xref: /linux/mm/ksm.c (revision 49a695ba723224875df50e327bd7b0b65dd9a56b)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45 
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)		(x)
48 #define DO_NUMA(x)	do { (x); } while (0)
49 #else
50 #define NUMA(x)		(0)
51 #define DO_NUMA(x)	do { } while (0)
52 #endif
53 
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96 
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105 	struct hlist_node link;
106 	struct list_head mm_list;
107 	struct rmap_item *rmap_list;
108 	struct mm_struct *mm;
109 };
110 
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121 	struct mm_slot *mm_slot;
122 	unsigned long address;
123 	struct rmap_item **rmap_list;
124 	unsigned long seqnr;
125 };
126 
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140 	union {
141 		struct rb_node node;	/* when node of stable tree */
142 		struct {		/* when listed for migration */
143 			struct list_head *head;
144 			struct {
145 				struct hlist_node hlist_dup;
146 				struct list_head list;
147 			};
148 		};
149 	};
150 	struct hlist_head hlist;
151 	union {
152 		unsigned long kpfn;
153 		unsigned long chain_prune_time;
154 	};
155 	/*
156 	 * STABLE_NODE_CHAIN can be any negative number in
157 	 * rmap_hlist_len negative range, but better not -1 to be able
158 	 * to reliably detect underflows.
159 	 */
160 #define STABLE_NODE_CHAIN -1024
161 	int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 	int nid;
164 #endif
165 };
166 
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180 	struct rmap_item *rmap_list;
181 	union {
182 		struct anon_vma *anon_vma;	/* when stable */
183 #ifdef CONFIG_NUMA
184 		int nid;		/* when node of unstable tree */
185 #endif
186 	};
187 	struct mm_struct *mm;
188 	unsigned long address;		/* + low bits used for flags below */
189 	unsigned int oldchecksum;	/* when unstable */
190 	union {
191 		struct rb_node node;	/* when node of unstable tree */
192 		struct {		/* when listed from stable tree */
193 			struct stable_node *head;
194 			struct hlist_node hlist;
195 		};
196 	};
197 };
198 
199 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
201 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
202 
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208 
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212 
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215 
216 static struct mm_slot ksm_mm_head = {
217 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220 	.mm_slot = &ksm_mm_head,
221 };
222 
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226 
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229 
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232 
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235 
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238 
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241 
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244 
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247 
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250 
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253 
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256 
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259 
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262 
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes	1U
269 #define ksm_nr_node_ids		1
270 #endif
271 
272 #define KSM_RUN_STOP	0
273 #define KSM_RUN_MERGE	1
274 #define KSM_RUN_UNMERGE	2
275 #define KSM_RUN_OFFLINE	4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278 
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282 
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 		sizeof(struct __struct), __alignof__(struct __struct),\
285 		(__flags), NULL)
286 
287 static int __init ksm_slab_init(void)
288 {
289 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 	if (!rmap_item_cache)
291 		goto out;
292 
293 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 	if (!stable_node_cache)
295 		goto out_free1;
296 
297 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 	if (!mm_slot_cache)
299 		goto out_free2;
300 
301 	return 0;
302 
303 out_free2:
304 	kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 	kmem_cache_destroy(rmap_item_cache);
307 out:
308 	return -ENOMEM;
309 }
310 
311 static void __init ksm_slab_free(void)
312 {
313 	kmem_cache_destroy(mm_slot_cache);
314 	kmem_cache_destroy(stable_node_cache);
315 	kmem_cache_destroy(rmap_item_cache);
316 	mm_slot_cache = NULL;
317 }
318 
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323 
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326 	return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328 
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 					     struct stable_node *chain)
331 {
332 	VM_BUG_ON(is_stable_node_dup(dup));
333 	dup->head = STABLE_NODE_DUP_HEAD;
334 	VM_BUG_ON(!is_stable_node_chain(chain));
335 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 	ksm_stable_node_dups++;
337 }
338 
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341 	VM_BUG_ON(!is_stable_node_dup(dup));
342 	hlist_del(&dup->hlist_dup);
343 	ksm_stable_node_dups--;
344 }
345 
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348 	VM_BUG_ON(is_stable_node_chain(dup));
349 	if (is_stable_node_dup(dup))
350 		__stable_node_dup_del(dup);
351 	else
352 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 	dup->head = NULL;
355 #endif
356 }
357 
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360 	struct rmap_item *rmap_item;
361 
362 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 						__GFP_NORETRY | __GFP_NOWARN);
364 	if (rmap_item)
365 		ksm_rmap_items++;
366 	return rmap_item;
367 }
368 
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371 	ksm_rmap_items--;
372 	rmap_item->mm = NULL;	/* debug safety */
373 	kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375 
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378 	/*
379 	 * The allocation can take too long with GFP_KERNEL when memory is under
380 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
381 	 * grants access to memory reserves, helping to avoid this problem.
382 	 */
383 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385 
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388 	VM_BUG_ON(stable_node->rmap_hlist_len &&
389 		  !is_stable_node_chain(stable_node));
390 	kmem_cache_free(stable_node_cache, stable_node);
391 }
392 
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395 	if (!mm_slot_cache)	/* initialization failed */
396 		return NULL;
397 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399 
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402 	kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404 
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407 	struct mm_slot *slot;
408 
409 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 		if (slot->mm == mm)
411 			return slot;
412 
413 	return NULL;
414 }
415 
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 				    struct mm_slot *mm_slot)
418 {
419 	mm_slot->mm = mm;
420 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422 
423 /*
424  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425  * page tables after it has passed through ksm_exit() - which, if necessary,
426  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
427  * a special flag: they can just back out as soon as mm_users goes to zero.
428  * ksm_test_exit() is used throughout to make this test for exit: in some
429  * places for correctness, in some places just to avoid unnecessary work.
430  */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433 	return atomic_read(&mm->mm_users) == 0;
434 }
435 
436 /*
437  * We use break_ksm to break COW on a ksm page: it's a stripped down
438  *
439  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440  *		put_page(page);
441  *
442  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443  * in case the application has unmapped and remapped mm,addr meanwhile.
444  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
445  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446  *
447  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448  * of the process that owns 'vma'.  We also do not want to enforce
449  * protection keys here anyway.
450  */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453 	struct page *page;
454 	int ret = 0;
455 
456 	do {
457 		cond_resched();
458 		page = follow_page(vma, addr,
459 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 		if (IS_ERR_OR_NULL(page))
461 			break;
462 		if (PageKsm(page))
463 			ret = handle_mm_fault(vma, addr,
464 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 		else
466 			ret = VM_FAULT_WRITE;
467 		put_page(page);
468 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469 	/*
470 	 * We must loop because handle_mm_fault() may back out if there's
471 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 	 *
473 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 	 * COW has been broken, even if the vma does not permit VM_WRITE;
475 	 * but note that a concurrent fault might break PageKsm for us.
476 	 *
477 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 	 * backing file, which also invalidates anonymous pages: that's
479 	 * okay, that truncation will have unmapped the PageKsm for us.
480 	 *
481 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 	 * to user; and ksmd, having no mm, would never be chosen for that.
485 	 *
486 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 	 * even ksmd can fail in this way - though it's usually breaking ksm
489 	 * just to undo a merge it made a moment before, so unlikely to oom.
490 	 *
491 	 * That's a pity: we might therefore have more kernel pages allocated
492 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 	 * will retry to break_cow on each pass, so should recover the page
494 	 * in due course.  The important thing is to not let VM_MERGEABLE
495 	 * be cleared while any such pages might remain in the area.
496 	 */
497 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499 
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 		unsigned long addr)
502 {
503 	struct vm_area_struct *vma;
504 	if (ksm_test_exit(mm))
505 		return NULL;
506 	vma = find_vma(mm, addr);
507 	if (!vma || vma->vm_start > addr)
508 		return NULL;
509 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 		return NULL;
511 	return vma;
512 }
513 
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516 	struct mm_struct *mm = rmap_item->mm;
517 	unsigned long addr = rmap_item->address;
518 	struct vm_area_struct *vma;
519 
520 	/*
521 	 * It is not an accident that whenever we want to break COW
522 	 * to undo, we also need to drop a reference to the anon_vma.
523 	 */
524 	put_anon_vma(rmap_item->anon_vma);
525 
526 	down_read(&mm->mmap_sem);
527 	vma = find_mergeable_vma(mm, addr);
528 	if (vma)
529 		break_ksm(vma, addr);
530 	up_read(&mm->mmap_sem);
531 }
532 
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535 	struct mm_struct *mm = rmap_item->mm;
536 	unsigned long addr = rmap_item->address;
537 	struct vm_area_struct *vma;
538 	struct page *page;
539 
540 	down_read(&mm->mmap_sem);
541 	vma = find_mergeable_vma(mm, addr);
542 	if (!vma)
543 		goto out;
544 
545 	page = follow_page(vma, addr, FOLL_GET);
546 	if (IS_ERR_OR_NULL(page))
547 		goto out;
548 	if (PageAnon(page)) {
549 		flush_anon_page(vma, page, addr);
550 		flush_dcache_page(page);
551 	} else {
552 		put_page(page);
553 out:
554 		page = NULL;
555 	}
556 	up_read(&mm->mmap_sem);
557 	return page;
558 }
559 
560 /*
561  * This helper is used for getting right index into array of tree roots.
562  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564  * every node has its own stable and unstable tree.
565  */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570 
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 						   struct rb_root *root)
573 {
574 	struct stable_node *chain = alloc_stable_node();
575 	VM_BUG_ON(is_stable_node_chain(dup));
576 	if (likely(chain)) {
577 		INIT_HLIST_HEAD(&chain->hlist);
578 		chain->chain_prune_time = jiffies;
579 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 		chain->nid = -1; /* debug */
582 #endif
583 		ksm_stable_node_chains++;
584 
585 		/*
586 		 * Put the stable node chain in the first dimension of
587 		 * the stable tree and at the same time remove the old
588 		 * stable node.
589 		 */
590 		rb_replace_node(&dup->node, &chain->node, root);
591 
592 		/*
593 		 * Move the old stable node to the second dimension
594 		 * queued in the hlist_dup. The invariant is that all
595 		 * dup stable_nodes in the chain->hlist point to pages
596 		 * that are wrprotected and have the exact same
597 		 * content.
598 		 */
599 		stable_node_chain_add_dup(dup, chain);
600 	}
601 	return chain;
602 }
603 
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 					  struct rb_root *root)
606 {
607 	rb_erase(&chain->node, root);
608 	free_stable_node(chain);
609 	ksm_stable_node_chains--;
610 }
611 
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614 	struct rmap_item *rmap_item;
615 
616 	/* check it's not STABLE_NODE_CHAIN or negative */
617 	BUG_ON(stable_node->rmap_hlist_len < 0);
618 
619 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 		if (rmap_item->hlist.next)
621 			ksm_pages_sharing--;
622 		else
623 			ksm_pages_shared--;
624 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 		stable_node->rmap_hlist_len--;
626 		put_anon_vma(rmap_item->anon_vma);
627 		rmap_item->address &= PAGE_MASK;
628 		cond_resched();
629 	}
630 
631 	/*
632 	 * We need the second aligned pointer of the migrate_nodes
633 	 * list_head to stay clear from the rb_parent_color union
634 	 * (aligned and different than any node) and also different
635 	 * from &migrate_nodes. This will verify that future list.h changes
636 	 * don't break STABLE_NODE_DUP_HEAD.
637 	 */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642 
643 	if (stable_node->head == &migrate_nodes)
644 		list_del(&stable_node->list);
645 	else
646 		stable_node_dup_del(stable_node);
647 	free_stable_node(stable_node);
648 }
649 
650 /*
651  * get_ksm_page: checks if the page indicated by the stable node
652  * is still its ksm page, despite having held no reference to it.
653  * In which case we can trust the content of the page, and it
654  * returns the gotten page; but if the page has now been zapped,
655  * remove the stale node from the stable tree and return NULL.
656  * But beware, the stable node's page might be being migrated.
