1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/rwsem.h> 26 #include <linux/pagemap.h> 27 #include <linux/rmap.h> 28 #include <linux/spinlock.h> 29 #include <linux/xxhash.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/wait.h> 33 #include <linux/slab.h> 34 #include <linux/rbtree.h> 35 #include <linux/memory.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/swap.h> 38 #include <linux/ksm.h> 39 #include <linux/hashtable.h> 40 #include <linux/freezer.h> 41 #include <linux/oom.h> 42 #include <linux/numa.h> 43 #include <linux/pagewalk.h> 44 45 #include <asm/tlbflush.h> 46 #include "internal.h" 47 #include "mm_slot.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/ksm.h> 51 52 #ifdef CONFIG_NUMA 53 #define NUMA(x) (x) 54 #define DO_NUMA(x) do { (x); } while (0) 55 #else 56 #define NUMA(x) (0) 57 #define DO_NUMA(x) do { } while (0) 58 #endif 59 60 typedef u8 rmap_age_t; 61 62 /** 63 * DOC: Overview 64 * 65 * A few notes about the KSM scanning process, 66 * to make it easier to understand the data structures below: 67 * 68 * In order to reduce excessive scanning, KSM sorts the memory pages by their 69 * contents into a data structure that holds pointers to the pages' locations. 70 * 71 * Since the contents of the pages may change at any moment, KSM cannot just 72 * insert the pages into a normal sorted tree and expect it to find anything. 73 * Therefore KSM uses two data structures - the stable and the unstable tree. 74 * 75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 76 * by their contents. Because each such page is write-protected, searching on 77 * this tree is fully assured to be working (except when pages are unmapped), 78 * and therefore this tree is called the stable tree. 79 * 80 * The stable tree node includes information required for reverse 81 * mapping from a KSM page to virtual addresses that map this page. 82 * 83 * In order to avoid large latencies of the rmap walks on KSM pages, 84 * KSM maintains two types of nodes in the stable tree: 85 * 86 * * the regular nodes that keep the reverse mapping structures in a 87 * linked list 88 * * the "chains" that link nodes ("dups") that represent the same 89 * write protected memory content, but each "dup" corresponds to a 90 * different KSM page copy of that content 91 * 92 * Internally, the regular nodes, "dups" and "chains" are represented 93 * using the same struct ksm_stable_node structure. 94 * 95 * In addition to the stable tree, KSM uses a second data structure called the 96 * unstable tree: this tree holds pointers to pages which have been found to 97 * be "unchanged for a period of time". The unstable tree sorts these pages 98 * by their contents, but since they are not write-protected, KSM cannot rely 99 * upon the unstable tree to work correctly - the unstable tree is liable to 100 * be corrupted as its contents are modified, and so it is called unstable. 101 * 102 * KSM solves this problem by several techniques: 103 * 104 * 1) The unstable tree is flushed every time KSM completes scanning all 105 * memory areas, and then the tree is rebuilt again from the beginning. 106 * 2) KSM will only insert into the unstable tree, pages whose hash value 107 * has not changed since the previous scan of all memory areas. 108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 109 * colors of the nodes and not on their contents, assuring that even when 110 * the tree gets "corrupted" it won't get out of balance, so scanning time 111 * remains the same (also, searching and inserting nodes in an rbtree uses 112 * the same algorithm, so we have no overhead when we flush and rebuild). 113 * 4) KSM never flushes the stable tree, which means that even if it were to 114 * take 10 attempts to find a page in the unstable tree, once it is found, 115 * it is secured in the stable tree. (When we scan a new page, we first 116 * compare it against the stable tree, and then against the unstable tree.) 117 * 118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 119 * stable trees and multiple unstable trees: one of each for each NUMA node. 120 */ 121 122 /** 123 * struct ksm_mm_slot - ksm information per mm that is being scanned 124 * @slot: hash lookup from mm to mm_slot 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 126 */ 127 struct ksm_mm_slot { 128 struct mm_slot slot; 129 struct ksm_rmap_item *rmap_list; 130 }; 131 132 /** 133 * struct ksm_scan - cursor for scanning 134 * @mm_slot: the current mm_slot we are scanning 135 * @address: the next address inside that to be scanned 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list 137 * @seqnr: count of completed full scans (needed when removing unstable node) 138 * 139 * There is only the one ksm_scan instance of this cursor structure. 140 */ 141 struct ksm_scan { 142 struct ksm_mm_slot *mm_slot; 143 unsigned long address; 144 struct ksm_rmap_item **rmap_list; 145 unsigned long seqnr; 146 }; 147 148 /** 149 * struct ksm_stable_node - node of the stable rbtree 150 * @node: rb node of this ksm page in the stable tree 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 153 * @list: linked into migrate_nodes, pending placement in the proper node tree 154 * @hlist: hlist head of rmap_items using this ksm page 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 156 * @chain_prune_time: time of the last full garbage collection 157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 159 */ 160 struct ksm_stable_node { 161 union { 162 struct rb_node node; /* when node of stable tree */ 163 struct { /* when listed for migration */ 164 struct list_head *head; 165 struct { 166 struct hlist_node hlist_dup; 167 struct list_head list; 168 }; 169 }; 170 }; 171 struct hlist_head hlist; 172 union { 173 unsigned long kpfn; 174 unsigned long chain_prune_time; 175 }; 176 /* 177 * STABLE_NODE_CHAIN can be any negative number in 178 * rmap_hlist_len negative range, but better not -1 to be able 179 * to reliably detect underflows. 180 */ 181 #define STABLE_NODE_CHAIN -1024 182 int rmap_hlist_len; 183 #ifdef CONFIG_NUMA 184 int nid; 185 #endif 186 }; 187 188 /** 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 192 * @nid: NUMA node id of unstable tree in which linked (may not match page) 193 * @mm: the memory structure this rmap_item is pointing into 194 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 195 * @oldchecksum: previous checksum of the page at that virtual address 196 * @node: rb node of this rmap_item in the unstable tree 197 * @head: pointer to stable_node heading this list in the stable tree 198 * @hlist: link into hlist of rmap_items hanging off that stable_node 199 * @age: number of scan iterations since creation 200 * @remaining_skips: how many scans to skip 201 */ 202 struct ksm_rmap_item { 203 struct ksm_rmap_item *rmap_list; 204 union { 205 struct anon_vma *anon_vma; /* when stable */ 206 #ifdef CONFIG_NUMA 207 int nid; /* when node of unstable tree */ 208 #endif 209 }; 210 struct mm_struct *mm; 211 unsigned long address; /* + low bits used for flags below */ 212 unsigned int oldchecksum; /* when unstable */ 213 rmap_age_t age; 214 rmap_age_t remaining_skips; 215 union { 216 struct rb_node node; /* when node of unstable tree */ 217 struct { /* when listed from stable tree */ 218 struct ksm_stable_node *head; 219 struct hlist_node hlist; 220 }; 221 }; 222 }; 223 224 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 225 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 226 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 227 228 /* The stable and unstable tree heads */ 229 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 230 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 231 static struct rb_root *root_stable_tree = one_stable_tree; 232 static struct rb_root *root_unstable_tree = one_unstable_tree; 233 234 /* Recently migrated nodes of stable tree, pending proper placement */ 235 static LIST_HEAD(migrate_nodes); 236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 237 238 #define MM_SLOTS_HASH_BITS 10 239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 240 241 static struct ksm_mm_slot ksm_mm_head = { 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 243 }; 244 static struct ksm_scan ksm_scan = { 245 .mm_slot = &ksm_mm_head, 246 }; 247 248 static struct kmem_cache *rmap_item_cache; 249 static struct kmem_cache *stable_node_cache; 250 static struct kmem_cache *mm_slot_cache; 251 252 /* Default number of pages to scan per batch */ 253 #define DEFAULT_PAGES_TO_SCAN 100 254 255 /* The number of pages scanned */ 256 static unsigned long ksm_pages_scanned; 257 258 /* The number of nodes in the stable tree */ 259 static unsigned long ksm_pages_shared; 260 261 /* The number of page slots additionally sharing those nodes */ 262 static unsigned long ksm_pages_sharing; 263 264 /* The number of nodes in the unstable tree */ 265 static unsigned long ksm_pages_unshared; 266 267 /* The number of rmap_items in use: to calculate pages_volatile */ 268 static unsigned long ksm_rmap_items; 269 270 /* The number of stable_node chains */ 271 static unsigned long ksm_stable_node_chains; 272 273 /* The number of stable_node dups linked to the stable_node chains */ 274 static unsigned long ksm_stable_node_dups; 275 276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 278 279 /* Maximum number of page slots sharing a stable node */ 280 static int ksm_max_page_sharing = 256; 281 282 /* Number of pages ksmd should scan in one batch */ 283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 284 285 /* Milliseconds ksmd should sleep between batches */ 286 static unsigned int ksm_thread_sleep_millisecs = 20; 287 288 /* Checksum of an empty (zeroed) page */ 289 static unsigned int zero_checksum __read_mostly; 290 291 /* Whether to merge empty (zeroed) pages with actual zero pages */ 292 static bool ksm_use_zero_pages __read_mostly; 293 294 /* Skip pages that couldn't be de-duplicated previously */ 295 /* Default to true at least temporarily, for testing */ 296 static bool ksm_smart_scan = true; 297 298 /* The number of zero pages which is placed by KSM */ 299 unsigned long ksm_zero_pages; 300 301 /* The number of pages that have been skipped due to "smart scanning" */ 302 static unsigned long ksm_pages_skipped; 303 304 /* Don't scan more than max pages per batch. */ 305 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 306 307 /* Min CPU for scanning pages per scan */ 308 #define KSM_ADVISOR_MIN_CPU 10 309 310 /* Max CPU for scanning pages per scan */ 311 static unsigned int ksm_advisor_max_cpu = 70; 312 313 /* Target scan time in seconds to analyze all KSM candidate pages. */ 314 static unsigned long ksm_advisor_target_scan_time = 200; 315 316 /* Exponentially weighted moving average. */ 317 #define EWMA_WEIGHT 30 318 319 /** 320 * struct advisor_ctx - metadata for KSM advisor 321 * @start_scan: start time of the current scan 322 * @scan_time: scan time of previous scan 323 * @change: change in percent to pages_to_scan parameter 324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 325 */ 326 struct advisor_ctx { 327 ktime_t start_scan; 328 unsigned long scan_time; 329 unsigned long change; 330 unsigned long long cpu_time; 331 }; 332 static struct advisor_ctx advisor_ctx; 333 334 /* Define different advisor's */ 335 enum ksm_advisor_type { 336 KSM_ADVISOR_NONE, 337 KSM_ADVISOR_SCAN_TIME, 338 }; 339 static enum ksm_advisor_type ksm_advisor; 340 341 #ifdef CONFIG_SYSFS 342 /* 343 * Only called through the sysfs control interface: 344 */ 345 346 /* At least scan this many pages per batch. */ 347 static unsigned long ksm_advisor_min_pages_to_scan = 500; 348 349 static void set_advisor_defaults(void) 350 { 351 if (ksm_advisor == KSM_ADVISOR_NONE) { 352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 354 advisor_ctx = (const struct advisor_ctx){ 0 }; 355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 356 } 357 } 358 #endif /* CONFIG_SYSFS */ 359 360 static inline void advisor_start_scan(void) 361 { 362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 363 advisor_ctx.start_scan = ktime_get(); 364 } 365 366 /* 367 * Use previous scan time if available, otherwise use current scan time as an 368 * approximation for the previous scan time. 369 */ 370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 371 unsigned long scan_time) 372 { 373 return ctx->scan_time ? ctx->scan_time : scan_time; 374 } 375 376 /* Calculate exponential weighted moving average */ 377 static unsigned long ewma(unsigned long prev, unsigned long curr) 378 { 379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 380 } 381 382 /* 383 * The scan time advisor is based on the current scan rate and the target 384 * scan rate. 385 * 386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 387 * 388 * To avoid perturbations it calculates a change factor of previous changes. 389 * A new change factor is calculated for each iteration and it uses an 390 * exponentially weighted moving average. The new pages_to_scan value is 391 * multiplied with that change factor: 392 * 393 * new_pages_to_scan *= change facor 394 * 395 * The new_pages_to_scan value is limited by the cpu min and max values. It 396 * calculates the cpu percent for the last scan and calculates the new 397 * estimated cpu percent cost for the next scan. That value is capped by the 398 * cpu min and max setting. 399 * 400 * In addition the new pages_to_scan value is capped by the max and min 401 * limits. 