1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/rwsem.h> 26 #include <linux/pagemap.h> 27 #include <linux/rmap.h> 28 #include <linux/spinlock.h> 29 #include <linux/xxhash.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/wait.h> 33 #include <linux/slab.h> 34 #include <linux/rbtree.h> 35 #include <linux/memory.h> 36 #include <linux/mmu_notifier.h> 37 #include <linux/swap.h> 38 #include <linux/ksm.h> 39 #include <linux/hashtable.h> 40 #include <linux/freezer.h> 41 #include <linux/oom.h> 42 #include <linux/numa.h> 43 #include <linux/pagewalk.h> 44 45 #include <asm/tlbflush.h> 46 #include "internal.h" 47 #include "mm_slot.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/ksm.h> 51 52 #ifdef CONFIG_NUMA 53 #define NUMA(x) (x) 54 #define DO_NUMA(x) do { (x); } while (0) 55 #else 56 #define NUMA(x) (0) 57 #define DO_NUMA(x) do { } while (0) 58 #endif 59 60 typedef u8 rmap_age_t; 61 62 /** 63 * DOC: Overview 64 * 65 * A few notes about the KSM scanning process, 66 * to make it easier to understand the data structures below: 67 * 68 * In order to reduce excessive scanning, KSM sorts the memory pages by their 69 * contents into a data structure that holds pointers to the pages' locations. 70 * 71 * Since the contents of the pages may change at any moment, KSM cannot just 72 * insert the pages into a normal sorted tree and expect it to find anything. 73 * Therefore KSM uses two data structures - the stable and the unstable tree. 74 * 75 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 76 * by their contents. Because each such page is write-protected, searching on 77 * this tree is fully assured to be working (except when pages are unmapped), 78 * and therefore this tree is called the stable tree. 79 * 80 * The stable tree node includes information required for reverse 81 * mapping from a KSM page to virtual addresses that map this page. 82 * 83 * In order to avoid large latencies of the rmap walks on KSM pages, 84 * KSM maintains two types of nodes in the stable tree: 85 * 86 * * the regular nodes that keep the reverse mapping structures in a 87 * linked list 88 * * the "chains" that link nodes ("dups") that represent the same 89 * write protected memory content, but each "dup" corresponds to a 90 * different KSM page copy of that content 91 * 92 * Internally, the regular nodes, "dups" and "chains" are represented 93 * using the same struct ksm_stable_node structure. 94 * 95 * In addition to the stable tree, KSM uses a second data structure called the 96 * unstable tree: this tree holds pointers to pages which have been found to 97 * be "unchanged for a period of time". The unstable tree sorts these pages 98 * by their contents, but since they are not write-protected, KSM cannot rely 99 * upon the unstable tree to work correctly - the unstable tree is liable to 100 * be corrupted as its contents are modified, and so it is called unstable. 101 * 102 * KSM solves this problem by several techniques: 103 * 104 * 1) The unstable tree is flushed every time KSM completes scanning all 105 * memory areas, and then the tree is rebuilt again from the beginning. 106 * 2) KSM will only insert into the unstable tree, pages whose hash value 107 * has not changed since the previous scan of all memory areas. 108 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 109 * colors of the nodes and not on their contents, assuring that even when 110 * the tree gets "corrupted" it won't get out of balance, so scanning time 111 * remains the same (also, searching and inserting nodes in an rbtree uses 112 * the same algorithm, so we have no overhead when we flush and rebuild). 113 * 4) KSM never flushes the stable tree, which means that even if it were to 114 * take 10 attempts to find a page in the unstable tree, once it is found, 115 * it is secured in the stable tree. (When we scan a new page, we first 116 * compare it against the stable tree, and then against the unstable tree.) 117 * 118 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 119 * stable trees and multiple unstable trees: one of each for each NUMA node. 120 */ 121 122 /** 123 * struct ksm_mm_slot - ksm information per mm that is being scanned 124 * @slot: hash lookup from mm to mm_slot 125 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 126 */ 127 struct ksm_mm_slot { 128 struct mm_slot slot; 129 struct ksm_rmap_item *rmap_list; 130 }; 131 132 /** 133 * struct ksm_scan - cursor for scanning 134 * @mm_slot: the current mm_slot we are scanning 135 * @address: the next address inside that to be scanned 136 * @rmap_list: link to the next rmap to be scanned in the rmap_list 137 * @seqnr: count of completed full scans (needed when removing unstable node) 138 * 139 * There is only the one ksm_scan instance of this cursor structure. 140 */ 141 struct ksm_scan { 142 struct ksm_mm_slot *mm_slot; 143 unsigned long address; 144 struct ksm_rmap_item **rmap_list; 145 unsigned long seqnr; 146 }; 147 148 /** 149 * struct ksm_stable_node - node of the stable rbtree 150 * @node: rb node of this ksm page in the stable tree 151 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 152 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 153 * @list: linked into migrate_nodes, pending placement in the proper node tree 154 * @hlist: hlist head of rmap_items using this ksm page 155 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 156 * @chain_prune_time: time of the last full garbage collection 157 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 158 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 159 */ 160 struct ksm_stable_node { 161 union { 162 struct rb_node node; /* when node of stable tree */ 163 struct { /* when listed for migration */ 164 struct list_head *head; 165 struct { 166 struct hlist_node hlist_dup; 167 struct list_head list; 168 }; 169 }; 170 }; 171 struct hlist_head hlist; 172 union { 173 unsigned long kpfn; 174 unsigned long chain_prune_time; 175 }; 176 /* 177 * STABLE_NODE_CHAIN can be any negative number in 178 * rmap_hlist_len negative range, but better not -1 to be able 179 * to reliably detect underflows. 180 */ 181 #define STABLE_NODE_CHAIN -1024 182 int rmap_hlist_len; 183 #ifdef CONFIG_NUMA 184 int nid; 185 #endif 186 }; 187 188 /** 189 * struct ksm_rmap_item - reverse mapping item for virtual addresses 190 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 191 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 192 * @nid: NUMA node id of unstable tree in which linked (may not match page) 193 * @mm: the memory structure this rmap_item is pointing into 194 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 195 * @oldchecksum: previous checksum of the page at that virtual address 196 * @node: rb node of this rmap_item in the unstable tree 197 * @head: pointer to stable_node heading this list in the stable tree 198 * @hlist: link into hlist of rmap_items hanging off that stable_node 199 * @age: number of scan iterations since creation 200 * @remaining_skips: how many scans to skip 201 */ 202 struct ksm_rmap_item { 203 struct ksm_rmap_item *rmap_list; 204 union { 205 struct anon_vma *anon_vma; /* when stable */ 206 #ifdef CONFIG_NUMA 207 int nid; /* when node of unstable tree */ 208 #endif 209 }; 210 struct mm_struct *mm; 211 unsigned long address; /* + low bits used for flags below */ 212 unsigned int oldchecksum; /* when unstable */ 213 rmap_age_t age; 214 rmap_age_t remaining_skips; 215 union { 216 struct rb_node node; /* when node of unstable tree */ 217 struct { /* when listed from stable tree */ 218 struct ksm_stable_node *head; 219 struct hlist_node hlist; 220 }; 221 }; 222 }; 223 224 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 225 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 226 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 227 228 /* The stable and unstable tree heads */ 229 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 230 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 231 static struct rb_root *root_stable_tree = one_stable_tree; 232 static struct rb_root *root_unstable_tree = one_unstable_tree; 233 234 /* Recently migrated nodes of stable tree, pending proper placement */ 235 static LIST_HEAD(migrate_nodes); 236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 237 238 #define MM_SLOTS_HASH_BITS 10 239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 240 241 static struct ksm_mm_slot ksm_mm_head = { 242 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 243 }; 244 static struct ksm_scan ksm_scan = { 245 .mm_slot = &ksm_mm_head, 246 }; 247 248 static struct kmem_cache *rmap_item_cache; 249 static struct kmem_cache *stable_node_cache; 250 static struct kmem_cache *mm_slot_cache; 251 252 /* Default number of pages to scan per batch */ 253 #define DEFAULT_PAGES_TO_SCAN 100 254 255 /* The number of pages scanned */ 256 static unsigned long ksm_pages_scanned; 257 258 /* The number of nodes in the stable tree */ 259 static unsigned long ksm_pages_shared; 260 261 /* The number of page slots additionally sharing those nodes */ 262 static unsigned long ksm_pages_sharing; 263 264 /* The number of nodes in the unstable tree */ 265 static unsigned long ksm_pages_unshared; 266 267 /* The number of rmap_items in use: to calculate pages_volatile */ 268 static unsigned long ksm_rmap_items; 269 270 /* The number of stable_node chains */ 271 static unsigned long ksm_stable_node_chains; 272 273 /* The number of stable_node dups linked to the stable_node chains */ 274 static unsigned long ksm_stable_node_dups; 275 276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 278 279 /* Maximum number of page slots sharing a stable node */ 280 static int ksm_max_page_sharing = 256; 281 282 /* Number of pages ksmd should scan in one batch */ 283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 284 285 /* Milliseconds ksmd should sleep between batches */ 286 static unsigned int ksm_thread_sleep_millisecs = 20; 287 288 /* Checksum of an empty (zeroed) page */ 289 static unsigned int zero_checksum __read_mostly; 290 291 /* Whether to merge empty (zeroed) pages with actual zero pages */ 292 static bool ksm_use_zero_pages __read_mostly; 293 294 /* Skip pages that couldn't be de-duplicated previously */ 295 /* Default to true at least temporarily, for testing */ 296 static bool ksm_smart_scan = true; 297 298 /* The number of zero pages which is placed by KSM */ 299 unsigned long ksm_zero_pages; 300 301 /* The number of pages that have been skipped due to "smart scanning" */ 302 static unsigned long ksm_pages_skipped; 303 304 /* Don't scan more than max pages per batch. */ 305 static unsigned long ksm_advisor_max_pages_to_scan = 30000; 306 307 /* Min CPU for scanning pages per scan */ 308 #define KSM_ADVISOR_MIN_CPU 10 309 310 /* Max CPU for scanning pages per scan */ 311 static unsigned int ksm_advisor_max_cpu = 70; 312 313 /* Target scan time in seconds to analyze all KSM candidate pages. */ 314 static unsigned long ksm_advisor_target_scan_time = 200; 315 316 /* Exponentially weighted moving average. */ 317 #define EWMA_WEIGHT 30 318 319 /** 320 * struct advisor_ctx - metadata for KSM advisor 321 * @start_scan: start time of the current scan 322 * @scan_time: scan time of previous scan 323 * @change: change in percent to pages_to_scan parameter 324 * @cpu_time: cpu time consumed by the ksmd thread in the previous scan 325 */ 326 struct advisor_ctx { 327 ktime_t start_scan; 328 unsigned long scan_time; 329 unsigned long change; 330 unsigned long long cpu_time; 331 }; 332 static struct advisor_ctx advisor_ctx; 333 334 /* Define different advisor's */ 335 enum ksm_advisor_type { 336 KSM_ADVISOR_NONE, 337 KSM_ADVISOR_SCAN_TIME, 338 }; 339 static enum ksm_advisor_type ksm_advisor; 340 341 #ifdef CONFIG_SYSFS 342 /* 343 * Only called through the sysfs control interface: 344 */ 345 346 /* At least scan this many pages per batch. */ 347 static unsigned long ksm_advisor_min_pages_to_scan = 500; 348 349 static void set_advisor_defaults(void) 350 { 351 if (ksm_advisor == KSM_ADVISOR_NONE) { 352 ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN; 353 } else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) { 354 advisor_ctx = (const struct advisor_ctx){ 0 }; 355 ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan; 356 } 357 } 358 #endif /* CONFIG_SYSFS */ 359 360 static inline void advisor_start_scan(void) 361 { 362 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 363 advisor_ctx.start_scan = ktime_get(); 364 } 365 366 /* 367 * Use previous scan time if available, otherwise use current scan time as an 368 * approximation for the previous scan time. 369 */ 370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx, 371 unsigned long scan_time) 372 { 373 return ctx->scan_time ? ctx->scan_time : scan_time; 374 } 375 376 /* Calculate exponential weighted moving average */ 377 static unsigned long ewma(unsigned long prev, unsigned long curr) 378 { 379 return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100; 380 } 381 382 /* 383 * The scan time advisor is based on the current scan rate and the target 384 * scan rate. 385 * 386 * new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time) 387 * 388 * To avoid perturbations it calculates a change factor of previous changes. 389 * A new change factor is calculated for each iteration and it uses an 390 * exponentially weighted moving average. The new pages_to_scan value is 391 * multiplied with that change factor: 392 * 393 * new_pages_to_scan *= change facor 394 * 395 * The new_pages_to_scan value is limited by the cpu min and max values. It 396 * calculates the cpu percent for the last scan and calculates the new 397 * estimated cpu percent cost for the next scan. That value is capped by the 398 * cpu min and max setting. 399 * 400 * In addition the new pages_to_scan value is capped by the max and min 401 * limits. 