438 * to be equal to stable_node_dup if the chain 1439 * was collapsed. 1440 */ 1441 *_stable_node = found; 1442 /* 1443 * Just for robustneess as stable_node is 1444 * otherwise left as a stable pointer, the 1445 * compiler shall optimize it away at build 1446 * time. 1447 */ 1448 stable_node = NULL; 1449 } else if (stable_node->hlist.first != &found->hlist_dup && 1450 __is_page_sharing_candidate(found, 1)) { 1451 /* 1452 * If the found stable_node dup can accept one 1453 * more future merge (in addition to the one 1454 * that is underway) and is not at the head of 1455 * the chain, put it there so next search will 1456 * be quicker in the !prune_stale_stable_nodes 1457 * case. 1458 * 1459 * NOTE: it would be inaccurate to use nr > 1 1460 * instead of checking the hlist.first pointer 1461 * directly, because in the 1462 * prune_stale_stable_nodes case "nr" isn't 1463 * the position of the found dup in the chain, 1464 * but the total number of dups in the chain. 1465 */ 1466 hlist_del(&found->hlist_dup); 1467 hlist_add_head(&found->hlist_dup, 1468 &stable_node->hlist); 1469 } 1470 } 1471 1472 *_stable_node_dup = found; 1473 return tree_page; 1474 } 1475 1476 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1477 struct rb_root *root) 1478 { 1479 if (!is_stable_node_chain(stable_node)) 1480 return stable_node; 1481 if (hlist_empty(&stable_node->hlist)) { 1482 free_stable_node_chain(stable_node, root); 1483 return NULL; 1484 } 1485 return hlist_entry(stable_node->hlist.first, 1486 typeof(*stable_node), hlist_dup); 1487 } 1488 1489 /* 1490 * Like for get_ksm_page, this function can free the *_stable_node and 1491 * *_stable_node_dup if the returned tree_page is NULL. 1492 * 1493 * It can also free and overwrite *_stable_node with the found 1494 * stable_node_dup if the chain is collapsed (in which case 1495 * *_stable_node will be equal to *_stable_node_dup like if the chain 1496 * never existed). It's up to the caller to verify tree_page is not 1497 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1498 * 1499 * *_stable_node_dup is really a second output parameter of this 1500 * function and will be overwritten in all cases, the caller doesn't 1501 * need to initialize it. 1502 */ 1503 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1504 struct stable_node **_stable_node, 1505 struct rb_root *root, 1506 bool prune_stale_stable_nodes) 1507 { 1508 struct stable_node *stable_node = *_stable_node; 1509 if (!is_stable_node_chain(stable_node)) { 1510 if (is_page_sharing_candidate(stable_node)) { 1511 *_stable_node_dup = stable_node; 1512 return get_ksm_page(stable_node, false); 1513 } 1514 /* 1515 * _stable_node_dup set to NULL means the stable_node 1516 * reached the ksm_max_page_sharing limit. 1517 */ 1518 *_stable_node_dup = NULL; 1519 return NULL; 1520 } 1521 return stable_node_dup(_stable_node_dup, _stable_node, root, 1522 prune_stale_stable_nodes); 1523 } 1524 1525 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1526 struct stable_node **s_n, 1527 struct rb_root *root) 1528 { 1529 return __stable_node_chain(s_n_d, s_n, root, true); 1530 } 1531 1532 static __always_inline struct page *chain(struct stable_node **s_n_d, 1533 struct stable_node *s_n, 1534 struct rb_root *root) 1535 { 1536 struct stable_node *old_stable_node = s_n; 1537 struct page *tree_page; 1538 1539 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1540 /* not pruning dups so s_n cannot have changed */ 1541 VM_BUG_ON(s_n != old_stable_node); 1542 return tree_page; 1543 } 1544 1545 /* 1546 * stable_tree_search - search for page inside the stable tree 1547 * 1548 * This function checks if there is a page inside the stable tree 1549 * with identical content to the page that we are scanning right now. 1550 * 1551 * This function returns the stable tree node of identical content if found, 1552 * NULL otherwise. 1553 */ 1554 static struct page *stable_tree_search(struct page *page) 1555 { 1556 int nid; 1557 struct rb_root *root; 1558 struct rb_node **new; 1559 struct rb_node *parent; 1560 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1561 struct stable_node *page_node; 1562 1563 page_node = page_stable_node(page); 1564 if (page_node && page_node->head != &migrate_nodes) { 1565 /* ksm page forked */ 1566 get_page(page); 1567 return page; 1568 } 1569 1570 nid = get_kpfn_nid(page_to_pfn(page)); 1571 root = root_stable_tree + nid; 1572 again: 1573 new = &root->rb_node; 1574 parent = NULL; 1575 1576 while (*new) { 1577 struct page *tree_page; 1578 int ret; 1579 1580 cond_resched(); 1581 stable_node = rb_entry(*new, struct stable_node, node); 1582 stable_node_any = NULL; 1583 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1584 /* 1585 * NOTE: stable_node may have been freed by 1586 * chain_prune() if the returned stable_node_dup is 1587 * not NULL. stable_node_dup may have been inserted in 1588 * the rbtree instead as a regular stable_node (in 1589 * order to collapse the stable_node chain if a single 1590 * stable_node dup was found in it). In such case the 1591 * stable_node is overwritten by the calleee to point 1592 * to the stable_node_dup that was collapsed in the 1593 * stable rbtree and stable_node will be equal to 1594 * stable_node_dup like if the chain never existed. 1595 */ 1596 if (!stable_node_dup) { 1597 /* 1598 * Either all stable_node dups were full in 1599 * this stable_node chain, or this chain was 1600 * empty and should be rb_erased. 1601 */ 1602 stable_node_any = stable_node_dup_any(stable_node, 1603 root); 1604 if (!stable_node_any) { 1605 /* rb_erase just run */ 1606 goto again; 1607 } 1608 /* 1609 * Take any of the stable_node dups page of 1610 * this stable_node chain to let the tree walk 1611 * continue. All KSM pages belonging to the 1612 * stable_node dups in a stable_node chain 1613 * have the same content and they're 1614 * wrprotected at all times. Any will work 1615 * fine to continue the walk. 1616 */ 1617 tree_page = get_ksm_page(stable_node_any, false); 1618 } 1619 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1620 if (!tree_page) { 1621 /* 1622 * If we walked over a stale stable_node, 1623 * get_ksm_page() will call rb_erase() and it 1624 * may rebalance the tree from under us. So 1625 * restart the search from scratch. Returning 1626 * NULL would be safe too, but we'd generate 1627 * false negative insertions just because some 1628 * stable_node was stale. 