402 */ 403 static void scan_time_advisor(void) 404 { 405 unsigned int cpu_percent; 406 unsigned long cpu_time; 407 unsigned long cpu_time_diff; 408 unsigned long cpu_time_diff_ms; 409 unsigned long pages; 410 unsigned long per_page_cost; 411 unsigned long factor; 412 unsigned long change; 413 unsigned long last_scan_time; 414 unsigned long scan_time; 415 416 /* Convert scan time to seconds */ 417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 418 MSEC_PER_SEC); 419 scan_time = scan_time ? scan_time : 1; 420 421 /* Calculate CPU consumption of ksmd background thread */ 422 cpu_time = task_sched_runtime(current); 423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 425 426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 427 cpu_percent = cpu_percent ? cpu_percent : 1; 428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 429 430 /* Calculate scan time as percentage of target scan time */ 431 factor = ksm_advisor_target_scan_time * 100 / scan_time; 432 factor = factor ? factor : 1; 433 434 /* 435 * Calculate scan time as percentage of last scan time and use 436 * exponentially weighted average to smooth it 437 */ 438 change = scan_time * 100 / last_scan_time; 439 change = change ? change : 1; 440 change = ewma(advisor_ctx.change, change); 441 442 /* Calculate new scan rate based on target scan rate. */ 443 pages = ksm_thread_pages_to_scan * 100 / factor; 444 /* Update pages_to_scan by weighted change percentage. */ 445 pages = pages * change / 100; 446 447 /* Cap new pages_to_scan value */ 448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 449 per_page_cost = per_page_cost ? per_page_cost : 1; 450 451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 453 pages = min(pages, ksm_advisor_max_pages_to_scan); 454 455 /* Update advisor context */ 456 advisor_ctx.change = change; 457 advisor_ctx.scan_time = scan_time; 458 advisor_ctx.cpu_time = cpu_time; 459 460 ksm_thread_pages_to_scan = pages; 461 trace_ksm_advisor(scan_time, pages, cpu_percent); 462 } 463 464 static void advisor_stop_scan(void) 465 { 466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 467 scan_time_advisor(); 468 } 469 470 #ifdef CONFIG_NUMA 471 /* Zeroed when merging across nodes is not allowed */ 472 static unsigned int ksm_merge_across_nodes = 1; 473 static int ksm_nr_node_ids = 1; 474 #else 475 #define ksm_merge_across_nodes 1U 476 #define ksm_nr_node_ids 1 477 #endif 478 479 #define KSM_RUN_STOP 0 480 #define KSM_RUN_MERGE 1 481 #define KSM_RUN_UNMERGE 2 482 #define KSM_RUN_OFFLINE 4 483 static unsigned long ksm_run = KSM_RUN_STOP; 484 static void wait_while_offlining(void); 485 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 488 static DEFINE_MUTEX(ksm_thread_mutex); 489 static DEFINE_SPINLOCK(ksm_mmlist_lock); 490 491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 492 sizeof(struct __struct), __alignof__(struct __struct),\ 493 (__flags), NULL) 494 495 static int __init ksm_slab_init(void) 496 { 497 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 498 if (!rmap_item_cache) 499 goto out; 500 501 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 502 if (!stable_node_cache) 503 goto out_free1; 504 505 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 506 if (!mm_slot_cache) 507 goto out_free2; 508 509 return 0; 510 511 out_free2: 512 kmem_cache_destroy(stable_node_cache); 513 out_free1: 514 kmem_cache_destroy(rmap_item_cache); 515 out: 516 return -ENOMEM; 517 } 518 519 static void __init ksm_slab_free(void) 520 { 521 kmem_cache_destroy(mm_slot_cache); 522 kmem_cache_destroy(stable_node_cache); 523 kmem_cache_destroy(rmap_item_cache); 524 mm_slot_cache = NULL; 525 } 526 527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 528 { 529 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 530 } 531 532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 533 { 534 return dup->head == STABLE_NODE_DUP_HEAD; 535 } 536 537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 538 struct ksm_stable_node *chain) 539 { 540 VM_BUG_ON(is_stable_node_dup(dup)); 541 dup->head = STABLE_NODE_DUP_HEAD; 542 VM_BUG_ON(!is_stable_node_chain(chain)); 543 hlist_add_head(&dup->hlist_dup, &chain->hlist); 544 ksm_stable_node_dups++; 545 } 546 547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 548 { 549 VM_BUG_ON(!is_stable_node_dup(dup)); 550 hlist_del(&dup->hlist_dup); 551 ksm_stable_node_dups--; 552 } 553 554 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 555 { 556 VM_BUG_ON(is_stable_node_chain(dup)); 557 if (is_stable_node_dup(dup)) 558 __stable_node_dup_del(dup); 559 else 560 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 561 #ifdef CONFIG_DEBUG_VM 562 dup->head = NULL; 563 #endif 564 } 565 566 static inline struct ksm_rmap_item *alloc_rmap_item(void) 567 { 568 struct ksm_rmap_item *rmap_item; 569 570 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 571 __GFP_NORETRY | __GFP_NOWARN); 572 if (rmap_item) 573 ksm_rmap_items++; 574 return rmap_item; 575 } 576 577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 578 { 579 ksm_rmap_items--; 580 rmap_item->mm->ksm_rmap_items--; 581 rmap_item->mm = NULL; /* debug safety */ 582 kmem_cache_free(rmap_item_cache, rmap_item); 583 } 584 585 static inline struct ksm_stable_node *alloc_stable_node(void) 586 { 587 /* 588 * The allocation can take too long with GFP_KERNEL when memory is under 589 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 590 * grants access to memory reserves, helping to avoid this problem. 591 */ 592 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 593 } 594 595 static inline void free_stable_node(struct ksm_stable_node *stable_node) 596 { 597 VM_BUG_ON(stable_node->rmap_hlist_len && 598 !is_stable_node_chain(stable_node)); 599 kmem_cache_free(stable_node_cache, stable_node); 600 } 601 602 /* 603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 604 * page tables after it has passed through ksm_exit() - which, if necessary, 605 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 606 * a special flag: they can just back out as soon as mm_users goes to zero. 607 * ksm_test_exit() is used throughout to make this test for exit: in some 608 * places for correctness, in some places just to avoid unnecessary work. 609 */ 610 static inline bool ksm_test_exit(struct mm_struct *mm) 611 { 612 return atomic_read(&mm->mm_users) == 0; 613 } 614 615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 616 struct mm_walk *walk) 617 { 618 struct page *page = NULL; 619 spinlock_t *ptl; 620 pte_t *pte; 621 pte_t ptent; 622 int ret; 623 624 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 625 if (!pte) 626 return 0; 627 ptent = ptep_get(pte); 628 if (pte_present(ptent)) { 629 page = vm_normal_page(walk->vma, addr, ptent); 630 } else if (!pte_none(ptent)) { 631 swp_entry_t entry = pte_to_swp_entry(ptent); 632 633 /* 634 * As KSM pages remain KSM pages until freed, no need to wait 635 * here for migration to end. 636 */ 637 if (is_migration_entry(entry)) 638 page = pfn_swap_entry_to_page(entry); 639 } 640 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 641 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent); 642 pte_unmap_unlock(pte, ptl); 643 return ret; 644 } 645 646 static const struct mm_walk_ops break_ksm_ops = { 647 .pmd_entry = break_ksm_pmd_entry, 648 .walk_lock = PGWALK_RDLOCK, 649 }; 650 651 static const struct mm_walk_ops break_ksm_lock_vma_ops = { 652 .pmd_entry = break_ksm_pmd_entry, 653 .walk_lock = PGWALK_WRLOCK, 654 }; 655 656 /* 657 * We use break_ksm to break COW on a ksm page by triggering unsharing, 658 * such that the ksm page will get replaced by an exclusive anonymous page. 659 * 660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 661 * in case the application has unmapped and remapped mm,addr meanwhile. 662 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 663 * mmap of /dev/mem, where we would not want to touch it. 664 * 665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 666 * of the process that owns 'vma'. We also do not want to enforce 667 * protection keys here anyway. 668 */ 669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 670 { 671 vm_fault_t ret = 0; 672 const struct mm_walk_ops *ops = lock_vma ? 673 &break_ksm_lock_vma_ops : &break_ksm_ops; 674 675 do { 676 int ksm_page; 677 678 cond_resched(); 679 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); 680 if (WARN_ON_ONCE(ksm_page < 0)) 681 return ksm_page; 682 if (!ksm_page) 683 return 0; 684 ret = handle_mm_fault(vma, addr, 685 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 686 NULL); 687 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 688 /* 689 * We must loop until we no longer find a KSM page because 690 * handle_mm_fault() may back out if there's any difficulty e.g. if 691 * pte accessed bit gets updated concurrently. 692 * 693 * VM_FAULT_SIGBUS could occur if we race with truncation of the 694 * backing file, which also invalidates anonymous pages: that's 695 * okay, that truncation will have unmapped the PageKsm for us. 696 * 697 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 698 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 699 * current task has TIF_MEMDIE set, and will be OOM killed on return 700 * to user; and ksmd, having no mm, would never be chosen for that. 701 * 702 * But if the mm is in a limited mem_cgroup, then the fault may fail 703 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 704 * even ksmd can fail in this way - though it's usually breaking ksm 705 * just to undo a merge it made a moment before, so unlikely to oom. 706 * 707 * That's a pity: we might therefore have more kernel pages allocated 708 * than we're counting as nodes in the stable tree; but ksm_do_scan 709 * will retry to break_cow on each pass, so should recover the page 710 * in due course. The important thing is to not let VM_MERGEABLE 711 * be cleared while any such pages might remain in the area. 712 */ 713 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 714 } 715 716 static bool vma_ksm_compatible(struct vm_area_struct *vma) 717 { 718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 719 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 720 VM_MIXEDMAP)) 721 return false; /* just ignore the advice */ 722 723 if (vma_is_dax(vma)) 724 return false; 725 726 #ifdef VM_SAO 727 if (vma->vm_flags & VM_SAO) 728 return false; 729 #endif 730 #ifdef VM_SPARC_ADI 731 if (vma->vm_flags & VM_SPARC_ADI) 732 return false; 733 #endif 734 735 return true; 736 } 737 738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 739 unsigned long addr) 740 { 741 struct vm_area_struct *vma; 742 if (ksm_test_exit(mm)) 743 return NULL; 744 vma = vma_lookup(mm, addr); 745 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 746 return NULL; 747 return vma; 748 } 749 750 static void break_cow(struct ksm_rmap_item *rmap_item) 751 { 752 struct mm_struct *mm = rmap_item->mm; 753 unsigned long addr = rmap_item->address; 754 struct vm_area_struct *vma; 755 756 /* 757 * It is not an accident that whenever we want to break COW 758 * to undo, we also need to drop a reference to the anon_vma. 759 */ 760 put_anon_vma(rmap_item->anon_vma); 761 762 mmap_read_lock(mm); 763 vma = find_mergeable_vma(mm, addr); 764 if (vma) 765 break_ksm(vma, addr, false); 766 mmap_read_unlock(mm); 767 } 768 769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 770 { 771 struct mm_struct *mm = rmap_item->mm; 772 unsigned long addr = rmap_item->address; 773 struct vm_area_struct *vma; 774 struct page *page; 775 776 mmap_read_lock(mm); 777 vma = find_mergeable_vma(mm, addr); 778 if (!vma) 779 goto out; 780 781 page = follow_page(vma, addr, FOLL_GET); 782 if (IS_ERR_OR_NULL(page)) 783 goto out; 784 if (is_zone_device_page(page)) 785 goto out_putpage; 786 if (PageAnon(page)) { 787 flush_anon_page(vma, page, addr); 788 flush_dcache_page(page); 789 } else { 790 out_putpage: 791 put_page(page); 792 out: 793 page = NULL; 794 } 795 mmap_read_unlock(mm); 796 return page; 797 } 798 799 /* 800 * This helper is used for getting right index into array of tree roots. 801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 802 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 803 * every node has its own stable and unstable tree. 804 */ 805 static inline int get_kpfn_nid(unsigned long kpfn) 806 { 807 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 808 } 809 810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 811 struct rb_root *root) 812 { 813 struct ksm_stable_node *chain = alloc_stable_node(); 814 VM_BUG_ON(is_stable_node_chain(dup)); 815 if (likely(chain)) { 816 INIT_HLIST_HEAD(&chain->hlist); 817 chain->chain_prune_time = jiffies; 818 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 820 chain->nid = NUMA_NO_NODE; /* debug */ 821 #endif 822 ksm_stable_node_chains++; 823 824 /* 825 * Put the stable node chain in the first dimension of 826 * the stable tree and at the same time remove the old 827 * stable node. 828 */ 829 rb_replace_node(&dup->node, &chain->node, root); 830 831 /* 832 * Move the old stable node to the second dimension 833 * queued in the hlist_dup. The invariant is that all 834 * dup stable_nodes in the chain->hlist point to pages 835 * that are write protected and have the exact same 836 * content. 837 */ 838 stable_node_chain_add_dup(dup, chain); 839 } 840 return chain; 841 } 842 843 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 844 struct rb_root *root) 845 { 846 rb_erase(&chain->node, root); 847 free_stable_node(chain); 848 ksm_stable_node_chains--; 849 } 850 851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 852 { 853 struct ksm_rmap_item *rmap_item; 854 855 /* check it's not STABLE_NODE_CHAIN or negative */ 856 BUG_ON(stable_node->rmap_hlist_len < 0); 857 858 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 859 if (rmap_item->hlist.next) { 860 ksm_pages_sharing--; 861 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 862 } else { 863 ksm_pages_shared--; 864 } 865 866 rmap_item->mm->ksm_merging_pages--; 867 868 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 869 stable_node->rmap_hlist_len--; 870 put_anon_vma(rmap_item->anon_vma); 871 rmap_item->address &= PAGE_MASK; 872 cond_resched(); 873 } 874 875 /* 876 * We need the second aligned pointer of the migrate_nodes 877 * list_head to stay clear from the rb_parent_color union 878 * (aligned and different than any node) and also different 879 * from &migrate_nodes. This will verify that future list.h changes 880 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 881 */ 882 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 883 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 884 885 trace_ksm_remove_ksm_page(stable_node->kpfn); 886 if (stable_node->head == &migrate_nodes) 887 list_del(&stable_node->list); 888 else 889 stable_node_dup_del(stable_node); 890 free_stable_node(stable_node); 891 } 892 893 enum ksm_get_folio_flags { 894 KSM_GET_FOLIO_NOLOCK, 895 KSM_GET_FOLIO_LOCK, 896 KSM_GET_FOLIO_TRYLOCK 897 }; 898 899 /* 900 * ksm_get_folio: checks if the page indicated by the stable node 901 * is still its ksm page, despite having held no reference to it. 902 * In which case we can trust the content of the page, and it 903 * returns the gotten page; but if the page has now been zapped, 904 * remove the stale node from the stable tree and return NULL. 905 * But beware, the stable node's page might be being migrated. 906 * 907 * You would expect the stable_node to hold a reference to the ksm page. 908 * But if it increments the page's count, swapping out has to wait for 909 * ksmd to come around again before it can free the page, which may take 910 * seconds or even minutes: much too unresponsive. So instead we use a 911 * "keyhole reference": access to the ksm page from the stable node peeps 912 * out through its keyhole to see if that page still holds the right key, 913 * pointing back to this stable node. This relies on freeing a PageAnon 914 * page to reset its page->mapping to NULL, and relies on no other use of 915 * a page to put something that might look like our key in page->mapping. 