402 */ 403 static void scan_time_advisor(void) 404 { 405 unsigned int cpu_percent; 406 unsigned long cpu_time; 407 unsigned long cpu_time_diff; 408 unsigned long cpu_time_diff_ms; 409 unsigned long pages; 410 unsigned long per_page_cost; 411 unsigned long factor; 412 unsigned long change; 413 unsigned long last_scan_time; 414 unsigned long scan_time; 415 416 /* Convert scan time to seconds */ 417 scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan), 418 MSEC_PER_SEC); 419 scan_time = scan_time ? scan_time : 1; 420 421 /* Calculate CPU consumption of ksmd background thread */ 422 cpu_time = task_sched_runtime(current); 423 cpu_time_diff = cpu_time - advisor_ctx.cpu_time; 424 cpu_time_diff_ms = cpu_time_diff / 1000 / 1000; 425 426 cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000); 427 cpu_percent = cpu_percent ? cpu_percent : 1; 428 last_scan_time = prev_scan_time(&advisor_ctx, scan_time); 429 430 /* Calculate scan time as percentage of target scan time */ 431 factor = ksm_advisor_target_scan_time * 100 / scan_time; 432 factor = factor ? factor : 1; 433 434 /* 435 * Calculate scan time as percentage of last scan time and use 436 * exponentially weighted average to smooth it 437 */ 438 change = scan_time * 100 / last_scan_time; 439 change = change ? change : 1; 440 change = ewma(advisor_ctx.change, change); 441 442 /* Calculate new scan rate based on target scan rate. */ 443 pages = ksm_thread_pages_to_scan * 100 / factor; 444 /* Update pages_to_scan by weighted change percentage. */ 445 pages = pages * change / 100; 446 447 /* Cap new pages_to_scan value */ 448 per_page_cost = ksm_thread_pages_to_scan / cpu_percent; 449 per_page_cost = per_page_cost ? per_page_cost : 1; 450 451 pages = min(pages, per_page_cost * ksm_advisor_max_cpu); 452 pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU); 453 pages = min(pages, ksm_advisor_max_pages_to_scan); 454 455 /* Update advisor context */ 456 advisor_ctx.change = change; 457 advisor_ctx.scan_time = scan_time; 458 advisor_ctx.cpu_time = cpu_time; 459 460 ksm_thread_pages_to_scan = pages; 461 trace_ksm_advisor(scan_time, pages, cpu_percent); 462 } 463 464 static void advisor_stop_scan(void) 465 { 466 if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 467 scan_time_advisor(); 468 } 469 470 #ifdef CONFIG_NUMA 471 /* Zeroed when merging across nodes is not allowed */ 472 static unsigned int ksm_merge_across_nodes = 1; 473 static int ksm_nr_node_ids = 1; 474 #else 475 #define ksm_merge_across_nodes 1U 476 #define ksm_nr_node_ids 1 477 #endif 478 479 #define KSM_RUN_STOP 0 480 #define KSM_RUN_MERGE 1 481 #define KSM_RUN_UNMERGE 2 482 #define KSM_RUN_OFFLINE 4 483 static unsigned long ksm_run = KSM_RUN_STOP; 484 static void wait_while_offlining(void); 485 486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 488 static DEFINE_MUTEX(ksm_thread_mutex); 489 static DEFINE_SPINLOCK(ksm_mmlist_lock); 490 491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 492 sizeof(struct __struct), __alignof__(struct __struct),\ 493 (__flags), NULL) 494 495 static int __init ksm_slab_init(void) 496 { 497 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 498 if (!rmap_item_cache) 499 goto out; 500 501 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 502 if (!stable_node_cache) 503 goto out_free1; 504 505 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 506 if (!mm_slot_cache) 507 goto out_free2; 508 509 return 0; 510 511 out_free2: 512 kmem_cache_destroy(stable_node_cache); 513 out_free1: 514 kmem_cache_destroy(rmap_item_cache); 515 out: 516 return -ENOMEM; 517 } 518 519 static void __init ksm_slab_free(void) 520 { 521 kmem_cache_destroy(mm_slot_cache); 522 kmem_cache_destroy(stable_node_cache); 523 kmem_cache_destroy(rmap_item_cache); 524 mm_slot_cache = NULL; 525 } 526 527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 528 { 529 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 530 } 531 532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 533 { 534 return dup->head == STABLE_NODE_DUP_HEAD; 535 } 536 537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 538 struct ksm_stable_node *chain) 539 { 540 VM_BUG_ON(is_stable_node_dup(dup)); 541 dup->head = STABLE_NODE_DUP_HEAD; 542 VM_BUG_ON(!is_stable_node_chain(chain)); 543 hlist_add_head(&dup->hlist_dup, &chain->hlist); 544 ksm_stable_node_dups++; 545 } 546 547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 548 { 549 VM_BUG_ON(!is_stable_node_dup(dup)); 550 hlist_del(&dup->hlist_dup); 551 ksm_stable_node_dups--; 552 } 553 554 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 555 { 556 VM_BUG_ON(is_stable_node_chain(dup)); 557 if (is_stable_node_dup(dup)) 558 __stable_node_dup_del(dup); 559 else 560 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 561 #ifdef CONFIG_DEBUG_VM 562 dup->head = NULL; 563 #endif 564 } 565 566 static inline struct ksm_rmap_item *alloc_rmap_item(void) 567 { 568 struct ksm_rmap_item *rmap_item; 569 570 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 571 __GFP_NORETRY | __GFP_NOWARN); 572 if (rmap_item) 573 ksm_rmap_items++; 574 return rmap_item; 575 } 576 577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 578 { 579 ksm_rmap_items--; 580 rmap_item->mm->ksm_rmap_items--; 581 rmap_item->mm = NULL; /* debug safety */ 582 kmem_cache_free(rmap_item_cache, rmap_item); 583 } 584 585 static inline struct ksm_stable_node *alloc_stable_node(void) 586 { 587 /* 588 * The allocation can take too long with GFP_KERNEL when memory is under 589 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 590 * grants access to memory reserves, helping to avoid this problem. 591 */ 592 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 593 } 594 595 static inline void free_stable_node(struct ksm_stable_node *stable_node) 596 { 597 VM_BUG_ON(stable_node->rmap_hlist_len && 598 !is_stable_node_chain(stable_node)); 599 kmem_cache_free(stable_node_cache, stable_node); 600 } 601 602 /* 603 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 604 * page tables after it has passed through ksm_exit() - which, if necessary, 605 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 606 * a special flag: they can just back out as soon as mm_users goes to zero. 607 * ksm_test_exit() is used throughout to make this test for exit: in some 608 * places for correctness, in some places just to avoid unnecessary work. 609 */ 610 static inline bool ksm_test_exit(struct mm_struct *mm) 611 { 612 return atomic_read(&mm->mm_users) == 0; 613 } 614 615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 616 struct mm_walk *walk) 617 { 618 struct page *page = NULL; 619 spinlock_t *ptl; 620 pte_t *pte; 621 pte_t ptent; 622 int ret; 623 624 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 625 if (!pte) 626 return 0; 627 ptent = ptep_get(pte); 628 if (pte_present(ptent)) { 629 page = vm_normal_page(walk->vma, addr, ptent); 630 } else if (!pte_none(ptent)) { 631 swp_entry_t entry = pte_to_swp_entry(ptent); 632 633 /* 634 * As KSM pages remain KSM pages until freed, no need to wait 635 * here for migration to end. 636 */ 637 if (is_migration_entry(entry)) 638 page = pfn_swap_entry_to_page(entry); 639 } 640 /* return 1 if the page is an normal ksm page or KSM-placed zero page */ 641 ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent); 642 pte_unmap_unlock(pte, ptl); 643 return ret; 644 } 645 646 static const struct mm_walk_ops break_ksm_ops = { 647 .pmd_entry = break_ksm_pmd_entry, 648 .walk_lock = PGWALK_RDLOCK, 649 }; 650 651 static const struct mm_walk_ops break_ksm_lock_vma_ops = { 652 .pmd_entry = break_ksm_pmd_entry, 653 .walk_lock = PGWALK_WRLOCK, 654 }; 655 656 /* 657 * We use break_ksm to break COW on a ksm page by triggering unsharing, 658 * such that the ksm page will get replaced by an exclusive anonymous page. 659 * 660 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 661 * in case the application has unmapped and remapped mm,addr meanwhile. 662 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 663 * mmap of /dev/mem, where we would not want to touch it. 664 * 665 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 666 * of the process that owns 'vma'. We also do not want to enforce 667 * protection keys here anyway. 668 */ 669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma) 670 { 671 vm_fault_t ret = 0; 672 const struct mm_walk_ops *ops = lock_vma ? 673 &break_ksm_lock_vma_ops : &break_ksm_ops; 674 675 do { 676 int ksm_page; 677 678 cond_resched(); 679 ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL); 680 if (WARN_ON_ONCE(ksm_page < 0)) 681 return ksm_page; 682 if (!ksm_page) 683 return 0; 684 ret = handle_mm_fault(vma, addr, 685 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 686 NULL); 687 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 688 /* 689 * We must loop until we no longer find a KSM page because 690 * handle_mm_fault() may back out if there's any difficulty e.g. if 691 * pte accessed bit gets updated concurrently. 692 * 693 * VM_FAULT_SIGBUS could occur if we race with truncation of the 694 * backing file, which also invalidates anonymous pages: that's 695 * okay, that truncation will have unmapped the PageKsm for us. 696 * 697 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 698 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 699 * current task has TIF_MEMDIE set, and will be OOM killed on return 700 * to user; and ksmd, having no mm, would never be chosen for that. 701 * 702 * But if the mm is in a limited mem_cgroup, then the fault may fail 703 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 704 * even ksmd can fail in this way - though it's usually breaking ksm 705 * just to undo a merge it made a moment before, so unlikely to oom. 706 * 707 * That's a pity: we might therefore have more kernel pages allocated 708 * than we're counting as nodes in the stable tree; but ksm_do_scan 709 * will retry to break_cow on each pass, so should recover the page 710 * in due course. The important thing is to not let VM_MERGEABLE 711 * be cleared while any such pages might remain in the area. 712 */ 713 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 714 } 715 716 static bool vma_ksm_compatible(struct vm_area_struct *vma) 717 { 718 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE | VM_PFNMAP | 719 VM_IO | VM_DONTEXPAND | VM_HUGETLB | 720 VM_MIXEDMAP)) 721 return false; /* just ignore the advice */ 722 723 if (vma_is_dax(vma)) 724 return false; 725 726 #ifdef VM_SAO 727 if (vma->vm_flags & VM_SAO) 728 return false; 729 #endif 730 #ifdef VM_SPARC_ADI 731 if (vma->vm_flags & VM_SPARC_ADI) 732 return false; 733 #endif 734 735 return true; 736 } 737 738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 739 unsigned long addr) 740 { 741 struct vm_area_struct *vma; 742 if (ksm_test_exit(mm)) 743 return NULL; 744 vma = vma_lookup(mm, addr); 745 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 746 return NULL; 747 return vma; 748 } 749 750 static void break_cow(struct ksm_rmap_item *rmap_item) 751 { 752 struct mm_struct *mm = rmap_item->mm; 753 unsigned long addr = rmap_item->address; 754 struct vm_area_struct *vma; 755 756 /* 757 * It is not an accident that whenever we want to break COW 758 * to undo, we also need to drop a reference to the anon_vma. 759 */ 760 put_anon_vma(rmap_item->anon_vma); 761 762 mmap_read_lock(mm); 763 vma = find_mergeable_vma(mm, addr); 764 if (vma) 765 break_ksm(vma, addr, false); 766 mmap_read_unlock(mm); 767 } 768 769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 770 { 771 struct mm_struct *mm = rmap_item->mm; 772 unsigned long addr = rmap_item->address; 773 struct vm_area_struct *vma; 774 struct page *page; 775 776 mmap_read_lock(mm); 777 vma = find_mergeable_vma(mm, addr); 778 if (!vma) 779 goto out; 780 781 page = follow_page(vma, addr, FOLL_GET); 782 if (IS_ERR_OR_NULL(page)) 783 goto out; 784 if (is_zone_device_page(page)) 785 goto out_putpage; 786 if (PageAnon(page)) { 787 flush_anon_page(vma, page, addr); 788 flush_dcache_page(page); 789 } else { 790 out_putpage: 791 put_page(page); 792 out: 793 page = NULL; 794 } 795 mmap_read_unlock(mm); 796 return page; 797 } 798 799 /* 800 * This helper is used for getting right index into array of tree roots. 801 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 802 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 803 * every node has its own stable and unstable tree. 804 */ 805 static inline int get_kpfn_nid(unsigned long kpfn) 806 { 807 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 808 } 809 810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 811 struct rb_root *root) 812 { 813 struct ksm_stable_node *chain = alloc_stable_node(); 814 VM_BUG_ON(is_stable_node_chain(dup)); 815 if (likely(chain)) { 816 INIT_HLIST_HEAD(&chain->hlist); 817 chain->chain_prune_time = jiffies; 818 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 820 chain->nid = NUMA_NO_NODE; /* debug */ 821 #endif 822 ksm_stable_node_chains++; 823 824 /* 825 * Put the stable node chain in the first dimension of 826 * the stable tree and at the same time remove the old 827 * stable node. 828 */ 829 rb_replace_node(&dup->node, &chain->node, root); 830 831 /* 832 * Move the old stable node to the second dimension 833 * queued in the hlist_dup. The invariant is that all 834 * dup stable_nodes in the chain->hlist point to pages 835 * that are write protected and have the exact same 836 * content. 837 */ 838 stable_node_chain_add_dup(dup, chain); 839 } 840 return chain; 841 } 842 843 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 844 struct rb_root *root) 845 { 846 rb_erase(&chain->node, root); 847 free_stable_node(chain); 848 ksm_stable_node_chains--; 849 } 850 851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 852 { 853 struct ksm_rmap_item *rmap_item; 854 855 /* check it's not STABLE_NODE_CHAIN or negative */ 856 BUG_ON(stable_node->rmap_hlist_len < 0); 857 858 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 859 if (rmap_item->hlist.next) { 860 ksm_pages_sharing--; 861 trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm); 862 } else { 863 ksm_pages_shared--; 864 } 865 866 rmap_item->mm->ksm_merging_pages--; 867 868 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 869 stable_node->rmap_hlist_len--; 870 put_anon_vma(rmap_item->anon_vma); 871 rmap_item->address &= PAGE_MASK; 872 cond_resched(); 873 } 874 875 /* 876 * We need the second aligned pointer of the migrate_nodes 877 * list_head to stay clear from the rb_parent_color union 878 * (aligned and different than any node) and also different 879 * from &migrate_nodes. This will verify that future list.h changes 880 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 881 */ 882 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 883 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 884 885 trace_ksm_remove_ksm_page(stable_node->kpfn); 886 if (stable_node->head == &migrate_nodes) 887 list_del(&stable_node->list); 888 else 889 stable_node_dup_del(stable_node); 890 free_stable_node(stable_node); 891 } 892 893 enum get_ksm_page_flags { 894 GET_KSM_PAGE_NOLOCK, 895 GET_KSM_PAGE_LOCK, 896 GET_KSM_PAGE_TRYLOCK 897 }; 898 899 /* 900 * get_ksm_page: checks if the page indicated by the stable node 901 * is still its ksm page, despite having held no reference to it. 902 * In which case we can trust the content of the page, and it 903 * returns the gotten page; but if the page has now been zapped, 904 * remove the stale node from the stable tree and return NULL. 905 * But beware, the stable node's page might be being migrated. 906 * 907 * You would expect the stable_node to hold a reference to the ksm page. 908 * But if it increments the page's count, swapping out has to wait for 909 * ksmd to come around again before it can free the page, which may take 910 * seconds or even minutes: much too unresponsive. So instead we use a 911 * "keyhole reference": access to the ksm page from the stable node peeps 912 * out through its keyhole to see if that page still holds the right key, 913 * pointing back to this stable node. This relies on freeing a PageAnon 914 * page to reset its page->mapping to NULL, and relies on no other use of 915 * a page to put something that might look like our key in page->mapping. 