1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same struct stable_node structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 220 /* The stable and unstable tree heads */ 221 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 222 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 223 static struct rb_root *root_stable_tree = one_stable_tree; 224 static struct rb_root *root_unstable_tree = one_unstable_tree; 225 226 /* Recently migrated nodes of stable tree, pending proper placement */ 227 static LIST_HEAD(migrate_nodes); 228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 229 230 #define MM_SLOTS_HASH_BITS 10 231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 232 233 static struct mm_slot ksm_mm_head = { 234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 235 }; 236 static struct ksm_scan ksm_scan = { 237 .mm_slot = &ksm_mm_head, 238 }; 239 240 static struct kmem_cache *rmap_item_cache; 241 static struct kmem_cache *stable_node_cache; 242 static struct kmem_cache *mm_slot_cache; 243 244 /* The number of nodes in the stable tree */ 245 static unsigned long ksm_pages_shared; 246 247 /* The number of page slots additionally sharing those nodes */ 248 static unsigned long ksm_pages_sharing; 249 250 /* The number of nodes in the unstable tree */ 251 static unsigned long ksm_pages_unshared; 252 253 /* The number of rmap_items in use: to calculate pages_volatile */ 254 static unsigned long ksm_rmap_items; 255 256 /* The number of stable_node chains */ 257 static unsigned long ksm_stable_node_chains; 258 259 /* The number of stable_node dups linked to the stable_node chains */ 260 static unsigned long ksm_stable_node_dups; 261 262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 264 265 /* Maximum number of page slots sharing a stable node */ 266 static int ksm_max_page_sharing = 256; 267 268 /* Number of pages ksmd should scan in one batch */ 269 static unsigned int ksm_thread_pages_to_scan = 100; 270 271 /* Milliseconds ksmd should sleep between batches */ 272 static unsigned int ksm_thread_sleep_millisecs = 20; 273 274 /* Checksum of an empty (zeroed) page */ 275 static unsigned int zero_checksum __read_mostly; 276 277 /* Whether to merge empty (zeroed) pages with actual zero pages */ 278 static bool ksm_use_zero_pages __read_mostly; 279 280 #ifdef CONFIG_NUMA 281 /* Zeroed when merging across nodes is not allowed */ 282 static unsigned int ksm_merge_across_nodes = 1; 283 static int ksm_nr_node_ids = 1; 284 #else 285 #define ksm_merge_across_nodes 1U 286 #define ksm_nr_node_ids 1 287 #endif 288 289 #define KSM_RUN_STOP 0 290 #define KSM_RUN_MERGE 1 291 #define KSM_RUN_UNMERGE 2 292 #define KSM_RUN_OFFLINE 4 293 static unsigned long ksm_run = KSM_RUN_STOP; 294 static void wait_while_offlining(void); 295 296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 298 static DEFINE_MUTEX(ksm_thread_mutex); 299 static DEFINE_SPINLOCK(ksm_mmlist_lock); 300 301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 302 sizeof(struct __struct), __alignof__(struct __struct),\ 303 (__flags), NULL) 304 305 static int __init ksm_slab_init(void) 306 { 307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 308 if (!rmap_item_cache) 309 goto out; 310 311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 312 if (!stable_node_cache) 313 goto out_free1; 314 315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 316 if (!mm_slot_cache) 317 goto out_free2; 318 319 return 0; 320 321 out_free2: 322 kmem_cache_destroy(stable_node_cache); 323 out_free1: 324 kmem_cache_destroy(rmap_item_cache); 325 out: 326 return -ENOMEM; 327 } 328 329 static void __init ksm_slab_free(void) 330 { 331 kmem_cache_destroy(mm_slot_cache); 332 kmem_cache_destroy(stable_node_cache); 333 kmem_cache_destroy(rmap_item_cache); 334 mm_slot_cache = NULL; 335 } 336 337 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 338 { 339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 340 } 341 342 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 343 { 344 return dup->head == STABLE_NODE_DUP_HEAD; 345 } 346 347 static inline void stable_node_chain_add_dup(struct stable_node *dup, 348 struct stable_node *chain) 349 { 350 VM_BUG_ON(is_stable_node_dup(dup)); 351 dup->head = STABLE_NODE_DUP_HEAD; 352 VM_BUG_ON(!is_stable_node_chain(chain)); 353 hlist_add_head(&dup->hlist_dup, &chain->hlist); 354 ksm_stable_node_dups++; 355 } 356 357 static inline void __stable_node_dup_del(struct stable_node *dup) 358 { 359 VM_BUG_ON(!is_stable_node_dup(dup)); 360 hlist_del(&dup->hlist_dup); 361 ksm_stable_node_dups--; 362 } 363 364 static inline void stable_node_dup_del(struct stable_node *dup) 365 { 366 VM_BUG_ON(is_stable_node_chain(dup)); 367 if (is_stable_node_dup(dup)) 368 __stable_node_dup_del(dup); 369 else 370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 371 #ifdef CONFIG_DEBUG_VM 372 dup->head = NULL; 373 #endif 374 } 375 376 static inline struct rmap_item *alloc_rmap_item(void) 377 { 378 struct rmap_item *rmap_item; 379 380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 381 __GFP_NORETRY | __GFP_NOWARN); 382 if (rmap_item) 383 ksm_rmap_items++; 384 return rmap_item; 385 } 386 387 static inline void free_rmap_item(struct rmap_item *rmap_item) 388 { 389 ksm_rmap_items--; 390 rmap_item->mm = NULL; /* debug safety */ 391 kmem_cache_free(rmap_item_cache, rmap_item); 392 } 393 394 static inline struct stable_node *alloc_stable_node(void) 395 { 396 /* 397 * The allocation can take too long with GFP_KERNEL when memory is under 398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 399 * grants access to memory reserves, helping to avoid this problem. 400 */ 401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 402 } 403 404 static inline void free_stable_node(struct stable_node *stable_node) 405 { 406 VM_BUG_ON(stable_node->rmap_hlist_len && 407 !is_stable_node_chain(stable_node)); 408 kmem_cache_free(stable_node_cache, stable_node); 409 } 410 411 static inline struct mm_slot *alloc_mm_slot(void) 412 { 413 if (!mm_slot_cache) /* initialization failed */ 414 return NULL; 415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 416 } 417 418 static inline void free_mm_slot(struct mm_slot *mm_slot) 419 { 420 kmem_cache_free(mm_slot_cache, mm_slot); 421 } 422 423 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 424 { 425 struct mm_slot *slot; 426 427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 428 if (slot->mm == mm) 429 return slot; 430 431 return NULL; 432 } 433 434 static void insert_to_mm_slots_hash(struct mm_struct *mm, 435 struct mm_slot *mm_slot) 436 { 437 mm_slot->mm = mm; 438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 439 } 440 441 /* 442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 443 * page tables after it has passed through ksm_exit() - which, if necessary, 444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 445 * a special flag: they can just back out as soon as mm_users goes to zero. 446 * ksm_test_exit() is used throughout to make this test for exit: in some 447 * places for correctness, in some places just to avoid unnecessary work. 448 */ 449 static inline bool ksm_test_exit(struct mm_struct *mm) 450 { 451 return atomic_read(&mm->mm_users) == 0; 452 } 453 454 /* 455 * We use break_ksm to break COW on a ksm page: it's a stripped down 456 * 457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 458 * put_page(page); 459 * 460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 struct page *page; 472 vm_fault_t ret = 0; 473 474 do { 475 cond_resched(); 476 page = follow_page(vma, addr, 477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 478 if (IS_ERR_OR_NULL(page)) 479 break; 480 if (PageKsm(page)) 481 ret = handle_mm_fault(vma, addr, 482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 483 NULL); 484 else 485 ret = VM_FAULT_WRITE; 486 put_page(page); 487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 488 /* 489 * We must loop because handle_mm_fault() may back out if there's 490 * any difficulty e.g. if pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 493 * COW has been broken, even if the vma does not permit VM_WRITE; 494 * but note that a concurrent fault might break PageKsm for us. 495 * 496 * VM_FAULT_SIGBUS could occur if we race with truncation of the 497 * backing file, which also invalidates anonymous pages: that's 498 * okay, that truncation will have unmapped the PageKsm for us. 499 * 500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 502 * current task has TIF_MEMDIE set, and will be OOM killed on return 503 * to user; and ksmd, having no mm, would never be chosen for that. 504 * 505 * But if the mm is in a limited mem_cgroup, then the fault may fail 506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 507 * even ksmd can fail in this way - though it's usually breaking ksm 508 * just to undo a merge it made a moment before, so unlikely to oom. 509 * 510 * That's a pity: we might therefore have more kernel pages allocated 511 * than we're counting as nodes in the stable tree; but ksm_do_scan 512 * will retry to break_cow on each pass, so should recover the page 513 * in due course. The important thing is to not let VM_MERGEABLE 514 * be cleared while any such pages might remain in the area. 515 */ 516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 517 } 518 519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 520 unsigned long addr) 521 { 522 struct vm_area_struct *vma; 523 if (ksm_test_exit(mm)) 524 return NULL; 525 vma = vma_lookup(mm, addr); 526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 527 return NULL; 528 return vma; 529 } 530 531 static void break_cow(struct rmap_item *rmap_item) 532 { 533 struct mm_struct *mm = rmap_item->mm; 534 unsigned long addr = rmap_item->address; 535 struct vm_area_struct *vma; 536 537 /* 538 * It is not an accident that whenever we want to break COW 539 * to undo, we also need to drop a reference to the anon_vma. 540 */ 541 put_anon_vma(rmap_item->anon_vma); 542 543 mmap_read_lock(mm); 544 vma = find_mergeable_vma(mm, addr); 545 if (vma) 546 break_ksm(vma, addr); 547 mmap_read_unlock(mm); 548 } 549 550 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 551 { 552 struct mm_struct *mm = rmap_item->mm; 553 unsigned long addr = rmap_item->address; 554 struct vm_area_struct *vma; 555 struct page *page; 556 557 mmap_read_lock(mm); 558 vma = find_mergeable_vma(mm, addr); 559 if (!vma) 560 goto out; 561 562 page = follow_page(vma, addr, FOLL_GET); 563 if (IS_ERR_OR_NULL(page)) 564 goto out; 565 if (PageAnon(page)) { 566 flush_anon_page(vma, page, addr); 567 flush_dcache_page(page); 568 } else { 569 put_page(page); 570 out: 571 page = NULL; 572 } 573 mmap_read_unlock(mm); 574 return page; 575 } 576 577 /* 578 * This helper is used for getting right index into array of tree roots. 