xref: /linux/mm/ksm.c (revision 2ef9533134fe8e0011e6d3532aa8ef071c34c5e4)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Memory merging support.
4   *
5   * This code enables dynamic sharing of identical pages found in different
6   * memory areas, even if they are not shared by fork()
7   *
8   * Copyright (C) 2008-2009 Red Hat, Inc.
9   * Authors:
10   *	Izik Eidus
11   *	Andrea Arcangeli
12   *	Chris Wright
13   *	Hugh Dickins
14   */
15  
16  #include <linux/errno.h>
17  #include <linux/mm.h>
18  #include <linux/mm_inline.h>
19  #include <linux/fs.h>
20  #include <linux/mman.h>
21  #include <linux/sched.h>
22  #include <linux/sched/mm.h>
23  #include <linux/sched/coredump.h>
24  #include <linux/rwsem.h>
25  #include <linux/pagemap.h>
26  #include <linux/rmap.h>
27  #include <linux/spinlock.h>
28  #include <linux/xxhash.h>
29  #include <linux/delay.h>
30  #include <linux/kthread.h>
31  #include <linux/wait.h>
32  #include <linux/slab.h>
33  #include <linux/rbtree.h>
34  #include <linux/memory.h>
35  #include <linux/mmu_notifier.h>
36  #include <linux/swap.h>
37  #include <linux/ksm.h>
38  #include <linux/hashtable.h>
39  #include <linux/freezer.h>
40  #include <linux/oom.h>
41  #include <linux/numa.h>
42  #include <linux/pagewalk.h>
43  
44  #include <asm/tlbflush.h>
45  #include "internal.h"
46  #include "mm_slot.h"
47  
48  #define CREATE_TRACE_POINTS
49  #include <trace/events/ksm.h>
50  
51  #ifdef CONFIG_NUMA
52  #define NUMA(x)		(x)
53  #define DO_NUMA(x)	do { (x); } while (0)
54  #else
55  #define NUMA(x)		(0)
56  #define DO_NUMA(x)	do { } while (0)
57  #endif
58  
59  /**
60   * DOC: Overview
61   *
62   * A few notes about the KSM scanning process,
63   * to make it easier to understand the data structures below:
64   *
65   * In order to reduce excessive scanning, KSM sorts the memory pages by their
66   * contents into a data structure that holds pointers to the pages' locations.
67   *
68   * Since the contents of the pages may change at any moment, KSM cannot just
69   * insert the pages into a normal sorted tree and expect it to find anything.
70   * Therefore KSM uses two data structures - the stable and the unstable tree.
71   *
72   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73   * by their contents.  Because each such page is write-protected, searching on
74   * this tree is fully assured to be working (except when pages are unmapped),
75   * and therefore this tree is called the stable tree.
76   *
77   * The stable tree node includes information required for reverse
78   * mapping from a KSM page to virtual addresses that map this page.
79   *
80   * In order to avoid large latencies of the rmap walks on KSM pages,
81   * KSM maintains two types of nodes in the stable tree:
82   *
83   * * the regular nodes that keep the reverse mapping structures in a
84   *   linked list
85   * * the "chains" that link nodes ("dups") that represent the same
86   *   write protected memory content, but each "dup" corresponds to a
87   *   different KSM page copy of that content
88   *
89   * Internally, the regular nodes, "dups" and "chains" are represented
90   * using the same struct ksm_stable_node structure.
91   *
92   * In addition to the stable tree, KSM uses a second data structure called the
93   * unstable tree: this tree holds pointers to pages which have been found to
94   * be "unchanged for a period of time".  The unstable tree sorts these pages
95   * by their contents, but since they are not write-protected, KSM cannot rely
96   * upon the unstable tree to work correctly - the unstable tree is liable to
97   * be corrupted as its contents are modified, and so it is called unstable.
98   *
99   * KSM solves this problem by several techniques:
100   *
101   * 1) The unstable tree is flushed every time KSM completes scanning all
102   *    memory areas, and then the tree is rebuilt again from the beginning.
103   * 2) KSM will only insert into the unstable tree, pages whose hash value
104   *    has not changed since the previous scan of all memory areas.
105   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106   *    colors of the nodes and not on their contents, assuring that even when
107   *    the tree gets "corrupted" it won't get out of balance, so scanning time
108   *    remains the same (also, searching and inserting nodes in an rbtree uses
109   *    the same algorithm, so we have no overhead when we flush and rebuild).
110   * 4) KSM never flushes the stable tree, which means that even if it were to
111   *    take 10 attempts to find a page in the unstable tree, once it is found,
112   *    it is secured in the stable tree.  (When we scan a new page, we first
113   *    compare it against the stable tree, and then against the unstable tree.)
114   *
115   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116   * stable trees and multiple unstable trees: one of each for each NUMA node.
117   */
118  
119  /**
120   * struct ksm_mm_slot - ksm information per mm that is being scanned
121   * @slot: hash lookup from mm to mm_slot
122   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123   */
124  struct ksm_mm_slot {
125  	struct mm_slot slot;
126  	struct ksm_rmap_item *rmap_list;
127  };
128  
129  /**
130   * struct ksm_scan - cursor for scanning
131   * @mm_slot: the current mm_slot we are scanning
132   * @address: the next address inside that to be scanned
133   * @rmap_list: link to the next rmap to be scanned in the rmap_list
134   * @seqnr: count of completed full scans (needed when removing unstable node)
135   *
136   * There is only the one ksm_scan instance of this cursor structure.
137   */
138  struct ksm_scan {
139  	struct ksm_mm_slot *mm_slot;
140  	unsigned long address;
141  	struct ksm_rmap_item **rmap_list;
142  	unsigned long seqnr;
143  };
144  
145  /**
146   * struct ksm_stable_node - node of the stable rbtree
147   * @node: rb node of this ksm page in the stable tree
148   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149   * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150   * @list: linked into migrate_nodes, pending placement in the proper node tree
151   * @hlist: hlist head of rmap_items using this ksm page
152   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153   * @chain_prune_time: time of the last full garbage collection
154   * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156   */
157  struct ksm_stable_node {
158  	union {
159  		struct rb_node node;	/* when node of stable tree */
160  		struct {		/* when listed for migration */
161  			struct list_head *head;
162  			struct {
163  				struct hlist_node hlist_dup;
164  				struct list_head list;
165  			};
166  		};
167  	};
168  	struct hlist_head hlist;
169  	union {
170  		unsigned long kpfn;
171  		unsigned long chain_prune_time;
172  	};
173  	/*
174  	 * STABLE_NODE_CHAIN can be any negative number in
175  	 * rmap_hlist_len negative range, but better not -1 to be able
176  	 * to reliably detect underflows.
177  	 */
178  #define STABLE_NODE_CHAIN -1024
179  	int rmap_hlist_len;
180  #ifdef CONFIG_NUMA
181  	int nid;
182  #endif
183  };
184  
185  /**
186   * struct ksm_rmap_item - reverse mapping item for virtual addresses
187   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189   * @nid: NUMA node id of unstable tree in which linked (may not match page)
190   * @mm: the memory structure this rmap_item is pointing into
191   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192   * @oldchecksum: previous checksum of the page at that virtual address
193   * @node: rb node of this rmap_item in the unstable tree
194   * @head: pointer to stable_node heading this list in the stable tree
195   * @hlist: link into hlist of rmap_items hanging off that stable_node
196   */
197  struct ksm_rmap_item {
198  	struct ksm_rmap_item *rmap_list;
199  	union {
200  		struct anon_vma *anon_vma;	/* when stable */
201  #ifdef CONFIG_NUMA
202  		int nid;		/* when node of unstable tree */
203  #endif
204  	};
205  	struct mm_struct *mm;
206  	unsigned long address;		/* + low bits used for flags below */
207  	unsigned int oldchecksum;	/* when unstable */
208  	union {
209  		struct rb_node node;	/* when node of unstable tree */
210  		struct {		/* when listed from stable tree */
211  			struct ksm_stable_node *head;
212  			struct hlist_node hlist;
213  		};
214  	};
215  };
216  
217  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
218  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
219  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
220  
221  /* The stable and unstable tree heads */
222  static struct rb_root one_stable_tree[1] = { RB_ROOT };
223  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224  static struct rb_root *root_stable_tree = one_stable_tree;
225  static struct rb_root *root_unstable_tree = one_unstable_tree;
226  
227  /* Recently migrated nodes of stable tree, pending proper placement */
228  static LIST_HEAD(migrate_nodes);
229  #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230  
231  #define MM_SLOTS_HASH_BITS 10
232  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233  
234  static struct ksm_mm_slot ksm_mm_head = {
235  	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236  };
237  static struct ksm_scan ksm_scan = {
238  	.mm_slot = &ksm_mm_head,
239  };
240  
241  static struct kmem_cache *rmap_item_cache;
242  static struct kmem_cache *stable_node_cache;
243  static struct kmem_cache *mm_slot_cache;
244  
245  /* The number of nodes in the stable tree */
246  static unsigned long ksm_pages_shared;
247  
248  /* The number of page slots additionally sharing those nodes */
249  static unsigned long ksm_pages_sharing;
250  
251  /* The number of nodes in the unstable tree */
252  static unsigned long ksm_pages_unshared;
253  
254  /* The number of rmap_items in use: to calculate pages_volatile */
255  static unsigned long ksm_rmap_items;
256  
257  /* The number of stable_node chains */
258  static unsigned long ksm_stable_node_chains;
259  
260  /* The number of stable_node dups linked to the stable_node chains */
261  static unsigned long ksm_stable_node_dups;
262  
263  /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264  static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265  
266  /* Maximum number of page slots sharing a stable node */
267  static int ksm_max_page_sharing = 256;
268  
269  /* Number of pages ksmd should scan in one batch */
270  static unsigned int ksm_thread_pages_to_scan = 100;
271  
272  /* Milliseconds ksmd should sleep between batches */
273  static unsigned int ksm_thread_sleep_millisecs = 20;
274  
275  /* Checksum of an empty (zeroed) page */
276  static unsigned int zero_checksum __read_mostly;
277  
278  /* Whether to merge empty (zeroed) pages with actual zero pages */
279  static bool ksm_use_zero_pages __read_mostly;
280  
281  #ifdef CONFIG_NUMA
282  /* Zeroed when merging across nodes is not allowed */
283  static unsigned int ksm_merge_across_nodes = 1;
284  static int ksm_nr_node_ids = 1;
285  #else
286  #define ksm_merge_across_nodes	1U
287  #define ksm_nr_node_ids		1
288  #endif
289  
290  #define KSM_RUN_STOP	0
291  #define KSM_RUN_MERGE	1
292  #define KSM_RUN_UNMERGE	2
293  #define KSM_RUN_OFFLINE	4
294  static unsigned long ksm_run = KSM_RUN_STOP;
295  static void wait_while_offlining(void);
296  
297  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298  static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299  static DEFINE_MUTEX(ksm_thread_mutex);
300  static DEFINE_SPINLOCK(ksm_mmlist_lock);
301  
302  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
303  		sizeof(struct __struct), __alignof__(struct __struct),\
304  		(__flags), NULL)
305  
306  static int __init ksm_slab_init(void)
307  {
308  	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
309  	if (!rmap_item_cache)
310  		goto out;
311  
312  	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
313  	if (!stable_node_cache)
314  		goto out_free1;
315  
316  	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
317  	if (!mm_slot_cache)
318  		goto out_free2;
319  
320  	return 0;
321  
322  out_free2:
323  	kmem_cache_destroy(stable_node_cache);
324  out_free1:
325  	kmem_cache_destroy(rmap_item_cache);
326  out:
327  	return -ENOMEM;
328  }
329  
330  static void __init ksm_slab_free(void)
331  {
332  	kmem_cache_destroy(mm_slot_cache);
333  	kmem_cache_destroy(stable_node_cache);
334  	kmem_cache_destroy(rmap_item_cache);
335  	mm_slot_cache = NULL;
336  }
337  
338  static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
339  {
340  	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341  }
342  
343  static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
344  {
345  	return dup->head == STABLE_NODE_DUP_HEAD;
346  }
347  
348  static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
349  					     struct ksm_stable_node *chain)
350  {
351  	VM_BUG_ON(is_stable_node_dup(dup));
352  	dup->head = STABLE_NODE_DUP_HEAD;
353  	VM_BUG_ON(!is_stable_node_chain(chain));
354  	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355  	ksm_stable_node_dups++;
356  }
357  
358  static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
359  {
360  	VM_BUG_ON(!is_stable_node_dup(dup));
361  	hlist_del(&dup->hlist_dup);
362  	ksm_stable_node_dups--;
363  }
364  
365  static inline void stable_node_dup_del(struct ksm_stable_node *dup)
366  {
367  	VM_BUG_ON(is_stable_node_chain(dup));
368  	if (is_stable_node_dup(dup))
369  		__stable_node_dup_del(dup);
370  	else
371  		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372  #ifdef CONFIG_DEBUG_VM
373  	dup->head = NULL;
374  #endif
375  }
376  
377  static inline struct ksm_rmap_item *alloc_rmap_item(void)
378  {
379  	struct ksm_rmap_item *rmap_item;
380  
381  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382  						__GFP_NORETRY | __GFP_NOWARN);
383  	if (rmap_item)
384  		ksm_rmap_items++;
385  	return rmap_item;
386  }
387  
388  static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
389  {
390  	ksm_rmap_items--;
391  	rmap_item->mm->ksm_rmap_items--;
392  	rmap_item->mm = NULL;	/* debug safety */
393  	kmem_cache_free(rmap_item_cache, rmap_item);
394  }
395  
396  static inline struct ksm_stable_node *alloc_stable_node(void)
397  {
398  	/*
399  	 * The allocation can take too long with GFP_KERNEL when memory is under
400  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401  	 * grants access to memory reserves, helping to avoid this problem.
402  	 */
403  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404  }
405  
406  static inline void free_stable_node(struct ksm_stable_node *stable_node)
407  {
408  	VM_BUG_ON(stable_node->rmap_hlist_len &&
409  		  !is_stable_node_chain(stable_node));
410  	kmem_cache_free(stable_node_cache, stable_node);
411  }
412  
413  /*
414   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
415   * page tables after it has passed through ksm_exit() - which, if necessary,
416   * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
417   * a special flag: they can just back out as soon as mm_users goes to zero.
418   * ksm_test_exit() is used throughout to make this test for exit: in some
419   * places for correctness, in some places just to avoid unnecessary work.
