xref: /linux/mm/ksm.c (revision 4c630f307455c06f99bdeca7f7a1ab5318604fe0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43 
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47 
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50 
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)		(x)
53 #define DO_NUMA(x)	do { (x); } while (0)
54 #else
55 #define NUMA(x)		(0)
56 #define DO_NUMA(x)	do { } while (0)
57 #endif
58 
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118 
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125 	struct mm_slot slot;
126 	struct ksm_rmap_item *rmap_list;
127 };
128 
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139 	struct ksm_mm_slot *mm_slot;
140 	unsigned long address;
141 	struct ksm_rmap_item **rmap_list;
142 	unsigned long seqnr;
143 };
144 
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158 	union {
159 		struct rb_node node;	/* when node of stable tree */
160 		struct {		/* when listed for migration */
161 			struct list_head *head;
162 			struct {
163 				struct hlist_node hlist_dup;
164 				struct list_head list;
165 			};
166 		};
167 	};
168 	struct hlist_head hlist;
169 	union {
170 		unsigned long kpfn;
171 		unsigned long chain_prune_time;
172 	};
173 	/*
174 	 * STABLE_NODE_CHAIN can be any negative number in
175 	 * rmap_hlist_len negative range, but better not -1 to be able
176 	 * to reliably detect underflows.
177 	 */
178 #define STABLE_NODE_CHAIN -1024
179 	int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181 	int nid;
182 #endif
183 };
184 
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198 	struct ksm_rmap_item *rmap_list;
199 	union {
200 		struct anon_vma *anon_vma;	/* when stable */
201 #ifdef CONFIG_NUMA
202 		int nid;		/* when node of unstable tree */
203 #endif
204 	};
205 	struct mm_struct *mm;
206 	unsigned long address;		/* + low bits used for flags below */
207 	unsigned int oldchecksum;	/* when unstable */
208 	union {
209 		struct rb_node node;	/* when node of unstable tree */
210 		struct {		/* when listed from stable tree */
211 			struct ksm_stable_node *head;
212 			struct hlist_node hlist;
213 		};
214 	};
215 };
216 
217 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct ksm_mm_slot ksm_mm_head = {
235 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349 					     struct ksm_stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct ksm_rmap_item *alloc_rmap_item(void)
378 {
379 	struct ksm_rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm->ksm_rmap_items--;
392 	rmap_item->mm = NULL;	/* debug safety */
393 	kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395 
396 static inline struct ksm_stable_node *alloc_stable_node(void)
397 {
398 	/*
399 	 * The allocation can take too long with GFP_KERNEL when memory is under
400 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401 	 * grants access to memory reserves, helping to avoid this problem.
402 	 */
403 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405 
406 static inline void free_stable_node(struct ksm_stable_node *stable_node)
407 {
408 	VM_BUG_ON(stable_node->rmap_hlist_len &&
409 		  !is_stable_node_chain(stable_node));
410 	kmem_cache_free(stable_node_cache, stable_node);
411 }
412 
413 /*
414  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415  * page tables after it has passed through ksm_exit() - which, if necessary,
416  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417  * a special flag: they can just back out as soon as mm_users goes to zero.
418  * ksm_test_exit() is used throughout to make this test for exit: in some
419  * places for correctness, in some places just to avoid unnecessary work.
420  */
421 static inline bool ksm_test_exit(struct mm_struct *mm)
422 {
423 	return atomic_read(&mm->mm_users) == 0;
424 }
425 
426 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427 			struct mm_walk *walk)
428 {
429 	struct page *page = NULL;
430 	spinlock_t *ptl;
431 	pte_t *pte;
432 	int ret;
433 
434 	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435 		return 0;
436 
437 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438 	if (pte_present(*pte)) {
439 		page = vm_normal_page(walk->vma, addr, *pte);
440 	} else if (!pte_none(*pte)) {
441 		swp_entry_t entry = pte_to_swp_entry(*pte);
442 
443 		/*
444 		 * As KSM pages remain KSM pages until freed, no need to wait
445 		 * here for migration to end.
446 		 */
447 		if (is_migration_entry(entry))
448 			page = pfn_swap_entry_to_page(entry);
449 	}
450 	ret = page && PageKsm(page);
451 	pte_unmap_unlock(pte, ptl);
452 	return ret;
453 }
454 
455 static const struct mm_walk_ops break_ksm_ops = {
456 	.pmd_entry = break_ksm_pmd_entry,
457 };
458 
459 /*
460  * We use break_ksm to break COW on a ksm page by triggering unsharing,
461  * such that the ksm page will get replaced by an exclusive anonymous page.
462  *
463  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464  * in case the application has unmapped and remapped mm,addr meanwhile.
465  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
466  * mmap of /dev/mem, where we would not want to touch it.
467  *
468  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469  * of the process that owns 'vma'.  We also do not want to enforce
470  * protection keys here anyway.
471  */
472 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473 {
474 	vm_fault_t ret = 0;
475 
476 	do {
477 		int ksm_page;
478 
479 		cond_resched();
480 		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481 					       &break_ksm_ops, NULL);
482 		if (WARN_ON_ONCE(ksm_page < 0))
483 			return ksm_page;
484 		if (!ksm_page)
485 			return 0;
486 		ret = handle_mm_fault(vma, addr,
487 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488 				      NULL);
489 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490 	/*
491 	 * We must loop until we no longer find a KSM page because
492 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
493 	 * pte accessed bit gets updated concurrently.
494 	 *
495 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 	 * backing file, which also invalidates anonymous pages: that's
497 	 * okay, that truncation will have unmapped the PageKsm for us.
498 	 *
499 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 	 * to user; and ksmd, having no mm, would never be chosen for that.
503 	 *
504 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 	 * even ksmd can fail in this way - though it's usually breaking ksm
507 	 * just to undo a merge it made a moment before, so unlikely to oom.
508 	 *
509 	 * That's a pity: we might therefore have more kernel pages allocated
510 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 	 * will retry to break_cow on each pass, so should recover the page
512 	 * in due course.  The important thing is to not let VM_MERGEABLE
513 	 * be cleared while any such pages might remain in the area.
514 	 */
515 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517 
518 static bool vma_ksm_compatible(struct vm_area_struct *vma)
519 {
520 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
521 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
522 			     VM_MIXEDMAP))
523 		return false;		/* just ignore the advice */
524 
525 	if (vma_is_dax(vma))
526 		return false;
527 
528 #ifdef VM_SAO
529 	if (vma->vm_flags & VM_SAO)
530 		return false;
531 #endif
532 #ifdef VM_SPARC_ADI
533 	if (vma->vm_flags & VM_SPARC_ADI)
534 		return false;
535 #endif
536 
537 	return true;
538 }
539 
540 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
541 		unsigned long addr)
542 {
543 	struct vm_area_struct *vma;
544 	if (ksm_test_exit(mm))
545 		return NULL;
546 	vma = vma_lookup(mm, addr);
547 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
548 		return NULL;
549 	return vma;
550 }
551 
552 static void break_cow(struct ksm_rmap_item *rmap_item)
553 {
554 	struct mm_struct *mm = rmap_item->mm;
555 	unsigned long addr = rmap_item->address;
556 	struct vm_area_struct *vma;
557 
558 	/*
559 	 * It is not an accident that whenever we want to break COW
560 	 * to undo, we also need to drop a reference to the anon_vma.
561 	 */
562 	put_anon_vma(rmap_item->anon_vma);
563 
564 	mmap_read_lock(mm);
565 	vma = find_mergeable_vma(mm, addr);
566 	if (vma)
567 		break_ksm(vma, addr);
568 	mmap_read_unlock(mm);
569 }
570 
571 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
572 {
573 	struct mm_struct *mm = rmap_item->mm;
574 	unsigned long addr = rmap_item->address;
575 	struct vm_area_struct *vma;
576 	struct page *page;
577 
578 	mmap_read_lock(mm);
579 	vma = find_mergeable_vma(mm, addr);
580 	if (!vma)
581 		goto out;
582 
583 	page = follow_page(vma, addr, FOLL_GET);
584 	if (IS_ERR_OR_NULL(page))
585 		goto out;
586 	if (is_zone_device_page(page))
587 		goto out_putpage;
588 	if (PageAnon(page)) {
589 		flush_anon_page(vma, page, addr);
590 		flush_dcache_page(page);
591 	} else {
592 out_putpage:
593 		put_page(page);
594 out:
595 		page = NULL;
596 	}
597 	mmap_read_unlock(mm);
598 	return page;
599 }
600 
601 /*
602  * This helper is used for getting right index into array of tree roots.
603  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605  * every node has its own stable and unstable tree.
606  */
607 static inline int get_kpfn_nid(unsigned long kpfn)
608 {
609 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
610 }
611 
612 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
613 						   struct rb_root *root)
614 {
615 	struct ksm_stable_node *chain = alloc_stable_node();
616 	VM_BUG_ON(is_stable_node_chain(dup));
617 	if (likely(chain)) {
618 		INIT_HLIST_HEAD(&chain->hlist);
619 		chain->chain_prune_time = jiffies;
620 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
622 		chain->nid = NUMA_NO_NODE; /* debug */
623 #endif
624 		ksm_stable_node_chains++;
625 
626 		/*
627 		 * Put the stable node chain in the first dimension of
628 		 * the stable tree and at the same time remove the old
629 		 * stable node.
630 		 */
631 		rb_replace_node(&dup->node, &chain->node, root);
632 
633 		/*
634 		 * Move the old stable node to the second dimension
635 		 * queued in the hlist_dup. The invariant is that all
636 		 * dup stable_nodes in the chain->hlist point to pages
637 		 * that are write protected and have the exact same
638 		 * content.
639 		 */
640 		stable_node_chain_add_dup(dup, chain);
641 	}
642 	return chain;
643 }
644 
645 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
646 					  struct rb_root *root)
647 {
648 	rb_erase(&chain->node, root);
649 	free_stable_node(chain);
650 	ksm_stable_node_chains--;
651 }
652 
653 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
654 {
655 	struct ksm_rmap_item *rmap_item;
656 
657 	/* check it's not STABLE_NODE_CHAIN or negative */
658 	BUG_ON(stable_node->rmap_hlist_len < 0);
659 
660 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
661 		if (rmap_item->hlist.next) {
662 			ksm_pages_sharing--;
663 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
664 		} else {
665 			ksm_pages_shared--;
666 		}
667 
668 		rmap_item->mm->ksm_merging_pages--;
669 
670 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671 		stable_node->rmap_hlist_len--;
672 		put_anon_vma(rmap_item->anon_vma);
673 		rmap_item->address &= PAGE_MASK;
674 		cond_resched();
675 	}
676 
677 	/*
678 	 * We need the second aligned pointer of the migrate_nodes
679 	 * list_head to stay clear from the rb_parent_color union
680 	 * (aligned and different than any node) and also different
681 	 * from &migrate_nodes. This will verify that future list.h changes
682 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
683 	 */
684 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
686 
687 	trace_ksm_remove_ksm_page(stable_node->kpfn);
688 	if (stable_node->head == &migrate_nodes)
689 		list_del(&stable_node->list);
690 	else
691 		stable_node_dup_del(stable_node);
692 	free_stable_node(stable_node);
693 }
694 
695 enum get_ksm_page_flags {
696 	GET_KSM_PAGE_NOLOCK,
697 	GET_KSM_PAGE_LOCK,
698 	GET_KSM_PAGE_TRYLOCK
699 };
700 
701 /*
702  * get_ksm_page: checks if the page indicated by the stable node
703  * is still its ksm page, despite having held no reference to it.
704  * In which case we can trust the content of the page, and it
705  * returns the gotten page; but if the page has now been zapped,
706  * remove the stale node from the stable tree and return NULL.
707  * But beware, the stable node's page might be being migrated.
708  *
709  * You would expect the stable_node to hold a reference to the ksm page.
710  * But if it increments the page's count, swapping out has to wait for
711  * ksmd to come around again before it can free the page, which may take
712  * seconds or even minutes: much too unresponsive.  So instead we use a
713  * "keyhole reference": access to the ksm page from the stable node peeps
714  * out through its keyhole to see if that page still holds the right key,
715  * pointing back to this stable node.  This relies on freeing a PageAnon
716  * page to reset its page->mapping to NULL, and relies on no other use of
717  * a page to put something that might look like our key in page->mapping.
718  * is on its way to being freed; but it is an anomaly to bear in mind.
719  */
720 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
721 				 enum get_ksm_page_flags flags)
722 {
723 	struct page *page;
724 	void *expected_mapping;
725 	unsigned long kpfn;
726 
727 	expected_mapping = (void *)((unsigned long)stable_node |
728 					PAGE_MAPPING_KSM);
729 again:
730 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
731 	page = pfn_to_page(kpfn);
732 	if (READ_ONCE(page->mapping) != expected_mapping)
733 		goto stale;
734 
735 	/*
736 	 * We cannot do anything with the page while its refcount is 0.
737 	 * Usually 0 means free, or tail of a higher-order page: in which
738 	 * case this node is no longer referenced, and should be freed;
739 	 * however, it might mean that the page is under page_ref_freeze().