579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 580 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 581 * every node has its own stable and unstable tree. 582 */ 583 static inline int get_kpfn_nid(unsigned long kpfn) 584 { 585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 586 } 587 588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 589 struct rb_root *root) 590 { 591 struct stable_node *chain = alloc_stable_node(); 592 VM_BUG_ON(is_stable_node_chain(dup)); 593 if (likely(chain)) { 594 INIT_HLIST_HEAD(&chain->hlist); 595 chain->chain_prune_time = jiffies; 596 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 598 chain->nid = NUMA_NO_NODE; /* debug */ 599 #endif 600 ksm_stable_node_chains++; 601 602 /* 603 * Put the stable node chain in the first dimension of 604 * the stable tree and at the same time remove the old 605 * stable node. 606 */ 607 rb_replace_node(&dup->node, &chain->node, root); 608 609 /* 610 * Move the old stable node to the second dimension 611 * queued in the hlist_dup. The invariant is that all 612 * dup stable_nodes in the chain->hlist point to pages 613 * that are write protected and have the exact same 614 * content. 615 */ 616 stable_node_chain_add_dup(dup, chain); 617 } 618 return chain; 619 } 620 621 static inline void free_stable_node_chain(struct stable_node *chain, 622 struct rb_root *root) 623 { 624 rb_erase(&chain->node, root); 625 free_stable_node(chain); 626 ksm_stable_node_chains--; 627 } 628 629 static void remove_node_from_stable_tree(struct stable_node *stable_node) 630 { 631 struct rmap_item *rmap_item; 632 633 /* check it's not STABLE_NODE_CHAIN or negative */ 634 BUG_ON(stable_node->rmap_hlist_len < 0); 635 636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 637 if (rmap_item->hlist.next) 638 ksm_pages_sharing--; 639 else 640 ksm_pages_shared--; 641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 642 stable_node->rmap_hlist_len--; 643 put_anon_vma(rmap_item->anon_vma); 644 rmap_item->address &= PAGE_MASK; 645 cond_resched(); 646 } 647 648 /* 649 * We need the second aligned pointer of the migrate_nodes 650 * list_head to stay clear from the rb_parent_color union 651 * (aligned and different than any node) and also different 652 * from &migrate_nodes. This will verify that future list.h changes 653 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 654 */ 655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 657 658 if (stable_node->head == &migrate_nodes) 659 list_del(&stable_node->list); 660 else 661 stable_node_dup_del(stable_node); 662 free_stable_node(stable_node); 663 } 664 665 enum get_ksm_page_flags { 666 GET_KSM_PAGE_NOLOCK, 667 GET_KSM_PAGE_LOCK, 668 GET_KSM_PAGE_TRYLOCK 669 }; 670 671 /* 672 * get_ksm_page: checks if the page indicated by the stable node 673 * is still its ksm page, despite having held no reference to it. 674 * In which case we can trust the content of the page, and it 675 * returns the gotten page; but if the page has now been zapped, 676 * remove the stale node from the stable tree and return NULL. 677 * But beware, the stable node's page might be being migrated. 678 * 679 * You would expect the stable_node to hold a reference to the ksm page. 680 * But if it increments the page's count, swapping out has to wait for 681 * ksmd to come around again before it can free the page, which may take 682 * seconds or even minutes: much too unresponsive. So instead we use a 683 * "keyhole reference": access to the ksm page from the stable node peeps 684 * out through its keyhole to see if that page still holds the right key, 685 * pointing back to this stable node. This relies on freeing a PageAnon 686 * page to reset its page->mapping to NULL, and relies on no other use of 687 * a page to put something that might look like our key in page->mapping. 688 * is on its way to being freed; but it is an anomaly to bear in mind. 689 */ 690 static struct page *get_ksm_page(struct stable_node *stable_node, 691 enum get_ksm_page_flags flags) 692 { 693 struct page *page; 694 void *expected_mapping; 695 unsigned long kpfn; 696 697 expected_mapping = (void *)((unsigned long)stable_node | 698 PAGE_MAPPING_KSM); 699 again: 700 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 701 page = pfn_to_page(kpfn); 702 if (READ_ONCE(page->mapping) != expected_mapping) 703 goto stale; 704 705 /* 706 * We cannot do anything with the page while its refcount is 0. 707 * Usually 0 means free, or tail of a higher-order page: in which 708 * case this node is no longer referenced, and should be freed; 709 * however, it might mean that the page is under page_ref_freeze(). 710 * The __remove_mapping() case is easy, again the node is now stale; 711 * the same is in reuse_ksm_page() case; but if page is swapcache 712 * in migrate_page_move_mapping(), it might still be our page, 713 * in which case it's essential to keep the node. 714 */ 715 while (!get_page_unless_zero(page)) { 716 /* 717 * Another check for page->mapping != expected_mapping would 718 * work here too. We have chosen the !PageSwapCache test to 719 * optimize the common case, when the page is or is about to 720 * be freed: PageSwapCache is cleared (under spin_lock_irq) 721 * in the ref_freeze section of __remove_mapping(); but Anon 722 * page->mapping reset to NULL later, in free_pages_prepare(). 723 */ 724 if (!PageSwapCache(page)) 725 goto stale; 726 cpu_relax(); 727 } 728 729 if (READ_ONCE(page->mapping) != expected_mapping) { 730 put_page(page); 731 goto stale; 732 } 733 734 if (flags == GET_KSM_PAGE_TRYLOCK) { 735 if (!trylock_page(page)) { 736 put_page(page); 737 return ERR_PTR(-EBUSY); 738 } 739 } else if (flags == GET_KSM_PAGE_LOCK) 740 lock_page(page); 741 742 if (flags != GET_KSM_PAGE_NOLOCK) { 743 if (READ_ONCE(page->mapping) != expected_mapping) { 744 unlock_page(page); 745 put_page(page); 746 goto stale; 747 } 748 } 749 return page; 750 751 stale: 752 /* 753 * We come here from above when page->mapping or !PageSwapCache 754 * suggests that the node is stale; but it might be under migration. 755 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 756 * before checking whether node->kpfn has been changed. 757 */ 758 smp_rmb(); 759 if (READ_ONCE(stable_node->kpfn) != kpfn) 760 goto again; 761 remove_node_from_stable_tree(stable_node); 762 return NULL; 763 } 764 765 /* 766 * Removing rmap_item from stable or unstable tree. 767 * This function will clean the information from the stable/unstable tree. 768 */ 769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 770 { 771 if (rmap_item->address & STABLE_FLAG) { 772 struct stable_node *stable_node; 773 struct page *page; 774 775 stable_node = rmap_item->head; 776 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 777 if (!page) 778 goto out; 779 780 hlist_del(&rmap_item->hlist); 781 unlock_page(page); 782 put_page(page); 783 784 if (!hlist_empty(&stable_node->hlist)) 785 ksm_pages_sharing--; 786 else 787 ksm_pages_shared--; 788 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 789 stable_node->rmap_hlist_len--; 790 791 put_anon_vma(rmap_item->anon_vma); 792 rmap_item->head = NULL; 793 rmap_item->address &= PAGE_MASK; 794 795 } else if (rmap_item->address & UNSTABLE_FLAG) { 796 unsigned char age; 797 /* 798 * Usually ksmd can and must skip the rb_erase, because 799 * root_unstable_tree was already reset to RB_ROOT. 800 * But be careful when an mm is exiting: do the rb_erase 801 * if this rmap_item was inserted by this scan, rather 802 * than left over from before. 803 */ 804 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 805 BUG_ON(age > 1); 806 if (!age) 807 rb_erase(&rmap_item->node, 808 root_unstable_tree + NUMA(rmap_item->nid)); 809 ksm_pages_unshared--; 810 rmap_item->address &= PAGE_MASK; 811 } 812 out: 813 cond_resched(); /* we're called from many long loops */ 814 } 815 816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list) 817 { 818 while (*rmap_list) { 819 struct rmap_item *rmap_item = *rmap_list; 820 *rmap_list = rmap_item->rmap_list; 821 remove_rmap_item_from_tree(rmap_item); 822 free_rmap_item(rmap_item); 823 } 824 } 825 826 /* 827 * Though it's very tempting to unmerge rmap_items from stable tree rather 828 * than check every pte of a given vma, the locking doesn't quite work for 829 * that - an rmap_item is assigned to the stable tree after inserting ksm 830 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 831 * rmap_items from parent to child at fork time (so as not to waste time 832 * if exit comes before the next scan reaches it). 833 * 834 * Similarly, although we'd like to remove rmap_items (so updating counts 835 * and freeing memory) when unmerging an area, it's easier to leave that 836 * to the next pass of ksmd - consider, for example, how ksmd might be 837 * in cmp_and_merge_page on one of the rmap_items we would be removing. 838 */ 839 static int unmerge_ksm_pages(struct vm_area_struct *vma, 840 unsigned long start, unsigned long end) 841 { 842 unsigned long addr; 843 int err = 0; 844 845 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 846 if (ksm_test_exit(vma->vm_mm)) 847 break; 848 if (signal_pending(current)) 849 err = -ERESTARTSYS; 850 else 851 err = break_ksm(vma, addr); 852 } 853 return err; 854 } 855 856 static inline struct stable_node *folio_stable_node(struct folio *folio) 857 { 858 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 859 } 860 861 static inline struct stable_node *page_stable_node(struct page *page) 862 { 863 return folio_stable_node(page_folio(page)); 864 } 865 866 static inline void set_page_stable_node(struct page *page, 867 struct stable_node *stable_node) 868 { 869 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 870 } 871 872 #ifdef CONFIG_SYSFS 873 /* 874 * Only called through the sysfs control interface: 875 */ 876 static int remove_stable_node(struct stable_node *stable_node) 877 { 878 struct page *page; 879 int err; 880 881 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 882 if (!page) { 883 /* 884 * get_ksm_page did remove_node_from_stable_tree itself. 885 */ 886 return 0; 887 } 888 889 /* 890 * Page could be still mapped if this races with __mmput() running in 891 * between ksm_exit() and exit_mmap(). Just refuse to let 892 * merge_across_nodes/max_page_sharing be switched. 893 */ 894 err = -EBUSY; 895 if (!page_mapped(page)) { 896 /* 897 * The stable node did not yet appear stale to get_ksm_page(), 898 * since that allows for an unmapped ksm page to be recognized 899 * right up until it is freed; but the node is safe to remove. 