1 /* 2 * Memory merging support. 3 * 4 * This code enables dynamic sharing of identical pages found in different 5 * memory areas, even if they are not shared by fork() 6 * 7 * Copyright (C) 2008-2009 Red Hat, Inc. 8 * Authors: 9 * Izik Eidus 10 * Andrea Arcangeli 11 * Chris Wright 12 * Hugh Dickins 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/mm.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/jhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 43 #include <asm/tlbflush.h> 44 #include "internal.h" 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /* 55 * A few notes about the KSM scanning process, 56 * to make it easier to understand the data structures below: 57 * 58 * In order to reduce excessive scanning, KSM sorts the memory pages by their 59 * contents into a data structure that holds pointers to the pages' locations. 60 * 61 * Since the contents of the pages may change at any moment, KSM cannot just 62 * insert the pages into a normal sorted tree and expect it to find anything. 63 * Therefore KSM uses two data structures - the stable and the unstable tree. 64 * 65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 66 * by their contents. Because each such page is write-protected, searching on 67 * this tree is fully assured to be working (except when pages are unmapped), 68 * and therefore this tree is called the stable tree. 69 * 70 * In addition to the stable tree, KSM uses a second data structure called the 71 * unstable tree: this tree holds pointers to pages which have been found to 72 * be "unchanged for a period of time". The unstable tree sorts these pages 73 * by their contents, but since they are not write-protected, KSM cannot rely 74 * upon the unstable tree to work correctly - the unstable tree is liable to 75 * be corrupted as its contents are modified, and so it is called unstable. 76 * 77 * KSM solves this problem by several techniques: 78 * 79 * 1) The unstable tree is flushed every time KSM completes scanning all 80 * memory areas, and then the tree is rebuilt again from the beginning. 81 * 2) KSM will only insert into the unstable tree, pages whose hash value 82 * has not changed since the previous scan of all memory areas. 83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 84 * colors of the nodes and not on their contents, assuring that even when 85 * the tree gets "corrupted" it won't get out of balance, so scanning time 86 * remains the same (also, searching and inserting nodes in an rbtree uses 87 * the same algorithm, so we have no overhead when we flush and rebuild). 88 * 4) KSM never flushes the stable tree, which means that even if it were to 89 * take 10 attempts to find a page in the unstable tree, once it is found, 90 * it is secured in the stable tree. (When we scan a new page, we first 91 * compare it against the stable tree, and then against the unstable tree.) 92 * 93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 94 * stable trees and multiple unstable trees: one of each for each NUMA node. 95 */ 96 97 /** 98 * struct mm_slot - ksm information per mm that is being scanned 99 * @link: link to the mm_slots hash list 100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 102 * @mm: the mm that this information is valid for 103 */ 104 struct mm_slot { 105 struct hlist_node link; 106 struct list_head mm_list; 107 struct rmap_item *rmap_list; 108 struct mm_struct *mm; 109 }; 110 111 /** 112 * struct ksm_scan - cursor for scanning 113 * @mm_slot: the current mm_slot we are scanning 114 * @address: the next address inside that to be scanned 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list 116 * @seqnr: count of completed full scans (needed when removing unstable node) 117 * 118 * There is only the one ksm_scan instance of this cursor structure. 119 */ 120 struct ksm_scan { 121 struct mm_slot *mm_slot; 122 unsigned long address; 123 struct rmap_item **rmap_list; 124 unsigned long seqnr; 125 }; 126 127 /** 128 * struct stable_node - node of the stable rbtree 129 * @node: rb node of this ksm page in the stable tree 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 132 * @list: linked into migrate_nodes, pending placement in the proper node tree 133 * @hlist: hlist head of rmap_items using this ksm page 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 135 * @chain_prune_time: time of the last full garbage collection 136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 138 */ 139 struct stable_node { 140 union { 141 struct rb_node node; /* when node of stable tree */ 142 struct { /* when listed for migration */ 143 struct list_head *head; 144 struct { 145 struct hlist_node hlist_dup; 146 struct list_head list; 147 }; 148 }; 149 }; 150 struct hlist_head hlist; 151 union { 152 unsigned long kpfn; 153 unsigned long chain_prune_time; 154 }; 155 /* 156 * STABLE_NODE_CHAIN can be any negative number in 157 * rmap_hlist_len negative range, but better not -1 to be able 158 * to reliably detect underflows. 159 */ 160 #define STABLE_NODE_CHAIN -1024 161 int rmap_hlist_len; 162 #ifdef CONFIG_NUMA 163 int nid; 164 #endif 165 }; 166 167 /** 168 * struct rmap_item - reverse mapping item for virtual addresses 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 171 * @nid: NUMA node id of unstable tree in which linked (may not match page) 172 * @mm: the memory structure this rmap_item is pointing into 173 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 174 * @oldchecksum: previous checksum of the page at that virtual address 175 * @node: rb node of this rmap_item in the unstable tree 176 * @head: pointer to stable_node heading this list in the stable tree 177 * @hlist: link into hlist of rmap_items hanging off that stable_node 178 */ 179 struct rmap_item { 180 struct rmap_item *rmap_list; 181 union { 182 struct anon_vma *anon_vma; /* when stable */ 183 #ifdef CONFIG_NUMA 184 int nid; /* when node of unstable tree */ 185 #endif 186 }; 187 struct mm_struct *mm; 188 unsigned long address; /* + low bits used for flags below */ 189 unsigned int oldchecksum; /* when unstable */ 190 union { 191 struct rb_node node; /* when node of unstable tree */ 192 struct { /* when listed from stable tree */ 193 struct stable_node *head; 194 struct hlist_node hlist; 195 }; 196 }; 197 }; 198 199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 202 203 /* The stable and unstable tree heads */ 204 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 205 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 206 static struct rb_root *root_stable_tree = one_stable_tree; 207 static struct rb_root *root_unstable_tree = one_unstable_tree; 208 209 /* Recently migrated nodes of stable tree, pending proper placement */ 210 static LIST_HEAD(migrate_nodes); 211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 212 213 #define MM_SLOTS_HASH_BITS 10 214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 215 216 static struct mm_slot ksm_mm_head = { 217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 218 }; 219 static struct ksm_scan ksm_scan = { 220 .mm_slot = &ksm_mm_head, 221 }; 222 223 static struct kmem_cache *rmap_item_cache; 224 static struct kmem_cache *stable_node_cache; 225 static struct kmem_cache *mm_slot_cache; 226 227 /* The number of nodes in the stable tree */ 228 static unsigned long ksm_pages_shared; 229 230 /* The number of page slots additionally sharing those nodes */ 231 static unsigned long ksm_pages_sharing; 232 233 /* The number of nodes in the unstable tree */ 234 static unsigned long ksm_pages_unshared; 235 236 /* The number of rmap_items in use: to calculate pages_volatile */ 237 static unsigned long ksm_rmap_items; 238 239 /* The number of stable_node chains */ 240 static unsigned long ksm_stable_node_chains; 241 242 /* The number of stable_node dups linked to the stable_node chains */ 243 static unsigned long ksm_stable_node_dups; 244 245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 246 static int ksm_stable_node_chains_prune_millisecs = 2000; 247 248 /* Maximum number of page slots sharing a stable node */ 249 static int ksm_max_page_sharing = 256; 250 251 /* Number of pages ksmd should scan in one batch */ 252 static unsigned int ksm_thread_pages_to_scan = 100; 253 254 /* Milliseconds ksmd should sleep between batches */ 255 static unsigned int ksm_thread_sleep_millisecs = 20; 256 257 /* Checksum of an empty (zeroed) page */ 258 static unsigned int zero_checksum __read_mostly; 259 260 /* Whether to merge empty (zeroed) pages with actual zero pages */ 261 static bool ksm_use_zero_pages __read_mostly; 262 263 #ifdef CONFIG_NUMA 264 /* Zeroed when merging across nodes is not allowed */ 265 static unsigned int ksm_merge_across_nodes = 1; 266 static int ksm_nr_node_ids = 1; 267 #else 268 #define ksm_merge_across_nodes 1U 269 #define ksm_nr_node_ids 1 270 #endif 271 272 #define KSM_RUN_STOP 0 273 #define KSM_RUN_MERGE 1 274 #define KSM_RUN_UNMERGE 2 275 #define KSM_RUN_OFFLINE 4 276 static unsigned long ksm_run = KSM_RUN_STOP; 277 static void wait_while_offlining(void); 278 279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 280 static DEFINE_MUTEX(ksm_thread_mutex); 281 static DEFINE_SPINLOCK(ksm_mmlist_lock); 282 283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 284 sizeof(struct __struct), __alignof__(struct __struct),\ 285 (__flags), NULL) 286 287 static int __init ksm_slab_init(void) 288 { 289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 290 if (!rmap_item_cache) 291 goto out; 292 293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 294 if (!stable_node_cache) 295 goto out_free1; 296 297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 298 if (!mm_slot_cache) 299 goto out_free2; 300 301 return 0; 302 303 out_free2: 304 kmem_cache_destroy(stable_node_cache); 305 out_free1: 306 kmem_cache_destroy(rmap_item_cache); 307 out: 308 return -ENOMEM; 309 } 310 311 static void __init ksm_slab_free(void) 312 { 313 kmem_cache_destroy(mm_slot_cache); 314 kmem_cache_destroy(stable_node_cache); 315 kmem_cache_destroy(rmap_item_cache); 316 mm_slot_cache = NULL; 317 } 318 319 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 320 { 321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 322 } 323 324 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 325 { 326 return dup->head == STABLE_NODE_DUP_HEAD; 327 } 328 329 static inline void stable_node_chain_add_dup(struct stable_node *dup, 330 struct stable_node *chain) 331 { 332 VM_BUG_ON(is_stable_node_dup(dup)); 333 dup->head = STABLE_NODE_DUP_HEAD; 334 VM_BUG_ON(!is_stable_node_chain(chain)); 335 hlist_add_head(&dup->hlist_dup, &chain->hlist); 336 ksm_stable_node_dups++; 337 } 338 339 static inline void __stable_node_dup_del(struct stable_node *dup) 340 { 341 VM_BUG_ON(!is_stable_node_dup(dup)); 342 hlist_del(&dup->hlist_dup); 343 ksm_stable_node_dups--; 344 } 345 346 static inline void stable_node_dup_del(struct stable_node *dup) 347 { 348 VM_BUG_ON(is_stable_node_chain(dup)); 349 if (is_stable_node_dup(dup)) 350 __stable_node_dup_del(dup); 351 else 352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 353 #ifdef CONFIG_DEBUG_VM 354 dup->head = NULL; 355 #endif 356 } 357 358 static inline struct rmap_item *alloc_rmap_item(void) 359 { 360 struct rmap_item *rmap_item; 361 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 363 __GFP_NORETRY | __GFP_NOWARN); 364 if (rmap_item) 365 ksm_rmap_items++; 366 return rmap_item; 367 } 368 369 static inline void free_rmap_item(struct rmap_item *rmap_item) 370 { 371 ksm_rmap_items--; 372 rmap_item->mm = NULL; /* debug safety */ 373 kmem_cache_free(rmap_item_cache, rmap_item); 374 } 375 376 static inline struct stable_node *alloc_stable_node(void) 377 { 378 /* 379 * The allocation can take too long with GFP_KERNEL when memory is under 380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 381 * grants access to memory reserves, helping to avoid this problem. 