740 	 * The __remove_mapping() case is easy, again the node is now stale;
741 	 * the same is in reuse_ksm_page() case; but if page is swapcache
742 	 * in folio_migrate_mapping(), it might still be our page,
743 	 * in which case it's essential to keep the node.
744 	 */
745 	while (!get_page_unless_zero(page)) {
746 		/*
747 		 * Another check for page->mapping != expected_mapping would
748 		 * work here too.  We have chosen the !PageSwapCache test to
749 		 * optimize the common case, when the page is or is about to
750 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
751 		 * in the ref_freeze section of __remove_mapping(); but Anon
752 		 * page->mapping reset to NULL later, in free_pages_prepare().
753 		 */
754 		if (!PageSwapCache(page))
755 			goto stale;
756 		cpu_relax();
757 	}
758 
759 	if (READ_ONCE(page->mapping) != expected_mapping) {
760 		put_page(page);
761 		goto stale;
762 	}
763 
764 	if (flags == GET_KSM_PAGE_TRYLOCK) {
765 		if (!trylock_page(page)) {
766 			put_page(page);
767 			return ERR_PTR(-EBUSY);
768 		}
769 	} else if (flags == GET_KSM_PAGE_LOCK)
770 		lock_page(page);
771 
772 	if (flags != GET_KSM_PAGE_NOLOCK) {
773 		if (READ_ONCE(page->mapping) != expected_mapping) {
774 			unlock_page(page);
775 			put_page(page);
776 			goto stale;
777 		}
778 	}
779 	return page;
780 
781 stale:
782 	/*
783 	 * We come here from above when page->mapping or !PageSwapCache
784 	 * suggests that the node is stale; but it might be under migration.
785 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
786 	 * before checking whether node->kpfn has been changed.
787 	 */
788 	smp_rmb();
789 	if (READ_ONCE(stable_node->kpfn) != kpfn)
790 		goto again;
791 	remove_node_from_stable_tree(stable_node);
792 	return NULL;
793 }
794 
795 /*
796  * Removing rmap_item from stable or unstable tree.
797  * This function will clean the information from the stable/unstable tree.
798  */
799 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
800 {
801 	if (rmap_item->address & STABLE_FLAG) {
802 		struct ksm_stable_node *stable_node;
803 		struct page *page;
804 
805 		stable_node = rmap_item->head;
806 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
807 		if (!page)
808 			goto out;
809 
810 		hlist_del(&rmap_item->hlist);
811 		unlock_page(page);
812 		put_page(page);
813 
814 		if (!hlist_empty(&stable_node->hlist))
815 			ksm_pages_sharing--;
816 		else
817 			ksm_pages_shared--;
818 
819 		rmap_item->mm->ksm_merging_pages--;
820 
821 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822 		stable_node->rmap_hlist_len--;
823 
824 		put_anon_vma(rmap_item->anon_vma);
825 		rmap_item->head = NULL;
826 		rmap_item->address &= PAGE_MASK;
827 
828 	} else if (rmap_item->address & UNSTABLE_FLAG) {
829 		unsigned char age;
830 		/*
831 		 * Usually ksmd can and must skip the rb_erase, because
832 		 * root_unstable_tree was already reset to RB_ROOT.
833 		 * But be careful when an mm is exiting: do the rb_erase
834 		 * if this rmap_item was inserted by this scan, rather
835 		 * than left over from before.
836 		 */
837 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
838 		BUG_ON(age > 1);
839 		if (!age)
840 			rb_erase(&rmap_item->node,
841 				 root_unstable_tree + NUMA(rmap_item->nid));
842 		ksm_pages_unshared--;
843 		rmap_item->address &= PAGE_MASK;
844 	}
845 out:
846 	cond_resched();		/* we're called from many long loops */
847 }
848 
849 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
850 {
851 	while (*rmap_list) {
852 		struct ksm_rmap_item *rmap_item = *rmap_list;
853 		*rmap_list = rmap_item->rmap_list;
854 		remove_rmap_item_from_tree(rmap_item);
855 		free_rmap_item(rmap_item);
856 	}
857 }
858 
859 /*
860  * Though it's very tempting to unmerge rmap_items from stable tree rather
861  * than check every pte of a given vma, the locking doesn't quite work for
862  * that - an rmap_item is assigned to the stable tree after inserting ksm
863  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
864  * rmap_items from parent to child at fork time (so as not to waste time
865  * if exit comes before the next scan reaches it).
866  *
867  * Similarly, although we'd like to remove rmap_items (so updating counts
868  * and freeing memory) when unmerging an area, it's easier to leave that
869  * to the next pass of ksmd - consider, for example, how ksmd might be
870  * in cmp_and_merge_page on one of the rmap_items we would be removing.
871  */
872 static int unmerge_ksm_pages(struct vm_area_struct *vma,
873 			     unsigned long start, unsigned long end)
874 {
875 	unsigned long addr;
876 	int err = 0;
877 
878 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
879 		if (ksm_test_exit(vma->vm_mm))
880 			break;
881 		if (signal_pending(current))
882 			err = -ERESTARTSYS;
883 		else
884 			err = break_ksm(vma, addr);
885 	}
886 	return err;
887 }
888 
889 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
890 {
891 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
892 }
893 
894 static inline struct ksm_stable_node *page_stable_node(struct page *page)
895 {
896 	return folio_stable_node(page_folio(page));
897 }
898 
899 static inline void set_page_stable_node(struct page *page,
900 					struct ksm_stable_node *stable_node)
901 {
902 	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
903 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
904 }
905 
906 #ifdef CONFIG_SYSFS
907 /*
908  * Only called through the sysfs control interface:
909  */
910 static int remove_stable_node(struct ksm_stable_node *stable_node)
911 {
912 	struct page *page;
913 	int err;
914 
915 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
916 	if (!page) {
917 		/*
918 		 * get_ksm_page did remove_node_from_stable_tree itself.
919 		 */
920 		return 0;
921 	}
922 
923 	/*
924 	 * Page could be still mapped if this races with __mmput() running in
925 	 * between ksm_exit() and exit_mmap(). Just refuse to let
926 	 * merge_across_nodes/max_page_sharing be switched.
927 	 */
928 	err = -EBUSY;
929 	if (!page_mapped(page)) {
930 		/*
931 		 * The stable node did not yet appear stale to get_ksm_page(),
932 		 * since that allows for an unmapped ksm page to be recognized
933 		 * right up until it is freed; but the node is safe to remove.
934 		 * This page might be in a pagevec waiting to be freed,
935 		 * or it might be PageSwapCache (perhaps under writeback),
936 		 * or it might have been removed from swapcache a moment ago.
937 		 */
938 		set_page_stable_node(page, NULL);
939 		remove_node_from_stable_tree(stable_node);
940 		err = 0;
941 	}
942 
943 	unlock_page(page);
944 	put_page(page);
945 	return err;
946 }
947 
948 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
949 				    struct rb_root *root)
950 {
951 	struct ksm_stable_node *dup;
952 	struct hlist_node *hlist_safe;
953 
954 	if (!is_stable_node_chain(stable_node)) {
955 		VM_BUG_ON(is_stable_node_dup(stable_node));
956 		if (remove_stable_node(stable_node))
957 			return true;
958 		else
959 			return false;
960 	}
961 
962 	hlist_for_each_entry_safe(dup, hlist_safe,
963 				  &stable_node->hlist, hlist_dup) {
964 		VM_BUG_ON(!is_stable_node_dup(dup));
965 		if (remove_stable_node(dup))
966 			return true;
967 	}
968 	BUG_ON(!hlist_empty(&stable_node->hlist));
969 	free_stable_node_chain(stable_node, root);
970 	return false;
971 }
972 
973 static int remove_all_stable_nodes(void)
974 {
975 	struct ksm_stable_node *stable_node, *next;
976 	int nid;
977 	int err = 0;
978 
979 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
980 		while (root_stable_tree[nid].rb_node) {
981 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
982 						struct ksm_stable_node, node);
983 			if (remove_stable_node_chain(stable_node,
984 						     root_stable_tree + nid)) {
985 				err = -EBUSY;
986 				break;	/* proceed to next nid */
987 			}
988 			cond_resched();
989 		}
990 	}
991 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
992 		if (remove_stable_node(stable_node))
993 			err = -EBUSY;
994 		cond_resched();
995 	}
996 	return err;
997 }
998 
999 static int unmerge_and_remove_all_rmap_items(void)
1000 {
1001 	struct ksm_mm_slot *mm_slot;
1002 	struct mm_slot *slot;
1003 	struct mm_struct *mm;
1004 	struct vm_area_struct *vma;
1005 	int err = 0;
1006 
1007 	spin_lock(&ksm_mmlist_lock);
1008 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009 			  struct mm_slot, mm_node);
1010 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1011 	spin_unlock(&ksm_mmlist_lock);
1012 
1013 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014 	     mm_slot = ksm_scan.mm_slot) {
1015 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1016 
1017 		mm = mm_slot->slot.mm;
1018 		mmap_read_lock(mm);
1019 
1020 		/*
1021 		 * Exit right away if mm is exiting to avoid lockdep issue in
1022 		 * the maple tree
1023 		 */
1024 		if (ksm_test_exit(mm))
1025 			goto mm_exiting;
1026 
1027 		for_each_vma(vmi, vma) {
1028 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1029 				continue;
1030 			err = unmerge_ksm_pages(vma,
1031 						vma->vm_start, vma->vm_end);
1032 			if (err)
1033 				goto error;
1034 		}
1035 
1036 mm_exiting:
1037 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1038 		mmap_read_unlock(mm);
1039 
1040 		spin_lock(&ksm_mmlist_lock);
1041 		slot = list_entry(mm_slot->slot.mm_node.next,
1042 				  struct mm_slot, mm_node);
1043 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1044 		if (ksm_test_exit(mm)) {
1045 			hash_del(&mm_slot->slot.hash);
1046 			list_del(&mm_slot->slot.mm_node);
1047 			spin_unlock(&ksm_mmlist_lock);
1048 
1049 			mm_slot_free(mm_slot_cache, mm_slot);
1050 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1051 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1052 			mmdrop(mm);
1053 		} else
1054 			spin_unlock(&ksm_mmlist_lock);
1055 	}
1056 
1057 	/* Clean up stable nodes, but don't worry if some are still busy */
1058 	remove_all_stable_nodes();
1059 	ksm_scan.seqnr = 0;
1060 	return 0;
1061 
1062 error:
1063 	mmap_read_unlock(mm);
1064 	spin_lock(&ksm_mmlist_lock);
1065 	ksm_scan.mm_slot = &ksm_mm_head;
1066 	spin_unlock(&ksm_mmlist_lock);
1067 	return err;
1068 }
1069 #endif /* CONFIG_SYSFS */
1070 
1071 static u32 calc_checksum(struct page *page)
1072 {
1073 	u32 checksum;
1074 	void *addr = kmap_atomic(page);
1075 	checksum = xxhash(addr, PAGE_SIZE, 0);
1076 	kunmap_atomic(addr);
1077 	return checksum;
1078 }
1079 
1080 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1081 			      pte_t *orig_pte)
1082 {
1083 	struct mm_struct *mm = vma->vm_mm;
1084 	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1085 	int swapped;
1086 	int err = -EFAULT;
1087 	struct mmu_notifier_range range;
1088 	bool anon_exclusive;
1089 
1090 	pvmw.address = page_address_in_vma(page, vma);
1091 	if (pvmw.address == -EFAULT)
1092 		goto out;
1093 
1094 	BUG_ON(PageTransCompound(page));
1095 
1096 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1097 				pvmw.address + PAGE_SIZE);
1098 	mmu_notifier_invalidate_range_start(&range);
1099 
1100 	if (!page_vma_mapped_walk(&pvmw))
1101 		goto out_mn;
1102 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1103 		goto out_unlock;
1104 
1105 	anon_exclusive = PageAnonExclusive(page);
1106 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1107 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1108 		pte_t entry;
1109 
1110 		swapped = PageSwapCache(page);
1111 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1112 		/*
1113 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1114 		 * take any lock, therefore the check that we are going to make
1115 		 * with the pagecount against the mapcount is racy and
1116 		 * O_DIRECT can happen right after the check.
1117 		 * So we clear the pte and flush the tlb before the check
1118 		 * this assure us that no O_DIRECT can happen after the check
1119 		 * or in the middle of the check.
1120 		 *
1121 		 * No need to notify as we are downgrading page table to read
1122 		 * only not changing it to point to a new page.