420   */
421  static inline bool ksm_test_exit(struct mm_struct *mm)
422  {
423  	return atomic_read(&mm->mm_users) == 0;
424  }
425  
426  static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
427  			struct mm_walk *walk)
428  {
429  	struct page *page = NULL;
430  	spinlock_t *ptl;
431  	pte_t *pte;
432  	int ret;
433  
434  	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
435  		return 0;
436  
437  	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
438  	if (pte_present(*pte)) {
439  		page = vm_normal_page(walk->vma, addr, *pte);
440  	} else if (!pte_none(*pte)) {
441  		swp_entry_t entry = pte_to_swp_entry(*pte);
442  
443  		/*
444  		 * As KSM pages remain KSM pages until freed, no need to wait
445  		 * here for migration to end.
446  		 */
447  		if (is_migration_entry(entry))
448  			page = pfn_swap_entry_to_page(entry);
449  	}
450  	ret = page && PageKsm(page);
451  	pte_unmap_unlock(pte, ptl);
452  	return ret;
453  }
454  
455  static const struct mm_walk_ops break_ksm_ops = {
456  	.pmd_entry = break_ksm_pmd_entry,
457  };
458  
459  /*
460   * We use break_ksm to break COW on a ksm page by triggering unsharing,
461   * such that the ksm page will get replaced by an exclusive anonymous page.
462   *
463   * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
464   * in case the application has unmapped and remapped mm,addr meanwhile.
465   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
466   * mmap of /dev/mem, where we would not want to touch it.
467   *
468   * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
469   * of the process that owns 'vma'.  We also do not want to enforce
470   * protection keys here anyway.
471   */
472  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
473  {
474  	vm_fault_t ret = 0;
475  
476  	do {
477  		int ksm_page;
478  
479  		cond_resched();
480  		ksm_page = walk_page_range_vma(vma, addr, addr + 1,
481  					       &break_ksm_ops, NULL);
482  		if (WARN_ON_ONCE(ksm_page < 0))
483  			return ksm_page;
484  		if (!ksm_page)
485  			return 0;
486  		ret = handle_mm_fault(vma, addr,
487  				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
488  				      NULL);
489  	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490  	/*
491  	 * We must loop until we no longer find a KSM page because
492  	 * handle_mm_fault() may back out if there's any difficulty e.g. if
493  	 * pte accessed bit gets updated concurrently.
494  	 *
495  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496  	 * backing file, which also invalidates anonymous pages: that's
497  	 * okay, that truncation will have unmapped the PageKsm for us.
498  	 *
499  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
502  	 * to user; and ksmd, having no mm, would never be chosen for that.
503  	 *
504  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
505  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506  	 * even ksmd can fail in this way - though it's usually breaking ksm
507  	 * just to undo a merge it made a moment before, so unlikely to oom.
508  	 *
509  	 * That's a pity: we might therefore have more kernel pages allocated
510  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
511  	 * will retry to break_cow on each pass, so should recover the page
512  	 * in due course.  The important thing is to not let VM_MERGEABLE
513  	 * be cleared while any such pages might remain in the area.
514  	 */
515  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516  }
517  
518  static bool vma_ksm_compatible(struct vm_area_struct *vma)
519  {
520  	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
521  			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
522  			     VM_MIXEDMAP))
523  		return false;		/* just ignore the advice */
524  
525  	if (vma_is_dax(vma))
526  		return false;
527  
528  #ifdef VM_SAO
529  	if (vma->vm_flags & VM_SAO)
530  		return false;
531  #endif
532  #ifdef VM_SPARC_ADI
533  	if (vma->vm_flags & VM_SPARC_ADI)
534  		return false;
535  #endif
536  
537  	return true;
538  }
539  
540  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
541  		unsigned long addr)
542  {
543  	struct vm_area_struct *vma;
544  	if (ksm_test_exit(mm))
545  		return NULL;
546  	vma = vma_lookup(mm, addr);
547  	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
548  		return NULL;
549  	return vma;
550  }
551  
552  static void break_cow(struct ksm_rmap_item *rmap_item)
553  {
554  	struct mm_struct *mm = rmap_item->mm;
555  	unsigned long addr = rmap_item->address;
556  	struct vm_area_struct *vma;
557  
558  	/*
559  	 * It is not an accident that whenever we want to break COW
560  	 * to undo, we also need to drop a reference to the anon_vma.
561  	 */
562  	put_anon_vma(rmap_item->anon_vma);
563  
564  	mmap_read_lock(mm);
565  	vma = find_mergeable_vma(mm, addr);
566  	if (vma)
567  		break_ksm(vma, addr);
568  	mmap_read_unlock(mm);
569  }
570  
571  static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
572  {
573  	struct mm_struct *mm = rmap_item->mm;
574  	unsigned long addr = rmap_item->address;
575  	struct vm_area_struct *vma;
576  	struct page *page;
577  
578  	mmap_read_lock(mm);
579  	vma = find_mergeable_vma(mm, addr);
580  	if (!vma)
581  		goto out;
582  
583  	page = follow_page(vma, addr, FOLL_GET);
584  	if (IS_ERR_OR_NULL(page))
585  		goto out;
586  	if (is_zone_device_page(page))
587  		goto out_putpage;
588  	if (PageAnon(page)) {
589  		flush_anon_page(vma, page, addr);
590  		flush_dcache_page(page);
591  	} else {
592  out_putpage:
593  		put_page(page);
594  out:
595  		page = NULL;
596  	}
597  	mmap_read_unlock(mm);
598  	return page;
599  }
600  
601  /*
602   * This helper is used for getting right index into array of tree roots.
603   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
604   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
605   * every node has its own stable and unstable tree.
606   */
607  static inline int get_kpfn_nid(unsigned long kpfn)
608  {
609  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
610  }
611  
612  static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
613  						   struct rb_root *root)
614  {
615  	struct ksm_stable_node *chain = alloc_stable_node();
616  	VM_BUG_ON(is_stable_node_chain(dup));
617  	if (likely(chain)) {
618  		INIT_HLIST_HEAD(&chain->hlist);
619  		chain->chain_prune_time = jiffies;
620  		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
621  #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
622  		chain->nid = NUMA_NO_NODE; /* debug */
623  #endif
624  		ksm_stable_node_chains++;
625  
626  		/*
627  		 * Put the stable node chain in the first dimension of
628  		 * the stable tree and at the same time remove the old
629  		 * stable node.
630  		 */
631  		rb_replace_node(&dup->node, &chain->node, root);
632  
633  		/*
634  		 * Move the old stable node to the second dimension
635  		 * queued in the hlist_dup. The invariant is that all
636  		 * dup stable_nodes in the chain->hlist point to pages
637  		 * that are write protected and have the exact same
638  		 * content.
639  		 */
640  		stable_node_chain_add_dup(dup, chain);
641  	}
642  	return chain;
643  }
644  
645  static inline void free_stable_node_chain(struct ksm_stable_node *chain,
646  					  struct rb_root *root)
647  {
648  	rb_erase(&chain->node, root);
649  	free_stable_node(chain);
650  	ksm_stable_node_chains--;
651  }
652  
653  static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
654  {
655  	struct ksm_rmap_item *rmap_item;
656  
657  	/* check it's not STABLE_NODE_CHAIN or negative */
658  	BUG_ON(stable_node->rmap_hlist_len < 0);
659  
660  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
661  		if (rmap_item->hlist.next) {
662  			ksm_pages_sharing--;
663  			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
664  		} else {
665  			ksm_pages_shared--;
666  		}
667  
668  		rmap_item->mm->ksm_merging_pages--;
669  
670  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
671  		stable_node->rmap_hlist_len--;
672  		put_anon_vma(rmap_item->anon_vma);
673  		rmap_item->address &= PAGE_MASK;
674  		cond_resched();
675  	}
676  
677  	/*
678  	 * We need the second aligned pointer of the migrate_nodes
679  	 * list_head to stay clear from the rb_parent_color union
680  	 * (aligned and different than any node) and also different
681  	 * from &migrate_nodes. This will verify that future list.h changes
682  	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
683  	 */
684  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
685  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
686  
687  	trace_ksm_remove_ksm_page(stable_node->kpfn);
688  	if (stable_node->head == &migrate_nodes)
689  		list_del(&stable_node->list);
690  	else
691  		stable_node_dup_del(stable_node);
692  	free_stable_node(stable_node);
693  }
694  
695  enum get_ksm_page_flags {
696  	GET_KSM_PAGE_NOLOCK,
697  	GET_KSM_PAGE_LOCK,
698  	GET_KSM_PAGE_TRYLOCK
699  };
700  
701  /*
702   * get_ksm_page: checks if the page indicated by the stable node
703   * is still its ksm page, despite having held no reference to it.
704   * In which case we can trust the content of the page, and it
705   * returns the gotten page; but if the page has now been zapped,
706   * remove the stale node from the stable tree and return NULL.
707   * But beware, the stable node's page might be being migrated.
708   *
709   * You would expect the stable_node to hold a reference to the ksm page.
710   * But if it increments the page's count, swapping out has to wait for
711   * ksmd to come around again before it can free the page, which may take
712   * seconds or even minutes: much too unresponsive.  So instead we use a
713   * "keyhole reference": access to the ksm page from the stable node peeps
714   * out through its keyhole to see if that page still holds the right key,
715   * pointing back to this stable node.  This relies on freeing a PageAnon
716   * page to reset its page->mapping to NULL, and relies on no other use of
717   * a page to put something that might look like our key in page->mapping.
718   * is on its way to being freed; but it is an anomaly to bear in mind.
719   */
720  static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
721  				 enum get_ksm_page_flags flags)
722  {
723  	struct page *page;
724  	void *expected_mapping;
725  	unsigned long kpfn;
726  
727  	expected_mapping = (void *)((unsigned long)stable_node |
728  					PAGE_MAPPING_KSM);
729  again:
730  	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
731  	page = pfn_to_page(kpfn);
732  	if (READ_ONCE(page->mapping) != expected_mapping)
733  		goto stale;
734  
735  	/*
736  	 * We cannot do anything with the page while its refcount is 0.
737  	 * Usually 0 means free, or tail of a higher-order page: in which
738  	 * case this node is no longer referenced, and should be freed;
739  	 * however, it might mean that the page is under page_ref_freeze().
740  	 * The __remove_mapping() case is easy, again the node is now stale;
741  	 * the same is in reuse_ksm_page() case; but if page is swapcache
742  	 * in folio_migrate_mapping(), it might still be our page,
743  	 * in which case it's essential to keep the node.
744  	 */
745  	while (!get_page_unless_zero(page)) {
746  		/*
747  		 * Another check for page->mapping != expected_mapping would
748  		 * work here too.  We have chosen the !PageSwapCache test to
749  		 * optimize the common case, when the page is or is about to
750  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
751  		 * in the ref_freeze section of __remove_mapping(); but Anon
752  		 * page->mapping reset to NULL later, in free_pages_prepare().
753  		 */
754  		if (!PageSwapCache(page))
755  			goto stale;
756  		cpu_relax();
757  	}
758  
759  	if (READ_ONCE(page->mapping) != expected_mapping) {
760  		put_page(page);
761  		goto stale;
762  	}
763  
764  	if (flags == GET_KSM_PAGE_TRYLOCK) {
765  		if (!trylock_page(page)) {
766  			put_page(page);
767  			return ERR_PTR(-EBUSY);
768  		}
769  	} else if (flags == GET_KSM_PAGE_LOCK)
770  		lock_page(page);
771  
772  	if (flags != GET_KSM_PAGE_NOLOCK) {
773  		if (READ_ONCE(page->mapping) != expected_mapping) {
774  			unlock_page(page);
775  			put_page(page);
776  			goto stale;
777  		}
778  	}
779  	return page;
780  
781  stale:
782  	/*
783  	 * We come here from above when page->mapping or !PageSwapCache
784  	 * suggests that the node is stale; but it might be under migration.
785  	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
786  	 * before checking whether node->kpfn has been changed.
787  	 */
788  	smp_rmb();
789  	if (READ_ONCE(stable_node->kpfn) != kpfn)
790  		goto again;
791  	remove_node_from_stable_tree(stable_node);
792  	return NULL;
793  }
794  
795  /*
796   * Removing rmap_item from stable or unstable tree.
797   * This function will clean the information from the stable/unstable tree.
798   */
799  static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
800  {
801  	if (rmap_item->address & STABLE_FLAG) {
802  		struct ksm_stable_node *stable_node;
803  		struct page *page;
804  
805  		stable_node = rmap_item->head;
806  		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
807  		if (!page)
808  			goto out;
809  
810  		hlist_del(&rmap_item->hlist);
811  		unlock_page(page);
812  		put_page(page);
813  
814  		if (!hlist_empty(&stable_node->hlist))
815  			ksm_pages_sharing--;
816  		else
817  			ksm_pages_shared--;
818  
819  		rmap_item->mm->ksm_merging_pages--;
820  
821  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
822  		stable_node->rmap_hlist_len--;
823  
824  		put_anon_vma(rmap_item->anon_vma);
825  		rmap_item->head = NULL;
826  		rmap_item->address &= PAGE_MASK;
827  
828  	} else if (rmap_item->address & UNSTABLE_FLAG) {
829  		unsigned char age;
830  		/*
831  		 * Usually ksmd can and must skip the rb_erase, because
832  		 * root_unstable_tree was already reset to RB_ROOT.
833  		 * But be careful when an mm is exiting: do the rb_erase
834  		 * if this rmap_item was inserted by this scan, rather
835  		 * than left over from before.
836  		 */
837  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
838  		BUG_ON(age > 1);
839  		if (!age)
840  			rb_erase(&rmap_item->node,
841  				 root_unstable_tree + NUMA(rmap_item->nid));
842  		ksm_pages_unshared--;
843  		rmap_item->address &= PAGE_MASK;
844  	}
845  out:
846  	cond_resched();		/* we're called from many long loops */
847  }
848  
849  static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
850  {
851  	while (*rmap_list) {
852  		struct ksm_rmap_item *rmap_item = *rmap_list;
853  		*rmap_list = rmap_item->rmap_list;
854  		remove_rmap_item_from_tree(rmap_item);
855  		free_rmap_item(rmap_item);
856  	}
857  }
858  
859  /*
860   * Though it's very tempting to unmerge rmap_items from stable tree rather
861   * than check every pte of a given vma, the locking doesn't quite work for
862   * that - an rmap_item is assigned to the stable tree after inserting ksm
863   * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
864   * rmap_items from parent to child at fork time (so as not to waste time
865   * if exit comes before the next scan reaches it).
866   *
867   * Similarly, although we'd like to remove rmap_items (so updating counts
868   * and freeing memory) when unmerging an area, it's easier to leave that
869   * to the next pass of ksmd - consider, for example, how ksmd might be
870   * in cmp_and_merge_page on one of the rmap_items we would be removing.