916 * is on its way to being freed; but it is an anomaly to bear in mind. 917 */ 918 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 919 enum get_ksm_page_flags flags) 920 { 921 struct page *page; 922 void *expected_mapping; 923 unsigned long kpfn; 924 925 expected_mapping = (void *)((unsigned long)stable_node | 926 PAGE_MAPPING_KSM); 927 again: 928 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 929 page = pfn_to_page(kpfn); 930 if (READ_ONCE(page->mapping) != expected_mapping) 931 goto stale; 932 933 /* 934 * We cannot do anything with the page while its refcount is 0. 935 * Usually 0 means free, or tail of a higher-order page: in which 936 * case this node is no longer referenced, and should be freed; 937 * however, it might mean that the page is under page_ref_freeze(). 938 * The __remove_mapping() case is easy, again the node is now stale; 939 * the same is in reuse_ksm_page() case; but if page is swapcache 940 * in folio_migrate_mapping(), it might still be our page, 941 * in which case it's essential to keep the node. 942 */ 943 while (!get_page_unless_zero(page)) { 944 /* 945 * Another check for page->mapping != expected_mapping would 946 * work here too. We have chosen the !PageSwapCache test to 947 * optimize the common case, when the page is or is about to 948 * be freed: PageSwapCache is cleared (under spin_lock_irq) 949 * in the ref_freeze section of __remove_mapping(); but Anon 950 * page->mapping reset to NULL later, in free_pages_prepare(). 951 */ 952 if (!PageSwapCache(page)) 953 goto stale; 954 cpu_relax(); 955 } 956 957 if (READ_ONCE(page->mapping) != expected_mapping) { 958 put_page(page); 959 goto stale; 960 } 961 962 if (flags == GET_KSM_PAGE_TRYLOCK) { 963 if (!trylock_page(page)) { 964 put_page(page); 965 return ERR_PTR(-EBUSY); 966 } 967 } else if (flags == GET_KSM_PAGE_LOCK) 968 lock_page(page); 969 970 if (flags != GET_KSM_PAGE_NOLOCK) { 971 if (READ_ONCE(page->mapping) != expected_mapping) { 972 unlock_page(page); 973 put_page(page); 974 goto stale; 975 } 976 } 977 return page; 978 979 stale: 980 /* 981 * We come here from above when page->mapping or !PageSwapCache 982 * suggests that the node is stale; but it might be under migration. 983 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 984 * before checking whether node->kpfn has been changed. 985 */ 986 smp_rmb(); 987 if (READ_ONCE(stable_node->kpfn) != kpfn) 988 goto again; 989 remove_node_from_stable_tree(stable_node); 990 return NULL; 991 } 992 993 /* 994 * Removing rmap_item from stable or unstable tree. 995 * This function will clean the information from the stable/unstable tree. 996 */ 997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 998 { 999 if (rmap_item->address & STABLE_FLAG) { 1000 struct ksm_stable_node *stable_node; 1001 struct page *page; 1002 1003 stable_node = rmap_item->head; 1004 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 1005 if (!page) 1006 goto out; 1007 1008 hlist_del(&rmap_item->hlist); 1009 unlock_page(page); 1010 put_page(page); 1011 1012 if (!hlist_empty(&stable_node->hlist)) 1013 ksm_pages_sharing--; 1014 else 1015 ksm_pages_shared--; 1016 1017 rmap_item->mm->ksm_merging_pages--; 1018 1019 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 1020 stable_node->rmap_hlist_len--; 1021 1022 put_anon_vma(rmap_item->anon_vma); 1023 rmap_item->head = NULL; 1024 rmap_item->address &= PAGE_MASK; 1025 1026 } else if (rmap_item->address & UNSTABLE_FLAG) { 1027 unsigned char age; 1028 /* 1029 * Usually ksmd can and must skip the rb_erase, because 1030 * root_unstable_tree was already reset to RB_ROOT. 1031 * But be careful when an mm is exiting: do the rb_erase 1032 * if this rmap_item was inserted by this scan, rather 1033 * than left over from before. 1034 */ 1035 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 1036 BUG_ON(age > 1); 1037 if (!age) 1038 rb_erase(&rmap_item->node, 1039 root_unstable_tree + NUMA(rmap_item->nid)); 1040 ksm_pages_unshared--; 1041 rmap_item->address &= PAGE_MASK; 1042 } 1043 out: 1044 cond_resched(); /* we're called from many long loops */ 1045 } 1046 1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 1048 { 1049 while (*rmap_list) { 1050 struct ksm_rmap_item *rmap_item = *rmap_list; 1051 *rmap_list = rmap_item->rmap_list; 1052 remove_rmap_item_from_tree(rmap_item); 1053 free_rmap_item(rmap_item); 1054 } 1055 } 1056 1057 /* 1058 * Though it's very tempting to unmerge rmap_items from stable tree rather 1059 * than check every pte of a given vma, the locking doesn't quite work for 1060 * that - an rmap_item is assigned to the stable tree after inserting ksm 1061 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 1062 * rmap_items from parent to child at fork time (so as not to waste time 1063 * if exit comes before the next scan reaches it). 1064 * 1065 * Similarly, although we'd like to remove rmap_items (so updating counts 1066 * and freeing memory) when unmerging an area, it's easier to leave that 1067 * to the next pass of ksmd - consider, for example, how ksmd might be 1068 * in cmp_and_merge_page on one of the rmap_items we would be removing. 1069 */ 1070 static int unmerge_ksm_pages(struct vm_area_struct *vma, 1071 unsigned long start, unsigned long end, bool lock_vma) 1072 { 1073 unsigned long addr; 1074 int err = 0; 1075 1076 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 1077 if (ksm_test_exit(vma->vm_mm)) 1078 break; 1079 if (signal_pending(current)) 1080 err = -ERESTARTSYS; 1081 else 1082 err = break_ksm(vma, addr, lock_vma); 1083 } 1084 return err; 1085 } 1086 1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 1088 { 1089 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 1090 } 1091 1092 static inline struct ksm_stable_node *page_stable_node(struct page *page) 1093 { 1094 return folio_stable_node(page_folio(page)); 1095 } 1096 1097 static inline void set_page_stable_node(struct page *page, 1098 struct ksm_stable_node *stable_node) 1099 { 1100 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 1101 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 1102 } 1103 1104 #ifdef CONFIG_SYSFS 1105 /* 1106 * Only called through the sysfs control interface: 1107 */ 1108 static int remove_stable_node(struct ksm_stable_node *stable_node) 1109 { 1110 struct page *page; 1111 int err; 1112 1113 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 1114 if (!page) { 1115 /* 1116 * get_ksm_page did remove_node_from_stable_tree itself. 1117 */ 1118 return 0; 1119 } 1120 1121 /* 1122 * Page could be still mapped if this races with __mmput() running in 1123 * between ksm_exit() and exit_mmap(). Just refuse to let 1124 * merge_across_nodes/max_page_sharing be switched. 1125 */ 1126 err = -EBUSY; 1127 if (!page_mapped(page)) { 1128 /* 1129 * The stable node did not yet appear stale to get_ksm_page(), 1130 * since that allows for an unmapped ksm page to be recognized 1131 * right up until it is freed; but the node is safe to remove. 1132 * This page might be in an LRU cache waiting to be freed, 1133 * or it might be PageSwapCache (perhaps under writeback), 1134 * or it might have been removed from swapcache a moment ago. 1135 */ 1136 set_page_stable_node(page, NULL); 1137 remove_node_from_stable_tree(stable_node); 1138 err = 0; 1139 } 1140 1141 unlock_page(page); 1142 put_page(page); 1143 return err; 1144 } 1145 1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 1147 struct rb_root *root) 1148 { 1149 struct ksm_stable_node *dup; 1150 struct hlist_node *hlist_safe; 1151 1152 if (!is_stable_node_chain(stable_node)) { 1153 VM_BUG_ON(is_stable_node_dup(stable_node)); 1154 if (remove_stable_node(stable_node)) 1155 return true; 1156 else 1157 return false; 1158 } 1159 1160 hlist_for_each_entry_safe(dup, hlist_safe, 1161 &stable_node->hlist, hlist_dup) { 1162 VM_BUG_ON(!is_stable_node_dup(dup)); 1163 if (remove_stable_node(dup)) 1164 return true; 1165 } 1166 BUG_ON(!hlist_empty(&stable_node->hlist)); 1167 free_stable_node_chain(stable_node, root); 1168 return false; 1169 } 1170 1171 static int remove_all_stable_nodes(void) 1172 { 1173 struct ksm_stable_node *stable_node, *next; 1174 int nid; 1175 int err = 0; 1176 1177 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 1178 while (root_stable_tree[nid].rb_node) { 1179 stable_node = rb_entry(root_stable_tree[nid].rb_node, 1180 struct ksm_stable_node, node); 1181 if (remove_stable_node_chain(stable_node, 1182 root_stable_tree + nid)) { 1183 err = -EBUSY; 1184 break; /* proceed to next nid */ 1185 } 1186 cond_resched(); 1187 } 1188 } 1189 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 1190 if (remove_stable_node(stable_node)) 1191 err = -EBUSY; 1192 cond_resched(); 1193 } 1194 return err; 1195 } 1196 1197 static int unmerge_and_remove_all_rmap_items(void) 1198 { 1199 struct ksm_mm_slot *mm_slot; 1200 struct mm_slot *slot; 1201 struct mm_struct *mm; 1202 struct vm_area_struct *vma; 1203 int err = 0; 1204 1205 spin_lock(&ksm_mmlist_lock); 1206 slot = list_entry(ksm_mm_head.slot.mm_node.next, 1207 struct mm_slot, mm_node); 1208 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1209 spin_unlock(&ksm_mmlist_lock); 1210 1211 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 1212 mm_slot = ksm_scan.mm_slot) { 1213 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 1214 1215 mm = mm_slot->slot.mm; 1216 mmap_read_lock(mm); 1217 1218 /* 1219 * Exit right away if mm is exiting to avoid lockdep issue in 1220 * the maple tree 1221 */ 1222 if (ksm_test_exit(mm)) 1223 goto mm_exiting; 1224 1225 for_each_vma(vmi, vma) { 1226 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 1227 continue; 1228 err = unmerge_ksm_pages(vma, 1229 vma->vm_start, vma->vm_end, false); 1230 if (err) 1231 goto error; 1232 } 1233 1234 mm_exiting: 1235 remove_trailing_rmap_items(&mm_slot->rmap_list); 1236 mmap_read_unlock(mm); 1237 1238 spin_lock(&ksm_mmlist_lock); 1239 slot = list_entry(mm_slot->slot.mm_node.next, 1240 struct mm_slot, mm_node); 1241 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1242 if (ksm_test_exit(mm)) { 1243 hash_del(&mm_slot->slot.hash); 1244 list_del(&mm_slot->slot.mm_node); 1245 spin_unlock(&ksm_mmlist_lock); 1246 1247 mm_slot_free(mm_slot_cache, mm_slot); 1248 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1249 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 1250 mmdrop(mm); 1251 } else 1252 spin_unlock(&ksm_mmlist_lock); 1253 } 1254 1255 /* Clean up stable nodes, but don't worry if some are still busy */ 1256 remove_all_stable_nodes(); 1257 ksm_scan.seqnr = 0; 1258 return 0; 1259 1260 error: 1261 mmap_read_unlock(mm); 1262 spin_lock(&ksm_mmlist_lock); 1263 ksm_scan.mm_slot = &ksm_mm_head; 1264 spin_unlock(&ksm_mmlist_lock); 1265 return err; 1266 } 1267 #endif /* CONFIG_SYSFS */ 1268 1269 static u32 calc_checksum(struct page *page) 1270 { 1271 u32 checksum; 1272 void *addr = kmap_local_page(page); 1273 checksum = xxhash(addr, PAGE_SIZE, 0); 1274 kunmap_local(addr); 1275 return checksum; 1276 } 1277 1278 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1279 pte_t *orig_pte) 1280 { 1281 struct mm_struct *mm = vma->vm_mm; 1282 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1283 int swapped; 1284 int err = -EFAULT; 1285 struct mmu_notifier_range range; 1286 bool anon_exclusive; 1287 pte_t entry; 1288 1289 pvmw.address = page_address_in_vma(page, vma); 1290 if (pvmw.address == -EFAULT) 1291 goto out; 1292 1293 BUG_ON(PageTransCompound(page)); 1294 1295 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1296 pvmw.address + PAGE_SIZE); 1297 mmu_notifier_invalidate_range_start(&range); 1298 1299 if (!page_vma_mapped_walk(&pvmw)) 1300 goto out_mn; 1301 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1302 goto out_unlock; 1303 1304 anon_exclusive = PageAnonExclusive(page); 1305 entry = ptep_get(pvmw.pte); 1306 if (pte_write(entry) || pte_dirty(entry) || 1307 anon_exclusive || mm_tlb_flush_pending(mm)) { 1308 swapped = PageSwapCache(page); 1309 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1310 /* 1311 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1312 * take any lock, therefore the check that we are going to make 1313 * with the pagecount against the mapcount is racy and 1314 * O_DIRECT can happen right after the check. 1315 * So we clear the pte and flush the tlb before the check 1316 * this assure us that no O_DIRECT can happen after the check 1317 * or in the middle of the check. 1318 * 1319 * No need to notify as we are downgrading page table to read 1320 * only not changing it to point to a new page. 1321 * 1322 * See Documentation/mm/mmu_notifier.rst 1323 */ 1324 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1325 /* 1326 * Check that no O_DIRECT or similar I/O is in progress on the 1327 * page 1328 */ 1329 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1330 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1331 goto out_unlock; 1332 } 1333 1334 /* See folio_try_share_anon_rmap_pte(): clear PTE first. */ 1335 if (anon_exclusive && 1336 folio_try_share_anon_rmap_pte(page_folio(page), page)) { 1337 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1338 goto out_unlock; 1339 } 1340 1341 if (pte_dirty(entry)) 1342 set_page_dirty(page); 1343 entry = pte_mkclean(entry); 1344 1345 if (pte_write(entry)) 1346 entry = pte_wrprotect(entry); 1347 1348 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1349 } 1350 *orig_pte = entry; 1351 err = 0; 1352 1353 out_unlock: 1354 page_vma_mapped_walk_done(&pvmw); 1355 out_mn: 1356 mmu_notifier_invalidate_range_end(&range); 1357 out: 1358 return err; 1359 } 1360 1361 /** 1362 * replace_page - replace page in vma by new ksm page 1363 * @vma: vma that holds the pte pointing to page 1364 * @page: the page we are replacing by kpage 1365 * @kpage: the ksm page we replace page by 1366 * @orig_pte: the original value of the pte 1367 * 1368 * Returns 0 on success, -EFAULT on failure. 1369 */ 1370 static int replace_page(struct vm_area_struct *vma, struct page *page, 1371 struct page *kpage, pte_t orig_pte) 1372 { 1373 struct folio *kfolio = page_folio(kpage); 1374 struct mm_struct *mm = vma->vm_mm; 1375 struct folio *folio; 1376 pmd_t *pmd; 1377 pmd_t pmde; 1378 pte_t *ptep; 1379 pte_t newpte; 1380 spinlock_t *ptl; 1381 unsigned long addr; 1382 int err = -EFAULT; 1383 struct mmu_notifier_range range; 1384 1385 addr = page_address_in_vma(page, vma); 1386 if (addr == -EFAULT) 1387 goto out; 1388 1389 pmd = mm_find_pmd(mm, addr); 1390 if (!pmd) 1391 goto out; 1392 /* 1393 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1394 * without holding anon_vma lock for write. So when looking for a 1395 * genuine pmde (in which to find pte), test present and !THP together. 