xref: /linux/mm/ksm.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/rwsem.h>
26 #include <linux/pagemap.h>
27 #include <linux/rmap.h>
28 #include <linux/spinlock.h>
29 #include <linux/xxhash.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/wait.h>
33 #include <linux/slab.h>
34 #include <linux/rbtree.h>
35 #include <linux/memory.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/swap.h>
38 #include <linux/ksm.h>
39 #include <linux/hashtable.h>
40 #include <linux/freezer.h>
41 #include <linux/oom.h>
42 #include <linux/numa.h>
43 #include <linux/pagewalk.h>
44 
45 #include <asm/tlbflush.h>
46 #include "internal.h"
47 #include "mm_slot.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/ksm.h>
51 
52 #ifdef CONFIG_NUMA
53 #define NUMA(x)		(x)
54 #define DO_NUMA(x)	do { (x); } while (0)
55 #else
56 #define NUMA(x)		(0)
57 #define DO_NUMA(x)	do { } while (0)
58 #endif
59 
60 typedef u8 rmap_age_t;
61 
62 /**
63  * DOC: Overview
64  *
65  * A few notes about the KSM scanning process,
66  * to make it easier to understand the data structures below:
67  *
68  * In order to reduce excessive scanning, KSM sorts the memory pages by their
69  * contents into a data structure that holds pointers to the pages' locations.
70  *
71  * Since the contents of the pages may change at any moment, KSM cannot just
72  * insert the pages into a normal sorted tree and expect it to find anything.
73  * Therefore KSM uses two data structures - the stable and the unstable tree.
74  *
75  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
76  * by their contents.  Because each such page is write-protected, searching on
77  * this tree is fully assured to be working (except when pages are unmapped),
78  * and therefore this tree is called the stable tree.
79  *
80  * The stable tree node includes information required for reverse
81  * mapping from a KSM page to virtual addresses that map this page.
82  *
83  * In order to avoid large latencies of the rmap walks on KSM pages,
84  * KSM maintains two types of nodes in the stable tree:
85  *
86  * * the regular nodes that keep the reverse mapping structures in a
87  *   linked list
88  * * the "chains" that link nodes ("dups") that represent the same
89  *   write protected memory content, but each "dup" corresponds to a
90  *   different KSM page copy of that content
91  *
92  * Internally, the regular nodes, "dups" and "chains" are represented
93  * using the same struct ksm_stable_node structure.
94  *
95  * In addition to the stable tree, KSM uses a second data structure called the
96  * unstable tree: this tree holds pointers to pages which have been found to
97  * be "unchanged for a period of time".  The unstable tree sorts these pages
98  * by their contents, but since they are not write-protected, KSM cannot rely
99  * upon the unstable tree to work correctly - the unstable tree is liable to
100  * be corrupted as its contents are modified, and so it is called unstable.
101  *
102  * KSM solves this problem by several techniques:
103  *
104  * 1) The unstable tree is flushed every time KSM completes scanning all
105  *    memory areas, and then the tree is rebuilt again from the beginning.
106  * 2) KSM will only insert into the unstable tree, pages whose hash value
107  *    has not changed since the previous scan of all memory areas.
108  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
109  *    colors of the nodes and not on their contents, assuring that even when
110  *    the tree gets "corrupted" it won't get out of balance, so scanning time
111  *    remains the same (also, searching and inserting nodes in an rbtree uses
112  *    the same algorithm, so we have no overhead when we flush and rebuild).
113  * 4) KSM never flushes the stable tree, which means that even if it were to
114  *    take 10 attempts to find a page in the unstable tree, once it is found,
115  *    it is secured in the stable tree.  (When we scan a new page, we first
116  *    compare it against the stable tree, and then against the unstable tree.)
117  *
118  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
119  * stable trees and multiple unstable trees: one of each for each NUMA node.
120  */
121 
122 /**
123  * struct ksm_mm_slot - ksm information per mm that is being scanned
124  * @slot: hash lookup from mm to mm_slot
125  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
126  */
127 struct ksm_mm_slot {
128 	struct mm_slot slot;
129 	struct ksm_rmap_item *rmap_list;
130 };
131 
132 /**
133  * struct ksm_scan - cursor for scanning
134  * @mm_slot: the current mm_slot we are scanning
135  * @address: the next address inside that to be scanned
136  * @rmap_list: link to the next rmap to be scanned in the rmap_list
137  * @seqnr: count of completed full scans (needed when removing unstable node)
138  *
139  * There is only the one ksm_scan instance of this cursor structure.
140  */
141 struct ksm_scan {
142 	struct ksm_mm_slot *mm_slot;
143 	unsigned long address;
144 	struct ksm_rmap_item **rmap_list;
145 	unsigned long seqnr;
146 };
147 
148 /**
149  * struct ksm_stable_node - node of the stable rbtree
150  * @node: rb node of this ksm page in the stable tree
151  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
152  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
153  * @list: linked into migrate_nodes, pending placement in the proper node tree
154  * @hlist: hlist head of rmap_items using this ksm page
155  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
156  * @chain_prune_time: time of the last full garbage collection
157  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
158  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
159  */
160 struct ksm_stable_node {
161 	union {
162 		struct rb_node node;	/* when node of stable tree */
163 		struct {		/* when listed for migration */
164 			struct list_head *head;
165 			struct {
166 				struct hlist_node hlist_dup;
167 				struct list_head list;
168 			};
169 		};
170 	};
171 	struct hlist_head hlist;
172 	union {
173 		unsigned long kpfn;
174 		unsigned long chain_prune_time;
175 	};
176 	/*
177 	 * STABLE_NODE_CHAIN can be any negative number in
178 	 * rmap_hlist_len negative range, but better not -1 to be able
179 	 * to reliably detect underflows.
180 	 */
181 #define STABLE_NODE_CHAIN -1024
182 	int rmap_hlist_len;
183 #ifdef CONFIG_NUMA
184 	int nid;
185 #endif
186 };
187 
188 /**
189  * struct ksm_rmap_item - reverse mapping item for virtual addresses
190  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
191  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
192  * @nid: NUMA node id of unstable tree in which linked (may not match page)
193  * @mm: the memory structure this rmap_item is pointing into
194  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
195  * @oldchecksum: previous checksum of the page at that virtual address
196  * @node: rb node of this rmap_item in the unstable tree
197  * @head: pointer to stable_node heading this list in the stable tree
198  * @hlist: link into hlist of rmap_items hanging off that stable_node
199  * @age: number of scan iterations since creation
200  * @remaining_skips: how many scans to skip
201  */
202 struct ksm_rmap_item {
203 	struct ksm_rmap_item *rmap_list;
204 	union {
205 		struct anon_vma *anon_vma;	/* when stable */
206 #ifdef CONFIG_NUMA
207 		int nid;		/* when node of unstable tree */
208 #endif
209 	};
210 	struct mm_struct *mm;
211 	unsigned long address;		/* + low bits used for flags below */
212 	unsigned int oldchecksum;	/* when unstable */
213 	rmap_age_t age;
214 	rmap_age_t remaining_skips;
215 	union {
216 		struct rb_node node;	/* when node of unstable tree */
217 		struct {		/* when listed from stable tree */
218 			struct ksm_stable_node *head;
219 			struct hlist_node hlist;
220 		};
221 	};
222 };
223 
224 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
225 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
226 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
227 
228 /* The stable and unstable tree heads */
229 static struct rb_root one_stable_tree[1] = { RB_ROOT };
230 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
231 static struct rb_root *root_stable_tree = one_stable_tree;
232 static struct rb_root *root_unstable_tree = one_unstable_tree;
233 
234 /* Recently migrated nodes of stable tree, pending proper placement */
235 static LIST_HEAD(migrate_nodes);
236 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
237 
238 #define MM_SLOTS_HASH_BITS 10
239 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
240 
241 static struct ksm_mm_slot ksm_mm_head = {
242 	.slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
243 };
244 static struct ksm_scan ksm_scan = {
245 	.mm_slot = &ksm_mm_head,
246 };
247 
248 static struct kmem_cache *rmap_item_cache;
249 static struct kmem_cache *stable_node_cache;
250 static struct kmem_cache *mm_slot_cache;
251 
252 /* Default number of pages to scan per batch */
253 #define DEFAULT_PAGES_TO_SCAN 100
254 
255 /* The number of pages scanned */
256 static unsigned long ksm_pages_scanned;
257 
258 /* The number of nodes in the stable tree */
259 static unsigned long ksm_pages_shared;
260 
261 /* The number of page slots additionally sharing those nodes */
262 static unsigned long ksm_pages_sharing;
263 
264 /* The number of nodes in the unstable tree */
265 static unsigned long ksm_pages_unshared;
266 
267 /* The number of rmap_items in use: to calculate pages_volatile */
268 static unsigned long ksm_rmap_items;
269 
270 /* The number of stable_node chains */
271 static unsigned long ksm_stable_node_chains;
272 
273 /* The number of stable_node dups linked to the stable_node chains */
274 static unsigned long ksm_stable_node_dups;
275 
276 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
277 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
278 
279 /* Maximum number of page slots sharing a stable node */
280 static int ksm_max_page_sharing = 256;
281 
282 /* Number of pages ksmd should scan in one batch */
283 static unsigned int ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
284 
285 /* Milliseconds ksmd should sleep between batches */
286 static unsigned int ksm_thread_sleep_millisecs = 20;
287 
288 /* Checksum of an empty (zeroed) page */
289 static unsigned int zero_checksum __read_mostly;
290 
291 /* Whether to merge empty (zeroed) pages with actual zero pages */
292 static bool ksm_use_zero_pages __read_mostly;
293 
294 /* Skip pages that couldn't be de-duplicated previously */
295 /* Default to true at least temporarily, for testing */
296 static bool ksm_smart_scan = true;
297 
298 /* The number of zero pages which is placed by KSM */
299 unsigned long ksm_zero_pages;
300 
301 /* The number of pages that have been skipped due to "smart scanning" */
302 static unsigned long ksm_pages_skipped;
303 
304 /* Don't scan more than max pages per batch. */
305 static unsigned long ksm_advisor_max_pages_to_scan = 30000;
306 
307 /* Min CPU for scanning pages per scan */
308 #define KSM_ADVISOR_MIN_CPU 10
309 
310 /* Max CPU for scanning pages per scan */
311 static unsigned int ksm_advisor_max_cpu =  70;
312 
313 /* Target scan time in seconds to analyze all KSM candidate pages. */
314 static unsigned long ksm_advisor_target_scan_time = 200;
315 
316 /* Exponentially weighted moving average. */
317 #define EWMA_WEIGHT 30
318 
319 /**
320  * struct advisor_ctx - metadata for KSM advisor
321  * @start_scan: start time of the current scan
322  * @scan_time: scan time of previous scan
323  * @change: change in percent to pages_to_scan parameter
324  * @cpu_time: cpu time consumed by the ksmd thread in the previous scan
325  */
326 struct advisor_ctx {
327 	ktime_t start_scan;
328 	unsigned long scan_time;
329 	unsigned long change;
330 	unsigned long long cpu_time;
331 };
332 static struct advisor_ctx advisor_ctx;
333 
334 /* Define different advisor's */
335 enum ksm_advisor_type {
336 	KSM_ADVISOR_NONE,
337 	KSM_ADVISOR_SCAN_TIME,
338 };
339 static enum ksm_advisor_type ksm_advisor;
340 
341 #ifdef CONFIG_SYSFS
342 /*
343  * Only called through the sysfs control interface:
344  */
345 
346 /* At least scan this many pages per batch. */
347 static unsigned long ksm_advisor_min_pages_to_scan = 500;
348 
349 static void set_advisor_defaults(void)
350 {
351 	if (ksm_advisor == KSM_ADVISOR_NONE) {
352 		ksm_thread_pages_to_scan = DEFAULT_PAGES_TO_SCAN;
353 	} else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME) {
354 		advisor_ctx = (const struct advisor_ctx){ 0 };
355 		ksm_thread_pages_to_scan = ksm_advisor_min_pages_to_scan;
356 	}
357 }
358 #endif /* CONFIG_SYSFS */
359 
360 static inline void advisor_start_scan(void)
361 {
362 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
363 		advisor_ctx.start_scan = ktime_get();
364 }
365 
366 /*
367  * Use previous scan time if available, otherwise use current scan time as an
368  * approximation for the previous scan time.
369  */
370 static inline unsigned long prev_scan_time(struct advisor_ctx *ctx,
371 					   unsigned long scan_time)
372 {
373 	return ctx->scan_time ? ctx->scan_time : scan_time;
374 }
375 
376 /* Calculate exponential weighted moving average */
377 static unsigned long ewma(unsigned long prev, unsigned long curr)
378 {
379 	return ((100 - EWMA_WEIGHT) * prev + EWMA_WEIGHT * curr) / 100;
380 }
381 
382 /*
383  * The scan time advisor is based on the current scan rate and the target
384  * scan rate.
385  *
386  *      new_pages_to_scan = pages_to_scan * (scan_time / target_scan_time)
387  *
388  * To avoid perturbations it calculates a change factor of previous changes.
389  * A new change factor is calculated for each iteration and it uses an
390  * exponentially weighted moving average. The new pages_to_scan value is
391  * multiplied with that change factor:
392  *
393  *      new_pages_to_scan *= change facor
394  *
395  * The new_pages_to_scan value is limited by the cpu min and max values. It
396  * calculates the cpu percent for the last scan and calculates the new
397  * estimated cpu percent cost for the next scan. That value is capped by the
398  * cpu min and max setting.
