xref: /linux/mm/ksm.c (revision 544029862cbb1d7903e19f2e58f48d4884e1201b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113 
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122 	struct hlist_node link;
123 	struct list_head mm_list;
124 	struct rmap_item *rmap_list;
125 	struct mm_struct *mm;
126 };
127 
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138 	struct mm_slot *mm_slot;
139 	unsigned long address;
140 	struct rmap_item **rmap_list;
141 	unsigned long seqnr;
142 };
143 
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157 	union {
158 		struct rb_node node;	/* when node of stable tree */
159 		struct {		/* when listed for migration */
160 			struct list_head *head;
161 			struct {
162 				struct hlist_node hlist_dup;
163 				struct list_head list;
164 			};
165 		};
166 	};
167 	struct hlist_head hlist;
168 	union {
169 		unsigned long kpfn;
170 		unsigned long chain_prune_time;
171 	};
172 	/*
173 	 * STABLE_NODE_CHAIN can be any negative number in
174 	 * rmap_hlist_len negative range, but better not -1 to be able
175 	 * to reliably detect underflows.
176 	 */
177 #define STABLE_NODE_CHAIN -1024
178 	int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 	int nid;
181 #endif
182 };
183 
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197 	struct rmap_item *rmap_list;
198 	union {
199 		struct anon_vma *anon_vma;	/* when stable */
200 #ifdef CONFIG_NUMA
201 		int nid;		/* when node of unstable tree */
202 #endif
203 	};
204 	struct mm_struct *mm;
205 	unsigned long address;		/* + low bits used for flags below */
206 	unsigned int oldchecksum;	/* when unstable */
207 	union {
208 		struct rb_node node;	/* when node of unstable tree */
209 		struct {		/* when listed from stable tree */
210 			struct stable_node *head;
211 			struct hlist_node hlist;
212 		};
213 	};
214 };
215 
216 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 				/* to mask all the flags */
221 
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227 
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231 
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234 
235 static struct mm_slot ksm_mm_head = {
236 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239 	.mm_slot = &ksm_mm_head,
240 };
241 
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245 
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248 
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251 
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254 
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257 
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260 
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263 
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266 
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269 
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272 
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275 
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278 
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281 
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes	1U
288 #define ksm_nr_node_ids		1
289 #endif
290 
291 #define KSM_RUN_STOP	0
292 #define KSM_RUN_MERGE	1
293 #define KSM_RUN_UNMERGE	2
294 #define KSM_RUN_OFFLINE	4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297 
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302 
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 		sizeof(struct __struct), __alignof__(struct __struct),\
305 		(__flags), NULL)
306 
307 static int __init ksm_slab_init(void)
308 {
309 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 	if (!rmap_item_cache)
311 		goto out;
312 
313 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 	if (!stable_node_cache)
315 		goto out_free1;
316 
317 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 	if (!mm_slot_cache)
319 		goto out_free2;
320 
321 	return 0;
322 
323 out_free2:
324 	kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 	kmem_cache_destroy(rmap_item_cache);
327 out:
328 	return -ENOMEM;
329 }
330 
331 static void __init ksm_slab_free(void)
332 {
333 	kmem_cache_destroy(mm_slot_cache);
334 	kmem_cache_destroy(stable_node_cache);
335 	kmem_cache_destroy(rmap_item_cache);
336 	mm_slot_cache = NULL;
337 }
338 
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343 
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346 	return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348 
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 					     struct stable_node *chain)
351 {
352 	VM_BUG_ON(is_stable_node_dup(dup));
353 	dup->head = STABLE_NODE_DUP_HEAD;
354 	VM_BUG_ON(!is_stable_node_chain(chain));
355 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 	ksm_stable_node_dups++;
357 }
358 
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361 	VM_BUG_ON(!is_stable_node_dup(dup));
362 	hlist_del(&dup->hlist_dup);
363 	ksm_stable_node_dups--;
364 }
365 
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368 	VM_BUG_ON(is_stable_node_chain(dup));
369 	if (is_stable_node_dup(dup))
370 		__stable_node_dup_del(dup);
371 	else
372 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 	dup->head = NULL;
375 #endif
376 }
377 
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380 	struct rmap_item *rmap_item;
381 
382 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 						__GFP_NORETRY | __GFP_NOWARN);
384 	if (rmap_item)
385 		ksm_rmap_items++;
386 	return rmap_item;
387 }
388 
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391 	ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415 	if (!mm_slot_cache)	/* initialization failed */
416 		return NULL;
417 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419 
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422 	kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424 
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427 	struct mm_slot *slot;
428 
429 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 		if (slot->mm == mm)
431 			return slot;
432 
433 	return NULL;
434 }
435 
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 				    struct mm_slot *mm_slot)
438 {
439 	mm_slot->mm = mm;
440 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442 
443 /*
444  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445  * page tables after it has passed through ksm_exit() - which, if necessary,
446  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
447  * a special flag: they can just back out as soon as mm_users goes to zero.
448  * ksm_test_exit() is used throughout to make this test for exit: in some
449  * places for correctness, in some places just to avoid unnecessary work.
450  */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453 	return atomic_read(&mm->mm_users) == 0;
454 }
455 
456 /*
457  * We use break_ksm to break COW on a ksm page: it's a stripped down
458  *
459  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460  *		put_page(page);
461  *
462  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463  * in case the application has unmapped and remapped mm,addr meanwhile.
464  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466  *
467  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468  * of the process that owns 'vma'.  We also do not want to enforce
469  * protection keys here anyway.
470  */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473 	struct page *page;
474 	vm_fault_t ret = 0;
475 
476 	do {
477 		cond_resched();
478 		page = follow_page(vma, addr,
479 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 		if (IS_ERR_OR_NULL(page))
481 			break;
482 		if (PageKsm(page))
483 			ret = handle_mm_fault(vma, addr,
484 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485 		else
486 			ret = VM_FAULT_WRITE;
487 		put_page(page);
488 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 	/*
490 	 * We must loop because handle_mm_fault() may back out if there's
491 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 	 *
493 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 	 * COW has been broken, even if the vma does not permit VM_WRITE;
495 	 * but note that a concurrent fault might break PageKsm for us.
496 	 *
497 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 	 * backing file, which also invalidates anonymous pages: that's
499 	 * okay, that truncation will have unmapped the PageKsm for us.
500 	 *
501 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 	 * to user; and ksmd, having no mm, would never be chosen for that.
505 	 *
506 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 	 * even ksmd can fail in this way - though it's usually breaking ksm
509 	 * just to undo a merge it made a moment before, so unlikely to oom.
510 	 *
511 	 * That's a pity: we might therefore have more kernel pages allocated
512 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 	 * will retry to break_cow on each pass, so should recover the page
514 	 * in due course.  The important thing is to not let VM_MERGEABLE
515 	 * be cleared while any such pages might remain in the area.
516 	 */
517 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519 
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 		unsigned long addr)
522 {
523 	struct vm_area_struct *vma;
524 	if (ksm_test_exit(mm))
525 		return NULL;
526 	vma = find_vma(mm, addr);
527 	if (!vma || vma->vm_start > addr)
528 		return NULL;
529 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 		return NULL;
531 	return vma;
532 }
533 
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 	struct mm_struct *mm = rmap_item->mm;
537 	unsigned long addr = rmap_item->address;
538 	struct vm_area_struct *vma;
539 
540 	/*
541 	 * It is not an accident that whenever we want to break COW
542 	 * to undo, we also need to drop a reference to the anon_vma.
543 	 */
544 	put_anon_vma(rmap_item->anon_vma);
545 
546 	down_read(&mm->mmap_sem);
547 	vma = find_mergeable_vma(mm, addr);
548 	if (vma)
549 		break_ksm(vma, addr);
550 	up_read(&mm->mmap_sem);
551 }
552 
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 	struct mm_struct *mm = rmap_item->mm;
556 	unsigned long addr = rmap_item->address;
557 	struct vm_area_struct *vma;
558 	struct page *page;
559 
560 	down_read(&mm->mmap_sem);
561 	vma = find_mergeable_vma(mm, addr);
562 	if (!vma)
563 		goto out;
564 
565 	page = follow_page(vma, addr, FOLL_GET);
566 	if (IS_ERR_OR_NULL(page))
567 		goto out;
568 	if (PageAnon(page)) {
569 		flush_anon_page(vma, page, addr);
570 		flush_dcache_page(page);
571 	} else {
572 		put_page(page);
573 out:
574 		page = NULL;
575 	}
576 	up_read(&mm->mmap_sem);
577 	return page;
578 }
579 
580 /*
581  * This helper is used for getting right index into array of tree roots.
582  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584  * every node has its own stable and unstable tree.
585  */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590 
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 						   struct rb_root *root)
593 {
594 	struct stable_node *chain = alloc_stable_node();
595 	VM_BUG_ON(is_stable_node_chain(dup));
596 	if (likely(chain)) {
597 		INIT_HLIST_HEAD(&chain->hlist);
598 		chain->chain_prune_time = jiffies;
599 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 		chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 		ksm_stable_node_chains++;
604 
605 		/*
606 		 * Put the stable node chain in the first dimension of
607 		 * the stable tree and at the same time remove the old
608 		 * stable node.
609 		 */
610 		rb_replace_node(&dup->node, &chain->node, root);
611 
612 		/*
613 		 * Move the old stable node to the second dimension
614 		 * queued in the hlist_dup. The invariant is that all
615 		 * dup stable_nodes in the chain->hlist point to pages
616 		 * that are wrprotected and have the exact same
617 		 * content.
618 		 */
619 		stable_node_chain_add_dup(dup, chain);
620 	}
621 	return chain;
622 }
623 
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 					  struct rb_root *root)
626 {
627 	rb_erase(&chain->node, root);
628 	free_stable_node(chain);
629 	ksm_stable_node_chains--;
630 }
631 
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 	struct rmap_item *rmap_item;
635 
636 	/* check it's not STABLE_NODE_CHAIN or negative */
637 	BUG_ON(stable_node->rmap_hlist_len < 0);
638 
639 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 		if (rmap_item->hlist.next)
641 			ksm_pages_sharing--;
642 		else
643 			ksm_pages_shared--;
644 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 		stable_node->rmap_hlist_len--;
646 		put_anon_vma(rmap_item->anon_vma);
647 		rmap_item->address &= PAGE_MASK;
648 		cond_resched();
649 	}
650 
651 	/*
652 	 * We need the second aligned pointer of the migrate_nodes
653 	 * list_head to stay clear from the rb_parent_color union
654 	 * (aligned and different than any node) and also different
655 	 * from &migrate_nodes. This will verify that future list.h changes
656 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 	 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662 
663 	if (stable_node->head == &migrate_nodes)
664 		list_del(&stable_node->list);
665 	else
666 		stable_node_dup_del(stable_node);
667 	free_stable_node(stable_node);
668 }
669 
670 /*
671  * get_ksm_page: checks if the page indicated by the stable node
672  * is still its ksm page, despite having held no reference to it.
673  * In which case we can trust the content of the page, and it
674  * returns the gotten page; but if the page has now been zapped,
675  * remove the stale node from the stable tree and return NULL.
676  * But beware, the stable node's page might be being migrated.
677  *
678  * You would expect the stable_node to hold a reference to the ksm page.
679  * But if it increments the page's count, swapping out has to wait for
680  * ksmd to come around again before it can free the page, which may take
681  * seconds or even minutes: much too unresponsive.  So instead we use a
682  * "keyhole reference": access to the ksm page from the stable node peeps
683  * out through its keyhole to see if that page still holds the right key,
684  * pointing back to this stable node.  This relies on freeing a PageAnon
685  * page to reset its page->mapping to NULL, and relies on no other use of
686  * a page to put something that might look like our key in page->mapping.
687  * is on its way to being freed; but it is an anomaly to bear in mind.
688  */
689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
690 {
691 	struct page *page;
692 	void *expected_mapping;
693 	unsigned long kpfn;
694 
695 	expected_mapping = (void *)((unsigned long)stable_node |
696 					PAGE_MAPPING_KSM);
697 again:
698 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
699 	page = pfn_to_page(kpfn);
700 	if (READ_ONCE(page->mapping) != expected_mapping)
701 		goto stale;
702 
703 	/*
704 	 * We cannot do anything with the page while its refcount is 0.