382 */ 383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 384 } 385 386 static inline void free_stable_node(struct stable_node *stable_node) 387 { 388 VM_BUG_ON(stable_node->rmap_hlist_len && 389 !is_stable_node_chain(stable_node)); 390 kmem_cache_free(stable_node_cache, stable_node); 391 } 392 393 static inline struct mm_slot *alloc_mm_slot(void) 394 { 395 if (!mm_slot_cache) /* initialization failed */ 396 return NULL; 397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 398 } 399 400 static inline void free_mm_slot(struct mm_slot *mm_slot) 401 { 402 kmem_cache_free(mm_slot_cache, mm_slot); 403 } 404 405 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 406 { 407 struct mm_slot *slot; 408 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 410 if (slot->mm == mm) 411 return slot; 412 413 return NULL; 414 } 415 416 static void insert_to_mm_slots_hash(struct mm_struct *mm, 417 struct mm_slot *mm_slot) 418 { 419 mm_slot->mm = mm; 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 421 } 422 423 /* 424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 425 * page tables after it has passed through ksm_exit() - which, if necessary, 426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set 427 * a special flag: they can just back out as soon as mm_users goes to zero. 428 * ksm_test_exit() is used throughout to make this test for exit: in some 429 * places for correctness, in some places just to avoid unnecessary work. 430 */ 431 static inline bool ksm_test_exit(struct mm_struct *mm) 432 { 433 return atomic_read(&mm->mm_users) == 0; 434 } 435 436 /* 437 * We use break_ksm to break COW on a ksm page: it's a stripped down 438 * 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) 440 * put_page(page); 441 * 442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 443 * in case the application has unmapped and remapped mm,addr meanwhile. 444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 446 * 447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 448 * of the process that owns 'vma'. We also do not want to enforce 449 * protection keys here anyway. 450 */ 451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 452 { 453 struct page *page; 454 int ret = 0; 455 456 do { 457 cond_resched(); 458 page = follow_page(vma, addr, 459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 460 if (IS_ERR_OR_NULL(page)) 461 break; 462 if (PageKsm(page)) 463 ret = handle_mm_fault(vma, addr, 464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); 465 else 466 ret = VM_FAULT_WRITE; 467 put_page(page); 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 469 /* 470 * We must loop because handle_mm_fault() may back out if there's 471 * any difficulty e.g. if pte accessed bit gets updated concurrently. 472 * 473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 474 * COW has been broken, even if the vma does not permit VM_WRITE; 475 * but note that a concurrent fault might break PageKsm for us. 476 * 477 * VM_FAULT_SIGBUS could occur if we race with truncation of the 478 * backing file, which also invalidates anonymous pages: that's 479 * okay, that truncation will have unmapped the PageKsm for us. 480 * 481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 483 * current task has TIF_MEMDIE set, and will be OOM killed on return 484 * to user; and ksmd, having no mm, would never be chosen for that. 485 * 486 * But if the mm is in a limited mem_cgroup, then the fault may fail 487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 488 * even ksmd can fail in this way - though it's usually breaking ksm 489 * just to undo a merge it made a moment before, so unlikely to oom. 490 * 491 * That's a pity: we might therefore have more kernel pages allocated 492 * than we're counting as nodes in the stable tree; but ksm_do_scan 493 * will retry to break_cow on each pass, so should recover the page 494 * in due course. The important thing is to not let VM_MERGEABLE 495 * be cleared while any such pages might remain in the area. 496 */ 497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 498 } 499 500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 501 unsigned long addr) 502 { 503 struct vm_area_struct *vma; 504 if (ksm_test_exit(mm)) 505 return NULL; 506 vma = find_vma(mm, addr); 507 if (!vma || vma->vm_start > addr) 508 return NULL; 509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 510 return NULL; 511 return vma; 512 } 513 514 static void break_cow(struct rmap_item *rmap_item) 515 { 516 struct mm_struct *mm = rmap_item->mm; 517 unsigned long addr = rmap_item->address; 518 struct vm_area_struct *vma; 519 520 /* 521 * It is not an accident that whenever we want to break COW 522 * to undo, we also need to drop a reference to the anon_vma. 523 */ 524 put_anon_vma(rmap_item->anon_vma); 525 526 down_read(&mm->mmap_sem); 527 vma = find_mergeable_vma(mm, addr); 528 if (vma) 529 break_ksm(vma, addr); 530 up_read(&mm->mmap_sem); 531 } 532 533 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 534 { 535 struct mm_struct *mm = rmap_item->mm; 536 unsigned long addr = rmap_item->address; 537 struct vm_area_struct *vma; 538 struct page *page; 539 540 down_read(&mm->mmap_sem); 541 vma = find_mergeable_vma(mm, addr); 542 if (!vma) 543 goto out; 544 545 page = follow_page(vma, addr, FOLL_GET); 546 if (IS_ERR_OR_NULL(page)) 547 goto out; 548 if (PageAnon(page)) { 549 flush_anon_page(vma, page, addr); 550 flush_dcache_page(page); 551 } else { 552 put_page(page); 553 out: 554 page = NULL; 555 } 556 up_read(&mm->mmap_sem); 557 return page; 558 } 559 560 /* 561 * This helper is used for getting right index into array of tree roots. 562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 563 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 564 * every node has its own stable and unstable tree. 565 */ 566 static inline int get_kpfn_nid(unsigned long kpfn) 567 { 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 569 } 570 571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 572 struct rb_root *root) 573 { 574 struct stable_node *chain = alloc_stable_node(); 575 VM_BUG_ON(is_stable_node_chain(dup)); 576 if (likely(chain)) { 577 INIT_HLIST_HEAD(&chain->hlist); 578 chain->chain_prune_time = jiffies; 579 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 581 chain->nid = -1; /* debug */ 582 #endif 583 ksm_stable_node_chains++; 584 585 /* 586 * Put the stable node chain in the first dimension of 587 * the stable tree and at the same time remove the old 588 * stable node. 589 */ 590 rb_replace_node(&dup->node, &chain->node, root); 591 592 /* 593 * Move the old stable node to the second dimension 594 * queued in the hlist_dup. The invariant is that all 595 * dup stable_nodes in the chain->hlist point to pages 596 * that are wrprotected and have the exact same 597 * content. 598 */ 599 stable_node_chain_add_dup(dup, chain); 600 } 601 return chain; 602 } 603 604 static inline void free_stable_node_chain(struct stable_node *chain, 605 struct rb_root *root) 606 { 607 rb_erase(&chain->node, root); 608 free_stable_node(chain); 609 ksm_stable_node_chains--; 610 } 611 612 static void remove_node_from_stable_tree(struct stable_node *stable_node) 613 { 614 struct rmap_item *rmap_item; 615 616 /* check it's not STABLE_NODE_CHAIN or negative */ 617 BUG_ON(stable_node->rmap_hlist_len < 0); 618 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 620 if (rmap_item->hlist.next) 621 ksm_pages_sharing--; 622 else 623 ksm_pages_shared--; 624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 625 stable_node->rmap_hlist_len--; 626 put_anon_vma(rmap_item->anon_vma); 627 rmap_item->address &= PAGE_MASK; 628 cond_resched(); 629 } 630 631 /* 632 * We need the second aligned pointer of the migrate_nodes 633 * list_head to stay clear from the rb_parent_color union 634 * (aligned and different than any node) and also different 635 * from &migrate_nodes. This will verify that future list.h changes 636 * don't break STABLE_NODE_DUP_HEAD. 637 */ 638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */ 639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 641 #endif 642 643 if (stable_node->head == &migrate_nodes) 644 list_del(&stable_node->list); 645 else 646 stable_node_dup_del(stable_node); 647 free_stable_node(stable_node); 648 } 649 650 /* 651 * get_ksm_page: checks if the page indicated by the stable node 652 * is still its ksm page, despite having held no reference to it. 653 * In which case we can trust the content of the page, and it 654 * returns the gotten page; but if the page has now been zapped, 655 * remove the stale node from the stable tree and return NULL. 656 * But beware, the stable node's page might be being migrated. 657 * 658 * You would expect the stable_node to hold a reference to the ksm page. 659 * But if it increments the page's count, swapping out has to wait for 660 * ksmd to come around again before it can free the page, which may take 661 * seconds or even minutes: much too unresponsive. So instead we use a 662 * "keyhole reference": access to the ksm page from the stable node peeps 663 * out through its keyhole to see if that page still holds the right key, 664 * pointing back to this stable node. This relies on freeing a PageAnon 665 * page to reset its page->mapping to NULL, and relies on no other use of 666 * a page to put something that might look like our key in page->mapping. 667 * is on its way to being freed; but it is an anomaly to bear in mind. 668 */ 669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) 670 { 671 struct page *page; 672 void *expected_mapping; 673 unsigned long kpfn; 674 675 expected_mapping = (void *)((unsigned long)stable_node | 676 PAGE_MAPPING_KSM); 677 again: 678 kpfn = READ_ONCE(stable_node->kpfn); 679 page = pfn_to_page(kpfn); 680 681 /* 682 * page is computed from kpfn, so on most architectures reading 683 * page->mapping is naturally ordered after reading node->kpfn, 684 * but on Alpha we need to be more careful. 685 */ 686 smp_read_barrier_depends(); 687 if (READ_ONCE(page->mapping) != expected_mapping) 688 goto stale; 689 690 /* 691 * We cannot do anything with the page while its refcount is 0. 692 * Usually 0 means free, or tail of a higher-order page: in which 693 * case this node is no longer referenced, and should be freed; 694 * however, it might mean that the page is under page_freeze_refs(). 695 * The __remove_mapping() case is easy, again the node is now stale; 696 * but if page is swapcache in migrate_page_move_mapping(), it might 697 * still be our page, in which case it's essential to keep the node. 698 */ 699 while (!get_page_unless_zero(page)) { 700 /* 701 * Another check for page->mapping != expected_mapping would 702 * work here too. We have chosen the !PageSwapCache test to 703 * optimize the common case, when the page is or is about to 704 * be freed: PageSwapCache is cleared (under spin_lock_irq) 705 * in the freeze_refs section of __remove_mapping(); but Anon 706 * page->mapping reset to NULL later, in free_pages_prepare(). 707 */ 708 if (!PageSwapCache(page)) 709 goto stale; 710 cpu_relax(); 711 } 712 713 if (READ_ONCE(page->mapping) != expected_mapping) { 714 put_page(page); 715 goto stale; 716 } 717 718 if (lock_it) { 719 lock_page(page); 720 if (READ_ONCE(page->mapping) != expected_mapping) { 721 unlock_page(page); 722 put_page(page); 723 goto stale; 724 } 725 } 726 return page; 727 728 stale: 729 /* 730 * We come here from above when page->mapping or !PageSwapCache 731 * suggests that the node is stale; but it might be under migration. 