871   */
872  static int unmerge_ksm_pages(struct vm_area_struct *vma,
873  			     unsigned long start, unsigned long end)
874  {
875  	unsigned long addr;
876  	int err = 0;
877  
878  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
879  		if (ksm_test_exit(vma->vm_mm))
880  			break;
881  		if (signal_pending(current))
882  			err = -ERESTARTSYS;
883  		else
884  			err = break_ksm(vma, addr);
885  	}
886  	return err;
887  }
888  
889  static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
890  {
891  	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
892  }
893  
894  static inline struct ksm_stable_node *page_stable_node(struct page *page)
895  {
896  	return folio_stable_node(page_folio(page));
897  }
898  
899  static inline void set_page_stable_node(struct page *page,
900  					struct ksm_stable_node *stable_node)
901  {
902  	VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
903  	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
904  }
905  
906  #ifdef CONFIG_SYSFS
907  /*
908   * Only called through the sysfs control interface:
909   */
910  static int remove_stable_node(struct ksm_stable_node *stable_node)
911  {
912  	struct page *page;
913  	int err;
914  
915  	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
916  	if (!page) {
917  		/*
918  		 * get_ksm_page did remove_node_from_stable_tree itself.
919  		 */
920  		return 0;
921  	}
922  
923  	/*
924  	 * Page could be still mapped if this races with __mmput() running in
925  	 * between ksm_exit() and exit_mmap(). Just refuse to let
926  	 * merge_across_nodes/max_page_sharing be switched.
927  	 */
928  	err = -EBUSY;
929  	if (!page_mapped(page)) {
930  		/*
931  		 * The stable node did not yet appear stale to get_ksm_page(),
932  		 * since that allows for an unmapped ksm page to be recognized
933  		 * right up until it is freed; but the node is safe to remove.
934  		 * This page might be in a pagevec waiting to be freed,
935  		 * or it might be PageSwapCache (perhaps under writeback),
936  		 * or it might have been removed from swapcache a moment ago.
937  		 */
938  		set_page_stable_node(page, NULL);
939  		remove_node_from_stable_tree(stable_node);
940  		err = 0;
941  	}
942  
943  	unlock_page(page);
944  	put_page(page);
945  	return err;
946  }
947  
948  static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
949  				    struct rb_root *root)
950  {
951  	struct ksm_stable_node *dup;
952  	struct hlist_node *hlist_safe;
953  
954  	if (!is_stable_node_chain(stable_node)) {
955  		VM_BUG_ON(is_stable_node_dup(stable_node));
956  		if (remove_stable_node(stable_node))
957  			return true;
958  		else
959  			return false;
960  	}
961  
962  	hlist_for_each_entry_safe(dup, hlist_safe,
963  				  &stable_node->hlist, hlist_dup) {
964  		VM_BUG_ON(!is_stable_node_dup(dup));
965  		if (remove_stable_node(dup))
966  			return true;
967  	}
968  	BUG_ON(!hlist_empty(&stable_node->hlist));
969  	free_stable_node_chain(stable_node, root);
970  	return false;
971  }
972  
973  static int remove_all_stable_nodes(void)
974  {
975  	struct ksm_stable_node *stable_node, *next;
976  	int nid;
977  	int err = 0;
978  
979  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
980  		while (root_stable_tree[nid].rb_node) {
981  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
982  						struct ksm_stable_node, node);
983  			if (remove_stable_node_chain(stable_node,
984  						     root_stable_tree + nid)) {
985  				err = -EBUSY;
986  				break;	/* proceed to next nid */
987  			}
988  			cond_resched();
989  		}
990  	}
991  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
992  		if (remove_stable_node(stable_node))
993  			err = -EBUSY;
994  		cond_resched();
995  	}
996  	return err;
997  }
998  
999  static int unmerge_and_remove_all_rmap_items(void)
1000  {
1001  	struct ksm_mm_slot *mm_slot;
1002  	struct mm_slot *slot;
1003  	struct mm_struct *mm;
1004  	struct vm_area_struct *vma;
1005  	int err = 0;
1006  
1007  	spin_lock(&ksm_mmlist_lock);
1008  	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1009  			  struct mm_slot, mm_node);
1010  	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1011  	spin_unlock(&ksm_mmlist_lock);
1012  
1013  	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1014  	     mm_slot = ksm_scan.mm_slot) {
1015  		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1016  
1017  		mm = mm_slot->slot.mm;
1018  		mmap_read_lock(mm);
1019  
1020  		/*
1021  		 * Exit right away if mm is exiting to avoid lockdep issue in
1022  		 * the maple tree
1023  		 */
1024  		if (ksm_test_exit(mm))
1025  			goto mm_exiting;
1026  
1027  		for_each_vma(vmi, vma) {
1028  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1029  				continue;
1030  			err = unmerge_ksm_pages(vma,
1031  						vma->vm_start, vma->vm_end);
1032  			if (err)
1033  				goto error;
1034  		}
1035  
1036  mm_exiting:
1037  		remove_trailing_rmap_items(&mm_slot->rmap_list);
1038  		mmap_read_unlock(mm);
1039  
1040  		spin_lock(&ksm_mmlist_lock);
1041  		slot = list_entry(mm_slot->slot.mm_node.next,
1042  				  struct mm_slot, mm_node);
1043  		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1044  		if (ksm_test_exit(mm)) {
1045  			hash_del(&mm_slot->slot.hash);
1046  			list_del(&mm_slot->slot.mm_node);
1047  			spin_unlock(&ksm_mmlist_lock);
1048  
1049  			mm_slot_free(mm_slot_cache, mm_slot);
1050  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1051  			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1052  			mmdrop(mm);
1053  		} else
1054  			spin_unlock(&ksm_mmlist_lock);
1055  	}
1056  
1057  	/* Clean up stable nodes, but don't worry if some are still busy */
1058  	remove_all_stable_nodes();
1059  	ksm_scan.seqnr = 0;
1060  	return 0;
1061  
1062  error:
1063  	mmap_read_unlock(mm);
1064  	spin_lock(&ksm_mmlist_lock);
1065  	ksm_scan.mm_slot = &ksm_mm_head;
1066  	spin_unlock(&ksm_mmlist_lock);
1067  	return err;
1068  }
1069  #endif /* CONFIG_SYSFS */
1070  
1071  static u32 calc_checksum(struct page *page)
1072  {
1073  	u32 checksum;
1074  	void *addr = kmap_atomic(page);
1075  	checksum = xxhash(addr, PAGE_SIZE, 0);
1076  	kunmap_atomic(addr);
1077  	return checksum;
1078  }
1079  
1080  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1081  			      pte_t *orig_pte)
1082  {
1083  	struct mm_struct *mm = vma->vm_mm;
1084  	DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1085  	int swapped;
1086  	int err = -EFAULT;
1087  	struct mmu_notifier_range range;
1088  	bool anon_exclusive;
1089  
1090  	pvmw.address = page_address_in_vma(page, vma);
1091  	if (pvmw.address == -EFAULT)
1092  		goto out;
1093  
1094  	BUG_ON(PageTransCompound(page));
1095  
1096  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1097  				pvmw.address + PAGE_SIZE);
1098  	mmu_notifier_invalidate_range_start(&range);
1099  
1100  	if (!page_vma_mapped_walk(&pvmw))
1101  		goto out_mn;
1102  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1103  		goto out_unlock;
1104  
1105  	anon_exclusive = PageAnonExclusive(page);
1106  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1107  	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1108  		pte_t entry;
1109  
1110  		swapped = PageSwapCache(page);
1111  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1112  		/*
1113  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1114  		 * take any lock, therefore the check that we are going to make
1115  		 * with the pagecount against the mapcount is racy and
1116  		 * O_DIRECT can happen right after the check.
1117  		 * So we clear the pte and flush the tlb before the check
1118  		 * this assure us that no O_DIRECT can happen after the check
1119  		 * or in the middle of the check.
1120  		 *
1121  		 * No need to notify as we are downgrading page table to read
1122  		 * only not changing it to point to a new page.
1123  		 *
1124  		 * See Documentation/mm/mmu_notifier.rst
1125  		 */
1126  		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1127  		/*
1128  		 * Check that no O_DIRECT or similar I/O is in progress on the
1129  		 * page
1130  		 */
1131  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1132  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1133  			goto out_unlock;
1134  		}
1135  
1136  		/* See page_try_share_anon_rmap(): clear PTE first. */
1137  		if (anon_exclusive && page_try_share_anon_rmap(page)) {
1138  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1139  			goto out_unlock;
1140  		}
1141  
1142  		if (pte_dirty(entry))
1143  			set_page_dirty(page);
1144  		entry = pte_mkclean(entry);
1145  
1146  		if (pte_write(entry))
1147  			entry = pte_wrprotect(entry);
1148  
1149  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1150  	}
1151  	*orig_pte = *pvmw.pte;
1152  	err = 0;
1153  
1154  out_unlock:
1155  	page_vma_mapped_walk_done(&pvmw);
1156  out_mn:
1157  	mmu_notifier_invalidate_range_end(&range);
1158  out:
1159  	return err;
1160  }
1161  
1162  /**
1163   * replace_page - replace page in vma by new ksm page
1164   * @vma:      vma that holds the pte pointing to page
1165   * @page:     the page we are replacing by kpage
1166   * @kpage:    the ksm page we replace page by
1167   * @orig_pte: the original value of the pte
1168   *
1169   * Returns 0 on success, -EFAULT on failure.
1170   */
1171  static int replace_page(struct vm_area_struct *vma, struct page *page,
1172  			struct page *kpage, pte_t orig_pte)
1173  {
1174  	struct mm_struct *mm = vma->vm_mm;
1175  	struct folio *folio;
1176  	pmd_t *pmd;
1177  	pmd_t pmde;
1178  	pte_t *ptep;
1179  	pte_t newpte;
1180  	spinlock_t *ptl;
1181  	unsigned long addr;
1182  	int err = -EFAULT;
1183  	struct mmu_notifier_range range;
1184  
1185  	addr = page_address_in_vma(page, vma);
1186  	if (addr == -EFAULT)
1187  		goto out;
1188  
1189  	pmd = mm_find_pmd(mm, addr);
1190  	if (!pmd)
1191  		goto out;
1192  	/*
1193  	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1194  	 * without holding anon_vma lock for write.  So when looking for a
1195  	 * genuine pmde (in which to find pte), test present and !THP together.
1196  	 */
1197  	pmde = *pmd;
1198  	barrier();
1199  	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1200  		goto out;
1201  
1202  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1203  				addr + PAGE_SIZE);
1204  	mmu_notifier_invalidate_range_start(&range);
1205  
1206  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1207  	if (!pte_same(*ptep, orig_pte)) {
1208  		pte_unmap_unlock(ptep, ptl);
1209  		goto out_mn;
1210  	}
1211  	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1212  	VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1213  
1214  	/*
1215  	 * No need to check ksm_use_zero_pages here: we can only have a
1216  	 * zero_page here if ksm_use_zero_pages was enabled already.
1217  	 */
1218  	if (!is_zero_pfn(page_to_pfn(kpage))) {
1219  		get_page(kpage);
1220  		page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1221  		newpte = mk_pte(kpage, vma->vm_page_prot);
1222  	} else {
1223  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1224  					       vma->vm_page_prot));
1225  		/*
1226  		 * We're replacing an anonymous page with a zero page, which is
1227  		 * not anonymous. We need to do proper accounting otherwise we
1228  		 * will get wrong values in /proc, and a BUG message in dmesg
1229  		 * when tearing down the mm.
1230  		 */
1231  		dec_mm_counter(mm, MM_ANONPAGES);
1232  	}
1233  
1234  	flush_cache_page(vma, addr, pte_pfn(*ptep));
1235  	/*
1236  	 * No need to notify as we are replacing a read only page with another
1237  	 * read only page with the same content.
1238  	 *
1239  	 * See Documentation/mm/mmu_notifier.rst
1240  	 */
1241  	ptep_clear_flush(vma, addr, ptep);
1242  	set_pte_at_notify(mm, addr, ptep, newpte);
1243  
1244  	folio = page_folio(page);
1245  	page_remove_rmap(page, vma, false);
1246  	if (!folio_mapped(folio))
1247  		folio_free_swap(folio);
1248  	folio_put(folio);
1249  
1250  	pte_unmap_unlock(ptep, ptl);
1251  	err = 0;
1252  out_mn:
1253  	mmu_notifier_invalidate_range_end(&range);
1254  out:
1255  	return err;
1256  }
1257  
1258  /*
1259   * try_to_merge_one_page - take two pages and merge them into one
1260   * @vma: the vma that holds the pte pointing to page
1261   * @page: the PageAnon page that we want to replace with kpage
1262   * @kpage: the PageKsm page that we want to map instead of page,
1263   *         or NULL the first time when we want to use page as kpage.
1264   *
1265   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1266   */
1267  static int try_to_merge_one_page(struct vm_area_struct *vma,
1268  				 struct page *page, struct page *kpage)
1269  {
1270  	pte_t orig_pte = __pte(0);
1271  	int err = -EFAULT;
1272  
1273  	if (page == kpage)			/* ksm page forked */
1274  		return 0;
1275  
1276  	if (!PageAnon(page))
1277  		goto out;
1278  
1279  	/*
1280  	 * We need the page lock to read a stable PageSwapCache in
1281  	 * write_protect_page().  We use trylock_page() instead of
1282  	 * lock_page() because we don't want to wait here - we
1283  	 * prefer to continue scanning and merging different pages,
1284  	 * then come back to this page when it is unlocked.
1285  	 */
1286  	if (!trylock_page(page))
1287  		goto out;
1288  
1289  	if (PageTransCompound(page)) {
1290  		if (split_huge_page(page))
1291  			goto out_unlock;
1292  	}
1293  
1294  	/*
1295  	 * If this anonymous page is mapped only here, its pte may need
1296  	 * to be write-protected.  If it's mapped elsewhere, all of its
1297  	 * ptes are necessarily already write-protected.  But in either
1298  	 * case, we need to lock and check page_count is not raised.
1299  	 */
1300  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1301  		if (!kpage) {
1302  			/*
1303  			 * While we hold page lock, upgrade page from
1304  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1305  			 * stable_tree_insert() will update stable_node.
1306  			 */
1307  			set_page_stable_node(page, NULL);
1308  			mark_page_accessed(page);
1309  			/*
1310  			 * Page reclaim just frees a clean page with no dirty
1311  			 * ptes: make sure that the ksm page would be swapped.
1312  			 */
1313  			if (!PageDirty(page))
1314  				SetPageDirty(page);
1315  			err = 0;
1316  		} else if (pages_identical(page, kpage))
1317  			err = replace_page(vma, page, kpage, orig_pte);
1318  	}
1319  
1320  out_unlock:
1321  	unlock_page(page);
1322  out:
1323  	return err;
1324  }
1325  
1326  /*
1327   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1328   * but no new kernel page is allocated: kpage must already be a ksm page.