1629 */ 1630 goto again; 1631 } 1632 1633 ret = memcmp_pages(page, tree_page); 1634 put_page(tree_page); 1635 1636 parent = *new; 1637 if (ret < 0) 1638 new = &parent->rb_left; 1639 else if (ret > 0) 1640 new = &parent->rb_right; 1641 else { 1642 if (page_node) { 1643 VM_BUG_ON(page_node->head != &migrate_nodes); 1644 /* 1645 * Test if the migrated page should be merged 1646 * into a stable node dup. If the mapcount is 1647 * 1 we can migrate it with another KSM page 1648 * without adding it to the chain. 1649 */ 1650 if (page_mapcount(page) > 1) 1651 goto chain_append; 1652 } 1653 1654 if (!stable_node_dup) { 1655 /* 1656 * If the stable_node is a chain and 1657 * we got a payload match in memcmp 1658 * but we cannot merge the scanned 1659 * page in any of the existing 1660 * stable_node dups because they're 1661 * all full, we need to wait the 1662 * scanned page to find itself a match 1663 * in the unstable tree to create a 1664 * brand new KSM page to add later to 1665 * the dups of this stable_node. 1666 */ 1667 return NULL; 1668 } 1669 1670 /* 1671 * Lock and unlock the stable_node's page (which 1672 * might already have been migrated) so that page 1673 * migration is sure to notice its raised count. 1674 * It would be more elegant to return stable_node 1675 * than kpage, but that involves more changes. 1676 */ 1677 tree_page = get_ksm_page(stable_node_dup, true); 1678 if (unlikely(!tree_page)) 1679 /* 1680 * The tree may have been rebalanced, 1681 * so re-evaluate parent and new. 1682 */ 1683 goto again; 1684 unlock_page(tree_page); 1685 1686 if (get_kpfn_nid(stable_node_dup->kpfn) != 1687 NUMA(stable_node_dup->nid)) { 1688 put_page(tree_page); 1689 goto replace; 1690 } 1691 return tree_page; 1692 } 1693 } 1694 1695 if (!page_node) 1696 return NULL; 1697 1698 list_del(&page_node->list); 1699 DO_NUMA(page_node->nid = nid); 1700 rb_link_node(&page_node->node, parent, new); 1701 rb_insert_color(&page_node->node, root); 1702 out: 1703 if (is_page_sharing_candidate(page_node)) { 1704 get_page(page); 1705 return page; 1706 } else 1707 return NULL; 1708 1709 replace: 1710 /* 1711 * If stable_node was a chain and chain_prune collapsed it, 1712 * stable_node has been updated to be the new regular 1713 * stable_node. A collapse of the chain is indistinguishable 1714 * from the case there was no chain in the stable 1715 * rbtree. Otherwise stable_node is the chain and 1716 * stable_node_dup is the dup to replace. 1717 */ 1718 if (stable_node_dup == stable_node) { 1719 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1720 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1721 /* there is no chain */ 1722 if (page_node) { 1723 VM_BUG_ON(page_node->head != &migrate_nodes); 1724 list_del(&page_node->list); 1725 DO_NUMA(page_node->nid = nid); 1726 rb_replace_node(&stable_node_dup->node, 1727 &page_node->node, 1728 root); 1729 if (is_page_sharing_candidate(page_node)) 1730 get_page(page); 1731 else 1732 page = NULL; 1733 } else { 1734 rb_erase(&stable_node_dup->node, root); 1735 page = NULL; 1736 } 1737 } else { 1738 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1739 __stable_node_dup_del(stable_node_dup); 1740 if (page_node) { 1741 VM_BUG_ON(page_node->head != &migrate_nodes); 1742 list_del(&page_node->list); 1743 DO_NUMA(page_node->nid = nid); 1744 stable_node_chain_add_dup(page_node, stable_node); 1745 if (is_page_sharing_candidate(page_node)) 1746 get_page(page); 1747 else 1748 page = NULL; 1749 } else { 1750 page = NULL; 1751 } 1752 } 1753 stable_node_dup->head = &migrate_nodes; 1754 list_add(&stable_node_dup->list, stable_node_dup->head); 1755 return page; 1756 1757 chain_append: 1758 /* stable_node_dup could be null if it reached the limit */ 1759 if (!stable_node_dup) 1760 stable_node_dup = stable_node_any; 1761 /* 1762 * If stable_node was a chain and chain_prune collapsed it, 1763 * stable_node has been updated to be the new regular 1764 * stable_node. A collapse of the chain is indistinguishable 1765 * from the case there was no chain in the stable 1766 * rbtree. Otherwise stable_node is the chain and 1767 * stable_node_dup is the dup to replace. 1768 */ 1769 if (stable_node_dup == stable_node) { 1770 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1771 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1772 /* chain is missing so create it */ 1773 stable_node = alloc_stable_node_chain(stable_node_dup, 1774 root); 1775 if (!stable_node) 1776 return NULL; 1777 } 1778 /* 1779 * Add this stable_node dup that was 1780 * migrated to the stable_node chain 1781 * of the current nid for this page 1782 * content. 1783 */ 1784 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1785 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1786 VM_BUG_ON(page_node->head != &migrate_nodes); 1787 list_del(&page_node->list); 1788 DO_NUMA(page_node->nid = nid); 1789 stable_node_chain_add_dup(page_node, stable_node); 1790 goto out; 1791 } 1792 1793 /* 1794 * stable_tree_insert - insert stable tree node pointing to new ksm page 1795 * into the stable tree. 1796 * 1797 * This function returns the stable tree node just allocated on success, 1798 * NULL otherwise. 1799 */ 1800 static struct stable_node *stable_tree_insert(struct page *kpage) 1801 { 1802 int nid; 1803 unsigned long kpfn; 1804 struct rb_root *root; 1805 struct rb_node **new; 1806 struct rb_node *parent; 1807 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1808 bool need_chain = false; 1809 1810 kpfn = page_to_pfn(kpage); 1811 nid = get_kpfn_nid(kpfn); 1812 root = root_stable_tree + nid; 1813 again: 1814 parent = NULL; 1815 new = &root->rb_node; 1816 1817 while (*new) { 1818 struct page *tree_page; 1819 int ret; 1820 1821 cond_resched(); 1822 stable_node = rb_entry(*new, struct stable_node, node); 1823 stable_node_any = NULL; 1824 tree_page = chain(&stable_node_dup, stable_node, root); 1825 if (!stable_node_dup) { 1826 /* 1827 * Either all stable_node dups were full in 1828 * this stable_node chain, or this chain was 1829 * empty and should be rb_erased. 1830 */ 1831 stable_node_any = stable_node_dup_any(stable_node, 1832 root); 1833 if (!stable_node_any) { 1834 /* rb_erase just run */ 1835 goto again; 1836 } 1837 /* 1838 * Take any of the stable_node dups page of 1839 * this stable_node chain to let the tree walk 1840 * continue. All KSM pages belonging to the 1841 * stable_node dups in a stable_node chain 1842 * have the same content and they're 1843 * wrprotected at all times. Any will work 1844 * fine to continue the walk. 1845 */ 1846 tree_page = get_ksm_page(stable_node_any, false); 1847 } 1848 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1849 if (!tree_page) { 1850 /* 1851 * If we walked over a stale stable_node, 1852 * get_ksm_page() will call rb_erase() and it 1853 * may rebalance the tree from under us. So 1854 * restart the search from scratch. Returning 1855 * NULL would be safe too, but we'd generate 1856 * false negative insertions just because some 1857 * stable_node was stale. 