1123 		 *
1124 		 * See Documentation/mm/mmu_notifier.rst
1125 		 */
1126 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1127 		/*
1128 		 * Check that no O_DIRECT or similar I/O is in progress on the
1129 		 * page
1130 		 */
1131 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1132 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1133 			goto out_unlock;
1134 		}
1135 
1136 		/* See page_try_share_anon_rmap(): clear PTE first. */
1137 		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1139 			goto out_unlock;
1140 		}
1141 
1142 		if (pte_dirty(entry))
1143 			set_page_dirty(page);
1144 		entry = pte_mkclean(entry);
1145 
1146 		if (pte_write(entry))
1147 			entry = pte_wrprotect(entry);
1148 
1149 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1150 	}
1151 	*orig_pte = *pvmw.pte;
1152 	err = 0;
1153 
1154 out_unlock:
1155 	page_vma_mapped_walk_done(&pvmw);
1156 out_mn:
1157 	mmu_notifier_invalidate_range_end(&range);
1158 out:
1159 	return err;
1160 }
1161 
1162 /**
1163  * replace_page - replace page in vma by new ksm page
1164  * @vma:      vma that holds the pte pointing to page
1165  * @page:     the page we are replacing by kpage
1166  * @kpage:    the ksm page we replace page by
1167  * @orig_pte: the original value of the pte
1168  *
1169  * Returns 0 on success, -EFAULT on failure.
1170  */
1171 static int replace_page(struct vm_area_struct *vma, struct page *page,
1172 			struct page *kpage, pte_t orig_pte)
1173 {
1174 	struct mm_struct *mm = vma->vm_mm;
1175 	struct folio *folio;
1176 	pmd_t *pmd;
1177 	pmd_t pmde;
1178 	pte_t *ptep;
1179 	pte_t newpte;
1180 	spinlock_t *ptl;
1181 	unsigned long addr;
1182 	int err = -EFAULT;
1183 	struct mmu_notifier_range range;
1184 
1185 	addr = page_address_in_vma(page, vma);
1186 	if (addr == -EFAULT)
1187 		goto out;
1188 
1189 	pmd = mm_find_pmd(mm, addr);
1190 	if (!pmd)
1191 		goto out;
1192 	/*
1193 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194 	 * without holding anon_vma lock for write.  So when looking for a
1195 	 * genuine pmde (in which to find pte), test present and !THP together.
1196 	 */
1197 	pmde = *pmd;
1198 	barrier();
1199 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200 		goto out;
1201 
1202 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203 				addr + PAGE_SIZE);
1204 	mmu_notifier_invalidate_range_start(&range);
1205 
1206 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207 	if (!pte_same(*ptep, orig_pte)) {
1208 		pte_unmap_unlock(ptep, ptl);
1209 		goto out_mn;
1210 	}
1211 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212 	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1213 
1214 	/*
1215 	 * No need to check ksm_use_zero_pages here: we can only have a
1216 	 * zero_page here if ksm_use_zero_pages was enabled already.
1217 	 */
1218 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1219 		get_page(kpage);
1220 		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1221 		newpte = mk_pte(kpage, vma->vm_page_prot);
1222 	} else {
1223 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224 					       vma->vm_page_prot));
1225 		/*
1226 		 * We're replacing an anonymous page with a zero page, which is
1227 		 * not anonymous. We need to do proper accounting otherwise we
1228 		 * will get wrong values in /proc, and a BUG message in dmesg
1229 		 * when tearing down the mm.
1230 		 */
1231 		dec_mm_counter(mm, MM_ANONPAGES);
1232 	}
1233 
1234 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1235 	/*
1236 	 * No need to notify as we are replacing a read only page with another
1237 	 * read only page with the same content.
1238 	 *
1239 	 * See Documentation/mm/mmu_notifier.rst
1240 	 */
1241 	ptep_clear_flush(vma, addr, ptep);
1242 	set_pte_at_notify(mm, addr, ptep, newpte);
1243 
1244 	folio = page_folio(page);
1245 	page_remove_rmap(page, vma, false);
1246 	if (!folio_mapped(folio))
1247 		folio_free_swap(folio);
1248 	folio_put(folio);
1249 
1250 	pte_unmap_unlock(ptep, ptl);
1251 	err = 0;
1252 out_mn:
1253 	mmu_notifier_invalidate_range_end(&range);
1254 out:
1255 	return err;
1256 }
1257 
1258 /*
1259  * try_to_merge_one_page - take two pages and merge them into one
1260  * @vma: the vma that holds the pte pointing to page
1261  * @page: the PageAnon page that we want to replace with kpage
1262  * @kpage: the PageKsm page that we want to map instead of page,
1263  *         or NULL the first time when we want to use page as kpage.
1264  *
1265  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266  */
1267 static int try_to_merge_one_page(struct vm_area_struct *vma,
1268 				 struct page *page, struct page *kpage)
1269 {
1270 	pte_t orig_pte = __pte(0);
1271 	int err = -EFAULT;
1272 
1273 	if (page == kpage)			/* ksm page forked */
1274 		return 0;
1275 
1276 	if (!PageAnon(page))
1277 		goto out;
1278 
1279 	/*
1280 	 * We need the page lock to read a stable PageSwapCache in
1281 	 * write_protect_page().  We use trylock_page() instead of
1282 	 * lock_page() because we don't want to wait here - we
1283 	 * prefer to continue scanning and merging different pages,
1284 	 * then come back to this page when it is unlocked.
1285 	 */
1286 	if (!trylock_page(page))
1287 		goto out;
1288 
1289 	if (PageTransCompound(page)) {
1290 		if (split_huge_page(page))
1291 			goto out_unlock;
1292 	}
1293 
1294 	/*
1295 	 * If this anonymous page is mapped only here, its pte may need
1296 	 * to be write-protected.  If it's mapped elsewhere, all of its
1297 	 * ptes are necessarily already write-protected.  But in either
1298 	 * case, we need to lock and check page_count is not raised.
1299 	 */
1300 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1301 		if (!kpage) {
1302 			/*
1303 			 * While we hold page lock, upgrade page from
1304 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305 			 * stable_tree_insert() will update stable_node.
1306 			 */
1307 			set_page_stable_node(page, NULL);
1308 			mark_page_accessed(page);
1309 			/*
1310 			 * Page reclaim just frees a clean page with no dirty
1311 			 * ptes: make sure that the ksm page would be swapped.
1312 			 */
1313 			if (!PageDirty(page))
1314 				SetPageDirty(page);
1315 			err = 0;
1316 		} else if (pages_identical(page, kpage))
1317 			err = replace_page(vma, page, kpage, orig_pte);
1318 	}
1319 
1320 out_unlock:
1321 	unlock_page(page);
1322 out:
1323 	return err;
1324 }
1325 
1326 /*
1327  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328  * but no new kernel page is allocated: kpage must already be a ksm page.
1329  *
1330  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1331  */
1332 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1333 				      struct page *page, struct page *kpage)
1334 {
1335 	struct mm_struct *mm = rmap_item->mm;
1336 	struct vm_area_struct *vma;
1337 	int err = -EFAULT;
1338 
1339 	mmap_read_lock(mm);
1340 	vma = find_mergeable_vma(mm, rmap_item->address);
1341 	if (!vma)
1342 		goto out;
1343 
1344 	err = try_to_merge_one_page(vma, page, kpage);
1345 	if (err)
1346 		goto out;
1347 
1348 	/* Unstable nid is in union with stable anon_vma: remove first */
1349 	remove_rmap_item_from_tree(rmap_item);
1350 
1351 	/* Must get reference to anon_vma while still holding mmap_lock */
1352 	rmap_item->anon_vma = vma->anon_vma;
1353 	get_anon_vma(vma->anon_vma);
1354 out:
1355 	mmap_read_unlock(mm);
1356 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1357 				rmap_item, mm, err);
1358 	return err;
1359 }
1360 
1361 /*
1362  * try_to_merge_two_pages - take two identical pages and prepare them
1363  * to be merged into one page.
1364  *
1365  * This function returns the kpage if we successfully merged two identical
1366  * pages into one ksm page, NULL otherwise.
1367  *
1368  * Note that this function upgrades page to ksm page: if one of the pages
1369  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1370  */
1371 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1372 					   struct page *page,
1373 					   struct ksm_rmap_item *tree_rmap_item,
1374 					   struct page *tree_page)
1375 {
1376 	int err;
1377 
1378 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1379 	if (!err) {
1380 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1381 							tree_page, page);
1382 		/*
1383 		 * If that fails, we have a ksm page with only one pte
1384 		 * pointing to it: so break it.
1385 		 */
1386 		if (err)
1387 			break_cow(rmap_item);
1388 	}
1389 	return err ? NULL : page;
1390 }
1391 
1392 static __always_inline
1393 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1394 {
1395 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1396 	/*
1397 	 * Check that at least one mapping still exists, otherwise
1398 	 * there's no much point to merge and share with this
1399 	 * stable_node, as the underlying tree_page of the other
1400 	 * sharer is going to be freed soon.
1401 	 */
1402 	return stable_node->rmap_hlist_len &&
1403 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1404 }
1405 
1406 static __always_inline
1407 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1408 {
1409 	return __is_page_sharing_candidate(stable_node, 0);
1410 }
1411 
1412 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413 				    struct ksm_stable_node **_stable_node,
1414 				    struct rb_root *root,
1415 				    bool prune_stale_stable_nodes)
1416 {
1417 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1418 	struct hlist_node *hlist_safe;
1419 	struct page *_tree_page, *tree_page = NULL;
1420 	int nr = 0;
1421 	int found_rmap_hlist_len;
1422 
1423 	if (!prune_stale_stable_nodes ||
1424 	    time_before(jiffies, stable_node->chain_prune_time +
1425 			msecs_to_jiffies(
1426 				ksm_stable_node_chains_prune_millisecs)))
1427 		prune_stale_stable_nodes = false;
1428 	else
1429 		stable_node->chain_prune_time = jiffies;
1430 
1431 	hlist_for_each_entry_safe(dup, hlist_safe,
1432 				  &stable_node->hlist, hlist_dup) {
1433 		cond_resched();
1434 		/*
1435 		 * We must walk all stable_node_dup to prune the stale
1436 		 * stable nodes during lookup.
1437 		 *
1438 		 * get_ksm_page can drop the nodes from the
1439 		 * stable_node->hlist if they point to freed pages
1440 		 * (that's why we do a _safe walk). The "dup"
1441 		 * stable_node parameter itself will be freed from
1442 		 * under us if it returns NULL.
1443 		 */
1444 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1445 		if (!_tree_page)
1446 			continue;
1447 		nr += 1;
1448 		if (is_page_sharing_candidate(dup)) {
1449 			if (!found ||
1450 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1451 				if (found)
1452 					put_page(tree_page);
1453 				found = dup;
1454 				found_rmap_hlist_len = found->rmap_hlist_len;
1455 				tree_page = _tree_page;
1456 
1457 				/* skip put_page for found dup */
1458 				if (!prune_stale_stable_nodes)
1459 					break;
1460 				continue;
1461 			}
1462 		}
1463 		put_page(_tree_page);
1464 	}
1465 
1466 	if (found) {
1467 		/*
1468 		 * nr is counting all dups in the chain only if
1469 		 * prune_stale_stable_nodes is true, otherwise we may
1470 		 * break the loop at nr == 1 even if there are
1471 		 * multiple entries.
1472 		 */
1473 		if (prune_stale_stable_nodes && nr == 1) {
1474 			/*
1475 			 * If there's not just one entry it would
1476 			 * corrupt memory, better BUG_ON. In KSM
1477 			 * context with no lock held it's not even
1478 			 * fatal.
1479 			 */
1480 			BUG_ON(stable_node->hlist.first->next);
1481 
1482 			/*
1483 			 * There's just one entry and it is below the
1484 			 * deduplication limit so drop the chain.
1485 			 */
1486 			rb_replace_node(&stable_node->node, &found->node,
1487 					root);
1488 			free_stable_node(stable_node);
1489 			ksm_stable_node_chains--;
1490 			ksm_stable_node_dups--;
1491 			/*
1492 			 * NOTE: the caller depends on the stable_node
1493 			 * to be equal to stable_node_dup if the chain
1494 			 * was collapsed.
1495 			 */
1496 			*_stable_node = found;
1497 			/*
1498 			 * Just for robustness, as stable_node is
1499 			 * otherwise left as a stable pointer, the
1500 			 * compiler shall optimize it away at build
1501 			 * time.
1502 			 */
1503 			stable_node = NULL;
1504 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1505 			   __is_page_sharing_candidate(found, 1)) {
1506 			/*
1507 			 * If the found stable_node dup can accept one
1508 			 * more future merge (in addition to the one
1509 			 * that is underway) and is not at the head of
1510 			 * the chain, put it there so next search will
1511 			 * be quicker in the !prune_stale_stable_nodes
1512 			 * case.
1513 			 *
1514 			 * NOTE: it would be inaccurate to use nr > 1
1515 			 * instead of checking the hlist.first pointer
1516 			 * directly, because in the
1517 			 * prune_stale_stable_nodes case "nr" isn't
1518 			 * the position of the found dup in the chain,
1519 			 * but the total number of dups in the chain.