657  *
658  * You would expect the stable_node to hold a reference to the ksm page.
659  * But if it increments the page's count, swapping out has to wait for
660  * ksmd to come around again before it can free the page, which may take
661  * seconds or even minutes: much too unresponsive.  So instead we use a
662  * "keyhole reference": access to the ksm page from the stable node peeps
663  * out through its keyhole to see if that page still holds the right key,
664  * pointing back to this stable node.  This relies on freeing a PageAnon
665  * page to reset its page->mapping to NULL, and relies on no other use of
666  * a page to put something that might look like our key in page->mapping.
667  * is on its way to being freed; but it is an anomaly to bear in mind.
668  */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671 	struct page *page;
672 	void *expected_mapping;
673 	unsigned long kpfn;
674 
675 	expected_mapping = (void *)((unsigned long)stable_node |
676 					PAGE_MAPPING_KSM);
677 again:
678 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
679 	page = pfn_to_page(kpfn);
680 	if (READ_ONCE(page->mapping) != expected_mapping)
681 		goto stale;
682 
683 	/*
684 	 * We cannot do anything with the page while its refcount is 0.
685 	 * Usually 0 means free, or tail of a higher-order page: in which
686 	 * case this node is no longer referenced, and should be freed;
687 	 * however, it might mean that the page is under page_freeze_refs().
688 	 * The __remove_mapping() case is easy, again the node is now stale;
689 	 * but if page is swapcache in migrate_page_move_mapping(), it might
690 	 * still be our page, in which case it's essential to keep the node.
691 	 */
692 	while (!get_page_unless_zero(page)) {
693 		/*
694 		 * Another check for page->mapping != expected_mapping would
695 		 * work here too.  We have chosen the !PageSwapCache test to
696 		 * optimize the common case, when the page is or is about to
697 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
698 		 * in the freeze_refs section of __remove_mapping(); but Anon
699 		 * page->mapping reset to NULL later, in free_pages_prepare().
700 		 */
701 		if (!PageSwapCache(page))
702 			goto stale;
703 		cpu_relax();
704 	}
705 
706 	if (READ_ONCE(page->mapping) != expected_mapping) {
707 		put_page(page);
708 		goto stale;
709 	}
710 
711 	if (lock_it) {
712 		lock_page(page);
713 		if (READ_ONCE(page->mapping) != expected_mapping) {
714 			unlock_page(page);
715 			put_page(page);
716 			goto stale;
717 		}
718 	}
719 	return page;
720 
721 stale:
722 	/*
723 	 * We come here from above when page->mapping or !PageSwapCache
724 	 * suggests that the node is stale; but it might be under migration.
725 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
726 	 * before checking whether node->kpfn has been changed.
727 	 */
728 	smp_rmb();
729 	if (READ_ONCE(stable_node->kpfn) != kpfn)
730 		goto again;
731 	remove_node_from_stable_tree(stable_node);
732 	return NULL;
733 }
734 
735 /*
736  * Removing rmap_item from stable or unstable tree.
737  * This function will clean the information from the stable/unstable tree.
738  */
739 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
740 {
741 	if (rmap_item->address & STABLE_FLAG) {
742 		struct stable_node *stable_node;
743 		struct page *page;
744 
745 		stable_node = rmap_item->head;
746 		page = get_ksm_page(stable_node, true);
747 		if (!page)
748 			goto out;
749 
750 		hlist_del(&rmap_item->hlist);
751 		unlock_page(page);
752 		put_page(page);
753 
754 		if (!hlist_empty(&stable_node->hlist))
755 			ksm_pages_sharing--;
756 		else
757 			ksm_pages_shared--;
758 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
759 		stable_node->rmap_hlist_len--;
760 
761 		put_anon_vma(rmap_item->anon_vma);
762 		rmap_item->address &= PAGE_MASK;
763 
764 	} else if (rmap_item->address & UNSTABLE_FLAG) {
765 		unsigned char age;
766 		/*
767 		 * Usually ksmd can and must skip the rb_erase, because
768 		 * root_unstable_tree was already reset to RB_ROOT.
769 		 * But be careful when an mm is exiting: do the rb_erase
770 		 * if this rmap_item was inserted by this scan, rather
771 		 * than left over from before.
772 		 */
773 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
774 		BUG_ON(age > 1);
775 		if (!age)
776 			rb_erase(&rmap_item->node,
777 				 root_unstable_tree + NUMA(rmap_item->nid));
778 		ksm_pages_unshared--;
779 		rmap_item->address &= PAGE_MASK;
780 	}
781 out:
782 	cond_resched();		/* we're called from many long loops */
783 }
784 
785 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
786 				       struct rmap_item **rmap_list)
787 {
788 	while (*rmap_list) {
789 		struct rmap_item *rmap_item = *rmap_list;
790 		*rmap_list = rmap_item->rmap_list;
791 		remove_rmap_item_from_tree(rmap_item);
792 		free_rmap_item(rmap_item);
793 	}
794 }
795 
796 /*
797  * Though it's very tempting to unmerge rmap_items from stable tree rather
798  * than check every pte of a given vma, the locking doesn't quite work for
799  * that - an rmap_item is assigned to the stable tree after inserting ksm
800  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
801  * rmap_items from parent to child at fork time (so as not to waste time
802  * if exit comes before the next scan reaches it).
803  *
804  * Similarly, although we'd like to remove rmap_items (so updating counts
805  * and freeing memory) when unmerging an area, it's easier to leave that
806  * to the next pass of ksmd - consider, for example, how ksmd might be
807  * in cmp_and_merge_page on one of the rmap_items we would be removing.
808  */
809 static int unmerge_ksm_pages(struct vm_area_struct *vma,
810 			     unsigned long start, unsigned long end)
811 {
812 	unsigned long addr;
813 	int err = 0;
814 
815 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
816 		if (ksm_test_exit(vma->vm_mm))
817 			break;
818 		if (signal_pending(current))
819 			err = -ERESTARTSYS;
820 		else
821 			err = break_ksm(vma, addr);
822 	}
823 	return err;
824 }
825 
826 #ifdef CONFIG_SYSFS
827 /*
828  * Only called through the sysfs control interface:
829  */
830 static int remove_stable_node(struct stable_node *stable_node)
831 {
832 	struct page *page;
833 	int err;
834 
835 	page = get_ksm_page(stable_node, true);
836 	if (!page) {
837 		/*
838 		 * get_ksm_page did remove_node_from_stable_tree itself.
839 		 */
840 		return 0;
841 	}
842 
843 	if (WARN_ON_ONCE(page_mapped(page))) {
844 		/*
845 		 * This should not happen: but if it does, just refuse to let
846 		 * merge_across_nodes be switched - there is no need to panic.
847 		 */
848 		err = -EBUSY;
849 	} else {
850 		/*
851 		 * The stable node did not yet appear stale to get_ksm_page(),
852 		 * since that allows for an unmapped ksm page to be recognized
853 		 * right up until it is freed; but the node is safe to remove.
854 		 * This page might be in a pagevec waiting to be freed,
855 		 * or it might be PageSwapCache (perhaps under writeback),
856 		 * or it might have been removed from swapcache a moment ago.
857 		 */
858 		set_page_stable_node(page, NULL);
859 		remove_node_from_stable_tree(stable_node);
860 		err = 0;
861 	}
862 
863 	unlock_page(page);
864 	put_page(page);
865 	return err;
866 }
867 
868 static int remove_stable_node_chain(struct stable_node *stable_node,
869 				    struct rb_root *root)
870 {
871 	struct stable_node *dup;
872 	struct hlist_node *hlist_safe;
873 
874 	if (!is_stable_node_chain(stable_node)) {
875 		VM_BUG_ON(is_stable_node_dup(stable_node));
876 		if (remove_stable_node(stable_node))
877 			return true;
878 		else
879 			return false;
880 	}
881 
882 	hlist_for_each_entry_safe(dup, hlist_safe,
883 				  &stable_node->hlist, hlist_dup) {
884 		VM_BUG_ON(!is_stable_node_dup(dup));
885 		if (remove_stable_node(dup))
886 			return true;
887 	}
888 	BUG_ON(!hlist_empty(&stable_node->hlist));
889 	free_stable_node_chain(stable_node, root);
890 	return false;
891 }
892 
893 static int remove_all_stable_nodes(void)
894 {
895 	struct stable_node *stable_node, *next;
896 	int nid;
897 	int err = 0;
898 
899 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
900 		while (root_stable_tree[nid].rb_node) {
901 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
902 						struct stable_node, node);
903 			if (remove_stable_node_chain(stable_node,
904 						     root_stable_tree + nid)) {
905 				err = -EBUSY;
906 				break;	/* proceed to next nid */
907 			}
908 			cond_resched();
909 		}
910 	}
911 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
912 		if (remove_stable_node(stable_node))
913 			err = -EBUSY;
914 		cond_resched();
915 	}
916 	return err;
917 }
918 
919 static int unmerge_and_remove_all_rmap_items(void)
920 {
921 	struct mm_slot *mm_slot;
922 	struct mm_struct *mm;
923 	struct vm_area_struct *vma;
924 	int err = 0;
925 
926 	spin_lock(&ksm_mmlist_lock);
927 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
928 						struct mm_slot, mm_list);
929 	spin_unlock(&ksm_mmlist_lock);
930 
931 	for (mm_slot = ksm_scan.mm_slot;
932 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
933 		mm = mm_slot->mm;
934 		down_read(&mm->mmap_sem);
935 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
936 			if (ksm_test_exit(mm))
937 				break;
938 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
939 				continue;
940 			err = unmerge_ksm_pages(vma,
941 						vma->vm_start, vma->vm_end);
942 			if (err)
943 				goto error;
944 		}
945 
946 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
947 		up_read(&mm->mmap_sem);
948 
949 		spin_lock(&ksm_mmlist_lock);
950 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
951 						struct mm_slot, mm_list);
952 		if (ksm_test_exit(mm)) {
953 			hash_del(&mm_slot->link);
954 			list_del(&mm_slot->mm_list);
955 			spin_unlock(&ksm_mmlist_lock);
956 
957 			free_mm_slot(mm_slot);
958 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
959 			mmdrop(mm);
960 		} else
961 			spin_unlock(&ksm_mmlist_lock);
962 	}
963 
964 	/* Clean up stable nodes, but don't worry if some are still busy */
965 	remove_all_stable_nodes();
966 	ksm_scan.seqnr = 0;
967 	return 0;
968 
969 error:
970 	up_read(&mm->mmap_sem);
971 	spin_lock(&ksm_mmlist_lock);
972 	ksm_scan.mm_slot = &ksm_mm_head;
973 	spin_unlock(&ksm_mmlist_lock);
974 	return err;
975 }
976 #endif /* CONFIG_SYSFS */
977 
978 static u32 calc_checksum(struct page *page)
979 {
980 	u32 checksum;
981 	void *addr = kmap_atomic(page);
982 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
983 	kunmap_atomic(addr);
984 	return checksum;
985 }
986 
987 static int memcmp_pages(struct page *page1, struct page *page2)
988 {
989 	char *addr1, *addr2;
990 	int ret;
991 
992 	addr1 = kmap_atomic(page1);
993 	addr2 = kmap_atomic(page2);
994 	ret = memcmp(addr1, addr2, PAGE_SIZE);
995 	kunmap_atomic(addr2);
996 	kunmap_atomic(addr1);
997 	return ret;
998 }
999 
1000 static inline int pages_identical(struct page *page1, struct page *page2)
1001 {
1002 	return !memcmp_pages(page1, page2);
1003 }
1004 
1005 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006 			      pte_t *orig_pte)
1007 {
1008 	struct mm_struct *mm = vma->vm_mm;
1009 	struct page_vma_mapped_walk pvmw = {
1010 		.page = page,
1011 		.vma = vma,
1012 	};
1013 	int swapped;
1014 	int err = -EFAULT;
1015 	unsigned long mmun_start;	/* For mmu_notifiers */
1016 	unsigned long mmun_end;		/* For mmu_notifiers */
1017 
1018 	pvmw.address = page_address_in_vma(page, vma);
1019 	if (pvmw.address == -EFAULT)
1020 		goto out;
1021 
1022 	BUG_ON(PageTransCompound(page));
1023 
1024 	mmun_start = pvmw.address;
1025 	mmun_end   = pvmw.address + PAGE_SIZE;
1026 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027 
1028 	if (!page_vma_mapped_walk(&pvmw))
1029 		goto out_mn;
1030 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031 		goto out_unlock;
1032 
1033 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1034 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035 						mm_tlb_flush_pending(mm)) {
1036 		pte_t entry;
1037 
1038 		swapped = PageSwapCache(page);
1039 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1040 		/*
1041 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1042 		 * take any lock, therefore the check that we are going to make
1043 		 * with the pagecount against the mapcount is racey and
1044 		 * O_DIRECT can happen right after the check.