399  *
400  * In addition the new pages_to_scan value is capped by the max and min
401  * limits.
402  */
403 static void scan_time_advisor(void)
404 {
405 	unsigned int cpu_percent;
406 	unsigned long cpu_time;
407 	unsigned long cpu_time_diff;
408 	unsigned long cpu_time_diff_ms;
409 	unsigned long pages;
410 	unsigned long per_page_cost;
411 	unsigned long factor;
412 	unsigned long change;
413 	unsigned long last_scan_time;
414 	unsigned long scan_time;
415 
416 	/* Convert scan time to seconds */
417 	scan_time = div_s64(ktime_ms_delta(ktime_get(), advisor_ctx.start_scan),
418 			    MSEC_PER_SEC);
419 	scan_time = scan_time ? scan_time : 1;
420 
421 	/* Calculate CPU consumption of ksmd background thread */
422 	cpu_time = task_sched_runtime(current);
423 	cpu_time_diff = cpu_time - advisor_ctx.cpu_time;
424 	cpu_time_diff_ms = cpu_time_diff / 1000 / 1000;
425 
426 	cpu_percent = (cpu_time_diff_ms * 100) / (scan_time * 1000);
427 	cpu_percent = cpu_percent ? cpu_percent : 1;
428 	last_scan_time = prev_scan_time(&advisor_ctx, scan_time);
429 
430 	/* Calculate scan time as percentage of target scan time */
431 	factor = ksm_advisor_target_scan_time * 100 / scan_time;
432 	factor = factor ? factor : 1;
433 
434 	/*
435 	 * Calculate scan time as percentage of last scan time and use
436 	 * exponentially weighted average to smooth it
437 	 */
438 	change = scan_time * 100 / last_scan_time;
439 	change = change ? change : 1;
440 	change = ewma(advisor_ctx.change, change);
441 
442 	/* Calculate new scan rate based on target scan rate. */
443 	pages = ksm_thread_pages_to_scan * 100 / factor;
444 	/* Update pages_to_scan by weighted change percentage. */
445 	pages = pages * change / 100;
446 
447 	/* Cap new pages_to_scan value */
448 	per_page_cost = ksm_thread_pages_to_scan / cpu_percent;
449 	per_page_cost = per_page_cost ? per_page_cost : 1;
450 
451 	pages = min(pages, per_page_cost * ksm_advisor_max_cpu);
452 	pages = max(pages, per_page_cost * KSM_ADVISOR_MIN_CPU);
453 	pages = min(pages, ksm_advisor_max_pages_to_scan);
454 
455 	/* Update advisor context */
456 	advisor_ctx.change = change;
457 	advisor_ctx.scan_time = scan_time;
458 	advisor_ctx.cpu_time = cpu_time;
459 
460 	ksm_thread_pages_to_scan = pages;
461 	trace_ksm_advisor(scan_time, pages, cpu_percent);
462 }
463 
464 static void advisor_stop_scan(void)
465 {
466 	if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
467 		scan_time_advisor();
468 }
469 
470 #ifdef CONFIG_NUMA
471 /* Zeroed when merging across nodes is not allowed */
472 static unsigned int ksm_merge_across_nodes = 1;
473 static int ksm_nr_node_ids = 1;
474 #else
475 #define ksm_merge_across_nodes	1U
476 #define ksm_nr_node_ids		1
477 #endif
478 
479 #define KSM_RUN_STOP	0
480 #define KSM_RUN_MERGE	1
481 #define KSM_RUN_UNMERGE	2
482 #define KSM_RUN_OFFLINE	4
483 static unsigned long ksm_run = KSM_RUN_STOP;
484 static void wait_while_offlining(void);
485 
486 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
487 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
488 static DEFINE_MUTEX(ksm_thread_mutex);
489 static DEFINE_SPINLOCK(ksm_mmlist_lock);
490 
491 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
492 		sizeof(struct __struct), __alignof__(struct __struct),\
493 		(__flags), NULL)
494 
495 static int __init ksm_slab_init(void)
496 {
497 	rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
498 	if (!rmap_item_cache)
499 		goto out;
500 
501 	stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
502 	if (!stable_node_cache)
503 		goto out_free1;
504 
505 	mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
506 	if (!mm_slot_cache)
507 		goto out_free2;
508 
509 	return 0;
510 
511 out_free2:
512 	kmem_cache_destroy(stable_node_cache);
513 out_free1:
514 	kmem_cache_destroy(rmap_item_cache);
515 out:
516 	return -ENOMEM;
517 }
518 
519 static void __init ksm_slab_free(void)
520 {
521 	kmem_cache_destroy(mm_slot_cache);
522 	kmem_cache_destroy(stable_node_cache);
523 	kmem_cache_destroy(rmap_item_cache);
524 	mm_slot_cache = NULL;
525 }
526 
527 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
528 {
529 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
530 }
531 
532 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
533 {
534 	return dup->head == STABLE_NODE_DUP_HEAD;
535 }
536 
537 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
538 					     struct ksm_stable_node *chain)
539 {
540 	VM_BUG_ON(is_stable_node_dup(dup));
541 	dup->head = STABLE_NODE_DUP_HEAD;
542 	VM_BUG_ON(!is_stable_node_chain(chain));
543 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
544 	ksm_stable_node_dups++;
545 }
546 
547 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
548 {
549 	VM_BUG_ON(!is_stable_node_dup(dup));
550 	hlist_del(&dup->hlist_dup);
551 	ksm_stable_node_dups--;
552 }
553 
554 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
555 {
556 	VM_BUG_ON(is_stable_node_chain(dup));
557 	if (is_stable_node_dup(dup))
558 		__stable_node_dup_del(dup);
559 	else
560 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
561 #ifdef CONFIG_DEBUG_VM
562 	dup->head = NULL;
563 #endif
564 }
565 
566 static inline struct ksm_rmap_item *alloc_rmap_item(void)
567 {
568 	struct ksm_rmap_item *rmap_item;
569 
570 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
571 						__GFP_NORETRY | __GFP_NOWARN);
572 	if (rmap_item)
573 		ksm_rmap_items++;
574 	return rmap_item;
575 }
576 
577 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
578 {
579 	ksm_rmap_items--;
580 	rmap_item->mm->ksm_rmap_items--;
581 	rmap_item->mm = NULL;	/* debug safety */
582 	kmem_cache_free(rmap_item_cache, rmap_item);
583 }
584 
585 static inline struct ksm_stable_node *alloc_stable_node(void)
586 {
587 	/*
588 	 * The allocation can take too long with GFP_KERNEL when memory is under
589 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
590 	 * grants access to memory reserves, helping to avoid this problem.
591 	 */
592 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
593 }
594 
595 static inline void free_stable_node(struct ksm_stable_node *stable_node)
596 {
597 	VM_BUG_ON(stable_node->rmap_hlist_len &&
598 		  !is_stable_node_chain(stable_node));
599 	kmem_cache_free(stable_node_cache, stable_node);
600 }
601 
602 /*
603  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
604  * page tables after it has passed through ksm_exit() - which, if necessary,
605  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
606  * a special flag: they can just back out as soon as mm_users goes to zero.
607  * ksm_test_exit() is used throughout to make this test for exit: in some
608  * places for correctness, in some places just to avoid unnecessary work.
609  */
610 static inline bool ksm_test_exit(struct mm_struct *mm)
611 {
612 	return atomic_read(&mm->mm_users) == 0;
613 }
614 
615 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
616 			struct mm_walk *walk)
617 {
618 	struct page *page = NULL;
619 	spinlock_t *ptl;
620 	pte_t *pte;
621 	pte_t ptent;
622 	int ret;
623 
624 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
625 	if (!pte)
626 		return 0;
627 	ptent = ptep_get(pte);
628 	if (pte_present(ptent)) {
629 		page = vm_normal_page(walk->vma, addr, ptent);
630 	} else if (!pte_none(ptent)) {
631 		swp_entry_t entry = pte_to_swp_entry(ptent);
632 
633 		/*
634 		 * As KSM pages remain KSM pages until freed, no need to wait
635 		 * here for migration to end.
636 		 */
637 		if (is_migration_entry(entry))
638 			page = pfn_swap_entry_to_page(entry);
639 	}
640 	/* return 1 if the page is an normal ksm page or KSM-placed zero page */
641 	ret = (page && PageKsm(page)) || is_ksm_zero_pte(ptent);
642 	pte_unmap_unlock(pte, ptl);
643 	return ret;
644 }
645 
646 static const struct mm_walk_ops break_ksm_ops = {
647 	.pmd_entry = break_ksm_pmd_entry,
648 	.walk_lock = PGWALK_RDLOCK,
649 };
650 
651 static const struct mm_walk_ops break_ksm_lock_vma_ops = {
652 	.pmd_entry = break_ksm_pmd_entry,
653 	.walk_lock = PGWALK_WRLOCK,
654 };
655 
656 /*
657  * We use break_ksm to break COW on a ksm page by triggering unsharing,
658  * such that the ksm page will get replaced by an exclusive anonymous page.
659  *
660  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
661  * in case the application has unmapped and remapped mm,addr meanwhile.
662  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
663  * mmap of /dev/mem, where we would not want to touch it.
664  *
665  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
666  * of the process that owns 'vma'.  We also do not want to enforce
667  * protection keys here anyway.
668  */
669 static int break_ksm(struct vm_area_struct *vma, unsigned long addr, bool lock_vma)
670 {
671 	vm_fault_t ret = 0;
672 	const struct mm_walk_ops *ops = lock_vma ?
673 				&break_ksm_lock_vma_ops : &break_ksm_ops;
674 
675 	do {
676 		int ksm_page;
677 
678 		cond_resched();
679 		ksm_page = walk_page_range_vma(vma, addr, addr + 1, ops, NULL);
680 		if (WARN_ON_ONCE(ksm_page < 0))
681 			return ksm_page;
682 		if (!ksm_page)
683 			return 0;
684 		ret = handle_mm_fault(vma, addr,
685 				      FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
686 				      NULL);
687 	} while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
688 	/*
689 	 * We must loop until we no longer find a KSM page because
690 	 * handle_mm_fault() may back out if there's any difficulty e.g. if
691 	 * pte accessed bit gets updated concurrently.
692 	 *
693 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
694 	 * backing file, which also invalidates anonymous pages: that's
695 	 * okay, that truncation will have unmapped the PageKsm for us.
696 	 *
697 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
698 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
699 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
700 	 * to user; and ksmd, having no mm, would never be chosen for that.
701 	 *
702 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
703 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
704 	 * even ksmd can fail in this way - though it's usually breaking ksm
705 	 * just to undo a merge it made a moment before, so unlikely to oom.
706 	 *
707 	 * That's a pity: we might therefore have more kernel pages allocated
708 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
709 	 * will retry to break_cow on each pass, so should recover the page
710 	 * in due course.  The important thing is to not let VM_MERGEABLE
711 	 * be cleared while any such pages might remain in the area.
712 	 */
713 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
714 }
715 
716 static bool vma_ksm_compatible(struct vm_area_struct *vma)
717 {
718 	if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
719 			     VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
720 			     VM_MIXEDMAP))
721 		return false;		/* just ignore the advice */
722 
723 	if (vma_is_dax(vma))
724 		return false;
725 
726 #ifdef VM_SAO
727 	if (vma->vm_flags & VM_SAO)
728 		return false;
729 #endif
730 #ifdef VM_SPARC_ADI
731 	if (vma->vm_flags & VM_SPARC_ADI)
732 		return false;
733 #endif
734 
735 	return true;
736 }
737 
738 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
739 		unsigned long addr)
740 {
741 	struct vm_area_struct *vma;
742 	if (ksm_test_exit(mm))
743 		return NULL;
744 	vma = vma_lookup(mm, addr);
745 	if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
746 		return NULL;
747 	return vma;
748 }
749 
750 static void break_cow(struct ksm_rmap_item *rmap_item)
751 {
752 	struct mm_struct *mm = rmap_item->mm;
753 	unsigned long addr = rmap_item->address;
754 	struct vm_area_struct *vma;
755 
756 	/*
757 	 * It is not an accident that whenever we want to break COW
758 	 * to undo, we also need to drop a reference to the anon_vma.
759 	 */
760 	put_anon_vma(rmap_item->anon_vma);
761 
762 	mmap_read_lock(mm);
763 	vma = find_mergeable_vma(mm, addr);
764 	if (vma)
765 		break_ksm(vma, addr, false);
766 	mmap_read_unlock(mm);
767 }
768 
769 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
770 {
771 	struct mm_struct *mm = rmap_item->mm;
772 	unsigned long addr = rmap_item->address;
773 	struct vm_area_struct *vma;
774 	struct page *page;
775 
776 	mmap_read_lock(mm);
777 	vma = find_mergeable_vma(mm, addr);
778 	if (!vma)
779 		goto out;
780 
781 	page = follow_page(vma, addr, FOLL_GET);
782 	if (IS_ERR_OR_NULL(page))
783 		goto out;
784 	if (is_zone_device_page(page))
785 		goto out_putpage;
786 	if (PageAnon(page)) {
787 		flush_anon_page(vma, page, addr);
788 		flush_dcache_page(page);
789 	} else {
790 out_putpage:
791 		put_page(page);
792 out:
793 		page = NULL;
794 	}
795 	mmap_read_unlock(mm);
796 	return page;
797 }
798 
799 /*
800  * This helper is used for getting right index into array of tree roots.