1520 			 */
1521 			hlist_del(&found->hlist_dup);
1522 			hlist_add_head(&found->hlist_dup,
1523 				       &stable_node->hlist);
1524 		}
1525 	}
1526 
1527 	*_stable_node_dup = found;
1528 	return tree_page;
1529 }
1530 
1531 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1532 					       struct rb_root *root)
1533 {
1534 	if (!is_stable_node_chain(stable_node))
1535 		return stable_node;
1536 	if (hlist_empty(&stable_node->hlist)) {
1537 		free_stable_node_chain(stable_node, root);
1538 		return NULL;
1539 	}
1540 	return hlist_entry(stable_node->hlist.first,
1541 			   typeof(*stable_node), hlist_dup);
1542 }
1543 
1544 /*
1545  * Like for get_ksm_page, this function can free the *_stable_node and
1546  * *_stable_node_dup if the returned tree_page is NULL.
1547  *
1548  * It can also free and overwrite *_stable_node with the found
1549  * stable_node_dup if the chain is collapsed (in which case
1550  * *_stable_node will be equal to *_stable_node_dup like if the chain
1551  * never existed). It's up to the caller to verify tree_page is not
1552  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1553  *
1554  * *_stable_node_dup is really a second output parameter of this
1555  * function and will be overwritten in all cases, the caller doesn't
1556  * need to initialize it.
1557  */
1558 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559 					struct ksm_stable_node **_stable_node,
1560 					struct rb_root *root,
1561 					bool prune_stale_stable_nodes)
1562 {
1563 	struct ksm_stable_node *stable_node = *_stable_node;
1564 	if (!is_stable_node_chain(stable_node)) {
1565 		if (is_page_sharing_candidate(stable_node)) {
1566 			*_stable_node_dup = stable_node;
1567 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1568 		}
1569 		/*
1570 		 * _stable_node_dup set to NULL means the stable_node
1571 		 * reached the ksm_max_page_sharing limit.
1572 		 */
1573 		*_stable_node_dup = NULL;
1574 		return NULL;
1575 	}
1576 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1577 			       prune_stale_stable_nodes);
1578 }
1579 
1580 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581 						struct ksm_stable_node **s_n,
1582 						struct rb_root *root)
1583 {
1584 	return __stable_node_chain(s_n_d, s_n, root, true);
1585 }
1586 
1587 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588 					  struct ksm_stable_node *s_n,
1589 					  struct rb_root *root)
1590 {
1591 	struct ksm_stable_node *old_stable_node = s_n;
1592 	struct page *tree_page;
1593 
1594 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1595 	/* not pruning dups so s_n cannot have changed */
1596 	VM_BUG_ON(s_n != old_stable_node);
1597 	return tree_page;
1598 }
1599 
1600 /*
1601  * stable_tree_search - search for page inside the stable tree
1602  *
1603  * This function checks if there is a page inside the stable tree
1604  * with identical content to the page that we are scanning right now.
1605  *
1606  * This function returns the stable tree node of identical content if found,
1607  * NULL otherwise.
1608  */
1609 static struct page *stable_tree_search(struct page *page)
1610 {
1611 	int nid;
1612 	struct rb_root *root;
1613 	struct rb_node **new;
1614 	struct rb_node *parent;
1615 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616 	struct ksm_stable_node *page_node;
1617 
1618 	page_node = page_stable_node(page);
1619 	if (page_node && page_node->head != &migrate_nodes) {
1620 		/* ksm page forked */
1621 		get_page(page);
1622 		return page;
1623 	}
1624 
1625 	nid = get_kpfn_nid(page_to_pfn(page));
1626 	root = root_stable_tree + nid;
1627 again:
1628 	new = &root->rb_node;
1629 	parent = NULL;
1630 
1631 	while (*new) {
1632 		struct page *tree_page;
1633 		int ret;
1634 
1635 		cond_resched();
1636 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1637 		stable_node_any = NULL;
1638 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1639 		/*
1640 		 * NOTE: stable_node may have been freed by
1641 		 * chain_prune() if the returned stable_node_dup is
1642 		 * not NULL. stable_node_dup may have been inserted in
1643 		 * the rbtree instead as a regular stable_node (in
1644 		 * order to collapse the stable_node chain if a single
1645 		 * stable_node dup was found in it). In such case the
1646 		 * stable_node is overwritten by the callee to point
1647 		 * to the stable_node_dup that was collapsed in the
1648 		 * stable rbtree and stable_node will be equal to
1649 		 * stable_node_dup like if the chain never existed.
1650 		 */
1651 		if (!stable_node_dup) {
1652 			/*
1653 			 * Either all stable_node dups were full in
1654 			 * this stable_node chain, or this chain was
1655 			 * empty and should be rb_erased.
1656 			 */
1657 			stable_node_any = stable_node_dup_any(stable_node,
1658 							      root);
1659 			if (!stable_node_any) {
1660 				/* rb_erase just run */
1661 				goto again;
1662 			}
1663 			/*
1664 			 * Take any of the stable_node dups page of
1665 			 * this stable_node chain to let the tree walk
1666 			 * continue. All KSM pages belonging to the
1667 			 * stable_node dups in a stable_node chain
1668 			 * have the same content and they're
1669 			 * write protected at all times. Any will work
1670 			 * fine to continue the walk.
1671 			 */
1672 			tree_page = get_ksm_page(stable_node_any,
1673 						 GET_KSM_PAGE_NOLOCK);
1674 		}
1675 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1676 		if (!tree_page) {
1677 			/*
1678 			 * If we walked over a stale stable_node,
1679 			 * get_ksm_page() will call rb_erase() and it
1680 			 * may rebalance the tree from under us. So
1681 			 * restart the search from scratch. Returning
1682 			 * NULL would be safe too, but we'd generate
1683 			 * false negative insertions just because some
1684 			 * stable_node was stale.
1685 			 */
1686 			goto again;
1687 		}
1688 
1689 		ret = memcmp_pages(page, tree_page);
1690 		put_page(tree_page);
1691 
1692 		parent = *new;
1693 		if (ret < 0)
1694 			new = &parent->rb_left;
1695 		else if (ret > 0)
1696 			new = &parent->rb_right;
1697 		else {
1698 			if (page_node) {
1699 				VM_BUG_ON(page_node->head != &migrate_nodes);
1700 				/*
1701 				 * Test if the migrated page should be merged
1702 				 * into a stable node dup. If the mapcount is
1703 				 * 1 we can migrate it with another KSM page
1704 				 * without adding it to the chain.
1705 				 */
1706 				if (page_mapcount(page) > 1)
1707 					goto chain_append;
1708 			}
1709 
1710 			if (!stable_node_dup) {
1711 				/*
1712 				 * If the stable_node is a chain and
1713 				 * we got a payload match in memcmp
1714 				 * but we cannot merge the scanned
1715 				 * page in any of the existing
1716 				 * stable_node dups because they're
1717 				 * all full, we need to wait the
1718 				 * scanned page to find itself a match
1719 				 * in the unstable tree to create a
1720 				 * brand new KSM page to add later to
1721 				 * the dups of this stable_node.
1722 				 */
1723 				return NULL;
1724 			}
1725 
1726 			/*
1727 			 * Lock and unlock the stable_node's page (which
1728 			 * might already have been migrated) so that page
1729 			 * migration is sure to notice its raised count.
1730 			 * It would be more elegant to return stable_node
1731 			 * than kpage, but that involves more changes.
1732 			 */
1733 			tree_page = get_ksm_page(stable_node_dup,
1734 						 GET_KSM_PAGE_TRYLOCK);
1735 
1736 			if (PTR_ERR(tree_page) == -EBUSY)
1737 				return ERR_PTR(-EBUSY);
1738 
1739 			if (unlikely(!tree_page))
1740 				/*
1741 				 * The tree may have been rebalanced,
1742 				 * so re-evaluate parent and new.
1743 				 */
1744 				goto again;
1745 			unlock_page(tree_page);
1746 
1747 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1748 			    NUMA(stable_node_dup->nid)) {
1749 				put_page(tree_page);
1750 				goto replace;
1751 			}
1752 			return tree_page;
1753 		}
1754 	}
1755 
1756 	if (!page_node)
1757 		return NULL;
1758 
1759 	list_del(&page_node->list);
1760 	DO_NUMA(page_node->nid = nid);
1761 	rb_link_node(&page_node->node, parent, new);
1762 	rb_insert_color(&page_node->node, root);
1763 out:
1764 	if (is_page_sharing_candidate(page_node)) {
1765 		get_page(page);
1766 		return page;
1767 	} else
1768 		return NULL;
1769 
1770 replace:
1771 	/*
1772 	 * If stable_node was a chain and chain_prune collapsed it,
1773 	 * stable_node has been updated to be the new regular
1774 	 * stable_node. A collapse of the chain is indistinguishable
1775 	 * from the case there was no chain in the stable
1776 	 * rbtree. Otherwise stable_node is the chain and
1777 	 * stable_node_dup is the dup to replace.
1778 	 */
1779 	if (stable_node_dup == stable_node) {
1780 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1782 		/* there is no chain */
1783 		if (page_node) {
1784 			VM_BUG_ON(page_node->head != &migrate_nodes);
1785 			list_del(&page_node->list);
1786 			DO_NUMA(page_node->nid = nid);
1787 			rb_replace_node(&stable_node_dup->node,
1788 					&page_node->node,
1789 					root);
1790 			if (is_page_sharing_candidate(page_node))
1791 				get_page(page);
1792 			else
1793 				page = NULL;
1794 		} else {
1795 			rb_erase(&stable_node_dup->node, root);
1796 			page = NULL;
1797 		}
1798 	} else {
1799 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1800 		__stable_node_dup_del(stable_node_dup);
1801 		if (page_node) {
1802 			VM_BUG_ON(page_node->head != &migrate_nodes);
1803 			list_del(&page_node->list);
1804 			DO_NUMA(page_node->nid = nid);
1805 			stable_node_chain_add_dup(page_node, stable_node);
1806 			if (is_page_sharing_candidate(page_node))
1807 				get_page(page);
1808 			else
1809 				page = NULL;
1810 		} else {
1811 			page = NULL;
1812 		}
1813 	}
1814 	stable_node_dup->head = &migrate_nodes;
1815 	list_add(&stable_node_dup->list, stable_node_dup->head);
1816 	return page;
1817 
1818 chain_append:
1819 	/* stable_node_dup could be null if it reached the limit */
1820 	if (!stable_node_dup)
1821 		stable_node_dup = stable_node_any;
1822 	/*
1823 	 * If stable_node was a chain and chain_prune collapsed it,
1824 	 * stable_node has been updated to be the new regular
1825 	 * stable_node. A collapse of the chain is indistinguishable
1826 	 * from the case there was no chain in the stable
1827 	 * rbtree. Otherwise stable_node is the chain and
1828 	 * stable_node_dup is the dup to replace.
1829 	 */
1830 	if (stable_node_dup == stable_node) {
1831 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1832 		/* chain is missing so create it */
1833 		stable_node = alloc_stable_node_chain(stable_node_dup,
1834 						      root);
1835 		if (!stable_node)
1836 			return NULL;
1837 	}
1838 	/*
1839 	 * Add this stable_node dup that was
1840 	 * migrated to the stable_node chain
1841 	 * of the current nid for this page
1842 	 * content.
1843 	 */
1844 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1845 	VM_BUG_ON(page_node->head != &migrate_nodes);
1846 	list_del(&page_node->list);
1847 	DO_NUMA(page_node->nid = nid);
1848 	stable_node_chain_add_dup(page_node, stable_node);
1849 	goto out;
1850 }
1851 
1852 /*
1853  * stable_tree_insert - insert stable tree node pointing to new ksm page
1854  * into the stable tree.
1855  *
1856  * This function returns the stable tree node just allocated on success,
1857  * NULL otherwise.
1858  */
1859 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1860 {
1861 	int nid;
1862 	unsigned long kpfn;
1863 	struct rb_root *root;
1864 	struct rb_node **new;
1865 	struct rb_node *parent;
1866 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1867 	bool need_chain = false;
1868 
1869 	kpfn = page_to_pfn(kpage);
1870 	nid = get_kpfn_nid(kpfn);
1871 	root = root_stable_tree + nid;
1872 again:
1873 	parent = NULL;
1874 	new = &root->rb_node;
1875 
1876 	while (*new) {
1877 		struct page *tree_page;
1878 		int ret;
1879 
1880 		cond_resched();
1881 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1882 		stable_node_any = NULL;
1883 		tree_page = chain(&stable_node_dup, stable_node, root);
1884 		if (!stable_node_dup) {
1885 			/*
1886 			 * Either all stable_node dups were full in
1887 			 * this stable_node chain, or this chain was
1888 			 * empty and should be rb_erased.
1889 			 */
1890 			stable_node_any = stable_node_dup_any(stable_node,
1891 							      root);
1892 			if (!stable_node_any) {
1893 				/* rb_erase just run */
1894 				goto again;
1895 			}
1896 			/*
1897 			 * Take any of the stable_node dups page of
1898 			 * this stable_node chain to let the tree walk
1899 			 * continue. All KSM pages belonging to the
1900 			 * stable_node dups in a stable_node chain
1901 			 * have the same content and they're
1902 			 * write protected at all times. Any will work
1903 			 * fine to continue the walk.