1045 		 * So we clear the pte and flush the tlb before the check
1046 		 * this assure us that no O_DIRECT can happen after the check
1047 		 * or in the middle of the check.
1048 		 *
1049 		 * No need to notify as we are downgrading page table to read
1050 		 * only not changing it to point to a new page.
1051 		 *
1052 		 * See Documentation/vm/mmu_notifier.txt
1053 		 */
1054 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1055 		/*
1056 		 * Check that no O_DIRECT or similar I/O is in progress on the
1057 		 * page
1058 		 */
1059 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1060 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1061 			goto out_unlock;
1062 		}
1063 		if (pte_dirty(entry))
1064 			set_page_dirty(page);
1065 
1066 		if (pte_protnone(entry))
1067 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1068 		else
1069 			entry = pte_mkclean(pte_wrprotect(entry));
1070 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1071 	}
1072 	*orig_pte = *pvmw.pte;
1073 	err = 0;
1074 
1075 out_unlock:
1076 	page_vma_mapped_walk_done(&pvmw);
1077 out_mn:
1078 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1079 out:
1080 	return err;
1081 }
1082 
1083 /**
1084  * replace_page - replace page in vma by new ksm page
1085  * @vma:      vma that holds the pte pointing to page
1086  * @page:     the page we are replacing by kpage
1087  * @kpage:    the ksm page we replace page by
1088  * @orig_pte: the original value of the pte
1089  *
1090  * Returns 0 on success, -EFAULT on failure.
1091  */
1092 static int replace_page(struct vm_area_struct *vma, struct page *page,
1093 			struct page *kpage, pte_t orig_pte)
1094 {
1095 	struct mm_struct *mm = vma->vm_mm;
1096 	pmd_t *pmd;
1097 	pte_t *ptep;
1098 	pte_t newpte;
1099 	spinlock_t *ptl;
1100 	unsigned long addr;
1101 	int err = -EFAULT;
1102 	unsigned long mmun_start;	/* For mmu_notifiers */
1103 	unsigned long mmun_end;		/* For mmu_notifiers */
1104 
1105 	addr = page_address_in_vma(page, vma);
1106 	if (addr == -EFAULT)
1107 		goto out;
1108 
1109 	pmd = mm_find_pmd(mm, addr);
1110 	if (!pmd)
1111 		goto out;
1112 
1113 	mmun_start = addr;
1114 	mmun_end   = addr + PAGE_SIZE;
1115 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116 
1117 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118 	if (!pte_same(*ptep, orig_pte)) {
1119 		pte_unmap_unlock(ptep, ptl);
1120 		goto out_mn;
1121 	}
1122 
1123 	/*
1124 	 * No need to check ksm_use_zero_pages here: we can only have a
1125 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126 	 */
1127 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1128 		get_page(kpage);
1129 		page_add_anon_rmap(kpage, vma, addr, false);
1130 		newpte = mk_pte(kpage, vma->vm_page_prot);
1131 	} else {
1132 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133 					       vma->vm_page_prot));
1134 	}
1135 
1136 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1137 	/*
1138 	 * No need to notify as we are replacing a read only page with another
1139 	 * read only page with the same content.
1140 	 *
1141 	 * See Documentation/vm/mmu_notifier.txt
1142 	 */
1143 	ptep_clear_flush(vma, addr, ptep);
1144 	set_pte_at_notify(mm, addr, ptep, newpte);
1145 
1146 	page_remove_rmap(page, false);
1147 	if (!page_mapped(page))
1148 		try_to_free_swap(page);
1149 	put_page(page);
1150 
1151 	pte_unmap_unlock(ptep, ptl);
1152 	err = 0;
1153 out_mn:
1154 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1155 out:
1156 	return err;
1157 }
1158 
1159 /*
1160  * try_to_merge_one_page - take two pages and merge them into one
1161  * @vma: the vma that holds the pte pointing to page
1162  * @page: the PageAnon page that we want to replace with kpage
1163  * @kpage: the PageKsm page that we want to map instead of page,
1164  *         or NULL the first time when we want to use page as kpage.
1165  *
1166  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1167  */
1168 static int try_to_merge_one_page(struct vm_area_struct *vma,
1169 				 struct page *page, struct page *kpage)
1170 {
1171 	pte_t orig_pte = __pte(0);
1172 	int err = -EFAULT;
1173 
1174 	if (page == kpage)			/* ksm page forked */
1175 		return 0;
1176 
1177 	if (!PageAnon(page))
1178 		goto out;
1179 
1180 	/*
1181 	 * We need the page lock to read a stable PageSwapCache in
1182 	 * write_protect_page().  We use trylock_page() instead of
1183 	 * lock_page() because we don't want to wait here - we
1184 	 * prefer to continue scanning and merging different pages,
1185 	 * then come back to this page when it is unlocked.
1186 	 */
1187 	if (!trylock_page(page))
1188 		goto out;
1189 
1190 	if (PageTransCompound(page)) {
1191 		if (split_huge_page(page))
1192 			goto out_unlock;
1193 	}
1194 
1195 	/*
1196 	 * If this anonymous page is mapped only here, its pte may need
1197 	 * to be write-protected.  If it's mapped elsewhere, all of its
1198 	 * ptes are necessarily already write-protected.  But in either
1199 	 * case, we need to lock and check page_count is not raised.
1200 	 */
1201 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1202 		if (!kpage) {
1203 			/*
1204 			 * While we hold page lock, upgrade page from
1205 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1206 			 * stable_tree_insert() will update stable_node.
1207 			 */
1208 			set_page_stable_node(page, NULL);
1209 			mark_page_accessed(page);
1210 			/*
1211 			 * Page reclaim just frees a clean page with no dirty
1212 			 * ptes: make sure that the ksm page would be swapped.
1213 			 */
1214 			if (!PageDirty(page))
1215 				SetPageDirty(page);
1216 			err = 0;
1217 		} else if (pages_identical(page, kpage))
1218 			err = replace_page(vma, page, kpage, orig_pte);
1219 	}
1220 
1221 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1222 		munlock_vma_page(page);
1223 		if (!PageMlocked(kpage)) {
1224 			unlock_page(page);
1225 			lock_page(kpage);
1226 			mlock_vma_page(kpage);
1227 			page = kpage;		/* for final unlock */
1228 		}
1229 	}
1230 
1231 out_unlock:
1232 	unlock_page(page);
1233 out:
1234 	return err;
1235 }
1236 
1237 /*
1238  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1239  * but no new kernel page is allocated: kpage must already be a ksm page.
1240  *
1241  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1242  */
1243 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1244 				      struct page *page, struct page *kpage)
1245 {
1246 	struct mm_struct *mm = rmap_item->mm;
1247 	struct vm_area_struct *vma;
1248 	int err = -EFAULT;
1249 
1250 	down_read(&mm->mmap_sem);
1251 	vma = find_mergeable_vma(mm, rmap_item->address);
1252 	if (!vma)
1253 		goto out;
1254 
1255 	err = try_to_merge_one_page(vma, page, kpage);
1256 	if (err)
1257 		goto out;
1258 
1259 	/* Unstable nid is in union with stable anon_vma: remove first */
1260 	remove_rmap_item_from_tree(rmap_item);
1261 
1262 	/* Must get reference to anon_vma while still holding mmap_sem */
1263 	rmap_item->anon_vma = vma->anon_vma;
1264 	get_anon_vma(vma->anon_vma);
1265 out:
1266 	up_read(&mm->mmap_sem);
1267 	return err;
1268 }
1269 
1270 /*
1271  * try_to_merge_two_pages - take two identical pages and prepare them
1272  * to be merged into one page.
1273  *
1274  * This function returns the kpage if we successfully merged two identical
1275  * pages into one ksm page, NULL otherwise.
1276  *
1277  * Note that this function upgrades page to ksm page: if one of the pages
1278  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1279  */
1280 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1281 					   struct page *page,
1282 					   struct rmap_item *tree_rmap_item,
1283 					   struct page *tree_page)
1284 {
1285 	int err;
1286 
1287 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1288 	if (!err) {
1289 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1290 							tree_page, page);
1291 		/*
1292 		 * If that fails, we have a ksm page with only one pte
1293 		 * pointing to it: so break it.
1294 		 */
1295 		if (err)
1296 			break_cow(rmap_item);
1297 	}
1298 	return err ? NULL : page;
1299 }
1300 
1301 static __always_inline
1302 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1303 {
1304 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1305 	/*
1306 	 * Check that at least one mapping still exists, otherwise
1307 	 * there's no much point to merge and share with this
1308 	 * stable_node, as the underlying tree_page of the other
1309 	 * sharer is going to be freed soon.
1310 	 */
1311 	return stable_node->rmap_hlist_len &&
1312 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1313 }
1314 
1315 static __always_inline
1316 bool is_page_sharing_candidate(struct stable_node *stable_node)
1317 {
1318 	return __is_page_sharing_candidate(stable_node, 0);
1319 }
1320 
1321 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1322 				    struct stable_node **_stable_node,
1323 				    struct rb_root *root,
1324 				    bool prune_stale_stable_nodes)
1325 {
1326 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1327 	struct hlist_node *hlist_safe;
1328 	struct page *_tree_page, *tree_page = NULL;
1329 	int nr = 0;
1330 	int found_rmap_hlist_len;
1331 
1332 	if (!prune_stale_stable_nodes ||
1333 	    time_before(jiffies, stable_node->chain_prune_time +
1334 			msecs_to_jiffies(
1335 				ksm_stable_node_chains_prune_millisecs)))
1336 		prune_stale_stable_nodes = false;
1337 	else
1338 		stable_node->chain_prune_time = jiffies;
1339 
1340 	hlist_for_each_entry_safe(dup, hlist_safe,
1341 				  &stable_node->hlist, hlist_dup) {
1342 		cond_resched();
1343 		/*
1344 		 * We must walk all stable_node_dup to prune the stale
1345 		 * stable nodes during lookup.
1346 		 *
1347 		 * get_ksm_page can drop the nodes from the
1348 		 * stable_node->hlist if they point to freed pages
1349 		 * (that's why we do a _safe walk). The "dup"
1350 		 * stable_node parameter itself will be freed from
1351 		 * under us if it returns NULL.
1352 		 */
1353 		_tree_page = get_ksm_page(dup, false);
1354 		if (!_tree_page)
1355 			continue;
1356 		nr += 1;
1357 		if (is_page_sharing_candidate(dup)) {
1358 			if (!found ||
1359 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1360 				if (found)
1361 					put_page(tree_page);
1362 				found = dup;
1363 				found_rmap_hlist_len = found->rmap_hlist_len;
1364 				tree_page = _tree_page;
1365 
1366 				/* skip put_page for found dup */
1367 				if (!prune_stale_stable_nodes)
1368 					break;
1369 				continue;
1370 			}
1371 		}
1372 		put_page(_tree_page);
1373 	}
1374 
1375 	if (found) {
1376 		/*
1377 		 * nr is counting all dups in the chain only if
1378 		 * prune_stale_stable_nodes is true, otherwise we may
1379 		 * break the loop at nr == 1 even if there are
1380 		 * multiple entries.