900 * This page might be in a pagevec waiting to be freed, 901 * or it might be PageSwapCache (perhaps under writeback), 902 * or it might have been removed from swapcache a moment ago. 903 */ 904 set_page_stable_node(page, NULL); 905 remove_node_from_stable_tree(stable_node); 906 err = 0; 907 } 908 909 unlock_page(page); 910 put_page(page); 911 return err; 912 } 913 914 static int remove_stable_node_chain(struct stable_node *stable_node, 915 struct rb_root *root) 916 { 917 struct stable_node *dup; 918 struct hlist_node *hlist_safe; 919 920 if (!is_stable_node_chain(stable_node)) { 921 VM_BUG_ON(is_stable_node_dup(stable_node)); 922 if (remove_stable_node(stable_node)) 923 return true; 924 else 925 return false; 926 } 927 928 hlist_for_each_entry_safe(dup, hlist_safe, 929 &stable_node->hlist, hlist_dup) { 930 VM_BUG_ON(!is_stable_node_dup(dup)); 931 if (remove_stable_node(dup)) 932 return true; 933 } 934 BUG_ON(!hlist_empty(&stable_node->hlist)); 935 free_stable_node_chain(stable_node, root); 936 return false; 937 } 938 939 static int remove_all_stable_nodes(void) 940 { 941 struct stable_node *stable_node, *next; 942 int nid; 943 int err = 0; 944 945 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 946 while (root_stable_tree[nid].rb_node) { 947 stable_node = rb_entry(root_stable_tree[nid].rb_node, 948 struct stable_node, node); 949 if (remove_stable_node_chain(stable_node, 950 root_stable_tree + nid)) { 951 err = -EBUSY; 952 break; /* proceed to next nid */ 953 } 954 cond_resched(); 955 } 956 } 957 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 958 if (remove_stable_node(stable_node)) 959 err = -EBUSY; 960 cond_resched(); 961 } 962 return err; 963 } 964 965 static int unmerge_and_remove_all_rmap_items(void) 966 { 967 struct mm_slot *mm_slot; 968 struct mm_struct *mm; 969 struct vm_area_struct *vma; 970 int err = 0; 971 972 spin_lock(&ksm_mmlist_lock); 973 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 974 struct mm_slot, mm_list); 975 spin_unlock(&ksm_mmlist_lock); 976 977 for (mm_slot = ksm_scan.mm_slot; 978 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 979 mm = mm_slot->mm; 980 mmap_read_lock(mm); 981 for (vma = mm->mmap; vma; vma = vma->vm_next) { 982 if (ksm_test_exit(mm)) 983 break; 984 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 985 continue; 986 err = unmerge_ksm_pages(vma, 987 vma->vm_start, vma->vm_end); 988 if (err) 989 goto error; 990 } 991 992 remove_trailing_rmap_items(&mm_slot->rmap_list); 993 mmap_read_unlock(mm); 994 995 spin_lock(&ksm_mmlist_lock); 996 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 997 struct mm_slot, mm_list); 998 if (ksm_test_exit(mm)) { 999 hash_del(&mm_slot->link); 1000 list_del(&mm_slot->mm_list); 1001 spin_unlock(&ksm_mmlist_lock); 1002 1003 free_mm_slot(mm_slot); 1004 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1005 mmdrop(mm); 1006 } else 1007 spin_unlock(&ksm_mmlist_lock); 1008 } 1009 1010 /* Clean up stable nodes, but don't worry if some are still busy */ 1011 remove_all_stable_nodes(); 1012 ksm_scan.seqnr = 0; 1013 return 0; 1014 1015 error: 1016 mmap_read_unlock(mm); 1017 spin_lock(&ksm_mmlist_lock); 1018 ksm_scan.mm_slot = &ksm_mm_head; 1019 spin_unlock(&ksm_mmlist_lock); 1020 return err; 1021 } 1022 #endif /* CONFIG_SYSFS */ 1023 1024 static u32 calc_checksum(struct page *page) 1025 { 1026 u32 checksum; 1027 void *addr = kmap_atomic(page); 1028 checksum = xxhash(addr, PAGE_SIZE, 0); 1029 kunmap_atomic(addr); 1030 return checksum; 1031 } 1032 1033 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1034 pte_t *orig_pte) 1035 { 1036 struct mm_struct *mm = vma->vm_mm; 1037 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1038 int swapped; 1039 int err = -EFAULT; 1040 struct mmu_notifier_range range; 1041 1042 pvmw.address = page_address_in_vma(page, vma); 1043 if (pvmw.address == -EFAULT) 1044 goto out; 1045 1046 BUG_ON(PageTransCompound(page)); 1047 1048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1049 pvmw.address, 1050 pvmw.address + PAGE_SIZE); 1051 mmu_notifier_invalidate_range_start(&range); 1052 1053 if (!page_vma_mapped_walk(&pvmw)) 1054 goto out_mn; 1055 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1056 goto out_unlock; 1057 1058 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1059 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1060 mm_tlb_flush_pending(mm)) { 1061 pte_t entry; 1062 1063 swapped = PageSwapCache(page); 1064 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1065 /* 1066 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1067 * take any lock, therefore the check that we are going to make 1068 * with the pagecount against the mapcount is racy and 1069 * O_DIRECT can happen right after the check. 1070 * So we clear the pte and flush the tlb before the check 1071 * this assure us that no O_DIRECT can happen after the check 1072 * or in the middle of the check. 1073 * 1074 * No need to notify as we are downgrading page table to read 1075 * only not changing it to point to a new page. 1076 * 1077 * See Documentation/vm/mmu_notifier.rst 1078 */ 1079 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1080 /* 1081 * Check that no O_DIRECT or similar I/O is in progress on the 1082 * page 1083 */ 1084 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1085 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1086 goto out_unlock; 1087 } 1088 if (pte_dirty(entry)) 1089 set_page_dirty(page); 1090 1091 if (pte_protnone(entry)) 1092 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1093 else 1094 entry = pte_mkclean(pte_wrprotect(entry)); 1095 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1096 } 1097 *orig_pte = *pvmw.pte; 1098 err = 0; 1099 1100 out_unlock: 1101 page_vma_mapped_walk_done(&pvmw); 1102 out_mn: 1103 mmu_notifier_invalidate_range_end(&range); 1104 out: 1105 return err; 1106 } 1107 1108 /** 1109 * replace_page - replace page in vma by new ksm page 1110 * @vma: vma that holds the pte pointing to page 1111 * @page: the page we are replacing by kpage 1112 * @kpage: the ksm page we replace page by 1113 * @orig_pte: the original value of the pte 1114 * 1115 * Returns 0 on success, -EFAULT on failure. 1116 */ 1117 static int replace_page(struct vm_area_struct *vma, struct page *page, 1118 struct page *kpage, pte_t orig_pte) 1119 { 1120 struct mm_struct *mm = vma->vm_mm; 1121 pmd_t *pmd; 1122 pte_t *ptep; 1123 pte_t newpte; 1124 spinlock_t *ptl; 1125 unsigned long addr; 1126 int err = -EFAULT; 1127 struct mmu_notifier_range range; 1128 1129 addr = page_address_in_vma(page, vma); 1130 if (addr == -EFAULT) 1131 goto out; 1132 1133 pmd = mm_find_pmd(mm, addr); 1134 if (!pmd) 1135 goto out; 1136 1137 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1138 addr + PAGE_SIZE); 1139 mmu_notifier_invalidate_range_start(&range); 1140 1141 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1142 if (!pte_same(*ptep, orig_pte)) { 1143 pte_unmap_unlock(ptep, ptl); 1144 goto out_mn; 1145 } 1146 1147 /* 1148 * No need to check ksm_use_zero_pages here: we can only have a 1149 * zero_page here if ksm_use_zero_pages was enabled already. 1150 */ 1151 if (!is_zero_pfn(page_to_pfn(kpage))) { 1152 get_page(kpage); 1153 page_add_anon_rmap(kpage, vma, addr, false); 1154 newpte = mk_pte(kpage, vma->vm_page_prot); 1155 } else { 1156 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1157 vma->vm_page_prot)); 1158 /* 1159 * We're replacing an anonymous page with a zero page, which is 1160 * not anonymous. We need to do proper accounting otherwise we 1161 * will get wrong values in /proc, and a BUG message in dmesg 1162 * when tearing down the mm. 1163 */ 1164 dec_mm_counter(mm, MM_ANONPAGES); 1165 } 1166 1167 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1168 /* 1169 * No need to notify as we are replacing a read only page with another 1170 * read only page with the same content. 1171 * 1172 * See Documentation/vm/mmu_notifier.rst 1173 */ 1174 ptep_clear_flush(vma, addr, ptep); 1175 set_pte_at_notify(mm, addr, ptep, newpte); 1176 1177 page_remove_rmap(page, vma, false); 1178 if (!page_mapped(page)) 1179 try_to_free_swap(page); 1180 put_page(page); 1181 1182 pte_unmap_unlock(ptep, ptl); 1183 err = 0; 1184 out_mn: 1185 mmu_notifier_invalidate_range_end(&range); 1186 out: 1187 return err; 1188 } 1189 1190 /* 1191 * try_to_merge_one_page - take two pages and merge them into one 1192 * @vma: the vma that holds the pte pointing to page 1193 * @page: the PageAnon page that we want to replace with kpage 1194 * @kpage: the PageKsm page that we want to map instead of page, 1195 * or NULL the first time when we want to use page as kpage. 1196 * 1197 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1198 */ 1199 static int try_to_merge_one_page(struct vm_area_struct *vma, 1200 struct page *page, struct page *kpage) 1201 { 1202 pte_t orig_pte = __pte(0); 1203 int err = -EFAULT; 1204 1205 if (page == kpage) /* ksm page forked */ 1206 return 0; 1207 1208 if (!PageAnon(page)) 1209 goto out; 1210 1211 /* 1212 * We need the page lock to read a stable PageSwapCache in 1213 * write_protect_page(). We use trylock_page() instead of 1214 * lock_page() because we don't want to wait here - we 1215 * prefer to continue scanning and merging different pages, 1216 * then come back to this page when it is unlocked. 1217 */ 1218 if (!trylock_page(page)) 1219 goto out; 1220 1221 if (PageTransCompound(page)) { 1222 if (split_huge_page(page)) 1223 goto out_unlock; 1224 } 1225 1226 /* 1227 * If this anonymous page is mapped only here, its pte may need 1228 * to be write-protected. If it's mapped elsewhere, all of its 1229 * ptes are necessarily already write-protected. But in either 1230 * case, we need to lock and check page_count is not raised. 1231 */ 1232 if (write_protect_page(vma, page, &orig_pte) == 0) { 1233 if (!kpage) { 1234 /* 1235 * While we hold page lock, upgrade page from 1236 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1237 * stable_tree_insert() will update stable_node. 1238 */ 1239 set_page_stable_node(page, NULL); 1240 mark_page_accessed(page); 1241 /* 1242 * Page reclaim just frees a clean page with no dirty 1243 * ptes: make sure that the ksm page would be swapped. 1244 */ 1245 if (!PageDirty(page)) 1246 SetPageDirty(page); 1247 err = 0; 1248 } else if (pages_identical(page, kpage)) 1249 err = replace_page(vma, page, kpage, orig_pte); 1250 } 1251 1252 out_unlock: 1253 unlock_page(page); 1254 out: 1255 return err; 1256 } 1257 1258 /* 1259 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1260 * but no new kernel page is allocated: kpage must already be a ksm page. 1261 * 1262 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1263 */ 1264 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1265 struct page *page, struct page *kpage) 1266 { 1267 struct mm_struct *mm = rmap_item->mm; 1268 struct vm_area_struct *vma; 1269 int err = -EFAULT; 1270 1271 mmap_read_lock(mm); 1272 vma = find_mergeable_vma(mm, rmap_item->address); 1273 if (!vma) 1274 goto out; 1275 1276 err = try_to_merge_one_page(vma, page, kpage); 1277 if (err) 1278 goto out; 1279 1280 /* Unstable nid is in union with stable anon_vma: remove first */ 1281 remove_rmap_item_from_tree(rmap_item); 1282 1283 /* Must get reference to anon_vma while still holding mmap_lock */ 1284 rmap_item->anon_vma = vma->anon_vma; 1285 get_anon_vma(vma->anon_vma); 1286 out: 1287 mmap_read_unlock(mm); 1288 return err; 1289 } 1290 1291 /* 1292 * try_to_merge_two_pages - take two identical pages and prepare them 1293 * to be merged into one page. 1294 * 1295 * This function returns the kpage if we successfully merged two identical 1296 * pages into one ksm page, NULL otherwise. 