732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 733 * before checking whether node->kpfn has been changed. 734 */ 735 smp_rmb(); 736 if (READ_ONCE(stable_node->kpfn) != kpfn) 737 goto again; 738 remove_node_from_stable_tree(stable_node); 739 return NULL; 740 } 741 742 /* 743 * Removing rmap_item from stable or unstable tree. 744 * This function will clean the information from the stable/unstable tree. 745 */ 746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 747 { 748 if (rmap_item->address & STABLE_FLAG) { 749 struct stable_node *stable_node; 750 struct page *page; 751 752 stable_node = rmap_item->head; 753 page = get_ksm_page(stable_node, true); 754 if (!page) 755 goto out; 756 757 hlist_del(&rmap_item->hlist); 758 unlock_page(page); 759 put_page(page); 760 761 if (!hlist_empty(&stable_node->hlist)) 762 ksm_pages_sharing--; 763 else 764 ksm_pages_shared--; 765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 766 stable_node->rmap_hlist_len--; 767 768 put_anon_vma(rmap_item->anon_vma); 769 rmap_item->address &= PAGE_MASK; 770 771 } else if (rmap_item->address & UNSTABLE_FLAG) { 772 unsigned char age; 773 /* 774 * Usually ksmd can and must skip the rb_erase, because 775 * root_unstable_tree was already reset to RB_ROOT. 776 * But be careful when an mm is exiting: do the rb_erase 777 * if this rmap_item was inserted by this scan, rather 778 * than left over from before. 779 */ 780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 781 BUG_ON(age > 1); 782 if (!age) 783 rb_erase(&rmap_item->node, 784 root_unstable_tree + NUMA(rmap_item->nid)); 785 ksm_pages_unshared--; 786 rmap_item->address &= PAGE_MASK; 787 } 788 out: 789 cond_resched(); /* we're called from many long loops */ 790 } 791 792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 793 struct rmap_item **rmap_list) 794 { 795 while (*rmap_list) { 796 struct rmap_item *rmap_item = *rmap_list; 797 *rmap_list = rmap_item->rmap_list; 798 remove_rmap_item_from_tree(rmap_item); 799 free_rmap_item(rmap_item); 800 } 801 } 802 803 /* 804 * Though it's very tempting to unmerge rmap_items from stable tree rather 805 * than check every pte of a given vma, the locking doesn't quite work for 806 * that - an rmap_item is assigned to the stable tree after inserting ksm 807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing 808 * rmap_items from parent to child at fork time (so as not to waste time 809 * if exit comes before the next scan reaches it). 810 * 811 * Similarly, although we'd like to remove rmap_items (so updating counts 812 * and freeing memory) when unmerging an area, it's easier to leave that 813 * to the next pass of ksmd - consider, for example, how ksmd might be 814 * in cmp_and_merge_page on one of the rmap_items we would be removing. 815 */ 816 static int unmerge_ksm_pages(struct vm_area_struct *vma, 817 unsigned long start, unsigned long end) 818 { 819 unsigned long addr; 820 int err = 0; 821 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 823 if (ksm_test_exit(vma->vm_mm)) 824 break; 825 if (signal_pending(current)) 826 err = -ERESTARTSYS; 827 else 828 err = break_ksm(vma, addr); 829 } 830 return err; 831 } 832 833 #ifdef CONFIG_SYSFS 834 /* 835 * Only called through the sysfs control interface: 836 */ 837 static int remove_stable_node(struct stable_node *stable_node) 838 { 839 struct page *page; 840 int err; 841 842 page = get_ksm_page(stable_node, true); 843 if (!page) { 844 /* 845 * get_ksm_page did remove_node_from_stable_tree itself. 846 */ 847 return 0; 848 } 849 850 if (WARN_ON_ONCE(page_mapped(page))) { 851 /* 852 * This should not happen: but if it does, just refuse to let 853 * merge_across_nodes be switched - there is no need to panic. 854 */ 855 err = -EBUSY; 856 } else { 857 /* 858 * The stable node did not yet appear stale to get_ksm_page(), 859 * since that allows for an unmapped ksm page to be recognized 860 * right up until it is freed; but the node is safe to remove. 861 * This page might be in a pagevec waiting to be freed, 862 * or it might be PageSwapCache (perhaps under writeback), 863 * or it might have been removed from swapcache a moment ago. 864 */ 865 set_page_stable_node(page, NULL); 866 remove_node_from_stable_tree(stable_node); 867 err = 0; 868 } 869 870 unlock_page(page); 871 put_page(page); 872 return err; 873 } 874 875 static int remove_stable_node_chain(struct stable_node *stable_node, 876 struct rb_root *root) 877 { 878 struct stable_node *dup; 879 struct hlist_node *hlist_safe; 880 881 if (!is_stable_node_chain(stable_node)) { 882 VM_BUG_ON(is_stable_node_dup(stable_node)); 883 if (remove_stable_node(stable_node)) 884 return true; 885 else 886 return false; 887 } 888 889 hlist_for_each_entry_safe(dup, hlist_safe, 890 &stable_node->hlist, hlist_dup) { 891 VM_BUG_ON(!is_stable_node_dup(dup)); 892 if (remove_stable_node(dup)) 893 return true; 894 } 895 BUG_ON(!hlist_empty(&stable_node->hlist)); 896 free_stable_node_chain(stable_node, root); 897 return false; 898 } 899 900 static int remove_all_stable_nodes(void) 901 { 902 struct stable_node *stable_node, *next; 903 int nid; 904 int err = 0; 905 906 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 907 while (root_stable_tree[nid].rb_node) { 908 stable_node = rb_entry(root_stable_tree[nid].rb_node, 909 struct stable_node, node); 910 if (remove_stable_node_chain(stable_node, 911 root_stable_tree + nid)) { 912 err = -EBUSY; 913 break; /* proceed to next nid */ 914 } 915 cond_resched(); 916 } 917 } 918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 919 if (remove_stable_node(stable_node)) 920 err = -EBUSY; 921 cond_resched(); 922 } 923 return err; 924 } 925 926 static int unmerge_and_remove_all_rmap_items(void) 927 { 928 struct mm_slot *mm_slot; 929 struct mm_struct *mm; 930 struct vm_area_struct *vma; 931 int err = 0; 932 933 spin_lock(&ksm_mmlist_lock); 934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 935 struct mm_slot, mm_list); 936 spin_unlock(&ksm_mmlist_lock); 937 938 for (mm_slot = ksm_scan.mm_slot; 939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 940 mm = mm_slot->mm; 941 down_read(&mm->mmap_sem); 942 for (vma = mm->mmap; vma; vma = vma->vm_next) { 943 if (ksm_test_exit(mm)) 944 break; 945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 946 continue; 947 err = unmerge_ksm_pages(vma, 948 vma->vm_start, vma->vm_end); 949 if (err) 950 goto error; 951 } 952 953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 954 up_read(&mm->mmap_sem); 955 956 spin_lock(&ksm_mmlist_lock); 957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 958 struct mm_slot, mm_list); 959 if (ksm_test_exit(mm)) { 960 hash_del(&mm_slot->link); 961 list_del(&mm_slot->mm_list); 962 spin_unlock(&ksm_mmlist_lock); 963 964 free_mm_slot(mm_slot); 965 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 966 mmdrop(mm); 967 } else 968 spin_unlock(&ksm_mmlist_lock); 969 } 970 971 /* Clean up stable nodes, but don't worry if some are still busy */ 972 remove_all_stable_nodes(); 973 ksm_scan.seqnr = 0; 974 return 0; 975 976 error: 977 up_read(&mm->mmap_sem); 978 spin_lock(&ksm_mmlist_lock); 979 ksm_scan.mm_slot = &ksm_mm_head; 980 spin_unlock(&ksm_mmlist_lock); 981 return err; 982 } 983 #endif /* CONFIG_SYSFS */ 984 985 static u32 calc_checksum(struct page *page) 986 { 987 u32 checksum; 988 void *addr = kmap_atomic(page); 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17); 990 kunmap_atomic(addr); 991 return checksum; 992 } 993 994 static int memcmp_pages(struct page *page1, struct page *page2) 995 { 996 char *addr1, *addr2; 997 int ret; 998 999 addr1 = kmap_atomic(page1); 1000 addr2 = kmap_atomic(page2); 1001 ret = memcmp(addr1, addr2, PAGE_SIZE); 1002 kunmap_atomic(addr2); 1003 kunmap_atomic(addr1); 1004 return ret; 1005 } 1006 1007 static inline int pages_identical(struct page *page1, struct page *page2) 1008 { 1009 return !memcmp_pages(page1, page2); 1010 } 1011 1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1013 pte_t *orig_pte) 1014 { 1015 struct mm_struct *mm = vma->vm_mm; 1016 struct page_vma_mapped_walk pvmw = { 1017 .page = page, 1018 .vma = vma, 1019 }; 1020 int swapped; 1021 int err = -EFAULT; 1022 unsigned long mmun_start; /* For mmu_notifiers */ 1023 unsigned long mmun_end; /* For mmu_notifiers */ 1024 1025 pvmw.address = page_address_in_vma(page, vma); 1026 if (pvmw.address == -EFAULT) 1027 goto out; 1028 1029 BUG_ON(PageTransCompound(page)); 1030 1031 mmun_start = pvmw.address; 1032 mmun_end = pvmw.address + PAGE_SIZE; 1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1034 1035 if (!page_vma_mapped_walk(&pvmw)) 1036 goto out_mn; 1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1038 goto out_unlock; 1039 1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) { 1042 pte_t entry; 1043 1044 swapped = PageSwapCache(page); 1045 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1046 /* 1047 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1048 * take any lock, therefore the check that we are going to make 1049 * with the pagecount against the mapcount is racey and 1050 * O_DIRECT can happen right after the check. 1051 * So we clear the pte and flush the tlb before the check 1052 * this assure us that no O_DIRECT can happen after the check 1053 * or in the middle of the check. 1054 */ 1055 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte); 1056 /* 1057 * Check that no O_DIRECT or similar I/O is in progress on the 1058 * page 1059 */ 1060 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1061 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1062 goto out_unlock; 1063 } 1064 if (pte_dirty(entry)) 1065 set_page_dirty(page); 1066 1067 if (pte_protnone(entry)) 1068 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1069 else 1070 entry = pte_mkclean(pte_wrprotect(entry)); 1071 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1072 } 1073 *orig_pte = *pvmw.pte; 1074 err = 0; 1075 1076 out_unlock: 1077 page_vma_mapped_walk_done(&pvmw); 1078 out_mn: 1079 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1080 out: 1081 return err; 1082 } 1083 1084 /** 1085 * replace_page - replace page in vma by new ksm page 1086 * @vma: vma that holds the pte pointing to page 1087 * @page: the page we are replacing by kpage 1088 * @kpage: the ksm page we replace page by 1089 * @orig_pte: the original value of the pte 1090 * 1091 * Returns 0 on success, -EFAULT on failure. 1092 */ 1093 static int replace_page(struct vm_area_struct *vma, struct page *page, 1094 struct page *kpage, pte_t orig_pte) 1095 { 1096 struct mm_struct *mm = vma->vm_mm; 1097 pmd_t *pmd; 1098 pte_t *ptep; 1099 pte_t newpte; 1100 spinlock_t *ptl; 1101 unsigned long addr; 1102 int err = -EFAULT; 1103 unsigned long mmun_start; /* For mmu_notifiers */ 1104 unsigned long mmun_end; /* For mmu_notifiers */ 1105 1106 addr = page_address_in_vma(page, vma); 1107 if (addr == -EFAULT) 1108 goto out; 1109 1110 pmd = mm_find_pmd(mm, addr); 1111 if (!pmd) 1112 goto out; 1113 1114 mmun_start = addr; 1115 mmun_end = addr + PAGE_SIZE; 1116 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 1117 1118 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1119 if (!pte_same(*ptep, orig_pte)) { 1120 pte_unmap_unlock(ptep, ptl); 1121 goto out_mn; 1122 } 1123 1124 /* 1125 * No need to check ksm_use_zero_pages here: we can only have a 1126 * zero_page here if ksm_use_zero_pages was enabled alreaady. 