1381 		 */
1382 		if (prune_stale_stable_nodes && nr == 1) {
1383 			/*
1384 			 * If there's not just one entry it would
1385 			 * corrupt memory, better BUG_ON. In KSM
1386 			 * context with no lock held it's not even
1387 			 * fatal.
1388 			 */
1389 			BUG_ON(stable_node->hlist.first->next);
1390 
1391 			/*
1392 			 * There's just one entry and it is below the
1393 			 * deduplication limit so drop the chain.
1394 			 */
1395 			rb_replace_node(&stable_node->node, &found->node,
1396 					root);
1397 			free_stable_node(stable_node);
1398 			ksm_stable_node_chains--;
1399 			ksm_stable_node_dups--;
1400 			/*
1401 			 * NOTE: the caller depends on the stable_node
1402 			 * to be equal to stable_node_dup if the chain
1403 			 * was collapsed.
1404 			 */
1405 			*_stable_node = found;
1406 			/*
1407 			 * Just for robustneess as stable_node is
1408 			 * otherwise left as a stable pointer, the
1409 			 * compiler shall optimize it away at build
1410 			 * time.
1411 			 */
1412 			stable_node = NULL;
1413 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1414 			   __is_page_sharing_candidate(found, 1)) {
1415 			/*
1416 			 * If the found stable_node dup can accept one
1417 			 * more future merge (in addition to the one
1418 			 * that is underway) and is not at the head of
1419 			 * the chain, put it there so next search will
1420 			 * be quicker in the !prune_stale_stable_nodes
1421 			 * case.
1422 			 *
1423 			 * NOTE: it would be inaccurate to use nr > 1
1424 			 * instead of checking the hlist.first pointer
1425 			 * directly, because in the
1426 			 * prune_stale_stable_nodes case "nr" isn't
1427 			 * the position of the found dup in the chain,
1428 			 * but the total number of dups in the chain.
1429 			 */
1430 			hlist_del(&found->hlist_dup);
1431 			hlist_add_head(&found->hlist_dup,
1432 				       &stable_node->hlist);
1433 		}
1434 	}
1435 
1436 	*_stable_node_dup = found;
1437 	return tree_page;
1438 }
1439 
1440 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1441 					       struct rb_root *root)
1442 {
1443 	if (!is_stable_node_chain(stable_node))
1444 		return stable_node;
1445 	if (hlist_empty(&stable_node->hlist)) {
1446 		free_stable_node_chain(stable_node, root);
1447 		return NULL;
1448 	}
1449 	return hlist_entry(stable_node->hlist.first,
1450 			   typeof(*stable_node), hlist_dup);
1451 }
1452 
1453 /*
1454  * Like for get_ksm_page, this function can free the *_stable_node and
1455  * *_stable_node_dup if the returned tree_page is NULL.
1456  *
1457  * It can also free and overwrite *_stable_node with the found
1458  * stable_node_dup if the chain is collapsed (in which case
1459  * *_stable_node will be equal to *_stable_node_dup like if the chain
1460  * never existed). It's up to the caller to verify tree_page is not
1461  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1462  *
1463  * *_stable_node_dup is really a second output parameter of this
1464  * function and will be overwritten in all cases, the caller doesn't
1465  * need to initialize it.
1466  */
1467 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1468 					struct stable_node **_stable_node,
1469 					struct rb_root *root,
1470 					bool prune_stale_stable_nodes)
1471 {
1472 	struct stable_node *stable_node = *_stable_node;
1473 	if (!is_stable_node_chain(stable_node)) {
1474 		if (is_page_sharing_candidate(stable_node)) {
1475 			*_stable_node_dup = stable_node;
1476 			return get_ksm_page(stable_node, false);
1477 		}
1478 		/*
1479 		 * _stable_node_dup set to NULL means the stable_node
1480 		 * reached the ksm_max_page_sharing limit.
1481 		 */
1482 		*_stable_node_dup = NULL;
1483 		return NULL;
1484 	}
1485 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1486 			       prune_stale_stable_nodes);
1487 }
1488 
1489 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1490 						struct stable_node **s_n,
1491 						struct rb_root *root)
1492 {
1493 	return __stable_node_chain(s_n_d, s_n, root, true);
1494 }
1495 
1496 static __always_inline struct page *chain(struct stable_node **s_n_d,
1497 					  struct stable_node *s_n,
1498 					  struct rb_root *root)
1499 {
1500 	struct stable_node *old_stable_node = s_n;
1501 	struct page *tree_page;
1502 
1503 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1504 	/* not pruning dups so s_n cannot have changed */
1505 	VM_BUG_ON(s_n != old_stable_node);
1506 	return tree_page;
1507 }
1508 
1509 /*
1510  * stable_tree_search - search for page inside the stable tree
1511  *
1512  * This function checks if there is a page inside the stable tree
1513  * with identical content to the page that we are scanning right now.
1514  *
1515  * This function returns the stable tree node of identical content if found,
1516  * NULL otherwise.
1517  */
1518 static struct page *stable_tree_search(struct page *page)
1519 {
1520 	int nid;
1521 	struct rb_root *root;
1522 	struct rb_node **new;
1523 	struct rb_node *parent;
1524 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1525 	struct stable_node *page_node;
1526 
1527 	page_node = page_stable_node(page);
1528 	if (page_node && page_node->head != &migrate_nodes) {
1529 		/* ksm page forked */
1530 		get_page(page);
1531 		return page;
1532 	}
1533 
1534 	nid = get_kpfn_nid(page_to_pfn(page));
1535 	root = root_stable_tree + nid;
1536 again:
1537 	new = &root->rb_node;
1538 	parent = NULL;
1539 
1540 	while (*new) {
1541 		struct page *tree_page;
1542 		int ret;
1543 
1544 		cond_resched();
1545 		stable_node = rb_entry(*new, struct stable_node, node);
1546 		stable_node_any = NULL;
1547 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1548 		/*
1549 		 * NOTE: stable_node may have been freed by
1550 		 * chain_prune() if the returned stable_node_dup is
1551 		 * not NULL. stable_node_dup may have been inserted in
1552 		 * the rbtree instead as a regular stable_node (in
1553 		 * order to collapse the stable_node chain if a single
1554 		 * stable_node dup was found in it). In such case the
1555 		 * stable_node is overwritten by the calleee to point
1556 		 * to the stable_node_dup that was collapsed in the
1557 		 * stable rbtree and stable_node will be equal to
1558 		 * stable_node_dup like if the chain never existed.
1559 		 */
1560 		if (!stable_node_dup) {
1561 			/*
1562 			 * Either all stable_node dups were full in
1563 			 * this stable_node chain, or this chain was
1564 			 * empty and should be rb_erased.
1565 			 */
1566 			stable_node_any = stable_node_dup_any(stable_node,
1567 							      root);
1568 			if (!stable_node_any) {
1569 				/* rb_erase just run */
1570 				goto again;
1571 			}
1572 			/*
1573 			 * Take any of the stable_node dups page of
1574 			 * this stable_node chain to let the tree walk
1575 			 * continue. All KSM pages belonging to the
1576 			 * stable_node dups in a stable_node chain
1577 			 * have the same content and they're
1578 			 * wrprotected at all times. Any will work
1579 			 * fine to continue the walk.
1580 			 */
1581 			tree_page = get_ksm_page(stable_node_any, false);
1582 		}
1583 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1584 		if (!tree_page) {
1585 			/*
1586 			 * If we walked over a stale stable_node,
1587 			 * get_ksm_page() will call rb_erase() and it
1588 			 * may rebalance the tree from under us. So
1589 			 * restart the search from scratch. Returning
1590 			 * NULL would be safe too, but we'd generate
1591 			 * false negative insertions just because some
1592 			 * stable_node was stale.
1593 			 */
1594 			goto again;
1595 		}
1596 
1597 		ret = memcmp_pages(page, tree_page);
1598 		put_page(tree_page);
1599 
1600 		parent = *new;
1601 		if (ret < 0)
1602 			new = &parent->rb_left;
1603 		else if (ret > 0)
1604 			new = &parent->rb_right;
1605 		else {
1606 			if (page_node) {
1607 				VM_BUG_ON(page_node->head != &migrate_nodes);
1608 				/*
1609 				 * Test if the migrated page should be merged
1610 				 * into a stable node dup. If the mapcount is
1611 				 * 1 we can migrate it with another KSM page
1612 				 * without adding it to the chain.
1613 				 */
1614 				if (page_mapcount(page) > 1)
1615 					goto chain_append;
1616 			}
1617 
1618 			if (!stable_node_dup) {
1619 				/*
1620 				 * If the stable_node is a chain and
1621 				 * we got a payload match in memcmp
1622 				 * but we cannot merge the scanned
1623 				 * page in any of the existing
1624 				 * stable_node dups because they're
1625 				 * all full, we need to wait the
1626 				 * scanned page to find itself a match
1627 				 * in the unstable tree to create a
1628 				 * brand new KSM page to add later to
1629 				 * the dups of this stable_node.
1630 				 */
1631 				return NULL;
1632 			}
1633 
1634 			/*
1635 			 * Lock and unlock the stable_node's page (which
1636 			 * might already have been migrated) so that page
1637 			 * migration is sure to notice its raised count.
1638 			 * It would be more elegant to return stable_node
1639 			 * than kpage, but that involves more changes.
1640 			 */
1641 			tree_page = get_ksm_page(stable_node_dup, true);
1642 			if (unlikely(!tree_page))
1643 				/*
1644 				 * The tree may have been rebalanced,
1645 				 * so re-evaluate parent and new.
1646 				 */
1647 				goto again;
1648 			unlock_page(tree_page);
1649 
1650 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1651 			    NUMA(stable_node_dup->nid)) {
1652 				put_page(tree_page);
1653 				goto replace;
1654 			}
1655 			return tree_page;
1656 		}
1657 	}
1658 
1659 	if (!page_node)
1660 		return NULL;
1661 
1662 	list_del(&page_node->list);
1663 	DO_NUMA(page_node->nid = nid);
1664 	rb_link_node(&page_node->node, parent, new);
1665 	rb_insert_color(&page_node->node, root);
1666 out:
1667 	if (is_page_sharing_candidate(page_node)) {
1668 		get_page(page);
1669 		return page;
1670 	} else
1671 		return NULL;
1672 
1673 replace:
1674 	/*
1675 	 * If stable_node was a chain and chain_prune collapsed it,
1676 	 * stable_node has been updated to be the new regular
1677 	 * stable_node. A collapse of the chain is indistinguishable
1678 	 * from the case there was no chain in the stable
1679 	 * rbtree. Otherwise stable_node is the chain and
1680 	 * stable_node_dup is the dup to replace.
1681 	 */
1682 	if (stable_node_dup == stable_node) {
1683 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1684 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1685 		/* there is no chain */
1686 		if (page_node) {
1687 			VM_BUG_ON(page_node->head != &migrate_nodes);
1688 			list_del(&page_node->list);
1689 			DO_NUMA(page_node->nid = nid);
1690 			rb_replace_node(&stable_node_dup->node,
1691 					&page_node->node,
1692 					root);
1693 			if (is_page_sharing_candidate(page_node))
1694 				get_page(page);
1695 			else
1696 				page = NULL;
1697 		} else {
1698 			rb_erase(&stable_node_dup->node, root);
1699 			page = NULL;
1700 		}
1701 	} else {
1702 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1703 		__stable_node_dup_del(stable_node_dup);
1704 		if (page_node) {
1705 			VM_BUG_ON(page_node->head != &migrate_nodes);
1706 			list_del(&page_node->list);
1707 			DO_NUMA(page_node->nid = nid);
1708 			stable_node_chain_add_dup(page_node, stable_node);
1709 			if (is_page_sharing_candidate(page_node))
1710 				get_page(page);
1711 			else
1712 				page = NULL;
1713 		} else {
1714 			page = NULL;
1715 		}
1716 	}
1717 	stable_node_dup->head = &migrate_nodes;
1718 	list_add(&stable_node_dup->list, stable_node_dup->head);
1719 	return page;
1720 
1721 chain_append:
1722 	/* stable_node_dup could be null if it reached the limit */
1723 	if (!stable_node_dup)
1724 		stable_node_dup = stable_node_any;
1725 	/*
1726 	 * If stable_node was a chain and chain_prune collapsed it,
1727 	 * stable_node has been updated to be the new regular
1728 	 * stable_node. A collapse of the chain is indistinguishable
1729 	 * from the case there was no chain in the stable
1730 	 * rbtree. Otherwise stable_node is the chain and
1731 	 * stable_node_dup is the dup to replace.