801  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
802  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
803  * every node has its own stable and unstable tree.
804  */
805 static inline int get_kpfn_nid(unsigned long kpfn)
806 {
807 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
808 }
809 
810 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
811 						   struct rb_root *root)
812 {
813 	struct ksm_stable_node *chain = alloc_stable_node();
814 	VM_BUG_ON(is_stable_node_chain(dup));
815 	if (likely(chain)) {
816 		INIT_HLIST_HEAD(&chain->hlist);
817 		chain->chain_prune_time = jiffies;
818 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
819 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
820 		chain->nid = NUMA_NO_NODE; /* debug */
821 #endif
822 		ksm_stable_node_chains++;
823 
824 		/*
825 		 * Put the stable node chain in the first dimension of
826 		 * the stable tree and at the same time remove the old
827 		 * stable node.
828 		 */
829 		rb_replace_node(&dup->node, &chain->node, root);
830 
831 		/*
832 		 * Move the old stable node to the second dimension
833 		 * queued in the hlist_dup. The invariant is that all
834 		 * dup stable_nodes in the chain->hlist point to pages
835 		 * that are write protected and have the exact same
836 		 * content.
837 		 */
838 		stable_node_chain_add_dup(dup, chain);
839 	}
840 	return chain;
841 }
842 
843 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
844 					  struct rb_root *root)
845 {
846 	rb_erase(&chain->node, root);
847 	free_stable_node(chain);
848 	ksm_stable_node_chains--;
849 }
850 
851 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
852 {
853 	struct ksm_rmap_item *rmap_item;
854 
855 	/* check it's not STABLE_NODE_CHAIN or negative */
856 	BUG_ON(stable_node->rmap_hlist_len < 0);
857 
858 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
859 		if (rmap_item->hlist.next) {
860 			ksm_pages_sharing--;
861 			trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
862 		} else {
863 			ksm_pages_shared--;
864 		}
865 
866 		rmap_item->mm->ksm_merging_pages--;
867 
868 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
869 		stable_node->rmap_hlist_len--;
870 		put_anon_vma(rmap_item->anon_vma);
871 		rmap_item->address &= PAGE_MASK;
872 		cond_resched();
873 	}
874 
875 	/*
876 	 * We need the second aligned pointer of the migrate_nodes
877 	 * list_head to stay clear from the rb_parent_color union
878 	 * (aligned and different than any node) and also different
879 	 * from &migrate_nodes. This will verify that future list.h changes
880 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
881 	 */
882 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
883 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
884 
885 	trace_ksm_remove_ksm_page(stable_node->kpfn);
886 	if (stable_node->head == &migrate_nodes)
887 		list_del(&stable_node->list);
888 	else
889 		stable_node_dup_del(stable_node);
890 	free_stable_node(stable_node);
891 }
892 
893 enum ksm_get_folio_flags {
894 	KSM_GET_FOLIO_NOLOCK,
895 	KSM_GET_FOLIO_LOCK,
896 	KSM_GET_FOLIO_TRYLOCK
897 };
898 
899 /*
900  * ksm_get_folio: checks if the page indicated by the stable node
901  * is still its ksm page, despite having held no reference to it.
902  * In which case we can trust the content of the page, and it
903  * returns the gotten page; but if the page has now been zapped,
904  * remove the stale node from the stable tree and return NULL.
905  * But beware, the stable node's page might be being migrated.
906  *
907  * You would expect the stable_node to hold a reference to the ksm page.
908  * But if it increments the page's count, swapping out has to wait for
909  * ksmd to come around again before it can free the page, which may take
910  * seconds or even minutes: much too unresponsive.  So instead we use a
911  * "keyhole reference": access to the ksm page from the stable node peeps
912  * out through its keyhole to see if that page still holds the right key,
913  * pointing back to this stable node.  This relies on freeing a PageAnon
914  * page to reset its page->mapping to NULL, and relies on no other use of
915  * a page to put something that might look like our key in page->mapping.
916  * is on its way to being freed; but it is an anomaly to bear in mind.
917  */
918 static struct folio *ksm_get_folio(struct ksm_stable_node *stable_node,
919 				 enum ksm_get_folio_flags flags)
920 {
921 	struct folio *folio;
922 	void *expected_mapping;
923 	unsigned long kpfn;
924 
925 	expected_mapping = (void *)((unsigned long)stable_node |
926 					PAGE_MAPPING_KSM);
927 again:
928 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
929 	folio = pfn_folio(kpfn);
930 	if (READ_ONCE(folio->mapping) != expected_mapping)
931 		goto stale;
932 
933 	/*
934 	 * We cannot do anything with the page while its refcount is 0.
935 	 * Usually 0 means free, or tail of a higher-order page: in which
936 	 * case this node is no longer referenced, and should be freed;
937 	 * however, it might mean that the page is under page_ref_freeze().
938 	 * The __remove_mapping() case is easy, again the node is now stale;
939 	 * the same is in reuse_ksm_page() case; but if page is swapcache
940 	 * in folio_migrate_mapping(), it might still be our page,
941 	 * in which case it's essential to keep the node.
942 	 */
943 	while (!folio_try_get(folio)) {
944 		/*
945 		 * Another check for page->mapping != expected_mapping would
946 		 * work here too.  We have chosen the !PageSwapCache test to
947 		 * optimize the common case, when the page is or is about to
948 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
949 		 * in the ref_freeze section of __remove_mapping(); but Anon
950 		 * folio->mapping reset to NULL later, in free_pages_prepare().
951 		 */
952 		if (!folio_test_swapcache(folio))
953 			goto stale;
954 		cpu_relax();
955 	}
956 
957 	if (READ_ONCE(folio->mapping) != expected_mapping) {
958 		folio_put(folio);
959 		goto stale;
960 	}
961 
962 	if (flags == KSM_GET_FOLIO_TRYLOCK) {
963 		if (!folio_trylock(folio)) {
964 			folio_put(folio);
965 			return ERR_PTR(-EBUSY);
966 		}
967 	} else if (flags == KSM_GET_FOLIO_LOCK)
968 		folio_lock(folio);
969 
970 	if (flags != KSM_GET_FOLIO_NOLOCK) {
971 		if (READ_ONCE(folio->mapping) != expected_mapping) {
972 			folio_unlock(folio);
973 			folio_put(folio);
974 			goto stale;
975 		}
976 	}
977 	return folio;
978 
979 stale:
980 	/*
981 	 * We come here from above when page->mapping or !PageSwapCache
982 	 * suggests that the node is stale; but it might be under migration.
983 	 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
984 	 * before checking whether node->kpfn has been changed.
985 	 */
986 	smp_rmb();
987 	if (READ_ONCE(stable_node->kpfn) != kpfn)
988 		goto again;
989 	remove_node_from_stable_tree(stable_node);
990 	return NULL;
991 }
992 
993 /*
994  * Removing rmap_item from stable or unstable tree.
995  * This function will clean the information from the stable/unstable tree.
996  */
997 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
998 {
999 	if (rmap_item->address & STABLE_FLAG) {
1000 		struct ksm_stable_node *stable_node;
1001 		struct folio *folio;
1002 
1003 		stable_node = rmap_item->head;
1004 		folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1005 		if (!folio)
1006 			goto out;
1007 
1008 		hlist_del(&rmap_item->hlist);
1009 		folio_unlock(folio);
1010 		folio_put(folio);
1011 
1012 		if (!hlist_empty(&stable_node->hlist))
1013 			ksm_pages_sharing--;
1014 		else
1015 			ksm_pages_shared--;
1016 
1017 		rmap_item->mm->ksm_merging_pages--;
1018 
1019 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
1020 		stable_node->rmap_hlist_len--;
1021 
1022 		put_anon_vma(rmap_item->anon_vma);
1023 		rmap_item->head = NULL;
1024 		rmap_item->address &= PAGE_MASK;
1025 
1026 	} else if (rmap_item->address & UNSTABLE_FLAG) {
1027 		unsigned char age;
1028 		/*
1029 		 * Usually ksmd can and must skip the rb_erase, because
1030 		 * root_unstable_tree was already reset to RB_ROOT.
1031 		 * But be careful when an mm is exiting: do the rb_erase
1032 		 * if this rmap_item was inserted by this scan, rather
1033 		 * than left over from before.
1034 		 */
1035 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
1036 		BUG_ON(age > 1);
1037 		if (!age)
1038 			rb_erase(&rmap_item->node,
1039 				 root_unstable_tree + NUMA(rmap_item->nid));
1040 		ksm_pages_unshared--;
1041 		rmap_item->address &= PAGE_MASK;
1042 	}
1043 out:
1044 	cond_resched();		/* we're called from many long loops */
1045 }
1046 
1047 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
1048 {
1049 	while (*rmap_list) {
1050 		struct ksm_rmap_item *rmap_item = *rmap_list;
1051 		*rmap_list = rmap_item->rmap_list;
1052 		remove_rmap_item_from_tree(rmap_item);
1053 		free_rmap_item(rmap_item);
1054 	}
1055 }
1056 
1057 /*
1058  * Though it's very tempting to unmerge rmap_items from stable tree rather
1059  * than check every pte of a given vma, the locking doesn't quite work for
1060  * that - an rmap_item is assigned to the stable tree after inserting ksm
1061  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
1062  * rmap_items from parent to child at fork time (so as not to waste time
1063  * if exit comes before the next scan reaches it).
1064  *
1065  * Similarly, although we'd like to remove rmap_items (so updating counts
1066  * and freeing memory) when unmerging an area, it's easier to leave that
1067  * to the next pass of ksmd - consider, for example, how ksmd might be
1068  * in cmp_and_merge_page on one of the rmap_items we would be removing.
1069  */
1070 static int unmerge_ksm_pages(struct vm_area_struct *vma,
1071 			     unsigned long start, unsigned long end, bool lock_vma)
1072 {
1073 	unsigned long addr;
1074 	int err = 0;
1075 
1076 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
1077 		if (ksm_test_exit(vma->vm_mm))
1078 			break;
1079 		if (signal_pending(current))
1080 			err = -ERESTARTSYS;
1081 		else
1082 			err = break_ksm(vma, addr, lock_vma);
1083 	}
1084 	return err;
1085 }
1086 
1087 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
1088 {
1089 	return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
1090 }
1091 
1092 static inline struct ksm_stable_node *page_stable_node(struct page *page)
1093 {
1094 	return folio_stable_node(page_folio(page));
1095 }
1096 
1097 static inline void folio_set_stable_node(struct folio *folio,
1098 					 struct ksm_stable_node *stable_node)
1099 {
1100 	VM_WARN_ON_FOLIO(folio_test_anon(folio) && PageAnonExclusive(&folio->page), folio);
1101 	folio->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
1102 }
1103 
1104 #ifdef CONFIG_SYSFS
1105 /*
1106  * Only called through the sysfs control interface:
1107  */
1108 static int remove_stable_node(struct ksm_stable_node *stable_node)
1109 {
1110 	struct folio *folio;
1111 	int err;
1112 
1113 	folio = ksm_get_folio(stable_node, KSM_GET_FOLIO_LOCK);
1114 	if (!folio) {
1115 		/*
1116 		 * ksm_get_folio did remove_node_from_stable_tree itself.
1117 		 */
1118 		return 0;
1119 	}
1120 
1121 	/*
1122 	 * Page could be still mapped if this races with __mmput() running in
1123 	 * between ksm_exit() and exit_mmap(). Just refuse to let
1124 	 * merge_across_nodes/max_page_sharing be switched.
1125 	 */
1126 	err = -EBUSY;
1127 	if (!folio_mapped(folio)) {
1128 		/*
1129 		 * The stable node did not yet appear stale to ksm_get_folio(),
1130 		 * since that allows for an unmapped ksm folio to be recognized
1131 		 * right up until it is freed; but the node is safe to remove.
1132 		 * This folio might be in an LRU cache waiting to be freed,
1133 		 * or it might be in the swapcache (perhaps under writeback),
1134 		 * or it might have been removed from swapcache a moment ago.