1297 * 1298 * Note that this function upgrades page to ksm page: if one of the pages 1299 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1300 */ 1301 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1302 struct page *page, 1303 struct rmap_item *tree_rmap_item, 1304 struct page *tree_page) 1305 { 1306 int err; 1307 1308 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1309 if (!err) { 1310 err = try_to_merge_with_ksm_page(tree_rmap_item, 1311 tree_page, page); 1312 /* 1313 * If that fails, we have a ksm page with only one pte 1314 * pointing to it: so break it. 1315 */ 1316 if (err) 1317 break_cow(rmap_item); 1318 } 1319 return err ? NULL : page; 1320 } 1321 1322 static __always_inline 1323 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1324 { 1325 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1326 /* 1327 * Check that at least one mapping still exists, otherwise 1328 * there's no much point to merge and share with this 1329 * stable_node, as the underlying tree_page of the other 1330 * sharer is going to be freed soon. 1331 */ 1332 return stable_node->rmap_hlist_len && 1333 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1334 } 1335 1336 static __always_inline 1337 bool is_page_sharing_candidate(struct stable_node *stable_node) 1338 { 1339 return __is_page_sharing_candidate(stable_node, 0); 1340 } 1341 1342 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1343 struct stable_node **_stable_node, 1344 struct rb_root *root, 1345 bool prune_stale_stable_nodes) 1346 { 1347 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1348 struct hlist_node *hlist_safe; 1349 struct page *_tree_page, *tree_page = NULL; 1350 int nr = 0; 1351 int found_rmap_hlist_len; 1352 1353 if (!prune_stale_stable_nodes || 1354 time_before(jiffies, stable_node->chain_prune_time + 1355 msecs_to_jiffies( 1356 ksm_stable_node_chains_prune_millisecs))) 1357 prune_stale_stable_nodes = false; 1358 else 1359 stable_node->chain_prune_time = jiffies; 1360 1361 hlist_for_each_entry_safe(dup, hlist_safe, 1362 &stable_node->hlist, hlist_dup) { 1363 cond_resched(); 1364 /* 1365 * We must walk all stable_node_dup to prune the stale 1366 * stable nodes during lookup. 1367 * 1368 * get_ksm_page can drop the nodes from the 1369 * stable_node->hlist if they point to freed pages 1370 * (that's why we do a _safe walk). The "dup" 1371 * stable_node parameter itself will be freed from 1372 * under us if it returns NULL. 1373 */ 1374 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1375 if (!_tree_page) 1376 continue; 1377 nr += 1; 1378 if (is_page_sharing_candidate(dup)) { 1379 if (!found || 1380 dup->rmap_hlist_len > found_rmap_hlist_len) { 1381 if (found) 1382 put_page(tree_page); 1383 found = dup; 1384 found_rmap_hlist_len = found->rmap_hlist_len; 1385 tree_page = _tree_page; 1386 1387 /* skip put_page for found dup */ 1388 if (!prune_stale_stable_nodes) 1389 break; 1390 continue; 1391 } 1392 } 1393 put_page(_tree_page); 1394 } 1395 1396 if (found) { 1397 /* 1398 * nr is counting all dups in the chain only if 1399 * prune_stale_stable_nodes is true, otherwise we may 1400 * break the loop at nr == 1 even if there are 1401 * multiple entries. 1402 */ 1403 if (prune_stale_stable_nodes && nr == 1) { 1404 /* 1405 * If there's not just one entry it would 1406 * corrupt memory, better BUG_ON. In KSM 1407 * context with no lock held it's not even 1408 * fatal. 1409 */ 1410 BUG_ON(stable_node->hlist.first->next); 1411 1412 /* 1413 * There's just one entry and it is below the 1414 * deduplication limit so drop the chain. 1415 */ 1416 rb_replace_node(&stable_node->node, &found->node, 1417 root); 1418 free_stable_node(stable_node); 1419 ksm_stable_node_chains--; 1420 ksm_stable_node_dups--; 1421 /* 1422 * NOTE: the caller depends on the stable_node 1423 * to be equal to stable_node_dup if the chain 1424 * was collapsed. 1425 */ 1426 *_stable_node = found; 1427 /* 1428 * Just for robustness, as stable_node is 1429 * otherwise left as a stable pointer, the 1430 * compiler shall optimize it away at build 1431 * time. 1432 */ 1433 stable_node = NULL; 1434 } else if (stable_node->hlist.first != &found->hlist_dup && 1435 __is_page_sharing_candidate(found, 1)) { 1436 /* 1437 * If the found stable_node dup can accept one 1438 * more future merge (in addition to the one 1439 * that is underway) and is not at the head of 1440 * the chain, put it there so next search will 1441 * be quicker in the !prune_stale_stable_nodes 1442 * case. 1443 * 1444 * NOTE: it would be inaccurate to use nr > 1 1445 * instead of checking the hlist.first pointer 1446 * directly, because in the 1447 * prune_stale_stable_nodes case "nr" isn't 1448 * the position of the found dup in the chain, 1449 * but the total number of dups in the chain. 1450 */ 1451 hlist_del(&found->hlist_dup); 1452 hlist_add_head(&found->hlist_dup, 1453 &stable_node->hlist); 1454 } 1455 } 1456 1457 *_stable_node_dup = found; 1458 return tree_page; 1459 } 1460 1461 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1462 struct rb_root *root) 1463 { 1464 if (!is_stable_node_chain(stable_node)) 1465 return stable_node; 1466 if (hlist_empty(&stable_node->hlist)) { 1467 free_stable_node_chain(stable_node, root); 1468 return NULL; 1469 } 1470 return hlist_entry(stable_node->hlist.first, 1471 typeof(*stable_node), hlist_dup); 1472 } 1473 1474 /* 1475 * Like for get_ksm_page, this function can free the *_stable_node and 1476 * *_stable_node_dup if the returned tree_page is NULL. 1477 * 1478 * It can also free and overwrite *_stable_node with the found 1479 * stable_node_dup if the chain is collapsed (in which case 1480 * *_stable_node will be equal to *_stable_node_dup like if the chain 1481 * never existed). It's up to the caller to verify tree_page is not 1482 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1483 * 1484 * *_stable_node_dup is really a second output parameter of this 1485 * function and will be overwritten in all cases, the caller doesn't 1486 * need to initialize it. 1487 */ 1488 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1489 struct stable_node **_stable_node, 1490 struct rb_root *root, 1491 bool prune_stale_stable_nodes) 1492 { 1493 struct stable_node *stable_node = *_stable_node; 1494 if (!is_stable_node_chain(stable_node)) { 1495 if (is_page_sharing_candidate(stable_node)) { 1496 *_stable_node_dup = stable_node; 1497 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1498 } 1499 /* 1500 * _stable_node_dup set to NULL means the stable_node 1501 * reached the ksm_max_page_sharing limit. 1502 */ 1503 *_stable_node_dup = NULL; 1504 return NULL; 1505 } 1506 return stable_node_dup(_stable_node_dup, _stable_node, root, 1507 prune_stale_stable_nodes); 1508 } 1509 1510 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1511 struct stable_node **s_n, 1512 struct rb_root *root) 1513 { 1514 return __stable_node_chain(s_n_d, s_n, root, true); 1515 } 1516 1517 static __always_inline struct page *chain(struct stable_node **s_n_d, 1518 struct stable_node *s_n, 1519 struct rb_root *root) 1520 { 1521 struct stable_node *old_stable_node = s_n; 1522 struct page *tree_page; 1523 1524 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1525 /* not pruning dups so s_n cannot have changed */ 1526 VM_BUG_ON(s_n != old_stable_node); 1527 return tree_page; 1528 } 1529 1530 /* 1531 * stable_tree_search - search for page inside the stable tree 1532 * 1533 * This function checks if there is a page inside the stable tree 1534 * with identical content to the page that we are scanning right now. 1535 * 1536 * This function returns the stable tree node of identical content if found, 1537 * NULL otherwise. 1538 */ 1539 static struct page *stable_tree_search(struct page *page) 1540 { 1541 int nid; 1542 struct rb_root *root; 1543 struct rb_node **new; 1544 struct rb_node *parent; 1545 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1546 struct stable_node *page_node; 1547 1548 page_node = page_stable_node(page); 1549 if (page_node && page_node->head != &migrate_nodes) { 1550 /* ksm page forked */ 1551 get_page(page); 1552 return page; 1553 } 1554 1555 nid = get_kpfn_nid(page_to_pfn(page)); 1556 root = root_stable_tree + nid; 1557 again: 1558 new = &root->rb_node; 1559 parent = NULL; 1560 1561 while (*new) { 1562 struct page *tree_page; 1563 int ret; 1564 1565 cond_resched(); 1566 stable_node = rb_entry(*new, struct stable_node, node); 1567 stable_node_any = NULL; 1568 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1569 /* 1570 * NOTE: stable_node may have been freed by 1571 * chain_prune() if the returned stable_node_dup is 1572 * not NULL. stable_node_dup may have been inserted in 1573 * the rbtree instead as a regular stable_node (in 1574 * order to collapse the stable_node chain if a single 1575 * stable_node dup was found in it). In such case the 1576 * stable_node is overwritten by the calleee to point 1577 * to the stable_node_dup that was collapsed in the 1578 * stable rbtree and stable_node will be equal to 1579 * stable_node_dup like if the chain never existed. 1580 */ 1581 if (!stable_node_dup) { 1582 /* 1583 * Either all stable_node dups were full in 1584 * this stable_node chain, or this chain was 1585 * empty and should be rb_erased. 1586 */ 1587 stable_node_any = stable_node_dup_any(stable_node, 1588 root); 1589 if (!stable_node_any) { 1590 /* rb_erase just run */ 1591 goto again; 1592 } 1593 /* 1594 * Take any of the stable_node dups page of 1595 * this stable_node chain to let the tree walk 1596 * continue. All KSM pages belonging to the 1597 * stable_node dups in a stable_node chain 1598 * have the same content and they're 1599 * write protected at all times. Any will work 1600 * fine to continue the walk. 1601 */ 1602 tree_page = get_ksm_page(stable_node_any, 1603 GET_KSM_PAGE_NOLOCK); 1604 } 1605 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1606 if (!tree_page) { 1607 /* 1608 * If we walked over a stale stable_node, 1609 * get_ksm_page() will call rb_erase() and it 1610 * may rebalance the tree from under us. So 1611 * restart the search from scratch. Returning 1612 * NULL would be safe too, but we'd generate 1613 * false negative insertions just because some 1614 * stable_node was stale. 1615 */ 1616 goto again; 1617 } 1618 1619 ret = memcmp_pages(page, tree_page); 1620 put_page(tree_page); 1621 1622 parent = *new; 1623 if (ret < 0) 1624 new = &parent->rb_left; 1625 else if (ret > 0) 1626 new = &parent->rb_right; 1627 else { 1628 if (page_node) { 1629 VM_BUG_ON(page_node->head != &migrate_nodes); 1630 /* 1631 * Test if the migrated page should be merged 1632 * into a stable node dup. If the mapcount is 1633 * 1 we can migrate it with another KSM page 1634 * without adding it to the chain. 1635 */ 1636 if (page_mapcount(page) > 1) 1637 goto chain_append; 1638 } 1639 1640 if (!stable_node_dup) { 1641 /* 1642 * If the stable_node is a chain and 1643 * we got a payload match in memcmp 1644 * but we cannot merge the scanned 1645 * page in any of the existing 1646 * stable_node dups because they're 1647 * all full, we need to wait the 1648 * scanned page to find itself a match 1649 * in the unstable tree to create a 1650 * brand new KSM page to add later to 1651 * the dups of this stable_node. 1652 */ 1653 return NULL; 1654 } 1655 1656 /* 1657 * Lock and unlock the stable_node's page (which 1658 * might already have been migrated) so that page 1659 * migration is sure to notice its raised count. 1660 * It would be more elegant to return stable_node 1661 * than kpage, but that involves more changes. 