705 	 * Usually 0 means free, or tail of a higher-order page: in which
706 	 * case this node is no longer referenced, and should be freed;
707 	 * however, it might mean that the page is under page_ref_freeze().
708 	 * The __remove_mapping() case is easy, again the node is now stale;
709 	 * the same is in reuse_ksm_page() case; but if page is swapcache
710 	 * in migrate_page_move_mapping(), it might still be our page,
711 	 * in which case it's essential to keep the node.
712 	 */
713 	while (!get_page_unless_zero(page)) {
714 		/*
715 		 * Another check for page->mapping != expected_mapping would
716 		 * work here too.  We have chosen the !PageSwapCache test to
717 		 * optimize the common case, when the page is or is about to
718 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
719 		 * in the ref_freeze section of __remove_mapping(); but Anon
720 		 * page->mapping reset to NULL later, in free_pages_prepare().
721 		 */
722 		if (!PageSwapCache(page))
723 			goto stale;
724 		cpu_relax();
725 	}
726 
727 	if (READ_ONCE(page->mapping) != expected_mapping) {
728 		put_page(page);
729 		goto stale;
730 	}
731 
732 	if (lock_it) {
733 		lock_page(page);
734 		if (READ_ONCE(page->mapping) != expected_mapping) {
735 			unlock_page(page);
736 			put_page(page);
737 			goto stale;
738 		}
739 	}
740 	return page;
741 
742 stale:
743 	/*
744 	 * We come here from above when page->mapping or !PageSwapCache
745 	 * suggests that the node is stale; but it might be under migration.
746 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
747 	 * before checking whether node->kpfn has been changed.
748 	 */
749 	smp_rmb();
750 	if (READ_ONCE(stable_node->kpfn) != kpfn)
751 		goto again;
752 	remove_node_from_stable_tree(stable_node);
753 	return NULL;
754 }
755 
756 /*
757  * Removing rmap_item from stable or unstable tree.
758  * This function will clean the information from the stable/unstable tree.
759  */
760 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
761 {
762 	if (rmap_item->address & STABLE_FLAG) {
763 		struct stable_node *stable_node;
764 		struct page *page;
765 
766 		stable_node = rmap_item->head;
767 		page = get_ksm_page(stable_node, true);
768 		if (!page)
769 			goto out;
770 
771 		hlist_del(&rmap_item->hlist);
772 		unlock_page(page);
773 		put_page(page);
774 
775 		if (!hlist_empty(&stable_node->hlist))
776 			ksm_pages_sharing--;
777 		else
778 			ksm_pages_shared--;
779 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
780 		stable_node->rmap_hlist_len--;
781 
782 		put_anon_vma(rmap_item->anon_vma);
783 		rmap_item->address &= PAGE_MASK;
784 
785 	} else if (rmap_item->address & UNSTABLE_FLAG) {
786 		unsigned char age;
787 		/*
788 		 * Usually ksmd can and must skip the rb_erase, because
789 		 * root_unstable_tree was already reset to RB_ROOT.
790 		 * But be careful when an mm is exiting: do the rb_erase
791 		 * if this rmap_item was inserted by this scan, rather
792 		 * than left over from before.
793 		 */
794 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
795 		BUG_ON(age > 1);
796 		if (!age)
797 			rb_erase(&rmap_item->node,
798 				 root_unstable_tree + NUMA(rmap_item->nid));
799 		ksm_pages_unshared--;
800 		rmap_item->address &= PAGE_MASK;
801 	}
802 out:
803 	cond_resched();		/* we're called from many long loops */
804 }
805 
806 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
807 				       struct rmap_item **rmap_list)
808 {
809 	while (*rmap_list) {
810 		struct rmap_item *rmap_item = *rmap_list;
811 		*rmap_list = rmap_item->rmap_list;
812 		remove_rmap_item_from_tree(rmap_item);
813 		free_rmap_item(rmap_item);
814 	}
815 }
816 
817 /*
818  * Though it's very tempting to unmerge rmap_items from stable tree rather
819  * than check every pte of a given vma, the locking doesn't quite work for
820  * that - an rmap_item is assigned to the stable tree after inserting ksm
821  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
822  * rmap_items from parent to child at fork time (so as not to waste time
823  * if exit comes before the next scan reaches it).
824  *
825  * Similarly, although we'd like to remove rmap_items (so updating counts
826  * and freeing memory) when unmerging an area, it's easier to leave that
827  * to the next pass of ksmd - consider, for example, how ksmd might be
828  * in cmp_and_merge_page on one of the rmap_items we would be removing.
829  */
830 static int unmerge_ksm_pages(struct vm_area_struct *vma,
831 			     unsigned long start, unsigned long end)
832 {
833 	unsigned long addr;
834 	int err = 0;
835 
836 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
837 		if (ksm_test_exit(vma->vm_mm))
838 			break;
839 		if (signal_pending(current))
840 			err = -ERESTARTSYS;
841 		else
842 			err = break_ksm(vma, addr);
843 	}
844 	return err;
845 }
846 
847 static inline struct stable_node *page_stable_node(struct page *page)
848 {
849 	return PageKsm(page) ? page_rmapping(page) : NULL;
850 }
851 
852 static inline void set_page_stable_node(struct page *page,
853 					struct stable_node *stable_node)
854 {
855 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
856 }
857 
858 #ifdef CONFIG_SYSFS
859 /*
860  * Only called through the sysfs control interface:
861  */
862 static int remove_stable_node(struct stable_node *stable_node)
863 {
864 	struct page *page;
865 	int err;
866 
867 	page = get_ksm_page(stable_node, true);
868 	if (!page) {
869 		/*
870 		 * get_ksm_page did remove_node_from_stable_tree itself.
871 		 */
872 		return 0;
873 	}
874 
875 	if (WARN_ON_ONCE(page_mapped(page))) {
876 		/*
877 		 * This should not happen: but if it does, just refuse to let
878 		 * merge_across_nodes be switched - there is no need to panic.
879 		 */
880 		err = -EBUSY;
881 	} else {
882 		/*
883 		 * The stable node did not yet appear stale to get_ksm_page(),
884 		 * since that allows for an unmapped ksm page to be recognized
885 		 * right up until it is freed; but the node is safe to remove.
886 		 * This page might be in a pagevec waiting to be freed,
887 		 * or it might be PageSwapCache (perhaps under writeback),
888 		 * or it might have been removed from swapcache a moment ago.
889 		 */
890 		set_page_stable_node(page, NULL);
891 		remove_node_from_stable_tree(stable_node);
892 		err = 0;
893 	}
894 
895 	unlock_page(page);
896 	put_page(page);
897 	return err;
898 }
899 
900 static int remove_stable_node_chain(struct stable_node *stable_node,
901 				    struct rb_root *root)
902 {
903 	struct stable_node *dup;
904 	struct hlist_node *hlist_safe;
905 
906 	if (!is_stable_node_chain(stable_node)) {
907 		VM_BUG_ON(is_stable_node_dup(stable_node));
908 		if (remove_stable_node(stable_node))
909 			return true;
910 		else
911 			return false;
912 	}
913 
914 	hlist_for_each_entry_safe(dup, hlist_safe,
915 				  &stable_node->hlist, hlist_dup) {
916 		VM_BUG_ON(!is_stable_node_dup(dup));
917 		if (remove_stable_node(dup))
918 			return true;
919 	}
920 	BUG_ON(!hlist_empty(&stable_node->hlist));
921 	free_stable_node_chain(stable_node, root);
922 	return false;
923 }
924 
925 static int remove_all_stable_nodes(void)
926 {
927 	struct stable_node *stable_node, *next;
928 	int nid;
929 	int err = 0;
930 
931 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
932 		while (root_stable_tree[nid].rb_node) {
933 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
934 						struct stable_node, node);
935 			if (remove_stable_node_chain(stable_node,
936 						     root_stable_tree + nid)) {
937 				err = -EBUSY;
938 				break;	/* proceed to next nid */
939 			}
940 			cond_resched();
941 		}
942 	}
943 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
944 		if (remove_stable_node(stable_node))
945 			err = -EBUSY;
946 		cond_resched();
947 	}
948 	return err;
949 }
950 
951 static int unmerge_and_remove_all_rmap_items(void)
952 {
953 	struct mm_slot *mm_slot;
954 	struct mm_struct *mm;
955 	struct vm_area_struct *vma;
956 	int err = 0;
957 
958 	spin_lock(&ksm_mmlist_lock);
959 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
960 						struct mm_slot, mm_list);
961 	spin_unlock(&ksm_mmlist_lock);
962 
963 	for (mm_slot = ksm_scan.mm_slot;
964 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
965 		mm = mm_slot->mm;
966 		down_read(&mm->mmap_sem);
967 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
968 			if (ksm_test_exit(mm))
969 				break;
970 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
971 				continue;
972 			err = unmerge_ksm_pages(vma,
973 						vma->vm_start, vma->vm_end);
974 			if (err)
975 				goto error;
976 		}
977 
978 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
979 		up_read(&mm->mmap_sem);
980 
981 		spin_lock(&ksm_mmlist_lock);
982 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
983 						struct mm_slot, mm_list);
984 		if (ksm_test_exit(mm)) {
985 			hash_del(&mm_slot->link);
986 			list_del(&mm_slot->mm_list);
987 			spin_unlock(&ksm_mmlist_lock);
988 
989 			free_mm_slot(mm_slot);
990 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
991 			mmdrop(mm);
992 		} else
993 			spin_unlock(&ksm_mmlist_lock);
994 	}
995 
996 	/* Clean up stable nodes, but don't worry if some are still busy */
997 	remove_all_stable_nodes();
998 	ksm_scan.seqnr = 0;
999 	return 0;
1000 
1001 error:
1002 	up_read(&mm->mmap_sem);
1003 	spin_lock(&ksm_mmlist_lock);
1004 	ksm_scan.mm_slot = &ksm_mm_head;
1005 	spin_unlock(&ksm_mmlist_lock);
1006 	return err;
1007 }
1008 #endif /* CONFIG_SYSFS */
1009 
1010 static u32 calc_checksum(struct page *page)
1011 {
1012 	u32 checksum;
1013 	void *addr = kmap_atomic(page);
1014 	checksum = xxhash(addr, PAGE_SIZE, 0);
1015 	kunmap_atomic(addr);
1016 	return checksum;
1017 }
1018 
1019 static int memcmp_pages(struct page *page1, struct page *page2)
1020 {
1021 	char *addr1, *addr2;
1022 	int ret;
1023 
1024 	addr1 = kmap_atomic(page1);
1025 	addr2 = kmap_atomic(page2);
1026 	ret = memcmp(addr1, addr2, PAGE_SIZE);
1027 	kunmap_atomic(addr2);
1028 	kunmap_atomic(addr1);
1029 	return ret;
1030 }
1031 
1032 static inline int pages_identical(struct page *page1, struct page *page2)
1033 {
1034 	return !memcmp_pages(page1, page2);
1035 }
1036 
1037 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1038 			      pte_t *orig_pte)
1039 {
1040 	struct mm_struct *mm = vma->vm_mm;
1041 	struct page_vma_mapped_walk pvmw = {
1042 		.page = page,
1043 		.vma = vma,
1044 	};
1045 	int swapped;
1046 	int err = -EFAULT;
1047 	struct mmu_notifier_range range;
1048 
1049 	pvmw.address = page_address_in_vma(page, vma);
1050 	if (pvmw.address == -EFAULT)
1051 		goto out;
1052 
1053 	BUG_ON(PageTransCompound(page));
1054 
1055 	mmu_notifier_range_init(&range, mm, pvmw.address,
1056 				pvmw.address + PAGE_SIZE);
1057 	mmu_notifier_invalidate_range_start(&range);
1058 
1059 	if (!page_vma_mapped_walk(&pvmw))
1060 		goto out_mn;
1061 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1062 		goto out_unlock;
1063 
1064 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1065 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1066 						mm_tlb_flush_pending(mm)) {
1067 		pte_t entry;
1068 
1069 		swapped = PageSwapCache(page);
1070 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1071 		/*
1072 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1073 		 * take any lock, therefore the check that we are going to make
1074 		 * with the pagecount against the mapcount is racey and
1075 		 * O_DIRECT can happen right after the check.