1396 */ 1397 pmde = pmdp_get_lockless(pmd); 1398 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1399 goto out; 1400 1401 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1402 addr + PAGE_SIZE); 1403 mmu_notifier_invalidate_range_start(&range); 1404 1405 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1406 if (!ptep) 1407 goto out_mn; 1408 if (!pte_same(ptep_get(ptep), orig_pte)) { 1409 pte_unmap_unlock(ptep, ptl); 1410 goto out_mn; 1411 } 1412 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1413 VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage), 1414 kfolio); 1415 1416 /* 1417 * No need to check ksm_use_zero_pages here: we can only have a 1418 * zero_page here if ksm_use_zero_pages was enabled already. 1419 */ 1420 if (!is_zero_pfn(page_to_pfn(kpage))) { 1421 folio_get(kfolio); 1422 folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE); 1423 newpte = mk_pte(kpage, vma->vm_page_prot); 1424 } else { 1425 /* 1426 * Use pte_mkdirty to mark the zero page mapped by KSM, and then 1427 * we can easily track all KSM-placed zero pages by checking if 1428 * the dirty bit in zero page's PTE is set. 1429 */ 1430 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot))); 1431 ksm_zero_pages++; 1432 mm->ksm_zero_pages++; 1433 /* 1434 * We're replacing an anonymous page with a zero page, which is 1435 * not anonymous. We need to do proper accounting otherwise we 1436 * will get wrong values in /proc, and a BUG message in dmesg 1437 * when tearing down the mm. 1438 */ 1439 dec_mm_counter(mm, MM_ANONPAGES); 1440 } 1441 1442 flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep))); 1443 /* 1444 * No need to notify as we are replacing a read only page with another 1445 * read only page with the same content. 1446 * 1447 * See Documentation/mm/mmu_notifier.rst 1448 */ 1449 ptep_clear_flush(vma, addr, ptep); 1450 set_pte_at_notify(mm, addr, ptep, newpte); 1451 1452 folio = page_folio(page); 1453 folio_remove_rmap_pte(folio, page, vma); 1454 if (!folio_mapped(folio)) 1455 folio_free_swap(folio); 1456 folio_put(folio); 1457 1458 pte_unmap_unlock(ptep, ptl); 1459 err = 0; 1460 out_mn: 1461 mmu_notifier_invalidate_range_end(&range); 1462 out: 1463 return err; 1464 } 1465 1466 /* 1467 * try_to_merge_one_page - take two pages and merge them into one 1468 * @vma: the vma that holds the pte pointing to page 1469 * @page: the PageAnon page that we want to replace with kpage 1470 * @kpage: the PageKsm page that we want to map instead of page, 1471 * or NULL the first time when we want to use page as kpage. 1472 * 1473 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1474 */ 1475 static int try_to_merge_one_page(struct vm_area_struct *vma, 1476 struct page *page, struct page *kpage) 1477 { 1478 pte_t orig_pte = __pte(0); 1479 int err = -EFAULT; 1480 1481 if (page == kpage) /* ksm page forked */ 1482 return 0; 1483 1484 if (!PageAnon(page)) 1485 goto out; 1486 1487 /* 1488 * We need the page lock to read a stable PageSwapCache in 1489 * write_protect_page(). We use trylock_page() instead of 1490 * lock_page() because we don't want to wait here - we 1491 * prefer to continue scanning and merging different pages, 1492 * then come back to this page when it is unlocked. 1493 */ 1494 if (!trylock_page(page)) 1495 goto out; 1496 1497 if (PageTransCompound(page)) { 1498 if (split_huge_page(page)) 1499 goto out_unlock; 1500 } 1501 1502 /* 1503 * If this anonymous page is mapped only here, its pte may need 1504 * to be write-protected. If it's mapped elsewhere, all of its 1505 * ptes are necessarily already write-protected. But in either 1506 * case, we need to lock and check page_count is not raised. 1507 */ 1508 if (write_protect_page(vma, page, &orig_pte) == 0) { 1509 if (!kpage) { 1510 /* 1511 * While we hold page lock, upgrade page from 1512 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1513 * stable_tree_insert() will update stable_node. 1514 */ 1515 set_page_stable_node(page, NULL); 1516 mark_page_accessed(page); 1517 /* 1518 * Page reclaim just frees a clean page with no dirty 1519 * ptes: make sure that the ksm page would be swapped. 1520 */ 1521 if (!PageDirty(page)) 1522 SetPageDirty(page); 1523 err = 0; 1524 } else if (pages_identical(page, kpage)) 1525 err = replace_page(vma, page, kpage, orig_pte); 1526 } 1527 1528 out_unlock: 1529 unlock_page(page); 1530 out: 1531 return err; 1532 } 1533 1534 /* 1535 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1536 * but no new kernel page is allocated: kpage must already be a ksm page. 1537 * 1538 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1539 */ 1540 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1541 struct page *page, struct page *kpage) 1542 { 1543 struct mm_struct *mm = rmap_item->mm; 1544 struct vm_area_struct *vma; 1545 int err = -EFAULT; 1546 1547 mmap_read_lock(mm); 1548 vma = find_mergeable_vma(mm, rmap_item->address); 1549 if (!vma) 1550 goto out; 1551 1552 err = try_to_merge_one_page(vma, page, kpage); 1553 if (err) 1554 goto out; 1555 1556 /* Unstable nid is in union with stable anon_vma: remove first */ 1557 remove_rmap_item_from_tree(rmap_item); 1558 1559 /* Must get reference to anon_vma while still holding mmap_lock */ 1560 rmap_item->anon_vma = vma->anon_vma; 1561 get_anon_vma(vma->anon_vma); 1562 out: 1563 mmap_read_unlock(mm); 1564 trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page), 1565 rmap_item, mm, err); 1566 return err; 1567 } 1568 1569 /* 1570 * try_to_merge_two_pages - take two identical pages and prepare them 1571 * to be merged into one page. 1572 * 1573 * This function returns the kpage if we successfully merged two identical 1574 * pages into one ksm page, NULL otherwise. 1575 * 1576 * Note that this function upgrades page to ksm page: if one of the pages 1577 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1578 */ 1579 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1580 struct page *page, 1581 struct ksm_rmap_item *tree_rmap_item, 1582 struct page *tree_page) 1583 { 1584 int err; 1585 1586 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1587 if (!err) { 1588 err = try_to_merge_with_ksm_page(tree_rmap_item, 1589 tree_page, page); 1590 /* 1591 * If that fails, we have a ksm page with only one pte 1592 * pointing to it: so break it. 1593 */ 1594 if (err) 1595 break_cow(rmap_item); 1596 } 1597 return err ? NULL : page; 1598 } 1599 1600 static __always_inline 1601 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1602 { 1603 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1604 /* 1605 * Check that at least one mapping still exists, otherwise 1606 * there's no much point to merge and share with this 1607 * stable_node, as the underlying tree_page of the other 1608 * sharer is going to be freed soon. 1609 */ 1610 return stable_node->rmap_hlist_len && 1611 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1612 } 1613 1614 static __always_inline 1615 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1616 { 1617 return __is_page_sharing_candidate(stable_node, 0); 1618 } 1619 1620 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1621 struct ksm_stable_node **_stable_node, 1622 struct rb_root *root, 1623 bool prune_stale_stable_nodes) 1624 { 1625 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1626 struct hlist_node *hlist_safe; 1627 struct page *_tree_page, *tree_page = NULL; 1628 int nr = 0; 1629 int found_rmap_hlist_len; 1630 1631 if (!prune_stale_stable_nodes || 1632 time_before(jiffies, stable_node->chain_prune_time + 1633 msecs_to_jiffies( 1634 ksm_stable_node_chains_prune_millisecs))) 1635 prune_stale_stable_nodes = false; 1636 else 1637 stable_node->chain_prune_time = jiffies; 1638 1639 hlist_for_each_entry_safe(dup, hlist_safe, 1640 &stable_node->hlist, hlist_dup) { 1641 cond_resched(); 1642 /* 1643 * We must walk all stable_node_dup to prune the stale 1644 * stable nodes during lookup. 1645 * 1646 * get_ksm_page can drop the nodes from the 1647 * stable_node->hlist if they point to freed pages 1648 * (that's why we do a _safe walk). The "dup" 1649 * stable_node parameter itself will be freed from 1650 * under us if it returns NULL. 1651 */ 1652 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1653 if (!_tree_page) 1654 continue; 1655 nr += 1; 1656 if (is_page_sharing_candidate(dup)) { 1657 if (!found || 1658 dup->rmap_hlist_len > found_rmap_hlist_len) { 1659 if (found) 1660 put_page(tree_page); 1661 found = dup; 1662 found_rmap_hlist_len = found->rmap_hlist_len; 1663 tree_page = _tree_page; 1664 1665 /* skip put_page for found dup */ 1666 if (!prune_stale_stable_nodes) 1667 break; 1668 continue; 1669 } 1670 } 1671 put_page(_tree_page); 1672 } 1673 1674 if (found) { 1675 /* 1676 * nr is counting all dups in the chain only if 1677 * prune_stale_stable_nodes is true, otherwise we may 1678 * break the loop at nr == 1 even if there are 1679 * multiple entries. 1680 */ 1681 if (prune_stale_stable_nodes && nr == 1) { 1682 /* 1683 * If there's not just one entry it would 1684 * corrupt memory, better BUG_ON. In KSM 1685 * context with no lock held it's not even 1686 * fatal. 1687 */ 1688 BUG_ON(stable_node->hlist.first->next); 1689 1690 /* 1691 * There's just one entry and it is below the 1692 * deduplication limit so drop the chain. 1693 */ 1694 rb_replace_node(&stable_node->node, &found->node, 1695 root); 1696 free_stable_node(stable_node); 1697 ksm_stable_node_chains--; 1698 ksm_stable_node_dups--; 1699 /* 1700 * NOTE: the caller depends on the stable_node 1701 * to be equal to stable_node_dup if the chain 1702 * was collapsed. 1703 */ 1704 *_stable_node = found; 1705 /* 1706 * Just for robustness, as stable_node is 1707 * otherwise left as a stable pointer, the 1708 * compiler shall optimize it away at build 1709 * time. 1710 */ 1711 stable_node = NULL; 1712 } else if (stable_node->hlist.first != &found->hlist_dup && 1713 __is_page_sharing_candidate(found, 1)) { 1714 /* 1715 * If the found stable_node dup can accept one 1716 * more future merge (in addition to the one 1717 * that is underway) and is not at the head of 1718 * the chain, put it there so next search will 1719 * be quicker in the !prune_stale_stable_nodes 1720 * case. 1721 * 1722 * NOTE: it would be inaccurate to use nr > 1 1723 * instead of checking the hlist.first pointer 1724 * directly, because in the 1725 * prune_stale_stable_nodes case "nr" isn't 1726 * the position of the found dup in the chain, 1727 * but the total number of dups in the chain. 1728 */ 1729 hlist_del(&found->hlist_dup); 1730 hlist_add_head(&found->hlist_dup, 1731 &stable_node->hlist); 1732 } 1733 } 1734 1735 *_stable_node_dup = found; 1736 return tree_page; 1737 } 1738 1739 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1740 struct rb_root *root) 1741 { 1742 if (!is_stable_node_chain(stable_node)) 1743 return stable_node; 1744 if (hlist_empty(&stable_node->hlist)) { 1745 free_stable_node_chain(stable_node, root); 1746 return NULL; 1747 } 1748 return hlist_entry(stable_node->hlist.first, 1749 typeof(*stable_node), hlist_dup); 1750 } 1751 1752 /* 1753 * Like for get_ksm_page, this function can free the *_stable_node and 1754 * *_stable_node_dup if the returned tree_page is NULL. 1755 * 1756 * It can also free and overwrite *_stable_node with the found 1757 * stable_node_dup if the chain is collapsed (in which case 1758 * *_stable_node will be equal to *_stable_node_dup like if the chain 1759 * never existed). It's up to the caller to verify tree_page is not 1760 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1761 * 1762 * *_stable_node_dup is really a second output parameter of this 1763 * function and will be overwritten in all cases, the caller doesn't 1764 * need to initialize it. 1765 */ 1766 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1767 struct ksm_stable_node **_stable_node, 1768 struct rb_root *root, 1769 bool prune_stale_stable_nodes) 1770 { 1771 struct ksm_stable_node *stable_node = *_stable_node; 1772 if (!is_stable_node_chain(stable_node)) { 1773 if (is_page_sharing_candidate(stable_node)) { 1774 *_stable_node_dup = stable_node; 1775 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1776 } 1777 /* 1778 * _stable_node_dup set to NULL means the stable_node 1779 * reached the ksm_max_page_sharing limit. 1780 */ 1781 *_stable_node_dup = NULL; 1782 return NULL; 1783 } 1784 return stable_node_dup(_stable_node_dup, _stable_node, root, 1785 prune_stale_stable_nodes); 1786 } 1787 1788 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1789 struct ksm_stable_node **s_n, 1790 struct rb_root *root) 1791 { 1792 return __stable_node_chain(s_n_d, s_n, root, true); 1793 } 1794 1795 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1796 struct ksm_stable_node *s_n, 1797 struct rb_root *root) 1798 { 1799 struct ksm_stable_node *old_stable_node = s_n; 1800 struct page *tree_page; 1801 1802 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1803 /* not pruning dups so s_n cannot have changed */ 1804 VM_BUG_ON(s_n != old_stable_node); 1805 return tree_page; 1806 } 1807 1808 /* 1809 * stable_tree_search - search for page inside the stable tree 1810 * 1811 * This function checks if there is a page inside the stable tree 1812 * with identical content to the page that we are scanning right now. 1813 * 1814 * This function returns the stable tree node of identical content if found, 1815 * NULL otherwise. 1816 */ 1817 static struct page *stable_tree_search(struct page *page) 1818 { 1819 int nid; 1820 struct rb_root *root; 1821 struct rb_node **new; 1822 struct rb_node *parent; 1823 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1824 struct ksm_stable_node *page_node; 1825 1826 page_node = page_stable_node(page); 1827 if (page_node && page_node->head != &migrate_nodes) { 1828 /* ksm page forked */ 1829 get_page(page); 1830 return page; 1831 } 1832 1833 nid = get_kpfn_nid(page_to_pfn(page)); 1834 root = root_stable_tree + nid; 1835 again: 1836 new = &root->rb_node; 1837 parent = NULL; 1838 1839 while (*new) { 1840 struct page *tree_page; 1841 int ret; 1842 1843 cond_resched(); 1844 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1845 stable_node_any = NULL; 1846 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1847 /* 1848 * NOTE: stable_node may have been freed by 1849 * chain_prune() if the returned stable_node_dup is 1850 * not NULL. stable_node_dup may have been inserted in 1851 * the rbtree instead as a regular stable_node (in 1852 * order to collapse the stable_node chain if a single 1853 * stable_node dup was found in it). In such case the 1854 * stable_node is overwritten by the callee to point 1855 * to the stable_node_dup that was collapsed in the 1856 * stable rbtree and stable_node will be equal to 1857 * stable_node_dup like if the chain never existed. 1858 */ 1859 if (!stable_node_dup) { 1860 /* 1861 * Either all stable_node dups were full in 1862 * this stable_node chain, or this chain was 1863 * empty and should be rb_erased. 