1135 		 */
1136 		folio_set_stable_node(folio, NULL);
1137 		remove_node_from_stable_tree(stable_node);
1138 		err = 0;
1139 	}
1140 
1141 	folio_unlock(folio);
1142 	folio_put(folio);
1143 	return err;
1144 }
1145 
1146 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
1147 				    struct rb_root *root)
1148 {
1149 	struct ksm_stable_node *dup;
1150 	struct hlist_node *hlist_safe;
1151 
1152 	if (!is_stable_node_chain(stable_node)) {
1153 		VM_BUG_ON(is_stable_node_dup(stable_node));
1154 		if (remove_stable_node(stable_node))
1155 			return true;
1156 		else
1157 			return false;
1158 	}
1159 
1160 	hlist_for_each_entry_safe(dup, hlist_safe,
1161 				  &stable_node->hlist, hlist_dup) {
1162 		VM_BUG_ON(!is_stable_node_dup(dup));
1163 		if (remove_stable_node(dup))
1164 			return true;
1165 	}
1166 	BUG_ON(!hlist_empty(&stable_node->hlist));
1167 	free_stable_node_chain(stable_node, root);
1168 	return false;
1169 }
1170 
1171 static int remove_all_stable_nodes(void)
1172 {
1173 	struct ksm_stable_node *stable_node, *next;
1174 	int nid;
1175 	int err = 0;
1176 
1177 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1178 		while (root_stable_tree[nid].rb_node) {
1179 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
1180 						struct ksm_stable_node, node);
1181 			if (remove_stable_node_chain(stable_node,
1182 						     root_stable_tree + nid)) {
1183 				err = -EBUSY;
1184 				break;	/* proceed to next nid */
1185 			}
1186 			cond_resched();
1187 		}
1188 	}
1189 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
1190 		if (remove_stable_node(stable_node))
1191 			err = -EBUSY;
1192 		cond_resched();
1193 	}
1194 	return err;
1195 }
1196 
1197 static int unmerge_and_remove_all_rmap_items(void)
1198 {
1199 	struct ksm_mm_slot *mm_slot;
1200 	struct mm_slot *slot;
1201 	struct mm_struct *mm;
1202 	struct vm_area_struct *vma;
1203 	int err = 0;
1204 
1205 	spin_lock(&ksm_mmlist_lock);
1206 	slot = list_entry(ksm_mm_head.slot.mm_node.next,
1207 			  struct mm_slot, mm_node);
1208 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1209 	spin_unlock(&ksm_mmlist_lock);
1210 
1211 	for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1212 	     mm_slot = ksm_scan.mm_slot) {
1213 		VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1214 
1215 		mm = mm_slot->slot.mm;
1216 		mmap_read_lock(mm);
1217 
1218 		/*
1219 		 * Exit right away if mm is exiting to avoid lockdep issue in
1220 		 * the maple tree
1221 		 */
1222 		if (ksm_test_exit(mm))
1223 			goto mm_exiting;
1224 
1225 		for_each_vma(vmi, vma) {
1226 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1227 				continue;
1228 			err = unmerge_ksm_pages(vma,
1229 						vma->vm_start, vma->vm_end, false);
1230 			if (err)
1231 				goto error;
1232 		}
1233 
1234 mm_exiting:
1235 		remove_trailing_rmap_items(&mm_slot->rmap_list);
1236 		mmap_read_unlock(mm);
1237 
1238 		spin_lock(&ksm_mmlist_lock);
1239 		slot = list_entry(mm_slot->slot.mm_node.next,
1240 				  struct mm_slot, mm_node);
1241 		ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1242 		if (ksm_test_exit(mm)) {
1243 			hash_del(&mm_slot->slot.hash);
1244 			list_del(&mm_slot->slot.mm_node);
1245 			spin_unlock(&ksm_mmlist_lock);
1246 
1247 			mm_slot_free(mm_slot_cache, mm_slot);
1248 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1249 			clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1250 			mmdrop(mm);
1251 		} else
1252 			spin_unlock(&ksm_mmlist_lock);
1253 	}
1254 
1255 	/* Clean up stable nodes, but don't worry if some are still busy */
1256 	remove_all_stable_nodes();
1257 	ksm_scan.seqnr = 0;
1258 	return 0;
1259 
1260 error:
1261 	mmap_read_unlock(mm);
1262 	spin_lock(&ksm_mmlist_lock);
1263 	ksm_scan.mm_slot = &ksm_mm_head;
1264 	spin_unlock(&ksm_mmlist_lock);
1265 	return err;
1266 }
1267 #endif /* CONFIG_SYSFS */
1268 
1269 static u32 calc_checksum(struct page *page)
1270 {
1271 	u32 checksum;
1272 	void *addr = kmap_local_page(page);
1273 	checksum = xxhash(addr, PAGE_SIZE, 0);
1274 	kunmap_local(addr);
1275 	return checksum;
1276 }
1277 
1278 static int write_protect_page(struct vm_area_struct *vma, struct folio *folio,
1279 			      pte_t *orig_pte)
1280 {
1281 	struct mm_struct *mm = vma->vm_mm;
1282 	DEFINE_FOLIO_VMA_WALK(pvmw, folio, vma, 0, 0);
1283 	int swapped;
1284 	int err = -EFAULT;
1285 	struct mmu_notifier_range range;
1286 	bool anon_exclusive;
1287 	pte_t entry;
1288 
1289 	if (WARN_ON_ONCE(folio_test_large(folio)))
1290 		return err;
1291 
1292 	pvmw.address = page_address_in_vma(&folio->page, vma);
1293 	if (pvmw.address == -EFAULT)
1294 		goto out;
1295 
1296 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1297 				pvmw.address + PAGE_SIZE);
1298 	mmu_notifier_invalidate_range_start(&range);
1299 
1300 	if (!page_vma_mapped_walk(&pvmw))
1301 		goto out_mn;
1302 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1303 		goto out_unlock;
1304 
1305 	anon_exclusive = PageAnonExclusive(&folio->page);
1306 	entry = ptep_get(pvmw.pte);
1307 	if (pte_write(entry) || pte_dirty(entry) ||
1308 	    anon_exclusive || mm_tlb_flush_pending(mm)) {
1309 		swapped = folio_test_swapcache(folio);
1310 		flush_cache_page(vma, pvmw.address, folio_pfn(folio));
1311 		/*
1312 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1313 		 * take any lock, therefore the check that we are going to make
1314 		 * with the pagecount against the mapcount is racy and
1315 		 * O_DIRECT can happen right after the check.
1316 		 * So we clear the pte and flush the tlb before the check
1317 		 * this assure us that no O_DIRECT can happen after the check
1318 		 * or in the middle of the check.
1319 		 *
1320 		 * No need to notify as we are downgrading page table to read
1321 		 * only not changing it to point to a new page.
1322 		 *
1323 		 * See Documentation/mm/mmu_notifier.rst
1324 		 */
1325 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1326 		/*
1327 		 * Check that no O_DIRECT or similar I/O is in progress on the
1328 		 * page
1329 		 */
1330 		if (folio_mapcount(folio) + 1 + swapped != folio_ref_count(folio)) {
1331 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1332 			goto out_unlock;
1333 		}
1334 
1335 		/* See folio_try_share_anon_rmap_pte(): clear PTE first. */
1336 		if (anon_exclusive &&
1337 		    folio_try_share_anon_rmap_pte(folio, &folio->page)) {
1338 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1339 			goto out_unlock;
1340 		}
1341 
1342 		if (pte_dirty(entry))
1343 			folio_mark_dirty(folio);
1344 		entry = pte_mkclean(entry);
1345 
1346 		if (pte_write(entry))
1347 			entry = pte_wrprotect(entry);
1348 
1349 		set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1350 	}
1351 	*orig_pte = entry;
1352 	err = 0;
1353 
1354 out_unlock:
1355 	page_vma_mapped_walk_done(&pvmw);
1356 out_mn:
1357 	mmu_notifier_invalidate_range_end(&range);
1358 out:
1359 	return err;
1360 }
1361 
1362 /**
1363  * replace_page - replace page in vma by new ksm page
1364  * @vma:      vma that holds the pte pointing to page
1365  * @page:     the page we are replacing by kpage
1366  * @kpage:    the ksm page we replace page by
1367  * @orig_pte: the original value of the pte
1368  *
1369  * Returns 0 on success, -EFAULT on failure.
1370  */
1371 static int replace_page(struct vm_area_struct *vma, struct page *page,
1372 			struct page *kpage, pte_t orig_pte)
1373 {
1374 	struct folio *kfolio = page_folio(kpage);
1375 	struct mm_struct *mm = vma->vm_mm;
1376 	struct folio *folio;
1377 	pmd_t *pmd;
1378 	pmd_t pmde;
1379 	pte_t *ptep;
1380 	pte_t newpte;
1381 	spinlock_t *ptl;
1382 	unsigned long addr;
1383 	int err = -EFAULT;
1384 	struct mmu_notifier_range range;
1385 
1386 	addr = page_address_in_vma(page, vma);
1387 	if (addr == -EFAULT)
1388 		goto out;
1389 
1390 	pmd = mm_find_pmd(mm, addr);
1391 	if (!pmd)
1392 		goto out;
1393 	/*
1394 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1395 	 * without holding anon_vma lock for write.  So when looking for a
1396 	 * genuine pmde (in which to find pte), test present and !THP together.
1397 	 */
1398 	pmde = pmdp_get_lockless(pmd);
1399 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1400 		goto out;
1401 
1402 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1403 				addr + PAGE_SIZE);
1404 	mmu_notifier_invalidate_range_start(&range);
1405 
1406 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1407 	if (!ptep)
1408 		goto out_mn;
1409 	if (!pte_same(ptep_get(ptep), orig_pte)) {
1410 		pte_unmap_unlock(ptep, ptl);
1411 		goto out_mn;
1412 	}
1413 	VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1414 	VM_BUG_ON_FOLIO(folio_test_anon(kfolio) && PageAnonExclusive(kpage),
1415 			kfolio);
1416 
1417 	/*
1418 	 * No need to check ksm_use_zero_pages here: we can only have a
1419 	 * zero_page here if ksm_use_zero_pages was enabled already.
1420 	 */
1421 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1422 		folio_get(kfolio);
1423 		folio_add_anon_rmap_pte(kfolio, kpage, vma, addr, RMAP_NONE);
1424 		newpte = mk_pte(kpage, vma->vm_page_prot);
1425 	} else {
1426 		/*
1427 		 * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1428 		 * we can easily track all KSM-placed zero pages by checking if
1429 		 * the dirty bit in zero page's PTE is set.
1430 		 */
1431 		newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1432 		ksm_zero_pages++;
1433 		mm->ksm_zero_pages++;
1434 		/*
1435 		 * We're replacing an anonymous page with a zero page, which is
1436 		 * not anonymous. We need to do proper accounting otherwise we
1437 		 * will get wrong values in /proc, and a BUG message in dmesg
1438 		 * when tearing down the mm.
1439 		 */
1440 		dec_mm_counter(mm, MM_ANONPAGES);
1441 	}
1442 
1443 	flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1444 	/*
1445 	 * No need to notify as we are replacing a read only page with another
1446 	 * read only page with the same content.
1447 	 *
1448 	 * See Documentation/mm/mmu_notifier.rst
1449 	 */
1450 	ptep_clear_flush(vma, addr, ptep);
1451 	set_pte_at(mm, addr, ptep, newpte);
1452 
1453 	folio = page_folio(page);
1454 	folio_remove_rmap_pte(folio, page, vma);
1455 	if (!folio_mapped(folio))
1456 		folio_free_swap(folio);
1457 	folio_put(folio);
1458 
1459 	pte_unmap_unlock(ptep, ptl);
1460 	err = 0;
1461 out_mn:
1462 	mmu_notifier_invalidate_range_end(&range);
1463 out:
1464 	return err;
1465 }
1466 
1467 /*
1468  * try_to_merge_one_page - take two pages and merge them into one
1469  * @vma: the vma that holds the pte pointing to page
1470  * @page: the PageAnon page that we want to replace with kpage
1471  * @kpage: the PageKsm page that we want to map instead of page,
1472  *         or NULL the first time when we want to use page as kpage.
1473  *
1474  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1475  */
1476 static int try_to_merge_one_page(struct vm_area_struct *vma,
1477 				 struct page *page, struct page *kpage)
1478 {
1479 	pte_t orig_pte = __pte(0);
1480 	int err = -EFAULT;
1481 
1482 	if (page == kpage)			/* ksm page forked */
1483 		return 0;
1484 
1485 	if (!PageAnon(page))
1486 		goto out;
1487 
1488 	/*
1489 	 * We need the page lock to read a stable PageSwapCache in
1490 	 * write_protect_page().  We use trylock_page() instead of
1491 	 * lock_page() because we don't want to wait here - we
1492 	 * prefer to continue scanning and merging different pages,
1493 	 * then come back to this page when it is unlocked.
1494 	 */
1495 	if (!trylock_page(page))
1496 		goto out;
1497 
1498 	if (PageTransCompound(page)) {
1499 		if (split_huge_page(page))
1500 			goto out_unlock;
1501 	}
1502 
1503 	/*
1504 	 * If this anonymous page is mapped only here, its pte may need
1505 	 * to be write-protected.  If it's mapped elsewhere, all of its
1506 	 * ptes are necessarily already write-protected.  But in either
1507 	 * case, we need to lock and check page_count is not raised.
1508 	 */
1509 	if (write_protect_page(vma, page_folio(page), &orig_pte) == 0) {
1510 		if (!kpage) {
1511 			/*
1512 			 * While we hold page lock, upgrade page from
1513 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1514 			 * stable_tree_insert() will update stable_node.
1515 			 */
1516 			folio_set_stable_node(page_folio(page), NULL);
1517 			mark_page_accessed(page);
1518 			/*
1519 			 * Page reclaim just frees a clean page with no dirty
1520 			 * ptes: make sure that the ksm page would be swapped.
1521 			 */
1522 			if (!PageDirty(page))
1523 				SetPageDirty(page);
1524 			err = 0;
1525 		} else if (pages_identical(page, kpage))
1526 			err = replace_page(vma, page, kpage, orig_pte);
1527 	}
1528 
1529 out_unlock:
1530 	unlock_page(page);
1531 out:
1532 	return err;
1533 }
1534 
1535 /*
1536  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1537  * but no new kernel page is allocated: kpage must already be a ksm page.