1076 		 * So we clear the pte and flush the tlb before the check
1077 		 * this assure us that no O_DIRECT can happen after the check
1078 		 * or in the middle of the check.
1079 		 *
1080 		 * No need to notify as we are downgrading page table to read
1081 		 * only not changing it to point to a new page.
1082 		 *
1083 		 * See Documentation/vm/mmu_notifier.rst
1084 		 */
1085 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1086 		/*
1087 		 * Check that no O_DIRECT or similar I/O is in progress on the
1088 		 * page
1089 		 */
1090 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1091 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1092 			goto out_unlock;
1093 		}
1094 		if (pte_dirty(entry))
1095 			set_page_dirty(page);
1096 
1097 		if (pte_protnone(entry))
1098 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1099 		else
1100 			entry = pte_mkclean(pte_wrprotect(entry));
1101 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1102 	}
1103 	*orig_pte = *pvmw.pte;
1104 	err = 0;
1105 
1106 out_unlock:
1107 	page_vma_mapped_walk_done(&pvmw);
1108 out_mn:
1109 	mmu_notifier_invalidate_range_end(&range);
1110 out:
1111 	return err;
1112 }
1113 
1114 /**
1115  * replace_page - replace page in vma by new ksm page
1116  * @vma:      vma that holds the pte pointing to page
1117  * @page:     the page we are replacing by kpage
1118  * @kpage:    the ksm page we replace page by
1119  * @orig_pte: the original value of the pte
1120  *
1121  * Returns 0 on success, -EFAULT on failure.
1122  */
1123 static int replace_page(struct vm_area_struct *vma, struct page *page,
1124 			struct page *kpage, pte_t orig_pte)
1125 {
1126 	struct mm_struct *mm = vma->vm_mm;
1127 	pmd_t *pmd;
1128 	pte_t *ptep;
1129 	pte_t newpte;
1130 	spinlock_t *ptl;
1131 	unsigned long addr;
1132 	int err = -EFAULT;
1133 	struct mmu_notifier_range range;
1134 
1135 	addr = page_address_in_vma(page, vma);
1136 	if (addr == -EFAULT)
1137 		goto out;
1138 
1139 	pmd = mm_find_pmd(mm, addr);
1140 	if (!pmd)
1141 		goto out;
1142 
1143 	mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1144 	mmu_notifier_invalidate_range_start(&range);
1145 
1146 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147 	if (!pte_same(*ptep, orig_pte)) {
1148 		pte_unmap_unlock(ptep, ptl);
1149 		goto out_mn;
1150 	}
1151 
1152 	/*
1153 	 * No need to check ksm_use_zero_pages here: we can only have a
1154 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1155 	 */
1156 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1157 		get_page(kpage);
1158 		page_add_anon_rmap(kpage, vma, addr, false);
1159 		newpte = mk_pte(kpage, vma->vm_page_prot);
1160 	} else {
1161 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162 					       vma->vm_page_prot));
1163 		/*
1164 		 * We're replacing an anonymous page with a zero page, which is
1165 		 * not anonymous. We need to do proper accounting otherwise we
1166 		 * will get wrong values in /proc, and a BUG message in dmesg
1167 		 * when tearing down the mm.
1168 		 */
1169 		dec_mm_counter(mm, MM_ANONPAGES);
1170 	}
1171 
1172 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1173 	/*
1174 	 * No need to notify as we are replacing a read only page with another
1175 	 * read only page with the same content.
1176 	 *
1177 	 * See Documentation/vm/mmu_notifier.rst
1178 	 */
1179 	ptep_clear_flush(vma, addr, ptep);
1180 	set_pte_at_notify(mm, addr, ptep, newpte);
1181 
1182 	page_remove_rmap(page, false);
1183 	if (!page_mapped(page))
1184 		try_to_free_swap(page);
1185 	put_page(page);
1186 
1187 	pte_unmap_unlock(ptep, ptl);
1188 	err = 0;
1189 out_mn:
1190 	mmu_notifier_invalidate_range_end(&range);
1191 out:
1192 	return err;
1193 }
1194 
1195 /*
1196  * try_to_merge_one_page - take two pages and merge them into one
1197  * @vma: the vma that holds the pte pointing to page
1198  * @page: the PageAnon page that we want to replace with kpage
1199  * @kpage: the PageKsm page that we want to map instead of page,
1200  *         or NULL the first time when we want to use page as kpage.
1201  *
1202  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203  */
1204 static int try_to_merge_one_page(struct vm_area_struct *vma,
1205 				 struct page *page, struct page *kpage)
1206 {
1207 	pte_t orig_pte = __pte(0);
1208 	int err = -EFAULT;
1209 
1210 	if (page == kpage)			/* ksm page forked */
1211 		return 0;
1212 
1213 	if (!PageAnon(page))
1214 		goto out;
1215 
1216 	/*
1217 	 * We need the page lock to read a stable PageSwapCache in
1218 	 * write_protect_page().  We use trylock_page() instead of
1219 	 * lock_page() because we don't want to wait here - we
1220 	 * prefer to continue scanning and merging different pages,
1221 	 * then come back to this page when it is unlocked.
1222 	 */
1223 	if (!trylock_page(page))
1224 		goto out;
1225 
1226 	if (PageTransCompound(page)) {
1227 		if (split_huge_page(page))
1228 			goto out_unlock;
1229 	}
1230 
1231 	/*
1232 	 * If this anonymous page is mapped only here, its pte may need
1233 	 * to be write-protected.  If it's mapped elsewhere, all of its
1234 	 * ptes are necessarily already write-protected.  But in either
1235 	 * case, we need to lock and check page_count is not raised.
1236 	 */
1237 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1238 		if (!kpage) {
1239 			/*
1240 			 * While we hold page lock, upgrade page from
1241 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1242 			 * stable_tree_insert() will update stable_node.
1243 			 */
1244 			set_page_stable_node(page, NULL);
1245 			mark_page_accessed(page);
1246 			/*
1247 			 * Page reclaim just frees a clean page with no dirty
1248 			 * ptes: make sure that the ksm page would be swapped.
1249 			 */
1250 			if (!PageDirty(page))
1251 				SetPageDirty(page);
1252 			err = 0;
1253 		} else if (pages_identical(page, kpage))
1254 			err = replace_page(vma, page, kpage, orig_pte);
1255 	}
1256 
1257 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1258 		munlock_vma_page(page);
1259 		if (!PageMlocked(kpage)) {
1260 			unlock_page(page);
1261 			lock_page(kpage);
1262 			mlock_vma_page(kpage);
1263 			page = kpage;		/* for final unlock */
1264 		}
1265 	}
1266 
1267 out_unlock:
1268 	unlock_page(page);
1269 out:
1270 	return err;
1271 }
1272 
1273 /*
1274  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1275  * but no new kernel page is allocated: kpage must already be a ksm page.
1276  *
1277  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1278  */
1279 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1280 				      struct page *page, struct page *kpage)
1281 {
1282 	struct mm_struct *mm = rmap_item->mm;
1283 	struct vm_area_struct *vma;
1284 	int err = -EFAULT;
1285 
1286 	down_read(&mm->mmap_sem);
1287 	vma = find_mergeable_vma(mm, rmap_item->address);
1288 	if (!vma)
1289 		goto out;
1290 
1291 	err = try_to_merge_one_page(vma, page, kpage);
1292 	if (err)
1293 		goto out;
1294 
1295 	/* Unstable nid is in union with stable anon_vma: remove first */
1296 	remove_rmap_item_from_tree(rmap_item);
1297 
1298 	/* Must get reference to anon_vma while still holding mmap_sem */
1299 	rmap_item->anon_vma = vma->anon_vma;
1300 	get_anon_vma(vma->anon_vma);
1301 out:
1302 	up_read(&mm->mmap_sem);
1303 	return err;
1304 }
1305 
1306 /*
1307  * try_to_merge_two_pages - take two identical pages and prepare them
1308  * to be merged into one page.
1309  *
1310  * This function returns the kpage if we successfully merged two identical
1311  * pages into one ksm page, NULL otherwise.
1312  *
1313  * Note that this function upgrades page to ksm page: if one of the pages
1314  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1315  */
1316 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1317 					   struct page *page,
1318 					   struct rmap_item *tree_rmap_item,
1319 					   struct page *tree_page)
1320 {
1321 	int err;
1322 
1323 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1324 	if (!err) {
1325 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1326 							tree_page, page);
1327 		/*
1328 		 * If that fails, we have a ksm page with only one pte
1329 		 * pointing to it: so break it.
1330 		 */
1331 		if (err)
1332 			break_cow(rmap_item);
1333 	}
1334 	return err ? NULL : page;
1335 }
1336 
1337 static __always_inline
1338 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1339 {
1340 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1341 	/*
1342 	 * Check that at least one mapping still exists, otherwise
1343 	 * there's no much point to merge and share with this
1344 	 * stable_node, as the underlying tree_page of the other
1345 	 * sharer is going to be freed soon.
1346 	 */
1347 	return stable_node->rmap_hlist_len &&
1348 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1349 }
1350 
1351 static __always_inline
1352 bool is_page_sharing_candidate(struct stable_node *stable_node)
1353 {
1354 	return __is_page_sharing_candidate(stable_node, 0);
1355 }
1356 
1357 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1358 				    struct stable_node **_stable_node,
1359 				    struct rb_root *root,
1360 				    bool prune_stale_stable_nodes)
1361 {
1362 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1363 	struct hlist_node *hlist_safe;
1364 	struct page *_tree_page, *tree_page = NULL;
1365 	int nr = 0;
1366 	int found_rmap_hlist_len;
1367 
1368 	if (!prune_stale_stable_nodes ||
1369 	    time_before(jiffies, stable_node->chain_prune_time +
1370 			msecs_to_jiffies(
1371 				ksm_stable_node_chains_prune_millisecs)))
1372 		prune_stale_stable_nodes = false;
1373 	else
1374 		stable_node->chain_prune_time = jiffies;
1375 
1376 	hlist_for_each_entry_safe(dup, hlist_safe,
1377 				  &stable_node->hlist, hlist_dup) {
1378 		cond_resched();
1379 		/*
1380 		 * We must walk all stable_node_dup to prune the stale
1381 		 * stable nodes during lookup.
1382 		 *
1383 		 * get_ksm_page can drop the nodes from the
1384 		 * stable_node->hlist if they point to freed pages
1385 		 * (that's why we do a _safe walk). The "dup"
1386 		 * stable_node parameter itself will be freed from
1387 		 * under us if it returns NULL.
1388 		 */
1389 		_tree_page = get_ksm_page(dup, false);
1390 		if (!_tree_page)
1391 			continue;
1392 		nr += 1;
1393 		if (is_page_sharing_candidate(dup)) {
1394 			if (!found ||
1395 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1396 				if (found)
1397 					put_page(tree_page);
1398 				found = dup;
1399 				found_rmap_hlist_len = found->rmap_hlist_len;
1400 				tree_page = _tree_page;
1401 
1402 				/* skip put_page for found dup */
1403 				if (!prune_stale_stable_nodes)
1404 					break;
1405 				continue;
1406 			}
1407 		}
1408 		put_page(_tree_page);
1409 	}
1410 
1411 	if (found) {
1412 		/*
1413 		 * nr is counting all dups in the chain only if
1414 		 * prune_stale_stable_nodes is true, otherwise we may
1415 		 * break the loop at nr == 1 even if there are
1416 		 * multiple entries.
1417 		 */
1418 		if (prune_stale_stable_nodes && nr == 1) {
1419 			/*
1420 			 * If there's not just one entry it would
1421 			 * corrupt memory, better BUG_ON. In KSM
1422 			 * context with no lock held it's not even
1423 			 * fatal.
1424 			 */
1425 			BUG_ON(stable_node->hlist.first->next);
1426 
1427 			/*
1428 			 * There's just one entry and it is below the
1429 			 * deduplication limit so drop the chain.