916 * is on its way to being freed; but it is an anomaly to bear in mind. 917 */ 918 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node, 919 enum ksm_get_folio_flags flags) 920 { 921 struct folio *folio; 922 void *expected_mapping; 923 unsigned long kpfn; 924 925 expected_mapping = (void *)((unsigned long)stable_node | 926 PAGE_MAPPING_KSM); 927 again: 928 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 929 folio = pfn_folio(kpfn); 930 if (READ_ONCE(folio->mapping) != expected_mapping) 931 goto stale; 932 933 /* 934 * We cannot do anything with the page while its refcount is 0. 935 * Usually 0 means free, or tail of a higher-order page: in which 936 * case this node is no longer referenced, and should be freed; 937 * however, it might mean that the page is under page_ref_freeze(). 938 * The __remove_mapping() case is easy, again the node is now stale; 939 * the same is in reuse_ksm_page() case; but if page is swapcache 940 * in folio_migrate_mapping(), it might still be our page, 941 * in which case it's essential to keep the node. 942 */ 943 while (!folio_try_get(folio)) { 944 /* 945 * Another check for page->mapping != expected_mapping would 946 * work here too. We have chosen the !PageSwapCache test to 947 * optimize the common case, when the page is or is about to 948 * be freed: PageSwapCache is cleared (under spin_lock_irq) 949 * in the ref_freeze section of __remove_mapping(); but Anon 950 * folio->mapping reset to NULL later, in free_pages_prepare(). 951 */ 952 if (!folio_test_swapcache(folio)) 953 goto stale; 954 cpu_relax(); 955 } 956 957 if (READ_ONCE(folio->mapping) != expected_mapping) { 958 folio_put(folio); 959 goto stale; 960 } 961 962 if (flags == KSM_GET_FOLIO_TRYLOCK) { 963 if (!folio_trylock(folio)) { 964 folio_put(folio); 965 return ERR_PTR(-EBUSY); 966 } 967 } else if (flags == KSM_GET_FOLIO_LOCK) 968 folio_lock(folio); 969 970 if (flags != KSM_GET_FOLIO_NOLOCK) { 971 if (READ_ONCE(folio->mapping) != expected_mapping) { 972 folio_unlock(folio); 973 folio_put(folio); 974 goto stale; 975 } 976 } 977 return folio; 978 979 stale: 980 /* 981 * We come here from above when page->mapping or !PageSwapCache 982 * suggests that the node is stale; but it might be under migration. 983 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 984 * before checking whether node->kpfn has been changed. 985 */ 986 smp_rmb(); 987 if (READ_ONCE(stable_node->kpfn) != kpfn) 988 goto again; 989 remove_node_from_stable_tree(stable_node); 990 return NULL; 991 } 992 993 /* 994 * Removing rmap_item from stable or unstable tree. 995 * This function will clean the information from the stable/unstable tree. 996 */ 997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 998 { 999 if (rmap_item->address & STABLE_FLAG) { 1000 struct ksm_stable_node *stable_node; 1001 struct folio *folio; 1002 1003 stable_node = rmap_item->head; 1004 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1005 if (!folio) 1006 goto out; 1007 1008 hlist_del(&rmap_item->hlist); 1009 folio_unlock(folio); 1010 folio_put(folio); 1011 1012 if (!hlist_empty(&stable_node->hlist)) 1013 ksm_pages_sharing--; 1014 else 1015 ksm_pages_shared--; 1016 1017 rmap_item->mm->ksm_merging_pages--; 1018 1019 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 1020 stable_node->rmap_hlist_len--; 1021 1022 put_anon_vma(rmap_item->anon_vma); 1023 rmap_item->head = NULL; 1024 rmap_item->address &= PAGE_MASK; 1025 1026 } else if (rmap_item->address & UNSTABLE_FLAG) { 1027 unsigned char age; 1028 /* 1029 * Usually ksmd can and must skip the rb_erase, because 1030 * root_unstable_tree was already reset to RB_ROOT. 1031 * But be careful when an mm is exiting: do the rb_erase 1032 * if this rmap_item was inserted by this scan, rather 1033 * than left over from before. 1034 */ 1035 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1036 BUG_ON(age > 1); 1037 if (!age) 1038 rb_erase(&rmap_item->node, 1039 root_unstable_tree + NUMA(rmap_item->nid)); 1040 ksm_pages_unshared--; 1041 rmap_item->address &= PAGE_MASK; 1042 } 1043 out: 1044 cond_resched(); /* we're called from many long loops */ 1045 } 1046 1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1048 { 1049 while (*rmap_list) { 1050 struct ksm_rmap_item *rmap_item = *rmap_list; 1051 *rmap_list = rmap_item->rmap_list; 1052 remove_rmap_item_from_tree(rmap_item); 1053 free_rmap_item(rmap_item); 1054 } 1055 } 1056 1057 /* 1058 * Though it's very tempting to unmerge rmap_items from stable tree rather 1059 * than check every pte of a given vma, the locking doesn't quite work for 1060 * that - an rmap_item is assigned to the stable tree after inserting ksm 1061 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1062 * rmap_items from parent to child at fork time (so as not to waste time 1063 * if exit comes before the next scan reaches it). 1064 * 1065 * Similarly, although we'd like to remove rmap_items (so updating counts 1066 * and freeing memory) when unmerging an area, it's easier to leave that 1067 * to the next pass of ksmd - consider, for example, how ksmd might be 1068 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1069 */ 1070 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1071 unsigned long start, unsigned long end, bool lock_vma) 1072 { 1073 unsigned long addr; 1074 int err = 0; 1075 1076 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1077 if (ksm_test_exit(vma->vm_mm)) 1078 break; 1079 if (signal_pending(current)) 1080 err = -ERESTARTSYS; 1081 else 1082 err = break_ksm(vma, addr, lock_vma); 1083 } 1084 return err; 1085 } 1086 1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 1088 { 1089 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1090 } 1091 1092 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1093 { 1094 return folio_stable_node(page_folio(page)); 1095 } 1096 1097 static inline void folio_set_stable_node(struct folio *folio, 1098 struct ksm_stable_node *stable_node) 1099 { 1100 VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio); 1101 folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 1102 } 1103 1104 #ifdef CONFIG_SYSFS 1105 /* 1106 * Only called through the sysfs control interface: 1107 */ 1108 static int remove_stable_node(struct ksm_stable_node *stable_node) 1109 { 1110 struct folio *folio; 1111 int err; 1112 1113 folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK); 1114 if (!folio) { 1115 /* 1116 * ksm_get_folio did remove_node_from_stable_tree itself. 1117 */ 1118 return 0; 1119 } 1120 1121 /* 1122 * Page could be still mapped if this races with __mmput() running in 1123 * between ksm_exit() and exit_mmap(). Just refuse to let 1124 * merge_across_nodes/max_page_sharing be switched. 1125 */ 1126 err = -EBUSY; 1127 if (!folio_mapped(folio)) { 1128 /* 1129 * The stable node did not yet appear stale to ksm_get_folio(), 1130 * since that allows for an unmapped ksm folio to be recognized 1131 * right up until it is freed; but the node is safe to remove. 1132 * This folio might be in an LRU cache waiting to be freed, 1133 * or it might be in the swapcache (perhaps under writeback), 1134 * or it might have been removed from swapcache a moment ago. 1135 */ 1136 folio_set_stable_node(folio, NULL); 1137 remove_node_from_stable_tree(stable_node); 1138 err = 0; 1139 } 1140 1141 folio_unlock(folio); 1142 folio_put(folio); 1143 return err; 1144 } 1145 1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1147 struct rb_root *root) 1148 { 1149 struct ksm_stable_node *dup; 1150 struct hlist_node *hlist_safe; 1151 1152 if (!is_stable_node_chain(stable_node)) { 1153 VM_BUG_ON(is_stable_node_dup(stable_node)); 1154 if (remove_stable_node(stable_node)) 1155 return true; 1156 else 1157 return false; 1158 } 1159 1160 hlist_for_each_entry_safe(dup, hlist_safe, 1161 &stable_node->hlist, hlist_dup) { 1162 VM_BUG_ON(!is_stable_node_dup(dup)); 1163 if (remove_stable_node(dup)) 1164 return true; 1165 } 1166 BUG_ON(!hlist_empty(&stable_node->hlist)); 1167 free_stable_node_chain(stable_node, root); 1168 return false; 1169 } 1170 1171 static int remove_all_stable_nodes(void) 1172 { 1173 struct ksm_stable_node *stable_node, *next; 1174 int nid; 1175 int err = 0; 1176 1177 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1178 while (root_stable_tree[nid].rb_node) { 1179 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1180 struct ksm_stable_node, node); 1181 if (remove_stable_node_chain(stable_node, 1182 root_stable_tree + nid)) { 1183 err = -EBUSY; 1184 break; /* proceed to next nid */ 1185 } 1186 cond_resched(); 1187 } 1188 } 1189 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1190 if (remove_stable_node(stable_node)) 1191 err = -EBUSY; 1192 cond_resched(); 1193 } 1194 return err; 1195 } 1196 1197 static int unmerge_and_remove_all_rmap_items(void) 1198 { 1199 struct ksm_mm_slot *mm_slot; 1200 struct mm_slot *slot; 1201 struct mm_struct *mm; 1202 struct vm_area_struct *vma; 1203 int err = 0; 1204 1205 spin_lock(&ksm_mmlist_lock); 1206 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1207 struct mm_slot, mm_node); 1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1209 spin_unlock(&ksm_mmlist_lock); 1210 1211 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1212 mm_slot = ksm_scan.mm_slot) { 1213 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1214 1215 mm = mm_slot->slot.mm; 1216 mmap_read_lock(mm); 1217 1218 /* 1219 * Exit right away if mm is exiting to avoid lockdep issue in 1220 * the maple tree 1221 */ 1222 if (ksm_test_exit(mm)) 1223 goto mm_exiting; 1224 1225 for_each_vma(vmi, vma) { 1226 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1227 continue; 1228 err = unmerge_ksm_pages(vma, 1229 vma->vm_start, vma->vm_end, false); 1230 if (err) 1231 goto error; 1232 } 1233 1234 mm_exiting: 1235 remove_trailing_rmap_items(&mm_slot->rmap_list); 1236 mmap_read_unlock(mm); 1237 1238 spin_lock(&ksm_mmlist_lock); 1239 slot = list_entry(mm_slot->slot.mm_node.next, 1240 struct mm_slot, mm_node); 1241 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1242 if (ksm_test_exit(mm)) { 1243 hash_del(&mm_slot->slot.hash); 1244 list_del(&mm_slot->slot.mm_node); 1245 spin_unlock(&ksm_mmlist_lock); 1246 1247 mm_slot_free(mm_slot_cache, mm_slot); 1248 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1249 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1250 mmdrop(mm); 1251 } else 1252 spin_unlock(&ksm_mmlist_lock); 1253 } 1254 1255 /* Clean up stable nodes, but don't worry if some are still busy */ 1256 remove_all_stable_nodes(); 1257 ksm_scan.seqnr = 0; 1258 return 0; 1259 1260 error: 1261 mmap_read_unlock(mm); 1262 spin_lock(&ksm_mmlist_lock); 1263 ksm_scan.mm_slot = &ksm_mm_head; 1264 spin_unlock(&ksm_mmlist_lock); 1265 return err; 1266 } 1267 #endif /* CONFIG_SYSFS */ 1268 1269 static u32 calc_checksum(struct page *page) 1270 { 1271 u32 checksum; 1272 void *addr = kmap_local_page(page); 1273 checksum = xxhash(addr, PAGE_SIZE, 0); 1274 kunmap_local(addr); 1275 return checksum; 1276 } 1277 1278 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio, 1279 pte_t *orig_pte) 1280 { 1281 struct mm_struct *mm = vma->vm_mm; 1282 DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0); 1283 int swapped; 1284 int err = -EFAULT; 1285 struct mmu_notifier_range range; 1286 bool anon_exclusive; 1287 pte_t entry; 1288 1289 if (WARN_ON_ONCE(folio_test_large(folio))) 1290 return err; 1291 1292 pvmw.address = page_address_in_vma(&folio->page, vma); 1293 if (pvmw.address == -EFAULT) 1294 goto out; 1295 1296 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1297 pvmw.address + PAGE_SIZE); 1298 mmu_notifier_invalidate_range_start(&range); 1299 1300 if (!page_vma_mapped_walk(&pvmw)) 1301 goto out_mn; 1302 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1303 goto out_unlock; 1304 1305 anon_exclusive = PageAnonExclusive(&folio->page); 1306 entry = ptep_get(pvmw.pte); 1307 if (pte_write(entry) || pte_dirty(entry) || 1308 anon_exclusive || mm_tlb_flush_pending(mm)) { 1309 swapped = folio_test_swapcache(folio); 1310 flush_cache_page(vma, pvmw.address, folio_pfn(folio)); 1311 /* 1312 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1313 * take any lock, therefore the check that we are going to make 1314 * with the pagecount against the mapcount is racy and 1315 * O_DIRECT can happen right after the check. 1316 * So we clear the pte and flush the tlb before the check 1317 * this assure us that no O_DIRECT can happen after the check 1318 * or in the middle of the check. 1319 * 1320 * No need to notify as we are downgrading page table to read 1321 * only not changing it to point to a new page. 1322 * 1323 * See Documentation/mm/mmu_notifier.rst 1324 */ 1325 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1326 /* 1327 * Check that no O_DIRECT or similar I/O is in progress on the 1328 * page 1329 */ 1330 if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) { 1331 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1332 goto out_unlock; 1333 } 1334 1335 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1336 if (anon_exclusive && 1337 folio_try_share_anon_rmap_pte(folio, &folio->page)) { 1338 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1339 goto out_unlock; 1340 } 1341 1342 if (pte_dirty(entry)) 1343 folio_mark_dirty(folio); 1344 entry = pte_mkclean(entry); 1345 1346 if (pte_write(entry)) 1347 entry = pte_wrprotect(entry); 1348 1349 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1350 } 1351 *orig_pte = entry; 1352 err = 0; 1353 1354 out_unlock: 1355 page_vma_mapped_walk_done(&pvmw); 1356 out_mn: 1357 mmu_notifier_invalidate_range_end(&range); 1358 out: 1359 return err; 1360 } 1361 1362 /** 1363 * replace_page - replace page in vma by new ksm page 1364 * @vma: vma that holds the pte pointing to page 1365 * @page: the page we are replacing by kpage 1366 * @kpage: the ksm page we replace page by 1367 * @orig_pte: the original value of the pte 1368 * 1369 * Returns 0 on success, -EFAULT on failure. 1370 */ 1371 static int replace_page(struct vm_area_struct *vma, struct page *page, 1372 struct page *kpage, pte_t orig_pte) 1373 { 1374 struct folio *kfolio = page_folio(kpage); 1375 struct mm_struct *mm = vma->vm_mm; 1376 struct folio *folio; 1377 pmd_t *pmd; 1378 pmd_t pmde; 1379 pte_t *ptep; 1380 pte_t newpte; 1381 spinlock_t *ptl; 1382 unsigned long addr; 1383 int err = -EFAULT; 1384 struct mmu_notifier_range range; 1385 1386 addr = page_address_in_vma(page, vma); 1387 if (addr == -EFAULT) 1388 goto out; 1389 1390 pmd = mm_find_pmd(mm, addr); 1391 if (!pmd) 1392 goto out; 1393 /* 1394 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1395 * without holding anon_vma lock for write. So when looking for a 1396 * genuine pmde (in which to find pte), test present and !THP together. 1397 */ 1398 pmde = pmdp_get_lockless(pmd); 1399 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1400 goto out; 1401 1402 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1403 addr + PAGE_SIZE); 1404 mmu_notifier_invalidate_range_start(&range); 1405 1406 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1407 if (!ptep) 1408 goto out_mn; 1409 if (!pte_same(ptep_get(ptep), orig_pte)) { 1410 pte_unmap_unlock(ptep, ptl); 1411 goto out_mn; 1412 } 1413 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1414 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1415 kfolio); 1416 1417 /* 1418 * No need to check ksm_use_zero_pages here: we can only have a 1419 * zero_page here if ksm_use_zero_pages was enabled already. 