1127 */ 1128 if (!is_zero_pfn(page_to_pfn(kpage))) { 1129 get_page(kpage); 1130 page_add_anon_rmap(kpage, vma, addr, false); 1131 newpte = mk_pte(kpage, vma->vm_page_prot); 1132 } else { 1133 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1134 vma->vm_page_prot)); 1135 } 1136 1137 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1138 ptep_clear_flush_notify(vma, addr, ptep); 1139 set_pte_at_notify(mm, addr, ptep, newpte); 1140 1141 page_remove_rmap(page, false); 1142 if (!page_mapped(page)) 1143 try_to_free_swap(page); 1144 put_page(page); 1145 1146 pte_unmap_unlock(ptep, ptl); 1147 err = 0; 1148 out_mn: 1149 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 1150 out: 1151 return err; 1152 } 1153 1154 /* 1155 * try_to_merge_one_page - take two pages and merge them into one 1156 * @vma: the vma that holds the pte pointing to page 1157 * @page: the PageAnon page that we want to replace with kpage 1158 * @kpage: the PageKsm page that we want to map instead of page, 1159 * or NULL the first time when we want to use page as kpage. 1160 * 1161 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1162 */ 1163 static int try_to_merge_one_page(struct vm_area_struct *vma, 1164 struct page *page, struct page *kpage) 1165 { 1166 pte_t orig_pte = __pte(0); 1167 int err = -EFAULT; 1168 1169 if (page == kpage) /* ksm page forked */ 1170 return 0; 1171 1172 if (!PageAnon(page)) 1173 goto out; 1174 1175 /* 1176 * We need the page lock to read a stable PageSwapCache in 1177 * write_protect_page(). We use trylock_page() instead of 1178 * lock_page() because we don't want to wait here - we 1179 * prefer to continue scanning and merging different pages, 1180 * then come back to this page when it is unlocked. 1181 */ 1182 if (!trylock_page(page)) 1183 goto out; 1184 1185 if (PageTransCompound(page)) { 1186 if (split_huge_page(page)) 1187 goto out_unlock; 1188 } 1189 1190 /* 1191 * If this anonymous page is mapped only here, its pte may need 1192 * to be write-protected. If it's mapped elsewhere, all of its 1193 * ptes are necessarily already write-protected. But in either 1194 * case, we need to lock and check page_count is not raised. 1195 */ 1196 if (write_protect_page(vma, page, &orig_pte) == 0) { 1197 if (!kpage) { 1198 /* 1199 * While we hold page lock, upgrade page from 1200 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1201 * stable_tree_insert() will update stable_node. 1202 */ 1203 set_page_stable_node(page, NULL); 1204 mark_page_accessed(page); 1205 /* 1206 * Page reclaim just frees a clean page with no dirty 1207 * ptes: make sure that the ksm page would be swapped. 1208 */ 1209 if (!PageDirty(page)) 1210 SetPageDirty(page); 1211 err = 0; 1212 } else if (pages_identical(page, kpage)) 1213 err = replace_page(vma, page, kpage, orig_pte); 1214 } 1215 1216 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1217 munlock_vma_page(page); 1218 if (!PageMlocked(kpage)) { 1219 unlock_page(page); 1220 lock_page(kpage); 1221 mlock_vma_page(kpage); 1222 page = kpage; /* for final unlock */ 1223 } 1224 } 1225 1226 out_unlock: 1227 unlock_page(page); 1228 out: 1229 return err; 1230 } 1231 1232 /* 1233 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1234 * but no new kernel page is allocated: kpage must already be a ksm page. 1235 * 1236 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1237 */ 1238 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1239 struct page *page, struct page *kpage) 1240 { 1241 struct mm_struct *mm = rmap_item->mm; 1242 struct vm_area_struct *vma; 1243 int err = -EFAULT; 1244 1245 down_read(&mm->mmap_sem); 1246 vma = find_mergeable_vma(mm, rmap_item->address); 1247 if (!vma) 1248 goto out; 1249 1250 err = try_to_merge_one_page(vma, page, kpage); 1251 if (err) 1252 goto out; 1253 1254 /* Unstable nid is in union with stable anon_vma: remove first */ 1255 remove_rmap_item_from_tree(rmap_item); 1256 1257 /* Must get reference to anon_vma while still holding mmap_sem */ 1258 rmap_item->anon_vma = vma->anon_vma; 1259 get_anon_vma(vma->anon_vma); 1260 out: 1261 up_read(&mm->mmap_sem); 1262 return err; 1263 } 1264 1265 /* 1266 * try_to_merge_two_pages - take two identical pages and prepare them 1267 * to be merged into one page. 1268 * 1269 * This function returns the kpage if we successfully merged two identical 1270 * pages into one ksm page, NULL otherwise. 1271 * 1272 * Note that this function upgrades page to ksm page: if one of the pages 1273 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1274 */ 1275 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1276 struct page *page, 1277 struct rmap_item *tree_rmap_item, 1278 struct page *tree_page) 1279 { 1280 int err; 1281 1282 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1283 if (!err) { 1284 err = try_to_merge_with_ksm_page(tree_rmap_item, 1285 tree_page, page); 1286 /* 1287 * If that fails, we have a ksm page with only one pte 1288 * pointing to it: so break it. 1289 */ 1290 if (err) 1291 break_cow(rmap_item); 1292 } 1293 return err ? NULL : page; 1294 } 1295 1296 static __always_inline 1297 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1298 { 1299 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1300 /* 1301 * Check that at least one mapping still exists, otherwise 1302 * there's no much point to merge and share with this 1303 * stable_node, as the underlying tree_page of the other 1304 * sharer is going to be freed soon. 1305 */ 1306 return stable_node->rmap_hlist_len && 1307 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1308 } 1309 1310 static __always_inline 1311 bool is_page_sharing_candidate(struct stable_node *stable_node) 1312 { 1313 return __is_page_sharing_candidate(stable_node, 0); 1314 } 1315 1316 struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1317 struct stable_node **_stable_node, 1318 struct rb_root *root, 1319 bool prune_stale_stable_nodes) 1320 { 1321 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1322 struct hlist_node *hlist_safe; 1323 struct page *_tree_page, *tree_page = NULL; 1324 int nr = 0; 1325 int found_rmap_hlist_len; 1326 1327 if (!prune_stale_stable_nodes || 1328 time_before(jiffies, stable_node->chain_prune_time + 1329 msecs_to_jiffies( 1330 ksm_stable_node_chains_prune_millisecs))) 1331 prune_stale_stable_nodes = false; 1332 else 1333 stable_node->chain_prune_time = jiffies; 1334 1335 hlist_for_each_entry_safe(dup, hlist_safe, 1336 &stable_node->hlist, hlist_dup) { 1337 cond_resched(); 1338 /* 1339 * We must walk all stable_node_dup to prune the stale 1340 * stable nodes during lookup. 1341 * 1342 * get_ksm_page can drop the nodes from the 1343 * stable_node->hlist if they point to freed pages 1344 * (that's why we do a _safe walk). The "dup" 1345 * stable_node parameter itself will be freed from 1346 * under us if it returns NULL. 1347 */ 1348 _tree_page = get_ksm_page(dup, false); 1349 if (!_tree_page) 1350 continue; 1351 nr += 1; 1352 if (is_page_sharing_candidate(dup)) { 1353 if (!found || 1354 dup->rmap_hlist_len > found_rmap_hlist_len) { 1355 if (found) 1356 put_page(tree_page); 1357 found = dup; 1358 found_rmap_hlist_len = found->rmap_hlist_len; 1359 tree_page = _tree_page; 1360 1361 /* skip put_page for found dup */ 1362 if (!prune_stale_stable_nodes) 1363 break; 1364 continue; 1365 } 1366 } 1367 put_page(_tree_page); 1368 } 1369 1370 if (found) { 1371 /* 1372 * nr is counting all dups in the chain only if 1373 * prune_stale_stable_nodes is true, otherwise we may 1374 * break the loop at nr == 1 even if there are 1375 * multiple entries. 1376 */ 1377 if (prune_stale_stable_nodes && nr == 1) { 1378 /* 1379 * If there's not just one entry it would 1380 * corrupt memory, better BUG_ON. In KSM 1381 * context with no lock held it's not even 1382 * fatal. 1383 */ 1384 BUG_ON(stable_node->hlist.first->next); 1385 1386 /* 1387 * There's just one entry and it is below the 1388 * deduplication limit so drop the chain. 1389 */ 1390 rb_replace_node(&stable_node->node, &found->node, 1391 root); 1392 free_stable_node(stable_node); 1393 ksm_stable_node_chains--; 1394 ksm_stable_node_dups--; 1395 /* 1396 * NOTE: the caller depends on the stable_node 1397 * to be equal to stable_node_dup if the chain 1398 * was collapsed. 1399 */ 1400 *_stable_node = found; 1401 /* 1402 * Just for robustneess as stable_node is 1403 * otherwise left as a stable pointer, the 1404 * compiler shall optimize it away at build 1405 * time. 1406 */ 1407 stable_node = NULL; 1408 } else if (stable_node->hlist.first != &found->hlist_dup && 1409 __is_page_sharing_candidate(found, 1)) { 1410 /* 1411 * If the found stable_node dup can accept one 1412 * more future merge (in addition to the one 1413 * that is underway) and is not at the head of 1414 * the chain, put it there so next search will 1415 * be quicker in the !prune_stale_stable_nodes 1416 * case. 1417 * 1418 * NOTE: it would be inaccurate to use nr > 1 1419 * instead of checking the hlist.first pointer 1420 * directly, because in the 1421 * prune_stale_stable_nodes case "nr" isn't 1422 * the position of the found dup in the chain, 1423 * but the total number of dups in the chain. 1424 */ 1425 hlist_del(&found->hlist_dup); 1426 hlist_add_head(&found->hlist_dup, 1427 &stable_node->hlist); 1428 } 1429 } 1430 1431 *_stable_node_dup = found; 1432 return tree_page; 1433 } 1434 1435 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1436 struct rb_root *root) 1437 { 1438 if (!is_stable_node_chain(stable_node)) 1439 return stable_node; 1440 if (hlist_empty(&stable_node->hlist)) { 1441 free_stable_node_chain(stable_node, root); 1442 return NULL; 1443 } 1444 return hlist_entry(stable_node->hlist.first, 1445 typeof(*stable_node), hlist_dup); 1446 } 1447 1448 /* 1449 * Like for get_ksm_page, this function can free the *_stable_node and 1450 * *_stable_node_dup if the returned tree_page is NULL. 1451 * 1452 * It can also free and overwrite *_stable_node with the found 1453 * stable_node_dup if the chain is collapsed (in which case 1454 * *_stable_node will be equal to *_stable_node_dup like if the chain 1455 * never existed). It's up to the caller to verify tree_page is not 1456 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1457 * 1458 * *_stable_node_dup is really a second output parameter of this 1459 * function and will be overwritten in all cases, the caller doesn't 1460 * need to initialize it. 1461 */ 1462 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1463 struct stable_node **_stable_node, 1464 struct rb_root *root, 1465 bool prune_stale_stable_nodes) 1466 { 1467 struct stable_node *stable_node = *_stable_node; 1468 if (!is_stable_node_chain(stable_node)) { 1469 if (is_page_sharing_candidate(stable_node)) { 1470 *_stable_node_dup = stable_node; 1471 return get_ksm_page(stable_node, false); 1472 } 1473 /* 1474 * _stable_node_dup set to NULL means the stable_node 1475 * reached the ksm_max_page_sharing limit. 1476 */ 1477 *_stable_node_dup = NULL; 1478 return NULL; 1479 } 1480 return stable_node_dup(_stable_node_dup, _stable_node, root, 1481 prune_stale_stable_nodes); 1482 } 1483 1484 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1485 struct stable_node **s_n, 1486 struct rb_root *root) 1487 { 1488 return __stable_node_chain(s_n_d, s_n, root, true); 1489 } 1490 1491 static __always_inline struct page *chain(struct stable_node **s_n_d, 1492 struct stable_node *s_n, 1493 struct rb_root *root) 1494 { 1495 struct stable_node *old_stable_node = s_n; 1496 struct page *tree_page; 1497 1498 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1499 /* not pruning dups so s_n cannot have changed */ 1500 VM_BUG_ON(s_n != old_stable_node); 1501 return tree_page; 1502 } 1503 1504 /* 1505 * stable_tree_search - search for page inside the stable tree 1506 * 1507 * This function checks if there is a page inside the stable tree 1508 * with identical content to the page that we are scanning right now. 1509 * 1510 * This function returns the stable tree node of identical content if found, 1511 * NULL otherwise. 