1329   *
1330   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1331   */
1332  static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1333  				      struct page *page, struct page *kpage)
1334  {
1335  	struct mm_struct *mm = rmap_item->mm;
1336  	struct vm_area_struct *vma;
1337  	int err = -EFAULT;
1338  
1339  	mmap_read_lock(mm);
1340  	vma = find_mergeable_vma(mm, rmap_item->address);
1341  	if (!vma)
1342  		goto out;
1343  
1344  	err = try_to_merge_one_page(vma, page, kpage);
1345  	if (err)
1346  		goto out;
1347  
1348  	/* Unstable nid is in union with stable anon_vma: remove first */
1349  	remove_rmap_item_from_tree(rmap_item);
1350  
1351  	/* Must get reference to anon_vma while still holding mmap_lock */
1352  	rmap_item->anon_vma = vma->anon_vma;
1353  	get_anon_vma(vma->anon_vma);
1354  out:
1355  	mmap_read_unlock(mm);
1356  	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1357  				rmap_item, mm, err);
1358  	return err;
1359  }
1360  
1361  /*
1362   * try_to_merge_two_pages - take two identical pages and prepare them
1363   * to be merged into one page.
1364   *
1365   * This function returns the kpage if we successfully merged two identical
1366   * pages into one ksm page, NULL otherwise.
1367   *
1368   * Note that this function upgrades page to ksm page: if one of the pages
1369   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1370   */
1371  static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1372  					   struct page *page,
1373  					   struct ksm_rmap_item *tree_rmap_item,
1374  					   struct page *tree_page)
1375  {
1376  	int err;
1377  
1378  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1379  	if (!err) {
1380  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1381  							tree_page, page);
1382  		/*
1383  		 * If that fails, we have a ksm page with only one pte
1384  		 * pointing to it: so break it.
1385  		 */
1386  		if (err)
1387  			break_cow(rmap_item);
1388  	}
1389  	return err ? NULL : page;
1390  }
1391  
1392  static __always_inline
1393  bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1394  {
1395  	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1396  	/*
1397  	 * Check that at least one mapping still exists, otherwise
1398  	 * there's no much point to merge and share with this
1399  	 * stable_node, as the underlying tree_page of the other
1400  	 * sharer is going to be freed soon.
1401  	 */
1402  	return stable_node->rmap_hlist_len &&
1403  		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1404  }
1405  
1406  static __always_inline
1407  bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1408  {
1409  	return __is_page_sharing_candidate(stable_node, 0);
1410  }
1411  
1412  static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1413  				    struct ksm_stable_node **_stable_node,
1414  				    struct rb_root *root,
1415  				    bool prune_stale_stable_nodes)
1416  {
1417  	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1418  	struct hlist_node *hlist_safe;
1419  	struct page *_tree_page, *tree_page = NULL;
1420  	int nr = 0;
1421  	int found_rmap_hlist_len;
1422  
1423  	if (!prune_stale_stable_nodes ||
1424  	    time_before(jiffies, stable_node->chain_prune_time +
1425  			msecs_to_jiffies(
1426  				ksm_stable_node_chains_prune_millisecs)))
1427  		prune_stale_stable_nodes = false;
1428  	else
1429  		stable_node->chain_prune_time = jiffies;
1430  
1431  	hlist_for_each_entry_safe(dup, hlist_safe,
1432  				  &stable_node->hlist, hlist_dup) {
1433  		cond_resched();
1434  		/*
1435  		 * We must walk all stable_node_dup to prune the stale
1436  		 * stable nodes during lookup.
1437  		 *
1438  		 * get_ksm_page can drop the nodes from the
1439  		 * stable_node->hlist if they point to freed pages
1440  		 * (that's why we do a _safe walk). The "dup"
1441  		 * stable_node parameter itself will be freed from
1442  		 * under us if it returns NULL.
1443  		 */
1444  		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1445  		if (!_tree_page)
1446  			continue;
1447  		nr += 1;
1448  		if (is_page_sharing_candidate(dup)) {
1449  			if (!found ||
1450  			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1451  				if (found)
1452  					put_page(tree_page);
1453  				found = dup;
1454  				found_rmap_hlist_len = found->rmap_hlist_len;
1455  				tree_page = _tree_page;
1456  
1457  				/* skip put_page for found dup */
1458  				if (!prune_stale_stable_nodes)
1459  					break;
1460  				continue;
1461  			}
1462  		}
1463  		put_page(_tree_page);
1464  	}
1465  
1466  	if (found) {
1467  		/*
1468  		 * nr is counting all dups in the chain only if
1469  		 * prune_stale_stable_nodes is true, otherwise we may
1470  		 * break the loop at nr == 1 even if there are
1471  		 * multiple entries.
1472  		 */
1473  		if (prune_stale_stable_nodes && nr == 1) {
1474  			/*
1475  			 * If there's not just one entry it would
1476  			 * corrupt memory, better BUG_ON. In KSM
1477  			 * context with no lock held it's not even
1478  			 * fatal.
1479  			 */
1480  			BUG_ON(stable_node->hlist.first->next);
1481  
1482  			/*
1483  			 * There's just one entry and it is below the
1484  			 * deduplication limit so drop the chain.
1485  			 */
1486  			rb_replace_node(&stable_node->node, &found->node,
1487  					root);
1488  			free_stable_node(stable_node);
1489  			ksm_stable_node_chains--;
1490  			ksm_stable_node_dups--;
1491  			/*
1492  			 * NOTE: the caller depends on the stable_node
1493  			 * to be equal to stable_node_dup if the chain
1494  			 * was collapsed.
1495  			 */
1496  			*_stable_node = found;
1497  			/*
1498  			 * Just for robustness, as stable_node is
1499  			 * otherwise left as a stable pointer, the
1500  			 * compiler shall optimize it away at build
1501  			 * time.
1502  			 */
1503  			stable_node = NULL;
1504  		} else if (stable_node->hlist.first != &found->hlist_dup &&
1505  			   __is_page_sharing_candidate(found, 1)) {
1506  			/*
1507  			 * If the found stable_node dup can accept one
1508  			 * more future merge (in addition to the one
1509  			 * that is underway) and is not at the head of
1510  			 * the chain, put it there so next search will
1511  			 * be quicker in the !prune_stale_stable_nodes
1512  			 * case.
1513  			 *
1514  			 * NOTE: it would be inaccurate to use nr > 1
1515  			 * instead of checking the hlist.first pointer
1516  			 * directly, because in the
1517  			 * prune_stale_stable_nodes case "nr" isn't
1518  			 * the position of the found dup in the chain,
1519  			 * but the total number of dups in the chain.
1520  			 */
1521  			hlist_del(&found->hlist_dup);
1522  			hlist_add_head(&found->hlist_dup,
1523  				       &stable_node->hlist);
1524  		}
1525  	}
1526  
1527  	*_stable_node_dup = found;
1528  	return tree_page;
1529  }
1530  
1531  static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1532  					       struct rb_root *root)
1533  {
1534  	if (!is_stable_node_chain(stable_node))
1535  		return stable_node;
1536  	if (hlist_empty(&stable_node->hlist)) {
1537  		free_stable_node_chain(stable_node, root);
1538  		return NULL;
1539  	}
1540  	return hlist_entry(stable_node->hlist.first,
1541  			   typeof(*stable_node), hlist_dup);
1542  }
1543  
1544  /*
1545   * Like for get_ksm_page, this function can free the *_stable_node and
1546   * *_stable_node_dup if the returned tree_page is NULL.
1547   *
1548   * It can also free and overwrite *_stable_node with the found
1549   * stable_node_dup if the chain is collapsed (in which case
1550   * *_stable_node will be equal to *_stable_node_dup like if the chain
1551   * never existed). It's up to the caller to verify tree_page is not
1552   * NULL before dereferencing *_stable_node or *_stable_node_dup.
1553   *
1554   * *_stable_node_dup is really a second output parameter of this
1555   * function and will be overwritten in all cases, the caller doesn't
1556   * need to initialize it.
1557   */
1558  static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1559  					struct ksm_stable_node **_stable_node,
1560  					struct rb_root *root,
1561  					bool prune_stale_stable_nodes)
1562  {
1563  	struct ksm_stable_node *stable_node = *_stable_node;
1564  	if (!is_stable_node_chain(stable_node)) {
1565  		if (is_page_sharing_candidate(stable_node)) {
1566  			*_stable_node_dup = stable_node;
1567  			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1568  		}
1569  		/*
1570  		 * _stable_node_dup set to NULL means the stable_node
1571  		 * reached the ksm_max_page_sharing limit.
1572  		 */
1573  		*_stable_node_dup = NULL;
1574  		return NULL;
1575  	}
1576  	return stable_node_dup(_stable_node_dup, _stable_node, root,
1577  			       prune_stale_stable_nodes);
1578  }
1579  
1580  static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1581  						struct ksm_stable_node **s_n,
1582  						struct rb_root *root)
1583  {
1584  	return __stable_node_chain(s_n_d, s_n, root, true);
1585  }
1586  
1587  static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1588  					  struct ksm_stable_node *s_n,
1589  					  struct rb_root *root)
1590  {
1591  	struct ksm_stable_node *old_stable_node = s_n;
1592  	struct page *tree_page;
1593  
1594  	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1595  	/* not pruning dups so s_n cannot have changed */
1596  	VM_BUG_ON(s_n != old_stable_node);
1597  	return tree_page;
1598  }
1599  
1600  /*
1601   * stable_tree_search - search for page inside the stable tree
1602   *
1603   * This function checks if there is a page inside the stable tree
1604   * with identical content to the page that we are scanning right now.
1605   *
1606   * This function returns the stable tree node of identical content if found,
1607   * NULL otherwise.
1608   */
1609  static struct page *stable_tree_search(struct page *page)
1610  {
1611  	int nid;
1612  	struct rb_root *root;
1613  	struct rb_node **new;
1614  	struct rb_node *parent;
1615  	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1616  	struct ksm_stable_node *page_node;
1617  
1618  	page_node = page_stable_node(page);
1619  	if (page_node && page_node->head != &migrate_nodes) {
1620  		/* ksm page forked */
1621  		get_page(page);
1622  		return page;
1623  	}
1624  
1625  	nid = get_kpfn_nid(page_to_pfn(page));
1626  	root = root_stable_tree + nid;
1627  again:
1628  	new = &root->rb_node;
1629  	parent = NULL;
1630  
1631  	while (*new) {
1632  		struct page *tree_page;
1633  		int ret;
1634  
1635  		cond_resched();
1636  		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1637  		stable_node_any = NULL;
1638  		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1639  		/*
1640  		 * NOTE: stable_node may have been freed by
1641  		 * chain_prune() if the returned stable_node_dup is
1642  		 * not NULL. stable_node_dup may have been inserted in
1643  		 * the rbtree instead as a regular stable_node (in
1644  		 * order to collapse the stable_node chain if a single
1645  		 * stable_node dup was found in it). In such case the
1646  		 * stable_node is overwritten by the callee to point
1647  		 * to the stable_node_dup that was collapsed in the
1648  		 * stable rbtree and stable_node will be equal to
1649  		 * stable_node_dup like if the chain never existed.
1650  		 */
1651  		if (!stable_node_dup) {
1652  			/*
1653  			 * Either all stable_node dups were full in
1654  			 * this stable_node chain, or this chain was
1655  			 * empty and should be rb_erased.
1656  			 */
1657  			stable_node_any = stable_node_dup_any(stable_node,
1658  							      root);
1659  			if (!stable_node_any) {
1660  				/* rb_erase just run */
1661  				goto again;
1662  			}
1663  			/*
1664  			 * Take any of the stable_node dups page of
1665  			 * this stable_node chain to let the tree walk
1666  			 * continue. All KSM pages belonging to the
1667  			 * stable_node dups in a stable_node chain
1668  			 * have the same content and they're
1669  			 * write protected at all times. Any will work
1670  			 * fine to continue the walk.
1671  			 */
1672  			tree_page = get_ksm_page(stable_node_any,
1673  						 GET_KSM_PAGE_NOLOCK);
1674  		}
1675  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1676  		if (!tree_page) {
1677  			/*
1678  			 * If we walked over a stale stable_node,
1679  			 * get_ksm_page() will call rb_erase() and it
1680  			 * may rebalance the tree from under us. So
1681  			 * restart the search from scratch. Returning
1682  			 * NULL would be safe too, but we'd generate
1683  			 * false negative insertions just because some
1684  			 * stable_node was stale.
1685  			 */
1686  			goto again;
1687  		}
1688  
1689  		ret = memcmp_pages(page, tree_page);
1690  		put_page(tree_page);
1691  
1692  		parent = *new;
1693  		if (ret < 0)
1694  			new = &parent->rb_left;
1695  		else if (ret > 0)
1696  			new = &parent->rb_right;
1697  		else {
1698  			if (page_node) {
1699  				VM_BUG_ON(page_node->head != &migrate_nodes);
1700  				/*
1701  				 * Test if the migrated page should be merged
1702  				 * into a stable node dup. If the mapcount is
1703  				 * 1 we can migrate it with another KSM page
1704  				 * without adding it to the chain.
1705  				 */
1706  				if (page_mapcount(page) > 1)
1707  					goto chain_append;
1708  			}
1709  
1710  			if (!stable_node_dup) {
1711  				/*
1712  				 * If the stable_node is a chain and
1713  				 * we got a payload match in memcmp
1714  				 * but we cannot merge the scanned
1715  				 * page in any of the existing
1716  				 * stable_node dups because they're
1717  				 * all full, we need to wait the
1718  				 * scanned page to find itself a match
1719  				 * in the unstable tree to create a
1720  				 * brand new KSM page to add later to
1721  				 * the dups of this stable_node.
1722  				 */
1723  				return NULL;
1724  			}
1725  
1726  			/*
1727  			 * Lock and unlock the stable_node's page (which
1728  			 * might already have been migrated) so that page
1729  			 * migration is sure to notice its raised count.
1730  			 * It would be more elegant to return stable_node
1731  			 * than kpage, but that involves more changes.
1732  			 */
1733  			tree_page = get_ksm_page(stable_node_dup,
1734  						 GET_KSM_PAGE_TRYLOCK);
1735  
1736  			if (PTR_ERR(tree_page) == -EBUSY)
1737  				return ERR_PTR(-EBUSY);
1738  
1739  			if (unlikely(!tree_page))
1740  				/*
1741  				 * The tree may have been rebalanced,
1742  				 * so re-evaluate parent and new.