1904 			 */
1905 			tree_page = get_ksm_page(stable_node_any,
1906 						 GET_KSM_PAGE_NOLOCK);
1907 		}
1908 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1909 		if (!tree_page) {
1910 			/*
1911 			 * If we walked over a stale stable_node,
1912 			 * get_ksm_page() will call rb_erase() and it
1913 			 * may rebalance the tree from under us. So
1914 			 * restart the search from scratch. Returning
1915 			 * NULL would be safe too, but we'd generate
1916 			 * false negative insertions just because some
1917 			 * stable_node was stale.
1918 			 */
1919 			goto again;
1920 		}
1921 
1922 		ret = memcmp_pages(kpage, tree_page);
1923 		put_page(tree_page);
1924 
1925 		parent = *new;
1926 		if (ret < 0)
1927 			new = &parent->rb_left;
1928 		else if (ret > 0)
1929 			new = &parent->rb_right;
1930 		else {
1931 			need_chain = true;
1932 			break;
1933 		}
1934 	}
1935 
1936 	stable_node_dup = alloc_stable_node();
1937 	if (!stable_node_dup)
1938 		return NULL;
1939 
1940 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941 	stable_node_dup->kpfn = kpfn;
1942 	set_page_stable_node(kpage, stable_node_dup);
1943 	stable_node_dup->rmap_hlist_len = 0;
1944 	DO_NUMA(stable_node_dup->nid = nid);
1945 	if (!need_chain) {
1946 		rb_link_node(&stable_node_dup->node, parent, new);
1947 		rb_insert_color(&stable_node_dup->node, root);
1948 	} else {
1949 		if (!is_stable_node_chain(stable_node)) {
1950 			struct ksm_stable_node *orig = stable_node;
1951 			/* chain is missing so create it */
1952 			stable_node = alloc_stable_node_chain(orig, root);
1953 			if (!stable_node) {
1954 				free_stable_node(stable_node_dup);
1955 				return NULL;
1956 			}
1957 		}
1958 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1959 	}
1960 
1961 	return stable_node_dup;
1962 }
1963 
1964 /*
1965  * unstable_tree_search_insert - search for identical page,
1966  * else insert rmap_item into the unstable tree.
1967  *
1968  * This function searches for a page in the unstable tree identical to the
1969  * page currently being scanned; and if no identical page is found in the
1970  * tree, we insert rmap_item as a new object into the unstable tree.
1971  *
1972  * This function returns pointer to rmap_item found to be identical
1973  * to the currently scanned page, NULL otherwise.
1974  *
1975  * This function does both searching and inserting, because they share
1976  * the same walking algorithm in an rbtree.
1977  */
1978 static
1979 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1980 					      struct page *page,
1981 					      struct page **tree_pagep)
1982 {
1983 	struct rb_node **new;
1984 	struct rb_root *root;
1985 	struct rb_node *parent = NULL;
1986 	int nid;
1987 
1988 	nid = get_kpfn_nid(page_to_pfn(page));
1989 	root = root_unstable_tree + nid;
1990 	new = &root->rb_node;
1991 
1992 	while (*new) {
1993 		struct ksm_rmap_item *tree_rmap_item;
1994 		struct page *tree_page;
1995 		int ret;
1996 
1997 		cond_resched();
1998 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1999 		tree_page = get_mergeable_page(tree_rmap_item);
2000 		if (!tree_page)
2001 			return NULL;
2002 
2003 		/*
2004 		 * Don't substitute a ksm page for a forked page.
2005 		 */
2006 		if (page == tree_page) {
2007 			put_page(tree_page);
2008 			return NULL;
2009 		}
2010 
2011 		ret = memcmp_pages(page, tree_page);
2012 
2013 		parent = *new;
2014 		if (ret < 0) {
2015 			put_page(tree_page);
2016 			new = &parent->rb_left;
2017 		} else if (ret > 0) {
2018 			put_page(tree_page);
2019 			new = &parent->rb_right;
2020 		} else if (!ksm_merge_across_nodes &&
2021 			   page_to_nid(tree_page) != nid) {
2022 			/*
2023 			 * If tree_page has been migrated to another NUMA node,
2024 			 * it will be flushed out and put in the right unstable
2025 			 * tree next time: only merge with it when across_nodes.
2026 			 */
2027 			put_page(tree_page);
2028 			return NULL;
2029 		} else {
2030 			*tree_pagep = tree_page;
2031 			return tree_rmap_item;
2032 		}
2033 	}
2034 
2035 	rmap_item->address |= UNSTABLE_FLAG;
2036 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2037 	DO_NUMA(rmap_item->nid = nid);
2038 	rb_link_node(&rmap_item->node, parent, new);
2039 	rb_insert_color(&rmap_item->node, root);
2040 
2041 	ksm_pages_unshared++;
2042 	return NULL;
2043 }
2044 
2045 /*
2046  * stable_tree_append - add another rmap_item to the linked list of
2047  * rmap_items hanging off a given node of the stable tree, all sharing
2048  * the same ksm page.
2049  */
2050 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051 			       struct ksm_stable_node *stable_node,
2052 			       bool max_page_sharing_bypass)
2053 {
2054 	/*
2055 	 * rmap won't find this mapping if we don't insert the
2056 	 * rmap_item in the right stable_node
2057 	 * duplicate. page_migration could break later if rmap breaks,
2058 	 * so we can as well crash here. We really need to check for
2059 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2060 	 * for other negative values as an underflow if detected here
2061 	 * for the first time (and not when decreasing rmap_hlist_len)
2062 	 * would be sign of memory corruption in the stable_node.
2063 	 */
2064 	BUG_ON(stable_node->rmap_hlist_len < 0);
2065 
2066 	stable_node->rmap_hlist_len++;
2067 	if (!max_page_sharing_bypass)
2068 		/* possibly non fatal but unexpected overflow, only warn */
2069 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070 			     ksm_max_page_sharing);
2071 
2072 	rmap_item->head = stable_node;
2073 	rmap_item->address |= STABLE_FLAG;
2074 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2075 
2076 	if (rmap_item->hlist.next)
2077 		ksm_pages_sharing++;
2078 	else
2079 		ksm_pages_shared++;
2080 
2081 	rmap_item->mm->ksm_merging_pages++;
2082 }
2083 
2084 /*
2085  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086  * if not, compare checksum to previous and if it's the same, see if page can
2087  * be inserted into the unstable tree, or merged with a page already there and
2088  * both transferred to the stable tree.
2089  *
2090  * @page: the page that we are searching identical page to.
2091  * @rmap_item: the reverse mapping into the virtual address of this page
2092  */
2093 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2094 {
2095 	struct mm_struct *mm = rmap_item->mm;
2096 	struct ksm_rmap_item *tree_rmap_item;
2097 	struct page *tree_page = NULL;
2098 	struct ksm_stable_node *stable_node;
2099 	struct page *kpage;
2100 	unsigned int checksum;
2101 	int err;
2102 	bool max_page_sharing_bypass = false;
2103 
2104 	stable_node = page_stable_node(page);
2105 	if (stable_node) {
2106 		if (stable_node->head != &migrate_nodes &&
2107 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2108 		    NUMA(stable_node->nid)) {
2109 			stable_node_dup_del(stable_node);
2110 			stable_node->head = &migrate_nodes;
2111 			list_add(&stable_node->list, stable_node->head);
2112 		}
2113 		if (stable_node->head != &migrate_nodes &&
2114 		    rmap_item->head == stable_node)
2115 			return;
2116 		/*
2117 		 * If it's a KSM fork, allow it to go over the sharing limit
2118 		 * without warnings.
2119 		 */
2120 		if (!is_page_sharing_candidate(stable_node))
2121 			max_page_sharing_bypass = true;
2122 	}
2123 
2124 	/* We first start with searching the page inside the stable tree */
2125 	kpage = stable_tree_search(page);
2126 	if (kpage == page && rmap_item->head == stable_node) {
2127 		put_page(kpage);
2128 		return;
2129 	}
2130 
2131 	remove_rmap_item_from_tree(rmap_item);
2132 
2133 	if (kpage) {
2134 		if (PTR_ERR(kpage) == -EBUSY)
2135 			return;
2136 
2137 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2138 		if (!err) {
2139 			/*
2140 			 * The page was successfully merged:
2141 			 * add its rmap_item to the stable tree.
2142 			 */
2143 			lock_page(kpage);
2144 			stable_tree_append(rmap_item, page_stable_node(kpage),
2145 					   max_page_sharing_bypass);
2146 			unlock_page(kpage);
2147 		}
2148 		put_page(kpage);
2149 		return;
2150 	}
2151 
2152 	/*
2153 	 * If the hash value of the page has changed from the last time
2154 	 * we calculated it, this page is changing frequently: therefore we
2155 	 * don't want to insert it in the unstable tree, and we don't want
2156 	 * to waste our time searching for something identical to it there.
2157 	 */
2158 	checksum = calc_checksum(page);
2159 	if (rmap_item->oldchecksum != checksum) {
2160 		rmap_item->oldchecksum = checksum;
2161 		return;
2162 	}
2163 
2164 	/*
2165 	 * Same checksum as an empty page. We attempt to merge it with the
2166 	 * appropriate zero page if the user enabled this via sysfs.
2167 	 */
2168 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169 		struct vm_area_struct *vma;
2170 
2171 		mmap_read_lock(mm);
2172 		vma = find_mergeable_vma(mm, rmap_item->address);
2173 		if (vma) {
2174 			err = try_to_merge_one_page(vma, page,
2175 					ZERO_PAGE(rmap_item->address));
2176 			trace_ksm_merge_one_page(
2177 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178 				rmap_item, mm, err);
2179 		} else {
2180 			/*
2181 			 * If the vma is out of date, we do not need to
2182 			 * continue.
2183 			 */
2184 			err = 0;
2185 		}
2186 		mmap_read_unlock(mm);
2187 		/*
2188 		 * In case of failure, the page was not really empty, so we
2189 		 * need to continue. Otherwise we're done.
2190 		 */
2191 		if (!err)
2192 			return;
2193 	}
2194 	tree_rmap_item =
2195 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2196 	if (tree_rmap_item) {
2197 		bool split;
2198 
2199 		kpage = try_to_merge_two_pages(rmap_item, page,
2200 						tree_rmap_item, tree_page);
2201 		/*
2202 		 * If both pages we tried to merge belong to the same compound
2203 		 * page, then we actually ended up increasing the reference
2204 		 * count of the same compound page twice, and split_huge_page
2205 		 * failed.
2206 		 * Here we set a flag if that happened, and we use it later to
2207 		 * try split_huge_page again. Since we call put_page right
2208 		 * afterwards, the reference count will be correct and
2209 		 * split_huge_page should succeed.
2210 		 */
2211 		split = PageTransCompound(page)
2212 			&& compound_head(page) == compound_head(tree_page);
2213 		put_page(tree_page);
2214 		if (kpage) {
2215 			/*
2216 			 * The pages were successfully merged: insert new
2217 			 * node in the stable tree and add both rmap_items.
2218 			 */
2219 			lock_page(kpage);
2220 			stable_node = stable_tree_insert(kpage);
2221 			if (stable_node) {
2222 				stable_tree_append(tree_rmap_item, stable_node,
2223 						   false);
2224 				stable_tree_append(rmap_item, stable_node,
2225 						   false);
2226 			}
2227 			unlock_page(kpage);
2228 
2229 			/*
2230 			 * If we fail to insert the page into the stable tree,
2231 			 * we will have 2 virtual addresses that are pointing
2232 			 * to a ksm page left outside the stable tree,
2233 			 * in which case we need to break_cow on both.
2234 			 */
2235 			if (!stable_node) {
2236 				break_cow(tree_rmap_item);
2237 				break_cow(rmap_item);
2238 			}
2239 		} else if (split) {
2240 			/*
2241 			 * We are here if we tried to merge two pages and
2242 			 * failed because they both belonged to the same
2243 			 * compound page. We will split the page now, but no
2244 			 * merging will take place.
2245 			 * We do not want to add the cost of a full lock; if
2246 			 * the page is locked, it is better to skip it and
2247 			 * perhaps try again later.