1430 			 */
1431 			rb_replace_node(&stable_node->node, &found->node,
1432 					root);
1433 			free_stable_node(stable_node);
1434 			ksm_stable_node_chains--;
1435 			ksm_stable_node_dups--;
1436 			/*
1437 			 * NOTE: the caller depends on the stable_node
1438 			 * to be equal to stable_node_dup if the chain
1439 			 * was collapsed.
1440 			 */
1441 			*_stable_node = found;
1442 			/*
1443 			 * Just for robustneess as stable_node is
1444 			 * otherwise left as a stable pointer, the
1445 			 * compiler shall optimize it away at build
1446 			 * time.
1447 			 */
1448 			stable_node = NULL;
1449 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1450 			   __is_page_sharing_candidate(found, 1)) {
1451 			/*
1452 			 * If the found stable_node dup can accept one
1453 			 * more future merge (in addition to the one
1454 			 * that is underway) and is not at the head of
1455 			 * the chain, put it there so next search will
1456 			 * be quicker in the !prune_stale_stable_nodes
1457 			 * case.
1458 			 *
1459 			 * NOTE: it would be inaccurate to use nr > 1
1460 			 * instead of checking the hlist.first pointer
1461 			 * directly, because in the
1462 			 * prune_stale_stable_nodes case "nr" isn't
1463 			 * the position of the found dup in the chain,
1464 			 * but the total number of dups in the chain.
1465 			 */
1466 			hlist_del(&found->hlist_dup);
1467 			hlist_add_head(&found->hlist_dup,
1468 				       &stable_node->hlist);
1469 		}
1470 	}
1471 
1472 	*_stable_node_dup = found;
1473 	return tree_page;
1474 }
1475 
1476 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1477 					       struct rb_root *root)
1478 {
1479 	if (!is_stable_node_chain(stable_node))
1480 		return stable_node;
1481 	if (hlist_empty(&stable_node->hlist)) {
1482 		free_stable_node_chain(stable_node, root);
1483 		return NULL;
1484 	}
1485 	return hlist_entry(stable_node->hlist.first,
1486 			   typeof(*stable_node), hlist_dup);
1487 }
1488 
1489 /*
1490  * Like for get_ksm_page, this function can free the *_stable_node and
1491  * *_stable_node_dup if the returned tree_page is NULL.
1492  *
1493  * It can also free and overwrite *_stable_node with the found
1494  * stable_node_dup if the chain is collapsed (in which case
1495  * *_stable_node will be equal to *_stable_node_dup like if the chain
1496  * never existed). It's up to the caller to verify tree_page is not
1497  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1498  *
1499  * *_stable_node_dup is really a second output parameter of this
1500  * function and will be overwritten in all cases, the caller doesn't
1501  * need to initialize it.
1502  */
1503 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1504 					struct stable_node **_stable_node,
1505 					struct rb_root *root,
1506 					bool prune_stale_stable_nodes)
1507 {
1508 	struct stable_node *stable_node = *_stable_node;
1509 	if (!is_stable_node_chain(stable_node)) {
1510 		if (is_page_sharing_candidate(stable_node)) {
1511 			*_stable_node_dup = stable_node;
1512 			return get_ksm_page(stable_node, false);
1513 		}
1514 		/*
1515 		 * _stable_node_dup set to NULL means the stable_node
1516 		 * reached the ksm_max_page_sharing limit.
1517 		 */
1518 		*_stable_node_dup = NULL;
1519 		return NULL;
1520 	}
1521 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1522 			       prune_stale_stable_nodes);
1523 }
1524 
1525 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1526 						struct stable_node **s_n,
1527 						struct rb_root *root)
1528 {
1529 	return __stable_node_chain(s_n_d, s_n, root, true);
1530 }
1531 
1532 static __always_inline struct page *chain(struct stable_node **s_n_d,
1533 					  struct stable_node *s_n,
1534 					  struct rb_root *root)
1535 {
1536 	struct stable_node *old_stable_node = s_n;
1537 	struct page *tree_page;
1538 
1539 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1540 	/* not pruning dups so s_n cannot have changed */
1541 	VM_BUG_ON(s_n != old_stable_node);
1542 	return tree_page;
1543 }
1544 
1545 /*
1546  * stable_tree_search - search for page inside the stable tree
1547  *
1548  * This function checks if there is a page inside the stable tree
1549  * with identical content to the page that we are scanning right now.
1550  *
1551  * This function returns the stable tree node of identical content if found,
1552  * NULL otherwise.
1553  */
1554 static struct page *stable_tree_search(struct page *page)
1555 {
1556 	int nid;
1557 	struct rb_root *root;
1558 	struct rb_node **new;
1559 	struct rb_node *parent;
1560 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1561 	struct stable_node *page_node;
1562 
1563 	page_node = page_stable_node(page);
1564 	if (page_node && page_node->head != &migrate_nodes) {
1565 		/* ksm page forked */
1566 		get_page(page);
1567 		return page;
1568 	}
1569 
1570 	nid = get_kpfn_nid(page_to_pfn(page));
1571 	root = root_stable_tree + nid;
1572 again:
1573 	new = &root->rb_node;
1574 	parent = NULL;
1575 
1576 	while (*new) {
1577 		struct page *tree_page;
1578 		int ret;
1579 
1580 		cond_resched();
1581 		stable_node = rb_entry(*new, struct stable_node, node);
1582 		stable_node_any = NULL;
1583 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1584 		/*
1585 		 * NOTE: stable_node may have been freed by
1586 		 * chain_prune() if the returned stable_node_dup is
1587 		 * not NULL. stable_node_dup may have been inserted in
1588 		 * the rbtree instead as a regular stable_node (in
1589 		 * order to collapse the stable_node chain if a single
1590 		 * stable_node dup was found in it). In such case the
1591 		 * stable_node is overwritten by the calleee to point
1592 		 * to the stable_node_dup that was collapsed in the
1593 		 * stable rbtree and stable_node will be equal to
1594 		 * stable_node_dup like if the chain never existed.
1595 		 */
1596 		if (!stable_node_dup) {
1597 			/*
1598 			 * Either all stable_node dups were full in
1599 			 * this stable_node chain, or this chain was
1600 			 * empty and should be rb_erased.
1601 			 */
1602 			stable_node_any = stable_node_dup_any(stable_node,
1603 							      root);
1604 			if (!stable_node_any) {
1605 				/* rb_erase just run */
1606 				goto again;
1607 			}
1608 			/*
1609 			 * Take any of the stable_node dups page of
1610 			 * this stable_node chain to let the tree walk
1611 			 * continue. All KSM pages belonging to the
1612 			 * stable_node dups in a stable_node chain
1613 			 * have the same content and they're
1614 			 * wrprotected at all times. Any will work
1615 			 * fine to continue the walk.
1616 			 */
1617 			tree_page = get_ksm_page(stable_node_any, false);
1618 		}
1619 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1620 		if (!tree_page) {
1621 			/*
1622 			 * If we walked over a stale stable_node,
1623 			 * get_ksm_page() will call rb_erase() and it
1624 			 * may rebalance the tree from under us. So
1625 			 * restart the search from scratch. Returning
1626 			 * NULL would be safe too, but we'd generate
1627 			 * false negative insertions just because some
1628 			 * stable_node was stale.
1629 			 */
1630 			goto again;
1631 		}
1632 
1633 		ret = memcmp_pages(page, tree_page);
1634 		put_page(tree_page);
1635 
1636 		parent = *new;
1637 		if (ret < 0)
1638 			new = &parent->rb_left;
1639 		else if (ret > 0)
1640 			new = &parent->rb_right;
1641 		else {
1642 			if (page_node) {
1643 				VM_BUG_ON(page_node->head != &migrate_nodes);
1644 				/*
1645 				 * Test if the migrated page should be merged
1646 				 * into a stable node dup. If the mapcount is
1647 				 * 1 we can migrate it with another KSM page
1648 				 * without adding it to the chain.
1649 				 */
1650 				if (page_mapcount(page) > 1)
1651 					goto chain_append;
1652 			}
1653 
1654 			if (!stable_node_dup) {
1655 				/*
1656 				 * If the stable_node is a chain and
1657 				 * we got a payload match in memcmp
1658 				 * but we cannot merge the scanned
1659 				 * page in any of the existing
1660 				 * stable_node dups because they're
1661 				 * all full, we need to wait the
1662 				 * scanned page to find itself a match
1663 				 * in the unstable tree to create a
1664 				 * brand new KSM page to add later to
1665 				 * the dups of this stable_node.
1666 				 */
1667 				return NULL;
1668 			}
1669 
1670 			/*
1671 			 * Lock and unlock the stable_node's page (which
1672 			 * might already have been migrated) so that page
1673 			 * migration is sure to notice its raised count.
1674 			 * It would be more elegant to return stable_node
1675 			 * than kpage, but that involves more changes.
1676 			 */
1677 			tree_page = get_ksm_page(stable_node_dup, true);
1678 			if (unlikely(!tree_page))
1679 				/*
1680 				 * The tree may have been rebalanced,
1681 				 * so re-evaluate parent and new.
1682 				 */
1683 				goto again;
1684 			unlock_page(tree_page);
1685 
1686 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1687 			    NUMA(stable_node_dup->nid)) {
1688 				put_page(tree_page);
1689 				goto replace;
1690 			}
1691 			return tree_page;
1692 		}
1693 	}
1694 
1695 	if (!page_node)
1696 		return NULL;
1697 
1698 	list_del(&page_node->list);
1699 	DO_NUMA(page_node->nid = nid);
1700 	rb_link_node(&page_node->node, parent, new);
1701 	rb_insert_color(&page_node->node, root);
1702 out:
1703 	if (is_page_sharing_candidate(page_node)) {
1704 		get_page(page);
1705 		return page;
1706 	} else
1707 		return NULL;
1708 
1709 replace:
1710 	/*
1711 	 * If stable_node was a chain and chain_prune collapsed it,
1712 	 * stable_node has been updated to be the new regular
1713 	 * stable_node. A collapse of the chain is indistinguishable
1714 	 * from the case there was no chain in the stable
1715 	 * rbtree. Otherwise stable_node is the chain and
1716 	 * stable_node_dup is the dup to replace.
1717 	 */
1718 	if (stable_node_dup == stable_node) {
1719 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1720 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1721 		/* there is no chain */
1722 		if (page_node) {
1723 			VM_BUG_ON(page_node->head != &migrate_nodes);
1724 			list_del(&page_node->list);
1725 			DO_NUMA(page_node->nid = nid);
1726 			rb_replace_node(&stable_node_dup->node,
1727 					&page_node->node,
1728 					root);
1729 			if (is_page_sharing_candidate(page_node))
1730 				get_page(page);
1731 			else
1732 				page = NULL;
1733 		} else {
1734 			rb_erase(&stable_node_dup->node, root);
1735 			page = NULL;
1736 		}
1737 	} else {
1738 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1739 		__stable_node_dup_del(stable_node_dup);
1740 		if (page_node) {
1741 			VM_BUG_ON(page_node->head != &migrate_nodes);
1742 			list_del(&page_node->list);
1743 			DO_NUMA(page_node->nid = nid);
1744 			stable_node_chain_add_dup(page_node, stable_node);
1745 			if (is_page_sharing_candidate(page_node))
1746 				get_page(page);
1747 			else
1748 				page = NULL;
1749 		} else {
1750 			page = NULL;
1751 		}
1752 	}
1753 	stable_node_dup->head = &migrate_nodes;
1754 	list_add(&stable_node_dup->list, stable_node_dup->head);
1755 	return page;
1756 
1757 chain_append:
1758 	/* stable_node_dup could be null if it reached the limit */
1759 	if (!stable_node_dup)
1760 		stable_node_dup = stable_node_any;
1761 	/*
1762 	 * If stable_node was a chain and chain_prune collapsed it,
1763 	 * stable_node has been updated to be the new regular
1764 	 * stable_node. A collapse of the chain is indistinguishable
1765 	 * from the case there was no chain in the stable
1766 	 * rbtree. Otherwise stable_node is the chain and
1767 	 * stable_node_dup is the dup to replace.