1743  				 */
1744  				goto again;
1745  			unlock_page(tree_page);
1746  
1747  			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1748  			    NUMA(stable_node_dup->nid)) {
1749  				put_page(tree_page);
1750  				goto replace;
1751  			}
1752  			return tree_page;
1753  		}
1754  	}
1755  
1756  	if (!page_node)
1757  		return NULL;
1758  
1759  	list_del(&page_node->list);
1760  	DO_NUMA(page_node->nid = nid);
1761  	rb_link_node(&page_node->node, parent, new);
1762  	rb_insert_color(&page_node->node, root);
1763  out:
1764  	if (is_page_sharing_candidate(page_node)) {
1765  		get_page(page);
1766  		return page;
1767  	} else
1768  		return NULL;
1769  
1770  replace:
1771  	/*
1772  	 * If stable_node was a chain and chain_prune collapsed it,
1773  	 * stable_node has been updated to be the new regular
1774  	 * stable_node. A collapse of the chain is indistinguishable
1775  	 * from the case there was no chain in the stable
1776  	 * rbtree. Otherwise stable_node is the chain and
1777  	 * stable_node_dup is the dup to replace.
1778  	 */
1779  	if (stable_node_dup == stable_node) {
1780  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1781  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1782  		/* there is no chain */
1783  		if (page_node) {
1784  			VM_BUG_ON(page_node->head != &migrate_nodes);
1785  			list_del(&page_node->list);
1786  			DO_NUMA(page_node->nid = nid);
1787  			rb_replace_node(&stable_node_dup->node,
1788  					&page_node->node,
1789  					root);
1790  			if (is_page_sharing_candidate(page_node))
1791  				get_page(page);
1792  			else
1793  				page = NULL;
1794  		} else {
1795  			rb_erase(&stable_node_dup->node, root);
1796  			page = NULL;
1797  		}
1798  	} else {
1799  		VM_BUG_ON(!is_stable_node_chain(stable_node));
1800  		__stable_node_dup_del(stable_node_dup);
1801  		if (page_node) {
1802  			VM_BUG_ON(page_node->head != &migrate_nodes);
1803  			list_del(&page_node->list);
1804  			DO_NUMA(page_node->nid = nid);
1805  			stable_node_chain_add_dup(page_node, stable_node);
1806  			if (is_page_sharing_candidate(page_node))
1807  				get_page(page);
1808  			else
1809  				page = NULL;
1810  		} else {
1811  			page = NULL;
1812  		}
1813  	}
1814  	stable_node_dup->head = &migrate_nodes;
1815  	list_add(&stable_node_dup->list, stable_node_dup->head);
1816  	return page;
1817  
1818  chain_append:
1819  	/* stable_node_dup could be null if it reached the limit */
1820  	if (!stable_node_dup)
1821  		stable_node_dup = stable_node_any;
1822  	/*
1823  	 * If stable_node was a chain and chain_prune collapsed it,
1824  	 * stable_node has been updated to be the new regular
1825  	 * stable_node. A collapse of the chain is indistinguishable
1826  	 * from the case there was no chain in the stable
1827  	 * rbtree. Otherwise stable_node is the chain and
1828  	 * stable_node_dup is the dup to replace.
1829  	 */
1830  	if (stable_node_dup == stable_node) {
1831  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1832  		/* chain is missing so create it */
1833  		stable_node = alloc_stable_node_chain(stable_node_dup,
1834  						      root);
1835  		if (!stable_node)
1836  			return NULL;
1837  	}
1838  	/*
1839  	 * Add this stable_node dup that was
1840  	 * migrated to the stable_node chain
1841  	 * of the current nid for this page
1842  	 * content.
1843  	 */
1844  	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1845  	VM_BUG_ON(page_node->head != &migrate_nodes);
1846  	list_del(&page_node->list);
1847  	DO_NUMA(page_node->nid = nid);
1848  	stable_node_chain_add_dup(page_node, stable_node);
1849  	goto out;
1850  }
1851  
1852  /*
1853   * stable_tree_insert - insert stable tree node pointing to new ksm page
1854   * into the stable tree.
1855   *
1856   * This function returns the stable tree node just allocated on success,
1857   * NULL otherwise.
1858   */
1859  static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1860  {
1861  	int nid;
1862  	unsigned long kpfn;
1863  	struct rb_root *root;
1864  	struct rb_node **new;
1865  	struct rb_node *parent;
1866  	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1867  	bool need_chain = false;
1868  
1869  	kpfn = page_to_pfn(kpage);
1870  	nid = get_kpfn_nid(kpfn);
1871  	root = root_stable_tree + nid;
1872  again:
1873  	parent = NULL;
1874  	new = &root->rb_node;
1875  
1876  	while (*new) {
1877  		struct page *tree_page;
1878  		int ret;
1879  
1880  		cond_resched();
1881  		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1882  		stable_node_any = NULL;
1883  		tree_page = chain(&stable_node_dup, stable_node, root);
1884  		if (!stable_node_dup) {
1885  			/*
1886  			 * Either all stable_node dups were full in
1887  			 * this stable_node chain, or this chain was
1888  			 * empty and should be rb_erased.
1889  			 */
1890  			stable_node_any = stable_node_dup_any(stable_node,
1891  							      root);
1892  			if (!stable_node_any) {
1893  				/* rb_erase just run */
1894  				goto again;
1895  			}
1896  			/*
1897  			 * Take any of the stable_node dups page of
1898  			 * this stable_node chain to let the tree walk
1899  			 * continue. All KSM pages belonging to the
1900  			 * stable_node dups in a stable_node chain
1901  			 * have the same content and they're
1902  			 * write protected at all times. Any will work
1903  			 * fine to continue the walk.
1904  			 */
1905  			tree_page = get_ksm_page(stable_node_any,
1906  						 GET_KSM_PAGE_NOLOCK);
1907  		}
1908  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1909  		if (!tree_page) {
1910  			/*
1911  			 * If we walked over a stale stable_node,
1912  			 * get_ksm_page() will call rb_erase() and it
1913  			 * may rebalance the tree from under us. So
1914  			 * restart the search from scratch. Returning
1915  			 * NULL would be safe too, but we'd generate
1916  			 * false negative insertions just because some
1917  			 * stable_node was stale.
1918  			 */
1919  			goto again;
1920  		}
1921  
1922  		ret = memcmp_pages(kpage, tree_page);
1923  		put_page(tree_page);
1924  
1925  		parent = *new;
1926  		if (ret < 0)
1927  			new = &parent->rb_left;
1928  		else if (ret > 0)
1929  			new = &parent->rb_right;
1930  		else {
1931  			need_chain = true;
1932  			break;
1933  		}
1934  	}
1935  
1936  	stable_node_dup = alloc_stable_node();
1937  	if (!stable_node_dup)
1938  		return NULL;
1939  
1940  	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1941  	stable_node_dup->kpfn = kpfn;
1942  	set_page_stable_node(kpage, stable_node_dup);
1943  	stable_node_dup->rmap_hlist_len = 0;
1944  	DO_NUMA(stable_node_dup->nid = nid);
1945  	if (!need_chain) {
1946  		rb_link_node(&stable_node_dup->node, parent, new);
1947  		rb_insert_color(&stable_node_dup->node, root);
1948  	} else {
1949  		if (!is_stable_node_chain(stable_node)) {
1950  			struct ksm_stable_node *orig = stable_node;
1951  			/* chain is missing so create it */
1952  			stable_node = alloc_stable_node_chain(orig, root);
1953  			if (!stable_node) {
1954  				free_stable_node(stable_node_dup);
1955  				return NULL;
1956  			}
1957  		}
1958  		stable_node_chain_add_dup(stable_node_dup, stable_node);
1959  	}
1960  
1961  	return stable_node_dup;
1962  }
1963  
1964  /*
1965   * unstable_tree_search_insert - search for identical page,
1966   * else insert rmap_item into the unstable tree.
1967   *
1968   * This function searches for a page in the unstable tree identical to the
1969   * page currently being scanned; and if no identical page is found in the
1970   * tree, we insert rmap_item as a new object into the unstable tree.
1971   *
1972   * This function returns pointer to rmap_item found to be identical
1973   * to the currently scanned page, NULL otherwise.
1974   *
1975   * This function does both searching and inserting, because they share
1976   * the same walking algorithm in an rbtree.
1977   */
1978  static
1979  struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1980  					      struct page *page,
1981  					      struct page **tree_pagep)
1982  {
1983  	struct rb_node **new;
1984  	struct rb_root *root;
1985  	struct rb_node *parent = NULL;
1986  	int nid;
1987  
1988  	nid = get_kpfn_nid(page_to_pfn(page));
1989  	root = root_unstable_tree + nid;
1990  	new = &root->rb_node;
1991  
1992  	while (*new) {
1993  		struct ksm_rmap_item *tree_rmap_item;
1994  		struct page *tree_page;
1995  		int ret;
1996  
1997  		cond_resched();
1998  		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1999  		tree_page = get_mergeable_page(tree_rmap_item);
2000  		if (!tree_page)
2001  			return NULL;
2002  
2003  		/*
2004  		 * Don't substitute a ksm page for a forked page.
2005  		 */
2006  		if (page == tree_page) {
2007  			put_page(tree_page);
2008  			return NULL;
2009  		}
2010  
2011  		ret = memcmp_pages(page, tree_page);
2012  
2013  		parent = *new;
2014  		if (ret < 0) {
2015  			put_page(tree_page);
2016  			new = &parent->rb_left;
2017  		} else if (ret > 0) {
2018  			put_page(tree_page);
2019  			new = &parent->rb_right;
2020  		} else if (!ksm_merge_across_nodes &&
2021  			   page_to_nid(tree_page) != nid) {
2022  			/*
2023  			 * If tree_page has been migrated to another NUMA node,
2024  			 * it will be flushed out and put in the right unstable
2025  			 * tree next time: only merge with it when across_nodes.
2026  			 */
2027  			put_page(tree_page);
2028  			return NULL;
2029  		} else {
2030  			*tree_pagep = tree_page;
2031  			return tree_rmap_item;
2032  		}
2033  	}
2034  
2035  	rmap_item->address |= UNSTABLE_FLAG;
2036  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2037  	DO_NUMA(rmap_item->nid = nid);
2038  	rb_link_node(&rmap_item->node, parent, new);
2039  	rb_insert_color(&rmap_item->node, root);
2040  
2041  	ksm_pages_unshared++;
2042  	return NULL;
2043  }
2044  
2045  /*
2046   * stable_tree_append - add another rmap_item to the linked list of
2047   * rmap_items hanging off a given node of the stable tree, all sharing
2048   * the same ksm page.
2049   */
2050  static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2051  			       struct ksm_stable_node *stable_node,
2052  			       bool max_page_sharing_bypass)
2053  {
2054  	/*
2055  	 * rmap won't find this mapping if we don't insert the
2056  	 * rmap_item in the right stable_node
2057  	 * duplicate. page_migration could break later if rmap breaks,
2058  	 * so we can as well crash here. We really need to check for
2059  	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2060  	 * for other negative values as an underflow if detected here
2061  	 * for the first time (and not when decreasing rmap_hlist_len)
2062  	 * would be sign of memory corruption in the stable_node.
2063  	 */
2064  	BUG_ON(stable_node->rmap_hlist_len < 0);
2065  
2066  	stable_node->rmap_hlist_len++;
2067  	if (!max_page_sharing_bypass)
2068  		/* possibly non fatal but unexpected overflow, only warn */
2069  		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2070  			     ksm_max_page_sharing);
2071  
2072  	rmap_item->head = stable_node;
2073  	rmap_item->address |= STABLE_FLAG;
2074  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2075  
2076  	if (rmap_item->hlist.next)
2077  		ksm_pages_sharing++;
2078  	else
2079  		ksm_pages_shared++;
2080  
2081  	rmap_item->mm->ksm_merging_pages++;
2082  }
2083  
2084  /*
2085   * cmp_and_merge_page - first see if page can be merged into the stable tree;
2086   * if not, compare checksum to previous and if it's the same, see if page can
2087   * be inserted into the unstable tree, or merged with a page already there and
2088   * both transferred to the stable tree.
2089   *
2090   * @page: the page that we are searching identical page to.
2091   * @rmap_item: the reverse mapping into the virtual address of this page
2092   */
2093  static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2094  {
2095  	struct mm_struct *mm = rmap_item->mm;
2096  	struct ksm_rmap_item *tree_rmap_item;
2097  	struct page *tree_page = NULL;
2098  	struct ksm_stable_node *stable_node;
2099  	struct page *kpage;
2100  	unsigned int checksum;
2101  	int err;
2102  	bool max_page_sharing_bypass = false;
2103  
2104  	stable_node = page_stable_node(page);
2105  	if (stable_node) {
2106  		if (stable_node->head != &migrate_nodes &&
2107  		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2108  		    NUMA(stable_node->nid)) {
2109  			stable_node_dup_del(stable_node);
2110  			stable_node->head = &migrate_nodes;
2111  			list_add(&stable_node->list, stable_node->head);
2112  		}
2113  		if (stable_node->head != &migrate_nodes &&
2114  		    rmap_item->head == stable_node)
2115  			return;
2116  		/*
2117  		 * If it's a KSM fork, allow it to go over the sharing limit
2118  		 * without warnings.
2119  		 */
2120  		if (!is_page_sharing_candidate(stable_node))
2121  			max_page_sharing_bypass = true;
2122  	}
2123  
2124  	/* We first start with searching the page inside the stable tree */
2125  	kpage = stable_tree_search(page);
2126  	if (kpage == page && rmap_item->head == stable_node) {
2127  		put_page(kpage);
2128  		return;
2129  	}
2130  
2131  	remove_rmap_item_from_tree(rmap_item);
2132  
2133  	if (kpage) {
2134  		if (PTR_ERR(kpage) == -EBUSY)
2135  			return;
2136  
2137  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2138  		if (!err) {
2139  			/*
2140  			 * The page was successfully merged:
2141  			 * add its rmap_item to the stable tree.
2142  			 */
2143  			lock_page(kpage);
2144  			stable_tree_append(rmap_item, page_stable_node(kpage),
2145  					   max_page_sharing_bypass);
2146  			unlock_page(kpage);
2147  		}
2148  		put_page(kpage);
2149  		return;
2150  	}
2151  
2152  	/*
2153  	 * If the hash value of the page has changed from the last time
2154  	 * we calculated it, this page is changing frequently: therefore we
2155  	 * don't want to insert it in the unstable tree, and we don't want
2156  	 * to waste our time searching for something identical to it there.
2157  	 */
2158  	checksum = calc_checksum(page);
2159  	if (rmap_item->oldchecksum != checksum) {
2160  		rmap_item->oldchecksum = checksum;
2161  		return;
2162  	}
2163  
2164  	/*
2165  	 * Same checksum as an empty page. We attempt to merge it with the
2166  	 * appropriate zero page if the user enabled this via sysfs.