1858 */ 1859 goto again; 1860 } 1861 1862 ret = memcmp_pages(kpage, tree_page); 1863 put_page(tree_page); 1864 1865 parent = *new; 1866 if (ret < 0) 1867 new = &parent->rb_left; 1868 else if (ret > 0) 1869 new = &parent->rb_right; 1870 else { 1871 need_chain = true; 1872 break; 1873 } 1874 } 1875 1876 stable_node_dup = alloc_stable_node(); 1877 if (!stable_node_dup) 1878 return NULL; 1879 1880 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1881 stable_node_dup->kpfn = kpfn; 1882 set_page_stable_node(kpage, stable_node_dup); 1883 stable_node_dup->rmap_hlist_len = 0; 1884 DO_NUMA(stable_node_dup->nid = nid); 1885 if (!need_chain) { 1886 rb_link_node(&stable_node_dup->node, parent, new); 1887 rb_insert_color(&stable_node_dup->node, root); 1888 } else { 1889 if (!is_stable_node_chain(stable_node)) { 1890 struct stable_node *orig = stable_node; 1891 /* chain is missing so create it */ 1892 stable_node = alloc_stable_node_chain(orig, root); 1893 if (!stable_node) { 1894 free_stable_node(stable_node_dup); 1895 return NULL; 1896 } 1897 } 1898 stable_node_chain_add_dup(stable_node_dup, stable_node); 1899 } 1900 1901 return stable_node_dup; 1902 } 1903 1904 /* 1905 * unstable_tree_search_insert - search for identical page, 1906 * else insert rmap_item into the unstable tree. 1907 * 1908 * This function searches for a page in the unstable tree identical to the 1909 * page currently being scanned; and if no identical page is found in the 1910 * tree, we insert rmap_item as a new object into the unstable tree. 1911 * 1912 * This function returns pointer to rmap_item found to be identical 1913 * to the currently scanned page, NULL otherwise. 1914 * 1915 * This function does both searching and inserting, because they share 1916 * the same walking algorithm in an rbtree. 1917 */ 1918 static 1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1920 struct page *page, 1921 struct page **tree_pagep) 1922 { 1923 struct rb_node **new; 1924 struct rb_root *root; 1925 struct rb_node *parent = NULL; 1926 int nid; 1927 1928 nid = get_kpfn_nid(page_to_pfn(page)); 1929 root = root_unstable_tree + nid; 1930 new = &root->rb_node; 1931 1932 while (*new) { 1933 struct rmap_item *tree_rmap_item; 1934 struct page *tree_page; 1935 int ret; 1936 1937 cond_resched(); 1938 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1939 tree_page = get_mergeable_page(tree_rmap_item); 1940 if (!tree_page) 1941 return NULL; 1942 1943 /* 1944 * Don't substitute a ksm page for a forked page. 1945 */ 1946 if (page == tree_page) { 1947 put_page(tree_page); 1948 return NULL; 1949 } 1950 1951 ret = memcmp_pages(page, tree_page); 1952 1953 parent = *new; 1954 if (ret < 0) { 1955 put_page(tree_page); 1956 new = &parent->rb_left; 1957 } else if (ret > 0) { 1958 put_page(tree_page); 1959 new = &parent->rb_right; 1960 } else if (!ksm_merge_across_nodes && 1961 page_to_nid(tree_page) != nid) { 1962 /* 1963 * If tree_page has been migrated to another NUMA node, 1964 * it will be flushed out and put in the right unstable 1965 * tree next time: only merge with it when across_nodes. 1966 */ 1967 put_page(tree_page); 1968 return NULL; 1969 } else { 1970 *tree_pagep = tree_page; 1971 return tree_rmap_item; 1972 } 1973 } 1974 1975 rmap_item->address |= UNSTABLE_FLAG; 1976 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1977 DO_NUMA(rmap_item->nid = nid); 1978 rb_link_node(&rmap_item->node, parent, new); 1979 rb_insert_color(&rmap_item->node, root); 1980 1981 ksm_pages_unshared++; 1982 return NULL; 1983 } 1984 1985 /* 1986 * stable_tree_append - add another rmap_item to the linked list of 1987 * rmap_items hanging off a given node of the stable tree, all sharing 1988 * the same ksm page. 1989 */ 1990 static void stable_tree_append(struct rmap_item *rmap_item, 1991 struct stable_node *stable_node, 1992 bool max_page_sharing_bypass) 1993 { 1994 /* 1995 * rmap won't find this mapping if we don't insert the 1996 * rmap_item in the right stable_node 1997 * duplicate. page_migration could break later if rmap breaks, 1998 * so we can as well crash here. We really need to check for 1999 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2000 * for other negative values as an undeflow if detected here 2001 * for the first time (and not when decreasing rmap_hlist_len) 2002 * would be sign of memory corruption in the stable_node. 2003 */ 2004 BUG_ON(stable_node->rmap_hlist_len < 0); 2005 2006 stable_node->rmap_hlist_len++; 2007 if (!max_page_sharing_bypass) 2008 /* possibly non fatal but unexpected overflow, only warn */ 2009 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2010 ksm_max_page_sharing); 2011 2012 rmap_item->head = stable_node; 2013 rmap_item->address |= STABLE_FLAG; 2014 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2015 2016 if (rmap_item->hlist.next) 2017 ksm_pages_sharing++; 2018 else 2019 ksm_pages_shared++; 2020 } 2021 2022 /* 2023 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2024 * if not, compare checksum to previous and if it's the same, see if page can 2025 * be inserted into the unstable tree, or merged with a page already there and 2026 * both transferred to the stable tree. 2027 * 2028 * @page: the page that we are searching identical page to. 2029 * @rmap_item: the reverse mapping into the virtual address of this page 2030 */ 2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2032 { 2033 struct mm_struct *mm = rmap_item->mm; 2034 struct rmap_item *tree_rmap_item; 2035 struct page *tree_page = NULL; 2036 struct stable_node *stable_node; 2037 struct page *kpage; 2038 unsigned int checksum; 2039 int err; 2040 bool max_page_sharing_bypass = false; 2041 2042 stable_node = page_stable_node(page); 2043 if (stable_node) { 2044 if (stable_node->head != &migrate_nodes && 2045 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2046 NUMA(stable_node->nid)) { 2047 stable_node_dup_del(stable_node); 2048 stable_node->head = &migrate_nodes; 2049 list_add(&stable_node->list, stable_node->head); 2050 } 2051 if (stable_node->head != &migrate_nodes && 2052 rmap_item->head == stable_node) 2053 return; 2054 /* 2055 * If it's a KSM fork, allow it to go over the sharing limit 2056 * without warnings. 