1538  *
1539  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1540  */
1541 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1542 				      struct page *page, struct page *kpage)
1543 {
1544 	struct mm_struct *mm = rmap_item->mm;
1545 	struct vm_area_struct *vma;
1546 	int err = -EFAULT;
1547 
1548 	mmap_read_lock(mm);
1549 	vma = find_mergeable_vma(mm, rmap_item->address);
1550 	if (!vma)
1551 		goto out;
1552 
1553 	err = try_to_merge_one_page(vma, page, kpage);
1554 	if (err)
1555 		goto out;
1556 
1557 	/* Unstable nid is in union with stable anon_vma: remove first */
1558 	remove_rmap_item_from_tree(rmap_item);
1559 
1560 	/* Must get reference to anon_vma while still holding mmap_lock */
1561 	rmap_item->anon_vma = vma->anon_vma;
1562 	get_anon_vma(vma->anon_vma);
1563 out:
1564 	mmap_read_unlock(mm);
1565 	trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1566 				rmap_item, mm, err);
1567 	return err;
1568 }
1569 
1570 /*
1571  * try_to_merge_two_pages - take two identical pages and prepare them
1572  * to be merged into one page.
1573  *
1574  * This function returns the kpage if we successfully merged two identical
1575  * pages into one ksm page, NULL otherwise.
1576  *
1577  * Note that this function upgrades page to ksm page: if one of the pages
1578  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1579  */
1580 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1581 					   struct page *page,
1582 					   struct ksm_rmap_item *tree_rmap_item,
1583 					   struct page *tree_page)
1584 {
1585 	int err;
1586 
1587 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1588 	if (!err) {
1589 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1590 							tree_page, page);
1591 		/*
1592 		 * If that fails, we have a ksm page with only one pte
1593 		 * pointing to it: so break it.
1594 		 */
1595 		if (err)
1596 			break_cow(rmap_item);
1597 	}
1598 	return err ? NULL : page;
1599 }
1600 
1601 static __always_inline
1602 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1603 {
1604 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1605 	/*
1606 	 * Check that at least one mapping still exists, otherwise
1607 	 * there's no much point to merge and share with this
1608 	 * stable_node, as the underlying tree_page of the other
1609 	 * sharer is going to be freed soon.
1610 	 */
1611 	return stable_node->rmap_hlist_len &&
1612 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1613 }
1614 
1615 static __always_inline
1616 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1617 {
1618 	return __is_page_sharing_candidate(stable_node, 0);
1619 }
1620 
1621 static struct folio *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1622 				     struct ksm_stable_node **_stable_node,
1623 				     struct rb_root *root,
1624 				     bool prune_stale_stable_nodes)
1625 {
1626 	struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1627 	struct hlist_node *hlist_safe;
1628 	struct folio *folio, *tree_folio = NULL;
1629 	int nr = 0;
1630 	int found_rmap_hlist_len;
1631 
1632 	if (!prune_stale_stable_nodes ||
1633 	    time_before(jiffies, stable_node->chain_prune_time +
1634 			msecs_to_jiffies(
1635 				ksm_stable_node_chains_prune_millisecs)))
1636 		prune_stale_stable_nodes = false;
1637 	else
1638 		stable_node->chain_prune_time = jiffies;
1639 
1640 	hlist_for_each_entry_safe(dup, hlist_safe,
1641 				  &stable_node->hlist, hlist_dup) {
1642 		cond_resched();
1643 		/*
1644 		 * We must walk all stable_node_dup to prune the stale
1645 		 * stable nodes during lookup.
1646 		 *
1647 		 * ksm_get_folio can drop the nodes from the
1648 		 * stable_node->hlist if they point to freed pages
1649 		 * (that's why we do a _safe walk). The "dup"
1650 		 * stable_node parameter itself will be freed from
1651 		 * under us if it returns NULL.
1652 		 */
1653 		folio = ksm_get_folio(dup, KSM_GET_FOLIO_NOLOCK);
1654 		if (!folio)
1655 			continue;
1656 		nr += 1;
1657 		if (is_page_sharing_candidate(dup)) {
1658 			if (!found ||
1659 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1660 				if (found)
1661 					folio_put(tree_folio);
1662 				found = dup;
1663 				found_rmap_hlist_len = found->rmap_hlist_len;
1664 				tree_folio = folio;
1665 
1666 				/* skip put_page for found dup */
1667 				if (!prune_stale_stable_nodes)
1668 					break;
1669 				continue;
1670 			}
1671 		}
1672 		folio_put(folio);
1673 	}
1674 
1675 	if (found) {
1676 		/*
1677 		 * nr is counting all dups in the chain only if
1678 		 * prune_stale_stable_nodes is true, otherwise we may
1679 		 * break the loop at nr == 1 even if there are
1680 		 * multiple entries.
1681 		 */
1682 		if (prune_stale_stable_nodes && nr == 1) {
1683 			/*
1684 			 * If there's not just one entry it would
1685 			 * corrupt memory, better BUG_ON. In KSM
1686 			 * context with no lock held it's not even
1687 			 * fatal.
1688 			 */
1689 			BUG_ON(stable_node->hlist.first->next);
1690 
1691 			/*
1692 			 * There's just one entry and it is below the
1693 			 * deduplication limit so drop the chain.
1694 			 */
1695 			rb_replace_node(&stable_node->node, &found->node,
1696 					root);
1697 			free_stable_node(stable_node);
1698 			ksm_stable_node_chains--;
1699 			ksm_stable_node_dups--;
1700 			/*
1701 			 * NOTE: the caller depends on the stable_node
1702 			 * to be equal to stable_node_dup if the chain
1703 			 * was collapsed.
1704 			 */
1705 			*_stable_node = found;
1706 			/*
1707 			 * Just for robustness, as stable_node is
1708 			 * otherwise left as a stable pointer, the
1709 			 * compiler shall optimize it away at build
1710 			 * time.
1711 			 */
1712 			stable_node = NULL;
1713 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1714 			   __is_page_sharing_candidate(found, 1)) {
1715 			/*
1716 			 * If the found stable_node dup can accept one
1717 			 * more future merge (in addition to the one
1718 			 * that is underway) and is not at the head of
1719 			 * the chain, put it there so next search will
1720 			 * be quicker in the !prune_stale_stable_nodes
1721 			 * case.
1722 			 *
1723 			 * NOTE: it would be inaccurate to use nr > 1
1724 			 * instead of checking the hlist.first pointer
1725 			 * directly, because in the
1726 			 * prune_stale_stable_nodes case "nr" isn't
1727 			 * the position of the found dup in the chain,
1728 			 * but the total number of dups in the chain.
1729 			 */
1730 			hlist_del(&found->hlist_dup);
1731 			hlist_add_head(&found->hlist_dup,
1732 				       &stable_node->hlist);
1733 		}
1734 	}
1735 
1736 	*_stable_node_dup = found;
1737 	return tree_folio;
1738 }
1739 
1740 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1741 					       struct rb_root *root)
1742 {
1743 	if (!is_stable_node_chain(stable_node))
1744 		return stable_node;
1745 	if (hlist_empty(&stable_node->hlist)) {
1746 		free_stable_node_chain(stable_node, root);
1747 		return NULL;
1748 	}
1749 	return hlist_entry(stable_node->hlist.first,
1750 			   typeof(*stable_node), hlist_dup);
1751 }
1752 
1753 /*
1754  * Like for ksm_get_folio, this function can free the *_stable_node and
1755  * *_stable_node_dup if the returned tree_page is NULL.
1756  *
1757  * It can also free and overwrite *_stable_node with the found
1758  * stable_node_dup if the chain is collapsed (in which case
1759  * *_stable_node will be equal to *_stable_node_dup like if the chain
1760  * never existed). It's up to the caller to verify tree_page is not
1761  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1762  *
1763  * *_stable_node_dup is really a second output parameter of this
1764  * function and will be overwritten in all cases, the caller doesn't
1765  * need to initialize it.
1766  */
1767 static struct folio *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1768 					 struct ksm_stable_node **_stable_node,
1769 					 struct rb_root *root,
1770 					 bool prune_stale_stable_nodes)
1771 {
1772 	struct ksm_stable_node *stable_node = *_stable_node;
1773 	if (!is_stable_node_chain(stable_node)) {
1774 		if (is_page_sharing_candidate(stable_node)) {
1775 			*_stable_node_dup = stable_node;
1776 			return ksm_get_folio(stable_node, KSM_GET_FOLIO_NOLOCK);
1777 		}
1778 		/*
1779 		 * _stable_node_dup set to NULL means the stable_node
1780 		 * reached the ksm_max_page_sharing limit.
1781 		 */
1782 		*_stable_node_dup = NULL;
1783 		return NULL;
1784 	}
1785 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1786 			       prune_stale_stable_nodes);
1787 }
1788 
1789 static __always_inline struct folio *chain_prune(struct ksm_stable_node **s_n_d,
1790 						 struct ksm_stable_node **s_n,
1791 						 struct rb_root *root)
1792 {
1793 	return __stable_node_chain(s_n_d, s_n, root, true);
1794 }
1795 
1796 static __always_inline struct folio *chain(struct ksm_stable_node **s_n_d,
1797 					   struct ksm_stable_node *s_n,
1798 					   struct rb_root *root)
1799 {
1800 	struct ksm_stable_node *old_stable_node = s_n;
1801 	struct folio *tree_folio;
1802 
1803 	tree_folio = __stable_node_chain(s_n_d, &s_n, root, false);
1804 	/* not pruning dups so s_n cannot have changed */
1805 	VM_BUG_ON(s_n != old_stable_node);
1806 	return tree_folio;
1807 }
1808 
1809 /*
1810  * stable_tree_search - search for page inside the stable tree
1811  *
1812  * This function checks if there is a page inside the stable tree
1813  * with identical content to the page that we are scanning right now.
1814  *
1815  * This function returns the stable tree node of identical content if found,
1816  * NULL otherwise.
1817  */
1818 static struct page *stable_tree_search(struct page *page)
1819 {
1820 	int nid;
1821 	struct rb_root *root;
1822 	struct rb_node **new;
1823 	struct rb_node *parent;
1824 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1825 	struct ksm_stable_node *page_node;
1826 	struct folio *folio;
1827 
1828 	folio = page_folio(page);
1829 	page_node = folio_stable_node(folio);
1830 	if (page_node && page_node->head != &migrate_nodes) {
1831 		/* ksm page forked */
1832 		folio_get(folio);
1833 		return &folio->page;
1834 	}
1835 
1836 	nid = get_kpfn_nid(folio_pfn(folio));
1837 	root = root_stable_tree + nid;
1838 again:
1839 	new = &root->rb_node;
1840 	parent = NULL;
1841 
1842 	while (*new) {
1843 		struct folio *tree_folio;
1844 		int ret;
1845 
1846 		cond_resched();
1847 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
1848 		stable_node_any = NULL;
1849 		tree_folio = chain_prune(&stable_node_dup, &stable_node, root);
1850 		/*
1851 		 * NOTE: stable_node may have been freed by
1852 		 * chain_prune() if the returned stable_node_dup is
1853 		 * not NULL. stable_node_dup may have been inserted in
1854 		 * the rbtree instead as a regular stable_node (in
1855 		 * order to collapse the stable_node chain if a single
1856 		 * stable_node dup was found in it). In such case the
1857 		 * stable_node is overwritten by the callee to point
1858 		 * to the stable_node_dup that was collapsed in the
1859 		 * stable rbtree and stable_node will be equal to
1860 		 * stable_node_dup like if the chain never existed.
1861 		 */
1862 		if (!stable_node_dup) {
1863 			/*
1864 			 * Either all stable_node dups were full in
1865 			 * this stable_node chain, or this chain was
1866 			 * empty and should be rb_erased.
1867 			 */
1868 			stable_node_any = stable_node_dup_any(stable_node,
1869 							      root);
1870 			if (!stable_node_any) {
1871 				/* rb_erase just run */
1872 				goto again;
1873 			}
1874 			/*
1875 			 * Take any of the stable_node dups page of
1876 			 * this stable_node chain to let the tree walk
1877 			 * continue. All KSM pages belonging to the
1878 			 * stable_node dups in a stable_node chain
1879 			 * have the same content and they're
1880 			 * write protected at all times. Any will work
1881 			 * fine to continue the walk.
1882 			 */
1883 			tree_folio = ksm_get_folio(stable_node_any,
1884 						   KSM_GET_FOLIO_NOLOCK);
1885 		}
1886 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1887 		if (!tree_folio) {
1888 			/*
1889 			 * If we walked over a stale stable_node,
1890 			 * ksm_get_folio() will call rb_erase() and it
1891 			 * may rebalance the tree from under us. So
1892 			 * restart the search from scratch. Returning
1893 			 * NULL would be safe too, but we'd generate
1894 			 * false negative insertions just because some
1895 			 * stable_node was stale.