2167  	 */
2168  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2169  		struct vm_area_struct *vma;
2170  
2171  		mmap_read_lock(mm);
2172  		vma = find_mergeable_vma(mm, rmap_item->address);
2173  		if (vma) {
2174  			err = try_to_merge_one_page(vma, page,
2175  					ZERO_PAGE(rmap_item->address));
2176  			trace_ksm_merge_one_page(
2177  				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2178  				rmap_item, mm, err);
2179  		} else {
2180  			/*
2181  			 * If the vma is out of date, we do not need to
2182  			 * continue.
2183  			 */
2184  			err = 0;
2185  		}
2186  		mmap_read_unlock(mm);
2187  		/*
2188  		 * In case of failure, the page was not really empty, so we
2189  		 * need to continue. Otherwise we're done.
2190  		 */
2191  		if (!err)
2192  			return;
2193  	}
2194  	tree_rmap_item =
2195  		unstable_tree_search_insert(rmap_item, page, &tree_page);
2196  	if (tree_rmap_item) {
2197  		bool split;
2198  
2199  		kpage = try_to_merge_two_pages(rmap_item, page,
2200  						tree_rmap_item, tree_page);
2201  		/*
2202  		 * If both pages we tried to merge belong to the same compound
2203  		 * page, then we actually ended up increasing the reference
2204  		 * count of the same compound page twice, and split_huge_page
2205  		 * failed.
2206  		 * Here we set a flag if that happened, and we use it later to
2207  		 * try split_huge_page again. Since we call put_page right
2208  		 * afterwards, the reference count will be correct and
2209  		 * split_huge_page should succeed.
2210  		 */
2211  		split = PageTransCompound(page)
2212  			&& compound_head(page) == compound_head(tree_page);
2213  		put_page(tree_page);
2214  		if (kpage) {
2215  			/*
2216  			 * The pages were successfully merged: insert new
2217  			 * node in the stable tree and add both rmap_items.
2218  			 */
2219  			lock_page(kpage);
2220  			stable_node = stable_tree_insert(kpage);
2221  			if (stable_node) {
2222  				stable_tree_append(tree_rmap_item, stable_node,
2223  						   false);
2224  				stable_tree_append(rmap_item, stable_node,
2225  						   false);
2226  			}
2227  			unlock_page(kpage);
2228  
2229  			/*
2230  			 * If we fail to insert the page into the stable tree,
2231  			 * we will have 2 virtual addresses that are pointing
2232  			 * to a ksm page left outside the stable tree,
2233  			 * in which case we need to break_cow on both.
2234  			 */
2235  			if (!stable_node) {
2236  				break_cow(tree_rmap_item);
2237  				break_cow(rmap_item);
2238  			}
2239  		} else if (split) {
2240  			/*
2241  			 * We are here if we tried to merge two pages and
2242  			 * failed because they both belonged to the same
2243  			 * compound page. We will split the page now, but no
2244  			 * merging will take place.
2245  			 * We do not want to add the cost of a full lock; if
2246  			 * the page is locked, it is better to skip it and
2247  			 * perhaps try again later.
2248  			 */
2249  			if (!trylock_page(page))
2250  				return;
2251  			split_huge_page(page);
2252  			unlock_page(page);
2253  		}
2254  	}
2255  }
2256  
2257  static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2258  					    struct ksm_rmap_item **rmap_list,
2259  					    unsigned long addr)
2260  {
2261  	struct ksm_rmap_item *rmap_item;
2262  
2263  	while (*rmap_list) {
2264  		rmap_item = *rmap_list;
2265  		if ((rmap_item->address & PAGE_MASK) == addr)
2266  			return rmap_item;
2267  		if (rmap_item->address > addr)
2268  			break;
2269  		*rmap_list = rmap_item->rmap_list;
2270  		remove_rmap_item_from_tree(rmap_item);
2271  		free_rmap_item(rmap_item);
2272  	}
2273  
2274  	rmap_item = alloc_rmap_item();
2275  	if (rmap_item) {
2276  		/* It has already been zeroed */
2277  		rmap_item->mm = mm_slot->slot.mm;
2278  		rmap_item->mm->ksm_rmap_items++;
2279  		rmap_item->address = addr;
2280  		rmap_item->rmap_list = *rmap_list;
2281  		*rmap_list = rmap_item;
2282  	}
2283  	return rmap_item;
2284  }
2285  
2286  static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2287  {
2288  	struct mm_struct *mm;
2289  	struct ksm_mm_slot *mm_slot;
2290  	struct mm_slot *slot;
2291  	struct vm_area_struct *vma;
2292  	struct ksm_rmap_item *rmap_item;
2293  	struct vma_iterator vmi;
2294  	int nid;
2295  
2296  	if (list_empty(&ksm_mm_head.slot.mm_node))
2297  		return NULL;
2298  
2299  	mm_slot = ksm_scan.mm_slot;
2300  	if (mm_slot == &ksm_mm_head) {
2301  		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2302  
2303  		/*
2304  		 * A number of pages can hang around indefinitely on per-cpu
2305  		 * pagevecs, raised page count preventing write_protect_page
2306  		 * from merging them.  Though it doesn't really matter much,
2307  		 * it is puzzling to see some stuck in pages_volatile until
2308  		 * other activity jostles them out, and they also prevented
2309  		 * LTP's KSM test from succeeding deterministically; so drain
2310  		 * them here (here rather than on entry to ksm_do_scan(),
2311  		 * so we don't IPI too often when pages_to_scan is set low).
2312  		 */
2313  		lru_add_drain_all();
2314  
2315  		/*
2316  		 * Whereas stale stable_nodes on the stable_tree itself
2317  		 * get pruned in the regular course of stable_tree_search(),
2318  		 * those moved out to the migrate_nodes list can accumulate:
2319  		 * so prune them once before each full scan.
2320  		 */
2321  		if (!ksm_merge_across_nodes) {
2322  			struct ksm_stable_node *stable_node, *next;
2323  			struct page *page;
2324  
2325  			list_for_each_entry_safe(stable_node, next,
2326  						 &migrate_nodes, list) {
2327  				page = get_ksm_page(stable_node,
2328  						    GET_KSM_PAGE_NOLOCK);
2329  				if (page)
2330  					put_page(page);
2331  				cond_resched();
2332  			}
2333  		}
2334  
2335  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2336  			root_unstable_tree[nid] = RB_ROOT;
2337  
2338  		spin_lock(&ksm_mmlist_lock);
2339  		slot = list_entry(mm_slot->slot.mm_node.next,
2340  				  struct mm_slot, mm_node);
2341  		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2342  		ksm_scan.mm_slot = mm_slot;
2343  		spin_unlock(&ksm_mmlist_lock);
2344  		/*
2345  		 * Although we tested list_empty() above, a racing __ksm_exit
2346  		 * of the last mm on the list may have removed it since then.
2347  		 */
2348  		if (mm_slot == &ksm_mm_head)
2349  			return NULL;
2350  next_mm:
2351  		ksm_scan.address = 0;
2352  		ksm_scan.rmap_list = &mm_slot->rmap_list;
2353  	}
2354  
2355  	slot = &mm_slot->slot;
2356  	mm = slot->mm;
2357  	vma_iter_init(&vmi, mm, ksm_scan.address);
2358  
2359  	mmap_read_lock(mm);
2360  	if (ksm_test_exit(mm))
2361  		goto no_vmas;
2362  
2363  	for_each_vma(vmi, vma) {
2364  		if (!(vma->vm_flags & VM_MERGEABLE))
2365  			continue;
2366  		if (ksm_scan.address < vma->vm_start)
2367  			ksm_scan.address = vma->vm_start;
2368  		if (!vma->anon_vma)
2369  			ksm_scan.address = vma->vm_end;
2370  
2371  		while (ksm_scan.address < vma->vm_end) {
2372  			if (ksm_test_exit(mm))
2373  				break;
2374  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2375  			if (IS_ERR_OR_NULL(*page)) {
2376  				ksm_scan.address += PAGE_SIZE;
2377  				cond_resched();
2378  				continue;
2379  			}
2380  			if (is_zone_device_page(*page))
2381  				goto next_page;
2382  			if (PageAnon(*page)) {
2383  				flush_anon_page(vma, *page, ksm_scan.address);
2384  				flush_dcache_page(*page);
2385  				rmap_item = get_next_rmap_item(mm_slot,
2386  					ksm_scan.rmap_list, ksm_scan.address);
2387  				if (rmap_item) {
2388  					ksm_scan.rmap_list =
2389  							&rmap_item->rmap_list;
2390  					ksm_scan.address += PAGE_SIZE;
2391  				} else
2392  					put_page(*page);
2393  				mmap_read_unlock(mm);
2394  				return rmap_item;
2395  			}
2396  next_page:
2397  			put_page(*page);
2398  			ksm_scan.address += PAGE_SIZE;
2399  			cond_resched();
2400  		}
2401  	}
2402  
2403  	if (ksm_test_exit(mm)) {
2404  no_vmas:
2405  		ksm_scan.address = 0;
2406  		ksm_scan.rmap_list = &mm_slot->rmap_list;
2407  	}
2408  	/*
2409  	 * Nuke all the rmap_items that are above this current rmap:
2410  	 * because there were no VM_MERGEABLE vmas with such addresses.
2411  	 */
2412  	remove_trailing_rmap_items(ksm_scan.rmap_list);
2413  
2414  	spin_lock(&ksm_mmlist_lock);
2415  	slot = list_entry(mm_slot->slot.mm_node.next,
2416  			  struct mm_slot, mm_node);
2417  	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2418  	if (ksm_scan.address == 0) {
2419  		/*
2420  		 * We've completed a full scan of all vmas, holding mmap_lock
2421  		 * throughout, and found no VM_MERGEABLE: so do the same as
2422  		 * __ksm_exit does to remove this mm from all our lists now.
2423  		 * This applies either when cleaning up after __ksm_exit
2424  		 * (but beware: we can reach here even before __ksm_exit),
2425  		 * or when all VM_MERGEABLE areas have been unmapped (and
2426  		 * mmap_lock then protects against race with MADV_MERGEABLE).
2427  		 */
2428  		hash_del(&mm_slot->slot.hash);
2429  		list_del(&mm_slot->slot.mm_node);
2430  		spin_unlock(&ksm_mmlist_lock);
2431  
2432  		mm_slot_free(mm_slot_cache, mm_slot);
2433  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2434  		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2435  		mmap_read_unlock(mm);
2436  		mmdrop(mm);
2437  	} else {
2438  		mmap_read_unlock(mm);
2439  		/*
2440  		 * mmap_read_unlock(mm) first because after
2441  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2442  		 * already have been freed under us by __ksm_exit()
2443  		 * because the "mm_slot" is still hashed and
2444  		 * ksm_scan.mm_slot doesn't point to it anymore.
2445  		 */
2446  		spin_unlock(&ksm_mmlist_lock);
2447  	}
2448  
2449  	/* Repeat until we've completed scanning the whole list */
2450  	mm_slot = ksm_scan.mm_slot;
2451  	if (mm_slot != &ksm_mm_head)
2452  		goto next_mm;
2453  
2454  	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2455  	ksm_scan.seqnr++;
2456  	return NULL;
2457  }
2458  
2459  /**
2460   * ksm_do_scan  - the ksm scanner main worker function.
2461   * @scan_npages:  number of pages we want to scan before we return.
2462   */
2463  static void ksm_do_scan(unsigned int scan_npages)
2464  {
2465  	struct ksm_rmap_item *rmap_item;
2466  	struct page *page;
2467  
2468  	while (scan_npages-- && likely(!freezing(current))) {
2469  		cond_resched();
2470  		rmap_item = scan_get_next_rmap_item(&page);
2471  		if (!rmap_item)
2472  			return;
2473  		cmp_and_merge_page(page, rmap_item);
2474  		put_page(page);
2475  	}
2476  }
2477  
2478  static int ksmd_should_run(void)
2479  {
2480  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2481  }
2482  
2483  static int ksm_scan_thread(void *nothing)
2484  {
2485  	unsigned int sleep_ms;
2486  
2487  	set_freezable();
2488  	set_user_nice(current, 5);
2489  
2490  	while (!kthread_should_stop()) {
2491  		mutex_lock(&ksm_thread_mutex);
2492  		wait_while_offlining();
2493  		if (ksmd_should_run())
2494  			ksm_do_scan(ksm_thread_pages_to_scan);
2495  		mutex_unlock(&ksm_thread_mutex);
2496  
2497  		try_to_freeze();
2498  
2499  		if (ksmd_should_run()) {
2500  			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2501  			wait_event_interruptible_timeout(ksm_iter_wait,
2502  				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2503  				msecs_to_jiffies(sleep_ms));
2504  		} else {
2505  			wait_event_freezable(ksm_thread_wait,
2506  				ksmd_should_run() || kthread_should_stop());
2507  		}
2508  	}
2509  	return 0;
2510  }
2511  
2512  static void __ksm_add_vma(struct vm_area_struct *vma)
2513  {
2514  	unsigned long vm_flags = vma->vm_flags;
2515  
2516  	if (vm_flags & VM_MERGEABLE)
2517  		return;
2518  
2519  	if (vma_ksm_compatible(vma))
2520  		vm_flags_set(vma, VM_MERGEABLE);
2521  }
2522  
2523  static int __ksm_del_vma(struct vm_area_struct *vma)
2524  {
2525  	int err;
2526  
2527  	if (!(vma->vm_flags & VM_MERGEABLE))
2528  		return 0;
2529  
2530  	if (vma->anon_vma) {
2531  		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2532  		if (err)
2533  			return err;
2534  	}
2535  
2536  	vm_flags_clear(vma, VM_MERGEABLE);
2537  	return 0;
2538  }
2539  /**
2540   * ksm_add_vma - Mark vma as mergeable if compatible
2541   *
2542   * @vma:  Pointer to vma
2543   */
2544  void ksm_add_vma(struct vm_area_struct *vma)
2545  {
2546  	struct mm_struct *mm = vma->vm_mm;
2547  
2548  	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2549  		__ksm_add_vma(vma);
2550  }
2551  
2552  static void ksm_add_vmas(struct mm_struct *mm)
2553  {
2554  	struct vm_area_struct *vma;
2555  
2556  	VMA_ITERATOR(vmi, mm, 0);
2557  	for_each_vma(vmi, vma)
2558  		__ksm_add_vma(vma);
2559  }
2560  
2561  static int ksm_del_vmas(struct mm_struct *mm)
2562  {
2563  	struct vm_area_struct *vma;
2564  	int err;
2565  
2566  	VMA_ITERATOR(vmi, mm, 0);
2567  	for_each_vma(vmi, vma) {
2568  		err = __ksm_del_vma(vma);
2569  		if (err)
2570  			return err;
2571  	}
2572  	return 0;
2573  }
2574  
2575  /**
2576   * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2577   *                        compatible VMA's
2578   *
2579   * @mm:  Pointer to mm
2580   *
2581   * Returns 0 on success, otherwise error code
2582   */
2583  int ksm_enable_merge_any(struct mm_struct *mm)
2584  {
2585  	int err;
2586  
2587  	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2588  		return 0;
2589  
2590  	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2591  		err = __ksm_enter(mm);
2592  		if (err)
2593  			return err;
2594  	}
2595  
2596  	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2597  	ksm_add_vmas(mm);
2598  
2599  	return 0;
2600  }
2601  
2602  /**
2603   * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2604   *			   previously enabled via ksm_enable_merge_any().