2057 */ 2058 if (!is_page_sharing_candidate(stable_node)) 2059 max_page_sharing_bypass = true; 2060 } 2061 2062 /* We first start with searching the page inside the stable tree */ 2063 kpage = stable_tree_search(page); 2064 if (kpage == page && rmap_item->head == stable_node) { 2065 put_page(kpage); 2066 return; 2067 } 2068 2069 remove_rmap_item_from_tree(rmap_item); 2070 2071 if (kpage) { 2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2073 if (!err) { 2074 /* 2075 * The page was successfully merged: 2076 * add its rmap_item to the stable tree. 2077 */ 2078 lock_page(kpage); 2079 stable_tree_append(rmap_item, page_stable_node(kpage), 2080 max_page_sharing_bypass); 2081 unlock_page(kpage); 2082 } 2083 put_page(kpage); 2084 return; 2085 } 2086 2087 /* 2088 * If the hash value of the page has changed from the last time 2089 * we calculated it, this page is changing frequently: therefore we 2090 * don't want to insert it in the unstable tree, and we don't want 2091 * to waste our time searching for something identical to it there. 2092 */ 2093 checksum = calc_checksum(page); 2094 if (rmap_item->oldchecksum != checksum) { 2095 rmap_item->oldchecksum = checksum; 2096 return; 2097 } 2098 2099 /* 2100 * Same checksum as an empty page. We attempt to merge it with the 2101 * appropriate zero page if the user enabled this via sysfs. 2102 */ 2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2104 struct vm_area_struct *vma; 2105 2106 down_read(&mm->mmap_sem); 2107 vma = find_mergeable_vma(mm, rmap_item->address); 2108 err = try_to_merge_one_page(vma, page, 2109 ZERO_PAGE(rmap_item->address)); 2110 up_read(&mm->mmap_sem); 2111 /* 2112 * In case of failure, the page was not really empty, so we 2113 * need to continue. Otherwise we're done. 2114 */ 2115 if (!err) 2116 return; 2117 } 2118 tree_rmap_item = 2119 unstable_tree_search_insert(rmap_item, page, &tree_page); 2120 if (tree_rmap_item) { 2121 bool split; 2122 2123 kpage = try_to_merge_two_pages(rmap_item, page, 2124 tree_rmap_item, tree_page); 2125 /* 2126 * If both pages we tried to merge belong to the same compound 2127 * page, then we actually ended up increasing the reference 2128 * count of the same compound page twice, and split_huge_page 2129 * failed. 2130 * Here we set a flag if that happened, and we use it later to 2131 * try split_huge_page again. Since we call put_page right 2132 * afterwards, the reference count will be correct and 2133 * split_huge_page should succeed. 2134 */ 2135 split = PageTransCompound(page) 2136 && compound_head(page) == compound_head(tree_page); 2137 put_page(tree_page); 2138 if (kpage) { 2139 /* 2140 * The pages were successfully merged: insert new 2141 * node in the stable tree and add both rmap_items. 2142 */ 2143 lock_page(kpage); 2144 stable_node = stable_tree_insert(kpage); 2145 if (stable_node) { 2146 stable_tree_append(tree_rmap_item, stable_node, 2147 false); 2148 stable_tree_append(rmap_item, stable_node, 2149 false); 2150 } 2151 unlock_page(kpage); 2152 2153 /* 2154 * If we fail to insert the page into the stable tree, 2155 * we will have 2 virtual addresses that are pointing 2156 * to a ksm page left outside the stable tree, 2157 * in which case we need to break_cow on both. 2158 */ 2159 if (!stable_node) { 2160 break_cow(tree_rmap_item); 2161 break_cow(rmap_item); 2162 } 2163 } else if (split) { 2164 /* 2165 * We are here if we tried to merge two pages and 2166 * failed because they both belonged to the same 2167 * compound page. We will split the page now, but no 2168 * merging will take place. 2169 * We do not want to add the cost of a full lock; if 2170 * the page is locked, it is better to skip it and 2171 * perhaps try again later. 2172 */ 2173 if (!trylock_page(page)) 2174 return; 2175 split_huge_page(page); 2176 unlock_page(page); 2177 } 2178 } 2179 } 2180 2181 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2182 struct rmap_item **rmap_list, 2183 unsigned long addr) 2184 { 2185 struct rmap_item *rmap_item; 2186 2187 while (*rmap_list) { 2188 rmap_item = *rmap_list; 2189 if ((rmap_item->address & PAGE_MASK) == addr) 2190 return rmap_item; 2191 if (rmap_item->address > addr) 2192 break; 2193 *rmap_list = rmap_item->rmap_list; 2194 remove_rmap_item_from_tree(rmap_item); 2195 free_rmap_item(rmap_item); 2196 } 2197 2198 rmap_item = alloc_rmap_item(); 2199 if (rmap_item) { 2200 /* It has already been zeroed */ 2201 rmap_item->mm = mm_slot->mm; 2202 rmap_item->address = addr; 2203 rmap_item->rmap_list = *rmap_list; 2204 *rmap_list = rmap_item; 2205 } 2206 return rmap_item; 2207 } 2208 2209 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2210 { 2211 struct mm_struct *mm; 2212 struct mm_slot *slot; 2213 struct vm_area_struct *vma; 2214 struct rmap_item *rmap_item; 2215 int nid; 2216 2217 if (list_empty(&ksm_mm_head.mm_list)) 2218 return NULL; 2219 2220 slot = ksm_scan.mm_slot; 2221 if (slot == &ksm_mm_head) { 2222 /* 2223 * A number of pages can hang around indefinitely on per-cpu 2224 * pagevecs, raised page count preventing write_protect_page 2225 * from merging them. Though it doesn't really matter much, 2226 * it is puzzling to see some stuck in pages_volatile until 2227 * other activity jostles them out, and they also prevented 2228 * LTP's KSM test from succeeding deterministically; so drain 2229 * them here (here rather than on entry to ksm_do_scan(), 2230 * so we don't IPI too often when pages_to_scan is set low). 2231 */ 2232 lru_add_drain_all(); 2233 2234 /* 2235 * Whereas stale stable_nodes on the stable_tree itself 2236 * get pruned in the regular course of stable_tree_search(), 2237 * those moved out to the migrate_nodes list can accumulate: 2238 * so prune them once before each full scan. 2239 */ 2240 if (!ksm_merge_across_nodes) { 2241 struct stable_node *stable_node, *next; 2242 struct page *page; 2243 2244 list_for_each_entry_safe(stable_node, next, 2245 &migrate_nodes, list) { 2246 page = get_ksm_page(stable_node, false); 2247 if (page) 2248 put_page(page); 2249 cond_resched(); 2250 } 2251 } 2252 2253 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2254 root_unstable_tree[nid] = RB_ROOT; 2255 2256 spin_lock(&ksm_mmlist_lock); 2257 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2258 ksm_scan.mm_slot = slot; 2259 spin_unlock(&ksm_mmlist_lock); 2260 /* 2261 * Although we tested list_empty() above, a racing __ksm_exit 2262 * of the last mm on the list may have removed it since then. 2263 */ 2264 if (slot == &ksm_mm_head) 2265 return NULL; 2266 next_mm: 2267 ksm_scan.address = 0; 2268 ksm_scan.rmap_list = &slot->rmap_list; 2269 } 2270 2271 mm = slot->mm; 2272 down_read(&mm->mmap_sem); 2273 if (ksm_test_exit(mm)) 2274 vma = NULL; 2275 else 2276 vma = find_vma(mm, ksm_scan.address); 2277 2278 for (; vma; vma = vma->vm_next) { 2279 if (!