1420 */ 1421 if (!is_zero_pfn(page_to_pfn(kpage))) { 1422 folio_get(kfolio); 1423 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1424 newpte = mk_pte(kpage, vma->vm_page_prot); 1425 } else { 1426 /* 1427 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1428 * we can easily track all KSM-placed zero pages by checking if 1429 * the dirty bit in zero page's PTE is set. 1430 */ 1431 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1432 ksm_zero_pages++; 1433 mm->ksm_zero_pages++; 1434 /* 1435 * We're replacing an anonymous page with a zero page, which is 1436 * not anonymous. We need to do proper accounting otherwise we 1437 * will get wrong values in /proc, and a BUG message in dmesg 1438 * when tearing down the mm. 1439 */ 1440 dec_mm_counter(mm, MM_ANONPAGES); 1441 } 1442 1443 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1444 /* 1445 * No need to notify as we are replacing a read only page with another 1446 * read only page with the same content. 1447 * 1448 * See Documentation/mm/mmu_notifier.rst 1449 */ 1450 ptep_clear_flush(vma, addr, ptep); 1451 set_pte_at(mm, addr, ptep, newpte); 1452 1453 folio = page_folio(page); 1454 folio_remove_rmap_pte(folio, page, vma); 1455 if (!folio_mapped(folio)) 1456 folio_free_swap(folio); 1457 folio_put(folio); 1458 1459 pte_unmap_unlock(ptep, ptl); 1460 err = 0; 1461 out_mn: 1462 mmu_notifier_invalidate_range_end(&range); 1463 out: 1464 return err; 1465 } 1466 1467 /* 1468 * try_to_merge_one_page - take two pages and merge them into one 1469 * @vma: the vma that holds the pte pointing to page 1470 * @page: the PageAnon page that we want to replace with kpage 1471 * @kpage: the PageKsm page that we want to map instead of page, 1472 * or NULL the first time when we want to use page as kpage. 1473 * 1474 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1475 */ 1476 static int try_to_merge_one_page(struct vm_area_struct *vma, 1477 struct page *page, struct page *kpage) 1478 { 1479 pte_t orig_pte = __pte(0); 1480 int err = -EFAULT; 1481 1482 if (page == kpage) /* ksm page forked */ 1483 return 0; 1484 1485 if (!PageAnon(page)) 1486 goto out; 1487 1488 /* 1489 * We need the page lock to read a stable PageSwapCache in 1490 * write_protect_page(). We use trylock_page() instead of 1491 * lock_page() because we don't want to wait here - we 1492 * prefer to continue scanning and merging different pages, 1493 * then come back to this page when it is unlocked. 1494 */ 1495 if (!trylock_page(page)) 1496 goto out; 1497 1498 if (PageTransCompound(page)) { 1499 if (split_huge_page(page)) 1500 goto out_unlock; 1501 } 1502 1503 /* 1504 * If this anonymous page is mapped only here, its pte may need 1505 * to be write-protected. If it's mapped elsewhere, all of its 1506 * ptes are necessarily already write-protected. But in either 1507 * case, we need to lock and check page_count is not raised. 1508 */ 1509 if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) { 1510 if (!kpage) { 1511 /* 1512 * While we hold page lock, upgrade page from 1513 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1514 * stable_tree_insert() will update stable_node. 1515 */ 1516 folio_set_stable_node(page_folio(page), NULL); 1517 mark_page_accessed(page); 1518 /* 1519 * Page reclaim just frees a clean page with no dirty 1520 * ptes: make sure that the ksm page would be swapped. 1521 */ 1522 if (!PageDirty(page)) 1523 SetPageDirty(page); 1524 err = 0; 1525 } else if (pages_identical(page, kpage)) 1526 err = replace_page(vma, page, kpage, orig_pte); 1527 } 1528 1529 out_unlock: 1530 unlock_page(page); 1531 out: 1532 return err; 1533 } 1534 1535 /* 1536 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1537 * but no new kernel page is allocated: kpage must already be a ksm page. 1538 * 1539 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1540 */ 1541 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1542 struct page *page, struct page *kpage) 1543 { 1544 struct mm_struct *mm = rmap_item->mm; 1545 struct vm_area_struct *vma; 1546 int err = -EFAULT; 1547 1548 mmap_read_lock(mm); 1549 vma = find_mergeable_vma(mm, rmap_item->address); 1550 if (!vma) 1551 goto out; 1552 1553 err = try_to_merge_one_page(vma, page, kpage); 1554 if (err) 1555 goto out; 1556 1557 /* Unstable nid is in union with stable anon_vma: remove first */ 1558 remove_rmap_item_from_tree(rmap_item); 1559 1560 /* Must get reference to anon_vma while still holding mmap_lock */ 1561 rmap_item->anon_vma = vma->anon_vma; 1562 get_anon_vma(vma->anon_vma); 1563 out: 1564 mmap_read_unlock(mm); 1565 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1566 rmap_item, mm, err); 1567 return err; 1568 } 1569 1570 /* 1571 * try_to_merge_two_pages - take two identical pages and prepare them 1572 * to be merged into one page. 1573 * 1574 * This function returns the kpage if we successfully merged two identical 1575 * pages into one ksm page, NULL otherwise. 1576 * 1577 * Note that this function upgrades page to ksm page: if one of the pages 1578 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1579 */ 1580 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1581 struct page *page, 1582 struct ksm_rmap_item *tree_rmap_item, 1583 struct page *tree_page) 1584 { 1585 int err; 1586 1587 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1588 if (!err) { 1589 err = try_to_merge_with_ksm_page(tree_rmap_item, 1590 tree_page, page); 1591 /* 1592 * If that fails, we have a ksm page with only one pte 1593 * pointing to it: so break it. 1594 */ 1595 if (err) 1596 break_cow(rmap_item); 1597 } 1598 return err ? NULL : page; 1599 } 1600 1601 static __always_inline 1602 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1603 { 1604 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1605 /* 1606 * Check that at least one mapping still exists, otherwise 1607 * there's no much point to merge and share with this 1608 * stable_node, as the underlying tree_page of the other 1609 * sharer is going to be freed soon. 1610 */ 1611 return stable_node->rmap_hlist_len && 1612 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1613 } 1614 1615 static __always_inline 1616 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1617 { 1618 return __is_page_sharing_candidate(stable_node, 0); 1619 } 1620 1621 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1622 struct ksm_stable_node **_stable_node, 1623 struct rb_root *root, 1624 bool prune_stale_stable_nodes) 1625 { 1626 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1627 struct hlist_node *hlist_safe; 1628 struct folio *folio, *tree_folio = NULL; 1629 int nr = 0; 1630 int found_rmap_hlist_len; 1631 1632 if (!prune_stale_stable_nodes || 1633 time_before(jiffies, stable_node->chain_prune_time + 1634 msecs_to_jiffies( 1635 ksm_stable_node_chains_prune_millisecs))) 1636 prune_stale_stable_nodes = false; 1637 else 1638 stable_node->chain_prune_time = jiffies; 1639 1640 hlist_for_each_entry_safe(dup, hlist_safe, 1641 &stable_node->hlist, hlist_dup) { 1642 cond_resched(); 1643 /* 1644 * We must walk all stable_node_dup to prune the stale 1645 * stable nodes during lookup. 1646 * 1647 * ksm_get_folio can drop the nodes from the 1648 * stable_node->hlist if they point to freed pages 1649 * (that's why we do a _safe walk). The "dup" 1650 * stable_node parameter itself will be freed from 1651 * under us if it returns NULL. 1652 */ 1653 folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK); 1654 if (!folio) 1655 continue; 1656 nr += 1; 1657 if (is_page_sharing_candidate(dup)) { 1658 if (!found || 1659 dup->rmap_hlist_len > found_rmap_hlist_len) { 1660 if (found) 1661 folio_put(tree_folio); 1662 found = dup; 1663 found_rmap_hlist_len = found->rmap_hlist_len; 1664 tree_folio = folio; 1665 1666 /* skip put_page for found dup */ 1667 if (!prune_stale_stable_nodes) 1668 break; 1669 continue; 1670 } 1671 } 1672 folio_put(folio); 1673 } 1674 1675 if (found) { 1676 /* 1677 * nr is counting all dups in the chain only if 1678 * prune_stale_stable_nodes is true, otherwise we may 1679 * break the loop at nr == 1 even if there are 1680 * multiple entries. 1681 */ 1682 if (prune_stale_stable_nodes && nr == 1) { 1683 /* 1684 * If there's not just one entry it would 1685 * corrupt memory, better BUG_ON. In KSM 1686 * context with no lock held it's not even 1687 * fatal. 1688 */ 1689 BUG_ON(stable_node->hlist.first->next); 1690 1691 /* 1692 * There's just one entry and it is below the 1693 * deduplication limit so drop the chain. 1694 */ 1695 rb_replace_node(&stable_node->node, &found->node, 1696 root); 1697 free_stable_node(stable_node); 1698 ksm_stable_node_chains--; 1699 ksm_stable_node_dups--; 1700 /* 1701 * NOTE: the caller depends on the stable_node 1702 * to be equal to stable_node_dup if the chain 1703 * was collapsed. 1704 */ 1705 *_stable_node = found; 1706 /* 1707 * Just for robustness, as stable_node is 1708 * otherwise left as a stable pointer, the 1709 * compiler shall optimize it away at build 1710 * time. 1711 */ 1712 stable_node = NULL; 1713 } else if (stable_node->hlist.first != &found->hlist_dup && 1714 __is_page_sharing_candidate(found, 1)) { 1715 /* 1716 * If the found stable_node dup can accept one 1717 * more future merge (in addition to the one 1718 * that is underway) and is not at the head of 1719 * the chain, put it there so next search will 1720 * be quicker in the !prune_stale_stable_nodes 1721 * case. 1722 * 1723 * NOTE: it would be inaccurate to use nr > 1 1724 * instead of checking the hlist.first pointer 1725 * directly, because in the 1726 * prune_stale_stable_nodes case "nr" isn't 1727 * the position of the found dup in the chain, 1728 * but the total number of dups in the chain. 1729 */ 1730 hlist_del(&found->hlist_dup); 1731 hlist_add_head(&found->hlist_dup, 1732 &stable_node->hlist); 1733 } 1734 } 1735 1736 *_stable_node_dup = found; 1737 return tree_folio; 1738 } 1739 1740 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1741 struct rb_root *root) 1742 { 1743 if (!is_stable_node_chain(stable_node)) 1744 return stable_node; 1745 if (hlist_empty(&stable_node->hlist)) { 1746 free_stable_node_chain(stable_node, root); 1747 return NULL; 1748 } 1749 return hlist_entry(stable_node->hlist.first, 1750 typeof(*stable_node), hlist_dup); 1751 } 1752 1753 /* 1754 * Like for ksm_get_folio, this function can free the *_stable_node and 1755 * *_stable_node_dup if the returned tree_page is NULL. 1756 * 1757 * It can also free and overwrite *_stable_node with the found 1758 * stable_node_dup if the chain is collapsed (in which case 1759 * *_stable_node will be equal to *_stable_node_dup like if the chain 1760 * never existed). It's up to the caller to verify tree_page is not 1761 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1762 * 1763 * *_stable_node_dup is really a second output parameter of this 1764 * function and will be overwritten in all cases, the caller doesn't 1765 * need to initialize it. 1766 */ 1767 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1768 struct ksm_stable_node **_stable_node, 1769 struct rb_root *root, 1770 bool prune_stale_stable_nodes) 1771 { 1772 struct ksm_stable_node *stable_node = *_stable_node; 1773 if (!is_stable_node_chain(stable_node)) { 1774 if (is_page_sharing_candidate(stable_node)) { 1775 *_stable_node_dup = stable_node; 1776 return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK); 1777 } 1778 /* 1779 * _stable_node_dup set to NULL means the stable_node 1780 * reached the ksm_max_page_sharing limit. 1781 */ 1782 *_stable_node_dup = NULL; 1783 return NULL; 1784 } 1785 return stable_node_dup(_stable_node_dup, _stable_node, root, 1786 prune_stale_stable_nodes); 1787 } 1788 1789 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d, 1790 struct ksm_stable_node **s_n, 1791 struct rb_root *root) 1792 { 1793 return __stable_node_chain(s_n_d, s_n, root, true); 1794 } 1795 1796 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d, 1797 struct ksm_stable_node *s_n, 1798 struct rb_root *root) 1799 { 1800 struct ksm_stable_node *old_stable_node = s_n; 1801 struct folio *tree_folio; 1802 1803 tree_folio = __stable_node_chain(s_n_d, &s_n, root, false); 1804 /* not pruning dups so s_n cannot have changed */ 1805 VM_BUG_ON(s_n != old_stable_node); 1806 return tree_folio; 1807 } 1808 1809 /* 1810 * stable_tree_search - search for page inside the stable tree 1811 * 1812 * This function checks if there is a page inside the stable tree 1813 * with identical content to the page that we are scanning right now. 1814 * 1815 * This function returns the stable tree node of identical content if found, 1816 * NULL otherwise. 1817 */ 1818 static struct page *stable_tree_search(struct page *page) 1819 { 1820 int nid; 1821 struct rb_root *root; 1822 struct rb_node **new; 1823 struct rb_node *parent; 1824 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1825 struct ksm_stable_node *page_node; 1826 struct folio *folio; 1827 1828 folio = page_folio(page); 1829 page_node = folio_stable_node(folio); 1830 if (page_node && page_node->head != &migrate_nodes) { 1831 /* ksm page forked */ 1832 folio_get(folio); 1833 return &folio->page; 1834 } 1835 1836 nid = get_kpfn_nid(folio_pfn(folio)); 1837 root = root_stable_tree + nid; 1838 again: 1839 new = &root->rb_node; 1840 parent = NULL; 1841 1842 while (*new) { 1843 struct folio *tree_folio; 1844 int ret; 1845 1846 cond_resched(); 1847 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1848 stable_node_any = NULL; 1849 tree_folio = chain_prune(&stable_node_dup, &stable_node, root); 1850 /* 1851 * NOTE: stable_node may have been freed by 1852 * chain_prune() if the returned stable_node_dup is 1853 * not NULL. stable_node_dup may have been inserted in 1854 * the rbtree instead as a regular stable_node (in 1855 * order to collapse the stable_node chain if a single 1856 * stable_node dup was found in it). In such case the 1857 * stable_node is overwritten by the callee to point 1858 * to the stable_node_dup that was collapsed in the 1859 * stable rbtree and stable_node will be equal to 1860 * stable_node_dup like if the chain never existed. 1861 */ 1862 if (!stable_node_dup) { 1863 /* 1864 * Either all stable_node dups were full in 1865 * this stable_node chain, or this chain was 1866 * empty and should be rb_erased. 