1662 */ 1663 tree_page = get_ksm_page(stable_node_dup, 1664 GET_KSM_PAGE_TRYLOCK); 1665 1666 if (PTR_ERR(tree_page) == -EBUSY) 1667 return ERR_PTR(-EBUSY); 1668 1669 if (unlikely(!tree_page)) 1670 /* 1671 * The tree may have been rebalanced, 1672 * so re-evaluate parent and new. 1673 */ 1674 goto again; 1675 unlock_page(tree_page); 1676 1677 if (get_kpfn_nid(stable_node_dup->kpfn) != 1678 NUMA(stable_node_dup->nid)) { 1679 put_page(tree_page); 1680 goto replace; 1681 } 1682 return tree_page; 1683 } 1684 } 1685 1686 if (!page_node) 1687 return NULL; 1688 1689 list_del(&page_node->list); 1690 DO_NUMA(page_node->nid = nid); 1691 rb_link_node(&page_node->node, parent, new); 1692 rb_insert_color(&page_node->node, root); 1693 out: 1694 if (is_page_sharing_candidate(page_node)) { 1695 get_page(page); 1696 return page; 1697 } else 1698 return NULL; 1699 1700 replace: 1701 /* 1702 * If stable_node was a chain and chain_prune collapsed it, 1703 * stable_node has been updated to be the new regular 1704 * stable_node. A collapse of the chain is indistinguishable 1705 * from the case there was no chain in the stable 1706 * rbtree. Otherwise stable_node is the chain and 1707 * stable_node_dup is the dup to replace. 1708 */ 1709 if (stable_node_dup == stable_node) { 1710 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1711 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1712 /* there is no chain */ 1713 if (page_node) { 1714 VM_BUG_ON(page_node->head != &migrate_nodes); 1715 list_del(&page_node->list); 1716 DO_NUMA(page_node->nid = nid); 1717 rb_replace_node(&stable_node_dup->node, 1718 &page_node->node, 1719 root); 1720 if (is_page_sharing_candidate(page_node)) 1721 get_page(page); 1722 else 1723 page = NULL; 1724 } else { 1725 rb_erase(&stable_node_dup->node, root); 1726 page = NULL; 1727 } 1728 } else { 1729 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1730 __stable_node_dup_del(stable_node_dup); 1731 if (page_node) { 1732 VM_BUG_ON(page_node->head != &migrate_nodes); 1733 list_del(&page_node->list); 1734 DO_NUMA(page_node->nid = nid); 1735 stable_node_chain_add_dup(page_node, stable_node); 1736 if (is_page_sharing_candidate(page_node)) 1737 get_page(page); 1738 else 1739 page = NULL; 1740 } else { 1741 page = NULL; 1742 } 1743 } 1744 stable_node_dup->head = &migrate_nodes; 1745 list_add(&stable_node_dup->list, stable_node_dup->head); 1746 return page; 1747 1748 chain_append: 1749 /* stable_node_dup could be null if it reached the limit */ 1750 if (!stable_node_dup) 1751 stable_node_dup = stable_node_any; 1752 /* 1753 * If stable_node was a chain and chain_prune collapsed it, 1754 * stable_node has been updated to be the new regular 1755 * stable_node. A collapse of the chain is indistinguishable 1756 * from the case there was no chain in the stable 1757 * rbtree. Otherwise stable_node is the chain and 1758 * stable_node_dup is the dup to replace. 1759 */ 1760 if (stable_node_dup == stable_node) { 1761 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1762 /* chain is missing so create it */ 1763 stable_node = alloc_stable_node_chain(stable_node_dup, 1764 root); 1765 if (!stable_node) 1766 return NULL; 1767 } 1768 /* 1769 * Add this stable_node dup that was 1770 * migrated to the stable_node chain 1771 * of the current nid for this page 1772 * content. 1773 */ 1774 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1775 VM_BUG_ON(page_node->head != &migrate_nodes); 1776 list_del(&page_node->list); 1777 DO_NUMA(page_node->nid = nid); 1778 stable_node_chain_add_dup(page_node, stable_node); 1779 goto out; 1780 } 1781 1782 /* 1783 * stable_tree_insert - insert stable tree node pointing to new ksm page 1784 * into the stable tree. 1785 * 1786 * This function returns the stable tree node just allocated on success, 1787 * NULL otherwise. 1788 */ 1789 static struct stable_node *stable_tree_insert(struct page *kpage) 1790 { 1791 int nid; 1792 unsigned long kpfn; 1793 struct rb_root *root; 1794 struct rb_node **new; 1795 struct rb_node *parent; 1796 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1797 bool need_chain = false; 1798 1799 kpfn = page_to_pfn(kpage); 1800 nid = get_kpfn_nid(kpfn); 1801 root = root_stable_tree + nid; 1802 again: 1803 parent = NULL; 1804 new = &root->rb_node; 1805 1806 while (*new) { 1807 struct page *tree_page; 1808 int ret; 1809 1810 cond_resched(); 1811 stable_node = rb_entry(*new, struct stable_node, node); 1812 stable_node_any = NULL; 1813 tree_page = chain(&stable_node_dup, stable_node, root); 1814 if (!stable_node_dup) { 1815 /* 1816 * Either all stable_node dups were full in 1817 * this stable_node chain, or this chain was 1818 * empty and should be rb_erased. 1819 */ 1820 stable_node_any = stable_node_dup_any(stable_node, 1821 root); 1822 if (!stable_node_any) { 1823 /* rb_erase just run */ 1824 goto again; 1825 } 1826 /* 1827 * Take any of the stable_node dups page of 1828 * this stable_node chain to let the tree walk 1829 * continue. All KSM pages belonging to the 1830 * stable_node dups in a stable_node chain 1831 * have the same content and they're 1832 * write protected at all times. Any will work 1833 * fine to continue the walk. 1834 */ 1835 tree_page = get_ksm_page(stable_node_any, 1836 GET_KSM_PAGE_NOLOCK); 1837 } 1838 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1839 if (!tree_page) { 1840 /* 1841 * If we walked over a stale stable_node, 1842 * get_ksm_page() will call rb_erase() and it 1843 * may rebalance the tree from under us. So 1844 * restart the search from scratch. Returning 1845 * NULL would be safe too, but we'd generate 1846 * false negative insertions just because some 1847 * stable_node was stale. 1848 */ 1849 goto again; 1850 } 1851 1852 ret = memcmp_pages(kpage, tree_page); 1853 put_page(tree_page); 1854 1855 parent = *new; 1856 if (ret < 0) 1857 new = &parent->rb_left; 1858 else if (ret > 0) 1859 new = &parent->rb_right; 1860 else { 1861 need_chain = true; 1862 break; 1863 } 1864 } 1865 1866 stable_node_dup = alloc_stable_node(); 1867 if (!stable_node_dup) 1868 return NULL; 1869 1870 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1871 stable_node_dup->kpfn = kpfn; 1872 set_page_stable_node(kpage, stable_node_dup); 1873 stable_node_dup->rmap_hlist_len = 0; 1874 DO_NUMA(stable_node_dup->nid = nid); 1875 if (!need_chain) { 1876 rb_link_node(&stable_node_dup->node, parent, new); 1877 rb_insert_color(&stable_node_dup->node, root); 1878 } else { 1879 if (!is_stable_node_chain(stable_node)) { 1880 struct stable_node *orig = stable_node; 1881 /* chain is missing so create it */ 1882 stable_node = alloc_stable_node_chain(orig, root); 1883 if (!stable_node) { 1884 free_stable_node(stable_node_dup); 1885 return NULL; 1886 } 1887 } 1888 stable_node_chain_add_dup(stable_node_dup, stable_node); 1889 } 1890 1891 return stable_node_dup; 1892 } 1893 1894 /* 1895 * unstable_tree_search_insert - search for identical page, 1896 * else insert rmap_item into the unstable tree. 1897 * 1898 * This function searches for a page in the unstable tree identical to the 1899 * page currently being scanned; and if no identical page is found in the 1900 * tree, we insert rmap_item as a new object into the unstable tree. 1901 * 1902 * This function returns pointer to rmap_item found to be identical 1903 * to the currently scanned page, NULL otherwise. 1904 * 1905 * This function does both searching and inserting, because they share 1906 * the same walking algorithm in an rbtree. 1907 */ 1908 static 1909 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1910 struct page *page, 1911 struct page **tree_pagep) 1912 { 1913 struct rb_node **new; 1914 struct rb_root *root; 1915 struct rb_node *parent = NULL; 1916 int nid; 1917 1918 nid = get_kpfn_nid(page_to_pfn(page)); 1919 root = root_unstable_tree + nid; 1920 new = &root->rb_node; 1921 1922 while (*new) { 1923 struct rmap_item *tree_rmap_item; 1924 struct page *tree_page; 1925 int ret; 1926 1927 cond_resched(); 1928 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1929 tree_page = get_mergeable_page(tree_rmap_item); 1930 if (!tree_page) 1931 return NULL; 1932 1933 /* 1934 * Don't substitute a ksm page for a forked page. 1935 */ 1936 if (page == tree_page) { 1937 put_page(tree_page); 1938 return NULL; 1939 } 1940 1941 ret = memcmp_pages(page, tree_page); 1942 1943 parent = *new; 1944 if (ret < 0) { 1945 put_page(tree_page); 1946 new = &parent->rb_left; 1947 } else if (ret > 0) { 1948 put_page(tree_page); 1949 new = &parent->rb_right; 1950 } else if (!ksm_merge_across_nodes && 1951 page_to_nid(tree_page) != nid) { 1952 /* 1953 * If tree_page has been migrated to another NUMA node, 1954 * it will be flushed out and put in the right unstable 1955 * tree next time: only merge with it when across_nodes. 1956 */ 1957 put_page(tree_page); 1958 return NULL; 1959 } else { 1960 *tree_pagep = tree_page; 1961 return tree_rmap_item; 1962 } 1963 } 1964 1965 rmap_item->address |= UNSTABLE_FLAG; 1966 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1967 DO_NUMA(rmap_item->nid = nid); 1968 rb_link_node(&rmap_item->node, parent, new); 1969 rb_insert_color(&rmap_item->node, root); 1970 1971 ksm_pages_unshared++; 1972 return NULL; 1973 } 1974 1975 /* 1976 * stable_tree_append - add another rmap_item to the linked list of 1977 * rmap_items hanging off a given node of the stable tree, all sharing 1978 * the same ksm page. 1979 */ 1980 static void stable_tree_append(struct rmap_item *rmap_item, 1981 struct stable_node *stable_node, 1982 bool max_page_sharing_bypass) 1983 { 1984 /* 1985 * rmap won't find this mapping if we don't insert the 1986 * rmap_item in the right stable_node 1987 * duplicate. page_migration could break later if rmap breaks, 1988 * so we can as well crash here. We really need to check for 1989 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1990 * for other negative values as an underflow if detected here 1991 * for the first time (and not when decreasing rmap_hlist_len) 1992 * would be sign of memory corruption in the stable_node. 1993 */ 1994 BUG_ON(stable_node->rmap_hlist_len < 0); 1995 1996 stable_node->rmap_hlist_len++; 1997 if (!max_page_sharing_bypass) 1998 /* possibly non fatal but unexpected overflow, only warn */ 1999 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2000 ksm_max_page_sharing); 2001 2002 rmap_item->head = stable_node; 2003 rmap_item->address |= STABLE_FLAG; 2004 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2005 2006 if (rmap_item->hlist.next) 2007 ksm_pages_sharing++; 2008 else 2009 ksm_pages_shared++; 2010 } 2011 2012 /* 2013 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2014 * if not, compare checksum to previous and if it's the same, see if page can 2015 * be inserted into the unstable tree, or merged with a page already there and 2016 * both transferred to the stable tree. 2017 * 2018 * @page: the page that we are searching identical page to. 2019 * @rmap_item: the reverse mapping into the virtual address of this page 2020 */ 2021 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2022 { 2023 struct mm_struct *mm = rmap_item->mm; 2024 struct rmap_item *tree_rmap_item; 2025 struct page *tree_page = NULL; 2026 struct stable_node *stable_node; 2027 struct page *kpage; 2028 unsigned int checksum; 2029 int err; 2030 bool max_page_sharing_bypass = false; 2031 2032 stable_node = page_stable_node(page); 2033 if (stable_node) { 2034 if (stable_node->head != &migrate_nodes && 2035 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2036 NUMA(stable_node->nid)) { 2037 stable_node_dup_del(stable_node); 2038 stable_node->head = &migrate_nodes; 2039 list_add(&stable_node->list, stable_node->head); 2040 } 2041 if (stable_node->head != &migrate_nodes && 2042 rmap_item->head == stable_node) 2043 return; 2044 /* 2045 * If it's a KSM fork, allow it to go over the sharing limit 2046 * without warnings. 