(vma->vm_flags & VM_MERGEABLE)) 2280 continue; 2281 if (ksm_scan.address < vma->vm_start) 2282 ksm_scan.address = vma->vm_start; 2283 if (!vma->anon_vma) 2284 ksm_scan.address = vma->vm_end; 2285 2286 while (ksm_scan.address < vma->vm_end) { 2287 if (ksm_test_exit(mm)) 2288 break; 2289 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2290 if (IS_ERR_OR_NULL(*page)) { 2291 ksm_scan.address += PAGE_SIZE; 2292 cond_resched(); 2293 continue; 2294 } 2295 if (PageAnon(*page)) { 2296 flush_anon_page(vma, *page, ksm_scan.address); 2297 flush_dcache_page(*page); 2298 rmap_item = get_next_rmap_item(slot, 2299 ksm_scan.rmap_list, ksm_scan.address); 2300 if (rmap_item) { 2301 ksm_scan.rmap_list = 2302 &rmap_item->rmap_list; 2303 ksm_scan.address += PAGE_SIZE; 2304 } else 2305 put_page(*page); 2306 up_read(&mm->mmap_sem); 2307 return rmap_item; 2308 } 2309 put_page(*page); 2310 ksm_scan.address += PAGE_SIZE; 2311 cond_resched(); 2312 } 2313 } 2314 2315 if (ksm_test_exit(mm)) { 2316 ksm_scan.address = 0; 2317 ksm_scan.rmap_list = &slot->rmap_list; 2318 } 2319 /* 2320 * Nuke all the rmap_items that are above this current rmap: 2321 * because there were no VM_MERGEABLE vmas with such addresses. 2322 */ 2323 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2324 2325 spin_lock(&ksm_mmlist_lock); 2326 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2327 struct mm_slot, mm_list); 2328 if (ksm_scan.address == 0) { 2329 /* 2330 * We've completed a full scan of all vmas, holding mmap_sem 2331 * throughout, and found no VM_MERGEABLE: so do the same as 2332 * __ksm_exit does to remove this mm from all our lists now. 2333 * This applies either when cleaning up after __ksm_exit 2334 * (but beware: we can reach here even before __ksm_exit), 2335 * or when all VM_MERGEABLE areas have been unmapped (and 2336 * mmap_sem then protects against race with MADV_MERGEABLE). 2337 */ 2338 hash_del(&slot->link); 2339 list_del(&slot->mm_list); 2340 spin_unlock(&ksm_mmlist_lock); 2341 2342 free_mm_slot(slot); 2343 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2344 up_read(&mm->mmap_sem); 2345 mmdrop(mm); 2346 } else { 2347 up_read(&mm->mmap_sem); 2348 /* 2349 * up_read(&mm->mmap_sem) first because after 2350 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2351 * already have been freed under us by __ksm_exit() 2352 * because the "mm_slot" is still hashed and 2353 * ksm_scan.mm_slot doesn't point to it anymore. 2354 */ 2355 spin_unlock(&ksm_mmlist_lock); 2356 } 2357 2358 /* Repeat until we've completed scanning the whole list */ 2359 slot = ksm_scan.mm_slot; 2360 if (slot != &ksm_mm_head) 2361 goto next_mm; 2362 2363 ksm_scan.seqnr++; 2364 return NULL; 2365 } 2366 2367 /** 2368 * ksm_do_scan - the ksm scanner main worker function. 2369 * @scan_npages: number of pages we want to scan before we return. 2370 */ 2371 static void ksm_do_scan(unsigned int scan_npages) 2372 { 2373 struct rmap_item *rmap_item; 2374 struct page *uninitialized_var(page); 2375 2376 while (scan_npages-- && likely(!freezing(current))) { 2377 cond_resched(); 2378 rmap_item = scan_get_next_rmap_item(&page); 2379 if (!rmap_item) 2380 return; 2381 cmp_and_merge_page(page, rmap_item); 2382 put_page(page); 2383 } 2384 } 2385 2386 static int ksmd_should_run(void) 2387 { 2388 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2389 } 2390 2391 static int ksm_scan_thread(void *nothing) 2392 { 2393 unsigned int sleep_ms; 2394 2395 set_freezable(); 2396 set_user_nice(current, 5); 2397 2398 while (!kthread_should_stop()) { 2399 mutex_lock(&ksm_thread_mutex); 2400 wait_while_offlining(); 2401 if (ksmd_should_run()) 2402 ksm_do_scan(ksm_thread_pages_to_scan); 2403 mutex_unlock(&ksm_thread_mutex); 2404 2405 try_to_freeze(); 2406 2407 if (ksmd_should_run()) { 2408 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2409 wait_event_interruptible_timeout(ksm_iter_wait, 2410 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2411 msecs_to_jiffies(sleep_ms)); 2412 } else { 2413 wait_event_freezable(ksm_thread_wait, 2414 ksmd_should_run() || kthread_should_stop()); 2415 } 2416 } 2417 return 0; 2418 } 2419 2420 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2421 unsigned long end, int advice, unsigned long *vm_flags) 2422 { 2423 struct mm_struct *mm = vma->vm_mm; 2424 int err; 2425 2426 switch (advice) { 2427 case MADV_MERGEABLE: 2428 /* 2429 * Be somewhat over-protective for now! 2430 */ 2431 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2432 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2433 VM_HUGETLB | VM_MIXEDMAP)) 2434 return 0; /* just ignore the advice */ 2435 2436 if (vma_is_dax(vma)) 2437 return 0; 2438 2439 #ifdef VM_SAO 2440 if (*vm_flags & VM_SAO) 2441 return 0; 2442 #endif 2443 #ifdef VM_SPARC_ADI 2444 if (*vm_flags & VM_SPARC_ADI) 2445 return 0; 2446 #endif 2447 2448 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2449 err = __ksm_enter(mm); 2450 if (err) 2451 return err; 2452 } 2453 2454 *vm_flags |= VM_MERGEABLE; 2455 break; 2456 2457 case MADV_UNMERGEABLE: 2458 if (!(*vm_flags & VM_MERGEABLE)) 2459 return 0; /* just ignore the advice */ 2460 2461 if (vma->anon_vma) { 2462 err = unmerge_ksm_pages(vma, start, end); 2463 if (err) 2464 return err; 2465 } 2466 2467 *vm_flags &= ~VM_MERGEABLE; 2468 break; 2469 } 2470 2471 return 0; 2472 } 2473 2474 int __ksm_enter(struct mm_struct *mm) 2475 { 2476 struct mm_slot *mm_slot; 2477 int needs_wakeup; 2478 2479 mm_slot = alloc_mm_slot(); 2480 if (!mm_slot) 2481 return -ENOMEM; 2482 2483 /* Check ksm_run too? Would need tighter locking */ 2484 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2485 2486 spin_lock(&ksm_mmlist_lock); 2487 insert_to_mm_slots_hash(mm, mm_slot); 2488 /* 2489 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2490 * insert just behind the scanning cursor, to let the area settle 2491 * down a little; when fork is followed by immediate exec, we don't 2492 * want ksmd to waste time setting up and tearing down an rmap_list. 2493 * 2494 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2495 * scanning cursor, otherwise KSM pages in newly forked mms will be 2496 * missed: then we might as well insert at the end of the list. 2497 */ 2498 if (ksm_run & KSM_RUN_UNMERGE) 2499 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2500 else 2501 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2502 spin_unlock(&ksm_mmlist_lock); 2503 2504 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2505 mmgrab(mm); 2506 2507 if (needs_wakeup) 2508 wake_up_interruptible(&ksm_thread_wait); 2509 2510 return 0; 2511 } 2512 2513 void __ksm_exit(struct mm_struct *mm) 2514 { 2515 struct mm_slot *mm_slot; 2516 int easy_to_free = 0; 2517 2518 /* 2519 * This process is exiting: if it's straightforward (as is the 2520 * case when ksmd was never running), free mm_slot immediately. 