1768 	 */
1769 	if (stable_node_dup == stable_node) {
1770 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1771 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1772 		/* chain is missing so create it */
1773 		stable_node = alloc_stable_node_chain(stable_node_dup,
1774 						      root);
1775 		if (!stable_node)
1776 			return NULL;
1777 	}
1778 	/*
1779 	 * Add this stable_node dup that was
1780 	 * migrated to the stable_node chain
1781 	 * of the current nid for this page
1782 	 * content.
1783 	 */
1784 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1785 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1786 	VM_BUG_ON(page_node->head != &migrate_nodes);
1787 	list_del(&page_node->list);
1788 	DO_NUMA(page_node->nid = nid);
1789 	stable_node_chain_add_dup(page_node, stable_node);
1790 	goto out;
1791 }
1792 
1793 /*
1794  * stable_tree_insert - insert stable tree node pointing to new ksm page
1795  * into the stable tree.
1796  *
1797  * This function returns the stable tree node just allocated on success,
1798  * NULL otherwise.
1799  */
1800 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 {
1802 	int nid;
1803 	unsigned long kpfn;
1804 	struct rb_root *root;
1805 	struct rb_node **new;
1806 	struct rb_node *parent;
1807 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808 	bool need_chain = false;
1809 
1810 	kpfn = page_to_pfn(kpage);
1811 	nid = get_kpfn_nid(kpfn);
1812 	root = root_stable_tree + nid;
1813 again:
1814 	parent = NULL;
1815 	new = &root->rb_node;
1816 
1817 	while (*new) {
1818 		struct page *tree_page;
1819 		int ret;
1820 
1821 		cond_resched();
1822 		stable_node = rb_entry(*new, struct stable_node, node);
1823 		stable_node_any = NULL;
1824 		tree_page = chain(&stable_node_dup, stable_node, root);
1825 		if (!stable_node_dup) {
1826 			/*
1827 			 * Either all stable_node dups were full in
1828 			 * this stable_node chain, or this chain was
1829 			 * empty and should be rb_erased.
1830 			 */
1831 			stable_node_any = stable_node_dup_any(stable_node,
1832 							      root);
1833 			if (!stable_node_any) {
1834 				/* rb_erase just run */
1835 				goto again;
1836 			}
1837 			/*
1838 			 * Take any of the stable_node dups page of
1839 			 * this stable_node chain to let the tree walk
1840 			 * continue. All KSM pages belonging to the
1841 			 * stable_node dups in a stable_node chain
1842 			 * have the same content and they're
1843 			 * wrprotected at all times. Any will work
1844 			 * fine to continue the walk.
1845 			 */
1846 			tree_page = get_ksm_page(stable_node_any, false);
1847 		}
1848 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849 		if (!tree_page) {
1850 			/*
1851 			 * If we walked over a stale stable_node,
1852 			 * get_ksm_page() will call rb_erase() and it
1853 			 * may rebalance the tree from under us. So
1854 			 * restart the search from scratch. Returning
1855 			 * NULL would be safe too, but we'd generate
1856 			 * false negative insertions just because some
1857 			 * stable_node was stale.
1858 			 */
1859 			goto again;
1860 		}
1861 
1862 		ret = memcmp_pages(kpage, tree_page);
1863 		put_page(tree_page);
1864 
1865 		parent = *new;
1866 		if (ret < 0)
1867 			new = &parent->rb_left;
1868 		else if (ret > 0)
1869 			new = &parent->rb_right;
1870 		else {
1871 			need_chain = true;
1872 			break;
1873 		}
1874 	}
1875 
1876 	stable_node_dup = alloc_stable_node();
1877 	if (!stable_node_dup)
1878 		return NULL;
1879 
1880 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881 	stable_node_dup->kpfn = kpfn;
1882 	set_page_stable_node(kpage, stable_node_dup);
1883 	stable_node_dup->rmap_hlist_len = 0;
1884 	DO_NUMA(stable_node_dup->nid = nid);
1885 	if (!need_chain) {
1886 		rb_link_node(&stable_node_dup->node, parent, new);
1887 		rb_insert_color(&stable_node_dup->node, root);
1888 	} else {
1889 		if (!is_stable_node_chain(stable_node)) {
1890 			struct stable_node *orig = stable_node;
1891 			/* chain is missing so create it */
1892 			stable_node = alloc_stable_node_chain(orig, root);
1893 			if (!stable_node) {
1894 				free_stable_node(stable_node_dup);
1895 				return NULL;
1896 			}
1897 		}
1898 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1899 	}
1900 
1901 	return stable_node_dup;
1902 }
1903 
1904 /*
1905  * unstable_tree_search_insert - search for identical page,
1906  * else insert rmap_item into the unstable tree.
1907  *
1908  * This function searches for a page in the unstable tree identical to the
1909  * page currently being scanned; and if no identical page is found in the
1910  * tree, we insert rmap_item as a new object into the unstable tree.
1911  *
1912  * This function returns pointer to rmap_item found to be identical
1913  * to the currently scanned page, NULL otherwise.
1914  *
1915  * This function does both searching and inserting, because they share
1916  * the same walking algorithm in an rbtree.
1917  */
1918 static
1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920 					      struct page *page,
1921 					      struct page **tree_pagep)
1922 {
1923 	struct rb_node **new;
1924 	struct rb_root *root;
1925 	struct rb_node *parent = NULL;
1926 	int nid;
1927 
1928 	nid = get_kpfn_nid(page_to_pfn(page));
1929 	root = root_unstable_tree + nid;
1930 	new = &root->rb_node;
1931 
1932 	while (*new) {
1933 		struct rmap_item *tree_rmap_item;
1934 		struct page *tree_page;
1935 		int ret;
1936 
1937 		cond_resched();
1938 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1939 		tree_page = get_mergeable_page(tree_rmap_item);
1940 		if (!tree_page)
1941 			return NULL;
1942 
1943 		/*
1944 		 * Don't substitute a ksm page for a forked page.
1945 		 */
1946 		if (page == tree_page) {
1947 			put_page(tree_page);
1948 			return NULL;
1949 		}
1950 
1951 		ret = memcmp_pages(page, tree_page);
1952 
1953 		parent = *new;
1954 		if (ret < 0) {
1955 			put_page(tree_page);
1956 			new = &parent->rb_left;
1957 		} else if (ret > 0) {
1958 			put_page(tree_page);
1959 			new = &parent->rb_right;
1960 		} else if (!ksm_merge_across_nodes &&
1961 			   page_to_nid(tree_page) != nid) {
1962 			/*
1963 			 * If tree_page has been migrated to another NUMA node,
1964 			 * it will be flushed out and put in the right unstable
1965 			 * tree next time: only merge with it when across_nodes.
1966 			 */
1967 			put_page(tree_page);
1968 			return NULL;
1969 		} else {
1970 			*tree_pagep = tree_page;
1971 			return tree_rmap_item;
1972 		}
1973 	}
1974 
1975 	rmap_item->address |= UNSTABLE_FLAG;
1976 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1977 	DO_NUMA(rmap_item->nid = nid);
1978 	rb_link_node(&rmap_item->node, parent, new);
1979 	rb_insert_color(&rmap_item->node, root);
1980 
1981 	ksm_pages_unshared++;
1982 	return NULL;
1983 }
1984 
1985 /*
1986  * stable_tree_append - add another rmap_item to the linked list of
1987  * rmap_items hanging off a given node of the stable tree, all sharing
1988  * the same ksm page.
1989  */
1990 static void stable_tree_append(struct rmap_item *rmap_item,
1991 			       struct stable_node *stable_node,
1992 			       bool max_page_sharing_bypass)
1993 {
1994 	/*
1995 	 * rmap won't find this mapping if we don't insert the
1996 	 * rmap_item in the right stable_node
1997 	 * duplicate. page_migration could break later if rmap breaks,
1998 	 * so we can as well crash here. We really need to check for
1999 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000 	 * for other negative values as an undeflow if detected here
2001 	 * for the first time (and not when decreasing rmap_hlist_len)
2002 	 * would be sign of memory corruption in the stable_node.
2003 	 */
2004 	BUG_ON(stable_node->rmap_hlist_len < 0);
2005 
2006 	stable_node->rmap_hlist_len++;
2007 	if (!max_page_sharing_bypass)
2008 		/* possibly non fatal but unexpected overflow, only warn */
2009 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010 			     ksm_max_page_sharing);
2011 
2012 	rmap_item->head = stable_node;
2013 	rmap_item->address |= STABLE_FLAG;
2014 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2015 
2016 	if (rmap_item->hlist.next)
2017 		ksm_pages_sharing++;
2018 	else
2019 		ksm_pages_shared++;
2020 }
2021 
2022 /*
2023  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024  * if not, compare checksum to previous and if it's the same, see if page can
2025  * be inserted into the unstable tree, or merged with a page already there and
2026  * both transferred to the stable tree.
2027  *
2028  * @page: the page that we are searching identical page to.
2029  * @rmap_item: the reverse mapping into the virtual address of this page
2030  */
2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032 {
2033 	struct mm_struct *mm = rmap_item->mm;
2034 	struct rmap_item *tree_rmap_item;
2035 	struct page *tree_page = NULL;
2036 	struct stable_node *stable_node;
2037 	struct page *kpage;
2038 	unsigned int checksum;
2039 	int err;
2040 	bool max_page_sharing_bypass = false;
2041 
2042 	stable_node = page_stable_node(page);
2043 	if (stable_node) {
2044 		if (stable_node->head != &migrate_nodes &&
2045 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046 		    NUMA(stable_node->nid)) {
2047 			stable_node_dup_del(stable_node);
2048 			stable_node->head = &migrate_nodes;
2049 			list_add(&stable_node->list, stable_node->head);
2050 		}
2051 		if (stable_node->head != &migrate_nodes &&
2052 		    rmap_item->head == stable_node)
2053 			return;
2054 		/*
2055 		 * If it's a KSM fork, allow it to go over the sharing limit
2056 		 * without warnings.
2057 		 */
2058 		if (!is_page_sharing_candidate(stable_node))
2059 			max_page_sharing_bypass = true;
2060 	}
2061 
2062 	/* We first start with searching the page inside the stable tree */
2063 	kpage = stable_tree_search(page);
2064 	if (kpage == page && rmap_item->head == stable_node) {
2065 		put_page(kpage);
2066 		return;
2067 	}
2068 
2069 	remove_rmap_item_from_tree(rmap_item);
2070 
2071 	if (kpage) {
2072 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2073 		if (!err) {
2074 			/*
2075 			 * The page was successfully merged:
2076 			 * add its rmap_item to the stable tree.
2077 			 */
2078 			lock_page(kpage);
2079 			stable_tree_append(rmap_item, page_stable_node(kpage),
2080 					   max_page_sharing_bypass);
2081 			unlock_page(kpage);
2082 		}
2083 		put_page(kpage);
2084 		return;
2085 	}
2086 
2087 	/*
2088 	 * If the hash value of the page has changed from the last time
2089 	 * we calculated it, this page is changing frequently: therefore we
2090 	 * don't want to insert it in the unstable tree, and we don't want
2091 	 * to waste our time searching for something identical to it there.
2092 	 */
2093 	checksum = calc_checksum(page);
2094 	if (rmap_item->oldchecksum != checksum) {
2095 		rmap_item->oldchecksum = checksum;
2096 		return;
2097 	}
2098 
2099 	/*
2100 	 * Same checksum as an empty page. We attempt to merge it with the
2101 	 * appropriate zero page if the user enabled this via sysfs.
2102 	 */
2103 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104 		struct vm_area_struct *vma;
2105 
2106 		down_read(&mm->mmap_sem);
2107 		vma = find_mergeable_vma(mm, rmap_item->address);
2108 		err = try_to_merge_one_page(vma, page,
2109 					    ZERO_PAGE(rmap_item->address));
2110 		up_read(&mm->mmap_sem);
2111 		/*
2112 		 * In case of failure, the page was not really empty, so we
2113 		 * need to continue. Otherwise we're done.
2114 		 */
2115 		if (!err)
2116 			return;
2117 	}
2118 	tree_rmap_item =
2119 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2120 	if (tree_rmap_item) {
2121 		bool split;
2122 
2123 		kpage = try_to_merge_two_pages(rmap_item, page,
2124 						tree_rmap_item, tree_page);
2125 		/*
2126 		 * If both pages we tried to merge belong to the same compound
2127 		 * page, then we actually ended up increasing the reference
2128 		 * count of the same compound page twice, and split_huge_page
2129 		 * failed.