1864 */ 1865 stable_node_any = stable_node_dup_any(stable_node, 1866 root); 1867 if (!stable_node_any) { 1868 /* rb_erase just run */ 1869 goto again; 1870 } 1871 /* 1872 * Take any of the stable_node dups page of 1873 * this stable_node chain to let the tree walk 1874 * continue. All KSM pages belonging to the 1875 * stable_node dups in a stable_node chain 1876 * have the same content and they're 1877 * write protected at all times. Any will work 1878 * fine to continue the walk. 1879 */ 1880 tree_page = get_ksm_page(stable_node_any, 1881 GET_KSM_PAGE_NOLOCK); 1882 } 1883 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1884 if (!tree_page) { 1885 /* 1886 * If we walked over a stale stable_node, 1887 * get_ksm_page() will call rb_erase() and it 1888 * may rebalance the tree from under us. So 1889 * restart the search from scratch. Returning 1890 * NULL would be safe too, but we'd generate 1891 * false negative insertions just because some 1892 * stable_node was stale. 1893 */ 1894 goto again; 1895 } 1896 1897 ret = memcmp_pages(page, tree_page); 1898 put_page(tree_page); 1899 1900 parent = *new; 1901 if (ret < 0) 1902 new = &parent->rb_left; 1903 else if (ret > 0) 1904 new = &parent->rb_right; 1905 else { 1906 if (page_node) { 1907 VM_BUG_ON(page_node->head != &migrate_nodes); 1908 /* 1909 * Test if the migrated page should be merged 1910 * into a stable node dup. If the mapcount is 1911 * 1 we can migrate it with another KSM page 1912 * without adding it to the chain. 1913 */ 1914 if (page_mapcount(page) > 1) 1915 goto chain_append; 1916 } 1917 1918 if (!stable_node_dup) { 1919 /* 1920 * If the stable_node is a chain and 1921 * we got a payload match in memcmp 1922 * but we cannot merge the scanned 1923 * page in any of the existing 1924 * stable_node dups because they're 1925 * all full, we need to wait the 1926 * scanned page to find itself a match 1927 * in the unstable tree to create a 1928 * brand new KSM page to add later to 1929 * the dups of this stable_node. 1930 */ 1931 return NULL; 1932 } 1933 1934 /* 1935 * Lock and unlock the stable_node's page (which 1936 * might already have been migrated) so that page 1937 * migration is sure to notice its raised count. 1938 * It would be more elegant to return stable_node 1939 * than kpage, but that involves more changes. 1940 */ 1941 tree_page = get_ksm_page(stable_node_dup, 1942 GET_KSM_PAGE_TRYLOCK); 1943 1944 if (PTR_ERR(tree_page) == -EBUSY) 1945 return ERR_PTR(-EBUSY); 1946 1947 if (unlikely(!tree_page)) 1948 /* 1949 * The tree may have been rebalanced, 1950 * so re-evaluate parent and new. 1951 */ 1952 goto again; 1953 unlock_page(tree_page); 1954 1955 if (get_kpfn_nid(stable_node_dup->kpfn) != 1956 NUMA(stable_node_dup->nid)) { 1957 put_page(tree_page); 1958 goto replace; 1959 } 1960 return tree_page; 1961 } 1962 } 1963 1964 if (!page_node) 1965 return NULL; 1966 1967 list_del(&page_node->list); 1968 DO_NUMA(page_node->nid = nid); 1969 rb_link_node(&page_node->node, parent, new); 1970 rb_insert_color(&page_node->node, root); 1971 out: 1972 if (is_page_sharing_candidate(page_node)) { 1973 get_page(page); 1974 return page; 1975 } else 1976 return NULL; 1977 1978 replace: 1979 /* 1980 * If stable_node was a chain and chain_prune collapsed it, 1981 * stable_node has been updated to be the new regular 1982 * stable_node. A collapse of the chain is indistinguishable 1983 * from the case there was no chain in the stable 1984 * rbtree. Otherwise stable_node is the chain and 1985 * stable_node_dup is the dup to replace. 1986 */ 1987 if (stable_node_dup == stable_node) { 1988 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1989 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1990 /* there is no chain */ 1991 if (page_node) { 1992 VM_BUG_ON(page_node->head != &migrate_nodes); 1993 list_del(&page_node->list); 1994 DO_NUMA(page_node->nid = nid); 1995 rb_replace_node(&stable_node_dup->node, 1996 &page_node->node, 1997 root); 1998 if (is_page_sharing_candidate(page_node)) 1999 get_page(page); 2000 else 2001 page = NULL; 2002 } else { 2003 rb_erase(&stable_node_dup->node, root); 2004 page = NULL; 2005 } 2006 } else { 2007 VM_BUG_ON(!is_stable_node_chain(stable_node)); 2008 __stable_node_dup_del(stable_node_dup); 2009 if (page_node) { 2010 VM_BUG_ON(page_node->head != &migrate_nodes); 2011 list_del(&page_node->list); 2012 DO_NUMA(page_node->nid = nid); 2013 stable_node_chain_add_dup(page_node, stable_node); 2014 if (is_page_sharing_candidate(page_node)) 2015 get_page(page); 2016 else 2017 page = NULL; 2018 } else { 2019 page = NULL; 2020 } 2021 } 2022 stable_node_dup->head = &migrate_nodes; 2023 list_add(&stable_node_dup->list, stable_node_dup->head); 2024 return page; 2025 2026 chain_append: 2027 /* stable_node_dup could be null if it reached the limit */ 2028 if (!stable_node_dup) 2029 stable_node_dup = stable_node_any; 2030 /* 2031 * If stable_node was a chain and chain_prune collapsed it, 2032 * stable_node has been updated to be the new regular 2033 * stable_node. A collapse of the chain is indistinguishable 2034 * from the case there was no chain in the stable 2035 * rbtree. Otherwise stable_node is the chain and 2036 * stable_node_dup is the dup to replace. 2037 */ 2038 if (stable_node_dup == stable_node) { 2039 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 2040 /* chain is missing so create it */ 2041 stable_node = alloc_stable_node_chain(stable_node_dup, 2042 root); 2043 if (!stable_node) 2044 return NULL; 2045 } 2046 /* 2047 * Add this stable_node dup that was 2048 * migrated to the stable_node chain 2049 * of the current nid for this page 2050 * content. 2051 */ 2052 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 2053 VM_BUG_ON(page_node->head != &migrate_nodes); 2054 list_del(&page_node->list); 2055 DO_NUMA(page_node->nid = nid); 2056 stable_node_chain_add_dup(page_node, stable_node); 2057 goto out; 2058 } 2059 2060 /* 2061 * stable_tree_insert - insert stable tree node pointing to new ksm page 2062 * into the stable tree. 2063 * 2064 * This function returns the stable tree node just allocated on success, 2065 * NULL otherwise. 2066 */ 2067 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 2068 { 2069 int nid; 2070 unsigned long kpfn; 2071 struct rb_root *root; 2072 struct rb_node **new; 2073 struct rb_node *parent; 2074 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 2075 bool need_chain = false; 2076 2077 kpfn = page_to_pfn(kpage); 2078 nid = get_kpfn_nid(kpfn); 2079 root = root_stable_tree + nid; 2080 again: 2081 parent = NULL; 2082 new = &root->rb_node; 2083 2084 while (*new) { 2085 struct page *tree_page; 2086 int ret; 2087 2088 cond_resched(); 2089 stable_node = rb_entry(*new, struct ksm_stable_node, node); 2090 stable_node_any = NULL; 2091 tree_page = chain(&stable_node_dup, stable_node, root); 2092 if (!stable_node_dup) { 2093 /* 2094 * Either all stable_node dups were full in 2095 * this stable_node chain, or this chain was 2096 * empty and should be rb_erased. 2097 */ 2098 stable_node_any = stable_node_dup_any(stable_node, 2099 root); 2100 if (!stable_node_any) { 2101 /* rb_erase just run */ 2102 goto again; 2103 } 2104 /* 2105 * Take any of the stable_node dups page of 2106 * this stable_node chain to let the tree walk 2107 * continue. All KSM pages belonging to the 2108 * stable_node dups in a stable_node chain 2109 * have the same content and they're 2110 * write protected at all times. Any will work 2111 * fine to continue the walk. 2112 */ 2113 tree_page = get_ksm_page(stable_node_any, 2114 GET_KSM_PAGE_NOLOCK); 2115 } 2116 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 2117 if (!tree_page) { 2118 /* 2119 * If we walked over a stale stable_node, 2120 * get_ksm_page() will call rb_erase() and it 2121 * may rebalance the tree from under us. So 2122 * restart the search from scratch. Returning 2123 * NULL would be safe too, but we'd generate 2124 * false negative insertions just because some 2125 * stable_node was stale. 2126 */ 2127 goto again; 2128 } 2129 2130 ret = memcmp_pages(kpage, tree_page); 2131 put_page(tree_page); 2132 2133 parent = *new; 2134 if (ret < 0) 2135 new = &parent->rb_left; 2136 else if (ret > 0) 2137 new = &parent->rb_right; 2138 else { 2139 need_chain = true; 2140 break; 2141 } 2142 } 2143 2144 stable_node_dup = alloc_stable_node(); 2145 if (!stable_node_dup) 2146 return NULL; 2147 2148 INIT_HLIST_HEAD(&stable_node_dup->hlist); 2149 stable_node_dup->kpfn = kpfn; 2150 set_page_stable_node(kpage, stable_node_dup); 2151 stable_node_dup->rmap_hlist_len = 0; 2152 DO_NUMA(stable_node_dup->nid = nid); 2153 if (!need_chain) { 2154 rb_link_node(&stable_node_dup->node, parent, new); 2155 rb_insert_color(&stable_node_dup->node, root); 2156 } else { 2157 if (!is_stable_node_chain(stable_node)) { 2158 struct ksm_stable_node *orig = stable_node; 2159 /* chain is missing so create it */ 2160 stable_node = alloc_stable_node_chain(orig, root); 2161 if (!stable_node) { 2162 free_stable_node(stable_node_dup); 2163 return NULL; 2164 } 2165 } 2166 stable_node_chain_add_dup(stable_node_dup, stable_node); 2167 } 2168 2169 return stable_node_dup; 2170 } 2171 2172 /* 2173 * unstable_tree_search_insert - search for identical page, 2174 * else insert rmap_item into the unstable tree. 2175 * 2176 * This function searches for a page in the unstable tree identical to the 2177 * page currently being scanned; and if no identical page is found in the 2178 * tree, we insert rmap_item as a new object into the unstable tree. 2179 * 2180 * This function returns pointer to rmap_item found to be identical 2181 * to the currently scanned page, NULL otherwise. 2182 * 2183 * This function does both searching and inserting, because they share 2184 * the same walking algorithm in an rbtree. 2185 */ 2186 static 2187 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 2188 struct page *page, 2189 struct page **tree_pagep) 2190 { 2191 struct rb_node **new; 2192 struct rb_root *root; 2193 struct rb_node *parent = NULL; 2194 int nid; 2195 2196 nid = get_kpfn_nid(page_to_pfn(page)); 2197 root = root_unstable_tree + nid; 2198 new = &root->rb_node; 2199 2200 while (*new) { 2201 struct ksm_rmap_item *tree_rmap_item; 2202 struct page *tree_page; 2203 int ret; 2204 2205 cond_resched(); 2206 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 2207 tree_page = get_mergeable_page(tree_rmap_item); 2208 if (!tree_page) 2209 return NULL; 2210 2211 /* 2212 * Don't substitute a ksm page for a forked page. 2213 */ 2214 if (page == tree_page) { 2215 put_page(tree_page); 2216 return NULL; 2217 } 2218 2219 ret = memcmp_pages(page, tree_page); 2220 2221 parent = *new; 2222 if (ret < 0) { 2223 put_page(tree_page); 2224 new = &parent->rb_left; 2225 } else if (ret > 0) { 2226 put_page(tree_page); 2227 new = &parent->rb_right; 2228 } else if (!ksm_merge_across_nodes && 2229 page_to_nid(tree_page) != nid) { 2230 /* 2231 * If tree_page has been migrated to another NUMA node, 2232 * it will be flushed out and put in the right unstable 2233 * tree next time: only merge with it when across_nodes. 2234 */ 2235 put_page(tree_page); 2236 return NULL; 2237 } else { 2238 *tree_pagep = tree_page; 2239 return tree_rmap_item; 2240 } 2241 } 2242 2243 rmap_item->address |= UNSTABLE_FLAG; 2244 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 2245 DO_NUMA(rmap_item->nid = nid); 2246 rb_link_node(&rmap_item->node, parent, new); 2247 rb_insert_color(&rmap_item->node, root); 2248 2249 ksm_pages_unshared++; 2250 return NULL; 2251 } 2252 2253 /* 2254 * stable_tree_append - add another rmap_item to the linked list of 2255 * rmap_items hanging off a given node of the stable tree, all sharing 2256 * the same ksm page. 2257 */ 2258 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2259 struct ksm_stable_node *stable_node, 2260 bool max_page_sharing_bypass) 2261 { 2262 /* 2263 * rmap won't find this mapping if we don't insert the 2264 * rmap_item in the right stable_node 2265 * duplicate. page_migration could break later if rmap breaks, 2266 * so we can as well crash here. We really need to check for 2267 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2268 * for other negative values as an underflow if detected here 2269 * for the first time (and not when decreasing rmap_hlist_len) 2270 * would be sign of memory corruption in the stable_node. 2271 */ 2272 BUG_ON(stable_node->rmap_hlist_len < 0); 2273 2274 stable_node->rmap_hlist_len++; 2275 if (!max_page_sharing_bypass) 2276 /* possibly non fatal but unexpected overflow, only warn */ 2277 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2278 ksm_max_page_sharing); 2279 2280 rmap_item->head = stable_node; 2281 rmap_item->address |= STABLE_FLAG; 2282 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2283 2284 if (rmap_item->hlist.next) 2285 ksm_pages_sharing++; 2286 else 2287 ksm_pages_shared++; 2288 2289 rmap_item->mm->ksm_merging_pages++; 2290 } 2291 2292 /* 2293 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2294 * if not, compare checksum to previous and if it's the same, see if page can 2295 * be inserted into the unstable tree, or merged with a page already there and 2296 * both transferred to the stable tree. 2297 * 2298 * @page: the page that we are searching identical page to. 2299 * @rmap_item: the reverse mapping into the virtual address of this page 2300 */ 2301 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2302 { 2303 struct mm_struct *mm = rmap_item->mm; 2304 struct ksm_rmap_item *tree_rmap_item; 2305 struct page *tree_page = NULL; 2306 struct ksm_stable_node *stable_node; 2307 struct page *kpage; 2308 unsigned int checksum; 2309 int err; 2310 bool max_page_sharing_bypass = false; 2311 2312 stable_node = page_stable_node(page); 2313 if (stable_node) { 2314 if (stable_node->head != &migrate_nodes && 2315 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2316 NUMA(stable_node->nid)) { 2317 stable_node_dup_del(stable_node); 2318 stable_node->head = &migrate_nodes; 2319 list_add(&stable_node->list, stable_node->head); 2320 } 2321 if (stable_node->head != &migrate_nodes && 2322 rmap_item->head == stable_node) 2323 return; 2324 /* 2325 * If it's a KSM fork, allow it to go over the sharing limit 2326 * without warnings. 2327 */ 2328 if (!is_page_sharing_candidate(stable_node)) 2329 max_page_sharing_bypass = true; 2330 } 2331 2332 /* We first start with searching the page inside the stable tree */ 2333 kpage = stable_tree_search(page); 2334 if (kpage == page && rmap_item->head == stable_node) { 2335 put_page(kpage); 2336 return; 2337 } 2338 2339 remove_rmap_item_from_tree(rmap_item); 2340 2341 if (kpage) { 2342 if (PTR_ERR(kpage) == -EBUSY) 2343 return; 2344 2345 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2346 if (!err) { 2347 /* 2348 * The page was successfully merged: 2349 * add its rmap_item to the stable tree. 2350 */ 2351 lock_page(kpage); 2352 stable_tree_append(rmap_item, page_stable_node(kpage), 2353 max_page_sharing_bypass); 2354 unlock_page(kpage); 2355 } 2356 put_page(kpage); 2357 return; 2358 } 2359 2360 /* 2361 * If the hash value of the page has changed from the last time 2362 * we calculated it, this page is changing frequently: therefore we 2363 * don't want to insert it in the unstable tree, and we don't want 2364 * to waste our time searching for something identical to it there. 