2521 * But if it's at the cursor or has rmap_items linked to it, use 2522 * mmap_sem to synchronize with any break_cows before pagetables 2523 * are freed, and leave the mm_slot on the list for ksmd to free. 2524 * Beware: ksm may already have noticed it exiting and freed the slot. 2525 */ 2526 2527 spin_lock(&ksm_mmlist_lock); 2528 mm_slot = get_mm_slot(mm); 2529 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2530 if (!mm_slot->rmap_list) { 2531 hash_del(&mm_slot->link); 2532 list_del(&mm_slot->mm_list); 2533 easy_to_free = 1; 2534 } else { 2535 list_move(&mm_slot->mm_list, 2536 &ksm_scan.mm_slot->mm_list); 2537 } 2538 } 2539 spin_unlock(&ksm_mmlist_lock); 2540 2541 if (easy_to_free) { 2542 free_mm_slot(mm_slot); 2543 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2544 mmdrop(mm); 2545 } else if (mm_slot) { 2546 down_write(&mm->mmap_sem); 2547 up_write(&mm->mmap_sem); 2548 } 2549 } 2550 2551 struct page *ksm_might_need_to_copy(struct page *page, 2552 struct vm_area_struct *vma, unsigned long address) 2553 { 2554 struct anon_vma *anon_vma = page_anon_vma(page); 2555 struct page *new_page; 2556 2557 if (PageKsm(page)) { 2558 if (page_stable_node(page) && 2559 !(ksm_run & KSM_RUN_UNMERGE)) 2560 return page; /* no need to copy it */ 2561 } else if (!anon_vma) { 2562 return page; /* no need to copy it */ 2563 } else if (anon_vma->root == vma->anon_vma->root && 2564 page->index == linear_page_index(vma, address)) { 2565 return page; /* still no need to copy it */ 2566 } 2567 if (!PageUptodate(page)) 2568 return page; /* let do_swap_page report the error */ 2569 2570 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2571 if (new_page) { 2572 copy_user_highpage(new_page, page, address, vma); 2573 2574 SetPageDirty(new_page); 2575 __SetPageUptodate(new_page); 2576 __SetPageLocked(new_page); 2577 } 2578 2579 return new_page; 2580 } 2581 2582 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2583 { 2584 struct stable_node *stable_node; 2585 struct rmap_item *rmap_item; 2586 int search_new_forks = 0; 2587 2588 VM_BUG_ON_PAGE(!PageKsm(page), page); 2589 2590 /* 2591 * Rely on the page lock to protect against concurrent modifications 2592 * to that page's node of the stable tree. 2593 */ 2594 VM_BUG_ON_PAGE(!PageLocked(page), page); 2595 2596 stable_node = page_stable_node(page); 2597 if (!stable_node) 2598 return; 2599 again: 2600 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2601 struct anon_vma *anon_vma = rmap_item->anon_vma; 2602 struct anon_vma_chain *vmac; 2603 struct vm_area_struct *vma; 2604 2605 cond_resched(); 2606 anon_vma_lock_read(anon_vma); 2607 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2608 0, ULONG_MAX) { 2609 unsigned long addr; 2610 2611 cond_resched(); 2612 vma = vmac->vma; 2613 2614 /* Ignore the stable/unstable/sqnr flags */ 2615 addr = rmap_item->address & ~KSM_FLAG_MASK; 2616 2617 if (addr < vma->vm_start || addr >= vma->vm_end) 2618 continue; 2619 /* 2620 * Initially we examine only the vma which covers this 2621 * rmap_item; but later, if there is still work to do, 2622 * we examine covering vmas in other mms: in case they 2623 * were forked from the original since ksmd passed. 2624 */ 2625 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2626 continue; 2627 2628 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2629 continue; 2630 2631 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2632 anon_vma_unlock_read(anon_vma); 2633 return; 2634 } 2635 if (rwc->done && rwc->done(page)) { 2636 anon_vma_unlock_read(anon_vma); 2637 return; 2638 } 2639 } 2640 anon_vma_unlock_read(anon_vma); 2641 } 2642 if (!search_new_forks++) 2643 goto again; 2644 } 2645 2646 bool reuse_ksm_page(struct page *page, 2647 struct vm_area_struct *vma, 2648 unsigned long address) 2649 { 2650 #ifdef CONFIG_DEBUG_VM 2651 if (WARN_ON(is_zero_pfn(page_to_pfn(page))) || 2652 WARN_ON(!page_mapped(page)) || 2653 WARN_ON(!PageLocked(page))) { 2654 dump_page(page, "reuse_ksm_page"); 2655 return false; 2656 } 2657 #endif 2658 2659 if (PageSwapCache(page) || !page_stable_node(page)) 2660 return false; 2661 /* Prohibit parallel get_ksm_page() */ 2662 if (!page_ref_freeze(page, 1)) 2663 return false; 2664 2665 page_move_anon_rmap(page, vma); 2666 page->index = linear_page_index(vma, address); 2667 page_ref_unfreeze(page, 1); 2668 2669 return true; 2670 } 2671 #ifdef CONFIG_MIGRATION 2672 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2673 { 2674 struct stable_node *stable_node; 2675 2676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2678 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2679 2680 stable_node = page_stable_node(newpage); 2681 if (stable_node) { 2682 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2683 stable_node->kpfn = page_to_pfn(newpage); 2684 /* 2685 * newpage->mapping was set in advance; now we need smp_wmb() 2686 * to make sure that the new stable_node->kpfn is visible 2687 * to get_ksm_page() before it can see that oldpage->mapping 2688 * has gone stale (or that PageSwapCache has been cleared). 2689 */ 2690 smp_wmb(); 2691 set_page_stable_node(oldpage, NULL); 2692 } 2693 } 2694 #endif /* CONFIG_MIGRATION */ 2695 2696 #ifdef CONFIG_MEMORY_HOTREMOVE 2697 static void wait_while_offlining(void) 2698 { 2699 while (ksm_run & KSM_RUN_OFFLINE) { 2700 mutex_unlock(&ksm_thread_mutex); 2701 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2702 TASK_UNINTERRUPTIBLE); 2703 mutex_lock(&ksm_thread_mutex); 2704 } 2705 } 2706 2707 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2708 unsigned long start_pfn, 2709 unsigned long end_pfn) 2710 { 2711 if (stable_node->kpfn >= start_pfn && 2712 stable_node->kpfn < end_pfn) { 2713 /* 2714 * Don't get_ksm_page, page has already gone: 2715 * which is why we keep kpfn instead of page* 2716 */ 2717 remove_node_from_stable_tree(stable_node); 2718 return true; 2719 } 2720 return false; 2721 } 2722 2723 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2724 unsigned long start_pfn, 2725 unsigned long end_pfn, 2726 struct rb_root *root) 2727 { 2728 struct stable_node *dup; 2729 struct hlist_node *hlist_safe; 2730 2731 if (!is_stable_node_chain(stable_node)) { 2732 VM_BUG_ON(is_stable_node_dup(stable_node)); 2733 return stable_node_dup_remove_range(stable_node, start_pfn, 2734 end_pfn); 2735 } 2736 2737 