2130 		 * Here we set a flag if that happened, and we use it later to
2131 		 * try split_huge_page again. Since we call put_page right
2132 		 * afterwards, the reference count will be correct and
2133 		 * split_huge_page should succeed.
2134 		 */
2135 		split = PageTransCompound(page)
2136 			&& compound_head(page) == compound_head(tree_page);
2137 		put_page(tree_page);
2138 		if (kpage) {
2139 			/*
2140 			 * The pages were successfully merged: insert new
2141 			 * node in the stable tree and add both rmap_items.
2142 			 */
2143 			lock_page(kpage);
2144 			stable_node = stable_tree_insert(kpage);
2145 			if (stable_node) {
2146 				stable_tree_append(tree_rmap_item, stable_node,
2147 						   false);
2148 				stable_tree_append(rmap_item, stable_node,
2149 						   false);
2150 			}
2151 			unlock_page(kpage);
2152 
2153 			/*
2154 			 * If we fail to insert the page into the stable tree,
2155 			 * we will have 2 virtual addresses that are pointing
2156 			 * to a ksm page left outside the stable tree,
2157 			 * in which case we need to break_cow on both.
2158 			 */
2159 			if (!stable_node) {
2160 				break_cow(tree_rmap_item);
2161 				break_cow(rmap_item);
2162 			}
2163 		} else if (split) {
2164 			/*
2165 			 * We are here if we tried to merge two pages and
2166 			 * failed because they both belonged to the same
2167 			 * compound page. We will split the page now, but no
2168 			 * merging will take place.
2169 			 * We do not want to add the cost of a full lock; if
2170 			 * the page is locked, it is better to skip it and
2171 			 * perhaps try again later.
2172 			 */
2173 			if (!trylock_page(page))
2174 				return;
2175 			split_huge_page(page);
2176 			unlock_page(page);
2177 		}
2178 	}
2179 }
2180 
2181 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2182 					    struct rmap_item **rmap_list,
2183 					    unsigned long addr)
2184 {
2185 	struct rmap_item *rmap_item;
2186 
2187 	while (*rmap_list) {
2188 		rmap_item = *rmap_list;
2189 		if ((rmap_item->address & PAGE_MASK) == addr)
2190 			return rmap_item;
2191 		if (rmap_item->address > addr)
2192 			break;
2193 		*rmap_list = rmap_item->rmap_list;
2194 		remove_rmap_item_from_tree(rmap_item);
2195 		free_rmap_item(rmap_item);
2196 	}
2197 
2198 	rmap_item = alloc_rmap_item();
2199 	if (rmap_item) {
2200 		/* It has already been zeroed */
2201 		rmap_item->mm = mm_slot->mm;
2202 		rmap_item->address = addr;
2203 		rmap_item->rmap_list = *rmap_list;
2204 		*rmap_list = rmap_item;
2205 	}
2206 	return rmap_item;
2207 }
2208 
2209 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2210 {
2211 	struct mm_struct *mm;
2212 	struct mm_slot *slot;
2213 	struct vm_area_struct *vma;
2214 	struct rmap_item *rmap_item;
2215 	int nid;
2216 
2217 	if (list_empty(&ksm_mm_head.mm_list))
2218 		return NULL;
2219 
2220 	slot = ksm_scan.mm_slot;
2221 	if (slot == &ksm_mm_head) {
2222 		/*
2223 		 * A number of pages can hang around indefinitely on per-cpu
2224 		 * pagevecs, raised page count preventing write_protect_page
2225 		 * from merging them.  Though it doesn't really matter much,
2226 		 * it is puzzling to see some stuck in pages_volatile until
2227 		 * other activity jostles them out, and they also prevented
2228 		 * LTP's KSM test from succeeding deterministically; so drain
2229 		 * them here (here rather than on entry to ksm_do_scan(),
2230 		 * so we don't IPI too often when pages_to_scan is set low).
2231 		 */
2232 		lru_add_drain_all();
2233 
2234 		/*
2235 		 * Whereas stale stable_nodes on the stable_tree itself
2236 		 * get pruned in the regular course of stable_tree_search(),
2237 		 * those moved out to the migrate_nodes list can accumulate:
2238 		 * so prune them once before each full scan.
2239 		 */
2240 		if (!ksm_merge_across_nodes) {
2241 			struct stable_node *stable_node, *next;
2242 			struct page *page;
2243 
2244 			list_for_each_entry_safe(stable_node, next,
2245 						 &migrate_nodes, list) {
2246 				page = get_ksm_page(stable_node, false);
2247 				if (page)
2248 					put_page(page);
2249 				cond_resched();
2250 			}
2251 		}
2252 
2253 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2254 			root_unstable_tree[nid] = RB_ROOT;
2255 
2256 		spin_lock(&ksm_mmlist_lock);
2257 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2258 		ksm_scan.mm_slot = slot;
2259 		spin_unlock(&ksm_mmlist_lock);
2260 		/*
2261 		 * Although we tested list_empty() above, a racing __ksm_exit
2262 		 * of the last mm on the list may have removed it since then.
2263 		 */
2264 		if (slot == &ksm_mm_head)
2265 			return NULL;
2266 next_mm:
2267 		ksm_scan.address = 0;
2268 		ksm_scan.rmap_list = &slot->rmap_list;
2269 	}
2270 
2271 	mm = slot->mm;
2272 	down_read(&mm->mmap_sem);
2273 	if (ksm_test_exit(mm))
2274 		vma = NULL;
2275 	else
2276 		vma = find_vma(mm, ksm_scan.address);
2277 
2278 	for (; vma; vma = vma->vm_next) {
2279 		if (!(vma->vm_flags & VM_MERGEABLE))
2280 			continue;
2281 		if (ksm_scan.address < vma->vm_start)
2282 			ksm_scan.address = vma->vm_start;
2283 		if (!vma->anon_vma)
2284 			ksm_scan.address = vma->vm_end;
2285 
2286 		while (ksm_scan.address < vma->vm_end) {
2287 			if (ksm_test_exit(mm))
2288 				break;
2289 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2290 			if (IS_ERR_OR_NULL(*page)) {
2291 				ksm_scan.address += PAGE_SIZE;
2292 				cond_resched();
2293 				continue;
2294 			}
2295 			if (PageAnon(*page)) {
2296 				flush_anon_page(vma, *page, ksm_scan.address);
2297 				flush_dcache_page(*page);
2298 				rmap_item = get_next_rmap_item(slot,
2299 					ksm_scan.rmap_list, ksm_scan.address);
2300 				if (rmap_item) {
2301 					ksm_scan.rmap_list =
2302 							&rmap_item->rmap_list;
2303 					ksm_scan.address += PAGE_SIZE;
2304 				} else
2305 					put_page(*page);
2306 				up_read(&mm->mmap_sem);
2307 				return rmap_item;
2308 			}
2309 			put_page(*page);
2310 			ksm_scan.address += PAGE_SIZE;
2311 			cond_resched();
2312 		}
2313 	}
2314 
2315 	if (ksm_test_exit(mm)) {
2316 		ksm_scan.address = 0;
2317 		ksm_scan.rmap_list = &slot->rmap_list;
2318 	}
2319 	/*
2320 	 * Nuke all the rmap_items that are above this current rmap:
2321 	 * because there were no VM_MERGEABLE vmas with such addresses.
2322 	 */
2323 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2324 
2325 	spin_lock(&ksm_mmlist_lock);
2326 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2327 						struct mm_slot, mm_list);
2328 	if (ksm_scan.address == 0) {
2329 		/*
2330 		 * We've completed a full scan of all vmas, holding mmap_sem
2331 		 * throughout, and found no VM_MERGEABLE: so do the same as
2332 		 * __ksm_exit does to remove this mm from all our lists now.
2333 		 * This applies either when cleaning up after __ksm_exit
2334 		 * (but beware: we can reach here even before __ksm_exit),
2335 		 * or when all VM_MERGEABLE areas have been unmapped (and
2336 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2337 		 */
2338 		hash_del(&slot->link);
2339 		list_del(&slot->mm_list);
2340 		spin_unlock(&ksm_mmlist_lock);
2341 
2342 		free_mm_slot(slot);
2343 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2344 		up_read(&mm->mmap_sem);
2345 		mmdrop(mm);
2346 	} else {
2347 		up_read(&mm->mmap_sem);
2348 		/*
2349 		 * up_read(&mm->mmap_sem) first because after
2350 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2351 		 * already have been freed under us by __ksm_exit()
2352 		 * because the "mm_slot" is still hashed and
2353 		 * ksm_scan.mm_slot doesn't point to it anymore.
2354 		 */
2355 		spin_unlock(&ksm_mmlist_lock);
2356 	}
2357 
2358 	/* Repeat until we've completed scanning the whole list */
2359 	slot = ksm_scan.mm_slot;
2360 	if (slot != &ksm_mm_head)
2361 		goto next_mm;
2362 
2363 	ksm_scan.seqnr++;
2364 	return NULL;
2365 }
2366 
2367 /**
2368  * ksm_do_scan  - the ksm scanner main worker function.
2369  * @scan_npages:  number of pages we want to scan before we return.
2370  */
2371 static void ksm_do_scan(unsigned int scan_npages)
2372 {
2373 	struct rmap_item *rmap_item;
2374 	struct page *uninitialized_var(page);
2375 
2376 	while (scan_npages-- && likely(!freezing(current))) {
2377 		cond_resched();
2378 		rmap_item = scan_get_next_rmap_item(&page);
2379 		if (!rmap_item)
2380 			return;
2381 		cmp_and_merge_page(page, rmap_item);
2382 		put_page(page);
2383 	}
2384 }
2385 
2386 static int ksmd_should_run(void)
2387 {
2388 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2389 }
2390 
2391 static int ksm_scan_thread(void *nothing)
2392 {
2393 	unsigned int sleep_ms;
2394 
2395 	set_freezable();
2396 	set_user_nice(current, 5);
2397 
2398 	while (!kthread_should_stop()) {
2399 		mutex_lock(&ksm_thread_mutex);
2400 		wait_while_offlining();
2401 		if (ksmd_should_run())
2402 			ksm_do_scan(ksm_thread_pages_to_scan);
2403 		mutex_unlock(&ksm_thread_mutex);
2404 
2405 		try_to_freeze();
2406 
2407 		if (ksmd_should_run()) {
2408 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2409 			wait_event_interruptible_timeout(ksm_iter_wait,
2410 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2411 				msecs_to_jiffies(sleep_ms));
2412 		} else {
2413 			wait_event_freezable(ksm_thread_wait,
2414 				ksmd_should_run() || kthread_should_stop());
2415 		}
2416 	}
2417 	return 0;
2418 }
2419 
2420 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2421 		unsigned long end, int advice, unsigned long *vm_flags)
2422 {
2423 	struct mm_struct *mm = vma->vm_mm;
2424 	int err;
2425 
2426 	switch (advice) {
2427 	case MADV_MERGEABLE:
2428 		/*
2429 		 * Be somewhat over-protective for now!