1512 */ 1513 static struct page *stable_tree_search(struct page *page) 1514 { 1515 int nid; 1516 struct rb_root *root; 1517 struct rb_node **new; 1518 struct rb_node *parent; 1519 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1520 struct stable_node *page_node; 1521 1522 page_node = page_stable_node(page); 1523 if (page_node && page_node->head != &migrate_nodes) { 1524 /* ksm page forked */ 1525 get_page(page); 1526 return page; 1527 } 1528 1529 nid = get_kpfn_nid(page_to_pfn(page)); 1530 root = root_stable_tree + nid; 1531 again: 1532 new = &root->rb_node; 1533 parent = NULL; 1534 1535 while (*new) { 1536 struct page *tree_page; 1537 int ret; 1538 1539 cond_resched(); 1540 stable_node = rb_entry(*new, struct stable_node, node); 1541 stable_node_any = NULL; 1542 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1543 /* 1544 * NOTE: stable_node may have been freed by 1545 * chain_prune() if the returned stable_node_dup is 1546 * not NULL. stable_node_dup may have been inserted in 1547 * the rbtree instead as a regular stable_node (in 1548 * order to collapse the stable_node chain if a single 1549 * stable_node dup was found in it). In such case the 1550 * stable_node is overwritten by the calleee to point 1551 * to the stable_node_dup that was collapsed in the 1552 * stable rbtree and stable_node will be equal to 1553 * stable_node_dup like if the chain never existed. 1554 */ 1555 if (!stable_node_dup) { 1556 /* 1557 * Either all stable_node dups were full in 1558 * this stable_node chain, or this chain was 1559 * empty and should be rb_erased. 1560 */ 1561 stable_node_any = stable_node_dup_any(stable_node, 1562 root); 1563 if (!stable_node_any) { 1564 /* rb_erase just run */ 1565 goto again; 1566 } 1567 /* 1568 * Take any of the stable_node dups page of 1569 * this stable_node chain to let the tree walk 1570 * continue. All KSM pages belonging to the 1571 * stable_node dups in a stable_node chain 1572 * have the same content and they're 1573 * wrprotected at all times. Any will work 1574 * fine to continue the walk. 1575 */ 1576 tree_page = get_ksm_page(stable_node_any, false); 1577 } 1578 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1579 if (!tree_page) { 1580 /* 1581 * If we walked over a stale stable_node, 1582 * get_ksm_page() will call rb_erase() and it 1583 * may rebalance the tree from under us. So 1584 * restart the search from scratch. Returning 1585 * NULL would be safe too, but we'd generate 1586 * false negative insertions just because some 1587 * stable_node was stale. 1588 */ 1589 goto again; 1590 } 1591 1592 ret = memcmp_pages(page, tree_page); 1593 put_page(tree_page); 1594 1595 parent = *new; 1596 if (ret < 0) 1597 new = &parent->rb_left; 1598 else if (ret > 0) 1599 new = &parent->rb_right; 1600 else { 1601 if (page_node) { 1602 VM_BUG_ON(page_node->head != &migrate_nodes); 1603 /* 1604 * Test if the migrated page should be merged 1605 * into a stable node dup. If the mapcount is 1606 * 1 we can migrate it with another KSM page 1607 * without adding it to the chain. 1608 */ 1609 if (page_mapcount(page) > 1) 1610 goto chain_append; 1611 } 1612 1613 if (!stable_node_dup) { 1614 /* 1615 * If the stable_node is a chain and 1616 * we got a payload match in memcmp 1617 * but we cannot merge the scanned 1618 * page in any of the existing 1619 * stable_node dups because they're 1620 * all full, we need to wait the 1621 * scanned page to find itself a match 1622 * in the unstable tree to create a 1623 * brand new KSM page to add later to 1624 * the dups of this stable_node. 1625 */ 1626 return NULL; 1627 } 1628 1629 /* 1630 * Lock and unlock the stable_node's page (which 1631 * might already have been migrated) so that page 1632 * migration is sure to notice its raised count. 1633 * It would be more elegant to return stable_node 1634 * than kpage, but that involves more changes. 1635 */ 1636 tree_page = get_ksm_page(stable_node_dup, true); 1637 if (unlikely(!tree_page)) 1638 /* 1639 * The tree may have been rebalanced, 1640 * so re-evaluate parent and new. 1641 */ 1642 goto again; 1643 unlock_page(tree_page); 1644 1645 if (get_kpfn_nid(stable_node_dup->kpfn) != 1646 NUMA(stable_node_dup->nid)) { 1647 put_page(tree_page); 1648 goto replace; 1649 } 1650 return tree_page; 1651 } 1652 } 1653 1654 if (!page_node) 1655 return NULL; 1656 1657 list_del(&page_node->list); 1658 DO_NUMA(page_node->nid = nid); 1659 rb_link_node(&page_node->node, parent, new); 1660 rb_insert_color(&page_node->node, root); 1661 out: 1662 if (is_page_sharing_candidate(page_node)) { 1663 get_page(page); 1664 return page; 1665 } else 1666 return NULL; 1667 1668 replace: 1669 /* 1670 * If stable_node was a chain and chain_prune collapsed it, 1671 * stable_node has been updated to be the new regular 1672 * stable_node. A collapse of the chain is indistinguishable 1673 * from the case there was no chain in the stable 1674 * rbtree. Otherwise stable_node is the chain and 1675 * stable_node_dup is the dup to replace. 1676 */ 1677 if (stable_node_dup == stable_node) { 1678 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1679 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1680 /* there is no chain */ 1681 if (page_node) { 1682 VM_BUG_ON(page_node->head != &migrate_nodes); 1683 list_del(&page_node->list); 1684 DO_NUMA(page_node->nid = nid); 1685 rb_replace_node(&stable_node_dup->node, 1686 &page_node->node, 1687 root); 1688 if (is_page_sharing_candidate(page_node)) 1689 get_page(page); 1690 else 1691 page = NULL; 1692 } else { 1693 rb_erase(&stable_node_dup->node, root); 1694 page = NULL; 1695 } 1696 } else { 1697 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1698 __stable_node_dup_del(stable_node_dup); 1699 if (page_node) { 1700 VM_BUG_ON(page_node->head != &migrate_nodes); 1701 list_del(&page_node->list); 1702 DO_NUMA(page_node->nid = nid); 1703 stable_node_chain_add_dup(page_node, stable_node); 1704 if (is_page_sharing_candidate(page_node)) 1705 get_page(page); 1706 else 1707 page = NULL; 1708 } else { 1709 page = NULL; 1710 } 1711 } 1712 stable_node_dup->head = &migrate_nodes; 1713 list_add(&stable_node_dup->list, stable_node_dup->head); 1714 return page; 1715 1716 chain_append: 1717 /* stable_node_dup could be null if it reached the limit */ 1718 if (!stable_node_dup) 1719 stable_node_dup = stable_node_any; 1720 /* 1721 * If stable_node was a chain and chain_prune collapsed it, 1722 * stable_node has been updated to be the new regular 1723 * stable_node. A collapse of the chain is indistinguishable 1724 * from the case there was no chain in the stable 1725 * rbtree. Otherwise stable_node is the chain and 1726 * stable_node_dup is the dup to replace. 1727 */ 1728 if (stable_node_dup == stable_node) { 1729 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1730 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1731 /* chain is missing so create it */ 1732 stable_node = alloc_stable_node_chain(stable_node_dup, 1733 root); 1734 if (!stable_node) 1735 return NULL; 1736 } 1737 /* 1738 * Add this stable_node dup that was 1739 * migrated to the stable_node chain 1740 * of the current nid for this page 1741 * content. 1742 */ 1743 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1744 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1745 VM_BUG_ON(page_node->head != &migrate_nodes); 1746 list_del(&page_node->list); 1747 DO_NUMA(page_node->nid = nid); 1748 stable_node_chain_add_dup(page_node, stable_node); 1749 goto out; 1750 } 1751 1752 /* 1753 * stable_tree_insert - insert stable tree node pointing to new ksm page 1754 * into the stable tree. 1755 * 1756 * This function returns the stable tree node just allocated on success, 1757 * NULL otherwise. 1758 */ 1759 static struct stable_node *stable_tree_insert(struct page *kpage) 1760 { 1761 int nid; 1762 unsigned long kpfn; 1763 struct rb_root *root; 1764 struct rb_node **new; 1765 struct rb_node *parent; 1766 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1767 bool need_chain = false; 1768 1769 kpfn = page_to_pfn(kpage); 1770 nid = get_kpfn_nid(kpfn); 1771 root = root_stable_tree + nid; 1772 again: 1773 parent = NULL; 1774 new = &root->rb_node; 1775 1776 while (*new) { 1777 struct page *tree_page; 1778 int ret; 1779 1780 cond_resched(); 1781 stable_node = rb_entry(*new, struct stable_node, node); 1782 stable_node_any = NULL; 1783 tree_page = chain(&stable_node_dup, stable_node, root); 1784 if (!stable_node_dup) { 1785 /* 1786 * Either all stable_node dups were full in 1787 * this stable_node chain, or this chain was 1788 * empty and should be rb_erased. 1789 */ 1790 stable_node_any = stable_node_dup_any(stable_node, 1791 root); 1792 if (!stable_node_any) { 1793 /* rb_erase just run */ 1794 goto again; 1795 } 1796 /* 1797 * Take any of the stable_node dups page of 1798 * this stable_node chain to let the tree walk 1799 * continue. All KSM pages belonging to the 1800 * stable_node dups in a stable_node chain 1801 * have the same content and they're 1802 * wrprotected at all times. Any will work 1803 * fine to continue the walk. 1804 */ 1805 tree_page = get_ksm_page(stable_node_any, false); 1806 } 1807 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1808 if (!tree_page) { 1809 /* 1810 * If we walked over a stale stable_node, 1811 * get_ksm_page() will call rb_erase() and it 1812 * may rebalance the tree from under us. So 1813 * restart the search from scratch. Returning 1814 * NULL would be safe too, but we'd generate 1815 * false negative insertions just because some 1816 * stable_node was stale. 1817 */ 1818 goto again; 1819 } 1820 1821 ret = memcmp_pages(kpage, tree_page); 1822 put_page(tree_page); 1823 1824 parent = *new; 1825 if (ret < 0) 1826 new = &parent->rb_left; 1827 else if (ret > 0) 1828 new = &parent->rb_right; 1829 else { 1830 need_chain = true; 1831 break; 1832 } 1833 } 1834 1835 stable_node_dup = alloc_stable_node(); 1836 if (!stable_node_dup) 1837 return NULL; 1838 1839 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1840 stable_node_dup->kpfn = kpfn; 1841 set_page_stable_node(kpage, stable_node_dup); 1842 stable_node_dup->rmap_hlist_len = 0; 1843 DO_NUMA(stable_node_dup->nid = nid); 1844 if (!need_chain) { 1845 rb_link_node(&stable_node_dup->node, parent, new); 1846 rb_insert_color(&stable_node_dup->node, root); 1847 } else { 1848 if (!is_stable_node_chain(stable_node)) { 1849 struct stable_node *orig = stable_node; 1850 /* chain is missing so create it */ 1851 stable_node = alloc_stable_node_chain(orig, root); 1852 if (!stable_node) { 1853 free_stable_node(stable_node_dup); 1854 return NULL; 1855 } 1856 } 1857 stable_node_chain_add_dup(stable_node_dup, stable_node); 1858 } 1859 1860 return stable_node_dup; 1861 } 1862 1863 /* 1864 * unstable_tree_search_insert - search for identical page, 1865 * else insert rmap_item into the unstable tree. 1866 * 1867 * This function searches for a page in the unstable tree identical to the 1868 * page currently being scanned; and if no identical page is found in the 1869 * tree, we insert rmap_item as a new object into the unstable tree. 1870 * 1871 * This function returns pointer to rmap_item found to be identical 1872 * to the currently scanned page, NULL otherwise. 1873 * 1874 * This function does both searching and inserting, because they share 1875 * the same walking algorithm in an rbtree. 