hlist_for_each_entry_safe(dup, hlist_safe, 2738 &stable_node->hlist, hlist_dup) { 2739 VM_BUG_ON(!is_stable_node_dup(dup)); 2740 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2741 } 2742 if (hlist_empty(&stable_node->hlist)) { 2743 free_stable_node_chain(stable_node, root); 2744 return true; /* notify caller that tree was rebalanced */ 2745 } else 2746 return false; 2747 } 2748 2749 static void ksm_check_stable_tree(unsigned long start_pfn, 2750 unsigned long end_pfn) 2751 { 2752 struct stable_node *stable_node, *next; 2753 struct rb_node *node; 2754 int nid; 2755 2756 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2757 node = rb_first(root_stable_tree + nid); 2758 while (node) { 2759 stable_node = rb_entry(node, struct stable_node, node); 2760 if (stable_node_chain_remove_range(stable_node, 2761 start_pfn, end_pfn, 2762 root_stable_tree + 2763 nid)) 2764 node = rb_first(root_stable_tree + nid); 2765 else 2766 node = rb_next(node); 2767 cond_resched(); 2768 } 2769 } 2770 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2771 if (stable_node->kpfn >= start_pfn && 2772 stable_node->kpfn < end_pfn) 2773 remove_node_from_stable_tree(stable_node); 2774 cond_resched(); 2775 } 2776 } 2777 2778 static int ksm_memory_callback(struct notifier_block *self, 2779 unsigned long action, void *arg) 2780 { 2781 struct memory_notify *mn = arg; 2782 2783 switch (action) { 2784 case MEM_GOING_OFFLINE: 2785 /* 2786 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2787 * and remove_all_stable_nodes() while memory is going offline: 2788 * it is unsafe for them to touch the stable tree at this time. 2789 * But unmerge_ksm_pages(), rmap lookups and other entry points 2790 * which do not need the ksm_thread_mutex are all safe. 2791 */ 2792 mutex_lock(&ksm_thread_mutex); 2793 ksm_run |= KSM_RUN_OFFLINE; 2794 mutex_unlock(&ksm_thread_mutex); 2795 break; 2796 2797 case MEM_OFFLINE: 2798 /* 2799 * Most of the work is done by page migration; but there might 2800 * be a few stable_nodes left over, still pointing to struct 2801 * pages which have been offlined: prune those from the tree, 2802 * otherwise get_ksm_page() might later try to access a 2803 * non-existent struct page. 2804 */ 2805 ksm_check_stable_tree(mn->start_pfn, 2806 mn->start_pfn + mn->nr_pages); 2807 /* fallthrough */ 2808 2809 case MEM_CANCEL_OFFLINE: 2810 mutex_lock(&ksm_thread_mutex); 2811 ksm_run &= ~KSM_RUN_OFFLINE; 2812 mutex_unlock(&ksm_thread_mutex); 2813 2814 smp_mb(); /* wake_up_bit advises this */ 2815 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2816 break; 2817 } 2818 return NOTIFY_OK; 2819 } 2820 #else 2821 static void wait_while_offlining(void) 2822 { 2823 } 2824 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2825 2826 #ifdef CONFIG_SYSFS 2827 /* 2828 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2829 */ 2830 2831 #define KSM_ATTR_RO(_name) \ 2832 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2833 #define KSM_ATTR(_name) \ 2834 static struct kobj_attribute _name##_attr = \ 2835 __ATTR(_name, 0644, _name##_show, _name##_store) 2836 2837 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2838 struct kobj_attribute *attr, char *buf) 2839 { 2840 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2841 } 2842 2843 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2844 struct kobj_attribute *attr, 2845 const char *buf, size_t count) 2846 { 2847 unsigned long msecs; 2848 int err; 2849 2850 err = kstrtoul(buf, 10, &msecs); 2851 if (err || msecs > UINT_MAX) 2852 return -EINVAL; 2853 2854 ksm_thread_sleep_millisecs = msecs; 2855 wake_up_interruptible(&ksm_iter_wait); 2856 2857 return count; 2858 } 2859 KSM_ATTR(sleep_millisecs); 2860 2861 static ssize_t pages_to_scan_show(struct kobject *kobj, 2862 struct kobj_attribute *attr, char *buf) 2863 { 2864 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2865 } 2866 2867 static ssize_t pages_to_scan_store(struct kobject *kobj, 2868 struct kobj_attribute *attr, 2869 const char *buf, size_t count) 2870 { 2871 int err; 2872 unsigned long nr_pages; 2873 2874 err = kstrtoul(buf, 10, &nr_pages); 2875 if (err || nr_pages > UINT_MAX) 2876 return -EINVAL; 2877 2878 ksm_thread_pages_to_scan = nr_pages; 2879 2880 return count; 2881 } 2882 KSM_ATTR(pages_to_scan); 2883 2884 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2885 char *buf) 2886 { 2887 return sprintf(buf, "%lu\n", ksm_run); 2888 } 2889 2890 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2891 const char *buf, size_t count) 2892 { 2893 int err; 2894 unsigned long flags; 2895 2896 err = kstrtoul(buf, 10, &flags); 2897 if (err || flags > UINT_MAX) 2898 return -EINVAL; 2899 if (flags > KSM_RUN_UNMERGE) 2900 return -EINVAL; 2901 2902 /* 2903 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2904 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2905 * breaking COW to free the pages_shared (but leaves mm_slots 2906 * on the list for when ksmd may be set running again). 2907 */ 2908 2909 mutex_lock(&ksm_thread_mutex); 2910 wait_while_offlining(); 2911 if (ksm_run != flags) { 2912 ksm_run = flags; 2913 if (flags & KSM_RUN_UNMERGE) { 2914 set_current_oom_origin(); 2915 err = unmerge_and_remove_all_rmap_items(); 2916 clear_current_oom_origin(); 2917 if (err) { 2918 ksm_run = KSM_RUN_STOP; 2919 count = err; 2920 } 2921 } 2922 } 2923 mutex_unlock(&ksm_thread_mutex); 2924 2925 if (flags & KSM_RUN_MERGE) 2926 wake_up_interruptible(&ksm_thread_wait); 2927 2928 return count; 2929 } 2930 KSM_ATTR(run); 2931 2932 #ifdef CONFIG_NUMA 2933 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2934 struct kobj_attribute *attr, char *buf) 2935 { 2936 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2937 } 2938 2939 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2940 struct kobj_attribute *attr, 2941 const char *buf, size_t count) 2942 { 2943 int err; 2944 unsigned long knob; 2945 2946 err = kstrtoul(buf, 10, &knob); 2947 if (err) 2948 return err; 2949 if (knob > 1) 2950 return -EINVAL; 2951 2952 mutex_lock(&ksm_thread_mutex); 2953 wait_while_offlining(); 2954 if (ksm_merge_across_nodes != knob) { 2955 if (ksm_pages_shared || remove_all_stable_nodes()) 2956 err = -EBUSY; 2957 else if (root_stable_tree == one_stable_tree) { 2958 struct rb_root *buf; 2959 /* 2960 * This is the first time that we switch away from the 2961 * default of merging across nodes: must now allocate 2962 * a buffer to hold as many roots as may be needed. 