2430 		 */
2431 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2432 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2433 				 VM_HUGETLB | VM_MIXEDMAP))
2434 			return 0;		/* just ignore the advice */
2435 
2436 		if (vma_is_dax(vma))
2437 			return 0;
2438 
2439 #ifdef VM_SAO
2440 		if (*vm_flags & VM_SAO)
2441 			return 0;
2442 #endif
2443 #ifdef VM_SPARC_ADI
2444 		if (*vm_flags & VM_SPARC_ADI)
2445 			return 0;
2446 #endif
2447 
2448 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2449 			err = __ksm_enter(mm);
2450 			if (err)
2451 				return err;
2452 		}
2453 
2454 		*vm_flags |= VM_MERGEABLE;
2455 		break;
2456 
2457 	case MADV_UNMERGEABLE:
2458 		if (!(*vm_flags & VM_MERGEABLE))
2459 			return 0;		/* just ignore the advice */
2460 
2461 		if (vma->anon_vma) {
2462 			err = unmerge_ksm_pages(vma, start, end);
2463 			if (err)
2464 				return err;
2465 		}
2466 
2467 		*vm_flags &= ~VM_MERGEABLE;
2468 		break;
2469 	}
2470 
2471 	return 0;
2472 }
2473 
2474 int __ksm_enter(struct mm_struct *mm)
2475 {
2476 	struct mm_slot *mm_slot;
2477 	int needs_wakeup;
2478 
2479 	mm_slot = alloc_mm_slot();
2480 	if (!mm_slot)
2481 		return -ENOMEM;
2482 
2483 	/* Check ksm_run too?  Would need tighter locking */
2484 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2485 
2486 	spin_lock(&ksm_mmlist_lock);
2487 	insert_to_mm_slots_hash(mm, mm_slot);
2488 	/*
2489 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2490 	 * insert just behind the scanning cursor, to let the area settle
2491 	 * down a little; when fork is followed by immediate exec, we don't
2492 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2493 	 *
2494 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2495 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2496 	 * missed: then we might as well insert at the end of the list.
2497 	 */
2498 	if (ksm_run & KSM_RUN_UNMERGE)
2499 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2500 	else
2501 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2502 	spin_unlock(&ksm_mmlist_lock);
2503 
2504 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2505 	mmgrab(mm);
2506 
2507 	if (needs_wakeup)
2508 		wake_up_interruptible(&ksm_thread_wait);
2509 
2510 	return 0;
2511 }
2512 
2513 void __ksm_exit(struct mm_struct *mm)
2514 {
2515 	struct mm_slot *mm_slot;
2516 	int easy_to_free = 0;
2517 
2518 	/*
2519 	 * This process is exiting: if it's straightforward (as is the
2520 	 * case when ksmd was never running), free mm_slot immediately.
2521 	 * But if it's at the cursor or has rmap_items linked to it, use
2522 	 * mmap_sem to synchronize with any break_cows before pagetables
2523 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2524 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2525 	 */
2526 
2527 	spin_lock(&ksm_mmlist_lock);
2528 	mm_slot = get_mm_slot(mm);
2529 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2530 		if (!mm_slot->rmap_list) {
2531 			hash_del(&mm_slot->link);
2532 			list_del(&mm_slot->mm_list);
2533 			easy_to_free = 1;
2534 		} else {
2535 			list_move(&mm_slot->mm_list,
2536 				  &ksm_scan.mm_slot->mm_list);
2537 		}
2538 	}
2539 	spin_unlock(&ksm_mmlist_lock);
2540 
2541 	if (easy_to_free) {
2542 		free_mm_slot(mm_slot);
2543 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2544 		mmdrop(mm);
2545 	} else if (mm_slot) {
2546 		down_write(&mm->mmap_sem);
2547 		up_write(&mm->mmap_sem);
2548 	}
2549 }
2550 
2551 struct page *ksm_might_need_to_copy(struct page *page,
2552 			struct vm_area_struct *vma, unsigned long address)
2553 {
2554 	struct anon_vma *anon_vma = page_anon_vma(page);
2555 	struct page *new_page;
2556 
2557 	if (PageKsm(page)) {
2558 		if (page_stable_node(page) &&
2559 		    !(ksm_run & KSM_RUN_UNMERGE))
2560 			return page;	/* no need to copy it */
2561 	} else if (!anon_vma) {
2562 		return page;		/* no need to copy it */
2563 	} else if (anon_vma->root == vma->anon_vma->root &&
2564 		 page->index == linear_page_index(vma, address)) {
2565 		return page;		/* still no need to copy it */
2566 	}
2567 	if (!PageUptodate(page))
2568 		return page;		/* let do_swap_page report the error */
2569 
2570 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2571 	if (new_page) {
2572 		copy_user_highpage(new_page, page, address, vma);
2573 
2574 		SetPageDirty(new_page);
2575 		__SetPageUptodate(new_page);
2576 		__SetPageLocked(new_page);
2577 	}
2578 
2579 	return new_page;
2580 }
2581 
2582 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2583 {
2584 	struct stable_node *stable_node;
2585 	struct rmap_item *rmap_item;
2586 	int search_new_forks = 0;
2587 
2588 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2589 
2590 	/*
2591 	 * Rely on the page lock to protect against concurrent modifications
2592 	 * to that page's node of the stable tree.
2593 	 */
2594 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2595 
2596 	stable_node = page_stable_node(page);
2597 	if (!stable_node)
2598 		return;
2599 again:
2600 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2601 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2602 		struct anon_vma_chain *vmac;
2603 		struct vm_area_struct *vma;
2604 
2605 		cond_resched();
2606 		anon_vma_lock_read(anon_vma);
2607 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2608 					       0, ULONG_MAX) {
2609 			unsigned long addr;
2610 
2611 			cond_resched();
2612 			vma = vmac->vma;
2613 
2614 			/* Ignore the stable/unstable/sqnr flags */
2615 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2616 
2617 			if (addr < vma->vm_start || addr >= vma->vm_end)
2618 				continue;
2619 			/*
2620 			 * Initially we examine only the vma which covers this
2621 			 * rmap_item; but later, if there is still work to do,
2622 			 * we examine covering vmas in other mms: in case they
2623 			 * were forked from the original since ksmd passed.
2624 			 */
2625 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2626 				continue;
2627 
2628 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2629 				continue;
2630 
2631 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2632 				anon_vma_unlock_read(anon_vma);
2633 				return;
2634 			}
2635 			if (rwc->done && rwc->done(page)) {
2636 				anon_vma_unlock_read(anon_vma);
2637 				return;
2638 			}
2639 		}
2640 		anon_vma_unlock_read(anon_vma);
2641 	}
2642 	if (!search_new_forks++)
2643 		goto again;
2644 }
2645 
2646 bool reuse_ksm_page(struct page *page,
2647 		    struct vm_area_struct *vma,
2648 		    unsigned long address)
2649 {
2650 #ifdef CONFIG_DEBUG_VM
2651 	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2652 			WARN_ON(!page_mapped(page)) ||
2653 			WARN_ON(!PageLocked(page))) {
2654 		dump_page(page, "reuse_ksm_page");
2655 		return false;
2656 	}
2657 #endif
2658 
2659 	if (PageSwapCache(page) || !page_stable_node(page))
2660 		return false;
2661 	/* Prohibit parallel get_ksm_page() */
2662 	if (!page_ref_freeze(page, 1))
2663 		return false;
2664 
2665 	page_move_anon_rmap(page, vma);
2666 	page->index = linear_page_index(vma, address);
2667 	page_ref_unfreeze(page, 1);
2668 
2669 	return true;
2670 }
2671 #ifdef CONFIG_MIGRATION
2672 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2673 {
2674 	struct stable_node *stable_node;
2675 
2676 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2677 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2678 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2679 
2680 	stable_node = page_stable_node(newpage);
2681 	if (stable_node) {
2682 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2683 		stable_node->kpfn = page_to_pfn(newpage);
2684 		/*
2685 		 * newpage->mapping was set in advance; now we need smp_wmb()
2686 		 * to make sure that the new stable_node->kpfn is visible
2687 		 * to get_ksm_page() before it can see that oldpage->mapping
2688 		 * has gone stale (or that PageSwapCache has been cleared).
2689 		 */
2690 		smp_wmb();
2691 		set_page_stable_node(oldpage, NULL);
2692 	}
2693 }
2694 #endif /* CONFIG_MIGRATION */
2695 
2696 #ifdef CONFIG_MEMORY_HOTREMOVE
2697 static void wait_while_offlining(void)
2698 {
2699 	while (ksm_run & KSM_RUN_OFFLINE) {
2700 		mutex_unlock(&ksm_thread_mutex);
2701 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2702 			    TASK_UNINTERRUPTIBLE);
2703 		mutex_lock(&ksm_thread_mutex);
2704 	}
2705 }
2706 
2707 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2708 					 unsigned long start_pfn,
2709 					 unsigned long end_pfn)
2710 {
2711 	if (stable_node->kpfn >= start_pfn &&
2712 	    stable_node->kpfn < end_pfn) {
2713 		/*
2714 		 * Don't get_ksm_page, page has already gone:
2715 		 * which is why we keep kpfn instead of page*
2716 		 */
2717 		remove_node_from_stable_tree(stable_node);
2718 		return true;
2719 	}
2720 	return false;
2721 }
2722 
2723 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2724 					   unsigned long start_pfn,
2725 					   unsigned long end_pfn,
2726 					   struct rb_root *root)
2727 {
2728 	struct stable_node *dup;
2729 	struct hlist_node *hlist_safe;
2730 
2731 	if (!is_stable_node_chain(stable_node)) {
2732 		VM_BUG_ON(is_stable_node_dup(stable_node));
2733 		return stable_node_dup_remove_range(stable_node, start_pfn,
2734 						    end_pfn);
2735 	}
2736 
2737 	hlist_for_each_entry_safe(dup, hlist_safe,
2738 				  &stable_node->hlist, hlist_dup) {
2739 		VM_BUG_ON(!is_stable_node_dup(dup));
2740 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2741 	}
2742 	if (hlist_empty(&stable_node->hlist)) {
2743 		free_stable_node_chain(stable_node, root);
2744 		return true; /* notify caller that tree was rebalanced */
2745 	} else
2746 		return false;
2747 }
2748 
2749 static void ksm_check_stable_tree(unsigned long start_pfn,
2750 				  unsigned long end_pfn)
2751 {
2752 	struct stable_node *stable_node, *next;
2753 	struct rb_node *node;
2754 	int nid;
2755 
2756 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2757 		node = rb_first(root_stable_tree + nid);
2758 		while (node) {
2759 			stable_node = rb_entry(node, struct stable_node, node);
2760 			if (stable_node_chain_remove_range(stable_node,
2761 							   start_pfn, end_pfn,
2762 							   root_stable_tree +
2763 							   nid))
2764 				node = rb_first(root_stable_tree + nid);
2765 			else
2766 				node = rb_next(node);
2767 			cond_resched();
2768 		}
2769 	}
2770 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2771 		if (stable_node->kpfn >= start_pfn &&
2772 		    stable_node->kpfn < end_pfn)
2773 			remove_node_from_stable_tree(stable_node);
2774 		cond_resched();
2775 	}
2776 }
2777 
2778 static int ksm_memory_callback(struct notifier_block *self,
2779 			       unsigned long action, void *arg)
2780 {
2781 	struct memory_notify *mn = arg;
2782 
2783 	switch (action) {
2784 	case MEM_GOING_OFFLINE:
2785 		/*
2786 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2787 		 * and remove_all_stable_nodes() while memory is going offline:
2788 		 * it is unsafe for them to touch the stable tree at this time.
2789 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2790 		 * which do not need the ksm_thread_mutex are all safe.
2791 		 */
2792 		mutex_lock(&ksm_thread_mutex);
2793 		ksm_run |= KSM_RUN_OFFLINE;
2794 		mutex_unlock(&ksm_thread_mutex);
2795 		break;
2796 
2797 	case MEM_OFFLINE:
2798 		/*
2799 		 * Most of the work is done by page migration; but there might
2800 		 * be a few stable_nodes left over, still pointing to struct
2801 		 * pages which have been offlined: prune those from the tree,
2802 		 * otherwise get_ksm_page() might later try to access a
2803 		 * non-existent struct page.