1867 */ 1868 stable_node_any = stable_node_dup_any(stable_node, 1869 root); 1870 if (!stable_node_any) { 1871 /* rb_erase just run */ 1872 goto again; 1873 } 1874 /* 1875 * Take any of the stable_node dups page of 1876 * this stable_node chain to let the tree walk 1877 * continue. All KSM pages belonging to the 1878 * stable_node dups in a stable_node chain 1879 * have the same content and they're 1880 * write protected at all times. Any will work 1881 * fine to continue the walk. 1882 */ 1883 tree_folio = ksm_get_folio(stable_node_any, 1884 KSM_GET_FOLIO_NOLOCK); 1885 } 1886 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1887 if (!tree_folio) { 1888 /* 1889 * If we walked over a stale stable_node, 1890 * ksm_get_folio() will call rb_erase() and it 1891 * may rebalance the tree from under us. So 1892 * restart the search from scratch. Returning 1893 * NULL would be safe too, but we'd generate 1894 * false negative insertions just because some 1895 * stable_node was stale. 1896 */ 1897 goto again; 1898 } 1899 1900 ret = memcmp_pages(page, &tree_folio->page); 1901 folio_put(tree_folio); 1902 1903 parent = *new; 1904 if (ret < 0) 1905 new = &parent->rb_left; 1906 else if (ret > 0) 1907 new = &parent->rb_right; 1908 else { 1909 if (page_node) { 1910 VM_BUG_ON(page_node->head != &migrate_nodes); 1911 /* 1912 * If the mapcount of our migrated KSM folio is 1913 * at most 1, we can merge it with another 1914 * KSM folio where we know that we have space 1915 * for one more mapping without exceeding the 1916 * ksm_max_page_sharing limit: see 1917 * chain_prune(). This way, we can avoid adding 1918 * this stable node to the chain. 1919 */ 1920 if (folio_mapcount(folio) > 1) 1921 goto chain_append; 1922 } 1923 1924 if (!stable_node_dup) { 1925 /* 1926 * If the stable_node is a chain and 1927 * we got a payload match in memcmp 1928 * but we cannot merge the scanned 1929 * page in any of the existing 1930 * stable_node dups because they're 1931 * all full, we need to wait the 1932 * scanned page to find itself a match 1933 * in the unstable tree to create a 1934 * brand new KSM page to add later to 1935 * the dups of this stable_node. 1936 */ 1937 return NULL; 1938 } 1939 1940 /* 1941 * Lock and unlock the stable_node's page (which 1942 * might already have been migrated) so that page 1943 * migration is sure to notice its raised count. 1944 * It would be more elegant to return stable_node 1945 * than kpage, but that involves more changes. 1946 */ 1947 tree_folio = ksm_get_folio(stable_node_dup, 1948 KSM_GET_FOLIO_TRYLOCK); 1949 1950 if (PTR_ERR(tree_folio) == -EBUSY) 1951 return ERR_PTR(-EBUSY); 1952 1953 if (unlikely(!tree_folio)) 1954 /* 1955 * The tree may have been rebalanced, 1956 * so re-evaluate parent and new. 1957 */ 1958 goto again; 1959 folio_unlock(tree_folio); 1960 1961 if (get_kpfn_nid(stable_node_dup->kpfn) != 1962 NUMA(stable_node_dup->nid)) { 1963 folio_put(tree_folio); 1964 goto replace; 1965 } 1966 return &tree_folio->page; 1967 } 1968 } 1969 1970 if (!page_node) 1971 return NULL; 1972 1973 list_del(&page_node->list); 1974 DO_NUMA(page_node->nid = nid); 1975 rb_link_node(&page_node->node, parent, new); 1976 rb_insert_color(&page_node->node, root); 1977 out: 1978 if (is_page_sharing_candidate(page_node)) { 1979 folio_get(folio); 1980 return &folio->page; 1981 } else 1982 return NULL; 1983 1984 replace: 1985 /* 1986 * If stable_node was a chain and chain_prune collapsed it, 1987 * stable_node has been updated to be the new regular 1988 * stable_node. A collapse of the chain is indistinguishable 1989 * from the case there was no chain in the stable 1990 * rbtree. Otherwise stable_node is the chain and 1991 * stable_node_dup is the dup to replace. 1992 */ 1993 if (stable_node_dup == stable_node) { 1994 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1995 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1996 /* there is no chain */ 1997 if (page_node) { 1998 VM_BUG_ON(page_node->head != &migrate_nodes); 1999 list_del(&page_node->list); 2000 DO_NUMA(page_node->nid = nid); 2001 rb_replace_node(&stable_node_dup->node, 2002 &page_node->node, 2003 root); 2004 if (is_page_sharing_candidate(page_node)) 2005 folio_get(folio); 2006 else 2007 folio = NULL; 2008 } else { 2009 rb_erase(&stable_node_dup->node, root); 2010 folio = NULL; 2011 } 2012 } else { 2013 VM_BUG_ON(!is_stable_node_chain(stable_node)); 2014 __stable_node_dup_del(stable_node_dup); 2015 if (page_node) { 2016 VM_BUG_ON(page_node->head != &migrate_nodes); 2017 list_del(&page_node->list); 2018 DO_NUMA(page_node->nid = nid); 2019 stable_node_chain_add_dup(page_node, stable_node); 2020 if (is_page_sharing_candidate(page_node)) 2021 folio_get(folio); 2022 else 2023 folio = NULL; 2024 } else { 2025 folio = NULL; 2026 } 2027 } 2028 stable_node_dup->head = &migrate_nodes; 2029 list_add(&stable_node_dup->list, stable_node_dup->head); 2030 return &folio->page; 2031 2032 chain_append: 2033 /* stable_node_dup could be null if it reached the limit */ 2034 if (!stable_node_dup) 2035 stable_node_dup = stable_node_any; 2036 /* 2037 * If stable_node was a chain and chain_prune collapsed it, 2038 * stable_node has been updated to be the new regular 2039 * stable_node. A collapse of the chain is indistinguishable 2040 * from the case there was no chain in the stable 2041 * rbtree. Otherwise stable_node is the chain and 2042 * stable_node_dup is the dup to replace. 2043 */ 2044 if (stable_node_dup == stable_node) { 2045 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 2046 /* chain is missing so create it */ 2047 stable_node = alloc_stable_node_chain(stable_node_dup, 2048 root); 2049 if (!stable_node) 2050 return NULL; 2051 } 2052 /* 2053 * Add this stable_node dup that was 2054 * migrated to the stable_node chain 2055 * of the current nid for this page 2056 * content. 2057 */ 2058 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 2059 VM_BUG_ON(page_node->head != &migrate_nodes); 2060 list_del(&page_node->list); 2061 DO_NUMA(page_node->nid = nid); 2062 stable_node_chain_add_dup(page_node, stable_node); 2063 goto out; 2064 } 2065 2066 /* 2067 * stable_tree_insert - insert stable tree node pointing to new ksm page 2068 * into the stable tree. 2069 * 2070 * This function returns the stable tree node just allocated on success, 2071 * NULL otherwise. 2072 */ 2073 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio) 2074 { 2075 int nid; 2076 unsigned long kpfn; 2077 struct rb_root *root; 2078 struct rb_node **new; 2079 struct rb_node *parent; 2080 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 2081 bool need_chain = false; 2082 2083 kpfn = folio_pfn(kfolio); 2084 nid = get_kpfn_nid(kpfn); 2085 root = root_stable_tree + nid; 2086 again: 2087 parent = NULL; 2088 new = &root->rb_node; 2089 2090 while (*new) { 2091 struct folio *tree_folio; 2092 int ret; 2093 2094 cond_resched(); 2095 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2096 stable_node_any = NULL; 2097 tree_folio = chain(&stable_node_dup, stable_node, root); 2098 if (!stable_node_dup) { 2099 /* 2100 * Either all stable_node dups were full in 2101 * this stable_node chain, or this chain was 2102 * empty and should be rb_erased. 2103 */ 2104 stable_node_any = stable_node_dup_any(stable_node, 2105 root); 2106 if (!stable_node_any) { 2107 /* rb_erase just run */ 2108 goto again; 2109 } 2110 /* 2111 * Take any of the stable_node dups page of 2112 * this stable_node chain to let the tree walk 2113 * continue. All KSM pages belonging to the 2114 * stable_node dups in a stable_node chain 2115 * have the same content and they're 2116 * write protected at all times. Any will work 2117 * fine to continue the walk. 2118 */ 2119 tree_folio = ksm_get_folio(stable_node_any, 2120 KSM_GET_FOLIO_NOLOCK); 2121 } 2122 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 2123 if (!tree_folio) { 2124 /* 2125 * If we walked over a stale stable_node, 2126 * ksm_get_folio() will call rb_erase() and it 2127 * may rebalance the tree from under us. So 2128 * restart the search from scratch. Returning 2129 * NULL would be safe too, but we'd generate 2130 * false negative insertions just because some 2131 * stable_node was stale. 2132 */ 2133 goto again; 2134 } 2135 2136 ret = memcmp_pages(&kfolio->page, &tree_folio->page); 2137 folio_put(tree_folio); 2138 2139 parent = *new; 2140 if (ret < 0) 2141 new = &parent->rb_left; 2142 else if (ret > 0) 2143 new = &parent->rb_right; 2144 else { 2145 need_chain = true; 2146 break; 2147 } 2148 } 2149 2150 stable_node_dup = alloc_stable_node(); 2151 if (!stable_node_dup) 2152 return NULL; 2153 2154 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2155 stable_node_dup->kpfn = kpfn; 2156 stable_node_dup->rmap_hlist_len = 0; 2157 DO_NUMA(stable_node_dup->nid = nid); 2158 if (!need_chain) { 2159 rb_link_node(&stable_node_dup->node, parent, new); 2160 rb_insert_color(&stable_node_dup->node, root); 2161 } else { 2162 if (!is_stable_node_chain(stable_node)) { 2163 struct ksm_stable_node *orig = stable_node; 2164 /* chain is missing so create it */ 2165 stable_node = alloc_stable_node_chain(orig, root); 2166 if (!stable_node) { 2167 free_stable_node(stable_node_dup); 2168 return NULL; 2169 } 2170 } 2171 stable_node_chain_add_dup(stable_node_dup, stable_node); 2172 } 2173 2174 folio_set_stable_node(kfolio, stable_node_dup); 2175 2176 return stable_node_dup; 2177 } 2178 2179 /* 2180 * unstable_tree_search_insert - search for identical page, 2181 * else insert rmap_item into the unstable tree. 2182 * 2183 * This function searches for a page in the unstable tree identical to the 2184 * page currently being scanned; and if no identical page is found in the 2185 * tree, we insert rmap_item as a new object into the unstable tree. 2186 * 2187 * This function returns pointer to rmap_item found to be identical 2188 * to the currently scanned page, NULL otherwise. 2189 * 2190 * This function does both searching and inserting, because they share 2191 * the same walking algorithm in an rbtree. 2192 */ 2193 static 2194 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2195 struct page *page, 2196 struct page **tree_pagep) 2197 { 2198 struct rb_node **new; 2199 struct rb_root *root; 2200 struct rb_node *parent = NULL; 2201 int nid; 2202 2203 nid = get_kpfn_nid(page_to_pfn(page)); 2204 root = root_unstable_tree + nid; 2205 new = &root->rb_node; 2206 2207 while (*new) { 2208 struct ksm_rmap_item *tree_rmap_item; 2209 struct page *tree_page; 2210 int ret; 2211 2212 cond_resched(); 2213 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2214 tree_page = get_mergeable_page(tree_rmap_item); 2215 if (!tree_page) 2216 return NULL; 2217 2218 /* 2219 * Don't substitute a ksm page for a forked page. 2220 */ 2221 if (page == tree_page) { 2222 put_page(tree_page); 2223 return NULL; 2224 } 2225 2226 ret = memcmp_pages(page, tree_page); 2227 2228 parent = *new; 2229 if (ret < 0) { 2230 put_page(tree_page); 2231 new = &parent->rb_left; 2232 } else if (ret > 0) { 2233 put_page(tree_page); 2234 new = &parent->rb_right; 2235 } else if (!ksm_merge_across_nodes && 2236 page_to_nid(tree_page) != nid) { 2237 /* 2238 * If tree_page has been migrated to another NUMA node, 2239 * it will be flushed out and put in the right unstable 2240 * tree next time: only merge with it when across_nodes. 2241 */ 2242 put_page(tree_page); 2243 return NULL; 2244 } else { 2245 *tree_pagep = tree_page; 2246 return tree_rmap_item; 2247 } 2248 } 2249 2250 rmap_item->address |= UNSTABLE_FLAG; 2251 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2252 DO_NUMA(rmap_item->nid = nid); 2253 rb_link_node(&rmap_item->node, parent, new); 2254 rb_insert_color(&rmap_item->node, root); 2255 2256 ksm_pages_unshared++; 2257 return NULL; 2258 } 2259 2260 /* 2261 * stable_tree_append - add another rmap_item to the linked list of 2262 * rmap_items hanging off a given node of the stable tree, all sharing 2263 * the same ksm page. 2264 */ 2265 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2266 struct ksm_stable_node *stable_node, 2267 bool max_page_sharing_bypass) 2268 { 2269 /* 2270 * rmap won't find this mapping if we don't insert the 2271 * rmap_item in the right stable_node 2272 * duplicate. page_migration could break later if rmap breaks, 2273 * so we can as well crash here. We really need to check for 2274 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2275 * for other negative values as an underflow if detected here 2276 * for the first time (and not when decreasing rmap_hlist_len) 2277 * would be sign of memory corruption in the stable_node. 2278 */ 2279 BUG_ON(stable_node->rmap_hlist_len < 0); 2280 2281 stable_node->rmap_hlist_len++; 2282 if (!max_page_sharing_bypass) 2283 /* possibly non fatal but unexpected overflow, only warn */ 2284 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2285 ksm_max_page_sharing); 2286 2287 rmap_item->head = stable_node; 2288 rmap_item->address |= STABLE_FLAG; 2289 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2290 2291 if (rmap_item->hlist.next) 2292 ksm_pages_sharing++; 2293 else 2294 ksm_pages_shared++; 2295 2296 rmap_item->mm->ksm_merging_pages++; 2297 } 2298 2299 /* 2300 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2301 * if not, compare checksum to previous and if it's the same, see if page can 2302 * be inserted into the unstable tree, or merged with a page already there and 2303 * both transferred to the stable tree. 2304 * 2305 * @page: the page that we are searching identical page to. 2306 * @rmap_item: the reverse mapping into the virtual address of this page 2307 */ 2308 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2309 { 2310 struct mm_struct *mm = rmap_item->mm; 2311 struct ksm_rmap_item *tree_rmap_item; 2312 struct page *tree_page = NULL; 2313 struct ksm_stable_node *stable_node; 2314 struct page *kpage; 2315 unsigned int checksum; 2316 int err; 2317 bool max_page_sharing_bypass = false; 2318 2319 stable_node = page_stable_node(page); 2320 if (stable_node) { 2321 if (stable_node->head != &migrate_nodes && 2322 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2323 NUMA(stable_node->nid)) { 2324 stable_node_dup_del(stable_node); 2325 stable_node->head = &migrate_nodes; 2326 list_add(&stable_node->list, stable_node->head); 2327 } 2328 if (stable_node->head != &migrate_nodes && 2329 rmap_item->head == stable_node) 2330 return; 2331 /* 2332 * If it's a KSM fork, allow it to go over the sharing limit 2333 * without warnings. 2334 */ 2335 if (!is_page_sharing_candidate(stable_node)) 2336 max_page_sharing_bypass = true; 2337 } 2338 2339 /* We first start with searching the page inside the stable tree */ 2340 kpage = stable_tree_search(page); 2341 if (kpage == page && rmap_item->head == stable_node) { 2342 put_page(kpage); 2343 return; 2344 } 2345 2346 remove_rmap_item_from_tree(rmap_item); 2347 2348 if (kpage) { 2349 if (PTR_ERR(kpage) == -EBUSY) 2350 return; 2351 2352 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2353 if (!err) { 2354 /* 2355 * The page was successfully merged: 2356 * add its rmap_item to the stable tree. 2357 */ 2358 lock_page(kpage); 2359 stable_tree_append(rmap_item, page_stable_node(kpage), 2360 max_page_sharing_bypass); 2361 unlock_page(kpage); 2362 } 2363 put_page(kpage); 2364 return; 2365 } 2366 2367 /* 2368 * If the hash value of the page has changed from the last time 2369 * we calculated it, this page is changing frequently: therefore we 2370 * don't want to insert it in the unstable tree, and we don't want 2371 * to waste our time searching for something identical to it there. 