2248 			 */
2249 			if (!trylock_page(page))
2250 				return;
2251 			split_huge_page(page);
2252 			unlock_page(page);
2253 		}
2254 	}
2255 }
2256 
2257 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258 					    struct ksm_rmap_item **rmap_list,
2259 					    unsigned long addr)
2260 {
2261 	struct ksm_rmap_item *rmap_item;
2262 
2263 	while (*rmap_list) {
2264 		rmap_item = *rmap_list;
2265 		if ((rmap_item->address & PAGE_MASK) == addr)
2266 			return rmap_item;
2267 		if (rmap_item->address > addr)
2268 			break;
2269 		*rmap_list = rmap_item->rmap_list;
2270 		remove_rmap_item_from_tree(rmap_item);
2271 		free_rmap_item(rmap_item);
2272 	}
2273 
2274 	rmap_item = alloc_rmap_item();
2275 	if (rmap_item) {
2276 		/* It has already been zeroed */
2277 		rmap_item->mm = mm_slot->slot.mm;
2278 		rmap_item->mm->ksm_rmap_items++;
2279 		rmap_item->address = addr;
2280 		rmap_item->rmap_list = *rmap_list;
2281 		*rmap_list = rmap_item;
2282 	}
2283 	return rmap_item;
2284 }
2285 
2286 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2287 {
2288 	struct mm_struct *mm;
2289 	struct ksm_mm_slot *mm_slot;
2290 	struct mm_slot *slot;
2291 	struct vm_area_struct *vma;
2292 	struct ksm_rmap_item *rmap_item;
2293 	struct vma_iterator vmi;
2294 	int nid;
2295 
2296 	if (list_empty(&ksm_mm_head.slot.mm_node))
2297 		return NULL;
2298 
2299 	mm_slot = ksm_scan.mm_slot;
2300 	if (mm_slot == &ksm_mm_head) {
2301 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2302 
2303 		/*
2304 		 * A number of pages can hang around indefinitely on per-cpu
2305 		 * pagevecs, raised page count preventing write_protect_page
2306 		 * from merging them.  Though it doesn't really matter much,
2307 		 * it is puzzling to see some stuck in pages_volatile until
2308 		 * other activity jostles them out, and they also prevented
2309 		 * LTP's KSM test from succeeding deterministically; so drain
2310 		 * them here (here rather than on entry to ksm_do_scan(),
2311 		 * so we don't IPI too often when pages_to_scan is set low).
2312 		 */
2313 		lru_add_drain_all();
2314 
2315 		/*
2316 		 * Whereas stale stable_nodes on the stable_tree itself
2317 		 * get pruned in the regular course of stable_tree_search(),
2318 		 * those moved out to the migrate_nodes list can accumulate:
2319 		 * so prune them once before each full scan.
2320 		 */
2321 		if (!ksm_merge_across_nodes) {
2322 			struct ksm_stable_node *stable_node, *next;
2323 			struct page *page;
2324 
2325 			list_for_each_entry_safe(stable_node, next,
2326 						 &migrate_nodes, list) {
2327 				page = get_ksm_page(stable_node,
2328 						    GET_KSM_PAGE_NOLOCK);
2329 				if (page)
2330 					put_page(page);
2331 				cond_resched();
2332 			}
2333 		}
2334 
2335 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2336 			root_unstable_tree[nid] = RB_ROOT;
2337 
2338 		spin_lock(&ksm_mmlist_lock);
2339 		slot = list_entry(mm_slot->slot.mm_node.next,
2340 				  struct mm_slot, mm_node);
2341 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342 		ksm_scan.mm_slot = mm_slot;
2343 		spin_unlock(&ksm_mmlist_lock);
2344 		/*
2345 		 * Although we tested list_empty() above, a racing __ksm_exit
2346 		 * of the last mm on the list may have removed it since then.
2347 		 */
2348 		if (mm_slot == &ksm_mm_head)
2349 			return NULL;
2350 next_mm:
2351 		ksm_scan.address = 0;
2352 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2353 	}
2354 
2355 	slot = &mm_slot->slot;
2356 	mm = slot->mm;
2357 	vma_iter_init(&vmi, mm, ksm_scan.address);
2358 
2359 	mmap_read_lock(mm);
2360 	if (ksm_test_exit(mm))
2361 		goto no_vmas;
2362 
2363 	for_each_vma(vmi, vma) {
2364 		if (!(vma->vm_flags & VM_MERGEABLE))
2365 			continue;
2366 		if (ksm_scan.address < vma->vm_start)
2367 			ksm_scan.address = vma->vm_start;
2368 		if (!vma->anon_vma)
2369 			ksm_scan.address = vma->vm_end;
2370 
2371 		while (ksm_scan.address < vma->vm_end) {
2372 			if (ksm_test_exit(mm))
2373 				break;
2374 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2375 			if (IS_ERR_OR_NULL(*page)) {
2376 				ksm_scan.address += PAGE_SIZE;
2377 				cond_resched();
2378 				continue;
2379 			}
2380 			if (is_zone_device_page(*page))
2381 				goto next_page;
2382 			if (PageAnon(*page)) {
2383 				flush_anon_page(vma, *page, ksm_scan.address);
2384 				flush_dcache_page(*page);
2385 				rmap_item = get_next_rmap_item(mm_slot,
2386 					ksm_scan.rmap_list, ksm_scan.address);
2387 				if (rmap_item) {
2388 					ksm_scan.rmap_list =
2389 							&rmap_item->rmap_list;
2390 					ksm_scan.address += PAGE_SIZE;
2391 				} else
2392 					put_page(*page);
2393 				mmap_read_unlock(mm);
2394 				return rmap_item;
2395 			}
2396 next_page:
2397 			put_page(*page);
2398 			ksm_scan.address += PAGE_SIZE;
2399 			cond_resched();
2400 		}
2401 	}
2402 
2403 	if (ksm_test_exit(mm)) {
2404 no_vmas:
2405 		ksm_scan.address = 0;
2406 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2407 	}
2408 	/*
2409 	 * Nuke all the rmap_items that are above this current rmap:
2410 	 * because there were no VM_MERGEABLE vmas with such addresses.
2411 	 */
2412 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2413 
2414 	spin_lock(&ksm_mmlist_lock);
2415 	slot = list_entry(mm_slot->slot.mm_node.next,
2416 			  struct mm_slot, mm_node);
2417 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2418 	if (ksm_scan.address == 0) {
2419 		/*
2420 		 * We've completed a full scan of all vmas, holding mmap_lock
2421 		 * throughout, and found no VM_MERGEABLE: so do the same as
2422 		 * __ksm_exit does to remove this mm from all our lists now.
2423 		 * This applies either when cleaning up after __ksm_exit
2424 		 * (but beware: we can reach here even before __ksm_exit),
2425 		 * or when all VM_MERGEABLE areas have been unmapped (and
2426 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2427 		 */
2428 		hash_del(&mm_slot->slot.hash);
2429 		list_del(&mm_slot->slot.mm_node);
2430 		spin_unlock(&ksm_mmlist_lock);
2431 
2432 		mm_slot_free(mm_slot_cache, mm_slot);
2433 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2434 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2435 		mmap_read_unlock(mm);
2436 		mmdrop(mm);
2437 	} else {
2438 		mmap_read_unlock(mm);
2439 		/*
2440 		 * mmap_read_unlock(mm) first because after
2441 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442 		 * already have been freed under us by __ksm_exit()
2443 		 * because the "mm_slot" is still hashed and
2444 		 * ksm_scan.mm_slot doesn't point to it anymore.
2445 		 */
2446 		spin_unlock(&ksm_mmlist_lock);
2447 	}
2448 
2449 	/* Repeat until we've completed scanning the whole list */
2450 	mm_slot = ksm_scan.mm_slot;
2451 	if (mm_slot != &ksm_mm_head)
2452 		goto next_mm;
2453 
2454 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2455 	ksm_scan.seqnr++;
2456 	return NULL;
2457 }
2458 
2459 /**
2460  * ksm_do_scan  - the ksm scanner main worker function.
2461  * @scan_npages:  number of pages we want to scan before we return.
2462  */
2463 static void ksm_do_scan(unsigned int scan_npages)
2464 {
2465 	struct ksm_rmap_item *rmap_item;
2466 	struct page *page;
2467 
2468 	while (scan_npages-- && likely(!freezing(current))) {
2469 		cond_resched();
2470 		rmap_item = scan_get_next_rmap_item(&page);
2471 		if (!rmap_item)
2472 			return;
2473 		cmp_and_merge_page(page, rmap_item);
2474 		put_page(page);
2475 	}
2476 }
2477 
2478 static int ksmd_should_run(void)
2479 {
2480 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2481 }
2482 
2483 static int ksm_scan_thread(void *nothing)
2484 {
2485 	unsigned int sleep_ms;
2486 
2487 	set_freezable();
2488 	set_user_nice(current, 5);
2489 
2490 	while (!kthread_should_stop()) {
2491 		mutex_lock(&ksm_thread_mutex);
2492 		wait_while_offlining();
2493 		if (ksmd_should_run())
2494 			ksm_do_scan(ksm_thread_pages_to_scan);
2495 		mutex_unlock(&ksm_thread_mutex);
2496 
2497 		try_to_freeze();
2498 
2499 		if (ksmd_should_run()) {
2500 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501 			wait_event_interruptible_timeout(ksm_iter_wait,
2502 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503 				msecs_to_jiffies(sleep_ms));
2504 		} else {
2505 			wait_event_freezable(ksm_thread_wait,
2506 				ksmd_should_run() || kthread_should_stop());
2507 		}
2508 	}
2509 	return 0;
2510 }
2511 
2512 static void __ksm_add_vma(struct vm_area_struct *vma)
2513 {
2514 	unsigned long vm_flags = vma->vm_flags;
2515 
2516 	if (vm_flags & VM_MERGEABLE)
2517 		return;
2518 
2519 	if (vma_ksm_compatible(vma))
2520 		vm_flags_set(vma, VM_MERGEABLE);
2521 }
2522 
2523 static int __ksm_del_vma(struct vm_area_struct *vma)
2524 {
2525 	int err;
2526 
2527 	if (!(vma->vm_flags & VM_MERGEABLE))
2528 		return 0;
2529 
2530 	if (vma->anon_vma) {
2531 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2532 		if (err)
2533 			return err;
2534 	}
2535 
2536 	vm_flags_clear(vma, VM_MERGEABLE);
2537 	return 0;
2538 }
2539 /**
2540  * ksm_add_vma - Mark vma as mergeable if compatible
2541  *
2542  * @vma:  Pointer to vma
2543  */
2544 void ksm_add_vma(struct vm_area_struct *vma)
2545 {
2546 	struct mm_struct *mm = vma->vm_mm;
2547 
2548 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2549 		__ksm_add_vma(vma);
2550 }
2551 
2552 static void ksm_add_vmas(struct mm_struct *mm)
2553 {
2554 	struct vm_area_struct *vma;
2555 
2556 	VMA_ITERATOR(vmi, mm, 0);
2557 	for_each_vma(vmi, vma)
2558 		__ksm_add_vma(vma);
2559 }
2560 
2561 static int ksm_del_vmas(struct mm_struct *mm)
2562 {
2563 	struct vm_area_struct *vma;
2564 	int err;
2565 
2566 	VMA_ITERATOR(vmi, mm, 0);
2567 	for_each_vma(vmi, vma) {
2568 		err = __ksm_del_vma(vma);
2569 		if (err)
2570 			return err;
2571 	}
2572 	return 0;
2573 }
2574 
2575 /**
2576  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2577  *                        compatible VMA's
2578  *
2579  * @mm:  Pointer to mm
2580  *
2581  * Returns 0 on success, otherwise error code
2582  */
2583 int ksm_enable_merge_any(struct mm_struct *mm)
2584 {
2585 	int err;
2586 
2587 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2588 		return 0;
2589 
2590 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2591 		err = __ksm_enter(mm);
2592 		if (err)
2593 			return err;
2594 	}
2595 
2596 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2597 	ksm_add_vmas(mm);
2598 
2599 	return 0;
2600 }
2601 
2602 /**
2603  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2604  *			   previously enabled via ksm_enable_merge_any().
2605  *
2606  * Disabling merging implies unmerging any merged pages, like setting
2607  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2608  * merging on all compatible VMA's remains enabled.
2609  *
2610  * @mm: Pointer to mm
2611  *
2612  * Returns 0 on success, otherwise error code
2613  */
2614 int ksm_disable_merge_any(struct mm_struct *mm)
2615 {
2616 	int err;
2617 
2618 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2619 		return 0;
2620 
2621 	err = ksm_del_vmas(mm);
2622 	if (err) {
2623 		ksm_add_vmas(mm);
2624 		return err;
2625 	}
2626 
2627 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2628 	return 0;
2629 }
2630 
2631 int ksm_disable(struct mm_struct *mm)
2632 {
2633 	mmap_assert_write_locked(mm);
2634 
2635 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2636 		return 0;
2637 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2638 		return ksm_disable_merge_any(mm);
2639 	return ksm_del_vmas(mm);
2640 }
2641 
2642 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2643 		unsigned long end, int advice, unsigned long *vm_flags)
2644 {
2645 	struct mm_struct *mm = vma->vm_mm;
2646 	int err;
2647 
2648 	switch (advice) {
2649 	case MADV_MERGEABLE:
2650 		if (vma->vm_flags & VM_MERGEABLE)
2651 			return 0;
2652 		if (!vma_ksm_compatible(vma))
2653 			return 0;
2654 
2655 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2656 			err = __ksm_enter(mm);
2657 			if (err)
2658 				return err;
2659 		}
2660 
2661 		*vm_flags |= VM_MERGEABLE;
2662 		break;
2663 
2664 	case MADV_UNMERGEABLE:
2665 		if (!(*vm_flags & VM_MERGEABLE))
2666 			return 0;		/* just ignore the advice */
2667 
2668 		if (vma->anon_vma) {
2669 			err = unmerge_ksm_pages(vma, start, end);
2670 			if (err)
2671 				return err;
2672 		}
2673 
2674 		*vm_flags &= ~VM_MERGEABLE;
2675 		break;
2676 	}
2677 
2678 	return 0;
2679 }
2680 EXPORT_SYMBOL_GPL(ksm_madvise);
2681 
2682 int __ksm_enter(struct mm_struct *mm)
2683 {
2684 	struct ksm_mm_slot *mm_slot;
2685 	struct mm_slot *slot;
2686 	int needs_wakeup;
2687 
2688 	mm_slot = mm_slot_alloc(mm_slot_cache);
2689 	if (!mm_slot)
2690 		return -ENOMEM;
2691 
2692 	slot = &mm_slot->slot;
2693 
2694 	/* Check ksm_run too?  Would need tighter locking */
2695 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2696 
2697 	spin_lock(&ksm_mmlist_lock);
2698 	mm_slot_insert(mm_slots_hash, mm, slot);
2699 	/*
2700 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2701 	 * insert just behind the scanning cursor, to let the area settle
2702 	 * down a little; when fork is followed by immediate exec, we don't
2703 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2704 	 *
2705 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2706 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2707 	 * missed: then we might as well insert at the end of the list.