1732 	 */
1733 	if (stable_node_dup == stable_node) {
1734 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1735 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1736 		/* chain is missing so create it */
1737 		stable_node = alloc_stable_node_chain(stable_node_dup,
1738 						      root);
1739 		if (!stable_node)
1740 			return NULL;
1741 	}
1742 	/*
1743 	 * Add this stable_node dup that was
1744 	 * migrated to the stable_node chain
1745 	 * of the current nid for this page
1746 	 * content.
1747 	 */
1748 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1749 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1750 	VM_BUG_ON(page_node->head != &migrate_nodes);
1751 	list_del(&page_node->list);
1752 	DO_NUMA(page_node->nid = nid);
1753 	stable_node_chain_add_dup(page_node, stable_node);
1754 	goto out;
1755 }
1756 
1757 /*
1758  * stable_tree_insert - insert stable tree node pointing to new ksm page
1759  * into the stable tree.
1760  *
1761  * This function returns the stable tree node just allocated on success,
1762  * NULL otherwise.
1763  */
1764 static struct stable_node *stable_tree_insert(struct page *kpage)
1765 {
1766 	int nid;
1767 	unsigned long kpfn;
1768 	struct rb_root *root;
1769 	struct rb_node **new;
1770 	struct rb_node *parent;
1771 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1772 	bool need_chain = false;
1773 
1774 	kpfn = page_to_pfn(kpage);
1775 	nid = get_kpfn_nid(kpfn);
1776 	root = root_stable_tree + nid;
1777 again:
1778 	parent = NULL;
1779 	new = &root->rb_node;
1780 
1781 	while (*new) {
1782 		struct page *tree_page;
1783 		int ret;
1784 
1785 		cond_resched();
1786 		stable_node = rb_entry(*new, struct stable_node, node);
1787 		stable_node_any = NULL;
1788 		tree_page = chain(&stable_node_dup, stable_node, root);
1789 		if (!stable_node_dup) {
1790 			/*
1791 			 * Either all stable_node dups were full in
1792 			 * this stable_node chain, or this chain was
1793 			 * empty and should be rb_erased.
1794 			 */
1795 			stable_node_any = stable_node_dup_any(stable_node,
1796 							      root);
1797 			if (!stable_node_any) {
1798 				/* rb_erase just run */
1799 				goto again;
1800 			}
1801 			/*
1802 			 * Take any of the stable_node dups page of
1803 			 * this stable_node chain to let the tree walk
1804 			 * continue. All KSM pages belonging to the
1805 			 * stable_node dups in a stable_node chain
1806 			 * have the same content and they're
1807 			 * wrprotected at all times. Any will work
1808 			 * fine to continue the walk.
1809 			 */
1810 			tree_page = get_ksm_page(stable_node_any, false);
1811 		}
1812 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1813 		if (!tree_page) {
1814 			/*
1815 			 * If we walked over a stale stable_node,
1816 			 * get_ksm_page() will call rb_erase() and it
1817 			 * may rebalance the tree from under us. So
1818 			 * restart the search from scratch. Returning
1819 			 * NULL would be safe too, but we'd generate
1820 			 * false negative insertions just because some
1821 			 * stable_node was stale.
1822 			 */
1823 			goto again;
1824 		}
1825 
1826 		ret = memcmp_pages(kpage, tree_page);
1827 		put_page(tree_page);
1828 
1829 		parent = *new;
1830 		if (ret < 0)
1831 			new = &parent->rb_left;
1832 		else if (ret > 0)
1833 			new = &parent->rb_right;
1834 		else {
1835 			need_chain = true;
1836 			break;
1837 		}
1838 	}
1839 
1840 	stable_node_dup = alloc_stable_node();
1841 	if (!stable_node_dup)
1842 		return NULL;
1843 
1844 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1845 	stable_node_dup->kpfn = kpfn;
1846 	set_page_stable_node(kpage, stable_node_dup);
1847 	stable_node_dup->rmap_hlist_len = 0;
1848 	DO_NUMA(stable_node_dup->nid = nid);
1849 	if (!need_chain) {
1850 		rb_link_node(&stable_node_dup->node, parent, new);
1851 		rb_insert_color(&stable_node_dup->node, root);
1852 	} else {
1853 		if (!is_stable_node_chain(stable_node)) {
1854 			struct stable_node *orig = stable_node;
1855 			/* chain is missing so create it */
1856 			stable_node = alloc_stable_node_chain(orig, root);
1857 			if (!stable_node) {
1858 				free_stable_node(stable_node_dup);
1859 				return NULL;
1860 			}
1861 		}
1862 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1863 	}
1864 
1865 	return stable_node_dup;
1866 }
1867 
1868 /*
1869  * unstable_tree_search_insert - search for identical page,
1870  * else insert rmap_item into the unstable tree.
1871  *
1872  * This function searches for a page in the unstable tree identical to the
1873  * page currently being scanned; and if no identical page is found in the
1874  * tree, we insert rmap_item as a new object into the unstable tree.
1875  *
1876  * This function returns pointer to rmap_item found to be identical
1877  * to the currently scanned page, NULL otherwise.
1878  *
1879  * This function does both searching and inserting, because they share
1880  * the same walking algorithm in an rbtree.
1881  */
1882 static
1883 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1884 					      struct page *page,
1885 					      struct page **tree_pagep)
1886 {
1887 	struct rb_node **new;
1888 	struct rb_root *root;
1889 	struct rb_node *parent = NULL;
1890 	int nid;
1891 
1892 	nid = get_kpfn_nid(page_to_pfn(page));
1893 	root = root_unstable_tree + nid;
1894 	new = &root->rb_node;
1895 
1896 	while (*new) {
1897 		struct rmap_item *tree_rmap_item;
1898 		struct page *tree_page;
1899 		int ret;
1900 
1901 		cond_resched();
1902 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1903 		tree_page = get_mergeable_page(tree_rmap_item);
1904 		if (!tree_page)
1905 			return NULL;
1906 
1907 		/*
1908 		 * Don't substitute a ksm page for a forked page.
1909 		 */
1910 		if (page == tree_page) {
1911 			put_page(tree_page);
1912 			return NULL;
1913 		}
1914 
1915 		ret = memcmp_pages(page, tree_page);
1916 
1917 		parent = *new;
1918 		if (ret < 0) {
1919 			put_page(tree_page);
1920 			new = &parent->rb_left;
1921 		} else if (ret > 0) {
1922 			put_page(tree_page);
1923 			new = &parent->rb_right;
1924 		} else if (!ksm_merge_across_nodes &&
1925 			   page_to_nid(tree_page) != nid) {
1926 			/*
1927 			 * If tree_page has been migrated to another NUMA node,
1928 			 * it will be flushed out and put in the right unstable
1929 			 * tree next time: only merge with it when across_nodes.
1930 			 */
1931 			put_page(tree_page);
1932 			return NULL;
1933 		} else {
1934 			*tree_pagep = tree_page;
1935 			return tree_rmap_item;
1936 		}
1937 	}
1938 
1939 	rmap_item->address |= UNSTABLE_FLAG;
1940 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1941 	DO_NUMA(rmap_item->nid = nid);
1942 	rb_link_node(&rmap_item->node, parent, new);
1943 	rb_insert_color(&rmap_item->node, root);
1944 
1945 	ksm_pages_unshared++;
1946 	return NULL;
1947 }
1948 
1949 /*
1950  * stable_tree_append - add another rmap_item to the linked list of
1951  * rmap_items hanging off a given node of the stable tree, all sharing
1952  * the same ksm page.
1953  */
1954 static void stable_tree_append(struct rmap_item *rmap_item,
1955 			       struct stable_node *stable_node,
1956 			       bool max_page_sharing_bypass)
1957 {
1958 	/*
1959 	 * rmap won't find this mapping if we don't insert the
1960 	 * rmap_item in the right stable_node
1961 	 * duplicate. page_migration could break later if rmap breaks,
1962 	 * so we can as well crash here. We really need to check for
1963 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1964 	 * for other negative values as an undeflow if detected here
1965 	 * for the first time (and not when decreasing rmap_hlist_len)
1966 	 * would be sign of memory corruption in the stable_node.
1967 	 */
1968 	BUG_ON(stable_node->rmap_hlist_len < 0);
1969 
1970 	stable_node->rmap_hlist_len++;
1971 	if (!max_page_sharing_bypass)
1972 		/* possibly non fatal but unexpected overflow, only warn */
1973 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
1974 			     ksm_max_page_sharing);
1975 
1976 	rmap_item->head = stable_node;
1977 	rmap_item->address |= STABLE_FLAG;
1978 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1979 
1980 	if (rmap_item->hlist.next)
1981 		ksm_pages_sharing++;
1982 	else
1983 		ksm_pages_shared++;
1984 }
1985 
1986 /*
1987  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1988  * if not, compare checksum to previous and if it's the same, see if page can
1989  * be inserted into the unstable tree, or merged with a page already there and
1990  * both transferred to the stable tree.
1991  *
1992  * @page: the page that we are searching identical page to.
1993  * @rmap_item: the reverse mapping into the virtual address of this page
1994  */
1995 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1996 {
1997 	struct mm_struct *mm = rmap_item->mm;
1998 	struct rmap_item *tree_rmap_item;
1999 	struct page *tree_page = NULL;
2000 	struct stable_node *stable_node;
2001 	struct page *kpage;
2002 	unsigned int checksum;
2003 	int err;
2004 	bool max_page_sharing_bypass = false;
2005 
2006 	stable_node = page_stable_node(page);
2007 	if (stable_node) {
2008 		if (stable_node->head != &migrate_nodes &&
2009 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2010 		    NUMA(stable_node->nid)) {
2011 			stable_node_dup_del(stable_node);
2012 			stable_node->head = &migrate_nodes;
2013 			list_add(&stable_node->list, stable_node->head);
2014 		}
2015 		if (stable_node->head != &migrate_nodes &&
2016 		    rmap_item->head == stable_node)
2017 			return;
2018 		/*
2019 		 * If it's a KSM fork, allow it to go over the sharing limit
2020 		 * without warnings.
2021 		 */
2022 		if (!is_page_sharing_candidate(stable_node))
2023 			max_page_sharing_bypass = true;
2024 	}
2025 
2026 	/* We first start with searching the page inside the stable tree */
2027 	kpage = stable_tree_search(page);
2028 	if (kpage == page && rmap_item->head == stable_node) {
2029 		put_page(kpage);
2030 		return;
2031 	}
2032 
2033 	remove_rmap_item_from_tree(rmap_item);
2034 
2035 	if (kpage) {
2036 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2037 		if (!err) {
2038 			/*
2039 			 * The page was successfully merged:
2040 			 * add its rmap_item to the stable tree.
2041 			 */
2042 			lock_page(kpage);
2043 			stable_tree_append(rmap_item, page_stable_node(kpage),
2044 					   max_page_sharing_bypass);
2045 			unlock_page(kpage);
2046 		}
2047 		put_page(kpage);
2048 		return;
2049 	}
2050 
2051 	/*
2052 	 * If the hash value of the page has changed from the last time
2053 	 * we calculated it, this page is changing frequently: therefore we
2054 	 * don't want to insert it in the unstable tree, and we don't want
2055 	 * to waste our time searching for something identical to it there.
2056 	 */
2057 	checksum = calc_checksum(page);
2058 	if (rmap_item->oldchecksum != checksum) {
2059 		rmap_item->oldchecksum = checksum;
2060 		return;
2061 	}
2062 
2063 	/*
2064 	 * Same checksum as an empty page. We attempt to merge it with the
2065 	 * appropriate zero page if the user enabled this via sysfs.