2372 */ 2373 checksum = calc_checksum(page); 2374 if (rmap_item->oldchecksum != checksum) { 2375 rmap_item->oldchecksum = checksum; 2376 return; 2377 } 2378 2379 /* 2380 * Same checksum as an empty page. We attempt to merge it with the 2381 * appropriate zero page if the user enabled this via sysfs. 2382 */ 2383 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2384 struct vm_area_struct *vma; 2385 2386 mmap_read_lock(mm); 2387 vma = find_mergeable_vma(mm, rmap_item->address); 2388 if (vma) { 2389 err = try_to_merge_one_page(vma, page, 2390 ZERO_PAGE(rmap_item->address)); 2391 trace_ksm_merge_one_page( 2392 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2393 rmap_item, mm, err); 2394 } else { 2395 /* 2396 * If the vma is out of date, we do not need to 2397 * continue. 2398 */ 2399 err = 0; 2400 } 2401 mmap_read_unlock(mm); 2402 /* 2403 * In case of failure, the page was not really empty, so we 2404 * need to continue. Otherwise we're done. 2405 */ 2406 if (!err) 2407 return; 2408 } 2409 tree_rmap_item = 2410 unstable_tree_search_insert(rmap_item, page, &tree_page); 2411 if (tree_rmap_item) { 2412 bool split; 2413 2414 kpage = try_to_merge_two_pages(rmap_item, page, 2415 tree_rmap_item, tree_page); 2416 /* 2417 * If both pages we tried to merge belong to the same compound 2418 * page, then we actually ended up increasing the reference 2419 * count of the same compound page twice, and split_huge_page 2420 * failed. 2421 * Here we set a flag if that happened, and we use it later to 2422 * try split_huge_page again. Since we call put_page right 2423 * afterwards, the reference count will be correct and 2424 * split_huge_page should succeed. 2425 */ 2426 split = PageTransCompound(page) 2427 && compound_head(page) == compound_head(tree_page); 2428 put_page(tree_page); 2429 if (kpage) { 2430 /* 2431 * The pages were successfully merged: insert new 2432 * node in the stable tree and add both rmap_items. 2433 */ 2434 lock_page(kpage); 2435 stable_node = stable_tree_insert(page_folio(kpage)); 2436 if (stable_node) { 2437 stable_tree_append(tree_rmap_item, stable_node, 2438 false); 2439 stable_tree_append(rmap_item, stable_node, 2440 false); 2441 } 2442 unlock_page(kpage); 2443 2444 /* 2445 * If we fail to insert the page into the stable tree, 2446 * we will have 2 virtual addresses that are pointing 2447 * to a ksm page left outside the stable tree, 2448 * in which case we need to break_cow on both. 2449 */ 2450 if (!stable_node) { 2451 break_cow(tree_rmap_item); 2452 break_cow(rmap_item); 2453 } 2454 } else if (split) { 2455 /* 2456 * We are here if we tried to merge two pages and 2457 * failed because they both belonged to the same 2458 * compound page. We will split the page now, but no 2459 * merging will take place. 2460 * We do not want to add the cost of a full lock; if 2461 * the page is locked, it is better to skip it and 2462 * perhaps try again later. 2463 */ 2464 if (!trylock_page(page)) 2465 return; 2466 split_huge_page(page); 2467 unlock_page(page); 2468 } 2469 } 2470 } 2471 2472 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2473 struct ksm_rmap_item **rmap_list, 2474 unsigned long addr) 2475 { 2476 struct ksm_rmap_item *rmap_item; 2477 2478 while (*rmap_list) { 2479 rmap_item = *rmap_list; 2480 if ((rmap_item->address & PAGE_MASK) == addr) 2481 return rmap_item; 2482 if (rmap_item->address > addr) 2483 break; 2484 *rmap_list = rmap_item->rmap_list; 2485 remove_rmap_item_from_tree(rmap_item); 2486 free_rmap_item(rmap_item); 2487 } 2488 2489 rmap_item = alloc_rmap_item(); 2490 if (rmap_item) { 2491 /* It has already been zeroed */ 2492 rmap_item->mm = mm_slot->slot.mm; 2493 rmap_item->mm->ksm_rmap_items++; 2494 rmap_item->address = addr; 2495 rmap_item->rmap_list = *rmap_list; 2496 *rmap_list = rmap_item; 2497 } 2498 return rmap_item; 2499 } 2500 2501 /* 2502 * Calculate skip age for the ksm page age. The age determines how often 2503 * de-duplicating has already been tried unsuccessfully. If the age is 2504 * smaller, the scanning of this page is skipped for less scans. 2505 * 2506 * @age: rmap_item age of page 2507 */ 2508 static unsigned int skip_age(rmap_age_t age) 2509 { 2510 if (age <= 3) 2511 return 1; 2512 if (age <= 5) 2513 return 2; 2514 if (age <= 8) 2515 return 4; 2516 2517 return 8; 2518 } 2519 2520 /* 2521 * Determines if a page should be skipped for the current scan. 2522 * 2523 * @page: page to check 2524 * @rmap_item: associated rmap_item of page 2525 */ 2526 static bool should_skip_rmap_item(struct page *page, 2527 struct ksm_rmap_item *rmap_item) 2528 { 2529 rmap_age_t age; 2530 2531 if (!ksm_smart_scan) 2532 return false; 2533 2534 /* 2535 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2536 * will essentially ignore them, but we still have to process them 2537 * properly. 2538 */ 2539 if (PageKsm(page)) 2540 return false; 2541 2542 age = rmap_item->age; 2543 if (age != U8_MAX) 2544 rmap_item->age++; 2545 2546 /* 2547 * Smaller ages are not skipped, they need to get a chance to go 2548 * through the different phases of the KSM merging. 2549 */ 2550 if (age < 3) 2551 return false; 2552 2553 /* 2554 * Are we still allowed to skip? If not, then don't skip it 2555 * and determine how much more often we are allowed to skip next. 2556 */ 2557 if (!rmap_item->remaining_skips) { 2558 rmap_item->remaining_skips = skip_age(age); 2559 return false; 2560 } 2561 2562 /* Skip this page */ 2563 ksm_pages_skipped++; 2564 rmap_item->remaining_skips--; 2565 remove_rmap_item_from_tree(rmap_item); 2566 return true; 2567 } 2568 2569 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2570 { 2571 struct mm_struct *mm; 2572 struct ksm_mm_slot *mm_slot; 2573 struct mm_slot *slot; 2574 struct vm_area_struct *vma; 2575 struct ksm_rmap_item *rmap_item; 2576 struct vma_iterator vmi; 2577 int nid; 2578 2579 if (list_empty(&ksm_mm_head.slot.mm_node)) 2580 return NULL; 2581 2582 mm_slot = ksm_scan.mm_slot; 2583 if (mm_slot == &ksm_mm_head) { 2584 advisor_start_scan(); 2585 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2586 2587 /* 2588 * A number of pages can hang around indefinitely in per-cpu 2589 * LRU cache, raised page count preventing write_protect_page 2590 * from merging them. Though it doesn't really matter much, 2591 * it is puzzling to see some stuck in pages_volatile until 2592 * other activity jostles them out, and they also prevented 2593 * LTP's KSM test from succeeding deterministically; so drain 2594 * them here (here rather than on entry to ksm_do_scan(), 2595 * so we don't IPI too often when pages_to_scan is set low). 2596 */ 2597 lru_add_drain_all(); 2598 2599 /* 2600 * Whereas stale stable_nodes on the stable_tree itself 2601 * get pruned in the regular course of stable_tree_search(), 2602 * those moved out to the migrate_nodes list can accumulate: 2603 * so prune them once before each full scan. 2604 */ 2605 if (!ksm_merge_across_nodes) { 2606 struct ksm_stable_node *stable_node, *next; 2607 struct folio *folio; 2608 2609 list_for_each_entry_safe(stable_node, next, 2610 &migrate_nodes, list) { 2611 folio = ksm_get_folio(stable_node, 2612 KSM_GET_FOLIO_NOLOCK); 2613 if (folio) 2614 folio_put(folio); 2615 cond_resched(); 2616 } 2617 } 2618 2619 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2620 root_unstable_tree[nid] = RB_ROOT; 2621 2622 spin_lock(&ksm_mmlist_lock); 2623 slot = list_entry(mm_slot->slot.mm_node.next, 2624 struct mm_slot, mm_node); 2625 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2626 ksm_scan.mm_slot = mm_slot; 2627 spin_unlock(&ksm_mmlist_lock); 2628 /* 2629 * Although we tested list_empty() above, a racing __ksm_exit 2630 * of the last mm on the list may have removed it since then. 2631 */ 2632 if (mm_slot == &ksm_mm_head) 2633 return NULL; 2634 next_mm: 2635 ksm_scan.address = 0; 2636 ksm_scan.rmap_list = &mm_slot->rmap_list; 2637 } 2638 2639 slot = &mm_slot->slot; 2640 mm = slot->mm; 2641 vma_iter_init(&vmi, mm, ksm_scan.address); 2642 2643 mmap_read_lock(mm); 2644 if (ksm_test_exit(mm)) 2645 goto no_vmas; 2646 2647 for_each_vma(vmi, vma) { 2648 if (!(vma->vm_flags & VM_MERGEABLE)) 2649 continue; 2650 if (ksm_scan.address < vma->vm_start) 2651 ksm_scan.address = vma->vm_start; 2652 if (!vma->anon_vma) 2653 ksm_scan.address = vma->vm_end; 2654 2655 while (ksm_scan.address < vma->vm_end) { 2656 if (ksm_test_exit(mm)) 2657 break; 2658 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2659 if (IS_ERR_OR_NULL(*page)) { 2660 ksm_scan.address += PAGE_SIZE; 2661 cond_resched(); 2662 continue; 2663 } 2664 if (is_zone_device_page(*page)) 2665 goto next_page; 2666 if (PageAnon(*page)) { 2667 flush_anon_page(vma, *page, ksm_scan.address); 2668 flush_dcache_page(*page); 2669 rmap_item = get_next_rmap_item(mm_slot, 2670 ksm_scan.rmap_list, ksm_scan.address); 2671 if (rmap_item) { 2672 ksm_scan.rmap_list = 2673 &rmap_item->rmap_list; 2674 2675 if (should_skip_rmap_item(*page, rmap_item)) 2676 goto next_page; 2677 2678 ksm_scan.address += PAGE_SIZE; 2679 } else 2680 put_page(*page); 2681 mmap_read_unlock(mm); 2682 return rmap_item; 2683 } 2684 next_page: 2685 put_page(*page); 2686 ksm_scan.address += PAGE_SIZE; 2687 cond_resched(); 2688 } 2689 } 2690 2691 if (ksm_test_exit(mm)) { 2692 no_vmas: 2693 ksm_scan.address = 0; 2694 ksm_scan.rmap_list = &mm_slot->rmap_list; 2695 } 2696 /* 2697 * Nuke all the rmap_items that are above this current rmap: 2698 * because there were no VM_MERGEABLE vmas with such addresses. 2699 */ 2700 remove_trailing_rmap_items(ksm_scan.rmap_list); 2701 2702 spin_lock(&ksm_mmlist_lock); 2703 slot = list_entry(mm_slot->slot.mm_node.next, 2704 struct mm_slot, mm_node); 2705 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2706 if (ksm_scan.address == 0) { 2707 /* 2708 * We've completed a full scan of all vmas, holding mmap_lock 2709 * throughout, and found no VM_MERGEABLE: so do the same as 2710 * __ksm_exit does to remove this mm from all our lists now. 2711 * This applies either when cleaning up after __ksm_exit 2712 * (but beware: we can reach here even before __ksm_exit), 2713 * or when all VM_MERGEABLE areas have been unmapped (and 2714 * mmap_lock then protects against race with MADV_MERGEABLE). 2715 */ 2716 hash_del(&mm_slot->slot.hash); 2717 list_del(&mm_slot->slot.mm_node); 2718 spin_unlock(&ksm_mmlist_lock); 2719 2720 mm_slot_free(mm_slot_cache, mm_slot); 2721 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2722 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2723 mmap_read_unlock(mm); 2724 mmdrop(mm); 2725 } else { 2726 mmap_read_unlock(mm); 2727 /* 2728 * mmap_read_unlock(mm) first because after 2729 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2730 * already have been freed under us by __ksm_exit() 2731 * because the "mm_slot" is still hashed and 2732 * ksm_scan.mm_slot doesn't point to it anymore. 2733 */ 2734 spin_unlock(&ksm_mmlist_lock); 2735 } 2736 2737 /* Repeat until we've completed scanning the whole list */ 2738 mm_slot = ksm_scan.mm_slot; 2739 if (mm_slot != &ksm_mm_head) 2740 goto next_mm; 2741 2742 advisor_stop_scan(); 2743 2744 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2745 ksm_scan.seqnr++; 2746 return NULL; 2747 } 2748 2749 /** 2750 * ksm_do_scan - the ksm scanner main worker function. 2751 * @scan_npages: number of pages we want to scan before we return. 2752 */ 2753 static void ksm_do_scan(unsigned int scan_npages) 2754 { 2755 struct ksm_rmap_item *rmap_item; 2756 struct page *page; 2757 unsigned int npages = scan_npages; 2758 2759 while (npages-- && likely(!freezing(current))) { 2760 cond_resched(); 2761 rmap_item = scan_get_next_rmap_item(&page); 2762 if (!rmap_item) 2763 return; 2764 cmp_and_merge_page(page, rmap_item); 2765 put_page(page); 2766 } 2767 2768 ksm_pages_scanned += scan_npages - npages; 2769 } 2770 2771 static int ksmd_should_run(void) 2772 { 2773 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2774 } 2775 2776 static int ksm_scan_thread(void *nothing) 2777 { 2778 unsigned int sleep_ms; 2779 2780 set_freezable(); 2781 set_user_nice(current, 5); 2782 2783 while (!kthread_should_stop()) { 2784 mutex_lock(&ksm_thread_mutex); 2785 wait_while_offlining(); 2786 if (ksmd_should_run()) 2787 ksm_do_scan(ksm_thread_pages_to_scan); 2788 mutex_unlock(&ksm_thread_mutex); 2789 2790 if (ksmd_should_run()) { 2791 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2792 wait_event_freezable_timeout(ksm_iter_wait, 2793 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2794 msecs_to_jiffies(sleep_ms)); 2795 } else { 2796 wait_event_freezable(ksm_thread_wait, 2797 ksmd_should_run() || kthread_should_stop()); 2798 } 2799 } 2800 return 0; 2801 } 2802 2803 static void __ksm_add_vma(struct vm_area_struct *vma) 2804 { 2805 unsigned long vm_flags = vma->vm_flags; 2806 2807 if (vm_flags & VM_MERGEABLE) 2808 return; 2809 2810 if (vma_ksm_compatible(vma)) 2811 vm_flags_set(vma, VM_MERGEABLE); 2812 } 2813 2814 static int __ksm_del_vma(struct vm_area_struct *vma) 2815 { 2816 int err; 2817 2818 if (!(vma->vm_flags & VM_MERGEABLE)) 2819 return 0; 2820 2821 if (vma->anon_vma) { 2822 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2823 if (err) 2824 return err; 2825 } 2826 2827 vm_flags_clear(vma, VM_MERGEABLE); 2828 return 0; 2829 } 2830 /** 2831 * ksm_add_vma - Mark vma as mergeable if compatible 2832 * 2833 * @vma: Pointer to vma 2834 */ 2835 void ksm_add_vma(struct vm_area_struct *vma) 2836 { 2837 struct mm_struct *mm = vma->vm_mm; 2838 2839 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2840 __ksm_add_vma(vma); 2841 } 2842 2843 static void ksm_add_vmas(struct mm_struct *mm) 2844 { 2845 struct vm_area_struct *vma; 2846 2847 VMA_ITERATOR(vmi, mm, 0); 2848 for_each_vma(vmi, vma) 2849 __ksm_add_vma(vma); 2850 } 2851 2852 static int ksm_del_vmas(struct mm_struct *mm) 2853 { 2854 struct vm_area_struct *vma; 2855 int err; 2856 2857 VMA_ITERATOR(vmi, mm, 0); 2858 for_each_vma(vmi, vma) { 2859 err = __ksm_del_vma(vma); 2860 if (err) 2861 return err; 2862 } 2863 return 0; 2864 } 2865 2866 /** 2867 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2868 * compatible VMA's 2869 * 2870 * @mm: Pointer to mm 2871 * 2872 * Returns 0 on success, otherwise error code 2873 */ 2874 int ksm_enable_merge_any(struct mm_struct *mm) 2875 { 2876 int err; 2877 2878 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2879 return 0; 2880 2881 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2882 err = __ksm_enter(mm); 2883 if (err) 2884 return err; 2885 } 2886 2887 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2888 ksm_add_vmas(mm); 2889 2890 return 0; 2891 } 2892 2893 /** 2894 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2895 * previously enabled via ksm_enable_merge_any(). 