2605   *
2606   * Disabling merging implies unmerging any merged pages, like setting
2607   * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2608   * merging on all compatible VMA's remains enabled.
2609   *
2610   * @mm: Pointer to mm
2611   *
2612   * Returns 0 on success, otherwise error code
2613   */
2614  int ksm_disable_merge_any(struct mm_struct *mm)
2615  {
2616  	int err;
2617  
2618  	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2619  		return 0;
2620  
2621  	err = ksm_del_vmas(mm);
2622  	if (err) {
2623  		ksm_add_vmas(mm);
2624  		return err;
2625  	}
2626  
2627  	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2628  	return 0;
2629  }
2630  
2631  int ksm_disable(struct mm_struct *mm)
2632  {
2633  	mmap_assert_write_locked(mm);
2634  
2635  	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2636  		return 0;
2637  	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2638  		return ksm_disable_merge_any(mm);
2639  	return ksm_del_vmas(mm);
2640  }
2641  
2642  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2643  		unsigned long end, int advice, unsigned long *vm_flags)
2644  {
2645  	struct mm_struct *mm = vma->vm_mm;
2646  	int err;
2647  
2648  	switch (advice) {
2649  	case MADV_MERGEABLE:
2650  		if (vma->vm_flags & VM_MERGEABLE)
2651  			return 0;
2652  		if (!vma_ksm_compatible(vma))
2653  			return 0;
2654  
2655  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2656  			err = __ksm_enter(mm);
2657  			if (err)
2658  				return err;
2659  		}
2660  
2661  		*vm_flags |= VM_MERGEABLE;
2662  		break;
2663  
2664  	case MADV_UNMERGEABLE:
2665  		if (!(*vm_flags & VM_MERGEABLE))
2666  			return 0;		/* just ignore the advice */
2667  
2668  		if (vma->anon_vma) {
2669  			err = unmerge_ksm_pages(vma, start, end);
2670  			if (err)
2671  				return err;
2672  		}
2673  
2674  		*vm_flags &= ~VM_MERGEABLE;
2675  		break;
2676  	}
2677  
2678  	return 0;
2679  }
2680  EXPORT_SYMBOL_GPL(ksm_madvise);
2681  
2682  int __ksm_enter(struct mm_struct *mm)
2683  {
2684  	struct ksm_mm_slot *mm_slot;
2685  	struct mm_slot *slot;
2686  	int needs_wakeup;
2687  
2688  	mm_slot = mm_slot_alloc(mm_slot_cache);
2689  	if (!mm_slot)
2690  		return -ENOMEM;
2691  
2692  	slot = &mm_slot->slot;
2693  
2694  	/* Check ksm_run too?  Would need tighter locking */
2695  	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2696  
2697  	spin_lock(&ksm_mmlist_lock);
2698  	mm_slot_insert(mm_slots_hash, mm, slot);
2699  	/*
2700  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2701  	 * insert just behind the scanning cursor, to let the area settle
2702  	 * down a little; when fork is followed by immediate exec, we don't
2703  	 * want ksmd to waste time setting up and tearing down an rmap_list.
2704  	 *
2705  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2706  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2707  	 * missed: then we might as well insert at the end of the list.
2708  	 */
2709  	if (ksm_run & KSM_RUN_UNMERGE)
2710  		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2711  	else
2712  		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2713  	spin_unlock(&ksm_mmlist_lock);
2714  
2715  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2716  	mmgrab(mm);
2717  
2718  	if (needs_wakeup)
2719  		wake_up_interruptible(&ksm_thread_wait);
2720  
2721  	trace_ksm_enter(mm);
2722  	return 0;
2723  }
2724  
2725  void __ksm_exit(struct mm_struct *mm)
2726  {
2727  	struct ksm_mm_slot *mm_slot;
2728  	struct mm_slot *slot;
2729  	int easy_to_free = 0;
2730  
2731  	/*
2732  	 * This process is exiting: if it's straightforward (as is the
2733  	 * case when ksmd was never running), free mm_slot immediately.
2734  	 * But if it's at the cursor or has rmap_items linked to it, use
2735  	 * mmap_lock to synchronize with any break_cows before pagetables
2736  	 * are freed, and leave the mm_slot on the list for ksmd to free.
2737  	 * Beware: ksm may already have noticed it exiting and freed the slot.
2738  	 */
2739  
2740  	spin_lock(&ksm_mmlist_lock);
2741  	slot = mm_slot_lookup(mm_slots_hash, mm);
2742  	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2743  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2744  		if (!mm_slot->rmap_list) {
2745  			hash_del(&slot->hash);
2746  			list_del(&slot->mm_node);
2747  			easy_to_free = 1;
2748  		} else {
2749  			list_move(&slot->mm_node,
2750  				  &ksm_scan.mm_slot->slot.mm_node);
2751  		}
2752  	}
2753  	spin_unlock(&ksm_mmlist_lock);
2754  
2755  	if (easy_to_free) {
2756  		mm_slot_free(mm_slot_cache, mm_slot);
2757  		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2758  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2759  		mmdrop(mm);
2760  	} else if (mm_slot) {
2761  		mmap_write_lock(mm);
2762  		mmap_write_unlock(mm);
2763  	}
2764  
2765  	trace_ksm_exit(mm);
2766  }
2767  
2768  struct page *ksm_might_need_to_copy(struct page *page,
2769  			struct vm_area_struct *vma, unsigned long address)
2770  {
2771  	struct folio *folio = page_folio(page);
2772  	struct anon_vma *anon_vma = folio_anon_vma(folio);
2773  	struct page *new_page;
2774  
2775  	if (PageKsm(page)) {
2776  		if (page_stable_node(page) &&
2777  		    !(ksm_run & KSM_RUN_UNMERGE))
2778  			return page;	/* no need to copy it */
2779  	} else if (!anon_vma) {
2780  		return page;		/* no need to copy it */
2781  	} else if (page->index == linear_page_index(vma, address) &&
2782  			anon_vma->root == vma->anon_vma->root) {
2783  		return page;		/* still no need to copy it */
2784  	}
2785  	if (!PageUptodate(page))
2786  		return page;		/* let do_swap_page report the error */
2787  
2788  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2789  	if (new_page &&
2790  	    mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2791  		put_page(new_page);
2792  		new_page = NULL;
2793  	}
2794  	if (new_page) {
2795  		if (copy_mc_user_highpage(new_page, page, address, vma)) {
2796  			put_page(new_page);
2797  			memory_failure_queue(page_to_pfn(page), 0);
2798  			return ERR_PTR(-EHWPOISON);
2799  		}
2800  		SetPageDirty(new_page);
2801  		__SetPageUptodate(new_page);
2802  		__SetPageLocked(new_page);
2803  #ifdef CONFIG_SWAP
2804  		count_vm_event(KSM_SWPIN_COPY);
2805  #endif
2806  	}
2807  
2808  	return new_page;
2809  }
2810  
2811  void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2812  {
2813  	struct ksm_stable_node *stable_node;
2814  	struct ksm_rmap_item *rmap_item;
2815  	int search_new_forks = 0;
2816  
2817  	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2818  
2819  	/*
2820  	 * Rely on the page lock to protect against concurrent modifications
2821  	 * to that page's node of the stable tree.
2822  	 */
2823  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2824  
2825  	stable_node = folio_stable_node(folio);
2826  	if (!stable_node)
2827  		return;
2828  again:
2829  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2830  		struct anon_vma *anon_vma = rmap_item->anon_vma;
2831  		struct anon_vma_chain *vmac;
2832  		struct vm_area_struct *vma;
2833  
2834  		cond_resched();
2835  		if (!anon_vma_trylock_read(anon_vma)) {
2836  			if (rwc->try_lock) {
2837  				rwc->contended = true;
2838  				return;
2839  			}
2840  			anon_vma_lock_read(anon_vma);
2841  		}
2842  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2843  					       0, ULONG_MAX) {
2844  			unsigned long addr;
2845  
2846  			cond_resched();
2847  			vma = vmac->vma;
2848  
2849  			/* Ignore the stable/unstable/sqnr flags */
2850  			addr = rmap_item->address & PAGE_MASK;
2851  
2852  			if (addr < vma->vm_start || addr >= vma->vm_end)
2853  				continue;
2854  			/*
2855  			 * Initially we examine only the vma which covers this
2856  			 * rmap_item; but later, if there is still work to do,
2857  			 * we examine covering vmas in other mms: in case they
2858  			 * were forked from the original since ksmd passed.
2859  			 */
2860  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2861  				continue;
2862  
2863  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2864  				continue;
2865  
2866  			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2867  				anon_vma_unlock_read(anon_vma);
2868  				return;
2869  			}
2870  			if (rwc->done && rwc->done(folio)) {
2871  				anon_vma_unlock_read(anon_vma);
2872  				return;
2873  			}
2874  		}
2875  		anon_vma_unlock_read(anon_vma);
2876  	}
2877  	if (!search_new_forks++)
2878  		goto again;
2879  }
2880  
2881  #ifdef CONFIG_MEMORY_FAILURE
2882  /*
2883   * Collect processes when the error hit an ksm page.
2884   */
2885  void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2886  		       int force_early)
2887  {
2888  	struct ksm_stable_node *stable_node;
2889  	struct ksm_rmap_item *rmap_item;
2890  	struct folio *folio = page_folio(page);
2891  	struct vm_area_struct *vma;
2892  	struct task_struct *tsk;
2893  
2894  	stable_node = folio_stable_node(folio);
2895  	if (!stable_node)
2896  		return;
2897  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2898  		struct anon_vma *av = rmap_item->anon_vma;
2899  
2900  		anon_vma_lock_read(av);
2901  		read_lock(&tasklist_lock);
2902  		for_each_process(tsk) {
2903  			struct anon_vma_chain *vmac;
2904  			unsigned long addr;
2905  			struct task_struct *t =
2906  				task_early_kill(tsk, force_early);
2907  			if (!t)
2908  				continue;
2909  			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2910  						       ULONG_MAX)
2911  			{
2912  				vma = vmac->vma;
2913  				if (vma->vm_mm == t->mm) {
2914  					addr = rmap_item->address & PAGE_MASK;
2915  					add_to_kill_ksm(t, page, vma, to_kill,
2916  							addr);
2917  				}
2918  			}
2919  		}
2920  		read_unlock(&tasklist_lock);
2921  		anon_vma_unlock_read(av);
2922  	}
2923  }
2924  #endif
2925  
2926  #ifdef CONFIG_MIGRATION
2927  void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2928  {
2929  	struct ksm_stable_node *stable_node;
2930  
2931  	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2932  	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2933  	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2934  
2935  	stable_node = folio_stable_node(folio);
2936  	if (stable_node) {
2937  		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2938  		stable_node->kpfn = folio_pfn(newfolio);
2939  		/*
2940  		 * newfolio->mapping was set in advance; now we need smp_wmb()
2941  		 * to make sure that the new stable_node->kpfn is visible
2942  		 * to get_ksm_page() before it can see that folio->mapping
2943  		 * has gone stale (or that folio_test_swapcache has been cleared).
2944  		 */
2945  		smp_wmb();
2946  		set_page_stable_node(&folio->page, NULL);
2947  	}
2948  }
2949  #endif /* CONFIG_MIGRATION */
2950  
2951  #ifdef CONFIG_MEMORY_HOTREMOVE
2952  static void wait_while_offlining(void)
2953  {
2954  	while (ksm_run & KSM_RUN_OFFLINE) {
2955  		mutex_unlock(&ksm_thread_mutex);
2956  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2957  			    TASK_UNINTERRUPTIBLE);
2958  		mutex_lock(&ksm_thread_mutex);
2959  	}
2960  }
2961  
2962  static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2963  					 unsigned long start_pfn,
2964  					 unsigned long end_pfn)
2965  {
2966  	if (stable_node->kpfn >= start_pfn &&
2967  	    stable_node->kpfn < end_pfn) {
2968  		/*
2969  		 * Don't get_ksm_page, page has already gone:
2970  		 * which is why we keep kpfn instead of page*
2971  		 */
2972  		remove_node_from_stable_tree(stable_node);
2973  		return true;
2974  	}
2975  	return false;
2976  }
2977  
2978  static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2979  					   unsigned long start_pfn,
2980  					   unsigned long end_pfn,
2981  					   struct rb_root *root)
2982  {
2983  	struct ksm_stable_node *dup;
2984  	struct hlist_node *hlist_safe;
2985  
2986  	if (!is_stable_node_chain(stable_node)) {
2987  		VM_BUG_ON(is_stable_node_dup(stable_node));
2988  		return stable_node_dup_remove_range(stable_node, start_pfn,
2989  						    end_pfn);
2990  	}
2991  
2992  	hlist_for_each_entry_safe(dup, hlist_safe,
2993  				  &stable_node->hlist, hlist_dup) {
2994  		VM_BUG_ON(!is_stable_node_dup(dup));
2995  		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2996  	}
2997  	if (hlist_empty(&stable_node->hlist)) {
2998  		free_stable_node_chain(stable_node, root);
2999  		return true; /* notify caller that tree was rebalanced */
3000  	} else
3001  		return false;
3002  }
3003  
3004  static void ksm_check_stable_tree(unsigned long start_pfn,
3005  				  unsigned long end_pfn)
3006  {
3007  	struct ksm_stable_node *stable_node, *next;
3008  	struct rb_node *node;
3009  	int nid;
3010  
3011  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3012  		node = rb_first(root_stable_tree + nid);
3013  		while (node) {
3014  			stable_node = rb_entry(node, struct ksm_stable_node, node);
3015  			if (stable_node_chain_remove_range(stable_node,
3016  							   start_pfn, end_pfn,
3017  							   root_stable_tree +
3018  							   nid))
3019  				node = rb_first(root_stable_tree + nid);
3020  			else
3021  				node = rb_next(node);
3022  			cond_resched();
3023  		}
3024  	}
3025  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3026  		if (stable_node->kpfn >= start_pfn &&
3027  		    stable_node->kpfn < end_pfn)
3028  			remove_node_from_stable_tree(stable_node);
3029  		cond_resched();
3030  	}
3031  }
3032  
3033  static int ksm_memory_callback(struct notifier_block *self,
3034  			       unsigned long action, void *arg)
3035  {
3036  	struct memory_notify *mn = arg;
3037  
3038  	switch (action) {
3039  	case MEM_GOING_OFFLINE:
3040  		/*
3041  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3042  		 * and remove_all_stable_nodes() while memory is going offline:
3043  		 * it is unsafe for them to touch the stable tree at this time.