2708 	 */
2709 	if (ksm_run & KSM_RUN_UNMERGE)
2710 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2711 	else
2712 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2713 	spin_unlock(&ksm_mmlist_lock);
2714 
2715 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2716 	mmgrab(mm);
2717 
2718 	if (needs_wakeup)
2719 		wake_up_interruptible(&ksm_thread_wait);
2720 
2721 	trace_ksm_enter(mm);
2722 	return 0;
2723 }
2724 
2725 void __ksm_exit(struct mm_struct *mm)
2726 {
2727 	struct ksm_mm_slot *mm_slot;
2728 	struct mm_slot *slot;
2729 	int easy_to_free = 0;
2730 
2731 	/*
2732 	 * This process is exiting: if it's straightforward (as is the
2733 	 * case when ksmd was never running), free mm_slot immediately.
2734 	 * But if it's at the cursor or has rmap_items linked to it, use
2735 	 * mmap_lock to synchronize with any break_cows before pagetables
2736 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2737 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2738 	 */
2739 
2740 	spin_lock(&ksm_mmlist_lock);
2741 	slot = mm_slot_lookup(mm_slots_hash, mm);
2742 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2743 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2744 		if (!mm_slot->rmap_list) {
2745 			hash_del(&slot->hash);
2746 			list_del(&slot->mm_node);
2747 			easy_to_free = 1;
2748 		} else {
2749 			list_move(&slot->mm_node,
2750 				  &ksm_scan.mm_slot->slot.mm_node);
2751 		}
2752 	}
2753 	spin_unlock(&ksm_mmlist_lock);
2754 
2755 	if (easy_to_free) {
2756 		mm_slot_free(mm_slot_cache, mm_slot);
2757 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2758 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2759 		mmdrop(mm);
2760 	} else if (mm_slot) {
2761 		mmap_write_lock(mm);
2762 		mmap_write_unlock(mm);
2763 	}
2764 
2765 	trace_ksm_exit(mm);
2766 }
2767 
2768 struct page *ksm_might_need_to_copy(struct page *page,
2769 			struct vm_area_struct *vma, unsigned long address)
2770 {
2771 	struct folio *folio = page_folio(page);
2772 	struct anon_vma *anon_vma = folio_anon_vma(folio);
2773 	struct page *new_page;
2774 
2775 	if (PageKsm(page)) {
2776 		if (page_stable_node(page) &&
2777 		    !(ksm_run & KSM_RUN_UNMERGE))
2778 			return page;	/* no need to copy it */
2779 	} else if (!anon_vma) {
2780 		return page;		/* no need to copy it */
2781 	} else if (page->index == linear_page_index(vma, address) &&
2782 			anon_vma->root == vma->anon_vma->root) {
2783 		return page;		/* still no need to copy it */
2784 	}
2785 	if (!PageUptodate(page))
2786 		return page;		/* let do_swap_page report the error */
2787 
2788 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2789 	if (new_page &&
2790 	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2791 		put_page(new_page);
2792 		new_page = NULL;
2793 	}
2794 	if (new_page) {
2795 		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2796 			put_page(new_page);
2797 			memory_failure_queue(page_to_pfn(page), 0);
2798 			return ERR_PTR(-EHWPOISON);
2799 		}
2800 		SetPageDirty(new_page);
2801 		__SetPageUptodate(new_page);
2802 		__SetPageLocked(new_page);
2803 #ifdef CONFIG_SWAP
2804 		count_vm_event(KSM_SWPIN_COPY);
2805 #endif
2806 	}
2807 
2808 	return new_page;
2809 }
2810 
2811 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2812 {
2813 	struct ksm_stable_node *stable_node;
2814 	struct ksm_rmap_item *rmap_item;
2815 	int search_new_forks = 0;
2816 
2817 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2818 
2819 	/*
2820 	 * Rely on the page lock to protect against concurrent modifications
2821 	 * to that page's node of the stable tree.
2822 	 */
2823 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2824 
2825 	stable_node = folio_stable_node(folio);
2826 	if (!stable_node)
2827 		return;
2828 again:
2829 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2830 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2831 		struct anon_vma_chain *vmac;
2832 		struct vm_area_struct *vma;
2833 
2834 		cond_resched();
2835 		if (!anon_vma_trylock_read(anon_vma)) {
2836 			if (rwc->try_lock) {
2837 				rwc->contended = true;
2838 				return;
2839 			}
2840 			anon_vma_lock_read(anon_vma);
2841 		}
2842 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2843 					       0, ULONG_MAX) {
2844 			unsigned long addr;
2845 
2846 			cond_resched();
2847 			vma = vmac->vma;
2848 
2849 			/* Ignore the stable/unstable/sqnr flags */
2850 			addr = rmap_item->address & PAGE_MASK;
2851 
2852 			if (addr < vma->vm_start || addr >= vma->vm_end)
2853 				continue;
2854 			/*
2855 			 * Initially we examine only the vma which covers this
2856 			 * rmap_item; but later, if there is still work to do,
2857 			 * we examine covering vmas in other mms: in case they
2858 			 * were forked from the original since ksmd passed.
2859 			 */
2860 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2861 				continue;
2862 
2863 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2864 				continue;
2865 
2866 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2867 				anon_vma_unlock_read(anon_vma);
2868 				return;
2869 			}
2870 			if (rwc->done && rwc->done(folio)) {
2871 				anon_vma_unlock_read(anon_vma);
2872 				return;
2873 			}
2874 		}
2875 		anon_vma_unlock_read(anon_vma);
2876 	}
2877 	if (!search_new_forks++)
2878 		goto again;
2879 }
2880 
2881 #ifdef CONFIG_MEMORY_FAILURE
2882 /*
2883  * Collect processes when the error hit an ksm page.
2884  */
2885 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2886 		       int force_early)
2887 {
2888 	struct ksm_stable_node *stable_node;
2889 	struct ksm_rmap_item *rmap_item;
2890 	struct folio *folio = page_folio(page);
2891 	struct vm_area_struct *vma;
2892 	struct task_struct *tsk;
2893 
2894 	stable_node = folio_stable_node(folio);
2895 	if (!stable_node)
2896 		return;
2897 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2898 		struct anon_vma *av = rmap_item->anon_vma;
2899 
2900 		anon_vma_lock_read(av);
2901 		read_lock(&tasklist_lock);
2902 		for_each_process(tsk) {
2903 			struct anon_vma_chain *vmac;
2904 			unsigned long addr;
2905 			struct task_struct *t =
2906 				task_early_kill(tsk, force_early);
2907 			if (!t)
2908 				continue;
2909 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2910 						       ULONG_MAX)
2911 			{
2912 				vma = vmac->vma;
2913 				if (vma->vm_mm == t->mm) {
2914 					addr = rmap_item->address & PAGE_MASK;
2915 					add_to_kill_ksm(t, page, vma, to_kill,
2916 							addr);
2917 				}
2918 			}
2919 		}
2920 		read_unlock(&tasklist_lock);
2921 		anon_vma_unlock_read(av);
2922 	}
2923 }
2924 #endif
2925 
2926 #ifdef CONFIG_MIGRATION
2927 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2928 {
2929 	struct ksm_stable_node *stable_node;
2930 
2931 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2932 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2933 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2934 
2935 	stable_node = folio_stable_node(folio);
2936 	if (stable_node) {
2937 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2938 		stable_node->kpfn = folio_pfn(newfolio);
2939 		/*
2940 		 * newfolio->mapping was set in advance; now we need smp_wmb()
2941 		 * to make sure that the new stable_node->kpfn is visible
2942 		 * to get_ksm_page() before it can see that folio->mapping
2943 		 * has gone stale (or that folio_test_swapcache has been cleared).
2944 		 */
2945 		smp_wmb();
2946 		set_page_stable_node(&folio->page, NULL);
2947 	}
2948 }
2949 #endif /* CONFIG_MIGRATION */
2950 
2951 #ifdef CONFIG_MEMORY_HOTREMOVE
2952 static void wait_while_offlining(void)
2953 {
2954 	while (ksm_run & KSM_RUN_OFFLINE) {
2955 		mutex_unlock(&ksm_thread_mutex);
2956 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2957 			    TASK_UNINTERRUPTIBLE);
2958 		mutex_lock(&ksm_thread_mutex);
2959 	}
2960 }
2961 
2962 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2963 					 unsigned long start_pfn,
2964 					 unsigned long end_pfn)
2965 {
2966 	if (stable_node->kpfn >= start_pfn &&
2967 	    stable_node->kpfn < end_pfn) {
2968 		/*
2969 		 * Don't get_ksm_page, page has already gone:
2970 		 * which is why we keep kpfn instead of page*
2971 		 */
2972 		remove_node_from_stable_tree(stable_node);
2973 		return true;
2974 	}
2975 	return false;
2976 }
2977 
2978 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2979 					   unsigned long start_pfn,
2980 					   unsigned long end_pfn,
2981 					   struct rb_root *root)
2982 {
2983 	struct ksm_stable_node *dup;
2984 	struct hlist_node *hlist_safe;
2985 
2986 	if (!is_stable_node_chain(stable_node)) {
2987 		VM_BUG_ON(is_stable_node_dup(stable_node));
2988 		return stable_node_dup_remove_range(stable_node, start_pfn,
2989 						    end_pfn);
2990 	}
2991 
2992 	hlist_for_each_entry_safe(dup, hlist_safe,
2993 				  &stable_node->hlist, hlist_dup) {
2994 		VM_BUG_ON(!is_stable_node_dup(dup));
2995 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2996 	}
2997 	if (hlist_empty(&stable_node->hlist)) {
2998 		free_stable_node_chain(stable_node, root);
2999 		return true; /* notify caller that tree was rebalanced */
3000 	} else
3001 		return false;
3002 }
3003 
3004 static void ksm_check_stable_tree(unsigned long start_pfn,
3005 				  unsigned long end_pfn)
3006 {
3007 	struct ksm_stable_node *stable_node, *next;
3008 	struct rb_node *node;
3009 	int nid;
3010 
3011 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3012 		node = rb_first(root_stable_tree + nid);
3013 		while (node) {
3014 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3015 			if (stable_node_chain_remove_range(stable_node,
3016 							   start_pfn, end_pfn,
3017 							   root_stable_tree +
3018 							   nid))
3019 				node = rb_first(root_stable_tree + nid);
3020 			else
3021 				node = rb_next(node);
3022 			cond_resched();
3023 		}
3024 	}
3025 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3026 		if (stable_node->kpfn >= start_pfn &&
3027 		    stable_node->kpfn < end_pfn)
3028 			remove_node_from_stable_tree(stable_node);
3029 		cond_resched();
3030 	}
3031 }
3032 
3033 static int ksm_memory_callback(struct notifier_block *self,
3034 			       unsigned long action, void *arg)
3035 {
3036 	struct memory_notify *mn = arg;
3037 
3038 	switch (action) {
3039 	case MEM_GOING_OFFLINE:
3040 		/*
3041 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3042 		 * and remove_all_stable_nodes() while memory is going offline:
3043 		 * it is unsafe for them to touch the stable tree at this time.
3044 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3045 		 * which do not need the ksm_thread_mutex are all safe.
3046 		 */
3047 		mutex_lock(&ksm_thread_mutex);
3048 		ksm_run |= KSM_RUN_OFFLINE;
3049 		mutex_unlock(&ksm_thread_mutex);
3050 		break;
3051 
3052 	case MEM_OFFLINE:
3053 		/*
3054 		 * Most of the work is done by page migration; but there might
3055 		 * be a few stable_nodes left over, still pointing to struct
3056 		 * pages which have been offlined: prune those from the tree,
3057 		 * otherwise get_ksm_page() might later try to access a
3058 		 * non-existent struct page.