2804 		 */
2805 		ksm_check_stable_tree(mn->start_pfn,
2806 				      mn->start_pfn + mn->nr_pages);
2807 		/* fallthrough */
2808 
2809 	case MEM_CANCEL_OFFLINE:
2810 		mutex_lock(&ksm_thread_mutex);
2811 		ksm_run &= ~KSM_RUN_OFFLINE;
2812 		mutex_unlock(&ksm_thread_mutex);
2813 
2814 		smp_mb();	/* wake_up_bit advises this */
2815 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2816 		break;
2817 	}
2818 	return NOTIFY_OK;
2819 }
2820 #else
2821 static void wait_while_offlining(void)
2822 {
2823 }
2824 #endif /* CONFIG_MEMORY_HOTREMOVE */
2825 
2826 #ifdef CONFIG_SYSFS
2827 /*
2828  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2829  */
2830 
2831 #define KSM_ATTR_RO(_name) \
2832 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2833 #define KSM_ATTR(_name) \
2834 	static struct kobj_attribute _name##_attr = \
2835 		__ATTR(_name, 0644, _name##_show, _name##_store)
2836 
2837 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2838 				    struct kobj_attribute *attr, char *buf)
2839 {
2840 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2841 }
2842 
2843 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2844 				     struct kobj_attribute *attr,
2845 				     const char *buf, size_t count)
2846 {
2847 	unsigned long msecs;
2848 	int err;
2849 
2850 	err = kstrtoul(buf, 10, &msecs);
2851 	if (err || msecs > UINT_MAX)
2852 		return -EINVAL;
2853 
2854 	ksm_thread_sleep_millisecs = msecs;
2855 	wake_up_interruptible(&ksm_iter_wait);
2856 
2857 	return count;
2858 }
2859 KSM_ATTR(sleep_millisecs);
2860 
2861 static ssize_t pages_to_scan_show(struct kobject *kobj,
2862 				  struct kobj_attribute *attr, char *buf)
2863 {
2864 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2865 }
2866 
2867 static ssize_t pages_to_scan_store(struct kobject *kobj,
2868 				   struct kobj_attribute *attr,
2869 				   const char *buf, size_t count)
2870 {
2871 	int err;
2872 	unsigned long nr_pages;
2873 
2874 	err = kstrtoul(buf, 10, &nr_pages);
2875 	if (err || nr_pages > UINT_MAX)
2876 		return -EINVAL;
2877 
2878 	ksm_thread_pages_to_scan = nr_pages;
2879 
2880 	return count;
2881 }
2882 KSM_ATTR(pages_to_scan);
2883 
2884 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2885 			char *buf)
2886 {
2887 	return sprintf(buf, "%lu\n", ksm_run);
2888 }
2889 
2890 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2891 			 const char *buf, size_t count)
2892 {
2893 	int err;
2894 	unsigned long flags;
2895 
2896 	err = kstrtoul(buf, 10, &flags);
2897 	if (err || flags > UINT_MAX)
2898 		return -EINVAL;
2899 	if (flags > KSM_RUN_UNMERGE)
2900 		return -EINVAL;
2901 
2902 	/*
2903 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2904 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2905 	 * breaking COW to free the pages_shared (but leaves mm_slots
2906 	 * on the list for when ksmd may be set running again).
2907 	 */
2908 
2909 	mutex_lock(&ksm_thread_mutex);
2910 	wait_while_offlining();
2911 	if (ksm_run != flags) {
2912 		ksm_run = flags;
2913 		if (flags & KSM_RUN_UNMERGE) {
2914 			set_current_oom_origin();
2915 			err = unmerge_and_remove_all_rmap_items();
2916 			clear_current_oom_origin();
2917 			if (err) {
2918 				ksm_run = KSM_RUN_STOP;
2919 				count = err;
2920 			}
2921 		}
2922 	}
2923 	mutex_unlock(&ksm_thread_mutex);
2924 
2925 	if (flags & KSM_RUN_MERGE)
2926 		wake_up_interruptible(&ksm_thread_wait);
2927 
2928 	return count;
2929 }
2930 KSM_ATTR(run);
2931 
2932 #ifdef CONFIG_NUMA
2933 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2934 				struct kobj_attribute *attr, char *buf)
2935 {
2936 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2937 }
2938 
2939 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2940 				   struct kobj_attribute *attr,
2941 				   const char *buf, size_t count)
2942 {
2943 	int err;
2944 	unsigned long knob;
2945 
2946 	err = kstrtoul(buf, 10, &knob);
2947 	if (err)
2948 		return err;
2949 	if (knob > 1)
2950 		return -EINVAL;
2951 
2952 	mutex_lock(&ksm_thread_mutex);
2953 	wait_while_offlining();
2954 	if (ksm_merge_across_nodes != knob) {
2955 		if (ksm_pages_shared || remove_all_stable_nodes())
2956 			err = -EBUSY;
2957 		else if (root_stable_tree == one_stable_tree) {
2958 			struct rb_root *buf;
2959 			/*
2960 			 * This is the first time that we switch away from the
2961 			 * default of merging across nodes: must now allocate
2962 			 * a buffer to hold as many roots as may be needed.
2963 			 * Allocate stable and unstable together:
2964 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2965 			 */
2966 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2967 				      GFP_KERNEL);
2968 			/* Let us assume that RB_ROOT is NULL is zero */
2969 			if (!buf)
2970 				err = -ENOMEM;
2971 			else {
2972 				root_stable_tree = buf;
2973 				root_unstable_tree = buf + nr_node_ids;
2974 				/* Stable tree is empty but not the unstable */
2975 				root_unstable_tree[0] = one_unstable_tree[0];
2976 			}
2977 		}
2978 		if (!err) {
2979 			ksm_merge_across_nodes = knob;
2980 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2981 		}
2982 	}
2983 	mutex_unlock(&ksm_thread_mutex);
2984 
2985 	return err ? err : count;
2986 }
2987 KSM_ATTR(merge_across_nodes);
2988 #endif
2989 
2990 static ssize_t use_zero_pages_show(struct kobject *kobj,
2991 				struct kobj_attribute *attr, char *buf)
2992 {
2993 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2994 }
2995 static ssize_t use_zero_pages_store(struct kobject *kobj,
2996 				   struct kobj_attribute *attr,
2997 				   const char *buf, size_t count)
2998 {
2999 	int err;
3000 	bool value;
3001 
3002 	err = kstrtobool(buf, &value);
3003 	if (err)
3004 		return -EINVAL;
3005 
3006 	ksm_use_zero_pages = value;
3007 
3008 	return count;
3009 }
3010 KSM_ATTR(use_zero_pages);
3011 
3012 static ssize_t max_page_sharing_show(struct kobject *kobj,
3013 				     struct kobj_attribute *attr, char *buf)
3014 {
3015 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3016 }
3017 
3018 static ssize_t max_page_sharing_store(struct kobject *kobj,
3019 				      struct kobj_attribute *attr,
3020 				      const char *buf, size_t count)
3021 {
3022 	int err;
3023 	int knob;
3024 
3025 	err = kstrtoint(buf, 10, &knob);
3026 	if (err)
3027 		return err;
3028 	/*
3029 	 * When a KSM page is created it is shared by 2 mappings. This
3030 	 * being a signed comparison, it implicitly verifies it's not
3031 	 * negative.
3032 	 */
3033 	if (knob < 2)
3034 		return -EINVAL;
3035 
3036 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3037 		return count;
3038 
3039 	mutex_lock(&ksm_thread_mutex);
3040 	wait_while_offlining();
3041 	if (ksm_max_page_sharing != knob) {
3042 		if (ksm_pages_shared || remove_all_stable_nodes())
3043 			err = -EBUSY;
3044 		else
3045 			ksm_max_page_sharing = knob;
3046 	}
3047 	mutex_unlock(&ksm_thread_mutex);
3048 
3049 	return err ? err : count;
3050 }
3051 KSM_ATTR(max_page_sharing);
3052 
3053 static ssize_t pages_shared_show(struct kobject *kobj,
3054 				 struct kobj_attribute *attr, char *buf)
3055 {
3056 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3057 }
3058 KSM_ATTR_RO(pages_shared);
3059 
3060 static ssize_t pages_sharing_show(struct kobject *kobj,
3061 				  struct kobj_attribute *attr, char *buf)
3062 {
3063 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3064 }
3065 KSM_ATTR_RO(pages_sharing);
3066 
3067 static ssize_t pages_unshared_show(struct kobject *kobj,
3068 				   struct kobj_attribute *attr, char *buf)
3069 {
3070 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3071 }
3072 KSM_ATTR_RO(pages_unshared);
3073 
3074 static ssize_t pages_volatile_show(struct kobject *kobj,
3075 				   struct kobj_attribute *attr, char *buf)
3076 {
3077 	long ksm_pages_volatile;
3078 
3079 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3080 				- ksm_pages_sharing - ksm_pages_unshared;
3081 	/*
3082 	 * It was not worth any locking to calculate that statistic,
3083 	 * but it might therefore sometimes be negative: conceal that.
3084 	 */
3085 	if (ksm_pages_volatile < 0)
3086 		ksm_pages_volatile = 0;
3087 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3088 }
3089 KSM_ATTR_RO(pages_volatile);
3090 
3091 static ssize_t stable_node_dups_show(struct kobject *kobj,
3092 				     struct kobj_attribute *attr, char *buf)
3093 {
3094 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3095 }
3096 KSM_ATTR_RO(stable_node_dups);
3097 
3098 static ssize_t stable_node_chains_show(struct kobject *kobj,
3099 				       struct kobj_attribute *attr, char *buf)
3100 {
3101 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3102 }
3103 KSM_ATTR_RO(stable_node_chains);
3104 
3105 static ssize_t
3106 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3107 					struct kobj_attribute *attr,
3108 					char *buf)
3109 {
3110 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3111 }
3112 
3113 static ssize_t
3114 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3115 					 struct kobj_attribute *attr,
3116 					 const char *buf, size_t count)
3117 {
3118 	unsigned long msecs;
3119 	int err;
3120 
3121 	err = kstrtoul(buf, 10, &msecs);
3122 	if (err || msecs > UINT_MAX)
3123 		return -EINVAL;
3124 
3125 	ksm_stable_node_chains_prune_millisecs = msecs;
3126 
3127 	return count;
3128 }
3129 KSM_ATTR(stable_node_chains_prune_millisecs);
3130 
3131 static ssize_t full_scans_show(struct kobject *kobj,
3132 			       struct kobj_attribute *attr, char *buf)
3133 {
3134 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3135 }
3136 KSM_ATTR_RO(full_scans);
3137 
3138 static struct attribute *ksm_attrs[] = {
3139 	&sleep_millisecs_attr.attr,
3140 	&pages_to_scan_attr.attr,
3141 	&run_attr.attr,
3142 	&pages_shared_attr.attr,
3143 	&pages_sharing_attr.attr,
3144 	&pages_unshared_attr.attr,
3145 	&pages_volatile_attr.attr,
3146 	&full_scans_attr.attr,
3147 #ifdef CONFIG_NUMA
3148 	&merge_across_nodes_attr.attr,
3149 #endif
3150 	&max_page_sharing_attr.attr,
3151 	&stable_node_chains_attr.attr,
3152 	&stable_node_dups_attr.attr,
3153 	&stable_node_chains_prune_millisecs_attr.attr,
3154 	&use_zero_pages_attr.attr,
3155 	NULL,
3156 };
3157 
3158 static const struct attribute_group ksm_attr_group = {
3159 	.attrs = ksm_attrs,
3160 	.name = "ksm",
3161 };
3162 #endif /* CONFIG_SYSFS */
3163 
3164 static int __init ksm_init(void)
3165 {
3166 	struct task_struct *ksm_thread;
3167 	int err;
3168 
3169 	/* The correct value depends on page size and endianness */
3170 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3171 	/* Default to false for backwards compatibility */
3172 	ksm_use_zero_pages = false;
3173 
3174 	err = ksm_slab_init();
3175 	if (err)
3176 		goto out;
3177 
3178 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3179 	if (IS_ERR(ksm_thread)) {
3180 		pr_err("ksm: creating kthread failed\n");
3181 		err = PTR_ERR(ksm_thread);
3182 		goto out_free;
3183 	}
3184 
3185 #ifdef CONFIG_SYSFS
3186 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3187 	if (err) {
3188 		pr_err("ksm: register sysfs failed\n");
3189 		kthread_stop(ksm_thread);
3190 		goto out_free;
3191 	}
3192 #else
3193 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3194 
3195 #endif /* CONFIG_SYSFS */
3196 
3197 #ifdef CONFIG_MEMORY_HOTREMOVE
3198 	/* There is no significance to this priority 100 */
3199 	hotplug_memory_notifier(ksm_memory_callback, 100);
3200 #endif
3201 	return 0;
3202 
3203 out_free:
3204 	ksm_slab_free();
3205 out:
3206 	return err;
3207 }
3208 subsys_initcall(ksm_init);
3209