1896 			 */
1897 			goto again;
1898 		}
1899 
1900 		ret = memcmp_pages(page, &tree_folio->page);
1901 		folio_put(tree_folio);
1902 
1903 		parent = *new;
1904 		if (ret < 0)
1905 			new = &parent->rb_left;
1906 		else if (ret > 0)
1907 			new = &parent->rb_right;
1908 		else {
1909 			if (page_node) {
1910 				VM_BUG_ON(page_node->head != &migrate_nodes);
1911 				/*
1912 				 * If the mapcount of our migrated KSM folio is
1913 				 * at most 1, we can merge it with another
1914 				 * KSM folio where we know that we have space
1915 				 * for one more mapping without exceeding the
1916 				 * ksm_max_page_sharing limit: see
1917 				 * chain_prune(). This way, we can avoid adding
1918 				 * this stable node to the chain.
1919 				 */
1920 				if (folio_mapcount(folio) > 1)
1921 					goto chain_append;
1922 			}
1923 
1924 			if (!stable_node_dup) {
1925 				/*
1926 				 * If the stable_node is a chain and
1927 				 * we got a payload match in memcmp
1928 				 * but we cannot merge the scanned
1929 				 * page in any of the existing
1930 				 * stable_node dups because they're
1931 				 * all full, we need to wait the
1932 				 * scanned page to find itself a match
1933 				 * in the unstable tree to create a
1934 				 * brand new KSM page to add later to
1935 				 * the dups of this stable_node.
1936 				 */
1937 				return NULL;
1938 			}
1939 
1940 			/*
1941 			 * Lock and unlock the stable_node's page (which
1942 			 * might already have been migrated) so that page
1943 			 * migration is sure to notice its raised count.
1944 			 * It would be more elegant to return stable_node
1945 			 * than kpage, but that involves more changes.
1946 			 */
1947 			tree_folio = ksm_get_folio(stable_node_dup,
1948 						   KSM_GET_FOLIO_TRYLOCK);
1949 
1950 			if (PTR_ERR(tree_folio) == -EBUSY)
1951 				return ERR_PTR(-EBUSY);
1952 
1953 			if (unlikely(!tree_folio))
1954 				/*
1955 				 * The tree may have been rebalanced,
1956 				 * so re-evaluate parent and new.
1957 				 */
1958 				goto again;
1959 			folio_unlock(tree_folio);
1960 
1961 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1962 			    NUMA(stable_node_dup->nid)) {
1963 				folio_put(tree_folio);
1964 				goto replace;
1965 			}
1966 			return &tree_folio->page;
1967 		}
1968 	}
1969 
1970 	if (!page_node)
1971 		return NULL;
1972 
1973 	list_del(&page_node->list);
1974 	DO_NUMA(page_node->nid = nid);
1975 	rb_link_node(&page_node->node, parent, new);
1976 	rb_insert_color(&page_node->node, root);
1977 out:
1978 	if (is_page_sharing_candidate(page_node)) {
1979 		folio_get(folio);
1980 		return &folio->page;
1981 	} else
1982 		return NULL;
1983 
1984 replace:
1985 	/*
1986 	 * If stable_node was a chain and chain_prune collapsed it,
1987 	 * stable_node has been updated to be the new regular
1988 	 * stable_node. A collapse of the chain is indistinguishable
1989 	 * from the case there was no chain in the stable
1990 	 * rbtree. Otherwise stable_node is the chain and
1991 	 * stable_node_dup is the dup to replace.
1992 	 */
1993 	if (stable_node_dup == stable_node) {
1994 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1995 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1996 		/* there is no chain */
1997 		if (page_node) {
1998 			VM_BUG_ON(page_node->head != &migrate_nodes);
1999 			list_del(&page_node->list);
2000 			DO_NUMA(page_node->nid = nid);
2001 			rb_replace_node(&stable_node_dup->node,
2002 					&page_node->node,
2003 					root);
2004 			if (is_page_sharing_candidate(page_node))
2005 				folio_get(folio);
2006 			else
2007 				folio = NULL;
2008 		} else {
2009 			rb_erase(&stable_node_dup->node, root);
2010 			folio = NULL;
2011 		}
2012 	} else {
2013 		VM_BUG_ON(!is_stable_node_chain(stable_node));
2014 		__stable_node_dup_del(stable_node_dup);
2015 		if (page_node) {
2016 			VM_BUG_ON(page_node->head != &migrate_nodes);
2017 			list_del(&page_node->list);
2018 			DO_NUMA(page_node->nid = nid);
2019 			stable_node_chain_add_dup(page_node, stable_node);
2020 			if (is_page_sharing_candidate(page_node))
2021 				folio_get(folio);
2022 			else
2023 				folio = NULL;
2024 		} else {
2025 			folio = NULL;
2026 		}
2027 	}
2028 	stable_node_dup->head = &migrate_nodes;
2029 	list_add(&stable_node_dup->list, stable_node_dup->head);
2030 	return &folio->page;
2031 
2032 chain_append:
2033 	/* stable_node_dup could be null if it reached the limit */
2034 	if (!stable_node_dup)
2035 		stable_node_dup = stable_node_any;
2036 	/*
2037 	 * If stable_node was a chain and chain_prune collapsed it,
2038 	 * stable_node has been updated to be the new regular
2039 	 * stable_node. A collapse of the chain is indistinguishable
2040 	 * from the case there was no chain in the stable
2041 	 * rbtree. Otherwise stable_node is the chain and
2042 	 * stable_node_dup is the dup to replace.
2043 	 */
2044 	if (stable_node_dup == stable_node) {
2045 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2046 		/* chain is missing so create it */
2047 		stable_node = alloc_stable_node_chain(stable_node_dup,
2048 						      root);
2049 		if (!stable_node)
2050 			return NULL;
2051 	}
2052 	/*
2053 	 * Add this stable_node dup that was
2054 	 * migrated to the stable_node chain
2055 	 * of the current nid for this page
2056 	 * content.
2057 	 */
2058 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2059 	VM_BUG_ON(page_node->head != &migrate_nodes);
2060 	list_del(&page_node->list);
2061 	DO_NUMA(page_node->nid = nid);
2062 	stable_node_chain_add_dup(page_node, stable_node);
2063 	goto out;
2064 }
2065 
2066 /*
2067  * stable_tree_insert - insert stable tree node pointing to new ksm page
2068  * into the stable tree.
2069  *
2070  * This function returns the stable tree node just allocated on success,
2071  * NULL otherwise.
2072  */
2073 static struct ksm_stable_node *stable_tree_insert(struct folio *kfolio)
2074 {
2075 	int nid;
2076 	unsigned long kpfn;
2077 	struct rb_root *root;
2078 	struct rb_node **new;
2079 	struct rb_node *parent;
2080 	struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
2081 	bool need_chain = false;
2082 
2083 	kpfn = folio_pfn(kfolio);
2084 	nid = get_kpfn_nid(kpfn);
2085 	root = root_stable_tree + nid;
2086 again:
2087 	parent = NULL;
2088 	new = &root->rb_node;
2089 
2090 	while (*new) {
2091 		struct folio *tree_folio;
2092 		int ret;
2093 
2094 		cond_resched();
2095 		stable_node = rb_entry(*new, struct ksm_stable_node, node);
2096 		stable_node_any = NULL;
2097 		tree_folio = chain(&stable_node_dup, stable_node, root);
2098 		if (!stable_node_dup) {
2099 			/*
2100 			 * Either all stable_node dups were full in
2101 			 * this stable_node chain, or this chain was
2102 			 * empty and should be rb_erased.
2103 			 */
2104 			stable_node_any = stable_node_dup_any(stable_node,
2105 							      root);
2106 			if (!stable_node_any) {
2107 				/* rb_erase just run */
2108 				goto again;
2109 			}
2110 			/*
2111 			 * Take any of the stable_node dups page of
2112 			 * this stable_node chain to let the tree walk
2113 			 * continue. All KSM pages belonging to the
2114 			 * stable_node dups in a stable_node chain
2115 			 * have the same content and they're
2116 			 * write protected at all times. Any will work
2117 			 * fine to continue the walk.
2118 			 */
2119 			tree_folio = ksm_get_folio(stable_node_any,
2120 						   KSM_GET_FOLIO_NOLOCK);
2121 		}
2122 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
2123 		if (!tree_folio) {
2124 			/*
2125 			 * If we walked over a stale stable_node,
2126 			 * ksm_get_folio() will call rb_erase() and it
2127 			 * may rebalance the tree from under us. So
2128 			 * restart the search from scratch. Returning
2129 			 * NULL would be safe too, but we'd generate
2130 			 * false negative insertions just because some
2131 			 * stable_node was stale.
2132 			 */
2133 			goto again;
2134 		}
2135 
2136 		ret = memcmp_pages(&kfolio->page, &tree_folio->page);
2137 		folio_put(tree_folio);
2138 
2139 		parent = *new;
2140 		if (ret < 0)
2141 			new = &parent->rb_left;
2142 		else if (ret > 0)
2143 			new = &parent->rb_right;
2144 		else {
2145 			need_chain = true;
2146 			break;
2147 		}
2148 	}
2149 
2150 	stable_node_dup = alloc_stable_node();
2151 	if (!stable_node_dup)
2152 		return NULL;
2153 
2154 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
2155 	stable_node_dup->kpfn = kpfn;
2156 	stable_node_dup->rmap_hlist_len = 0;
2157 	DO_NUMA(stable_node_dup->nid = nid);
2158 	if (!need_chain) {
2159 		rb_link_node(&stable_node_dup->node, parent, new);
2160 		rb_insert_color(&stable_node_dup->node, root);
2161 	} else {
2162 		if (!is_stable_node_chain(stable_node)) {
2163 			struct ksm_stable_node *orig = stable_node;
2164 			/* chain is missing so create it */
2165 			stable_node = alloc_stable_node_chain(orig, root);
2166 			if (!stable_node) {
2167 				free_stable_node(stable_node_dup);
2168 				return NULL;
2169 			}
2170 		}
2171 		stable_node_chain_add_dup(stable_node_dup, stable_node);
2172 	}
2173 
2174 	folio_set_stable_node(kfolio, stable_node_dup);
2175 
2176 	return stable_node_dup;
2177 }
2178 
2179 /*
2180  * unstable_tree_search_insert - search for identical page,
2181  * else insert rmap_item into the unstable tree.
2182  *
2183  * This function searches for a page in the unstable tree identical to the
2184  * page currently being scanned; and if no identical page is found in the
2185  * tree, we insert rmap_item as a new object into the unstable tree.
2186  *
2187  * This function returns pointer to rmap_item found to be identical
2188  * to the currently scanned page, NULL otherwise.
2189  *
2190  * This function does both searching and inserting, because they share
2191  * the same walking algorithm in an rbtree.
2192  */
2193 static
2194 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
2195 					      struct page *page,
2196 					      struct page **tree_pagep)
2197 {
2198 	struct rb_node **new;
2199 	struct rb_root *root;
2200 	struct rb_node *parent = NULL;
2201 	int nid;
2202 
2203 	nid = get_kpfn_nid(page_to_pfn(page));
2204 	root = root_unstable_tree + nid;
2205 	new = &root->rb_node;
2206 
2207 	while (*new) {
2208 		struct ksm_rmap_item *tree_rmap_item;
2209 		struct page *tree_page;
2210 		int ret;
2211 
2212 		cond_resched();
2213 		tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2214 		tree_page = get_mergeable_page(tree_rmap_item);
2215 		if (!tree_page)
2216 			return NULL;
2217 
2218 		/*
2219 		 * Don't substitute a ksm page for a forked page.
2220 		 */
2221 		if (page == tree_page) {
2222 			put_page(tree_page);
2223 			return NULL;
2224 		}
2225 
2226 		ret = memcmp_pages(page, tree_page);
2227 
2228 		parent = *new;
2229 		if (ret < 0) {
2230 			put_page(tree_page);
2231 			new = &parent->rb_left;
2232 		} else if (ret > 0) {
2233 			put_page(tree_page);
2234 			new = &parent->rb_right;
2235 		} else if (!ksm_merge_across_nodes &&
2236 			   page_to_nid(tree_page) != nid) {
2237 			/*
2238 			 * If tree_page has been migrated to another NUMA node,
2239 			 * it will be flushed out and put in the right unstable
2240 			 * tree next time: only merge with it when across_nodes.
2241 			 */
2242 			put_page(tree_page);
2243 			return NULL;
2244 		} else {
2245 			*tree_pagep = tree_page;
2246 			return tree_rmap_item;
2247 		}
2248 	}
2249 
2250 	rmap_item->address |= UNSTABLE_FLAG;
2251 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2252 	DO_NUMA(rmap_item->nid = nid);
2253 	rb_link_node(&rmap_item->node, parent, new);
2254 	rb_insert_color(&rmap_item->node, root);
2255 
2256 	ksm_pages_unshared++;
2257 	return NULL;
2258 }
2259 
2260 /*
2261  * stable_tree_append - add another rmap_item to the linked list of
2262  * rmap_items hanging off a given node of the stable tree, all sharing
2263  * the same ksm page.
2264  */
2265 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2266 			       struct ksm_stable_node *stable_node,
2267 			       bool max_page_sharing_bypass)
2268 {
2269 	/*
2270 	 * rmap won't find this mapping if we don't insert the
2271 	 * rmap_item in the right stable_node
2272 	 * duplicate. page_migration could break later if rmap breaks,
2273 	 * so we can as well crash here. We really need to check for
2274 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2275 	 * for other negative values as an underflow if detected here
2276 	 * for the first time (and not when decreasing rmap_hlist_len)
2277 	 * would be sign of memory corruption in the stable_node.