3059 		 */
3060 		ksm_check_stable_tree(mn->start_pfn,
3061 				      mn->start_pfn + mn->nr_pages);
3062 		fallthrough;
3063 	case MEM_CANCEL_OFFLINE:
3064 		mutex_lock(&ksm_thread_mutex);
3065 		ksm_run &= ~KSM_RUN_OFFLINE;
3066 		mutex_unlock(&ksm_thread_mutex);
3067 
3068 		smp_mb();	/* wake_up_bit advises this */
3069 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3070 		break;
3071 	}
3072 	return NOTIFY_OK;
3073 }
3074 #else
3075 static void wait_while_offlining(void)
3076 {
3077 }
3078 #endif /* CONFIG_MEMORY_HOTREMOVE */
3079 
3080 #ifdef CONFIG_PROC_FS
3081 long ksm_process_profit(struct mm_struct *mm)
3082 {
3083 	return mm->ksm_merging_pages * PAGE_SIZE -
3084 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3085 }
3086 #endif /* CONFIG_PROC_FS */
3087 
3088 #ifdef CONFIG_SYSFS
3089 /*
3090  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3091  */
3092 
3093 #define KSM_ATTR_RO(_name) \
3094 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3095 #define KSM_ATTR(_name) \
3096 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3097 
3098 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3099 				    struct kobj_attribute *attr, char *buf)
3100 {
3101 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3102 }
3103 
3104 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3105 				     struct kobj_attribute *attr,
3106 				     const char *buf, size_t count)
3107 {
3108 	unsigned int msecs;
3109 	int err;
3110 
3111 	err = kstrtouint(buf, 10, &msecs);
3112 	if (err)
3113 		return -EINVAL;
3114 
3115 	ksm_thread_sleep_millisecs = msecs;
3116 	wake_up_interruptible(&ksm_iter_wait);
3117 
3118 	return count;
3119 }
3120 KSM_ATTR(sleep_millisecs);
3121 
3122 static ssize_t pages_to_scan_show(struct kobject *kobj,
3123 				  struct kobj_attribute *attr, char *buf)
3124 {
3125 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3126 }
3127 
3128 static ssize_t pages_to_scan_store(struct kobject *kobj,
3129 				   struct kobj_attribute *attr,
3130 				   const char *buf, size_t count)
3131 {
3132 	unsigned int nr_pages;
3133 	int err;
3134 
3135 	err = kstrtouint(buf, 10, &nr_pages);
3136 	if (err)
3137 		return -EINVAL;
3138 
3139 	ksm_thread_pages_to_scan = nr_pages;
3140 
3141 	return count;
3142 }
3143 KSM_ATTR(pages_to_scan);
3144 
3145 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3146 			char *buf)
3147 {
3148 	return sysfs_emit(buf, "%lu\n", ksm_run);
3149 }
3150 
3151 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3152 			 const char *buf, size_t count)
3153 {
3154 	unsigned int flags;
3155 	int err;
3156 
3157 	err = kstrtouint(buf, 10, &flags);
3158 	if (err)
3159 		return -EINVAL;
3160 	if (flags > KSM_RUN_UNMERGE)
3161 		return -EINVAL;
3162 
3163 	/*
3164 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3165 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3166 	 * breaking COW to free the pages_shared (but leaves mm_slots
3167 	 * on the list for when ksmd may be set running again).
3168 	 */
3169 
3170 	mutex_lock(&ksm_thread_mutex);
3171 	wait_while_offlining();
3172 	if (ksm_run != flags) {
3173 		ksm_run = flags;
3174 		if (flags & KSM_RUN_UNMERGE) {
3175 			set_current_oom_origin();
3176 			err = unmerge_and_remove_all_rmap_items();
3177 			clear_current_oom_origin();
3178 			if (err) {
3179 				ksm_run = KSM_RUN_STOP;
3180 				count = err;
3181 			}
3182 		}
3183 	}
3184 	mutex_unlock(&ksm_thread_mutex);
3185 
3186 	if (flags & KSM_RUN_MERGE)
3187 		wake_up_interruptible(&ksm_thread_wait);
3188 
3189 	return count;
3190 }
3191 KSM_ATTR(run);
3192 
3193 #ifdef CONFIG_NUMA
3194 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3195 				       struct kobj_attribute *attr, char *buf)
3196 {
3197 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3198 }
3199 
3200 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3201 				   struct kobj_attribute *attr,
3202 				   const char *buf, size_t count)
3203 {
3204 	int err;
3205 	unsigned long knob;
3206 
3207 	err = kstrtoul(buf, 10, &knob);
3208 	if (err)
3209 		return err;
3210 	if (knob > 1)
3211 		return -EINVAL;
3212 
3213 	mutex_lock(&ksm_thread_mutex);
3214 	wait_while_offlining();
3215 	if (ksm_merge_across_nodes != knob) {
3216 		if (ksm_pages_shared || remove_all_stable_nodes())
3217 			err = -EBUSY;
3218 		else if (root_stable_tree == one_stable_tree) {
3219 			struct rb_root *buf;
3220 			/*
3221 			 * This is the first time that we switch away from the
3222 			 * default of merging across nodes: must now allocate
3223 			 * a buffer to hold as many roots as may be needed.
3224 			 * Allocate stable and unstable together:
3225 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3226 			 */
3227 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3228 				      GFP_KERNEL);
3229 			/* Let us assume that RB_ROOT is NULL is zero */
3230 			if (!buf)
3231 				err = -ENOMEM;
3232 			else {
3233 				root_stable_tree = buf;
3234 				root_unstable_tree = buf + nr_node_ids;
3235 				/* Stable tree is empty but not the unstable */
3236 				root_unstable_tree[0] = one_unstable_tree[0];
3237 			}
3238 		}
3239 		if (!err) {
3240 			ksm_merge_across_nodes = knob;
3241 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3242 		}
3243 	}
3244 	mutex_unlock(&ksm_thread_mutex);
3245 
3246 	return err ? err : count;
3247 }
3248 KSM_ATTR(merge_across_nodes);
3249 #endif
3250 
3251 static ssize_t use_zero_pages_show(struct kobject *kobj,
3252 				   struct kobj_attribute *attr, char *buf)
3253 {
3254 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3255 }
3256 static ssize_t use_zero_pages_store(struct kobject *kobj,
3257 				   struct kobj_attribute *attr,
3258 				   const char *buf, size_t count)
3259 {
3260 	int err;
3261 	bool value;
3262 
3263 	err = kstrtobool(buf, &value);
3264 	if (err)
3265 		return -EINVAL;
3266 
3267 	ksm_use_zero_pages = value;
3268 
3269 	return count;
3270 }
3271 KSM_ATTR(use_zero_pages);
3272 
3273 static ssize_t max_page_sharing_show(struct kobject *kobj,
3274 				     struct kobj_attribute *attr, char *buf)
3275 {
3276 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3277 }
3278 
3279 static ssize_t max_page_sharing_store(struct kobject *kobj,
3280 				      struct kobj_attribute *attr,
3281 				      const char *buf, size_t count)
3282 {
3283 	int err;
3284 	int knob;
3285 
3286 	err = kstrtoint(buf, 10, &knob);
3287 	if (err)
3288 		return err;
3289 	/*
3290 	 * When a KSM page is created it is shared by 2 mappings. This
3291 	 * being a signed comparison, it implicitly verifies it's not
3292 	 * negative.
3293 	 */
3294 	if (knob < 2)
3295 		return -EINVAL;
3296 
3297 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3298 		return count;
3299 
3300 	mutex_lock(&ksm_thread_mutex);
3301 	wait_while_offlining();
3302 	if (ksm_max_page_sharing != knob) {
3303 		if (ksm_pages_shared || remove_all_stable_nodes())
3304 			err = -EBUSY;
3305 		else
3306 			ksm_max_page_sharing = knob;
3307 	}
3308 	mutex_unlock(&ksm_thread_mutex);
3309 
3310 	return err ? err : count;
3311 }
3312 KSM_ATTR(max_page_sharing);
3313 
3314 static ssize_t pages_shared_show(struct kobject *kobj,
3315 				 struct kobj_attribute *attr, char *buf)
3316 {
3317 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3318 }
3319 KSM_ATTR_RO(pages_shared);
3320 
3321 static ssize_t pages_sharing_show(struct kobject *kobj,
3322 				  struct kobj_attribute *attr, char *buf)
3323 {
3324 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3325 }
3326 KSM_ATTR_RO(pages_sharing);
3327 
3328 static ssize_t pages_unshared_show(struct kobject *kobj,
3329 				   struct kobj_attribute *attr, char *buf)
3330 {
3331 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3332 }
3333 KSM_ATTR_RO(pages_unshared);
3334 
3335 static ssize_t pages_volatile_show(struct kobject *kobj,
3336 				   struct kobj_attribute *attr, char *buf)
3337 {
3338 	long ksm_pages_volatile;
3339 
3340 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3341 				- ksm_pages_sharing - ksm_pages_unshared;
3342 	/*
3343 	 * It was not worth any locking to calculate that statistic,
3344 	 * but it might therefore sometimes be negative: conceal that.
3345 	 */
3346 	if (ksm_pages_volatile < 0)
3347 		ksm_pages_volatile = 0;
3348 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3349 }
3350 KSM_ATTR_RO(pages_volatile);
3351 
3352 static ssize_t general_profit_show(struct kobject *kobj,
3353 				   struct kobj_attribute *attr, char *buf)
3354 {
3355 	long general_profit;
3356 
3357 	general_profit = ksm_pages_sharing * PAGE_SIZE -
3358 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3359 
3360 	return sysfs_emit(buf, "%ld\n", general_profit);
3361 }
3362 KSM_ATTR_RO(general_profit);
3363 
3364 static ssize_t stable_node_dups_show(struct kobject *kobj,
3365 				     struct kobj_attribute *attr, char *buf)
3366 {
3367 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3368 }
3369 KSM_ATTR_RO(stable_node_dups);
3370 
3371 static ssize_t stable_node_chains_show(struct kobject *kobj,
3372 				       struct kobj_attribute *attr, char *buf)
3373 {
3374 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3375 }
3376 KSM_ATTR_RO(stable_node_chains);
3377 
3378 static ssize_t
3379 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3380 					struct kobj_attribute *attr,
3381 					char *buf)
3382 {
3383 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3384 }
3385 
3386 static ssize_t
3387 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3388 					 struct kobj_attribute *attr,
3389 					 const char *buf, size_t count)
3390 {
3391 	unsigned int msecs;
3392 	int err;
3393 
3394 	err = kstrtouint(buf, 10, &msecs);
3395 	if (err)
3396 		return -EINVAL;
3397 
3398 	ksm_stable_node_chains_prune_millisecs = msecs;
3399 
3400 	return count;
3401 }
3402 KSM_ATTR(stable_node_chains_prune_millisecs);
3403 
3404 static ssize_t full_scans_show(struct kobject *kobj,
3405 			       struct kobj_attribute *attr, char *buf)
3406 {
3407 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3408 }
3409 KSM_ATTR_RO(full_scans);
3410 
3411 static struct attribute *ksm_attrs[] = {
3412 	&sleep_millisecs_attr.attr,
3413 	&pages_to_scan_attr.attr,
3414 	&run_attr.attr,
3415 	&pages_shared_attr.attr,
3416 	&pages_sharing_attr.attr,
3417 	&pages_unshared_attr.attr,
3418 	&pages_volatile_attr.attr,
3419 	&full_scans_attr.attr,
3420 #ifdef CONFIG_NUMA
3421 	&merge_across_nodes_attr.attr,
3422 #endif
3423 	&max_page_sharing_attr.attr,
3424 	&stable_node_chains_attr.attr,
3425 	&stable_node_dups_attr.attr,
3426 	&stable_node_chains_prune_millisecs_attr.attr,
3427 	&use_zero_pages_attr.attr,
3428 	&general_profit_attr.attr,
3429 	NULL,
3430 };
3431 
3432 static const struct attribute_group ksm_attr_group = {
3433 	.attrs = ksm_attrs,
3434 	.name = "ksm",
3435 };
3436 #endif /* CONFIG_SYSFS */
3437 
3438 static int __init ksm_init(void)
3439 {
3440 	struct task_struct *ksm_thread;
3441 	int err;
3442 
3443 	/* The correct value depends on page size and endianness */
3444 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3445 	/* Default to false for backwards compatibility */
3446 	ksm_use_zero_pages = false;
3447 
3448 	err = ksm_slab_init();
3449 	if (err)
3450 		goto out;
3451 
3452 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3453 	if (IS_ERR(ksm_thread)) {
3454 		pr_err("ksm: creating kthread failed\n");
3455 		err = PTR_ERR(ksm_thread);
3456 		goto out_free;
3457 	}
3458 
3459 #ifdef CONFIG_SYSFS
3460 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3461 	if (err) {
3462 		pr_err("ksm: register sysfs failed\n");
3463 		kthread_stop(ksm_thread);
3464 		goto out_free;
3465 	}
3466 #else
3467 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3468 
3469 #endif /* CONFIG_SYSFS */
3470 
3471 #ifdef CONFIG_MEMORY_HOTREMOVE
3472 	/* There is no significance to this priority 100 */
3473 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3474 #endif
3475 	return 0;
3476 
3477 out_free:
3478 	ksm_slab_free();
3479 out:
3480 	return err;
3481 }
3482 subsys_initcall(ksm_init);
3483