1876 */ 1877 static 1878 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1879 struct page *page, 1880 struct page **tree_pagep) 1881 { 1882 struct rb_node **new; 1883 struct rb_root *root; 1884 struct rb_node *parent = NULL; 1885 int nid; 1886 1887 nid = get_kpfn_nid(page_to_pfn(page)); 1888 root = root_unstable_tree + nid; 1889 new = &root->rb_node; 1890 1891 while (*new) { 1892 struct rmap_item *tree_rmap_item; 1893 struct page *tree_page; 1894 int ret; 1895 1896 cond_resched(); 1897 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1898 tree_page = get_mergeable_page(tree_rmap_item); 1899 if (!tree_page) 1900 return NULL; 1901 1902 /* 1903 * Don't substitute a ksm page for a forked page. 1904 */ 1905 if (page == tree_page) { 1906 put_page(tree_page); 1907 return NULL; 1908 } 1909 1910 ret = memcmp_pages(page, tree_page); 1911 1912 parent = *new; 1913 if (ret < 0) { 1914 put_page(tree_page); 1915 new = &parent->rb_left; 1916 } else if (ret > 0) { 1917 put_page(tree_page); 1918 new = &parent->rb_right; 1919 } else if (!ksm_merge_across_nodes && 1920 page_to_nid(tree_page) != nid) { 1921 /* 1922 * If tree_page has been migrated to another NUMA node, 1923 * it will be flushed out and put in the right unstable 1924 * tree next time: only merge with it when across_nodes. 1925 */ 1926 put_page(tree_page); 1927 return NULL; 1928 } else { 1929 *tree_pagep = tree_page; 1930 return tree_rmap_item; 1931 } 1932 } 1933 1934 rmap_item->address |= UNSTABLE_FLAG; 1935 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1936 DO_NUMA(rmap_item->nid = nid); 1937 rb_link_node(&rmap_item->node, parent, new); 1938 rb_insert_color(&rmap_item->node, root); 1939 1940 ksm_pages_unshared++; 1941 return NULL; 1942 } 1943 1944 /* 1945 * stable_tree_append - add another rmap_item to the linked list of 1946 * rmap_items hanging off a given node of the stable tree, all sharing 1947 * the same ksm page. 1948 */ 1949 static void stable_tree_append(struct rmap_item *rmap_item, 1950 struct stable_node *stable_node, 1951 bool max_page_sharing_bypass) 1952 { 1953 /* 1954 * rmap won't find this mapping if we don't insert the 1955 * rmap_item in the right stable_node 1956 * duplicate. page_migration could break later if rmap breaks, 1957 * so we can as well crash here. We really need to check for 1958 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 1959 * for other negative values as an undeflow if detected here 1960 * for the first time (and not when decreasing rmap_hlist_len) 1961 * would be sign of memory corruption in the stable_node. 1962 */ 1963 BUG_ON(stable_node->rmap_hlist_len < 0); 1964 1965 stable_node->rmap_hlist_len++; 1966 if (!max_page_sharing_bypass) 1967 /* possibly non fatal but unexpected overflow, only warn */ 1968 WARN_ON_ONCE(stable_node->rmap_hlist_len > 1969 ksm_max_page_sharing); 1970 1971 rmap_item->head = stable_node; 1972 rmap_item->address |= STABLE_FLAG; 1973 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 1974 1975 if (rmap_item->hlist.next) 1976 ksm_pages_sharing++; 1977 else 1978 ksm_pages_shared++; 1979 } 1980 1981 /* 1982 * cmp_and_merge_page - first see if page can be merged into the stable tree; 1983 * if not, compare checksum to previous and if it's the same, see if page can 1984 * be inserted into the unstable tree, or merged with a page already there and 1985 * both transferred to the stable tree. 1986 * 1987 * @page: the page that we are searching identical page to. 1988 * @rmap_item: the reverse mapping into the virtual address of this page 1989 */ 1990 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 1991 { 1992 struct rmap_item *tree_rmap_item; 1993 struct page *tree_page = NULL; 1994 struct stable_node *stable_node; 1995 struct page *kpage; 1996 unsigned int checksum; 1997 int err; 1998 bool max_page_sharing_bypass = false; 1999 2000 stable_node = page_stable_node(page); 2001 if (stable_node) { 2002 if (stable_node->head != &migrate_nodes && 2003 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2004 NUMA(stable_node->nid)) { 2005 stable_node_dup_del(stable_node); 2006 stable_node->head = &migrate_nodes; 2007 list_add(&stable_node->list, stable_node->head); 2008 } 2009 if (stable_node->head != &migrate_nodes && 2010 rmap_item->head == stable_node) 2011 return; 2012 /* 2013 * If it's a KSM fork, allow it to go over the sharing limit 2014 * without warnings. 2015 */ 2016 if (!is_page_sharing_candidate(stable_node)) 2017 max_page_sharing_bypass = true; 2018 } 2019 2020 /* We first start with searching the page inside the stable tree */ 2021 kpage = stable_tree_search(page); 2022 if (kpage == page && rmap_item->head == stable_node) { 2023 put_page(kpage); 2024 return; 2025 } 2026 2027 remove_rmap_item_from_tree(rmap_item); 2028 2029 if (kpage) { 2030 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2031 if (!err) { 2032 /* 2033 * The page was successfully merged: 2034 * add its rmap_item to the stable tree. 2035 */ 2036 lock_page(kpage); 2037 stable_tree_append(rmap_item, page_stable_node(kpage), 2038 max_page_sharing_bypass); 2039 unlock_page(kpage); 2040 } 2041 put_page(kpage); 2042 return; 2043 } 2044 2045 /* 2046 * If the hash value of the page has changed from the last time 2047 * we calculated it, this page is changing frequently: therefore we 2048 * don't want to insert it in the unstable tree, and we don't want 2049 * to waste our time searching for something identical to it there. 2050 */ 2051 checksum = calc_checksum(page); 2052 if (rmap_item->oldchecksum != checksum) { 2053 rmap_item->oldchecksum = checksum; 2054 return; 2055 } 2056 2057 /* 2058 * Same checksum as an empty page. We attempt to merge it with the 2059 * appropriate zero page if the user enabled this via sysfs. 2060 */ 2061 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2062 struct vm_area_struct *vma; 2063 2064 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address); 2065 err = try_to_merge_one_page(vma, page, 2066 ZERO_PAGE(rmap_item->address)); 2067 /* 2068 * In case of failure, the page was not really empty, so we 2069 * need to continue. Otherwise we're done. 2070 */ 2071 if (!err) 2072 return; 2073 } 2074 tree_rmap_item = 2075 unstable_tree_search_insert(rmap_item, page, &tree_page); 2076 if (tree_rmap_item) { 2077 kpage = try_to_merge_two_pages(rmap_item, page, 2078 tree_rmap_item, tree_page); 2079 put_page(tree_page); 2080 if (kpage) { 2081 /* 2082 * The pages were successfully merged: insert new 2083 * node in the stable tree and add both rmap_items. 2084 */ 2085 lock_page(kpage); 2086 stable_node = stable_tree_insert(kpage); 2087 if (stable_node) { 2088 stable_tree_append(tree_rmap_item, stable_node, 2089 false); 2090 stable_tree_append(rmap_item, stable_node, 2091 false); 2092 } 2093 unlock_page(kpage); 2094 2095 /* 2096 * If we fail to insert the page into the stable tree, 2097 * we will have 2 virtual addresses that are pointing 2098 * to a ksm page left outside the stable tree, 2099 * in which case we need to break_cow on both. 2100 */ 2101 if (!stable_node) { 2102 break_cow(tree_rmap_item); 2103 break_cow(rmap_item); 2104 } 2105 } 2106 } 2107 } 2108 2109 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2110 struct rmap_item **rmap_list, 2111 unsigned long addr) 2112 { 2113 struct rmap_item *rmap_item; 2114 2115 while (*rmap_list) { 2116 rmap_item = *rmap_list; 2117 if ((rmap_item->address & PAGE_MASK) == addr) 2118 return rmap_item; 2119 if (rmap_item->address > addr) 2120 break; 2121 *rmap_list = rmap_item->rmap_list; 2122 remove_rmap_item_from_tree(rmap_item); 2123 free_rmap_item(rmap_item); 2124 } 2125 2126 rmap_item = alloc_rmap_item(); 2127 if (rmap_item) { 2128 /* It has already been zeroed */ 2129 rmap_item->mm = mm_slot->mm; 2130 rmap_item->address = addr; 2131 rmap_item->rmap_list = *rmap_list; 2132 *rmap_list = rmap_item; 2133 } 2134 return rmap_item; 2135 } 2136 2137 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2138 { 2139 struct mm_struct *mm; 2140 struct mm_slot *slot; 2141 struct vm_area_struct *vma; 2142 struct rmap_item *rmap_item; 2143 int nid; 2144 2145 if (list_empty(&ksm_mm_head.mm_list)) 2146 return NULL; 2147 2148 slot = ksm_scan.mm_slot; 2149 if (slot == &ksm_mm_head) { 2150 /* 2151 * A number of pages can hang around indefinitely on per-cpu 2152 * pagevecs, raised page count preventing write_protect_page 2153 * from merging them. Though it doesn't really matter much, 2154 * it is puzzling to see some stuck in pages_volatile until 2155 * other activity jostles them out, and they also prevented 2156 * LTP's KSM test from succeeding deterministically; so drain 2157 * them here (here rather than on entry to ksm_do_scan(), 2158 * so we don't IPI too often when pages_to_scan is set low). 2159 */ 2160 lru_add_drain_all(); 2161 2162 /* 2163 * Whereas stale stable_nodes on the stable_tree itself 2164 * get pruned in the regular course of stable_tree_search(), 2165 * those moved out to the migrate_nodes list can accumulate: 2166 * so prune them once before each full scan. 2167 */ 2168 if (!ksm_merge_across_nodes) { 2169 struct stable_node *stable_node, *next; 2170 struct page *page; 2171 2172 list_for_each_entry_safe(stable_node, next, 2173 &migrate_nodes, list) { 2174 page = get_ksm_page(stable_node, false); 2175 if (page) 2176 put_page(page); 2177 cond_resched(); 2178 } 2179 } 2180 2181 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2182 root_unstable_tree[nid] = RB_ROOT; 2183 2184 spin_lock(&ksm_mmlist_lock); 2185 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2186 ksm_scan.mm_slot = slot; 2187 spin_unlock(&ksm_mmlist_lock); 2188 /* 2189 * Although we tested list_empty() above, a racing __ksm_exit 2190 * of the last mm on the list may have removed it since then. 2191 */ 2192 if (slot == &ksm_mm_head) 2193 return NULL; 2194 next_mm: 2195 ksm_scan.address = 0; 2196 ksm_scan.rmap_list = &slot->rmap_list; 2197 } 2198 2199 mm = slot->mm; 2200 down_read(&mm->mmap_sem); 2201 if (ksm_test_exit(mm)) 2202 vma = NULL; 2203 else 2204 vma = find_vma(mm, ksm_scan.address); 2205 2206 for (; vma; vma = vma->vm_next) { 2207 if (!(vma->vm_flags & VM_MERGEABLE)) 2208 continue; 2209 if (ksm_scan.address < vma->vm_start) 2210 ksm_scan.address = vma->vm_start; 2211 if (!vma->anon_vma) 2212 ksm_scan.address = vma->vm_end; 2213 2214 while (ksm_scan.address < vma->vm_end) { 2215 if (ksm_test_exit(mm)) 2216 break; 2217 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2218 if (IS_ERR_OR_NULL(*page)) { 2219 ksm_scan.address += PAGE_SIZE; 2220 cond_resched(); 2221 continue; 2222 } 2223 if (PageAnon(*page)) { 2224 flush_anon_page(vma, *page, ksm_scan.address); 2225 flush_dcache_page(*page); 2226 rmap_item = get_next_rmap_item(slot, 2227 ksm_scan.rmap_list, ksm_scan.address); 2228 if (rmap_item) { 2229 ksm_scan.rmap_list = 2230 &rmap_item->rmap_list; 2231 ksm_scan.address += PAGE_SIZE; 2232 } else 2233 put_page(*page); 2234 up_read(&mm->mmap_sem); 2235 return rmap_item; 2236 } 2237 put_page(*page); 2238 ksm_scan.address += PAGE_SIZE; 2239 cond_resched(); 2240 } 2241 } 2242 2243 if (ksm_test_exit(mm)) { 2244 ksm_scan.address = 0; 2245 ksm_scan.rmap_list = &slot->rmap_list; 2246 } 2247 /* 2248 * Nuke all the rmap_items that are above this current rmap: 2249 * because there were no VM_MERGEABLE vmas with such addresses. 2250 */ 2251 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2252 2253 spin_lock(&ksm_mmlist_lock); 2254 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2255 struct mm_slot, mm_list); 2256 if (ksm_scan.address == 0) { 2257 /* 2258 * We've completed a full scan of all vmas, holding mmap_sem 2259 * throughout, and found no VM_MERGEABLE: so do the same as 2260 * __ksm_exit does to remove this mm from all our lists now. 2261 * This applies either when cleaning up after __ksm_exit 2262 * (but beware: we can reach here even before __ksm_exit), 2263 * or when all VM_MERGEABLE areas have been unmapped (and 2264 * mmap_sem then protects against race with MADV_MERGEABLE). 