2365 */ 2366 checksum = calc_checksum(page); 2367 if (rmap_item->oldchecksum != checksum) { 2368 rmap_item->oldchecksum = checksum; 2369 return; 2370 } 2371 2372 /* 2373 * Same checksum as an empty page. We attempt to merge it with the 2374 * appropriate zero page if the user enabled this via sysfs. 2375 */ 2376 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2377 struct vm_area_struct *vma; 2378 2379 mmap_read_lock(mm); 2380 vma = find_mergeable_vma(mm, rmap_item->address); 2381 if (vma) { 2382 err = try_to_merge_one_page(vma, page, 2383 ZERO_PAGE(rmap_item->address)); 2384 trace_ksm_merge_one_page( 2385 page_to_pfn(ZERO_PAGE(rmap_item->address)), 2386 rmap_item, mm, err); 2387 } else { 2388 /* 2389 * If the vma is out of date, we do not need to 2390 * continue. 2391 */ 2392 err = 0; 2393 } 2394 mmap_read_unlock(mm); 2395 /* 2396 * In case of failure, the page was not really empty, so we 2397 * need to continue. Otherwise we're done. 2398 */ 2399 if (!err) 2400 return; 2401 } 2402 tree_rmap_item = 2403 unstable_tree_search_insert(rmap_item, page, &tree_page); 2404 if (tree_rmap_item) { 2405 bool split; 2406 2407 kpage = try_to_merge_two_pages(rmap_item, page, 2408 tree_rmap_item, tree_page); 2409 /* 2410 * If both pages we tried to merge belong to the same compound 2411 * page, then we actually ended up increasing the reference 2412 * count of the same compound page twice, and split_huge_page 2413 * failed. 2414 * Here we set a flag if that happened, and we use it later to 2415 * try split_huge_page again. Since we call put_page right 2416 * afterwards, the reference count will be correct and 2417 * split_huge_page should succeed. 2418 */ 2419 split = PageTransCompound(page) 2420 && compound_head(page) == compound_head(tree_page); 2421 put_page(tree_page); 2422 if (kpage) { 2423 /* 2424 * The pages were successfully merged: insert new 2425 * node in the stable tree and add both rmap_items. 2426 */ 2427 lock_page(kpage); 2428 stable_node = stable_tree_insert(kpage); 2429 if (stable_node) { 2430 stable_tree_append(tree_rmap_item, stable_node, 2431 false); 2432 stable_tree_append(rmap_item, stable_node, 2433 false); 2434 } 2435 unlock_page(kpage); 2436 2437 /* 2438 * If we fail to insert the page into the stable tree, 2439 * we will have 2 virtual addresses that are pointing 2440 * to a ksm page left outside the stable tree, 2441 * in which case we need to break_cow on both. 2442 */ 2443 if (!stable_node) { 2444 break_cow(tree_rmap_item); 2445 break_cow(rmap_item); 2446 } 2447 } else if (split) { 2448 /* 2449 * We are here if we tried to merge two pages and 2450 * failed because they both belonged to the same 2451 * compound page. We will split the page now, but no 2452 * merging will take place. 2453 * We do not want to add the cost of a full lock; if 2454 * the page is locked, it is better to skip it and 2455 * perhaps try again later. 2456 */ 2457 if (!trylock_page(page)) 2458 return; 2459 split_huge_page(page); 2460 unlock_page(page); 2461 } 2462 } 2463 } 2464 2465 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2466 struct ksm_rmap_item **rmap_list, 2467 unsigned long addr) 2468 { 2469 struct ksm_rmap_item *rmap_item; 2470 2471 while (*rmap_list) { 2472 rmap_item = *rmap_list; 2473 if ((rmap_item->address & PAGE_MASK) == addr) 2474 return rmap_item; 2475 if (rmap_item->address > addr) 2476 break; 2477 *rmap_list = rmap_item->rmap_list; 2478 remove_rmap_item_from_tree(rmap_item); 2479 free_rmap_item(rmap_item); 2480 } 2481 2482 rmap_item = alloc_rmap_item(); 2483 if (rmap_item) { 2484 /* It has already been zeroed */ 2485 rmap_item->mm = mm_slot->slot.mm; 2486 rmap_item->mm->ksm_rmap_items++; 2487 rmap_item->address = addr; 2488 rmap_item->rmap_list = *rmap_list; 2489 *rmap_list = rmap_item; 2490 } 2491 return rmap_item; 2492 } 2493 2494 /* 2495 * Calculate skip age for the ksm page age. The age determines how often 2496 * de-duplicating has already been tried unsuccessfully. If the age is 2497 * smaller, the scanning of this page is skipped for less scans. 2498 * 2499 * @age: rmap_item age of page 2500 */ 2501 static unsigned int skip_age(rmap_age_t age) 2502 { 2503 if (age <= 3) 2504 return 1; 2505 if (age <= 5) 2506 return 2; 2507 if (age <= 8) 2508 return 4; 2509 2510 return 8; 2511 } 2512 2513 /* 2514 * Determines if a page should be skipped for the current scan. 2515 * 2516 * @page: page to check 2517 * @rmap_item: associated rmap_item of page 2518 */ 2519 static bool should_skip_rmap_item(struct page *page, 2520 struct ksm_rmap_item *rmap_item) 2521 { 2522 rmap_age_t age; 2523 2524 if (!ksm_smart_scan) 2525 return false; 2526 2527 /* 2528 * Never skip pages that are already KSM; pages cmp_and_merge_page() 2529 * will essentially ignore them, but we still have to process them 2530 * properly. 2531 */ 2532 if (PageKsm(page)) 2533 return false; 2534 2535 age = rmap_item->age; 2536 if (age != U8_MAX) 2537 rmap_item->age++; 2538 2539 /* 2540 * Smaller ages are not skipped, they need to get a chance to go 2541 * through the different phases of the KSM merging. 2542 */ 2543 if (age < 3) 2544 return false; 2545 2546 /* 2547 * Are we still allowed to skip? If not, then don't skip it 2548 * and determine how much more often we are allowed to skip next. 2549 */ 2550 if (!rmap_item->remaining_skips) { 2551 rmap_item->remaining_skips = skip_age(age); 2552 return false; 2553 } 2554 2555 /* Skip this page */ 2556 ksm_pages_skipped++; 2557 rmap_item->remaining_skips--; 2558 remove_rmap_item_from_tree(rmap_item); 2559 return true; 2560 } 2561 2562 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2563 { 2564 struct mm_struct *mm; 2565 struct ksm_mm_slot *mm_slot; 2566 struct mm_slot *slot; 2567 struct vm_area_struct *vma; 2568 struct ksm_rmap_item *rmap_item; 2569 struct vma_iterator vmi; 2570 int nid; 2571 2572 if (list_empty(&ksm_mm_head.slot.mm_node)) 2573 return NULL; 2574 2575 mm_slot = ksm_scan.mm_slot; 2576 if (mm_slot == &ksm_mm_head) { 2577 advisor_start_scan(); 2578 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items); 2579 2580 /* 2581 * A number of pages can hang around indefinitely in per-cpu 2582 * LRU cache, raised page count preventing write_protect_page 2583 * from merging them. Though it doesn't really matter much, 2584 * it is puzzling to see some stuck in pages_volatile until 2585 * other activity jostles them out, and they also prevented 2586 * LTP's KSM test from succeeding deterministically; so drain 2587 * them here (here rather than on entry to ksm_do_scan(), 2588 * so we don't IPI too often when pages_to_scan is set low). 2589 */ 2590 lru_add_drain_all(); 2591 2592 /* 2593 * Whereas stale stable_nodes on the stable_tree itself 2594 * get pruned in the regular course of stable_tree_search(), 2595 * those moved out to the migrate_nodes list can accumulate: 2596 * so prune them once before each full scan. 2597 */ 2598 if (!ksm_merge_across_nodes) { 2599 struct ksm_stable_node *stable_node, *next; 2600 struct page *page; 2601 2602 list_for_each_entry_safe(stable_node, next, 2603 &migrate_nodes, list) { 2604 page = get_ksm_page(stable_node, 2605 GET_KSM_PAGE_NOLOCK); 2606 if (page) 2607 put_page(page); 2608 cond_resched(); 2609 } 2610 } 2611 2612 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2613 root_unstable_tree[nid] = RB_ROOT; 2614 2615 spin_lock(&ksm_mmlist_lock); 2616 slot = list_entry(mm_slot->slot.mm_node.next, 2617 struct mm_slot, mm_node); 2618 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2619 ksm_scan.mm_slot = mm_slot; 2620 spin_unlock(&ksm_mmlist_lock); 2621 /* 2622 * Although we tested list_empty() above, a racing __ksm_exit 2623 * of the last mm on the list may have removed it since then. 2624 */ 2625 if (mm_slot == &ksm_mm_head) 2626 return NULL; 2627 next_mm: 2628 ksm_scan.address = 0; 2629 ksm_scan.rmap_list = &mm_slot->rmap_list; 2630 } 2631 2632 slot = &mm_slot->slot; 2633 mm = slot->mm; 2634 vma_iter_init(&vmi, mm, ksm_scan.address); 2635 2636 mmap_read_lock(mm); 2637 if (ksm_test_exit(mm)) 2638 goto no_vmas; 2639 2640 for_each_vma(vmi, vma) { 2641 if (!(vma->vm_flags & VM_MERGEABLE)) 2642 continue; 2643 if (ksm_scan.address < vma->vm_start) 2644 ksm_scan.address = vma->vm_start; 2645 if (!vma->anon_vma) 2646 ksm_scan.address = vma->vm_end; 2647 2648 while (ksm_scan.address < vma->vm_end) { 2649 if (ksm_test_exit(mm)) 2650 break; 2651 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2652 if (IS_ERR_OR_NULL(*page)) { 2653 ksm_scan.address += PAGE_SIZE; 2654 cond_resched(); 2655 continue; 2656 } 2657 if (is_zone_device_page(*page)) 2658 goto next_page; 2659 if (PageAnon(*page)) { 2660 flush_anon_page(vma, *page, ksm_scan.address); 2661 flush_dcache_page(*page); 2662 rmap_item = get_next_rmap_item(mm_slot, 2663 ksm_scan.rmap_list, ksm_scan.address); 2664 if (rmap_item) { 2665 ksm_scan.rmap_list = 2666 &rmap_item->rmap_list; 2667 2668 if (should_skip_rmap_item(*page, rmap_item)) 2669 goto next_page; 2670 2671 ksm_scan.address += PAGE_SIZE; 2672 } else 2673 put_page(*page); 2674 mmap_read_unlock(mm); 2675 return rmap_item; 2676 } 2677 next_page: 2678 put_page(*page); 2679 ksm_scan.address += PAGE_SIZE; 2680 cond_resched(); 2681 } 2682 } 2683 2684 if (ksm_test_exit(mm)) { 2685 no_vmas: 2686 ksm_scan.address = 0; 2687 ksm_scan.rmap_list = &mm_slot->rmap_list; 2688 } 2689 /* 2690 * Nuke all the rmap_items that are above this current rmap: 2691 * because there were no VM_MERGEABLE vmas with such addresses. 2692 */ 2693 remove_trailing_rmap_items(ksm_scan.rmap_list); 2694 2695 spin_lock(&ksm_mmlist_lock); 2696 slot = list_entry(mm_slot->slot.mm_node.next, 2697 struct mm_slot, mm_node); 2698 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2699 if (ksm_scan.address == 0) { 2700 /* 2701 * We've completed a full scan of all vmas, holding mmap_lock 2702 * throughout, and found no VM_MERGEABLE: so do the same as 2703 * __ksm_exit does to remove this mm from all our lists now. 2704 * This applies either when cleaning up after __ksm_exit 2705 * (but beware: we can reach here even before __ksm_exit), 2706 * or when all VM_MERGEABLE areas have been unmapped (and 2707 * mmap_lock then protects against race with MADV_MERGEABLE). 2708 */ 2709 hash_del(&mm_slot->slot.hash); 2710 list_del(&mm_slot->slot.mm_node); 2711 spin_unlock(&ksm_mmlist_lock); 2712 2713 mm_slot_free(mm_slot_cache, mm_slot); 2714 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2715 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2716 mmap_read_unlock(mm); 2717 mmdrop(mm); 2718 } else { 2719 mmap_read_unlock(mm); 2720 /* 2721 * mmap_read_unlock(mm) first because after 2722 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2723 * already have been freed under us by __ksm_exit() 2724 * because the "mm_slot" is still hashed and 2725 * ksm_scan.mm_slot doesn't point to it anymore. 2726 */ 2727 spin_unlock(&ksm_mmlist_lock); 2728 } 2729 2730 /* Repeat until we've completed scanning the whole list */ 2731 mm_slot = ksm_scan.mm_slot; 2732 if (mm_slot != &ksm_mm_head) 2733 goto next_mm; 2734 2735 advisor_stop_scan(); 2736 2737 trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items); 2738 ksm_scan.seqnr++; 2739 return NULL; 2740 } 2741 2742 /** 2743 * ksm_do_scan - the ksm scanner main worker function. 2744 * @scan_npages: number of pages we want to scan before we return. 2745 */ 2746 static void ksm_do_scan(unsigned int scan_npages) 2747 { 2748 struct ksm_rmap_item *rmap_item; 2749 struct page *page; 2750 unsigned int npages = scan_npages; 2751 2752 while (npages-- && likely(!freezing(current))) { 2753 cond_resched(); 2754 rmap_item = scan_get_next_rmap_item(&page); 2755 if (!rmap_item) 2756 return; 2757 cmp_and_merge_page(page, rmap_item); 2758 put_page(page); 2759 } 2760 2761 ksm_pages_scanned += scan_npages - npages; 2762 } 2763 2764 static int ksmd_should_run(void) 2765 { 2766 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2767 } 2768 2769 static int ksm_scan_thread(void *nothing) 2770 { 2771 unsigned int sleep_ms; 2772 2773 set_freezable(); 2774 set_user_nice(current, 5); 2775 2776 while (!kthread_should_stop()) { 2777 mutex_lock(&ksm_thread_mutex); 2778 wait_while_offlining(); 2779 if (ksmd_should_run()) 2780 ksm_do_scan(ksm_thread_pages_to_scan); 2781 mutex_unlock(&ksm_thread_mutex); 2782 2783 if (ksmd_should_run()) { 2784 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2785 wait_event_freezable_timeout(ksm_iter_wait, 2786 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2787 msecs_to_jiffies(sleep_ms)); 2788 } else { 2789 wait_event_freezable(ksm_thread_wait, 2790 ksmd_should_run() || kthread_should_stop()); 2791 } 2792 } 2793 return 0; 2794 } 2795 2796 static void __ksm_add_vma(struct vm_area_struct *vma) 2797 { 2798 unsigned long vm_flags = vma->vm_flags; 2799 2800 if (vm_flags & VM_MERGEABLE) 2801 return; 2802 2803 if (vma_ksm_compatible(vma)) 2804 vm_flags_set(vma, VM_MERGEABLE); 2805 } 2806 2807 static int __ksm_del_vma(struct vm_area_struct *vma) 2808 { 2809 int err; 2810 2811 if (!(vma->vm_flags & VM_MERGEABLE)) 2812 return 0; 2813 2814 if (vma->anon_vma) { 2815 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true); 2816 if (err) 2817 return err; 2818 } 2819 2820 vm_flags_clear(vma, VM_MERGEABLE); 2821 return 0; 2822 } 2823 /** 2824 * ksm_add_vma - Mark vma as mergeable if compatible 2825 * 2826 * @vma: Pointer to vma 2827 */ 2828 void ksm_add_vma(struct vm_area_struct *vma) 2829 { 2830 struct mm_struct *mm = vma->vm_mm; 2831 2832 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2833 __ksm_add_vma(vma); 2834 } 2835 2836 static void ksm_add_vmas(struct mm_struct *mm) 2837 { 2838 struct vm_area_struct *vma; 2839 2840 VMA_ITERATOR(vmi, mm, 0); 2841 for_each_vma(vmi, vma) 2842 __ksm_add_vma(vma); 2843 } 2844 2845 static int ksm_del_vmas(struct mm_struct *mm) 2846 { 2847 struct vm_area_struct *vma; 2848 int err; 2849 2850 VMA_ITERATOR(vmi, mm, 0); 2851 for_each_vma(vmi, vma) { 2852 err = __ksm_del_vma(vma); 2853 if (err) 2854 return err; 2855 } 2856 return 0; 2857 } 2858 2859 /** 2860 * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all 2861 * compatible VMA's 2862 * 2863 * @mm: Pointer to mm 2864 * 2865 * Returns 0 on success, otherwise error code 2866 */ 2867 int ksm_enable_merge_any(struct mm_struct *mm) 2868 { 2869 int err; 2870 2871 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2872 return 0; 2873 2874 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2875 err = __ksm_enter(mm); 2876 if (err) 2877 return err; 2878 } 2879 2880 set_bit(MMF_VM_MERGE_ANY, &mm->flags); 2881 ksm_add_vmas(mm); 2882 2883 return 0; 2884 } 2885 2886 /** 2887 * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm, 2888 * previously enabled via ksm_enable_merge_any(). 