2047 */ 2048 if (!is_page_sharing_candidate(stable_node)) 2049 max_page_sharing_bypass = true; 2050 } 2051 2052 /* We first start with searching the page inside the stable tree */ 2053 kpage = stable_tree_search(page); 2054 if (kpage == page && rmap_item->head == stable_node) { 2055 put_page(kpage); 2056 return; 2057 } 2058 2059 remove_rmap_item_from_tree(rmap_item); 2060 2061 if (kpage) { 2062 if (PTR_ERR(kpage) == -EBUSY) 2063 return; 2064 2065 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2066 if (!err) { 2067 /* 2068 * The page was successfully merged: 2069 * add its rmap_item to the stable tree. 2070 */ 2071 lock_page(kpage); 2072 stable_tree_append(rmap_item, page_stable_node(kpage), 2073 max_page_sharing_bypass); 2074 unlock_page(kpage); 2075 } 2076 put_page(kpage); 2077 return; 2078 } 2079 2080 /* 2081 * If the hash value of the page has changed from the last time 2082 * we calculated it, this page is changing frequently: therefore we 2083 * don't want to insert it in the unstable tree, and we don't want 2084 * to waste our time searching for something identical to it there. 2085 */ 2086 checksum = calc_checksum(page); 2087 if (rmap_item->oldchecksum != checksum) { 2088 rmap_item->oldchecksum = checksum; 2089 return; 2090 } 2091 2092 /* 2093 * Same checksum as an empty page. We attempt to merge it with the 2094 * appropriate zero page if the user enabled this via sysfs. 2095 */ 2096 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2097 struct vm_area_struct *vma; 2098 2099 mmap_read_lock(mm); 2100 vma = find_mergeable_vma(mm, rmap_item->address); 2101 if (vma) { 2102 err = try_to_merge_one_page(vma, page, 2103 ZERO_PAGE(rmap_item->address)); 2104 } else { 2105 /* 2106 * If the vma is out of date, we do not need to 2107 * continue. 2108 */ 2109 err = 0; 2110 } 2111 mmap_read_unlock(mm); 2112 /* 2113 * In case of failure, the page was not really empty, so we 2114 * need to continue. Otherwise we're done. 2115 */ 2116 if (!err) 2117 return; 2118 } 2119 tree_rmap_item = 2120 unstable_tree_search_insert(rmap_item, page, &tree_page); 2121 if (tree_rmap_item) { 2122 bool split; 2123 2124 kpage = try_to_merge_two_pages(rmap_item, page, 2125 tree_rmap_item, tree_page); 2126 /* 2127 * If both pages we tried to merge belong to the same compound 2128 * page, then we actually ended up increasing the reference 2129 * count of the same compound page twice, and split_huge_page 2130 * failed. 2131 * Here we set a flag if that happened, and we use it later to 2132 * try split_huge_page again. Since we call put_page right 2133 * afterwards, the reference count will be correct and 2134 * split_huge_page should succeed. 2135 */ 2136 split = PageTransCompound(page) 2137 && compound_head(page) == compound_head(tree_page); 2138 put_page(tree_page); 2139 if (kpage) { 2140 /* 2141 * The pages were successfully merged: insert new 2142 * node in the stable tree and add both rmap_items. 2143 */ 2144 lock_page(kpage); 2145 stable_node = stable_tree_insert(kpage); 2146 if (stable_node) { 2147 stable_tree_append(tree_rmap_item, stable_node, 2148 false); 2149 stable_tree_append(rmap_item, stable_node, 2150 false); 2151 } 2152 unlock_page(kpage); 2153 2154 /* 2155 * If we fail to insert the page into the stable tree, 2156 * we will have 2 virtual addresses that are pointing 2157 * to a ksm page left outside the stable tree, 2158 * in which case we need to break_cow on both. 2159 */ 2160 if (!stable_node) { 2161 break_cow(tree_rmap_item); 2162 break_cow(rmap_item); 2163 } 2164 } else if (split) { 2165 /* 2166 * We are here if we tried to merge two pages and 2167 * failed because they both belonged to the same 2168 * compound page. We will split the page now, but no 2169 * merging will take place. 2170 * We do not want to add the cost of a full lock; if 2171 * the page is locked, it is better to skip it and 2172 * perhaps try again later. 2173 */ 2174 if (!trylock_page(page)) 2175 return; 2176 split_huge_page(page); 2177 unlock_page(page); 2178 } 2179 } 2180 } 2181 2182 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2183 struct rmap_item **rmap_list, 2184 unsigned long addr) 2185 { 2186 struct rmap_item *rmap_item; 2187 2188 while (*rmap_list) { 2189 rmap_item = *rmap_list; 2190 if ((rmap_item->address & PAGE_MASK) == addr) 2191 return rmap_item; 2192 if (rmap_item->address > addr) 2193 break; 2194 *rmap_list = rmap_item->rmap_list; 2195 remove_rmap_item_from_tree(rmap_item); 2196 free_rmap_item(rmap_item); 2197 } 2198 2199 rmap_item = alloc_rmap_item(); 2200 if (rmap_item) { 2201 /* It has already been zeroed */ 2202 rmap_item->mm = mm_slot->mm; 2203 rmap_item->address = addr; 2204 rmap_item->rmap_list = *rmap_list; 2205 *rmap_list = rmap_item; 2206 } 2207 return rmap_item; 2208 } 2209 2210 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2211 { 2212 struct mm_struct *mm; 2213 struct mm_slot *slot; 2214 struct vm_area_struct *vma; 2215 struct rmap_item *rmap_item; 2216 int nid; 2217 2218 if (list_empty(&ksm_mm_head.mm_list)) 2219 return NULL; 2220 2221 slot = ksm_scan.mm_slot; 2222 if (slot == &ksm_mm_head) { 2223 /* 2224 * A number of pages can hang around indefinitely on per-cpu 2225 * pagevecs, raised page count preventing write_protect_page 2226 * from merging them. Though it doesn't really matter much, 2227 * it is puzzling to see some stuck in pages_volatile until 2228 * other activity jostles them out, and they also prevented 2229 * LTP's KSM test from succeeding deterministically; so drain 2230 * them here (here rather than on entry to ksm_do_scan(), 2231 * so we don't IPI too often when pages_to_scan is set low). 2232 */ 2233 lru_add_drain_all(); 2234 2235 /* 2236 * Whereas stale stable_nodes on the stable_tree itself 2237 * get pruned in the regular course of stable_tree_search(), 2238 * those moved out to the migrate_nodes list can accumulate: 2239 * so prune them once before each full scan. 2240 */ 2241 if (!ksm_merge_across_nodes) { 2242 struct stable_node *stable_node, *next; 2243 struct page *page; 2244 2245 list_for_each_entry_safe(stable_node, next, 2246 &migrate_nodes, list) { 2247 page = get_ksm_page(stable_node, 2248 GET_KSM_PAGE_NOLOCK); 2249 if (page) 2250 put_page(page); 2251 cond_resched(); 2252 } 2253 } 2254 2255 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2256 root_unstable_tree[nid] = RB_ROOT; 2257 2258 spin_lock(&ksm_mmlist_lock); 2259 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2260 ksm_scan.mm_slot = slot; 2261 spin_unlock(&ksm_mmlist_lock); 2262 /* 2263 * Although we tested list_empty() above, a racing __ksm_exit 2264 * of the last mm on the list may have removed it since then. 2265 */ 2266 if (slot == &ksm_mm_head) 2267 return NULL; 2268 next_mm: 2269 ksm_scan.address = 0; 2270 ksm_scan.rmap_list = &slot->rmap_list; 2271 } 2272 2273 mm = slot->mm; 2274 mmap_read_lock(mm); 2275 if (ksm_test_exit(mm)) 2276 vma = NULL; 2277 else 2278 vma = find_vma(mm, ksm_scan.address); 2279 2280 for (; vma; vma = vma->vm_next) { 2281 if (!(vma->vm_flags & VM_MERGEABLE)) 2282 continue; 2283 if (ksm_scan.address < vma->vm_start) 2284 ksm_scan.address = vma->vm_start; 2285 if (!vma->anon_vma) 2286 ksm_scan.address = vma->vm_end; 2287 2288 while (ksm_scan.address < vma->vm_end) { 2289 if (ksm_test_exit(mm)) 2290 break; 2291 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2292 if (IS_ERR_OR_NULL(*page)) { 2293 ksm_scan.address += PAGE_SIZE; 2294 cond_resched(); 2295 continue; 2296 } 2297 if (PageAnon(*page)) { 2298 flush_anon_page(vma, *page, ksm_scan.address); 2299 flush_dcache_page(*page); 2300 rmap_item = get_next_rmap_item(slot, 2301 ksm_scan.rmap_list, ksm_scan.address); 2302 if (rmap_item) { 2303 ksm_scan.rmap_list = 2304 &rmap_item->rmap_list; 2305 ksm_scan.address += PAGE_SIZE; 2306 } else 2307 put_page(*page); 2308 mmap_read_unlock(mm); 2309 return rmap_item; 2310 } 2311 put_page(*page); 2312 ksm_scan.address += PAGE_SIZE; 2313 cond_resched(); 2314 } 2315 } 2316 2317 if (ksm_test_exit(mm)) { 2318 ksm_scan.address = 0; 2319 ksm_scan.rmap_list = &slot->rmap_list; 2320 } 2321 /* 2322 * Nuke all the rmap_items that are above this current rmap: 2323 * because there were no VM_MERGEABLE vmas with such addresses. 2324 */ 2325 remove_trailing_rmap_items(ksm_scan.rmap_list); 2326 2327 spin_lock(&ksm_mmlist_lock); 2328 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2329 struct mm_slot, mm_list); 2330 if (ksm_scan.address == 0) { 2331 /* 2332 * We've completed a full scan of all vmas, holding mmap_lock 2333 * throughout, and found no VM_MERGEABLE: so do the same as 2334 * __ksm_exit does to remove this mm from all our lists now. 2335 * This applies either when cleaning up after __ksm_exit 2336 * (but beware: we can reach here even before __ksm_exit), 2337 * or when all VM_MERGEABLE areas have been unmapped (and 2338 * mmap_lock then protects against race with MADV_MERGEABLE). 2339 */ 2340 hash_del(&slot->link); 2341 list_del(&slot->mm_list); 2342 spin_unlock(&ksm_mmlist_lock); 2343 2344 free_mm_slot(slot); 2345 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2346 mmap_read_unlock(mm); 2347 mmdrop(mm); 2348 } else { 2349 mmap_read_unlock(mm); 2350 /* 2351 * mmap_read_unlock(mm) first because after 2352 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2353 * already have been freed under us by __ksm_exit() 2354 * because the "mm_slot" is still hashed and 2355 * ksm_scan.mm_slot doesn't point to it anymore. 2356 */ 2357 spin_unlock(&ksm_mmlist_lock); 2358 } 2359 2360 /* Repeat until we've completed scanning the whole list */ 2361 slot = ksm_scan.mm_slot; 2362 if (slot != &ksm_mm_head) 2363 goto next_mm; 2364 2365 ksm_scan.seqnr++; 2366 return NULL; 2367 } 2368 2369 /** 2370 * ksm_do_scan - the ksm scanner main worker function. 2371 * @scan_npages: number of pages we want to scan before we return. 