2896 * 2897 * Disabling merging implies unmerging any merged pages, like setting 2898 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2899 * merging on all compatible VMA's remains enabled. 2900 * 2901 * @mm: Pointer to mm 2902 * 2903 * Returns 0 on success, otherwise error code 2904 */ 2905 int ksm_disable_merge_any(struct mm_struct *mm) 2906 { 2907 int err; 2908 2909 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2910 return 0; 2911 2912 err = ksm_del_vmas(mm); 2913 if (err) { 2914 ksm_add_vmas(mm); 2915 return err; 2916 } 2917 2918 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2919 return 0; 2920 } 2921 2922 int ksm_disable(struct mm_struct *mm) 2923 { 2924 mmap_assert_write_locked(mm); 2925 2926 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2927 return 0; 2928 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2929 return ksm_disable_merge_any(mm); 2930 return ksm_del_vmas(mm); 2931 } 2932 2933 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2934 unsigned long end, int advice, unsigned long *vm_flags) 2935 { 2936 struct mm_struct *mm = vma->vm_mm; 2937 int err; 2938 2939 switch (advice) { 2940 case MADV_MERGEABLE: 2941 if (vma->vm_flags & VM_MERGEABLE) 2942 return 0; 2943 if (!vma_ksm_compatible(vma)) 2944 return 0; 2945 2946 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2947 err = __ksm_enter(mm); 2948 if (err) 2949 return err; 2950 } 2951 2952 *vm_flags |= VM_MERGEABLE; 2953 break; 2954 2955 case MADV_UNMERGEABLE: 2956 if (!(*vm_flags & VM_MERGEABLE)) 2957 return 0; /* just ignore the advice */ 2958 2959 if (vma->anon_vma) { 2960 err = unmerge_ksm_pages(vma, start, end, true); 2961 if (err) 2962 return err; 2963 } 2964 2965 *vm_flags &= ~VM_MERGEABLE; 2966 break; 2967 } 2968 2969 return 0; 2970 } 2971 EXPORT_SYMBOL_GPL(ksm_madvise); 2972 2973 int __ksm_enter(struct mm_struct *mm) 2974 { 2975 struct ksm_mm_slot *mm_slot; 2976 struct mm_slot *slot; 2977 int needs_wakeup; 2978 2979 mm_slot = mm_slot_alloc(mm_slot_cache); 2980 if (!mm_slot) 2981 return -ENOMEM; 2982 2983 slot = &mm_slot->slot; 2984 2985 /* Check ksm_run too? Would need tighter locking */ 2986 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2987 2988 spin_lock(&ksm_mmlist_lock); 2989 mm_slot_insert(mm_slots_hash, mm, slot); 2990 /* 2991 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2992 * insert just behind the scanning cursor, to let the area settle 2993 * down a little; when fork is followed by immediate exec, we don't 2994 * want ksmd to waste time setting up and tearing down an rmap_list. 2995 * 2996 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2997 * scanning cursor, otherwise KSM pages in newly forked mms will be 2998 * missed: then we might as well insert at the end of the list. 2999 */ 3000 if (ksm_run & KSM_RUN_UNMERGE) 3001 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 3002 else 3003 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 3004 spin_unlock(&ksm_mmlist_lock); 3005 3006 set_bit(MMF_VM_MERGEABLE, &mm->flags); 3007 mmgrab(mm); 3008 3009 if (needs_wakeup) 3010 wake_up_interruptible(&ksm_thread_wait); 3011 3012 trace_ksm_enter(mm); 3013 return 0; 3014 } 3015 3016 void __ksm_exit(struct mm_struct *mm) 3017 { 3018 struct ksm_mm_slot *mm_slot; 3019 struct mm_slot *slot; 3020 int easy_to_free = 0; 3021 3022 /* 3023 * This process is exiting: if it's straightforward (as is the 3024 * case when ksmd was never running), free mm_slot immediately. 3025 * But if it's at the cursor or has rmap_items linked to it, use 3026 * mmap_lock to synchronize with any break_cows before pagetables 3027 * are freed, and leave the mm_slot on the list for ksmd to free. 3028 * Beware: ksm may already have noticed it exiting and freed the slot. 3029 */ 3030 3031 spin_lock(&ksm_mmlist_lock); 3032 slot = mm_slot_lookup(mm_slots_hash, mm); 3033 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 3034 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 3035 if (!mm_slot->rmap_list) { 3036 hash_del(&slot->hash); 3037 list_del(&slot->mm_node); 3038 easy_to_free = 1; 3039 } else { 3040 list_move(&slot->mm_node, 3041 &ksm_scan.mm_slot->slot.mm_node); 3042 } 3043 } 3044 spin_unlock(&ksm_mmlist_lock); 3045 3046 if (easy_to_free) { 3047 mm_slot_free(mm_slot_cache, mm_slot); 3048 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 3049 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 3050 mmdrop(mm); 3051 } else if (mm_slot) { 3052 mmap_write_lock(mm); 3053 mmap_write_unlock(mm); 3054 } 3055 3056 trace_ksm_exit(mm); 3057 } 3058 3059 struct folio *ksm_might_need_to_copy(struct folio *folio, 3060 struct vm_area_struct *vma, unsigned long addr) 3061 { 3062 struct page *page = folio_page(folio, 0); 3063 struct anon_vma *anon_vma = folio_anon_vma(folio); 3064 struct folio *new_folio; 3065 3066 if (folio_test_large(folio)) 3067 return folio; 3068 3069 if (folio_test_ksm(folio)) { 3070 if (folio_stable_node(folio) && 3071 !(ksm_run & KSM_RUN_UNMERGE)) 3072 return folio; /* no need to copy it */ 3073 } else if (!anon_vma) { 3074 return folio; /* no need to copy it */ 3075 } else if (folio->index == linear_page_index(vma, addr) && 3076 anon_vma->root == vma->anon_vma->root) { 3077 return folio; /* still no need to copy it */ 3078 } 3079 if (PageHWPoison(page)) 3080 return ERR_PTR(-EHWPOISON); 3081 if (!folio_test_uptodate(folio)) 3082 return folio; /* let do_swap_page report the error */ 3083 3084 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 3085 if (new_folio && 3086 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 3087 folio_put(new_folio); 3088 new_folio = NULL; 3089 } 3090 if (new_folio) { 3091 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 3092 addr, vma)) { 3093 folio_put(new_folio); 3094 memory_failure_queue(folio_pfn(folio), 0); 3095 return ERR_PTR(-EHWPOISON); 3096 } 3097 folio_set_dirty(new_folio); 3098 __folio_mark_uptodate(new_folio); 3099 __folio_set_locked(new_folio); 3100 #ifdef CONFIG_SWAP 3101 count_vm_event(KSM_SWPIN_COPY); 3102 #endif 3103 } 3104 3105 return new_folio; 3106 } 3107 3108 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3109 { 3110 struct ksm_stable_node *stable_node; 3111 struct ksm_rmap_item *rmap_item; 3112 int search_new_forks = 0; 3113 3114 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3115 3116 /* 3117 * Rely on the page lock to protect against concurrent modifications 3118 * to that page's node of the stable tree. 3119 */ 3120 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3121 3122 stable_node = folio_stable_node(folio); 3123 if (!stable_node) 3124 return; 3125 again: 3126 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3127 struct anon_vma *anon_vma = rmap_item->anon_vma; 3128 struct anon_vma_chain *vmac; 3129 struct vm_area_struct *vma; 3130 3131 cond_resched(); 3132 if (!anon_vma_trylock_read(anon_vma)) { 3133 if (rwc->try_lock) { 3134 rwc->contended = true; 3135 return; 3136 } 3137 anon_vma_lock_read(anon_vma); 3138 } 3139 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3140 0, ULONG_MAX) { 3141 unsigned long addr; 3142 3143 cond_resched(); 3144 vma = vmac->vma; 3145 3146 /* Ignore the stable/unstable/sqnr flags */ 3147 addr = rmap_item->address & PAGE_MASK; 3148 3149 if (addr < vma->vm_start || addr >= vma->vm_end) 3150 continue; 3151 /* 3152 * Initially we examine only the vma which covers this 3153 * rmap_item; but later, if there is still work to do, 3154 * we examine covering vmas in other mms: in case they 3155 * were forked from the original since ksmd passed. 3156 */ 3157 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3158 continue; 3159 3160 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3161 continue; 3162 3163 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3164 anon_vma_unlock_read(anon_vma); 3165 return; 3166 } 3167 if (rwc->done && rwc->done(folio)) { 3168 anon_vma_unlock_read(anon_vma); 3169 return; 3170 } 3171 } 3172 anon_vma_unlock_read(anon_vma); 3173 } 3174 if (!search_new_forks++) 3175 goto again; 3176 } 3177 3178 #ifdef CONFIG_MEMORY_FAILURE 3179 /* 3180 * Collect processes when the error hit an ksm page. 3181 */ 3182 void collect_procs_ksm(struct folio *folio, struct page *page, 3183 struct list_head *to_kill, int force_early) 3184 { 3185 struct ksm_stable_node *stable_node; 3186 struct ksm_rmap_item *rmap_item; 3187 struct vm_area_struct *vma; 3188 struct task_struct *tsk; 3189 3190 stable_node = folio_stable_node(folio); 3191 if (!stable_node) 3192 return; 3193 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3194 struct anon_vma *av = rmap_item->anon_vma; 3195 3196 anon_vma_lock_read(av); 3197 rcu_read_lock(); 3198 for_each_process(tsk) { 3199 struct anon_vma_chain *vmac; 3200 unsigned long addr; 3201 struct task_struct *t = 3202 task_early_kill(tsk, force_early); 3203 if (!t) 3204 continue; 3205 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3206 ULONG_MAX) 3207 { 3208 vma = vmac->vma; 3209 if (vma->vm_mm == t->mm) { 3210 addr = rmap_item->address & PAGE_MASK; 3211 add_to_kill_ksm(t, page, vma, to_kill, 3212 addr); 3213 } 3214 } 3215 } 3216 rcu_read_unlock(); 3217 anon_vma_unlock_read(av); 3218 } 3219 } 3220 #endif 3221 3222 #ifdef CONFIG_MIGRATION 3223 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3224 { 3225 struct ksm_stable_node *stable_node; 3226 3227 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3228 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3229 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3230 3231 stable_node = folio_stable_node(folio); 3232 if (stable_node) { 3233 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3234 stable_node->kpfn = folio_pfn(newfolio); 3235 /* 3236 * newfolio->mapping was set in advance; now we need smp_wmb() 3237 * to make sure that the new stable_node->kpfn is visible 3238 * to ksm_get_folio() before it can see that folio->mapping 3239 * has gone stale (or that folio_test_swapcache has been cleared). 3240 */ 3241 smp_wmb(); 3242 folio_set_stable_node(folio, NULL); 3243 } 3244 } 3245 #endif /* CONFIG_MIGRATION */ 3246 3247 #ifdef CONFIG_MEMORY_HOTREMOVE 3248 static void wait_while_offlining(void) 3249 { 3250 while (ksm_run & KSM_RUN_OFFLINE) { 3251 mutex_unlock(&ksm_thread_mutex); 3252 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3253 TASK_UNINTERRUPTIBLE); 3254 mutex_lock(&ksm_thread_mutex); 3255 } 3256 } 3257 3258 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3259 unsigned long start_pfn, 3260 unsigned long end_pfn) 3261 { 3262 if (stable_node->kpfn >= start_pfn && 3263 stable_node->kpfn < end_pfn) { 3264 /* 3265 * Don't ksm_get_folio, page has already gone: 3266 * which is why we keep kpfn instead of page* 3267 */ 3268 remove_node_from_stable_tree(stable_node); 3269 return true; 3270 } 3271 return false; 3272 } 3273 3274 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3275 unsigned long start_pfn, 3276 unsigned long end_pfn, 3277 struct rb_root *root) 3278 { 3279 struct ksm_stable_node *dup; 3280 struct hlist_node *hlist_safe; 3281 3282 if (!is_stable_node_chain(stable_node)) { 3283 VM_BUG_ON(is_stable_node_dup(stable_node)); 3284 return stable_node_dup_remove_range(stable_node, start_pfn, 3285 end_pfn); 3286 } 3287 3288 hlist_for_each_entry_safe(dup, hlist_safe, 3289 &stable_node->hlist, hlist_dup) { 3290 VM_BUG_ON(!is_stable_node_dup(dup)); 3291 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3292 } 3293 if (hlist_empty(&stable_node->hlist)) { 3294 free_stable_node_chain(stable_node, root); 3295 return true; /* notify caller that tree was rebalanced */ 3296 } else 3297 return false; 3298 } 3299 3300 static void ksm_check_stable_tree(unsigned long start_pfn, 3301 unsigned long end_pfn) 3302 { 3303 struct ksm_stable_node *stable_node, *next; 3304 struct rb_node *node; 3305 int nid; 3306 3307 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3308 node = rb_first(root_stable_tree + nid); 3309 while (node) { 3310 stable_node = rb_entry(node, struct ksm_stable_node, node); 3311 if (stable_node_chain_remove_range(stable_node, 3312 start_pfn, end_pfn, 3313 root_stable_tree + 3314 nid)) 3315 node = rb_first(root_stable_tree + nid); 3316 else 3317 node = rb_next(node); 3318 cond_resched(); 3319 } 3320 } 3321 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3322 if (stable_node->kpfn >= start_pfn && 3323 stable_node->kpfn < end_pfn) 3324 remove_node_from_stable_tree(stable_node); 3325 cond_resched(); 3326 } 3327 } 3328 3329 static int ksm_memory_callback(struct notifier_block *self, 3330 unsigned long action, void *arg) 3331 { 3332 struct memory_notify *mn = arg; 3333 3334 switch (action) { 3335 case MEM_GOING_OFFLINE: 3336 /* 3337 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3338 * and remove_all_stable_nodes() while memory is going offline: 3339 * it is unsafe for them to touch the stable tree at this time. 3340 * But unmerge_ksm_pages(), rmap lookups and other entry points 3341 * which do not need the ksm_thread_mutex are all safe. 3342 */ 3343 mutex_lock(&ksm_thread_mutex); 3344 ksm_run |= KSM_RUN_OFFLINE; 3345 mutex_unlock(&ksm_thread_mutex); 3346 break; 3347 3348 case MEM_OFFLINE: 3349 /* 3350 * Most of the work is done by page migration; but there might 3351 * be a few stable_nodes left over, still pointing to struct 3352 * pages which have been offlined: prune those from the tree, 3353 * otherwise ksm_get_folio() might later try to access a 3354 * non-existent struct page. 3355 */ 3356 ksm_check_stable_tree(mn->start_pfn, 3357 mn->start_pfn + mn->nr_pages); 3358 fallthrough; 3359 case MEM_CANCEL_OFFLINE: 3360 mutex_lock(&ksm_thread_mutex); 3361 ksm_run &= ~KSM_RUN_OFFLINE; 3362 mutex_unlock(&ksm_thread_mutex); 3363 3364 smp_mb(); /* wake_up_bit advises this */ 3365 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3366 break; 3367 } 3368 return NOTIFY_OK; 3369 } 3370 #else 3371 static void wait_while_offlining(void) 3372 { 3373 } 3374 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3375 3376 #ifdef CONFIG_PROC_FS 3377 long ksm_process_profit(struct mm_struct *mm) 3378 { 3379 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - 3380 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3381 } 3382 #endif /* CONFIG_PROC_FS */ 3383 3384 #ifdef CONFIG_SYSFS 3385 /* 3386 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3387 */ 3388 3389 #define KSM_ATTR_RO(_name) \ 3390 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3391 #define KSM_ATTR(_name) \ 3392 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3393 3394 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3395 struct kobj_attribute *attr, char *buf) 3396 { 3397 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3398 } 3399 3400 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3401 struct kobj_attribute *attr, 3402 const char *buf, size_t count) 3403 { 3404 unsigned int msecs; 3405 int err; 3406 3407 err = kstrtouint(buf, 10, &msecs); 3408 if (err) 3409 return -EINVAL; 3410 3411 ksm_thread_sleep_millisecs = msecs; 3412 wake_up_interruptible(&ksm_iter_wait); 3413 3414 return count; 3415 } 3416 KSM_ATTR(sleep_millisecs); 3417 3418 static ssize_t pages_to_scan_show(struct kobject *kobj, 3419 struct kobj_attribute *attr, char *buf) 3420 { 3421 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3422 } 3423 3424 static ssize_t pages_to_scan_store(struct kobject *kobj, 3425 struct kobj_attribute *attr, 3426 const char *buf, size_t count) 3427 { 3428 unsigned int nr_pages; 3429 int err; 3430 3431 if (ksm_advisor != KSM_ADVISOR_NONE) 3432 return -EINVAL; 3433 3434 err = kstrtouint(buf, 10, &nr_pages); 3435 if (err) 3436 return -EINVAL; 3437 3438 ksm_thread_pages_to_scan = nr_pages; 3439 3440 return count; 3441 } 3442 KSM_ATTR(pages_to_scan); 3443 3444 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3445 char *buf) 3446 { 3447 return sysfs_emit(buf, "%lu\n", ksm_run); 3448 } 3449 3450 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3451 const char *buf, size_t count) 3452 { 3453 unsigned int flags; 3454 int err; 3455 3456 err = kstrtouint(buf, 10, &flags); 3457 if (err) 3458 return -EINVAL; 3459 if (flags > KSM_RUN_UNMERGE) 3460 return -EINVAL; 3461 3462 /* 3463 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3464 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3465 * breaking COW to free the pages_shared (but leaves mm_slots 3466 * on the list for when ksmd may be set running again). 