2889 * 2890 * Disabling merging implies unmerging any merged pages, like setting 2891 * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and 2892 * merging on all compatible VMA's remains enabled. 2893 * 2894 * @mm: Pointer to mm 2895 * 2896 * Returns 0 on success, otherwise error code 2897 */ 2898 int ksm_disable_merge_any(struct mm_struct *mm) 2899 { 2900 int err; 2901 2902 if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2903 return 0; 2904 2905 err = ksm_del_vmas(mm); 2906 if (err) { 2907 ksm_add_vmas(mm); 2908 return err; 2909 } 2910 2911 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 2912 return 0; 2913 } 2914 2915 int ksm_disable(struct mm_struct *mm) 2916 { 2917 mmap_assert_write_locked(mm); 2918 2919 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) 2920 return 0; 2921 if (test_bit(MMF_VM_MERGE_ANY, &mm->flags)) 2922 return ksm_disable_merge_any(mm); 2923 return ksm_del_vmas(mm); 2924 } 2925 2926 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2927 unsigned long end, int advice, unsigned long *vm_flags) 2928 { 2929 struct mm_struct *mm = vma->vm_mm; 2930 int err; 2931 2932 switch (advice) { 2933 case MADV_MERGEABLE: 2934 if (vma->vm_flags & VM_MERGEABLE) 2935 return 0; 2936 if (!vma_ksm_compatible(vma)) 2937 return 0; 2938 2939 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2940 err = __ksm_enter(mm); 2941 if (err) 2942 return err; 2943 } 2944 2945 *vm_flags |= VM_MERGEABLE; 2946 break; 2947 2948 case MADV_UNMERGEABLE: 2949 if (!(*vm_flags & VM_MERGEABLE)) 2950 return 0; /* just ignore the advice */ 2951 2952 if (vma->anon_vma) { 2953 err = unmerge_ksm_pages(vma, start, end, true); 2954 if (err) 2955 return err; 2956 } 2957 2958 *vm_flags &= ~VM_MERGEABLE; 2959 break; 2960 } 2961 2962 return 0; 2963 } 2964 EXPORT_SYMBOL_GPL(ksm_madvise); 2965 2966 int __ksm_enter(struct mm_struct *mm) 2967 { 2968 struct ksm_mm_slot *mm_slot; 2969 struct mm_slot *slot; 2970 int needs_wakeup; 2971 2972 mm_slot = mm_slot_alloc(mm_slot_cache); 2973 if (!mm_slot) 2974 return -ENOMEM; 2975 2976 slot = &mm_slot->slot; 2977 2978 /* Check ksm_run too? Would need tighter locking */ 2979 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2980 2981 spin_lock(&ksm_mmlist_lock); 2982 mm_slot_insert(mm_slots_hash, mm, slot); 2983 /* 2984 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2985 * insert just behind the scanning cursor, to let the area settle 2986 * down a little; when fork is followed by immediate exec, we don't 2987 * want ksmd to waste time setting up and tearing down an rmap_list. 2988 * 2989 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2990 * scanning cursor, otherwise KSM pages in newly forked mms will be 2991 * missed: then we might as well insert at the end of the list. 2992 */ 2993 if (ksm_run & KSM_RUN_UNMERGE) 2994 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2995 else 2996 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2997 spin_unlock(&ksm_mmlist_lock); 2998 2999 set_bit(MMF_VM_MERGEABLE, &mm->flags); 3000 mmgrab(mm); 3001 3002 if (needs_wakeup) 3003 wake_up_interruptible(&ksm_thread_wait); 3004 3005 trace_ksm_enter(mm); 3006 return 0; 3007 } 3008 3009 void __ksm_exit(struct mm_struct *mm) 3010 { 3011 struct ksm_mm_slot *mm_slot; 3012 struct mm_slot *slot; 3013 int easy_to_free = 0; 3014 3015 /* 3016 * This process is exiting: if it's straightforward (as is the 3017 * case when ksmd was never running), free mm_slot immediately. 3018 * But if it's at the cursor or has rmap_items linked to it, use 3019 * mmap_lock to synchronize with any break_cows before pagetables 3020 * are freed, and leave the mm_slot on the list for ksmd to free. 3021 * Beware: ksm may already have noticed it exiting and freed the slot. 3022 */ 3023 3024 spin_lock(&ksm_mmlist_lock); 3025 slot = mm_slot_lookup(mm_slots_hash, mm); 3026 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 3027 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 3028 if (!mm_slot->rmap_list) { 3029 hash_del(&slot->hash); 3030 list_del(&slot->mm_node); 3031 easy_to_free = 1; 3032 } else { 3033 list_move(&slot->mm_node, 3034 &ksm_scan.mm_slot->slot.mm_node); 3035 } 3036 } 3037 spin_unlock(&ksm_mmlist_lock); 3038 3039 if (easy_to_free) { 3040 mm_slot_free(mm_slot_cache, mm_slot); 3041 clear_bit(MMF_VM_MERGE_ANY, &mm->flags); 3042 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 3043 mmdrop(mm); 3044 } else if (mm_slot) { 3045 mmap_write_lock(mm); 3046 mmap_write_unlock(mm); 3047 } 3048 3049 trace_ksm_exit(mm); 3050 } 3051 3052 struct folio *ksm_might_need_to_copy(struct folio *folio, 3053 struct vm_area_struct *vma, unsigned long addr) 3054 { 3055 struct page *page = folio_page(folio, 0); 3056 struct anon_vma *anon_vma = folio_anon_vma(folio); 3057 struct folio *new_folio; 3058 3059 if (folio_test_large(folio)) 3060 return folio; 3061 3062 if (folio_test_ksm(folio)) { 3063 if (folio_stable_node(folio) && 3064 !(ksm_run & KSM_RUN_UNMERGE)) 3065 return folio; /* no need to copy it */ 3066 } else if (!anon_vma) { 3067 return folio; /* no need to copy it */ 3068 } else if (folio->index == linear_page_index(vma, addr) && 3069 anon_vma->root == vma->anon_vma->root) { 3070 return folio; /* still no need to copy it */ 3071 } 3072 if (PageHWPoison(page)) 3073 return ERR_PTR(-EHWPOISON); 3074 if (!folio_test_uptodate(folio)) 3075 return folio; /* let do_swap_page report the error */ 3076 3077 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 3078 if (new_folio && 3079 mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) { 3080 folio_put(new_folio); 3081 new_folio = NULL; 3082 } 3083 if (new_folio) { 3084 if (copy_mc_user_highpage(folio_page(new_folio, 0), page, 3085 addr, vma)) { 3086 folio_put(new_folio); 3087 memory_failure_queue(folio_pfn(folio), 0); 3088 return ERR_PTR(-EHWPOISON); 3089 } 3090 folio_set_dirty(new_folio); 3091 __folio_mark_uptodate(new_folio); 3092 __folio_set_locked(new_folio); 3093 #ifdef CONFIG_SWAP 3094 count_vm_event(KSM_SWPIN_COPY); 3095 #endif 3096 } 3097 3098 return new_folio; 3099 } 3100 3101 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 3102 { 3103 struct ksm_stable_node *stable_node; 3104 struct ksm_rmap_item *rmap_item; 3105 int search_new_forks = 0; 3106 3107 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 3108 3109 /* 3110 * Rely on the page lock to protect against concurrent modifications 3111 * to that page's node of the stable tree. 3112 */ 3113 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3114 3115 stable_node = folio_stable_node(folio); 3116 if (!stable_node) 3117 return; 3118 again: 3119 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3120 struct anon_vma *anon_vma = rmap_item->anon_vma; 3121 struct anon_vma_chain *vmac; 3122 struct vm_area_struct *vma; 3123 3124 cond_resched(); 3125 if (!anon_vma_trylock_read(anon_vma)) { 3126 if (rwc->try_lock) { 3127 rwc->contended = true; 3128 return; 3129 } 3130 anon_vma_lock_read(anon_vma); 3131 } 3132 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 3133 0, ULONG_MAX) { 3134 unsigned long addr; 3135 3136 cond_resched(); 3137 vma = vmac->vma; 3138 3139 /* Ignore the stable/unstable/sqnr flags */ 3140 addr = rmap_item->address & PAGE_MASK; 3141 3142 if (addr < vma->vm_start || addr >= vma->vm_end) 3143 continue; 3144 /* 3145 * Initially we examine only the vma which covers this 3146 * rmap_item; but later, if there is still work to do, 3147 * we examine covering vmas in other mms: in case they 3148 * were forked from the original since ksmd passed. 3149 */ 3150 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 3151 continue; 3152 3153 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 3154 continue; 3155 3156 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 3157 anon_vma_unlock_read(anon_vma); 3158 return; 3159 } 3160 if (rwc->done && rwc->done(folio)) { 3161 anon_vma_unlock_read(anon_vma); 3162 return; 3163 } 3164 } 3165 anon_vma_unlock_read(anon_vma); 3166 } 3167 if (!search_new_forks++) 3168 goto again; 3169 } 3170 3171 #ifdef CONFIG_MEMORY_FAILURE 3172 /* 3173 * Collect processes when the error hit an ksm page. 3174 */ 3175 void collect_procs_ksm(struct page *page, struct list_head *to_kill, 3176 int force_early) 3177 { 3178 struct ksm_stable_node *stable_node; 3179 struct ksm_rmap_item *rmap_item; 3180 struct folio *folio = page_folio(page); 3181 struct vm_area_struct *vma; 3182 struct task_struct *tsk; 3183 3184 stable_node = folio_stable_node(folio); 3185 if (!stable_node) 3186 return; 3187 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 3188 struct anon_vma *av = rmap_item->anon_vma; 3189 3190 anon_vma_lock_read(av); 3191 rcu_read_lock(); 3192 for_each_process(tsk) { 3193 struct anon_vma_chain *vmac; 3194 unsigned long addr; 3195 struct task_struct *t = 3196 task_early_kill(tsk, force_early); 3197 if (!t) 3198 continue; 3199 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0, 3200 ULONG_MAX) 3201 { 3202 vma = vmac->vma; 3203 if (vma->vm_mm == t->mm) { 3204 addr = rmap_item->address & PAGE_MASK; 3205 add_to_kill_ksm(t, page, vma, to_kill, 3206 addr); 3207 } 3208 } 3209 } 3210 rcu_read_unlock(); 3211 anon_vma_unlock_read(av); 3212 } 3213 } 3214 #endif 3215 3216 #ifdef CONFIG_MIGRATION 3217 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 3218 { 3219 struct ksm_stable_node *stable_node; 3220 3221 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3222 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 3223 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 3224 3225 stable_node = folio_stable_node(folio); 3226 if (stable_node) { 3227 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 3228 stable_node->kpfn = folio_pfn(newfolio); 3229 /* 3230 * newfolio->mapping was set in advance; now we need smp_wmb() 3231 * to make sure that the new stable_node->kpfn is visible 3232 * to get_ksm_page() before it can see that folio->mapping 3233 * has gone stale (or that folio_test_swapcache has been cleared). 3234 */ 3235 smp_wmb(); 3236 set_page_stable_node(&folio->page, NULL); 3237 } 3238 } 3239 #endif /* CONFIG_MIGRATION */ 3240 3241 #ifdef CONFIG_MEMORY_HOTREMOVE 3242 static void wait_while_offlining(void) 3243 { 3244 while (ksm_run & KSM_RUN_OFFLINE) { 3245 mutex_unlock(&ksm_thread_mutex); 3246 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 3247 TASK_UNINTERRUPTIBLE); 3248 mutex_lock(&ksm_thread_mutex); 3249 } 3250 } 3251 3252 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 3253 unsigned long start_pfn, 3254 unsigned long end_pfn) 3255 { 3256 if (stable_node->kpfn >= start_pfn && 3257 stable_node->kpfn < end_pfn) { 3258 /* 3259 * Don't get_ksm_page, page has already gone: 3260 * which is why we keep kpfn instead of page* 3261 */ 3262 remove_node_from_stable_tree(stable_node); 3263 return true; 3264 } 3265 return false; 3266 } 3267 3268 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 3269 unsigned long start_pfn, 3270 unsigned long end_pfn, 3271 struct rb_root *root) 3272 { 3273 struct ksm_stable_node *dup; 3274 struct hlist_node *hlist_safe; 3275 3276 if (!is_stable_node_chain(stable_node)) { 3277 VM_BUG_ON(is_stable_node_dup(stable_node)); 3278 return stable_node_dup_remove_range(stable_node, start_pfn, 3279 end_pfn); 3280 } 3281 3282 hlist_for_each_entry_safe(dup, hlist_safe, 3283 &stable_node->hlist, hlist_dup) { 3284 VM_BUG_ON(!is_stable_node_dup(dup)); 3285 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 3286 } 3287 if (hlist_empty(&stable_node->hlist)) { 3288 free_stable_node_chain(stable_node, root); 3289 return true; /* notify caller that tree was rebalanced */ 3290 } else 3291 return false; 3292 } 3293 3294 static void ksm_check_stable_tree(unsigned long start_pfn, 3295 unsigned long end_pfn) 3296 { 3297 struct ksm_stable_node *stable_node, *next; 3298 struct rb_node *node; 3299 int nid; 3300 3301 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 3302 node = rb_first(root_stable_tree + nid); 3303 while (node) { 3304 stable_node = rb_entry(node, struct ksm_stable_node, node); 3305 if (stable_node_chain_remove_range(stable_node, 3306 start_pfn, end_pfn, 3307 root_stable_tree + 3308 nid)) 3309 node = rb_first(root_stable_tree + nid); 3310 else 3311 node = rb_next(node); 3312 cond_resched(); 3313 } 3314 } 3315 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 3316 if (stable_node->kpfn >= start_pfn && 3317 stable_node->kpfn < end_pfn) 3318 remove_node_from_stable_tree(stable_node); 3319 cond_resched(); 3320 } 3321 } 3322 3323 static int ksm_memory_callback(struct notifier_block *self, 3324 unsigned long action, void *arg) 3325 { 3326 struct memory_notify *mn = arg; 3327 3328 switch (action) { 3329 case MEM_GOING_OFFLINE: 3330 /* 3331 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 3332 * and remove_all_stable_nodes() while memory is going offline: 3333 * it is unsafe for them to touch the stable tree at this time. 3334 * But unmerge_ksm_pages(), rmap lookups and other entry points 3335 * which do not need the ksm_thread_mutex are all safe. 3336 */ 3337 mutex_lock(&ksm_thread_mutex); 3338 ksm_run |= KSM_RUN_OFFLINE; 3339 mutex_unlock(&ksm_thread_mutex); 3340 break; 3341 3342 case MEM_OFFLINE: 3343 /* 3344 * Most of the work is done by page migration; but there might 3345 * be a few stable_nodes left over, still pointing to struct 3346 * pages which have been offlined: prune those from the tree, 3347 * otherwise get_ksm_page() might later try to access a 3348 * non-existent struct page. 3349 */ 3350 ksm_check_stable_tree(mn->start_pfn, 3351 mn->start_pfn + mn->nr_pages); 3352 fallthrough; 3353 case MEM_CANCEL_OFFLINE: 3354 mutex_lock(&ksm_thread_mutex); 3355 ksm_run &= ~KSM_RUN_OFFLINE; 3356 mutex_unlock(&ksm_thread_mutex); 3357 3358 smp_mb(); /* wake_up_bit advises this */ 3359 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 3360 break; 3361 } 3362 return NOTIFY_OK; 3363 } 3364 #else 3365 static void wait_while_offlining(void) 3366 { 3367 } 3368 #endif /* CONFIG_MEMORY_HOTREMOVE */ 3369 3370 #ifdef CONFIG_PROC_FS 3371 long ksm_process_profit(struct mm_struct *mm) 3372 { 3373 return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE - 3374 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item); 3375 } 3376 #endif /* CONFIG_PROC_FS */ 3377 3378 #ifdef CONFIG_SYSFS 3379 /* 3380 * This all compiles without CONFIG_SYSFS, but is a waste of space. 