2066 	 */
2067 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2068 		struct vm_area_struct *vma;
2069 
2070 		down_read(&mm->mmap_sem);
2071 		vma = find_mergeable_vma(mm, rmap_item->address);
2072 		err = try_to_merge_one_page(vma, page,
2073 					    ZERO_PAGE(rmap_item->address));
2074 		up_read(&mm->mmap_sem);
2075 		/*
2076 		 * In case of failure, the page was not really empty, so we
2077 		 * need to continue. Otherwise we're done.
2078 		 */
2079 		if (!err)
2080 			return;
2081 	}
2082 	tree_rmap_item =
2083 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2084 	if (tree_rmap_item) {
2085 		bool split;
2086 
2087 		kpage = try_to_merge_two_pages(rmap_item, page,
2088 						tree_rmap_item, tree_page);
2089 		/*
2090 		 * If both pages we tried to merge belong to the same compound
2091 		 * page, then we actually ended up increasing the reference
2092 		 * count of the same compound page twice, and split_huge_page
2093 		 * failed.
2094 		 * Here we set a flag if that happened, and we use it later to
2095 		 * try split_huge_page again. Since we call put_page right
2096 		 * afterwards, the reference count will be correct and
2097 		 * split_huge_page should succeed.
2098 		 */
2099 		split = PageTransCompound(page)
2100 			&& compound_head(page) == compound_head(tree_page);
2101 		put_page(tree_page);
2102 		if (kpage) {
2103 			/*
2104 			 * The pages were successfully merged: insert new
2105 			 * node in the stable tree and add both rmap_items.
2106 			 */
2107 			lock_page(kpage);
2108 			stable_node = stable_tree_insert(kpage);
2109 			if (stable_node) {
2110 				stable_tree_append(tree_rmap_item, stable_node,
2111 						   false);
2112 				stable_tree_append(rmap_item, stable_node,
2113 						   false);
2114 			}
2115 			unlock_page(kpage);
2116 
2117 			/*
2118 			 * If we fail to insert the page into the stable tree,
2119 			 * we will have 2 virtual addresses that are pointing
2120 			 * to a ksm page left outside the stable tree,
2121 			 * in which case we need to break_cow on both.
2122 			 */
2123 			if (!stable_node) {
2124 				break_cow(tree_rmap_item);
2125 				break_cow(rmap_item);
2126 			}
2127 		} else if (split) {
2128 			/*
2129 			 * We are here if we tried to merge two pages and
2130 			 * failed because they both belonged to the same
2131 			 * compound page. We will split the page now, but no
2132 			 * merging will take place.
2133 			 * We do not want to add the cost of a full lock; if
2134 			 * the page is locked, it is better to skip it and
2135 			 * perhaps try again later.
2136 			 */
2137 			if (!trylock_page(page))
2138 				return;
2139 			split_huge_page(page);
2140 			unlock_page(page);
2141 		}
2142 	}
2143 }
2144 
2145 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2146 					    struct rmap_item **rmap_list,
2147 					    unsigned long addr)
2148 {
2149 	struct rmap_item *rmap_item;
2150 
2151 	while (*rmap_list) {
2152 		rmap_item = *rmap_list;
2153 		if ((rmap_item->address & PAGE_MASK) == addr)
2154 			return rmap_item;
2155 		if (rmap_item->address > addr)
2156 			break;
2157 		*rmap_list = rmap_item->rmap_list;
2158 		remove_rmap_item_from_tree(rmap_item);
2159 		free_rmap_item(rmap_item);
2160 	}
2161 
2162 	rmap_item = alloc_rmap_item();
2163 	if (rmap_item) {
2164 		/* It has already been zeroed */
2165 		rmap_item->mm = mm_slot->mm;
2166 		rmap_item->address = addr;
2167 		rmap_item->rmap_list = *rmap_list;
2168 		*rmap_list = rmap_item;
2169 	}
2170 	return rmap_item;
2171 }
2172 
2173 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2174 {
2175 	struct mm_struct *mm;
2176 	struct mm_slot *slot;
2177 	struct vm_area_struct *vma;
2178 	struct rmap_item *rmap_item;
2179 	int nid;
2180 
2181 	if (list_empty(&ksm_mm_head.mm_list))
2182 		return NULL;
2183 
2184 	slot = ksm_scan.mm_slot;
2185 	if (slot == &ksm_mm_head) {
2186 		/*
2187 		 * A number of pages can hang around indefinitely on per-cpu
2188 		 * pagevecs, raised page count preventing write_protect_page
2189 		 * from merging them.  Though it doesn't really matter much,
2190 		 * it is puzzling to see some stuck in pages_volatile until
2191 		 * other activity jostles them out, and they also prevented
2192 		 * LTP's KSM test from succeeding deterministically; so drain
2193 		 * them here (here rather than on entry to ksm_do_scan(),
2194 		 * so we don't IPI too often when pages_to_scan is set low).
2195 		 */
2196 		lru_add_drain_all();
2197 
2198 		/*
2199 		 * Whereas stale stable_nodes on the stable_tree itself
2200 		 * get pruned in the regular course of stable_tree_search(),
2201 		 * those moved out to the migrate_nodes list can accumulate:
2202 		 * so prune them once before each full scan.
2203 		 */
2204 		if (!ksm_merge_across_nodes) {
2205 			struct stable_node *stable_node, *next;
2206 			struct page *page;
2207 
2208 			list_for_each_entry_safe(stable_node, next,
2209 						 &migrate_nodes, list) {
2210 				page = get_ksm_page(stable_node, false);
2211 				if (page)
2212 					put_page(page);
2213 				cond_resched();
2214 			}
2215 		}
2216 
2217 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2218 			root_unstable_tree[nid] = RB_ROOT;
2219 
2220 		spin_lock(&ksm_mmlist_lock);
2221 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2222 		ksm_scan.mm_slot = slot;
2223 		spin_unlock(&ksm_mmlist_lock);
2224 		/*
2225 		 * Although we tested list_empty() above, a racing __ksm_exit
2226 		 * of the last mm on the list may have removed it since then.
2227 		 */
2228 		if (slot == &ksm_mm_head)
2229 			return NULL;
2230 next_mm:
2231 		ksm_scan.address = 0;
2232 		ksm_scan.rmap_list = &slot->rmap_list;
2233 	}
2234 
2235 	mm = slot->mm;
2236 	down_read(&mm->mmap_sem);
2237 	if (ksm_test_exit(mm))
2238 		vma = NULL;
2239 	else
2240 		vma = find_vma(mm, ksm_scan.address);
2241 
2242 	for (; vma; vma = vma->vm_next) {
2243 		if (!(vma->vm_flags & VM_MERGEABLE))
2244 			continue;
2245 		if (ksm_scan.address < vma->vm_start)
2246 			ksm_scan.address = vma->vm_start;
2247 		if (!vma->anon_vma)
2248 			ksm_scan.address = vma->vm_end;
2249 
2250 		while (ksm_scan.address < vma->vm_end) {
2251 			if (ksm_test_exit(mm))
2252 				break;
2253 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2254 			if (IS_ERR_OR_NULL(*page)) {
2255 				ksm_scan.address += PAGE_SIZE;
2256 				cond_resched();
2257 				continue;
2258 			}
2259 			if (PageAnon(*page)) {
2260 				flush_anon_page(vma, *page, ksm_scan.address);
2261 				flush_dcache_page(*page);
2262 				rmap_item = get_next_rmap_item(slot,
2263 					ksm_scan.rmap_list, ksm_scan.address);
2264 				if (rmap_item) {
2265 					ksm_scan.rmap_list =
2266 							&rmap_item->rmap_list;
2267 					ksm_scan.address += PAGE_SIZE;
2268 				} else
2269 					put_page(*page);
2270 				up_read(&mm->mmap_sem);
2271 				return rmap_item;
2272 			}
2273 			put_page(*page);
2274 			ksm_scan.address += PAGE_SIZE;
2275 			cond_resched();
2276 		}
2277 	}
2278 
2279 	if (ksm_test_exit(mm)) {
2280 		ksm_scan.address = 0;
2281 		ksm_scan.rmap_list = &slot->rmap_list;
2282 	}
2283 	/*
2284 	 * Nuke all the rmap_items that are above this current rmap:
2285 	 * because there were no VM_MERGEABLE vmas with such addresses.
2286 	 */
2287 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2288 
2289 	spin_lock(&ksm_mmlist_lock);
2290 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2291 						struct mm_slot, mm_list);
2292 	if (ksm_scan.address == 0) {
2293 		/*
2294 		 * We've completed a full scan of all vmas, holding mmap_sem
2295 		 * throughout, and found no VM_MERGEABLE: so do the same as
2296 		 * __ksm_exit does to remove this mm from all our lists now.
2297 		 * This applies either when cleaning up after __ksm_exit
2298 		 * (but beware: we can reach here even before __ksm_exit),
2299 		 * or when all VM_MERGEABLE areas have been unmapped (and
2300 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2301 		 */
2302 		hash_del(&slot->link);
2303 		list_del(&slot->mm_list);
2304 		spin_unlock(&ksm_mmlist_lock);
2305 
2306 		free_mm_slot(slot);
2307 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2308 		up_read(&mm->mmap_sem);
2309 		mmdrop(mm);
2310 	} else {
2311 		up_read(&mm->mmap_sem);
2312 		/*
2313 		 * up_read(&mm->mmap_sem) first because after
2314 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2315 		 * already have been freed under us by __ksm_exit()
2316 		 * because the "mm_slot" is still hashed and
2317 		 * ksm_scan.mm_slot doesn't point to it anymore.
2318 		 */
2319 		spin_unlock(&ksm_mmlist_lock);
2320 	}
2321 
2322 	/* Repeat until we've completed scanning the whole list */
2323 	slot = ksm_scan.mm_slot;
2324 	if (slot != &ksm_mm_head)
2325 		goto next_mm;
2326 
2327 	ksm_scan.seqnr++;
2328 	return NULL;
2329 }
2330 
2331 /**
2332  * ksm_do_scan  - the ksm scanner main worker function.
2333  * @scan_npages:  number of pages we want to scan before we return.
2334  */
2335 static void ksm_do_scan(unsigned int scan_npages)
2336 {
2337 	struct rmap_item *rmap_item;
2338 	struct page *uninitialized_var(page);
2339 
2340 	while (scan_npages-- && likely(!freezing(current))) {
2341 		cond_resched();
2342 		rmap_item = scan_get_next_rmap_item(&page);
2343 		if (!rmap_item)
2344 			return;
2345 		cmp_and_merge_page(page, rmap_item);
2346 		put_page(page);
2347 	}
2348 }
2349 
2350 static int ksmd_should_run(void)
2351 {
2352 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2353 }
2354 
2355 static int ksm_scan_thread(void *nothing)
2356 {
2357 	set_freezable();
2358 	set_user_nice(current, 5);
2359 
2360 	while (!kthread_should_stop()) {
2361 		mutex_lock(&ksm_thread_mutex);
2362 		wait_while_offlining();
2363 		if (ksmd_should_run())
2364 			ksm_do_scan(ksm_thread_pages_to_scan);
2365 		mutex_unlock(&ksm_thread_mutex);
2366 
2367 		try_to_freeze();
2368 
2369 		if (ksmd_should_run()) {
2370 			schedule_timeout_interruptible(
2371 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
2372 		} else {
2373 			wait_event_freezable(ksm_thread_wait,
2374 				ksmd_should_run() || kthread_should_stop());
2375 		}
2376 	}
2377 	return 0;
2378 }
2379 
2380 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2381 		unsigned long end, int advice, unsigned long *vm_flags)
2382 {
2383 	struct mm_struct *mm = vma->vm_mm;
2384 	int err;
2385 
2386 	switch (advice) {
2387 	case MADV_MERGEABLE:
2388 		/*
2389 		 * Be somewhat over-protective for now!