2278 	 */
2279 	BUG_ON(stable_node->rmap_hlist_len < 0);
2280 
2281 	stable_node->rmap_hlist_len++;
2282 	if (!max_page_sharing_bypass)
2283 		/* possibly non fatal but unexpected overflow, only warn */
2284 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2285 			     ksm_max_page_sharing);
2286 
2287 	rmap_item->head = stable_node;
2288 	rmap_item->address |= STABLE_FLAG;
2289 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2290 
2291 	if (rmap_item->hlist.next)
2292 		ksm_pages_sharing++;
2293 	else
2294 		ksm_pages_shared++;
2295 
2296 	rmap_item->mm->ksm_merging_pages++;
2297 }
2298 
2299 /*
2300  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2301  * if not, compare checksum to previous and if it's the same, see if page can
2302  * be inserted into the unstable tree, or merged with a page already there and
2303  * both transferred to the stable tree.
2304  *
2305  * @page: the page that we are searching identical page to.
2306  * @rmap_item: the reverse mapping into the virtual address of this page
2307  */
2308 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2309 {
2310 	struct mm_struct *mm = rmap_item->mm;
2311 	struct ksm_rmap_item *tree_rmap_item;
2312 	struct page *tree_page = NULL;
2313 	struct ksm_stable_node *stable_node;
2314 	struct page *kpage;
2315 	unsigned int checksum;
2316 	int err;
2317 	bool max_page_sharing_bypass = false;
2318 
2319 	stable_node = page_stable_node(page);
2320 	if (stable_node) {
2321 		if (stable_node->head != &migrate_nodes &&
2322 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2323 		    NUMA(stable_node->nid)) {
2324 			stable_node_dup_del(stable_node);
2325 			stable_node->head = &migrate_nodes;
2326 			list_add(&stable_node->list, stable_node->head);
2327 		}
2328 		if (stable_node->head != &migrate_nodes &&
2329 		    rmap_item->head == stable_node)
2330 			return;
2331 		/*
2332 		 * If it's a KSM fork, allow it to go over the sharing limit
2333 		 * without warnings.
2334 		 */
2335 		if (!is_page_sharing_candidate(stable_node))
2336 			max_page_sharing_bypass = true;
2337 	}
2338 
2339 	/* We first start with searching the page inside the stable tree */
2340 	kpage = stable_tree_search(page);
2341 	if (kpage == page && rmap_item->head == stable_node) {
2342 		put_page(kpage);
2343 		return;
2344 	}
2345 
2346 	remove_rmap_item_from_tree(rmap_item);
2347 
2348 	if (kpage) {
2349 		if (PTR_ERR(kpage) == -EBUSY)
2350 			return;
2351 
2352 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2353 		if (!err) {
2354 			/*
2355 			 * The page was successfully merged:
2356 			 * add its rmap_item to the stable tree.
2357 			 */
2358 			lock_page(kpage);
2359 			stable_tree_append(rmap_item, page_stable_node(kpage),
2360 					   max_page_sharing_bypass);
2361 			unlock_page(kpage);
2362 		}
2363 		put_page(kpage);
2364 		return;
2365 	}
2366 
2367 	/*
2368 	 * If the hash value of the page has changed from the last time
2369 	 * we calculated it, this page is changing frequently: therefore we
2370 	 * don't want to insert it in the unstable tree, and we don't want
2371 	 * to waste our time searching for something identical to it there.
2372 	 */
2373 	checksum = calc_checksum(page);
2374 	if (rmap_item->oldchecksum != checksum) {
2375 		rmap_item->oldchecksum = checksum;
2376 		return;
2377 	}
2378 
2379 	/*
2380 	 * Same checksum as an empty page. We attempt to merge it with the
2381 	 * appropriate zero page if the user enabled this via sysfs.
2382 	 */
2383 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2384 		struct vm_area_struct *vma;
2385 
2386 		mmap_read_lock(mm);
2387 		vma = find_mergeable_vma(mm, rmap_item->address);
2388 		if (vma) {
2389 			err = try_to_merge_one_page(vma, page,
2390 					ZERO_PAGE(rmap_item->address));
2391 			trace_ksm_merge_one_page(
2392 				page_to_pfn(ZERO_PAGE(rmap_item->address)),
2393 				rmap_item, mm, err);
2394 		} else {
2395 			/*
2396 			 * If the vma is out of date, we do not need to
2397 			 * continue.
2398 			 */
2399 			err = 0;
2400 		}
2401 		mmap_read_unlock(mm);
2402 		/*
2403 		 * In case of failure, the page was not really empty, so we
2404 		 * need to continue. Otherwise we're done.
2405 		 */
2406 		if (!err)
2407 			return;
2408 	}
2409 	tree_rmap_item =
2410 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2411 	if (tree_rmap_item) {
2412 		bool split;
2413 
2414 		kpage = try_to_merge_two_pages(rmap_item, page,
2415 						tree_rmap_item, tree_page);
2416 		/*
2417 		 * If both pages we tried to merge belong to the same compound
2418 		 * page, then we actually ended up increasing the reference
2419 		 * count of the same compound page twice, and split_huge_page
2420 		 * failed.
2421 		 * Here we set a flag if that happened, and we use it later to
2422 		 * try split_huge_page again. Since we call put_page right
2423 		 * afterwards, the reference count will be correct and
2424 		 * split_huge_page should succeed.
2425 		 */
2426 		split = PageTransCompound(page)
2427 			&& compound_head(page) == compound_head(tree_page);
2428 		put_page(tree_page);
2429 		if (kpage) {
2430 			/*
2431 			 * The pages were successfully merged: insert new
2432 			 * node in the stable tree and add both rmap_items.
2433 			 */
2434 			lock_page(kpage);
2435 			stable_node = stable_tree_insert(page_folio(kpage));
2436 			if (stable_node) {
2437 				stable_tree_append(tree_rmap_item, stable_node,
2438 						   false);
2439 				stable_tree_append(rmap_item, stable_node,
2440 						   false);
2441 			}
2442 			unlock_page(kpage);
2443 
2444 			/*
2445 			 * If we fail to insert the page into the stable tree,
2446 			 * we will have 2 virtual addresses that are pointing
2447 			 * to a ksm page left outside the stable tree,
2448 			 * in which case we need to break_cow on both.
2449 			 */
2450 			if (!stable_node) {
2451 				break_cow(tree_rmap_item);
2452 				break_cow(rmap_item);
2453 			}
2454 		} else if (split) {
2455 			/*
2456 			 * We are here if we tried to merge two pages and
2457 			 * failed because they both belonged to the same
2458 			 * compound page. We will split the page now, but no
2459 			 * merging will take place.
2460 			 * We do not want to add the cost of a full lock; if
2461 			 * the page is locked, it is better to skip it and
2462 			 * perhaps try again later.
2463 			 */
2464 			if (!trylock_page(page))
2465 				return;
2466 			split_huge_page(page);
2467 			unlock_page(page);
2468 		}
2469 	}
2470 }
2471 
2472 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2473 					    struct ksm_rmap_item **rmap_list,
2474 					    unsigned long addr)
2475 {
2476 	struct ksm_rmap_item *rmap_item;
2477 
2478 	while (*rmap_list) {
2479 		rmap_item = *rmap_list;
2480 		if ((rmap_item->address & PAGE_MASK) == addr)
2481 			return rmap_item;
2482 		if (rmap_item->address > addr)
2483 			break;
2484 		*rmap_list = rmap_item->rmap_list;
2485 		remove_rmap_item_from_tree(rmap_item);
2486 		free_rmap_item(rmap_item);
2487 	}
2488 
2489 	rmap_item = alloc_rmap_item();
2490 	if (rmap_item) {
2491 		/* It has already been zeroed */
2492 		rmap_item->mm = mm_slot->slot.mm;
2493 		rmap_item->mm->ksm_rmap_items++;
2494 		rmap_item->address = addr;
2495 		rmap_item->rmap_list = *rmap_list;
2496 		*rmap_list = rmap_item;
2497 	}
2498 	return rmap_item;
2499 }
2500 
2501 /*
2502  * Calculate skip age for the ksm page age. The age determines how often
2503  * de-duplicating has already been tried unsuccessfully. If the age is
2504  * smaller, the scanning of this page is skipped for less scans.
2505  *
2506  * @age: rmap_item age of page
2507  */
2508 static unsigned int skip_age(rmap_age_t age)
2509 {
2510 	if (age <= 3)
2511 		return 1;
2512 	if (age <= 5)
2513 		return 2;
2514 	if (age <= 8)
2515 		return 4;
2516 
2517 	return 8;
2518 }
2519 
2520 /*
2521  * Determines if a page should be skipped for the current scan.
2522  *
2523  * @page: page to check
2524  * @rmap_item: associated rmap_item of page
2525  */
2526 static bool should_skip_rmap_item(struct page *page,
2527 				  struct ksm_rmap_item *rmap_item)
2528 {
2529 	rmap_age_t age;
2530 
2531 	if (!ksm_smart_scan)
2532 		return false;
2533 
2534 	/*
2535 	 * Never skip pages that are already KSM; pages cmp_and_merge_page()
2536 	 * will essentially ignore them, but we still have to process them
2537 	 * properly.
2538 	 */
2539 	if (PageKsm(page))
2540 		return false;
2541 
2542 	age = rmap_item->age;
2543 	if (age != U8_MAX)
2544 		rmap_item->age++;
2545 
2546 	/*
2547 	 * Smaller ages are not skipped, they need to get a chance to go
2548 	 * through the different phases of the KSM merging.
2549 	 */
2550 	if (age < 3)
2551 		return false;
2552 
2553 	/*
2554 	 * Are we still allowed to skip? If not, then don't skip it
2555 	 * and determine how much more often we are allowed to skip next.
2556 	 */
2557 	if (!rmap_item->remaining_skips) {
2558 		rmap_item->remaining_skips = skip_age(age);
2559 		return false;
2560 	}
2561 
2562 	/* Skip this page */
2563 	ksm_pages_skipped++;
2564 	rmap_item->remaining_skips--;
2565 	remove_rmap_item_from_tree(rmap_item);
2566 	return true;
2567 }
2568 
2569 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2570 {
2571 	struct mm_struct *mm;
2572 	struct ksm_mm_slot *mm_slot;
2573 	struct mm_slot *slot;
2574 	struct vm_area_struct *vma;
2575 	struct ksm_rmap_item *rmap_item;
2576 	struct vma_iterator vmi;
2577 	int nid;
2578 
2579 	if (list_empty(&ksm_mm_head.slot.mm_node))
2580 		return NULL;
2581 
2582 	mm_slot = ksm_scan.mm_slot;
2583 	if (mm_slot == &ksm_mm_head) {
2584 		advisor_start_scan();
2585 		trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2586 
2587 		/*
2588 		 * A number of pages can hang around indefinitely in per-cpu
2589 		 * LRU cache, raised page count preventing write_protect_page
2590 		 * from merging them.  Though it doesn't really matter much,
2591 		 * it is puzzling to see some stuck in pages_volatile until
2592 		 * other activity jostles them out, and they also prevented
2593 		 * LTP's KSM test from succeeding deterministically; so drain
2594 		 * them here (here rather than on entry to ksm_do_scan(),
2595 		 * so we don't IPI too often when pages_to_scan is set low).
2596 		 */
2597 		lru_add_drain_all();
2598 
2599 		/*
2600 		 * Whereas stale stable_nodes on the stable_tree itself
2601 		 * get pruned in the regular course of stable_tree_search(),
2602 		 * those moved out to the migrate_nodes list can accumulate:
2603 		 * so prune them once before each full scan.
2604 		 */
2605 		if (!ksm_merge_across_nodes) {
2606 			struct ksm_stable_node *stable_node, *next;
2607 			struct folio *folio;
2608 
2609 			list_for_each_entry_safe(stable_node, next,
2610 						 &migrate_nodes, list) {
2611 				folio = ksm_get_folio(stable_node,
2612 						      KSM_GET_FOLIO_NOLOCK);
2613 				if (folio)
2614 					folio_put(folio);
2615 				cond_resched();
2616 			}
2617 		}
2618 
2619 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2620 			root_unstable_tree[nid] = RB_ROOT;
2621 
2622 		spin_lock(&ksm_mmlist_lock);
2623 		slot = list_entry(mm_slot->slot.mm_node.next,
2624 				  struct mm_slot, mm_node);
2625 		mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2626 		ksm_scan.mm_slot = mm_slot;
2627 		spin_unlock(&ksm_mmlist_lock);
2628 		/*
2629 		 * Although we tested list_empty() above, a racing __ksm_exit
2630 		 * of the last mm on the list may have removed it since then.