3381 */ 3382 3383 #define KSM_ATTR_RO(_name) \ 3384 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 3385 #define KSM_ATTR(_name) \ 3386 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 3387 3388 static ssize_t sleep_millisecs_show(struct kobject *kobj, 3389 struct kobj_attribute *attr, char *buf) 3390 { 3391 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 3392 } 3393 3394 static ssize_t sleep_millisecs_store(struct kobject *kobj, 3395 struct kobj_attribute *attr, 3396 const char *buf, size_t count) 3397 { 3398 unsigned int msecs; 3399 int err; 3400 3401 err = kstrtouint(buf, 10, &msecs); 3402 if (err) 3403 return -EINVAL; 3404 3405 ksm_thread_sleep_millisecs = msecs; 3406 wake_up_interruptible(&ksm_iter_wait); 3407 3408 return count; 3409 } 3410 KSM_ATTR(sleep_millisecs); 3411 3412 static ssize_t pages_to_scan_show(struct kobject *kobj, 3413 struct kobj_attribute *attr, char *buf) 3414 { 3415 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 3416 } 3417 3418 static ssize_t pages_to_scan_store(struct kobject *kobj, 3419 struct kobj_attribute *attr, 3420 const char *buf, size_t count) 3421 { 3422 unsigned int nr_pages; 3423 int err; 3424 3425 if (ksm_advisor != KSM_ADVISOR_NONE) 3426 return -EINVAL; 3427 3428 err = kstrtouint(buf, 10, &nr_pages); 3429 if (err) 3430 return -EINVAL; 3431 3432 ksm_thread_pages_to_scan = nr_pages; 3433 3434 return count; 3435 } 3436 KSM_ATTR(pages_to_scan); 3437 3438 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 3439 char *buf) 3440 { 3441 return sysfs_emit(buf, "%lu\n", ksm_run); 3442 } 3443 3444 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 3445 const char *buf, size_t count) 3446 { 3447 unsigned int flags; 3448 int err; 3449 3450 err = kstrtouint(buf, 10, &flags); 3451 if (err) 3452 return -EINVAL; 3453 if (flags > KSM_RUN_UNMERGE) 3454 return -EINVAL; 3455 3456 /* 3457 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 3458 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 3459 * breaking COW to free the pages_shared (but leaves mm_slots 3460 * on the list for when ksmd may be set running again). 3461 */ 3462 3463 mutex_lock(&ksm_thread_mutex); 3464 wait_while_offlining(); 3465 if (ksm_run != flags) { 3466 ksm_run = flags; 3467 if (flags & KSM_RUN_UNMERGE) { 3468 set_current_oom_origin(); 3469 err = unmerge_and_remove_all_rmap_items(); 3470 clear_current_oom_origin(); 3471 if (err) { 3472 ksm_run = KSM_RUN_STOP; 3473 count = err; 3474 } 3475 } 3476 } 3477 mutex_unlock(&ksm_thread_mutex); 3478 3479 if (flags & KSM_RUN_MERGE) 3480 wake_up_interruptible(&ksm_thread_wait); 3481 3482 return count; 3483 } 3484 KSM_ATTR(run); 3485 3486 #ifdef CONFIG_NUMA 3487 static ssize_t merge_across_nodes_show(struct kobject *kobj, 3488 struct kobj_attribute *attr, char *buf) 3489 { 3490 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 3491 } 3492 3493 static ssize_t merge_across_nodes_store(struct kobject *kobj, 3494 struct kobj_attribute *attr, 3495 const char *buf, size_t count) 3496 { 3497 int err; 3498 unsigned long knob; 3499 3500 err = kstrtoul(buf, 10, &knob); 3501 if (err) 3502 return err; 3503 if (knob > 1) 3504 return -EINVAL; 3505 3506 mutex_lock(&ksm_thread_mutex); 3507 wait_while_offlining(); 3508 if (ksm_merge_across_nodes != knob) { 3509 if (ksm_pages_shared || remove_all_stable_nodes()) 3510 err = -EBUSY; 3511 else if (root_stable_tree == one_stable_tree) { 3512 struct rb_root *buf; 3513 /* 3514 * This is the first time that we switch away from the 3515 * default of merging across nodes: must now allocate 3516 * a buffer to hold as many roots as may be needed. 3517 * Allocate stable and unstable together: 3518 * MAXSMP NODES_SHIFT 10 will use 16kB. 3519 */ 3520 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3521 GFP_KERNEL); 3522 /* Let us assume that RB_ROOT is NULL is zero */ 3523 if (!buf) 3524 err = -ENOMEM; 3525 else { 3526 root_stable_tree = buf; 3527 root_unstable_tree = buf + nr_node_ids; 3528 /* Stable tree is empty but not the unstable */ 3529 root_unstable_tree[0] = one_unstable_tree[0]; 3530 } 3531 } 3532 if (!err) { 3533 ksm_merge_across_nodes = knob; 3534 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3535 } 3536 } 3537 mutex_unlock(&ksm_thread_mutex); 3538 3539 return err ? err : count; 3540 } 3541 KSM_ATTR(merge_across_nodes); 3542 #endif 3543 3544 static ssize_t use_zero_pages_show(struct kobject *kobj, 3545 struct kobj_attribute *attr, char *buf) 3546 { 3547 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3548 } 3549 static ssize_t use_zero_pages_store(struct kobject *kobj, 3550 struct kobj_attribute *attr, 3551 const char *buf, size_t count) 3552 { 3553 int err; 3554 bool value; 3555 3556 err = kstrtobool(buf, &value); 3557 if (err) 3558 return -EINVAL; 3559 3560 ksm_use_zero_pages = value; 3561 3562 return count; 3563 } 3564 KSM_ATTR(use_zero_pages); 3565 3566 static ssize_t max_page_sharing_show(struct kobject *kobj, 3567 struct kobj_attribute *attr, char *buf) 3568 { 3569 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3570 } 3571 3572 static ssize_t max_page_sharing_store(struct kobject *kobj, 3573 struct kobj_attribute *attr, 3574 const char *buf, size_t count) 3575 { 3576 int err; 3577 int knob; 3578 3579 err = kstrtoint(buf, 10, &knob); 3580 if (err) 3581 return err; 3582 /* 3583 * When a KSM page is created it is shared by 2 mappings. This 3584 * being a signed comparison, it implicitly verifies it's not 3585 * negative. 3586 */ 3587 if (knob < 2) 3588 return -EINVAL; 3589 3590 if (READ_ONCE(ksm_max_page_sharing) == knob) 3591 return count; 3592 3593 mutex_lock(&ksm_thread_mutex); 3594 wait_while_offlining(); 3595 if (ksm_max_page_sharing != knob) { 3596 if (ksm_pages_shared || remove_all_stable_nodes()) 3597 err = -EBUSY; 3598 else 3599 ksm_max_page_sharing = knob; 3600 } 3601 mutex_unlock(&ksm_thread_mutex); 3602 3603 return err ? err : count; 3604 } 3605 KSM_ATTR(max_page_sharing); 3606 3607 static ssize_t pages_scanned_show(struct kobject *kobj, 3608 struct kobj_attribute *attr, char *buf) 3609 { 3610 return sysfs_emit(buf, "%lu\n", ksm_pages_scanned); 3611 } 3612 KSM_ATTR_RO(pages_scanned); 3613 3614 static ssize_t pages_shared_show(struct kobject *kobj, 3615 struct kobj_attribute *attr, char *buf) 3616 { 3617 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3618 } 3619 KSM_ATTR_RO(pages_shared); 3620 3621 static ssize_t pages_sharing_show(struct kobject *kobj, 3622 struct kobj_attribute *attr, char *buf) 3623 { 3624 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3625 } 3626 KSM_ATTR_RO(pages_sharing); 3627 3628 static ssize_t pages_unshared_show(struct kobject *kobj, 3629 struct kobj_attribute *attr, char *buf) 3630 { 3631 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3632 } 3633 KSM_ATTR_RO(pages_unshared); 3634 3635 static ssize_t pages_volatile_show(struct kobject *kobj, 3636 struct kobj_attribute *attr, char *buf) 3637 { 3638 long ksm_pages_volatile; 3639 3640 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3641 - ksm_pages_sharing - ksm_pages_unshared; 3642 /* 3643 * It was not worth any locking to calculate that statistic, 3644 * but it might therefore sometimes be negative: conceal that. 3645 */ 3646 if (ksm_pages_volatile < 0) 3647 ksm_pages_volatile = 0; 3648 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3649 } 3650 KSM_ATTR_RO(pages_volatile); 3651 3652 static ssize_t pages_skipped_show(struct kobject *kobj, 3653 struct kobj_attribute *attr, char *buf) 3654 { 3655 return sysfs_emit(buf, "%lu\n", ksm_pages_skipped); 3656 } 3657 KSM_ATTR_RO(pages_skipped); 3658 3659 static ssize_t ksm_zero_pages_show(struct kobject *kobj, 3660 struct kobj_attribute *attr, char *buf) 3661 { 3662 return sysfs_emit(buf, "%ld\n", ksm_zero_pages); 3663 } 3664 KSM_ATTR_RO(ksm_zero_pages); 3665 3666 static ssize_t general_profit_show(struct kobject *kobj, 3667 struct kobj_attribute *attr, char *buf) 3668 { 3669 long general_profit; 3670 3671 general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE - 3672 ksm_rmap_items * sizeof(struct ksm_rmap_item); 3673 3674 return sysfs_emit(buf, "%ld\n", general_profit); 3675 } 3676 KSM_ATTR_RO(general_profit); 3677 3678 static ssize_t stable_node_dups_show(struct kobject *kobj, 3679 struct kobj_attribute *attr, char *buf) 3680 { 3681 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3682 } 3683 KSM_ATTR_RO(stable_node_dups); 3684 3685 static ssize_t stable_node_chains_show(struct kobject *kobj, 3686 struct kobj_attribute *attr, char *buf) 3687 { 3688 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3689 } 3690 KSM_ATTR_RO(stable_node_chains); 3691 3692 static ssize_t 3693 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3694 struct kobj_attribute *attr, 3695 char *buf) 3696 { 3697 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3698 } 3699 3700 static ssize_t 3701 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3702 struct kobj_attribute *attr, 3703 const char *buf, size_t count) 3704 { 3705 unsigned int msecs; 3706 int err; 3707 3708 err = kstrtouint(buf, 10, &msecs); 3709 if (err) 3710 return -EINVAL; 3711 3712 ksm_stable_node_chains_prune_millisecs = msecs; 3713 3714 return count; 3715 } 3716 KSM_ATTR(stable_node_chains_prune_millisecs); 3717 3718 static ssize_t full_scans_show(struct kobject *kobj, 3719 struct kobj_attribute *attr, char *buf) 3720 { 3721 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3722 } 3723 KSM_ATTR_RO(full_scans); 3724 3725 static ssize_t smart_scan_show(struct kobject *kobj, 3726 struct kobj_attribute *attr, char *buf) 3727 { 3728 return sysfs_emit(buf, "%u\n", ksm_smart_scan); 3729 } 3730 3731 static ssize_t smart_scan_store(struct kobject *kobj, 3732 struct kobj_attribute *attr, 3733 const char *buf, size_t count) 3734 { 3735 int err; 3736 bool value; 3737 3738 err = kstrtobool(buf, &value); 3739 if (err) 3740 return -EINVAL; 3741 3742 ksm_smart_scan = value; 3743 return count; 3744 } 3745 KSM_ATTR(smart_scan); 3746 3747 static ssize_t advisor_mode_show(struct kobject *kobj, 3748 struct kobj_attribute *attr, char *buf) 3749 { 3750 const char *output; 3751 3752 if (ksm_advisor == KSM_ADVISOR_NONE) 3753 output = "[none] scan-time"; 3754 else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) 3755 output = "none [scan-time]"; 3756 3757 return sysfs_emit(buf, "%s\n", output); 3758 } 3759 3760 static ssize_t advisor_mode_store(struct kobject *kobj, 3761 struct kobj_attribute *attr, const char *buf, 3762 size_t count) 3763 { 3764 enum ksm_advisor_type curr_advisor = ksm_advisor; 3765 3766 if (sysfs_streq("scan-time", buf)) 3767 ksm_advisor = KSM_ADVISOR_SCAN_TIME; 3768 else if (sysfs_streq("none", buf)) 3769 ksm_advisor = KSM_ADVISOR_NONE; 3770 else 3771 return -EINVAL; 3772 3773 /* Set advisor default values */ 3774 if (curr_advisor != ksm_advisor) 3775 set_advisor_defaults(); 3776 3777 return count; 3778 } 3779 KSM_ATTR(advisor_mode); 3780 3781 static ssize_t advisor_max_cpu_show(struct kobject *kobj, 3782 struct kobj_attribute *attr, char *buf) 3783 { 3784 return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu); 3785 } 3786 3787 static ssize_t advisor_max_cpu_store(struct kobject *kobj, 3788 struct kobj_attribute *attr, 3789 const char *buf, size_t count) 3790 { 3791 int err; 3792 unsigned long value; 3793 3794 err = kstrtoul(buf, 10, &value); 3795 if (err) 3796 return -EINVAL; 3797 3798 ksm_advisor_max_cpu = value; 3799 return count; 3800 } 3801 KSM_ATTR(advisor_max_cpu); 3802 3803 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj, 3804 struct kobj_attribute *attr, char *buf) 3805 { 3806 return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan); 3807 } 3808 3809 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj, 3810 struct kobj_attribute *attr, 3811 const char *buf, size_t count) 3812 { 3813 int err; 3814 unsigned long value; 3815 3816 err = kstrtoul(buf, 10, &value); 3817 if (err) 3818 return -EINVAL; 3819 3820 ksm_advisor_min_pages_to_scan = value; 3821 return count; 3822 } 3823 KSM_ATTR(advisor_min_pages_to_scan); 3824 3825 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj, 3826 struct kobj_attribute *attr, char *buf) 3827 { 3828 return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan); 3829 } 3830 3831 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj, 3832 struct kobj_attribute *attr, 3833 const char *buf, size_t count) 3834 { 3835 int err; 3836 unsigned long value; 3837 3838 err = kstrtoul(buf, 10, &value); 3839 if (err) 3840 return -EINVAL; 3841 3842 ksm_advisor_max_pages_to_scan = value; 3843 return count; 3844 } 3845 KSM_ATTR(advisor_max_pages_to_scan); 3846 3847 static ssize_t advisor_target_scan_time_show(struct kobject *kobj, 3848 struct kobj_attribute *attr, char *buf) 3849 { 3850 return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time); 3851 } 3852 3853 static ssize_t advisor_target_scan_time_store(struct kobject *kobj, 3854 struct kobj_attribute *attr, 3855 const char *buf, size_t count) 3856 { 3857 int err; 3858 unsigned long value; 3859 3860 err = kstrtoul(buf, 10, &value); 3861 if (err) 3862 return -EINVAL; 3863 if (value < 1) 3864 return -EINVAL; 3865 3866 ksm_advisor_target_scan_time = value; 3867 return count; 3868 } 3869 KSM_ATTR(advisor_target_scan_time); 3870 3871 static struct attribute *ksm_attrs[] = { 3872 &sleep_millisecs_attr.attr, 3873 &pages_to_scan_attr.attr, 3874 &run_attr.attr, 3875 &pages_scanned_attr.attr, 3876 &pages_shared_attr.attr, 3877 &pages_sharing_attr.attr, 3878 &pages_unshared_attr.attr, 3879 &pages_volatile_attr.attr, 3880 &pages_skipped_attr.attr, 3881 &ksm_zero_pages_attr.attr, 3882 &full_scans_attr.attr, 3883 #ifdef CONFIG_NUMA 3884 &merge_across_nodes_attr.attr, 3885 #endif 3886 &max_page_sharing_attr.attr, 3887 &stable_node_chains_attr.attr, 3888 &stable_node_dups_attr.attr, 3889 &stable_node_chains_prune_millisecs_attr.attr, 3890 &use_zero_pages_attr.attr, 3891 &general_profit_attr.attr, 3892 &smart_scan_attr.attr, 3893 &advisor_mode_attr.attr, 3894 &advisor_max_cpu_attr.attr, 3895 &advisor_min_pages_to_scan_attr.attr, 3896 &advisor_max_pages_to_scan_attr.attr, 3897 &advisor_target_scan_time_attr.attr, 3898 NULL, 3899 }; 3900 3901 static const struct attribute_group ksm_attr_group = { 3902 .attrs = ksm_attrs, 3903 .name = "ksm", 3904 }; 3905 #endif /* CONFIG_SYSFS */ 3906 3907 static int __init ksm_init(void) 3908 { 3909 struct task_struct *ksm_thread; 3910 int err; 3911 3912 /* The correct value depends on page size and endianness */ 3913 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3914 /* Default to false for backwards compatibility */ 3915 ksm_use_zero_pages = false; 3916 3917 err = ksm_slab_init(); 3918 if (err) 3919 goto out; 3920 3921 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3922 if (IS_ERR(ksm_thread)) { 3923 pr_err("ksm: creating kthread failed\n"); 3924 err = PTR_ERR(ksm_thread); 3925 goto out_free; 3926 } 3927 3928 #ifdef CONFIG_SYSFS 3929 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3930 if (err) { 3931 pr_err("ksm: register sysfs failed\n"); 3932 kthread_stop(ksm_thread); 3933 goto out_free; 3934 } 3935 #else 3936 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3937 3938 #endif /* CONFIG_SYSFS */ 3939 3940 #ifdef CONFIG_MEMORY_HOTREMOVE 3941 /* There is no significance to this priority 100 */ 3942 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3943 #endif 3944 return 0; 3945 3946 out_free: 3947 ksm_slab_free(); 3948 out: 3949 return err; 3950 } 3951 subsys_initcall(ksm_init); 3952