2372 */ 2373 static void ksm_do_scan(unsigned int scan_npages) 2374 { 2375 struct rmap_item *rmap_item; 2376 struct page *page; 2377 2378 while (scan_npages-- && likely(!freezing(current))) { 2379 cond_resched(); 2380 rmap_item = scan_get_next_rmap_item(&page); 2381 if (!rmap_item) 2382 return; 2383 cmp_and_merge_page(page, rmap_item); 2384 put_page(page); 2385 } 2386 } 2387 2388 static int ksmd_should_run(void) 2389 { 2390 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2391 } 2392 2393 static int ksm_scan_thread(void *nothing) 2394 { 2395 unsigned int sleep_ms; 2396 2397 set_freezable(); 2398 set_user_nice(current, 5); 2399 2400 while (!kthread_should_stop()) { 2401 mutex_lock(&ksm_thread_mutex); 2402 wait_while_offlining(); 2403 if (ksmd_should_run()) 2404 ksm_do_scan(ksm_thread_pages_to_scan); 2405 mutex_unlock(&ksm_thread_mutex); 2406 2407 try_to_freeze(); 2408 2409 if (ksmd_should_run()) { 2410 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2411 wait_event_interruptible_timeout(ksm_iter_wait, 2412 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2413 msecs_to_jiffies(sleep_ms)); 2414 } else { 2415 wait_event_freezable(ksm_thread_wait, 2416 ksmd_should_run() || kthread_should_stop()); 2417 } 2418 } 2419 return 0; 2420 } 2421 2422 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2423 unsigned long end, int advice, unsigned long *vm_flags) 2424 { 2425 struct mm_struct *mm = vma->vm_mm; 2426 int err; 2427 2428 switch (advice) { 2429 case MADV_MERGEABLE: 2430 /* 2431 * Be somewhat over-protective for now! 2432 */ 2433 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2434 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2435 VM_HUGETLB | VM_MIXEDMAP)) 2436 return 0; /* just ignore the advice */ 2437 2438 if (vma_is_dax(vma)) 2439 return 0; 2440 2441 #ifdef VM_SAO 2442 if (*vm_flags & VM_SAO) 2443 return 0; 2444 #endif 2445 #ifdef VM_SPARC_ADI 2446 if (*vm_flags & VM_SPARC_ADI) 2447 return 0; 2448 #endif 2449 2450 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2451 err = __ksm_enter(mm); 2452 if (err) 2453 return err; 2454 } 2455 2456 *vm_flags |= VM_MERGEABLE; 2457 break; 2458 2459 case MADV_UNMERGEABLE: 2460 if (!(*vm_flags & VM_MERGEABLE)) 2461 return 0; /* just ignore the advice */ 2462 2463 if (vma->anon_vma) { 2464 err = unmerge_ksm_pages(vma, start, end); 2465 if (err) 2466 return err; 2467 } 2468 2469 *vm_flags &= ~VM_MERGEABLE; 2470 break; 2471 } 2472 2473 return 0; 2474 } 2475 EXPORT_SYMBOL_GPL(ksm_madvise); 2476 2477 int __ksm_enter(struct mm_struct *mm) 2478 { 2479 struct mm_slot *mm_slot; 2480 int needs_wakeup; 2481 2482 mm_slot = alloc_mm_slot(); 2483 if (!mm_slot) 2484 return -ENOMEM; 2485 2486 /* Check ksm_run too? Would need tighter locking */ 2487 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2488 2489 spin_lock(&ksm_mmlist_lock); 2490 insert_to_mm_slots_hash(mm, mm_slot); 2491 /* 2492 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2493 * insert just behind the scanning cursor, to let the area settle 2494 * down a little; when fork is followed by immediate exec, we don't 2495 * want ksmd to waste time setting up and tearing down an rmap_list. 2496 * 2497 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2498 * scanning cursor, otherwise KSM pages in newly forked mms will be 2499 * missed: then we might as well insert at the end of the list. 2500 */ 2501 if (ksm_run & KSM_RUN_UNMERGE) 2502 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2503 else 2504 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2505 spin_unlock(&ksm_mmlist_lock); 2506 2507 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2508 mmgrab(mm); 2509 2510 if (needs_wakeup) 2511 wake_up_interruptible(&ksm_thread_wait); 2512 2513 return 0; 2514 } 2515 2516 void __ksm_exit(struct mm_struct *mm) 2517 { 2518 struct mm_slot *mm_slot; 2519 int easy_to_free = 0; 2520 2521 /* 2522 * This process is exiting: if it's straightforward (as is the 2523 * case when ksmd was never running), free mm_slot immediately. 2524 * But if it's at the cursor or has rmap_items linked to it, use 2525 * mmap_lock to synchronize with any break_cows before pagetables 2526 * are freed, and leave the mm_slot on the list for ksmd to free. 2527 * Beware: ksm may already have noticed it exiting and freed the slot. 2528 */ 2529 2530 spin_lock(&ksm_mmlist_lock); 2531 mm_slot = get_mm_slot(mm); 2532 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2533 if (!mm_slot->rmap_list) { 2534 hash_del(&mm_slot->link); 2535 list_del(&mm_slot->mm_list); 2536 easy_to_free = 1; 2537 } else { 2538 list_move(&mm_slot->mm_list, 2539 &ksm_scan.mm_slot->mm_list); 2540 } 2541 } 2542 spin_unlock(&ksm_mmlist_lock); 2543 2544 if (easy_to_free) { 2545 free_mm_slot(mm_slot); 2546 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2547 mmdrop(mm); 2548 } else if (mm_slot) { 2549 mmap_write_lock(mm); 2550 mmap_write_unlock(mm); 2551 } 2552 } 2553 2554 struct page *ksm_might_need_to_copy(struct page *page, 2555 struct vm_area_struct *vma, unsigned long address) 2556 { 2557 struct folio *folio = page_folio(page); 2558 struct anon_vma *anon_vma = folio_anon_vma(folio); 2559 struct page *new_page; 2560 2561 if (PageKsm(page)) { 2562 if (page_stable_node(page) && 2563 !(ksm_run & KSM_RUN_UNMERGE)) 2564 return page; /* no need to copy it */ 2565 } else if (!anon_vma) { 2566 return page; /* no need to copy it */ 2567 } else if (page->index == linear_page_index(vma, address) && 2568 anon_vma->root == vma->anon_vma->root) { 2569 return page; /* still no need to copy it */ 2570 } 2571 if (!PageUptodate(page)) 2572 return page; /* let do_swap_page report the error */ 2573 2574 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2575 if (new_page && 2576 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2577 put_page(new_page); 2578 new_page = NULL; 2579 } 2580 if (new_page) { 2581 copy_user_highpage(new_page, page, address, vma); 2582 2583 SetPageDirty(new_page); 2584 __SetPageUptodate(new_page); 2585 __SetPageLocked(new_page); 2586 #ifdef CONFIG_SWAP 2587 count_vm_event(KSM_SWPIN_COPY); 2588 #endif 2589 } 2590 2591 return new_page; 2592 } 2593 2594 void rmap_walk_ksm(struct folio *folio, const struct rmap_walk_control *rwc) 2595 { 2596 struct stable_node *stable_node; 2597 struct rmap_item *rmap_item; 2598 int search_new_forks = 0; 2599 2600 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2601 2602 /* 2603 * Rely on the page lock to protect against concurrent modifications 2604 * to that page's node of the stable tree. 2605 */ 2606 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2607 2608 stable_node = folio_stable_node(folio); 2609 if (!stable_node) 2610 return; 2611 again: 2612 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2613 struct anon_vma *anon_vma = rmap_item->anon_vma; 2614 struct anon_vma_chain *vmac; 2615 struct vm_area_struct *vma; 2616 2617 cond_resched(); 2618 anon_vma_lock_read(anon_vma); 2619 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2620 0, ULONG_MAX) { 2621 unsigned long addr; 2622 2623 cond_resched(); 2624 vma = vmac->vma; 2625 2626 /* Ignore the stable/unstable/sqnr flags */ 2627 addr = rmap_item->address & PAGE_MASK; 2628 2629 if (addr < vma->vm_start || addr >= vma->vm_end) 2630 continue; 2631 /* 2632 * Initially we examine only the vma which covers this 2633 * rmap_item; but later, if there is still work to do, 2634 * we examine covering vmas in other mms: in case they 2635 * were forked from the original since ksmd passed. 2636 */ 2637 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2638 continue; 2639 2640 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2641 continue; 2642 2643 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2644 anon_vma_unlock_read(anon_vma); 2645 return; 2646 } 2647 if (rwc->done && rwc->done(folio)) { 2648 anon_vma_unlock_read(anon_vma); 2649 return; 2650 } 2651 } 2652 anon_vma_unlock_read(anon_vma); 2653 } 2654 if (!search_new_forks++) 2655 goto again; 2656 } 2657 2658 #ifdef CONFIG_MIGRATION 2659 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2660 { 2661 struct stable_node *stable_node; 2662 2663 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2664 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2665 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2666 2667 stable_node = folio_stable_node(folio); 2668 if (stable_node) { 2669 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2670 stable_node->kpfn = folio_pfn(newfolio); 2671 /* 2672 * newfolio->mapping was set in advance; now we need smp_wmb() 2673 * to make sure that the new stable_node->kpfn is visible 2674 * to get_ksm_page() before it can see that folio->mapping 2675 * has gone stale (or that folio_test_swapcache has been cleared). 2676 */ 2677 smp_wmb(); 2678 set_page_stable_node(&folio->page, NULL); 2679 } 2680 } 2681 #endif /* CONFIG_MIGRATION */ 2682 2683 #ifdef CONFIG_MEMORY_HOTREMOVE 2684 static void wait_while_offlining(void) 2685 { 2686 while (ksm_run & KSM_RUN_OFFLINE) { 2687 mutex_unlock(&ksm_thread_mutex); 2688 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2689 TASK_UNINTERRUPTIBLE); 2690 mutex_lock(&ksm_thread_mutex); 2691 } 2692 } 2693 2694 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2695 unsigned long start_pfn, 2696 unsigned long end_pfn) 2697 { 2698 if (stable_node->kpfn >= start_pfn && 2699 stable_node->kpfn < end_pfn) { 2700 /* 2701 * Don't get_ksm_page, page has already gone: 2702 * which is why we keep kpfn instead of page* 2703 */ 2704 remove_node_from_stable_tree(stable_node); 2705 return true; 2706 } 2707 return false; 2708 } 2709 2710 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2711 unsigned long start_pfn, 2712 unsigned long end_pfn, 2713 struct rb_root *root) 2714 { 2715 struct stable_node *dup; 2716 struct hlist_node *hlist_safe; 2717 2718 if (!is_stable_node_chain(stable_node)) { 2719 VM_BUG_ON(is_stable_node_dup(stable_node)); 2720 return stable_node_dup_remove_range(stable_node, start_pfn, 2721 end_pfn); 2722 } 2723 2724 hlist_for_each_entry_safe(dup, hlist_safe, 2725 &stable_node->hlist, hlist_dup) { 2726 VM_BUG_ON(!is_stable_node_dup(dup)); 2727 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2728 } 2729 if (hlist_empty(&stable_node->hlist)) { 2730 free_stable_node_chain(stable_node, root); 2731 return true; /* notify caller that tree was rebalanced */ 2732 } else 2733 return false; 2734 } 2735 2736 static void ksm_check_stable_tree(unsigned long start_pfn, 2737 unsigned long end_pfn) 2738 { 2739 struct stable_node *stable_node, *next; 2740 struct rb_node *node; 2741 int nid; 2742 2743 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2744 node = rb_first(root_stable_tree + nid); 2745 while (node) { 2746 stable_node = rb_entry(node, struct stable_node, node); 2747 if (stable_node_chain_remove_range(stable_node, 2748 start_pfn, end_pfn, 2749 root_stable_tree + 2750 nid)) 2751 node = rb_first(root_stable_tree + nid); 2752 else 2753 node = rb_next(node); 2754 cond_resched(); 2755 } 2756 } 2757 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2758 if (stable_node->kpfn >= start_pfn && 2759 stable_node->kpfn < end_pfn) 2760 remove_node_from_stable_tree(stable_node); 2761 cond_resched(); 2762 } 2763 } 2764 2765 static int ksm_memory_callback(struct notifier_block *self, 2766 unsigned long action, void *arg) 2767 { 2768 struct memory_notify *mn = arg; 2769 2770 switch (action) { 2771 case MEM_GOING_OFFLINE: 2772 /* 2773 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2774 * and remove_all_stable_nodes() while memory is going offline: 2775 * it is unsafe for them to touch the stable tree at this time. 2776 * But unmerge_ksm_pages(), rmap lookups and other entry points 2777 * which do not need the ksm_thread_mutex are all safe. 2778 */ 2779 mutex_lock(&ksm_thread_mutex); 2780 ksm_run |= KSM_RUN_OFFLINE; 2781 mutex_unlock(&ksm_thread_mutex); 2782 break; 