2390 		 */
2391 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2392 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2393 				 VM_HUGETLB | VM_MIXEDMAP))
2394 			return 0;		/* just ignore the advice */
2395 
2396 #ifdef VM_SAO
2397 		if (*vm_flags & VM_SAO)
2398 			return 0;
2399 #endif
2400 #ifdef VM_SPARC_ADI
2401 		if (*vm_flags & VM_SPARC_ADI)
2402 			return 0;
2403 #endif
2404 
2405 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2406 			err = __ksm_enter(mm);
2407 			if (err)
2408 				return err;
2409 		}
2410 
2411 		*vm_flags |= VM_MERGEABLE;
2412 		break;
2413 
2414 	case MADV_UNMERGEABLE:
2415 		if (!(*vm_flags & VM_MERGEABLE))
2416 			return 0;		/* just ignore the advice */
2417 
2418 		if (vma->anon_vma) {
2419 			err = unmerge_ksm_pages(vma, start, end);
2420 			if (err)
2421 				return err;
2422 		}
2423 
2424 		*vm_flags &= ~VM_MERGEABLE;
2425 		break;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 int __ksm_enter(struct mm_struct *mm)
2432 {
2433 	struct mm_slot *mm_slot;
2434 	int needs_wakeup;
2435 
2436 	mm_slot = alloc_mm_slot();
2437 	if (!mm_slot)
2438 		return -ENOMEM;
2439 
2440 	/* Check ksm_run too?  Would need tighter locking */
2441 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2442 
2443 	spin_lock(&ksm_mmlist_lock);
2444 	insert_to_mm_slots_hash(mm, mm_slot);
2445 	/*
2446 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2447 	 * insert just behind the scanning cursor, to let the area settle
2448 	 * down a little; when fork is followed by immediate exec, we don't
2449 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2450 	 *
2451 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2452 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2453 	 * missed: then we might as well insert at the end of the list.
2454 	 */
2455 	if (ksm_run & KSM_RUN_UNMERGE)
2456 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2457 	else
2458 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2459 	spin_unlock(&ksm_mmlist_lock);
2460 
2461 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2462 	mmgrab(mm);
2463 
2464 	if (needs_wakeup)
2465 		wake_up_interruptible(&ksm_thread_wait);
2466 
2467 	return 0;
2468 }
2469 
2470 void __ksm_exit(struct mm_struct *mm)
2471 {
2472 	struct mm_slot *mm_slot;
2473 	int easy_to_free = 0;
2474 
2475 	/*
2476 	 * This process is exiting: if it's straightforward (as is the
2477 	 * case when ksmd was never running), free mm_slot immediately.
2478 	 * But if it's at the cursor or has rmap_items linked to it, use
2479 	 * mmap_sem to synchronize with any break_cows before pagetables
2480 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2481 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2482 	 */
2483 
2484 	spin_lock(&ksm_mmlist_lock);
2485 	mm_slot = get_mm_slot(mm);
2486 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2487 		if (!mm_slot->rmap_list) {
2488 			hash_del(&mm_slot->link);
2489 			list_del(&mm_slot->mm_list);
2490 			easy_to_free = 1;
2491 		} else {
2492 			list_move(&mm_slot->mm_list,
2493 				  &ksm_scan.mm_slot->mm_list);
2494 		}
2495 	}
2496 	spin_unlock(&ksm_mmlist_lock);
2497 
2498 	if (easy_to_free) {
2499 		free_mm_slot(mm_slot);
2500 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2501 		mmdrop(mm);
2502 	} else if (mm_slot) {
2503 		down_write(&mm->mmap_sem);
2504 		up_write(&mm->mmap_sem);
2505 	}
2506 }
2507 
2508 struct page *ksm_might_need_to_copy(struct page *page,
2509 			struct vm_area_struct *vma, unsigned long address)
2510 {
2511 	struct anon_vma *anon_vma = page_anon_vma(page);
2512 	struct page *new_page;
2513 
2514 	if (PageKsm(page)) {
2515 		if (page_stable_node(page) &&
2516 		    !(ksm_run & KSM_RUN_UNMERGE))
2517 			return page;	/* no need to copy it */
2518 	} else if (!anon_vma) {
2519 		return page;		/* no need to copy it */
2520 	} else if (anon_vma->root == vma->anon_vma->root &&
2521 		 page->index == linear_page_index(vma, address)) {
2522 		return page;		/* still no need to copy it */
2523 	}
2524 	if (!PageUptodate(page))
2525 		return page;		/* let do_swap_page report the error */
2526 
2527 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2528 	if (new_page) {
2529 		copy_user_highpage(new_page, page, address, vma);
2530 
2531 		SetPageDirty(new_page);
2532 		__SetPageUptodate(new_page);
2533 		__SetPageLocked(new_page);
2534 	}
2535 
2536 	return new_page;
2537 }
2538 
2539 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2540 {
2541 	struct stable_node *stable_node;
2542 	struct rmap_item *rmap_item;
2543 	int search_new_forks = 0;
2544 
2545 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2546 
2547 	/*
2548 	 * Rely on the page lock to protect against concurrent modifications
2549 	 * to that page's node of the stable tree.
2550 	 */
2551 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2552 
2553 	stable_node = page_stable_node(page);
2554 	if (!stable_node)
2555 		return;
2556 again:
2557 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2558 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2559 		struct anon_vma_chain *vmac;
2560 		struct vm_area_struct *vma;
2561 
2562 		cond_resched();
2563 		anon_vma_lock_read(anon_vma);
2564 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2565 					       0, ULONG_MAX) {
2566 			cond_resched();
2567 			vma = vmac->vma;
2568 			if (rmap_item->address < vma->vm_start ||
2569 			    rmap_item->address >= vma->vm_end)
2570 				continue;
2571 			/*
2572 			 * Initially we examine only the vma which covers this
2573 			 * rmap_item; but later, if there is still work to do,
2574 			 * we examine covering vmas in other mms: in case they
2575 			 * were forked from the original since ksmd passed.
2576 			 */
2577 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2578 				continue;
2579 
2580 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2581 				continue;
2582 
2583 			if (!rwc->rmap_one(page, vma,
2584 					rmap_item->address, rwc->arg)) {
2585 				anon_vma_unlock_read(anon_vma);
2586 				return;
2587 			}
2588 			if (rwc->done && rwc->done(page)) {
2589 				anon_vma_unlock_read(anon_vma);
2590 				return;
2591 			}
2592 		}
2593 		anon_vma_unlock_read(anon_vma);
2594 	}
2595 	if (!search_new_forks++)
2596 		goto again;
2597 }
2598 
2599 #ifdef CONFIG_MIGRATION
2600 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2601 {
2602 	struct stable_node *stable_node;
2603 
2604 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2605 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2606 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2607 
2608 	stable_node = page_stable_node(newpage);
2609 	if (stable_node) {
2610 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2611 		stable_node->kpfn = page_to_pfn(newpage);
2612 		/*
2613 		 * newpage->mapping was set in advance; now we need smp_wmb()
2614 		 * to make sure that the new stable_node->kpfn is visible
2615 		 * to get_ksm_page() before it can see that oldpage->mapping
2616 		 * has gone stale (or that PageSwapCache has been cleared).
2617 		 */
2618 		smp_wmb();
2619 		set_page_stable_node(oldpage, NULL);
2620 	}
2621 }
2622 #endif /* CONFIG_MIGRATION */
2623 
2624 #ifdef CONFIG_MEMORY_HOTREMOVE
2625 static void wait_while_offlining(void)
2626 {
2627 	while (ksm_run & KSM_RUN_OFFLINE) {
2628 		mutex_unlock(&ksm_thread_mutex);
2629 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2630 			    TASK_UNINTERRUPTIBLE);
2631 		mutex_lock(&ksm_thread_mutex);
2632 	}
2633 }
2634 
2635 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2636 					 unsigned long start_pfn,
2637 					 unsigned long end_pfn)
2638 {
2639 	if (stable_node->kpfn >= start_pfn &&
2640 	    stable_node->kpfn < end_pfn) {
2641 		/*
2642 		 * Don't get_ksm_page, page has already gone:
2643 		 * which is why we keep kpfn instead of page*
2644 		 */
2645 		remove_node_from_stable_tree(stable_node);
2646 		return true;
2647 	}
2648 	return false;
2649 }
2650 
2651 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2652 					   unsigned long start_pfn,
2653 					   unsigned long end_pfn,
2654 					   struct rb_root *root)
2655 {
2656 	struct stable_node *dup;
2657 	struct hlist_node *hlist_safe;
2658 
2659 	if (!is_stable_node_chain(stable_node)) {
2660 		VM_BUG_ON(is_stable_node_dup(stable_node));
2661 		return stable_node_dup_remove_range(stable_node, start_pfn,
2662 						    end_pfn);
2663 	}
2664 
2665 	hlist_for_each_entry_safe(dup, hlist_safe,
2666 				  &stable_node->hlist, hlist_dup) {
2667 		VM_BUG_ON(!is_stable_node_dup(dup));
2668 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2669 	}
2670 	if (hlist_empty(&stable_node->hlist)) {
2671 		free_stable_node_chain(stable_node, root);
2672 		return true; /* notify caller that tree was rebalanced */
2673 	} else
2674 		return false;
2675 }
2676 
2677 static void ksm_check_stable_tree(unsigned long start_pfn,
2678 				  unsigned long end_pfn)
2679 {
2680 	struct stable_node *stable_node, *next;
2681 	struct rb_node *node;
2682 	int nid;
2683 
2684 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2685 		node = rb_first(root_stable_tree + nid);
2686 		while (node) {
2687 			stable_node = rb_entry(node, struct stable_node, node);
2688 			if (stable_node_chain_remove_range(stable_node,
2689 							   start_pfn, end_pfn,
2690 							   root_stable_tree +
2691 							   nid))
2692 				node = rb_first(root_stable_tree + nid);
2693 			else
2694 				node = rb_next(node);
2695 			cond_resched();
2696 		}
2697 	}
2698 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2699 		if (stable_node->kpfn >= start_pfn &&
2700 		    stable_node->kpfn < end_pfn)
2701 			remove_node_from_stable_tree(stable_node);
2702 		cond_resched();
2703 	}
2704 }
2705 
2706 static int ksm_memory_callback(struct notifier_block *self,
2707 			       unsigned long action, void *arg)
2708 {
2709 	struct memory_notify *mn = arg;
2710 
2711 	switch (action) {
2712 	case MEM_GOING_OFFLINE:
2713 		/*
2714 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2715 		 * and remove_all_stable_nodes() while memory is going offline:
2716 		 * it is unsafe for them to touch the stable tree at this time.
2717 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2718 		 * which do not need the ksm_thread_mutex are all safe.
2719 		 */
2720 		mutex_lock(&ksm_thread_mutex);
2721 		ksm_run |= KSM_RUN_OFFLINE;
2722 		mutex_unlock(&ksm_thread_mutex);
2723 		break;
2724 
2725 	case MEM_OFFLINE:
2726 		/*
2727 		 * Most of the work is done by page migration; but there might
2728 		 * be a few stable_nodes left over, still pointing to struct
2729 		 * pages which have been offlined: prune those from the tree,
2730 		 * otherwise get_ksm_page() might later try to access a
2731 		 * non-existent struct page.