2265 */ 2266 hash_del(&slot->link); 2267 list_del(&slot->mm_list); 2268 spin_unlock(&ksm_mmlist_lock); 2269 2270 free_mm_slot(slot); 2271 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2272 up_read(&mm->mmap_sem); 2273 mmdrop(mm); 2274 } else { 2275 up_read(&mm->mmap_sem); 2276 /* 2277 * up_read(&mm->mmap_sem) first because after 2278 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2279 * already have been freed under us by __ksm_exit() 2280 * because the "mm_slot" is still hashed and 2281 * ksm_scan.mm_slot doesn't point to it anymore. 2282 */ 2283 spin_unlock(&ksm_mmlist_lock); 2284 } 2285 2286 /* Repeat until we've completed scanning the whole list */ 2287 slot = ksm_scan.mm_slot; 2288 if (slot != &ksm_mm_head) 2289 goto next_mm; 2290 2291 ksm_scan.seqnr++; 2292 return NULL; 2293 } 2294 2295 /** 2296 * ksm_do_scan - the ksm scanner main worker function. 2297 * @scan_npages - number of pages we want to scan before we return. 2298 */ 2299 static void ksm_do_scan(unsigned int scan_npages) 2300 { 2301 struct rmap_item *rmap_item; 2302 struct page *uninitialized_var(page); 2303 2304 while (scan_npages-- && likely(!freezing(current))) { 2305 cond_resched(); 2306 rmap_item = scan_get_next_rmap_item(&page); 2307 if (!rmap_item) 2308 return; 2309 cmp_and_merge_page(page, rmap_item); 2310 put_page(page); 2311 } 2312 } 2313 2314 static int ksmd_should_run(void) 2315 { 2316 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2317 } 2318 2319 static int ksm_scan_thread(void *nothing) 2320 { 2321 set_freezable(); 2322 set_user_nice(current, 5); 2323 2324 while (!kthread_should_stop()) { 2325 mutex_lock(&ksm_thread_mutex); 2326 wait_while_offlining(); 2327 if (ksmd_should_run()) 2328 ksm_do_scan(ksm_thread_pages_to_scan); 2329 mutex_unlock(&ksm_thread_mutex); 2330 2331 try_to_freeze(); 2332 2333 if (ksmd_should_run()) { 2334 schedule_timeout_interruptible( 2335 msecs_to_jiffies(ksm_thread_sleep_millisecs)); 2336 } else { 2337 wait_event_freezable(ksm_thread_wait, 2338 ksmd_should_run() || kthread_should_stop()); 2339 } 2340 } 2341 return 0; 2342 } 2343 2344 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2345 unsigned long end, int advice, unsigned long *vm_flags) 2346 { 2347 struct mm_struct *mm = vma->vm_mm; 2348 int err; 2349 2350 switch (advice) { 2351 case MADV_MERGEABLE: 2352 /* 2353 * Be somewhat over-protective for now! 2354 */ 2355 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2356 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2357 VM_HUGETLB | VM_MIXEDMAP)) 2358 return 0; /* just ignore the advice */ 2359 2360 #ifdef VM_SAO 2361 if (*vm_flags & VM_SAO) 2362 return 0; 2363 #endif 2364 2365 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2366 err = __ksm_enter(mm); 2367 if (err) 2368 return err; 2369 } 2370 2371 *vm_flags |= VM_MERGEABLE; 2372 break; 2373 2374 case MADV_UNMERGEABLE: 2375 if (!(*vm_flags & VM_MERGEABLE)) 2376 return 0; /* just ignore the advice */ 2377 2378 if (vma->anon_vma) { 2379 err = unmerge_ksm_pages(vma, start, end); 2380 if (err) 2381 return err; 2382 } 2383 2384 *vm_flags &= ~VM_MERGEABLE; 2385 break; 2386 } 2387 2388 return 0; 2389 } 2390 2391 int __ksm_enter(struct mm_struct *mm) 2392 { 2393 struct mm_slot *mm_slot; 2394 int needs_wakeup; 2395 2396 mm_slot = alloc_mm_slot(); 2397 if (!mm_slot) 2398 return -ENOMEM; 2399 2400 /* Check ksm_run too? Would need tighter locking */ 2401 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2402 2403 spin_lock(&ksm_mmlist_lock); 2404 insert_to_mm_slots_hash(mm, mm_slot); 2405 /* 2406 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2407 * insert just behind the scanning cursor, to let the area settle 2408 * down a little; when fork is followed by immediate exec, we don't 2409 * want ksmd to waste time setting up and tearing down an rmap_list. 2410 * 2411 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2412 * scanning cursor, otherwise KSM pages in newly forked mms will be 2413 * missed: then we might as well insert at the end of the list. 2414 */ 2415 if (ksm_run & KSM_RUN_UNMERGE) 2416 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2417 else 2418 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2419 spin_unlock(&ksm_mmlist_lock); 2420 2421 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2422 mmgrab(mm); 2423 2424 if (needs_wakeup) 2425 wake_up_interruptible(&ksm_thread_wait); 2426 2427 return 0; 2428 } 2429 2430 void __ksm_exit(struct mm_struct *mm) 2431 { 2432 struct mm_slot *mm_slot; 2433 int easy_to_free = 0; 2434 2435 /* 2436 * This process is exiting: if it's straightforward (as is the 2437 * case when ksmd was never running), free mm_slot immediately. 2438 * But if it's at the cursor or has rmap_items linked to it, use 2439 * mmap_sem to synchronize with any break_cows before pagetables 2440 * are freed, and leave the mm_slot on the list for ksmd to free. 2441 * Beware: ksm may already have noticed it exiting and freed the slot. 2442 */ 2443 2444 spin_lock(&ksm_mmlist_lock); 2445 mm_slot = get_mm_slot(mm); 2446 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2447 if (!mm_slot->rmap_list) { 2448 hash_del(&mm_slot->link); 2449 list_del(&mm_slot->mm_list); 2450 easy_to_free = 1; 2451 } else { 2452 list_move(&mm_slot->mm_list, 2453 &ksm_scan.mm_slot->mm_list); 2454 } 2455 } 2456 spin_unlock(&ksm_mmlist_lock); 2457 2458 if (easy_to_free) { 2459 free_mm_slot(mm_slot); 2460 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2461 mmdrop(mm); 2462 } else if (mm_slot) { 2463 down_write(&mm->mmap_sem); 2464 up_write(&mm->mmap_sem); 2465 } 2466 } 2467 2468 struct page *ksm_might_need_to_copy(struct page *page, 2469 struct vm_area_struct *vma, unsigned long address) 2470 { 2471 struct anon_vma *anon_vma = page_anon_vma(page); 2472 struct page *new_page; 2473 2474 if (PageKsm(page)) { 2475 if (page_stable_node(page) && 2476 !(ksm_run & KSM_RUN_UNMERGE)) 2477 return page; /* no need to copy it */ 2478 } else if (!anon_vma) { 2479 return page; /* no need to copy it */ 2480 } else if (anon_vma->root == vma->anon_vma->root && 2481 page->index == linear_page_index(vma, address)) { 2482 return page; /* still no need to copy it */ 2483 } 2484 if (!PageUptodate(page)) 2485 return page; /* let do_swap_page report the error */ 2486 2487 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2488 if (new_page) { 2489 copy_user_highpage(new_page, page, address, vma); 2490 2491 SetPageDirty(new_page); 2492 __SetPageUptodate(new_page); 2493 __SetPageLocked(new_page); 2494 } 2495 2496 return new_page; 2497 } 2498 2499 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2500 { 2501 struct stable_node *stable_node; 2502 struct rmap_item *rmap_item; 2503 int search_new_forks = 0; 2504 2505 VM_BUG_ON_PAGE(!PageKsm(page), page); 2506 2507 /* 2508 * Rely on the page lock to protect against concurrent modifications 2509 * to that page's node of the stable tree. 2510 */ 2511 VM_BUG_ON_PAGE(!PageLocked(page), page); 2512 2513 stable_node = page_stable_node(page); 2514 if (!stable_node) 2515 return; 2516 again: 2517 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2518 struct anon_vma *anon_vma = rmap_item->anon_vma; 2519 struct anon_vma_chain *vmac; 2520 struct vm_area_struct *vma; 2521 2522 cond_resched(); 2523 anon_vma_lock_read(anon_vma); 2524 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2525 0, ULONG_MAX) { 2526 cond_resched(); 2527 vma = vmac->vma; 2528 if (rmap_item->address < vma->vm_start || 2529 rmap_item->address >= vma->vm_end) 2530 continue; 2531 /* 2532 * Initially we examine only the vma which covers this 2533 * rmap_item; but later, if there is still work to do, 2534 * we examine covering vmas in other mms: in case they 2535 * were forked from the original since ksmd passed. 2536 */ 2537 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2538 continue; 2539 2540 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2541 continue; 2542 2543 if (!rwc->rmap_one(page, vma, 2544 rmap_item->address, rwc->arg)) { 2545 anon_vma_unlock_read(anon_vma); 2546 return; 2547 } 2548 if (rwc->done && rwc->done(page)) { 2549 anon_vma_unlock_read(anon_vma); 2550 return; 2551 } 2552 } 2553 anon_vma_unlock_read(anon_vma); 2554 } 2555 if (!search_new_forks++) 2556 goto again; 2557 } 2558 2559 #ifdef CONFIG_MIGRATION 2560 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2561 { 2562 struct stable_node *stable_node; 2563 2564 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2565 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2566 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2567 2568 stable_node = page_stable_node(newpage); 2569 if (stable_node) { 2570 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2571 stable_node->kpfn = page_to_pfn(newpage); 2572 /* 2573 * newpage->mapping was set in advance; now we need smp_wmb() 2574 * to make sure that the new stable_node->kpfn is visible 2575 * to get_ksm_page() before it can see that oldpage->mapping 2576 * has gone stale (or that PageSwapCache has been cleared). 2577 */ 2578 smp_wmb(); 2579 set_page_stable_node(oldpage, NULL); 2580 } 2581 } 2582 #endif /* CONFIG_MIGRATION */ 2583 2584 #ifdef CONFIG_MEMORY_HOTREMOVE 2585 static void wait_while_offlining(void) 2586 { 2587 while (ksm_run & KSM_RUN_OFFLINE) { 2588 mutex_unlock(&ksm_thread_mutex); 2589 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2590 TASK_UNINTERRUPTIBLE); 2591 mutex_lock(&ksm_thread_mutex); 2592 } 2593 } 2594 2595 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2596 unsigned long start_pfn, 2597 unsigned long end_pfn) 2598 { 2599 if (stable_node->kpfn >= start_pfn && 2600 stable_node->kpfn < end_pfn) { 2601 /* 2602 * Don't get_ksm_page, page has already gone: 2603 * which is why we keep kpfn instead of page* 2604 */ 2605 remove_node_from_stable_tree(stable_node); 2606 return true; 2607 } 2608 return false; 2609 } 2610 2611 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2612 unsigned long start_pfn, 2613 unsigned long end_pfn, 2614 struct rb_root *root) 2615 { 2616 struct stable_node *dup; 2617 struct hlist_node *hlist_safe; 2618 2619 if (!is_stable_node_chain(stable_node)) { 2620 VM_BUG_ON(is_stable_node_dup(stable_node)); 2621 return stable_node_dup_remove_range(stable_node, start_pfn, 2622 end_pfn); 2623 } 2624 2625 hlist_for_each_entry_safe(dup, hlist_safe, 2626 &stable_node->hlist, hlist_dup) { 2627 VM_BUG_ON(!is_stable_node_dup(dup)); 2628 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2629 } 2630 if (hlist_empty(&stable_node->hlist)) { 2631 free_stable_node_chain(stable_node, root); 2632 return true; /* notify caller that tree was rebalanced */ 2633 } else 2634 return false; 2635 } 2636 2637 static void ksm_check_stable_tree(unsigned long start_pfn, 2638 unsigned long end_pfn) 2639 { 2640 struct stable_node *stable_node, *next; 2641 struct rb_node *node; 2642 int nid; 2643 2644 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2645 node = rb_first(root_stable_tree + nid); 2646 while (node) { 2647 stable_node = rb_entry(node, struct stable_node, node); 2648 if (stable_node_chain_remove_range(stable_node, 2649 start_pfn, end_pfn, 2650 root_stable_tree + 2651 nid)) 2652 node = rb_first(root_stable_tree + nid); 2653 else 2654 node = rb_next(node); 2655 cond_resched(); 2656 } 2657 } 2658 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2659 if (stable_node->kpfn >= start_pfn && 2660 stable_node->kpfn < end_pfn) 2661 remove_node_from_stable_tree(stable_node); 2662 cond_resched(); 2663 } 2664 } 2665 2666 static int ksm_memory_callback(struct notifier_block *self, 2667 unsigned long action, void *arg) 2668 { 2669 struct memory_notify *mn = arg; 2670 2671 switch (action) { 2672 case MEM_GOING_OFFLINE: 2673 /* 2674 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2675 * and remove_all_stable_nodes() while memory is going offline: 2676 * it is unsafe for them to touch the stable tree at this time. 2677 * But unmerge_ksm_pages(), rmap lookups and other entry points 2678 * which do not need the ksm_thread_mutex are all safe. 2679 */ 2680 mutex_lock(&ksm_thread_mutex); 2681 ksm_run |= KSM_RUN_OFFLINE; 2682 mutex_unlock(&ksm_thread_mutex); 2683 break; 2684 2685 case MEM_OFFLINE: 2686 /* 2687 * Most of the work is done by page migration; but there might 2688 * be a few stable_nodes left over, still pointing to struct 2689 * pages which have been offlined: prune those from the tree, 2690 * otherwise get_ksm_page() might later try to access a 2691 * non-existent struct page. 2692 */ 2693 ksm_check_stable_tree(mn->start_pfn, 2694 mn->start_pfn + mn->nr_pages); 2695 /* fallthrough */ 2696 2697 case MEM_CANCEL_OFFLINE: 2698 mutex_lock(&ksm_thread_mutex); 2699 ksm_run &= ~KSM_RUN_OFFLINE; 2700 mutex_unlock(&ksm_thread_mutex); 2701 2702 smp_mb(); /* wake_up_bit advises this */ 2703 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2704 break; 2705 } 2706 return NOTIFY_OK; 2707 } 2708 #else 2709 static void wait_while_offlining(void) 2710 { 2711 } 2712 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2713 2714 #ifdef CONFIG_SYSFS 2715 /* 2716 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2717 */ 2718 2719 #define KSM_ATTR_RO(_name) \ 2720 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2721 #define KSM_ATTR(_name) \ 2722 static struct kobj_attribute _name##_attr = \ 2723 __ATTR(_name, 0644, _name##_show, _name##_store) 2724 2725 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2726 struct kobj_attribute *attr, char *buf) 2727 { 2728 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2729 } 2730 2731 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2732 struct kobj_attribute *attr, 2733 const char *buf, size_t count) 2734 { 2735 unsigned long msecs; 2736 int err; 2737 2738 err = kstrtoul(buf, 10, &msecs); 2739 if (err || msecs > UINT_MAX) 2740 return -EINVAL; 2741 2742 ksm_thread_sleep_millisecs = msecs; 2743 2744 return count; 2745 } 2746 KSM_ATTR(sleep_millisecs); 2747 2748 static ssize_t pages_to_scan_show(struct kobject *kobj, 2749 struct kobj_attribute *attr, char *buf) 2750 { 2751 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2752 } 2753 2754 static ssize_t pages_to_scan_store(struct kobject *kobj, 2755 struct kobj_attribute *attr, 2756 const char *buf, size_t count) 2757 { 2758 int err; 2759 unsigned long nr_pages; 2760 2761 err = kstrtoul(buf, 10, &nr_pages); 2762 if (err || nr_pages > UINT_MAX) 2763 return -EINVAL; 2764 2765 ksm_thread_pages_to_scan = nr_pages; 2766 2767 return count; 2768 } 2769 KSM_ATTR(pages_to_scan); 2770 2771 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2772 char *buf) 2773 { 2774 return sprintf(buf, "%lu\n", ksm_run); 2775 } 2776 2777 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2778 const char *buf, size_t count) 2779 { 2780 int err; 2781 unsigned long flags; 2782 2783 err = kstrtoul(buf, 10, &flags); 2784 if (err || flags > UINT_MAX) 2785 return -EINVAL; 2786 if (flags > KSM_RUN_UNMERGE) 2787 return -EINVAL; 2788 2789 /* 2790 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2791 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2792 * breaking COW to free the pages_shared (but leaves mm_slots 2793 * on the list for when ksmd may be set running again). 2794 */ 2795 2796 mutex_lock(&ksm_thread_mutex); 2797 wait_while_offlining(); 2798 if (ksm_run != flags) { 2799 ksm_run = flags; 2800 if (flags & KSM_RUN_UNMERGE) { 2801 set_current_oom_origin(); 2802 err = unmerge_and_remove_all_rmap_items(); 2803 clear_current_oom_origin(); 2804 if (err) { 2805 ksm_run = KSM_RUN_STOP; 2806 count = err; 2807 } 2808 } 2809 } 2810 mutex_unlock(&ksm_thread_mutex); 2811 2812 if (flags & KSM_RUN_MERGE) 2813 wake_up_interruptible(&ksm_thread_wait); 2814 2815 return count; 2816 } 2817 KSM_ATTR(run); 2818 2819 #ifdef CONFIG_NUMA 2820 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2821 struct kobj_attribute *attr, char *buf) 2822 { 2823 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2824 } 2825 2826 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2827 struct kobj_attribute *attr, 2828 const char *buf, size_t count) 2829 { 2830 int err; 2831 unsigned long knob; 2832 2833 err = kstrtoul(buf, 10, &knob); 2834 if (err) 2835 return err; 2836 if (knob > 1) 2837 return -EINVAL; 2838 2839 mutex_lock(&ksm_thread_mutex); 2840 wait_while_offlining(); 2841 if (ksm_merge_across_nodes != knob) { 2842 if (ksm_pages_shared || remove_all_stable_nodes()) 2843 err = -EBUSY; 2844 else if (root_stable_tree == one_stable_tree) { 2845 struct rb_root *buf; 2846 /* 2847 * This is the first time that we switch away from the 2848 * default of merging across nodes: must now allocate 2849 * a buffer to hold as many roots as may be needed. 2850 * Allocate stable and unstable together: 2851 * MAXSMP NODES_SHIFT 10 will use 16kB. 2852 */ 2853 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2854 GFP_KERNEL); 2855 /* Let us assume that RB_ROOT is NULL is zero */ 2856 if (!buf) 2857 err = -ENOMEM; 2858 else { 2859 root_stable_tree = buf; 2860 root_unstable_tree = buf + nr_node_ids; 2861 /* Stable tree is empty but not the unstable */ 2862 root_unstable_tree[0] = one_unstable_tree[0]; 2863 } 2864 } 2865 if (!err) { 2866 ksm_merge_across_nodes = knob; 2867 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2868 } 2869 } 2870 mutex_unlock(&ksm_thread_mutex); 2871 2872 return err ? err : count; 2873 } 2874 KSM_ATTR(merge_across_nodes); 2875 #endif 2876 2877 static ssize_t use_zero_pages_show(struct kobject *kobj, 2878 struct kobj_attribute *attr, char *buf) 2879 { 2880 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2881 } 2882 static ssize_t use_zero_pages_store(struct kobject *kobj, 2883 struct kobj_attribute *attr, 2884 const char *buf, size_t count) 2885 { 2886 int err; 2887 bool value; 2888 2889 err = kstrtobool(buf, &value); 2890 if (err) 2891 return -EINVAL; 2892 2893 ksm_use_zero_pages = value; 2894 2895 return count; 2896 } 2897 KSM_ATTR(use_zero_pages); 2898 2899 static ssize_t max_page_sharing_show(struct kobject *kobj, 2900 struct kobj_attribute *attr, char *buf) 2901 { 2902 return sprintf(buf, "%u\n", ksm_max_page_sharing); 2903 } 2904 2905 static ssize_t max_page_sharing_store(struct kobject *kobj, 2906 struct kobj_attribute *attr, 2907 const char *buf, size_t count) 2908 { 2909 int err; 2910 int knob; 2911 2912 err = kstrtoint(buf, 10, &knob); 2913 if (err) 2914 return err; 2915 /* 2916 * When a KSM page is created it is shared by 2 mappings. This 2917 * being a signed comparison, it implicitly verifies it's not 2918 * negative. 2919 */ 2920 if (knob < 2) 2921 return -EINVAL; 2922 2923 if (READ_ONCE(ksm_max_page_sharing) == knob) 2924 return count; 2925 2926 mutex_lock(&ksm_thread_mutex); 2927 wait_while_offlining(); 2928 if (ksm_max_page_sharing != knob) { 2929 if (ksm_pages_shared || remove_all_stable_nodes()) 2930 err = -EBUSY; 2931 else 2932 ksm_max_page_sharing = knob; 2933 } 2934 mutex_unlock(&ksm_thread_mutex); 2935 2936 return err ? err : count; 2937 } 2938 KSM_ATTR(max_page_sharing); 2939 2940 static ssize_t pages_shared_show(struct kobject *kobj, 2941 struct kobj_attribute *attr, char *buf) 2942 { 2943 return sprintf(buf, "%lu\n", ksm_pages_shared); 2944 } 2945 KSM_ATTR_RO(pages_shared); 2946 2947 static ssize_t pages_sharing_show(struct kobject *kobj, 2948 struct kobj_attribute *attr, char *buf) 2949 { 2950 return sprintf(buf, "%lu\n", ksm_pages_sharing); 2951 } 2952 KSM_ATTR_RO(pages_sharing); 2953 2954 static ssize_t pages_unshared_show(struct kobject *kobj, 2955 struct kobj_attribute *attr, char *buf) 2956 { 2957 return sprintf(buf, "%lu\n", ksm_pages_unshared); 2958 } 2959 KSM_ATTR_RO(pages_unshared); 2960 2961 static ssize_t pages_volatile_show(struct kobject *kobj, 2962 struct kobj_attribute *attr, char *buf) 2963 { 2964 long ksm_pages_volatile; 2965 2966 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 2967 - ksm_pages_sharing - ksm_pages_unshared; 2968 /* 2969 * It was not worth any locking to calculate that statistic, 2970 * but it might therefore sometimes be negative: conceal that. 2971 */ 2972 if (ksm_pages_volatile < 0) 2973 ksm_pages_volatile = 0; 2974 return sprintf(buf, "%ld\n", ksm_pages_volatile); 2975 } 2976 KSM_ATTR_RO(pages_volatile); 2977 2978 static ssize_t stable_node_dups_show(struct kobject *kobj, 2979 struct kobj_attribute *attr, char *buf) 2980 { 2981 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 2982 } 2983 KSM_ATTR_RO(stable_node_dups); 2984 2985 static ssize_t stable_node_chains_show(struct kobject *kobj, 2986 struct kobj_attribute *attr, char *buf) 2987 { 2988 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 2989 } 2990 KSM_ATTR_RO(stable_node_chains); 2991 2992 static ssize_t 2993 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 2994 struct kobj_attribute *attr, 2995 char *buf) 2996 { 2997 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 2998 } 2999 3000 static ssize_t 3001 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3002 struct kobj_attribute *attr, 3003 const char *buf, size_t count) 3004 { 3005 unsigned long msecs; 3006 int err; 3007 3008 err = kstrtoul(buf, 10, &msecs); 3009 if (err || msecs > UINT_MAX) 3010 return -EINVAL; 3011 3012 ksm_stable_node_chains_prune_millisecs = msecs; 3013 3014 return count; 3015 } 3016 KSM_ATTR(stable_node_chains_prune_millisecs); 3017 3018 static ssize_t full_scans_show(struct kobject *kobj, 3019 struct kobj_attribute *attr, char *buf) 3020 { 3021 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3022 } 3023 KSM_ATTR_RO(full_scans); 3024 3025 static struct attribute *ksm_attrs[] = { 3026 &sleep_millisecs_attr.attr, 3027 &pages_to_scan_attr.attr, 3028 &run_attr.attr, 3029 &pages_shared_attr.attr, 3030 &pages_sharing_attr.attr, 3031 &pages_unshared_attr.attr, 3032 &pages_volatile_attr.attr, 3033 &full_scans_attr.attr, 3034 #ifdef CONFIG_NUMA 3035 &merge_across_nodes_attr.attr, 3036 #endif 3037 &max_page_sharing_attr.attr, 3038 &stable_node_chains_attr.attr, 3039 &stable_node_dups_attr.attr, 3040 &stable_node_chains_prune_millisecs_attr.attr, 3041 &use_zero_pages_attr.attr, 3042 NULL, 3043 }; 3044 3045 static struct attribute_group ksm_attr_group = { 3046 .attrs = ksm_attrs, 3047 .name = "ksm", 3048 }; 3049 #endif /* CONFIG_SYSFS */ 3050 3051 static int __init ksm_init(void) 3052 { 3053 struct task_struct *ksm_thread; 3054 int err; 3055 3056 /* The correct value depends on page size and endianness */ 3057 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3058 /* Default to false for backwards compatibility */ 3059 ksm_use_zero_pages = false; 3060 3061 err = ksm_slab_init(); 3062 if (err) 3063 goto out; 3064 3065 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3066 if (IS_ERR(ksm_thread)) { 3067 pr_err("ksm: creating kthread failed\n"); 3068 err = PTR_ERR(ksm_thread); 3069 goto out_free; 3070 } 3071 3072 #ifdef CONFIG_SYSFS 3073 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3074 if (err) { 3075 pr_err("ksm: register sysfs failed\n"); 3076 kthread_stop(ksm_thread); 3077 goto out_free; 3078 } 3079 #else 3080 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3081 3082 #endif /* CONFIG_SYSFS */ 3083 3084 #ifdef CONFIG_MEMORY_HOTREMOVE 3085 /* There is no significance to this priority 100 */ 3086 hotplug_memory_notifier(ksm_memory_callback, 100); 3087 #endif 3088 return 0; 3089 3090 out_free: 3091 ksm_slab_free(); 3092 out: 3093 return err; 3094 } 3095 subsys_initcall(ksm_init); 3096