2963 * Allocate stable and unstable together: 2964 * MAXSMP NODES_SHIFT 10 will use 16kB. 2965 */ 2966 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2967 GFP_KERNEL); 2968 /* Let us assume that RB_ROOT is NULL is zero */ 2969 if (!buf) 2970 err = -ENOMEM; 2971 else { 2972 root_stable_tree = buf; 2973 root_unstable_tree = buf + nr_node_ids; 2974 /* Stable tree is empty but not the unstable */ 2975 root_unstable_tree[0] = one_unstable_tree[0]; 2976 } 2977 } 2978 if (!err) { 2979 ksm_merge_across_nodes = knob; 2980 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2981 } 2982 } 2983 mutex_unlock(&ksm_thread_mutex); 2984 2985 return err ? err : count; 2986 } 2987 KSM_ATTR(merge_across_nodes); 2988 #endif 2989 2990 static ssize_t use_zero_pages_show(struct kobject *kobj, 2991 struct kobj_attribute *attr, char *buf) 2992 { 2993 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2994 } 2995 static ssize_t use_zero_pages_store(struct kobject *kobj, 2996 struct kobj_attribute *attr, 2997 const char *buf, size_t count) 2998 { 2999 int err; 3000 bool value; 3001 3002 err = kstrtobool(buf, &value); 3003 if (err) 3004 return -EINVAL; 3005 3006 ksm_use_zero_pages = value; 3007 3008 return count; 3009 } 3010 KSM_ATTR(use_zero_pages); 3011 3012 static ssize_t max_page_sharing_show(struct kobject *kobj, 3013 struct kobj_attribute *attr, char *buf) 3014 { 3015 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3016 } 3017 3018 static ssize_t max_page_sharing_store(struct kobject *kobj, 3019 struct kobj_attribute *attr, 3020 const char *buf, size_t count) 3021 { 3022 int err; 3023 int knob; 3024 3025 err = kstrtoint(buf, 10, &knob); 3026 if (err) 3027 return err; 3028 /* 3029 * When a KSM page is created it is shared by 2 mappings. This 3030 * being a signed comparison, it implicitly verifies it's not 3031 * negative. 3032 */ 3033 if (knob < 2) 3034 return -EINVAL; 3035 3036 if (READ_ONCE(ksm_max_page_sharing) == knob) 3037 return count; 3038 3039 mutex_lock(&ksm_thread_mutex); 3040 wait_while_offlining(); 3041 if (ksm_max_page_sharing != knob) { 3042 if (ksm_pages_shared || remove_all_stable_nodes()) 3043 err = -EBUSY; 3044 else 3045 ksm_max_page_sharing = knob; 3046 } 3047 mutex_unlock(&ksm_thread_mutex); 3048 3049 return err ? err : count; 3050 } 3051 KSM_ATTR(max_page_sharing); 3052 3053 static ssize_t pages_shared_show(struct kobject *kobj, 3054 struct kobj_attribute *attr, char *buf) 3055 { 3056 return sprintf(buf, "%lu\n", ksm_pages_shared); 3057 } 3058 KSM_ATTR_RO(pages_shared); 3059 3060 static ssize_t pages_sharing_show(struct kobject *kobj, 3061 struct kobj_attribute *attr, char *buf) 3062 { 3063 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3064 } 3065 KSM_ATTR_RO(pages_sharing); 3066 3067 static ssize_t pages_unshared_show(struct kobject *kobj, 3068 struct kobj_attribute *attr, char *buf) 3069 { 3070 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3071 } 3072 KSM_ATTR_RO(pages_unshared); 3073 3074 static ssize_t pages_volatile_show(struct kobject *kobj, 3075 struct kobj_attribute *attr, char *buf) 3076 { 3077 long ksm_pages_volatile; 3078 3079 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3080 - ksm_pages_sharing - ksm_pages_unshared; 3081 /* 3082 * It was not worth any locking to calculate that statistic, 3083 * but it might therefore sometimes be negative: conceal that. 3084 */ 3085 if (ksm_pages_volatile < 0) 3086 ksm_pages_volatile = 0; 3087 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3088 } 3089 KSM_ATTR_RO(pages_volatile); 3090 3091 static ssize_t stable_node_dups_show(struct kobject *kobj, 3092 struct kobj_attribute *attr, char *buf) 3093 { 3094 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3095 } 3096 KSM_ATTR_RO(stable_node_dups); 3097 3098 static ssize_t stable_node_chains_show(struct kobject *kobj, 3099 struct kobj_attribute *attr, char *buf) 3100 { 3101 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3102 } 3103 KSM_ATTR_RO(stable_node_chains); 3104 3105 static ssize_t 3106 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3107 struct kobj_attribute *attr, 3108 char *buf) 3109 { 3110 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3111 } 3112 3113 static ssize_t 3114 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3115 struct kobj_attribute *attr, 3116 const char *buf, size_t count) 3117 { 3118 unsigned long msecs; 3119 int err; 3120 3121 err = kstrtoul(buf, 10, &msecs); 3122 if (err || msecs > UINT_MAX) 3123 return -EINVAL; 3124 3125 ksm_stable_node_chains_prune_millisecs = msecs; 3126 3127 return count; 3128 } 3129 KSM_ATTR(stable_node_chains_prune_millisecs); 3130 3131 static ssize_t full_scans_show(struct kobject *kobj, 3132 struct kobj_attribute *attr, char *buf) 3133 { 3134 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3135 } 3136 KSM_ATTR_RO(full_scans); 3137 3138 static struct attribute *ksm_attrs[] = { 3139 &sleep_millisecs_attr.attr, 3140 &pages_to_scan_attr.attr, 3141 &run_attr.attr, 3142 &pages_shared_attr.attr, 3143 &pages_sharing_attr.attr, 3144 &pages_unshared_attr.attr, 3145 &pages_volatile_attr.attr, 3146 &full_scans_attr.attr, 3147 #ifdef CONFIG_NUMA 3148 &merge_across_nodes_attr.attr, 3149 #endif 3150 &max_page_sharing_attr.attr, 3151 &stable_node_chains_attr.attr, 3152 &stable_node_dups_attr.attr, 3153 &stable_node_chains_prune_millisecs_attr.attr, 3154 &use_zero_pages_attr.attr, 3155 NULL, 3156 }; 3157 3158 static const struct attribute_group ksm_attr_group = { 3159 .attrs = ksm_attrs, 3160 .name = "ksm", 3161 }; 3162 #endif /* CONFIG_SYSFS */ 3163 3164 static int __init ksm_init(void) 3165 { 3166 struct task_struct *ksm_thread; 3167 int err; 3168 3169 /* The correct value depends on page size and endianness */ 3170 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3171 /* Default to false for backwards compatibility */ 3172 ksm_use_zero_pages = false; 3173 3174 err = ksm_slab_init(); 3175 if (err) 3176 goto out; 3177 3178 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3179 if (IS_ERR(ksm_thread)) { 3180 pr_err("ksm: creating kthread failed\n"); 3181 err = PTR_ERR(ksm_thread); 3182 goto out_free; 3183 } 3184 3185 #ifdef CONFIG_SYSFS 3186 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3187 if (err) { 3188 pr_err("ksm: register sysfs failed\n"); 3189 kthread_stop(ksm_thread); 3190 goto out_free; 3191 } 3192 #else 3193 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3194 3195 #endif /* CONFIG_SYSFS */ 3196 3197 #ifdef CONFIG_MEMORY_HOTREMOVE 3198 /* There is no significance to this priority 100 */ 3199 hotplug_memory_notifier(ksm_memory_callback, 100); 3200 #endif 3201 return 0; 3202 3203 out_free: 3204 ksm_slab_free(); 3205 out: 3206 return err; 3207 } 3208 subsys_initcall(ksm_init); 3209