3467 */ 3468 3469 mutex_lock(&ksm_thread_mutex); 3470 wait_while_offlining(); 3471 if (ksm_run != flags) { 3472 ksm_run = flags; 3473 if (flags & KSM_RUN_UNMERGE) { 3474 set_current_oom_origin(); 3475 err = unmerge_and_remove_all_rmap_items(); 3476 clear_current_oom_origin(); 3477 if (err) { 3478 ksm_run = KSM_RUN_STOP; 3479 count = err; 3480 } 3481 } 3482 } 3483 mutex_unlock(&ksm_thread_mutex); 3484 3485 if (flags & KSM_RUN_MERGE) 3486 wake_up_interruptible(&ksm_thread_wait); 3487 3488 return count; 3489 } 3490 KSM_ATTR(run); 3491 3492 #ifdef CONFIG_NUMA 3493 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3494 struct kobj_attribute *attr, char *buf) 3495 { 3496 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3497 } 3498 3499 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3500 struct kobj_attribute *attr, 3501 const char *buf, size_t count) 3502 { 3503 int err; 3504 unsigned long knob; 3505 3506 err = kstrtoul(buf, 10, &knob); 3507 if (err) 3508 return err; 3509 if (knob > 1) 3510 return -EINVAL; 3511 3512 mutex_lock(&ksm_thread_mutex); 3513 wait_while_offlining(); 3514 if (ksm_merge_across_nodes != knob) { 3515 if (ksm_pages_shared || remove_all_stable_nodes()) 3516 err = -EBUSY; 3517 else if (root_stable_tree == one_stable_tree) { 3518 struct rb_root *buf; 3519 /* 3520 * This is the first time that we switch away from the 3521 * default of merging across nodes: must now allocate 3522 * a buffer to hold as many roots as may be needed. 3523 * Allocate stable and unstable together: 3524 * MAXSMP NODES_SHIFT 10 will use 16kB. 3525 */ 3526 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3527 GFP_KERNEL); 3528 /* Let us assume that RB_ROOT is NULL is zero */ 3529 if (!buf) 3530 err = -ENOMEM; 3531 else { 3532 root_stable_tree = buf; 3533 root_unstable_tree = buf + nr_node_ids; 3534 /* Stable tree is empty but not the unstable */ 3535 root_unstable_tree[0] = one_unstable_tree[0]; 3536 } 3537 } 3538 if (!err) { 3539 ksm_merge_across_nodes = knob; 3540 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3541 } 3542 } 3543 mutex_unlock(&ksm_thread_mutex); 3544 3545 return err ? err : count; 3546 } 3547 KSM_ATTR(merge_across_nodes); 3548 #endif 3549 3550 static ssize_t use_zero_pages_show(struct kobject *kobj, 3551 struct kobj_attribute *attr, char *buf) 3552 { 3553 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3554 } 3555 static ssize_t use_zero_pages_store(struct kobject *kobj, 3556 struct kobj_attribute *attr, 3557 const char *buf, size_t count) 3558 { 3559 int err; 3560 bool value; 3561 3562 err = kstrtobool(buf, &value); 3563 if (err) 3564 return -EINVAL; 3565 3566 ksm_use_zero_pages = value; 3567 3568 return count; 3569 } 3570 KSM_ATTR(use_zero_pages); 3571 3572 static ssize_t max_page_sharing_show(struct kobject *kobj, 3573 struct kobj_attribute *attr, char *buf) 3574 { 3575 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3576 } 3577 3578 static ssize_t max_page_sharing_store(struct kobject *kobj, 3579 struct kobj_attribute *attr, 3580 const char *buf, size_t count) 3581 { 3582 int err; 3583 int knob; 3584 3585 err = kstrtoint(buf, 10, &knob); 3586 if (err) 3587 return err; 3588 /* 3589 * When a KSM page is created it is shared by 2 mappings. This 3590 * being a signed comparison, it implicitly verifies it's not 3591 * negative. 3592 */ 3593 if (knob < 2) 3594 return -EINVAL; 3595 3596 if (READ_ONCE(ksm_max_page_sharing) == knob) 3597 return count; 3598 3599 mutex_lock(&ksm_thread_mutex); 3600 wait_while_offlining(); 3601 if (ksm_max_page_sharing != knob) { 3602 if (ksm_pages_shared || remove_all_stable_nodes()) 3603 err = -EBUSY; 3604 else 3605 ksm_max_page_sharing = knob; 3606 } 3607 mutex_unlock(&ksm_thread_mutex); 3608 3609 return err ? err : count; 3610 } 3611 KSM_ATTR(max_page_sharing); 3612 3613 static ssize_t pages_scanned_show(struct kobject *kobj, 3614 struct kobj_attribute *attr, char *buf) 3615 { 3616 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3617 } 3618 KSM_ATTR_RO(pages_scanned); 3619 3620 static ssize_t pages_shared_show(struct kobject *kobj, 3621 struct kobj_attribute *attr, char *buf) 3622 { 3623 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3624 } 3625 KSM_ATTR_RO(pages_shared); 3626 3627 static ssize_t pages_sharing_show(struct kobject *kobj, 3628 struct kobj_attribute *attr, char *buf) 3629 { 3630 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3631 } 3632 KSM_ATTR_RO(pages_sharing); 3633 3634 static ssize_t pages_unshared_show(struct kobject *kobj, 3635 struct kobj_attribute *attr, char *buf) 3636 { 3637 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3638 } 3639 KSM_ATTR_RO(pages_unshared); 3640 3641 static ssize_t pages_volatile_show(struct kobject *kobj, 3642 struct kobj_attribute *attr, char *buf) 3643 { 3644 long ksm_pages_volatile; 3645 3646 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3647 - ksm_pages_sharing - ksm_pages_unshared; 3648 /* 3649 * It was not worth any locking to calculate that statistic, 3650 * but it might therefore sometimes be negative: conceal that. 3651 */ 3652 if (ksm_pages_volatile < 0) 3653 ksm_pages_volatile = 0; 3654 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3655 } 3656 KSM_ATTR_RO(pages_volatile); 3657 3658 static ssize_t pages_skipped_show(struct kobject *kobj, 3659 struct kobj_attribute *attr, char *buf) 3660 { 3661 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3662 } 3663 KSM_ATTR_RO(pages_skipped); 3664 3665 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3666 struct kobj_attribute *attr, char *buf) 3667 { 3668 return sysfs_emit(buf, "%ld\n", ksm_zero_pages); 3669 } 3670 KSM_ATTR_RO(ksm_zero_pages); 3671 3672 static ssize_t general_profit_show(struct kobject *kobj, 3673 struct kobj_attribute *attr, char *buf) 3674 { 3675 long general_profit; 3676 3677 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - 3678 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3679 3680 return sysfs_emit(buf, "%ld\n", general_profit); 3681 } 3682 KSM_ATTR_RO(general_profit); 3683 3684 static ssize_t stable_node_dups_show(struct kobject *kobj, 3685 struct kobj_attribute *attr, char *buf) 3686 { 3687 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3688 } 3689 KSM_ATTR_RO(stable_node_dups); 3690 3691 static ssize_t stable_node_chains_show(struct kobject *kobj, 3692 struct kobj_attribute *attr, char *buf) 3693 { 3694 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3695 } 3696 KSM_ATTR_RO(stable_node_chains); 3697 3698 static ssize_t 3699 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3700 struct kobj_attribute *attr, 3701 char *buf) 3702 { 3703 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3704 } 3705 3706 static ssize_t 3707 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3708 struct kobj_attribute *attr, 3709 const char *buf, size_t count) 3710 { 3711 unsigned int msecs; 3712 int err; 3713 3714 err = kstrtouint(buf, 10, &msecs); 3715 if (err) 3716 return -EINVAL; 3717 3718 ksm_stable_node_chains_prune_millisecs = msecs; 3719 3720 return count; 3721 } 3722 KSM_ATTR(stable_node_chains_prune_millisecs); 3723 3724 static ssize_t full_scans_show(struct kobject *kobj, 3725 struct kobj_attribute *attr, char *buf) 3726 { 3727 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3728 } 3729 KSM_ATTR_RO(full_scans); 3730 3731 static ssize_t smart_scan_show(struct kobject *kobj, 3732 struct kobj_attribute *attr, char *buf) 3733 { 3734 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3735 } 3736 3737 static ssize_t smart_scan_store(struct kobject *kobj, 3738 struct kobj_attribute *attr, 3739 const char *buf, size_t count) 3740 { 3741 int err; 3742 bool value; 3743 3744 err = kstrtobool(buf, &value); 3745 if (err) 3746 return -EINVAL; 3747 3748 ksm_smart_scan = value; 3749 return count; 3750 } 3751 KSM_ATTR(smart_scan); 3752 3753 static ssize_t advisor_mode_show(struct kobject *kobj, 3754 struct kobj_attribute *attr, char *buf) 3755 { 3756 const char *output; 3757 3758 if (ksm_advisor == KSM_ADVISOR_NONE) 3759 output = "[none] scan-time"; 3760 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3761 output = "none [scan-time]"; 3762 3763 return sysfs_emit(buf, "%s\n", output); 3764 } 3765 3766 static ssize_t advisor_mode_store(struct kobject *kobj, 3767 struct kobj_attribute *attr, const char *buf, 3768 size_t count) 3769 { 3770 enum ksm_advisor_type curr_advisor = ksm_advisor; 3771 3772 if (sysfs_streq("scan-time", buf)) 3773 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3774 else if (sysfs_streq("none", buf)) 3775 ksm_advisor = KSM_ADVISOR_NONE; 3776 else 3777 return -EINVAL; 3778 3779 /* Set advisor default values */ 3780 if (curr_advisor != ksm_advisor) 3781 set_advisor_defaults(); 3782 3783 return count; 3784 } 3785 KSM_ATTR(advisor_mode); 3786 3787 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3788 struct kobj_attribute *attr, char *buf) 3789 { 3790 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3791 } 3792 3793 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3794 struct kobj_attribute *attr, 3795 const char *buf, size_t count) 3796 { 3797 int err; 3798 unsigned long value; 3799 3800 err = kstrtoul(buf, 10, &value); 3801 if (err) 3802 return -EINVAL; 3803 3804 ksm_advisor_max_cpu = value; 3805 return count; 3806 } 3807 KSM_ATTR(advisor_max_cpu); 3808 3809 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3810 struct kobj_attribute *attr, char *buf) 3811 { 3812 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3813 } 3814 3815 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3816 struct kobj_attribute *attr, 3817 const char *buf, size_t count) 3818 { 3819 int err; 3820 unsigned long value; 3821 3822 err = kstrtoul(buf, 10, &value); 3823 if (err) 3824 return -EINVAL; 3825 3826 ksm_advisor_min_pages_to_scan = value; 3827 return count; 3828 } 3829 KSM_ATTR(advisor_min_pages_to_scan); 3830 3831 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3832 struct kobj_attribute *attr, char *buf) 3833 { 3834 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3835 } 3836 3837 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3838 struct kobj_attribute *attr, 3839 const char *buf, size_t count) 3840 { 3841 int err; 3842 unsigned long value; 3843 3844 err = kstrtoul(buf, 10, &value); 3845 if (err) 3846 return -EINVAL; 3847 3848 ksm_advisor_max_pages_to_scan = value; 3849 return count; 3850 } 3851 KSM_ATTR(advisor_max_pages_to_scan); 3852 3853 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3854 struct kobj_attribute *attr, char *buf) 3855 { 3856 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3857 } 3858 3859 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3860 struct kobj_attribute *attr, 3861 const char *buf, size_t count) 3862 { 3863 int err; 3864 unsigned long value; 3865 3866 err = kstrtoul(buf, 10, &value); 3867 if (err) 3868 return -EINVAL; 3869 if (value < 1) 3870 return -EINVAL; 3871 3872 ksm_advisor_target_scan_time = value; 3873 return count; 3874 } 3875 KSM_ATTR(advisor_target_scan_time); 3876 3877 static struct attribute *ksm_attrs[] = { 3878 &sleep_millisecs_attr.attr, 3879 &pages_to_scan_attr.attr, 3880 &run_attr.attr, 3881 &pages_scanned_attr.attr, 3882 &pages_shared_attr.attr, 3883 &pages_sharing_attr.attr, 3884 &pages_unshared_attr.attr, 3885 &pages_volatile_attr.attr, 3886 &pages_skipped_attr.attr, 3887 &ksm_zero_pages_attr.attr, 3888 &full_scans_attr.attr, 3889 #ifdef CONFIG_NUMA 3890 &merge_across_nodes_attr.attr, 3891 #endif 3892 &max_page_sharing_attr.attr, 3893 &stable_node_chains_attr.attr, 3894 &stable_node_dups_attr.attr, 3895 &stable_node_chains_prune_millisecs_attr.attr, 3896 &use_zero_pages_attr.attr, 3897 &general_profit_attr.attr, 3898 &smart_scan_attr.attr, 3899 &advisor_mode_attr.attr, 3900 &advisor_max_cpu_attr.attr, 3901 &advisor_min_pages_to_scan_attr.attr, 3902 &advisor_max_pages_to_scan_attr.attr, 3903 &advisor_target_scan_time_attr.attr, 3904 NULL, 3905 }; 3906 3907 static const struct attribute_group ksm_attr_group = { 3908 .attrs = ksm_attrs, 3909 .name = "ksm", 3910 }; 3911 #endif /* CONFIG_SYSFS */ 3912 3913 static int __init ksm_init(void) 3914 { 3915 struct task_struct *ksm_thread; 3916 int err; 3917 3918 /* The correct value depends on page size and endianness */ 3919 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3920 /* Default to false for backwards compatibility */ 3921 ksm_use_zero_pages = false; 3922 3923 err = ksm_slab_init(); 3924 if (err) 3925 goto out; 3926 3927 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3928 if (IS_ERR(ksm_thread)) { 3929 pr_err("ksm: creating kthread failed\n"); 3930 err = PTR_ERR(ksm_thread); 3931 goto out_free; 3932 } 3933 3934 #ifdef CONFIG_SYSFS 3935 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3936 if (err) { 3937 pr_err("ksm: register sysfs failed\n"); 3938 kthread_stop(ksm_thread); 3939 goto out_free; 3940 } 3941 #else 3942 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3943 3944 #endif /* CONFIG_SYSFS */ 3945 3946 #ifdef CONFIG_MEMORY_HOTREMOVE 3947 /* There is no significance to this priority 100 */ 3948 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3949 #endif 3950 return 0; 3951 3952 out_free: 3953 ksm_slab_free(); 3954 out: 3955 return err; 3956 } 3957 subsys_initcall(ksm_init); 3958