3044  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3045  		 * which do not need the ksm_thread_mutex are all safe.
3046  		 */
3047  		mutex_lock(&ksm_thread_mutex);
3048  		ksm_run |= KSM_RUN_OFFLINE;
3049  		mutex_unlock(&ksm_thread_mutex);
3050  		break;
3051  
3052  	case MEM_OFFLINE:
3053  		/*
3054  		 * Most of the work is done by page migration; but there might
3055  		 * be a few stable_nodes left over, still pointing to struct
3056  		 * pages which have been offlined: prune those from the tree,
3057  		 * otherwise get_ksm_page() might later try to access a
3058  		 * non-existent struct page.
3059  		 */
3060  		ksm_check_stable_tree(mn->start_pfn,
3061  				      mn->start_pfn + mn->nr_pages);
3062  		fallthrough;
3063  	case MEM_CANCEL_OFFLINE:
3064  		mutex_lock(&ksm_thread_mutex);
3065  		ksm_run &= ~KSM_RUN_OFFLINE;
3066  		mutex_unlock(&ksm_thread_mutex);
3067  
3068  		smp_mb();	/* wake_up_bit advises this */
3069  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3070  		break;
3071  	}
3072  	return NOTIFY_OK;
3073  }
3074  #else
3075  static void wait_while_offlining(void)
3076  {
3077  }
3078  #endif /* CONFIG_MEMORY_HOTREMOVE */
3079  
3080  #ifdef CONFIG_PROC_FS
3081  long ksm_process_profit(struct mm_struct *mm)
3082  {
3083  	return mm->ksm_merging_pages * PAGE_SIZE -
3084  		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3085  }
3086  #endif /* CONFIG_PROC_FS */
3087  
3088  #ifdef CONFIG_SYSFS
3089  /*
3090   * This all compiles without CONFIG_SYSFS, but is a waste of space.
3091   */
3092  
3093  #define KSM_ATTR_RO(_name) \
3094  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3095  #define KSM_ATTR(_name) \
3096  	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3097  
3098  static ssize_t sleep_millisecs_show(struct kobject *kobj,
3099  				    struct kobj_attribute *attr, char *buf)
3100  {
3101  	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3102  }
3103  
3104  static ssize_t sleep_millisecs_store(struct kobject *kobj,
3105  				     struct kobj_attribute *attr,
3106  				     const char *buf, size_t count)
3107  {
3108  	unsigned int msecs;
3109  	int err;
3110  
3111  	err = kstrtouint(buf, 10, &msecs);
3112  	if (err)
3113  		return -EINVAL;
3114  
3115  	ksm_thread_sleep_millisecs = msecs;
3116  	wake_up_interruptible(&ksm_iter_wait);
3117  
3118  	return count;
3119  }
3120  KSM_ATTR(sleep_millisecs);
3121  
3122  static ssize_t pages_to_scan_show(struct kobject *kobj,
3123  				  struct kobj_attribute *attr, char *buf)
3124  {
3125  	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3126  }
3127  
3128  static ssize_t pages_to_scan_store(struct kobject *kobj,
3129  				   struct kobj_attribute *attr,
3130  				   const char *buf, size_t count)
3131  {
3132  	unsigned int nr_pages;
3133  	int err;
3134  
3135  	err = kstrtouint(buf, 10, &nr_pages);
3136  	if (err)
3137  		return -EINVAL;
3138  
3139  	ksm_thread_pages_to_scan = nr_pages;
3140  
3141  	return count;
3142  }
3143  KSM_ATTR(pages_to_scan);
3144  
3145  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3146  			char *buf)
3147  {
3148  	return sysfs_emit(buf, "%lu\n", ksm_run);
3149  }
3150  
3151  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3152  			 const char *buf, size_t count)
3153  {
3154  	unsigned int flags;
3155  	int err;
3156  
3157  	err = kstrtouint(buf, 10, &flags);
3158  	if (err)
3159  		return -EINVAL;
3160  	if (flags > KSM_RUN_UNMERGE)
3161  		return -EINVAL;
3162  
3163  	/*
3164  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3165  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3166  	 * breaking COW to free the pages_shared (but leaves mm_slots
3167  	 * on the list for when ksmd may be set running again).
3168  	 */
3169  
3170  	mutex_lock(&ksm_thread_mutex);
3171  	wait_while_offlining();
3172  	if (ksm_run != flags) {
3173  		ksm_run = flags;
3174  		if (flags & KSM_RUN_UNMERGE) {
3175  			set_current_oom_origin();
3176  			err = unmerge_and_remove_all_rmap_items();
3177  			clear_current_oom_origin();
3178  			if (err) {
3179  				ksm_run = KSM_RUN_STOP;
3180  				count = err;
3181  			}
3182  		}
3183  	}
3184  	mutex_unlock(&ksm_thread_mutex);
3185  
3186  	if (flags & KSM_RUN_MERGE)
3187  		wake_up_interruptible(&ksm_thread_wait);
3188  
3189  	return count;
3190  }
3191  KSM_ATTR(run);
3192  
3193  #ifdef CONFIG_NUMA
3194  static ssize_t merge_across_nodes_show(struct kobject *kobj,
3195  				       struct kobj_attribute *attr, char *buf)
3196  {
3197  	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3198  }
3199  
3200  static ssize_t merge_across_nodes_store(struct kobject *kobj,
3201  				   struct kobj_attribute *attr,
3202  				   const char *buf, size_t count)
3203  {
3204  	int err;
3205  	unsigned long knob;
3206  
3207  	err = kstrtoul(buf, 10, &knob);
3208  	if (err)
3209  		return err;
3210  	if (knob > 1)
3211  		return -EINVAL;
3212  
3213  	mutex_lock(&ksm_thread_mutex);
3214  	wait_while_offlining();
3215  	if (ksm_merge_across_nodes != knob) {
3216  		if (ksm_pages_shared || remove_all_stable_nodes())
3217  			err = -EBUSY;
3218  		else if (root_stable_tree == one_stable_tree) {
3219  			struct rb_root *buf;
3220  			/*
3221  			 * This is the first time that we switch away from the
3222  			 * default of merging across nodes: must now allocate
3223  			 * a buffer to hold as many roots as may be needed.
3224  			 * Allocate stable and unstable together:
3225  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3226  			 */
3227  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3228  				      GFP_KERNEL);
3229  			/* Let us assume that RB_ROOT is NULL is zero */
3230  			if (!buf)
3231  				err = -ENOMEM;
3232  			else {
3233  				root_stable_tree = buf;
3234  				root_unstable_tree = buf + nr_node_ids;
3235  				/* Stable tree is empty but not the unstable */
3236  				root_unstable_tree[0] = one_unstable_tree[0];
3237  			}
3238  		}
3239  		if (!err) {
3240  			ksm_merge_across_nodes = knob;
3241  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3242  		}
3243  	}
3244  	mutex_unlock(&ksm_thread_mutex);
3245  
3246  	return err ? err : count;
3247  }
3248  KSM_ATTR(merge_across_nodes);
3249  #endif
3250  
3251  static ssize_t use_zero_pages_show(struct kobject *kobj,
3252  				   struct kobj_attribute *attr, char *buf)
3253  {
3254  	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3255  }
3256  static ssize_t use_zero_pages_store(struct kobject *kobj,
3257  				   struct kobj_attribute *attr,
3258  				   const char *buf, size_t count)
3259  {
3260  	int err;
3261  	bool value;
3262  
3263  	err = kstrtobool(buf, &value);
3264  	if (err)
3265  		return -EINVAL;
3266  
3267  	ksm_use_zero_pages = value;
3268  
3269  	return count;
3270  }
3271  KSM_ATTR(use_zero_pages);
3272  
3273  static ssize_t max_page_sharing_show(struct kobject *kobj,
3274  				     struct kobj_attribute *attr, char *buf)
3275  {
3276  	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3277  }
3278  
3279  static ssize_t max_page_sharing_store(struct kobject *kobj,
3280  				      struct kobj_attribute *attr,
3281  				      const char *buf, size_t count)
3282  {
3283  	int err;
3284  	int knob;
3285  
3286  	err = kstrtoint(buf, 10, &knob);
3287  	if (err)
3288  		return err;
3289  	/*
3290  	 * When a KSM page is created it is shared by 2 mappings. This
3291  	 * being a signed comparison, it implicitly verifies it's not
3292  	 * negative.
3293  	 */
3294  	if (knob < 2)
3295  		return -EINVAL;
3296  
3297  	if (READ_ONCE(ksm_max_page_sharing) == knob)
3298  		return count;
3299  
3300  	mutex_lock(&ksm_thread_mutex);
3301  	wait_while_offlining();
3302  	if (ksm_max_page_sharing != knob) {
3303  		if (ksm_pages_shared || remove_all_stable_nodes())
3304  			err = -EBUSY;
3305  		else
3306  			ksm_max_page_sharing = knob;
3307  	}
3308  	mutex_unlock(&ksm_thread_mutex);
3309  
3310  	return err ? err : count;
3311  }
3312  KSM_ATTR(max_page_sharing);
3313  
3314  static ssize_t pages_shared_show(struct kobject *kobj,
3315  				 struct kobj_attribute *attr, char *buf)
3316  {
3317  	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3318  }
3319  KSM_ATTR_RO(pages_shared);
3320  
3321  static ssize_t pages_sharing_show(struct kobject *kobj,
3322  				  struct kobj_attribute *attr, char *buf)
3323  {
3324  	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3325  }
3326  KSM_ATTR_RO(pages_sharing);
3327  
3328  static ssize_t pages_unshared_show(struct kobject *kobj,
3329  				   struct kobj_attribute *attr, char *buf)
3330  {
3331  	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3332  }
3333  KSM_ATTR_RO(pages_unshared);
3334  
3335  static ssize_t pages_volatile_show(struct kobject *kobj,
3336  				   struct kobj_attribute *attr, char *buf)
3337  {
3338  	long ksm_pages_volatile;
3339  
3340  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3341  				- ksm_pages_sharing - ksm_pages_unshared;
3342  	/*
3343  	 * It was not worth any locking to calculate that statistic,
3344  	 * but it might therefore sometimes be negative: conceal that.
3345  	 */
3346  	if (ksm_pages_volatile < 0)
3347  		ksm_pages_volatile = 0;
3348  	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3349  }
3350  KSM_ATTR_RO(pages_volatile);
3351  
3352  static ssize_t general_profit_show(struct kobject *kobj,
3353  				   struct kobj_attribute *attr, char *buf)
3354  {
3355  	long general_profit;
3356  
3357  	general_profit = ksm_pages_sharing * PAGE_SIZE -
3358  				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3359  
3360  	return sysfs_emit(buf, "%ld\n", general_profit);
3361  }
3362  KSM_ATTR_RO(general_profit);
3363  
3364  static ssize_t stable_node_dups_show(struct kobject *kobj,
3365  				     struct kobj_attribute *attr, char *buf)
3366  {
3367  	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3368  }
3369  KSM_ATTR_RO(stable_node_dups);
3370  
3371  static ssize_t stable_node_chains_show(struct kobject *kobj,
3372  				       struct kobj_attribute *attr, char *buf)
3373  {
3374  	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3375  }
3376  KSM_ATTR_RO(stable_node_chains);
3377  
3378  static ssize_t
3379  stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3380  					struct kobj_attribute *attr,
3381  					char *buf)
3382  {
3383  	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3384  }
3385  
3386  static ssize_t
3387  stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3388  					 struct kobj_attribute *attr,
3389  					 const char *buf, size_t count)
3390  {
3391  	unsigned int msecs;
3392  	int err;
3393  
3394  	err = kstrtouint(buf, 10, &msecs);
3395  	if (err)
3396  		return -EINVAL;
3397  
3398  	ksm_stable_node_chains_prune_millisecs = msecs;
3399  
3400  	return count;
3401  }
3402  KSM_ATTR(stable_node_chains_prune_millisecs);
3403  
3404  static ssize_t full_scans_show(struct kobject *kobj,
3405  			       struct kobj_attribute *attr, char *buf)
3406  {
3407  	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3408  }
3409  KSM_ATTR_RO(full_scans);
3410  
3411  static struct attribute *ksm_attrs[] = {
3412  	&sleep_millisecs_attr.attr,
3413  	&pages_to_scan_attr.attr,
3414  	&run_attr.attr,
3415  	&pages_shared_attr.attr,
3416  	&pages_sharing_attr.attr,
3417  	&pages_unshared_attr.attr,
3418  	&pages_volatile_attr.attr,
3419  	&full_scans_attr.attr,
3420  #ifdef CONFIG_NUMA
3421  	&merge_across_nodes_attr.attr,
3422  #endif
3423  	&max_page_sharing_attr.attr,
3424  	&stable_node_chains_attr.attr,
3425  	&stable_node_dups_attr.attr,
3426  	&stable_node_chains_prune_millisecs_attr.attr,
3427  	&use_zero_pages_attr.attr,
3428  	&general_profit_attr.attr,
3429  	NULL,
3430  };
3431  
3432  static const struct attribute_group ksm_attr_group = {
3433  	.attrs = ksm_attrs,
3434  	.name = "ksm",
3435  };
3436  #endif /* CONFIG_SYSFS */
3437  
3438  static int __init ksm_init(void)
3439  {
3440  	struct task_struct *ksm_thread;
3441  	int err;
3442  
3443  	/* The correct value depends on page size and endianness */
3444  	zero_checksum = calc_checksum(ZERO_PAGE(0));
3445  	/* Default to false for backwards compatibility */
3446  	ksm_use_zero_pages = false;
3447  
3448  	err = ksm_slab_init();
3449  	if (err)
3450  		goto out;
3451  
3452  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3453  	if (IS_ERR(ksm_thread)) {
3454  		pr_err("ksm: creating kthread failed\n");
3455  		err = PTR_ERR(ksm_thread);
3456  		goto out_free;
3457  	}
3458  
3459  #ifdef CONFIG_SYSFS
3460  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3461  	if (err) {
3462  		pr_err("ksm: register sysfs failed\n");
3463  		kthread_stop(ksm_thread);
3464  		goto out_free;
3465  	}
3466  #else
3467  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3468  
3469  #endif /* CONFIG_SYSFS */
3470  
3471  #ifdef CONFIG_MEMORY_HOTREMOVE
3472  	/* There is no significance to this priority 100 */
3473  	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3474  #endif
3475  	return 0;
3476  
3477  out_free:
3478  	ksm_slab_free();
3479  out:
3480  	return err;
3481  }
3482  subsys_initcall(ksm_init);
3483