2732 		 */
2733 		ksm_check_stable_tree(mn->start_pfn,
2734 				      mn->start_pfn + mn->nr_pages);
2735 		/* fallthrough */
2736 
2737 	case MEM_CANCEL_OFFLINE:
2738 		mutex_lock(&ksm_thread_mutex);
2739 		ksm_run &= ~KSM_RUN_OFFLINE;
2740 		mutex_unlock(&ksm_thread_mutex);
2741 
2742 		smp_mb();	/* wake_up_bit advises this */
2743 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2744 		break;
2745 	}
2746 	return NOTIFY_OK;
2747 }
2748 #else
2749 static void wait_while_offlining(void)
2750 {
2751 }
2752 #endif /* CONFIG_MEMORY_HOTREMOVE */
2753 
2754 #ifdef CONFIG_SYSFS
2755 /*
2756  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2757  */
2758 
2759 #define KSM_ATTR_RO(_name) \
2760 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2761 #define KSM_ATTR(_name) \
2762 	static struct kobj_attribute _name##_attr = \
2763 		__ATTR(_name, 0644, _name##_show, _name##_store)
2764 
2765 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2766 				    struct kobj_attribute *attr, char *buf)
2767 {
2768 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2769 }
2770 
2771 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2772 				     struct kobj_attribute *attr,
2773 				     const char *buf, size_t count)
2774 {
2775 	unsigned long msecs;
2776 	int err;
2777 
2778 	err = kstrtoul(buf, 10, &msecs);
2779 	if (err || msecs > UINT_MAX)
2780 		return -EINVAL;
2781 
2782 	ksm_thread_sleep_millisecs = msecs;
2783 
2784 	return count;
2785 }
2786 KSM_ATTR(sleep_millisecs);
2787 
2788 static ssize_t pages_to_scan_show(struct kobject *kobj,
2789 				  struct kobj_attribute *attr, char *buf)
2790 {
2791 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2792 }
2793 
2794 static ssize_t pages_to_scan_store(struct kobject *kobj,
2795 				   struct kobj_attribute *attr,
2796 				   const char *buf, size_t count)
2797 {
2798 	int err;
2799 	unsigned long nr_pages;
2800 
2801 	err = kstrtoul(buf, 10, &nr_pages);
2802 	if (err || nr_pages > UINT_MAX)
2803 		return -EINVAL;
2804 
2805 	ksm_thread_pages_to_scan = nr_pages;
2806 
2807 	return count;
2808 }
2809 KSM_ATTR(pages_to_scan);
2810 
2811 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2812 			char *buf)
2813 {
2814 	return sprintf(buf, "%lu\n", ksm_run);
2815 }
2816 
2817 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2818 			 const char *buf, size_t count)
2819 {
2820 	int err;
2821 	unsigned long flags;
2822 
2823 	err = kstrtoul(buf, 10, &flags);
2824 	if (err || flags > UINT_MAX)
2825 		return -EINVAL;
2826 	if (flags > KSM_RUN_UNMERGE)
2827 		return -EINVAL;
2828 
2829 	/*
2830 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2831 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2832 	 * breaking COW to free the pages_shared (but leaves mm_slots
2833 	 * on the list for when ksmd may be set running again).
2834 	 */
2835 
2836 	mutex_lock(&ksm_thread_mutex);
2837 	wait_while_offlining();
2838 	if (ksm_run != flags) {
2839 		ksm_run = flags;
2840 		if (flags & KSM_RUN_UNMERGE) {
2841 			set_current_oom_origin();
2842 			err = unmerge_and_remove_all_rmap_items();
2843 			clear_current_oom_origin();
2844 			if (err) {
2845 				ksm_run = KSM_RUN_STOP;
2846 				count = err;
2847 			}
2848 		}
2849 	}
2850 	mutex_unlock(&ksm_thread_mutex);
2851 
2852 	if (flags & KSM_RUN_MERGE)
2853 		wake_up_interruptible(&ksm_thread_wait);
2854 
2855 	return count;
2856 }
2857 KSM_ATTR(run);
2858 
2859 #ifdef CONFIG_NUMA
2860 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2861 				struct kobj_attribute *attr, char *buf)
2862 {
2863 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2864 }
2865 
2866 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2867 				   struct kobj_attribute *attr,
2868 				   const char *buf, size_t count)
2869 {
2870 	int err;
2871 	unsigned long knob;
2872 
2873 	err = kstrtoul(buf, 10, &knob);
2874 	if (err)
2875 		return err;
2876 	if (knob > 1)
2877 		return -EINVAL;
2878 
2879 	mutex_lock(&ksm_thread_mutex);
2880 	wait_while_offlining();
2881 	if (ksm_merge_across_nodes != knob) {
2882 		if (ksm_pages_shared || remove_all_stable_nodes())
2883 			err = -EBUSY;
2884 		else if (root_stable_tree == one_stable_tree) {
2885 			struct rb_root *buf;
2886 			/*
2887 			 * This is the first time that we switch away from the
2888 			 * default of merging across nodes: must now allocate
2889 			 * a buffer to hold as many roots as may be needed.
2890 			 * Allocate stable and unstable together:
2891 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2892 			 */
2893 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2894 				      GFP_KERNEL);
2895 			/* Let us assume that RB_ROOT is NULL is zero */
2896 			if (!buf)
2897 				err = -ENOMEM;
2898 			else {
2899 				root_stable_tree = buf;
2900 				root_unstable_tree = buf + nr_node_ids;
2901 				/* Stable tree is empty but not the unstable */
2902 				root_unstable_tree[0] = one_unstable_tree[0];
2903 			}
2904 		}
2905 		if (!err) {
2906 			ksm_merge_across_nodes = knob;
2907 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2908 		}
2909 	}
2910 	mutex_unlock(&ksm_thread_mutex);
2911 
2912 	return err ? err : count;
2913 }
2914 KSM_ATTR(merge_across_nodes);
2915 #endif
2916 
2917 static ssize_t use_zero_pages_show(struct kobject *kobj,
2918 				struct kobj_attribute *attr, char *buf)
2919 {
2920 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2921 }
2922 static ssize_t use_zero_pages_store(struct kobject *kobj,
2923 				   struct kobj_attribute *attr,
2924 				   const char *buf, size_t count)
2925 {
2926 	int err;
2927 	bool value;
2928 
2929 	err = kstrtobool(buf, &value);
2930 	if (err)
2931 		return -EINVAL;
2932 
2933 	ksm_use_zero_pages = value;
2934 
2935 	return count;
2936 }
2937 KSM_ATTR(use_zero_pages);
2938 
2939 static ssize_t max_page_sharing_show(struct kobject *kobj,
2940 				     struct kobj_attribute *attr, char *buf)
2941 {
2942 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
2943 }
2944 
2945 static ssize_t max_page_sharing_store(struct kobject *kobj,
2946 				      struct kobj_attribute *attr,
2947 				      const char *buf, size_t count)
2948 {
2949 	int err;
2950 	int knob;
2951 
2952 	err = kstrtoint(buf, 10, &knob);
2953 	if (err)
2954 		return err;
2955 	/*
2956 	 * When a KSM page is created it is shared by 2 mappings. This
2957 	 * being a signed comparison, it implicitly verifies it's not
2958 	 * negative.
2959 	 */
2960 	if (knob < 2)
2961 		return -EINVAL;
2962 
2963 	if (READ_ONCE(ksm_max_page_sharing) == knob)
2964 		return count;
2965 
2966 	mutex_lock(&ksm_thread_mutex);
2967 	wait_while_offlining();
2968 	if (ksm_max_page_sharing != knob) {
2969 		if (ksm_pages_shared || remove_all_stable_nodes())
2970 			err = -EBUSY;
2971 		else
2972 			ksm_max_page_sharing = knob;
2973 	}
2974 	mutex_unlock(&ksm_thread_mutex);
2975 
2976 	return err ? err : count;
2977 }
2978 KSM_ATTR(max_page_sharing);
2979 
2980 static ssize_t pages_shared_show(struct kobject *kobj,
2981 				 struct kobj_attribute *attr, char *buf)
2982 {
2983 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2984 }
2985 KSM_ATTR_RO(pages_shared);
2986 
2987 static ssize_t pages_sharing_show(struct kobject *kobj,
2988 				  struct kobj_attribute *attr, char *buf)
2989 {
2990 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2991 }
2992 KSM_ATTR_RO(pages_sharing);
2993 
2994 static ssize_t pages_unshared_show(struct kobject *kobj,
2995 				   struct kobj_attribute *attr, char *buf)
2996 {
2997 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2998 }
2999 KSM_ATTR_RO(pages_unshared);
3000 
3001 static ssize_t pages_volatile_show(struct kobject *kobj,
3002 				   struct kobj_attribute *attr, char *buf)
3003 {
3004 	long ksm_pages_volatile;
3005 
3006 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3007 				- ksm_pages_sharing - ksm_pages_unshared;
3008 	/*
3009 	 * It was not worth any locking to calculate that statistic,
3010 	 * but it might therefore sometimes be negative: conceal that.
3011 	 */
3012 	if (ksm_pages_volatile < 0)
3013 		ksm_pages_volatile = 0;
3014 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3015 }
3016 KSM_ATTR_RO(pages_volatile);
3017 
3018 static ssize_t stable_node_dups_show(struct kobject *kobj,
3019 				     struct kobj_attribute *attr, char *buf)
3020 {
3021 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3022 }
3023 KSM_ATTR_RO(stable_node_dups);
3024 
3025 static ssize_t stable_node_chains_show(struct kobject *kobj,
3026 				       struct kobj_attribute *attr, char *buf)
3027 {
3028 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3029 }
3030 KSM_ATTR_RO(stable_node_chains);
3031 
3032 static ssize_t
3033 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3034 					struct kobj_attribute *attr,
3035 					char *buf)
3036 {
3037 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3038 }
3039 
3040 static ssize_t
3041 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3042 					 struct kobj_attribute *attr,
3043 					 const char *buf, size_t count)
3044 {
3045 	unsigned long msecs;
3046 	int err;
3047 
3048 	err = kstrtoul(buf, 10, &msecs);
3049 	if (err || msecs > UINT_MAX)
3050 		return -EINVAL;
3051 
3052 	ksm_stable_node_chains_prune_millisecs = msecs;
3053 
3054 	return count;
3055 }
3056 KSM_ATTR(stable_node_chains_prune_millisecs);
3057 
3058 static ssize_t full_scans_show(struct kobject *kobj,
3059 			       struct kobj_attribute *attr, char *buf)
3060 {
3061 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3062 }
3063 KSM_ATTR_RO(full_scans);
3064 
3065 static struct attribute *ksm_attrs[] = {
3066 	&sleep_millisecs_attr.attr,
3067 	&pages_to_scan_attr.attr,
3068 	&run_attr.attr,
3069 	&pages_shared_attr.attr,
3070 	&pages_sharing_attr.attr,
3071 	&pages_unshared_attr.attr,
3072 	&pages_volatile_attr.attr,
3073 	&full_scans_attr.attr,
3074 #ifdef CONFIG_NUMA
3075 	&merge_across_nodes_attr.attr,
3076 #endif
3077 	&max_page_sharing_attr.attr,
3078 	&stable_node_chains_attr.attr,
3079 	&stable_node_dups_attr.attr,
3080 	&stable_node_chains_prune_millisecs_attr.attr,
3081 	&use_zero_pages_attr.attr,
3082 	NULL,
3083 };
3084 
3085 static const struct attribute_group ksm_attr_group = {
3086 	.attrs = ksm_attrs,
3087 	.name = "ksm",
3088 };
3089 #endif /* CONFIG_SYSFS */
3090 
3091 static int __init ksm_init(void)
3092 {
3093 	struct task_struct *ksm_thread;
3094 	int err;
3095 
3096 	/* The correct value depends on page size and endianness */
3097 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3098 	/* Default to false for backwards compatibility */
3099 	ksm_use_zero_pages = false;
3100 
3101 	err = ksm_slab_init();
3102 	if (err)
3103 		goto out;
3104 
3105 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3106 	if (IS_ERR(ksm_thread)) {
3107 		pr_err("ksm: creating kthread failed\n");
3108 		err = PTR_ERR(ksm_thread);
3109 		goto out_free;
3110 	}
3111 
3112 #ifdef CONFIG_SYSFS
3113 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3114 	if (err) {
3115 		pr_err("ksm: register sysfs failed\n");
3116 		kthread_stop(ksm_thread);
3117 		goto out_free;
3118 	}
3119 #else
3120 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3121 
3122 #endif /* CONFIG_SYSFS */
3123 
3124 #ifdef CONFIG_MEMORY_HOTREMOVE
3125 	/* There is no significance to this priority 100 */
3126 	hotplug_memory_notifier(ksm_memory_callback, 100);
3127 #endif
3128 	return 0;
3129 
3130 out_free:
3131 	ksm_slab_free();
3132 out:
3133 	return err;
3134 }
3135 subsys_initcall(ksm_init);
3136