2783 2784 case MEM_OFFLINE: 2785 /* 2786 * Most of the work is done by page migration; but there might 2787 * be a few stable_nodes left over, still pointing to struct 2788 * pages which have been offlined: prune those from the tree, 2789 * otherwise get_ksm_page() might later try to access a 2790 * non-existent struct page. 2791 */ 2792 ksm_check_stable_tree(mn->start_pfn, 2793 mn->start_pfn + mn->nr_pages); 2794 fallthrough; 2795 case MEM_CANCEL_OFFLINE: 2796 mutex_lock(&ksm_thread_mutex); 2797 ksm_run &= ~KSM_RUN_OFFLINE; 2798 mutex_unlock(&ksm_thread_mutex); 2799 2800 smp_mb(); /* wake_up_bit advises this */ 2801 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2802 break; 2803 } 2804 return NOTIFY_OK; 2805 } 2806 #else 2807 static void wait_while_offlining(void) 2808 { 2809 } 2810 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2811 2812 #ifdef CONFIG_SYSFS 2813 /* 2814 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2815 */ 2816 2817 #define KSM_ATTR_RO(_name) \ 2818 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2819 #define KSM_ATTR(_name) \ 2820 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2821 2822 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2823 struct kobj_attribute *attr, char *buf) 2824 { 2825 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2826 } 2827 2828 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2829 struct kobj_attribute *attr, 2830 const char *buf, size_t count) 2831 { 2832 unsigned int msecs; 2833 int err; 2834 2835 err = kstrtouint(buf, 10, &msecs); 2836 if (err) 2837 return -EINVAL; 2838 2839 ksm_thread_sleep_millisecs = msecs; 2840 wake_up_interruptible(&ksm_iter_wait); 2841 2842 return count; 2843 } 2844 KSM_ATTR(sleep_millisecs); 2845 2846 static ssize_t pages_to_scan_show(struct kobject *kobj, 2847 struct kobj_attribute *attr, char *buf) 2848 { 2849 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2850 } 2851 2852 static ssize_t pages_to_scan_store(struct kobject *kobj, 2853 struct kobj_attribute *attr, 2854 const char *buf, size_t count) 2855 { 2856 unsigned int nr_pages; 2857 int err; 2858 2859 err = kstrtouint(buf, 10, &nr_pages); 2860 if (err) 2861 return -EINVAL; 2862 2863 ksm_thread_pages_to_scan = nr_pages; 2864 2865 return count; 2866 } 2867 KSM_ATTR(pages_to_scan); 2868 2869 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2870 char *buf) 2871 { 2872 return sysfs_emit(buf, "%lu\n", ksm_run); 2873 } 2874 2875 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2876 const char *buf, size_t count) 2877 { 2878 unsigned int flags; 2879 int err; 2880 2881 err = kstrtouint(buf, 10, &flags); 2882 if (err) 2883 return -EINVAL; 2884 if (flags > KSM_RUN_UNMERGE) 2885 return -EINVAL; 2886 2887 /* 2888 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2889 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2890 * breaking COW to free the pages_shared (but leaves mm_slots 2891 * on the list for when ksmd may be set running again). 2892 */ 2893 2894 mutex_lock(&ksm_thread_mutex); 2895 wait_while_offlining(); 2896 if (ksm_run != flags) { 2897 ksm_run = flags; 2898 if (flags & KSM_RUN_UNMERGE) { 2899 set_current_oom_origin(); 2900 err = unmerge_and_remove_all_rmap_items(); 2901 clear_current_oom_origin(); 2902 if (err) { 2903 ksm_run = KSM_RUN_STOP; 2904 count = err; 2905 } 2906 } 2907 } 2908 mutex_unlock(&ksm_thread_mutex); 2909 2910 if (flags & KSM_RUN_MERGE) 2911 wake_up_interruptible(&ksm_thread_wait); 2912 2913 return count; 2914 } 2915 KSM_ATTR(run); 2916 2917 #ifdef CONFIG_NUMA 2918 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2919 struct kobj_attribute *attr, char *buf) 2920 { 2921 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2922 } 2923 2924 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2925 struct kobj_attribute *attr, 2926 const char *buf, size_t count) 2927 { 2928 int err; 2929 unsigned long knob; 2930 2931 err = kstrtoul(buf, 10, &knob); 2932 if (err) 2933 return err; 2934 if (knob > 1) 2935 return -EINVAL; 2936 2937 mutex_lock(&ksm_thread_mutex); 2938 wait_while_offlining(); 2939 if (ksm_merge_across_nodes != knob) { 2940 if (ksm_pages_shared || remove_all_stable_nodes()) 2941 err = -EBUSY; 2942 else if (root_stable_tree == one_stable_tree) { 2943 struct rb_root *buf; 2944 /* 2945 * This is the first time that we switch away from the 2946 * default of merging across nodes: must now allocate 2947 * a buffer to hold as many roots as may be needed. 2948 * Allocate stable and unstable together: 2949 * MAXSMP NODES_SHIFT 10 will use 16kB. 2950 */ 2951 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2952 GFP_KERNEL); 2953 /* Let us assume that RB_ROOT is NULL is zero */ 2954 if (!buf) 2955 err = -ENOMEM; 2956 else { 2957 root_stable_tree = buf; 2958 root_unstable_tree = buf + nr_node_ids; 2959 /* Stable tree is empty but not the unstable */ 2960 root_unstable_tree[0] = one_unstable_tree[0]; 2961 } 2962 } 2963 if (!err) { 2964 ksm_merge_across_nodes = knob; 2965 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2966 } 2967 } 2968 mutex_unlock(&ksm_thread_mutex); 2969 2970 return err ? err : count; 2971 } 2972 KSM_ATTR(merge_across_nodes); 2973 #endif 2974 2975 static ssize_t use_zero_pages_show(struct kobject *kobj, 2976 struct kobj_attribute *attr, char *buf) 2977 { 2978 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 2979 } 2980 static ssize_t use_zero_pages_store(struct kobject *kobj, 2981 struct kobj_attribute *attr, 2982 const char *buf, size_t count) 2983 { 2984 int err; 2985 bool value; 2986 2987 err = kstrtobool(buf, &value); 2988 if (err) 2989 return -EINVAL; 2990 2991 ksm_use_zero_pages = value; 2992 2993 return count; 2994 } 2995 KSM_ATTR(use_zero_pages); 2996 2997 static ssize_t max_page_sharing_show(struct kobject *kobj, 2998 struct kobj_attribute *attr, char *buf) 2999 { 3000 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3001 } 3002 3003 static ssize_t max_page_sharing_store(struct kobject *kobj, 3004 struct kobj_attribute *attr, 3005 const char *buf, size_t count) 3006 { 3007 int err; 3008 int knob; 3009 3010 err = kstrtoint(buf, 10, &knob); 3011 if (err) 3012 return err; 3013 /* 3014 * When a KSM page is created it is shared by 2 mappings. This 3015 * being a signed comparison, it implicitly verifies it's not 3016 * negative. 3017 */ 3018 if (knob < 2) 3019 return -EINVAL; 3020 3021 if (READ_ONCE(ksm_max_page_sharing) == knob) 3022 return count; 3023 3024 mutex_lock(&ksm_thread_mutex); 3025 wait_while_offlining(); 3026 if (ksm_max_page_sharing != knob) { 3027 if (ksm_pages_shared || remove_all_stable_nodes()) 3028 err = -EBUSY; 3029 else 3030 ksm_max_page_sharing = knob; 3031 } 3032 mutex_unlock(&ksm_thread_mutex); 3033 3034 return err ? err : count; 3035 } 3036 KSM_ATTR(max_page_sharing); 3037 3038 static ssize_t pages_shared_show(struct kobject *kobj, 3039 struct kobj_attribute *attr, char *buf) 3040 { 3041 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3042 } 3043 KSM_ATTR_RO(pages_shared); 3044 3045 static ssize_t pages_sharing_show(struct kobject *kobj, 3046 struct kobj_attribute *attr, char *buf) 3047 { 3048 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3049 } 3050 KSM_ATTR_RO(pages_sharing); 3051 3052 static ssize_t pages_unshared_show(struct kobject *kobj, 3053 struct kobj_attribute *attr, char *buf) 3054 { 3055 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3056 } 3057 KSM_ATTR_RO(pages_unshared); 3058 3059 static ssize_t pages_volatile_show(struct kobject *kobj, 3060 struct kobj_attribute *attr, char *buf) 3061 { 3062 long ksm_pages_volatile; 3063 3064 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3065 - ksm_pages_sharing - ksm_pages_unshared; 3066 /* 3067 * It was not worth any locking to calculate that statistic, 3068 * but it might therefore sometimes be negative: conceal that. 3069 */ 3070 if (ksm_pages_volatile < 0) 3071 ksm_pages_volatile = 0; 3072 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3073 } 3074 KSM_ATTR_RO(pages_volatile); 3075 3076 static ssize_t stable_node_dups_show(struct kobject *kobj, 3077 struct kobj_attribute *attr, char *buf) 3078 { 3079 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3080 } 3081 KSM_ATTR_RO(stable_node_dups); 3082 3083 static ssize_t stable_node_chains_show(struct kobject *kobj, 3084 struct kobj_attribute *attr, char *buf) 3085 { 3086 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3087 } 3088 KSM_ATTR_RO(stable_node_chains); 3089 3090 static ssize_t 3091 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3092 struct kobj_attribute *attr, 3093 char *buf) 3094 { 3095 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3096 } 3097 3098 static ssize_t 3099 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3100 struct kobj_attribute *attr, 3101 const char *buf, size_t count) 3102 { 3103 unsigned int msecs; 3104 int err; 3105 3106 err = kstrtouint(buf, 10, &msecs); 3107 if (err) 3108 return -EINVAL; 3109 3110 ksm_stable_node_chains_prune_millisecs = msecs; 3111 3112 return count; 3113 } 3114 KSM_ATTR(stable_node_chains_prune_millisecs); 3115 3116 static ssize_t full_scans_show(struct kobject *kobj, 3117 struct kobj_attribute *attr, char *buf) 3118 { 3119 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3120 } 3121 KSM_ATTR_RO(full_scans); 3122 3123 static struct attribute *ksm_attrs[] = { 3124 &sleep_millisecs_attr.attr, 3125 &pages_to_scan_attr.attr, 3126 &run_attr.attr, 3127 &pages_shared_attr.attr, 3128 &pages_sharing_attr.attr, 3129 &pages_unshared_attr.attr, 3130 &pages_volatile_attr.attr, 3131 &full_scans_attr.attr, 3132 #ifdef CONFIG_NUMA 3133 &merge_across_nodes_attr.attr, 3134 #endif 3135 &max_page_sharing_attr.attr, 3136 &stable_node_chains_attr.attr, 3137 &stable_node_dups_attr.attr, 3138 &stable_node_chains_prune_millisecs_attr.attr, 3139 &use_zero_pages_attr.attr, 3140 NULL, 3141 }; 3142 3143 static const struct attribute_group ksm_attr_group = { 3144 .attrs = ksm_attrs, 3145 .name = "ksm", 3146 }; 3147 #endif /* CONFIG_SYSFS */ 3148 3149 static int __init ksm_init(void) 3150 { 3151 struct task_struct *ksm_thread; 3152 int err; 3153 3154 /* The correct value depends on page size and endianness */ 3155 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3156 /* Default to false for backwards compatibility */ 3157 ksm_use_zero_pages = false; 3158 3159 err = ksm_slab_init(); 3160 if (err) 3161 goto out; 3162 3163 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3164 if (IS_ERR(ksm_thread)) { 3165 pr_err("ksm: creating kthread failed\n"); 3166 err = PTR_ERR(ksm_thread); 3167 goto out_free; 3168 } 3169 3170 #ifdef CONFIG_SYSFS 3171 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3172 if (err) { 3173 pr_err("ksm: register sysfs failed\n"); 3174 kthread_stop(ksm_thread); 3175 goto out_free; 3176 } 3177 #else 3178 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3179 3180 #endif /* CONFIG_SYSFS */ 3181 3182 #ifdef CONFIG_MEMORY_HOTREMOVE 3183 /* There is no significance to this priority 100 */ 3184 hotplug_memory_notifier(ksm_memory_callback, 100); 3185 #endif 3186 return 0; 3187 3188 out_free: 3189 ksm_slab_free(); 3190 out: 3191 return err; 3192 } 3193 subsys_initcall(ksm_init); 3194