2631 		 */
2632 		if (mm_slot == &ksm_mm_head)
2633 			return NULL;
2634 next_mm:
2635 		ksm_scan.address = 0;
2636 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2637 	}
2638 
2639 	slot = &mm_slot->slot;
2640 	mm = slot->mm;
2641 	vma_iter_init(&vmi, mm, ksm_scan.address);
2642 
2643 	mmap_read_lock(mm);
2644 	if (ksm_test_exit(mm))
2645 		goto no_vmas;
2646 
2647 	for_each_vma(vmi, vma) {
2648 		if (!(vma->vm_flags & VM_MERGEABLE))
2649 			continue;
2650 		if (ksm_scan.address < vma->vm_start)
2651 			ksm_scan.address = vma->vm_start;
2652 		if (!vma->anon_vma)
2653 			ksm_scan.address = vma->vm_end;
2654 
2655 		while (ksm_scan.address < vma->vm_end) {
2656 			if (ksm_test_exit(mm))
2657 				break;
2658 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2659 			if (IS_ERR_OR_NULL(*page)) {
2660 				ksm_scan.address += PAGE_SIZE;
2661 				cond_resched();
2662 				continue;
2663 			}
2664 			if (is_zone_device_page(*page))
2665 				goto next_page;
2666 			if (PageAnon(*page)) {
2667 				flush_anon_page(vma, *page, ksm_scan.address);
2668 				flush_dcache_page(*page);
2669 				rmap_item = get_next_rmap_item(mm_slot,
2670 					ksm_scan.rmap_list, ksm_scan.address);
2671 				if (rmap_item) {
2672 					ksm_scan.rmap_list =
2673 							&rmap_item->rmap_list;
2674 
2675 					if (should_skip_rmap_item(*page, rmap_item))
2676 						goto next_page;
2677 
2678 					ksm_scan.address += PAGE_SIZE;
2679 				} else
2680 					put_page(*page);
2681 				mmap_read_unlock(mm);
2682 				return rmap_item;
2683 			}
2684 next_page:
2685 			put_page(*page);
2686 			ksm_scan.address += PAGE_SIZE;
2687 			cond_resched();
2688 		}
2689 	}
2690 
2691 	if (ksm_test_exit(mm)) {
2692 no_vmas:
2693 		ksm_scan.address = 0;
2694 		ksm_scan.rmap_list = &mm_slot->rmap_list;
2695 	}
2696 	/*
2697 	 * Nuke all the rmap_items that are above this current rmap:
2698 	 * because there were no VM_MERGEABLE vmas with such addresses.
2699 	 */
2700 	remove_trailing_rmap_items(ksm_scan.rmap_list);
2701 
2702 	spin_lock(&ksm_mmlist_lock);
2703 	slot = list_entry(mm_slot->slot.mm_node.next,
2704 			  struct mm_slot, mm_node);
2705 	ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2706 	if (ksm_scan.address == 0) {
2707 		/*
2708 		 * We've completed a full scan of all vmas, holding mmap_lock
2709 		 * throughout, and found no VM_MERGEABLE: so do the same as
2710 		 * __ksm_exit does to remove this mm from all our lists now.
2711 		 * This applies either when cleaning up after __ksm_exit
2712 		 * (but beware: we can reach here even before __ksm_exit),
2713 		 * or when all VM_MERGEABLE areas have been unmapped (and
2714 		 * mmap_lock then protects against race with MADV_MERGEABLE).
2715 		 */
2716 		hash_del(&mm_slot->slot.hash);
2717 		list_del(&mm_slot->slot.mm_node);
2718 		spin_unlock(&ksm_mmlist_lock);
2719 
2720 		mm_slot_free(mm_slot_cache, mm_slot);
2721 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2722 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2723 		mmap_read_unlock(mm);
2724 		mmdrop(mm);
2725 	} else {
2726 		mmap_read_unlock(mm);
2727 		/*
2728 		 * mmap_read_unlock(mm) first because after
2729 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2730 		 * already have been freed under us by __ksm_exit()
2731 		 * because the "mm_slot" is still hashed and
2732 		 * ksm_scan.mm_slot doesn't point to it anymore.
2733 		 */
2734 		spin_unlock(&ksm_mmlist_lock);
2735 	}
2736 
2737 	/* Repeat until we've completed scanning the whole list */
2738 	mm_slot = ksm_scan.mm_slot;
2739 	if (mm_slot != &ksm_mm_head)
2740 		goto next_mm;
2741 
2742 	advisor_stop_scan();
2743 
2744 	trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2745 	ksm_scan.seqnr++;
2746 	return NULL;
2747 }
2748 
2749 /**
2750  * ksm_do_scan  - the ksm scanner main worker function.
2751  * @scan_npages:  number of pages we want to scan before we return.
2752  */
2753 static void ksm_do_scan(unsigned int scan_npages)
2754 {
2755 	struct ksm_rmap_item *rmap_item;
2756 	struct page *page;
2757 	unsigned int npages = scan_npages;
2758 
2759 	while (npages-- && likely(!freezing(current))) {
2760 		cond_resched();
2761 		rmap_item = scan_get_next_rmap_item(&page);
2762 		if (!rmap_item)
2763 			return;
2764 		cmp_and_merge_page(page, rmap_item);
2765 		put_page(page);
2766 	}
2767 
2768 	ksm_pages_scanned += scan_npages - npages;
2769 }
2770 
2771 static int ksmd_should_run(void)
2772 {
2773 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2774 }
2775 
2776 static int ksm_scan_thread(void *nothing)
2777 {
2778 	unsigned int sleep_ms;
2779 
2780 	set_freezable();
2781 	set_user_nice(current, 5);
2782 
2783 	while (!kthread_should_stop()) {
2784 		mutex_lock(&ksm_thread_mutex);
2785 		wait_while_offlining();
2786 		if (ksmd_should_run())
2787 			ksm_do_scan(ksm_thread_pages_to_scan);
2788 		mutex_unlock(&ksm_thread_mutex);
2789 
2790 		if (ksmd_should_run()) {
2791 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2792 			wait_event_freezable_timeout(ksm_iter_wait,
2793 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2794 				msecs_to_jiffies(sleep_ms));
2795 		} else {
2796 			wait_event_freezable(ksm_thread_wait,
2797 				ksmd_should_run() || kthread_should_stop());
2798 		}
2799 	}
2800 	return 0;
2801 }
2802 
2803 static void __ksm_add_vma(struct vm_area_struct *vma)
2804 {
2805 	unsigned long vm_flags = vma->vm_flags;
2806 
2807 	if (vm_flags & VM_MERGEABLE)
2808 		return;
2809 
2810 	if (vma_ksm_compatible(vma))
2811 		vm_flags_set(vma, VM_MERGEABLE);
2812 }
2813 
2814 static int __ksm_del_vma(struct vm_area_struct *vma)
2815 {
2816 	int err;
2817 
2818 	if (!(vma->vm_flags & VM_MERGEABLE))
2819 		return 0;
2820 
2821 	if (vma->anon_vma) {
2822 		err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end, true);
2823 		if (err)
2824 			return err;
2825 	}
2826 
2827 	vm_flags_clear(vma, VM_MERGEABLE);
2828 	return 0;
2829 }
2830 /**
2831  * ksm_add_vma - Mark vma as mergeable if compatible
2832  *
2833  * @vma:  Pointer to vma
2834  */
2835 void ksm_add_vma(struct vm_area_struct *vma)
2836 {
2837 	struct mm_struct *mm = vma->vm_mm;
2838 
2839 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2840 		__ksm_add_vma(vma);
2841 }
2842 
2843 static void ksm_add_vmas(struct mm_struct *mm)
2844 {
2845 	struct vm_area_struct *vma;
2846 
2847 	VMA_ITERATOR(vmi, mm, 0);
2848 	for_each_vma(vmi, vma)
2849 		__ksm_add_vma(vma);
2850 }
2851 
2852 static int ksm_del_vmas(struct mm_struct *mm)
2853 {
2854 	struct vm_area_struct *vma;
2855 	int err;
2856 
2857 	VMA_ITERATOR(vmi, mm, 0);
2858 	for_each_vma(vmi, vma) {
2859 		err = __ksm_del_vma(vma);
2860 		if (err)
2861 			return err;
2862 	}
2863 	return 0;
2864 }
2865 
2866 /**
2867  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2868  *                        compatible VMA's
2869  *
2870  * @mm:  Pointer to mm
2871  *
2872  * Returns 0 on success, otherwise error code
2873  */
2874 int ksm_enable_merge_any(struct mm_struct *mm)
2875 {
2876 	int err;
2877 
2878 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2879 		return 0;
2880 
2881 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2882 		err = __ksm_enter(mm);
2883 		if (err)
2884 			return err;
2885 	}
2886 
2887 	set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2888 	ksm_add_vmas(mm);
2889 
2890 	return 0;
2891 }
2892 
2893 /**
2894  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2895  *			   previously enabled via ksm_enable_merge_any().
2896  *
2897  * Disabling merging implies unmerging any merged pages, like setting
2898  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2899  * merging on all compatible VMA's remains enabled.
2900  *
2901  * @mm: Pointer to mm
2902  *
2903  * Returns 0 on success, otherwise error code
2904  */
2905 int ksm_disable_merge_any(struct mm_struct *mm)
2906 {
2907 	int err;
2908 
2909 	if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2910 		return 0;
2911 
2912 	err = ksm_del_vmas(mm);
2913 	if (err) {
2914 		ksm_add_vmas(mm);
2915 		return err;
2916 	}
2917 
2918 	clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2919 	return 0;
2920 }
2921 
2922 int ksm_disable(struct mm_struct *mm)
2923 {
2924 	mmap_assert_write_locked(mm);
2925 
2926 	if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2927 		return 0;
2928 	if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2929 		return ksm_disable_merge_any(mm);
2930 	return ksm_del_vmas(mm);
2931 }
2932 
2933 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2934 		unsigned long end, int advice, unsigned long *vm_flags)
2935 {
2936 	struct mm_struct *mm = vma->vm_mm;
2937 	int err;
2938 
2939 	switch (advice) {
2940 	case MADV_MERGEABLE:
2941 		if (vma->vm_flags & VM_MERGEABLE)
2942 			return 0;
2943 		if (!vma_ksm_compatible(vma))
2944 			return 0;
2945 
2946 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2947 			err = __ksm_enter(mm);
2948 			if (err)
2949 				return err;
2950 		}
2951 
2952 		*vm_flags |= VM_MERGEABLE;
2953 		break;
2954 
2955 	case MADV_UNMERGEABLE:
2956 		if (!(*vm_flags & VM_MERGEABLE))
2957 			return 0;		/* just ignore the advice */
2958 
2959 		if (vma->anon_vma) {
2960 			err = unmerge_ksm_pages(vma, start, end, true);
2961 			if (err)
2962 				return err;
2963 		}
2964 
2965 		*vm_flags &= ~VM_MERGEABLE;
2966 		break;
2967 	}
2968 
2969 	return 0;
2970 }
2971 EXPORT_SYMBOL_GPL(ksm_madvise);
2972 
2973 int __ksm_enter(struct mm_struct *mm)
2974 {
2975 	struct ksm_mm_slot *mm_slot;
2976 	struct mm_slot *slot;
2977 	int needs_wakeup;
2978 
2979 	mm_slot = mm_slot_alloc(mm_slot_cache);
2980 	if (!mm_slot)
2981 		return -ENOMEM;
2982 
2983 	slot = &mm_slot->slot;
2984 
2985 	/* Check ksm_run too?  Would need tighter locking */
2986 	needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2987 
2988 	spin_lock(&ksm_mmlist_lock);
2989 	mm_slot_insert(mm_slots_hash, mm, slot);
2990 	/*
2991 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2992 	 * insert just behind the scanning cursor, to let the area settle
2993 	 * down a little; when fork is followed by immediate exec, we don't
2994 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2995 	 *
2996 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2997 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2998 	 * missed: then we might as well insert at the end of the list.
2999 	 */
3000 	if (ksm_run & KSM_RUN_UNMERGE)
3001 		list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
3002 	else
3003 		list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
3004 	spin_unlock(&ksm_mmlist_lock);
3005 
3006 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
3007 	mmgrab(mm);
3008 
3009 	if (needs_wakeup)
3010 		wake_up_interruptible(&ksm_thread_wait);
3011 
3012 	trace_ksm_enter(mm);
3013 	return 0;
3014 }
3015 
3016 void __ksm_exit(struct mm_struct *mm)
3017 {
3018 	struct ksm_mm_slot *mm_slot;
3019 	struct mm_slot *slot;
3020 	int easy_to_free = 0;
3021 
3022 	/*
3023 	 * This process is exiting: if it's straightforward (as is the
3024 	 * case when ksmd was never running), free mm_slot immediately.
3025 	 * But if it's at the cursor or has rmap_items linked to it, use
3026 	 * mmap_lock to synchronize with any break_cows before pagetables
3027 	 * are freed, and leave the mm_slot on the list for ksmd to free.
3028 	 * Beware: ksm may already have noticed it exiting and freed the slot.
3029 	 */
3030 
3031 	spin_lock(&ksm_mmlist_lock);
3032 	slot = mm_slot_lookup(mm_slots_hash, mm);
3033 	mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
3034 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
3035 		if (!mm_slot->rmap_list) {
3036 			hash_del(&slot->hash);
3037 			list_del(&slot->mm_node);
3038 			easy_to_free = 1;
3039 		} else {
3040 			list_move(&slot->mm_node,
3041 				  &ksm_scan.mm_slot->slot.mm_node);
3042 		}
3043 	}
3044 	spin_unlock(&ksm_mmlist_lock);
3045 
3046 	if (easy_to_free) {
3047 		mm_slot_free(mm_slot_cache, mm_slot);
3048 		clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
3049 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
3050 		mmdrop(mm);
3051 	} else if (mm_slot) {
3052 		mmap_write_lock(mm);
3053 		mmap_write_unlock(mm);
3054 	}
3055 
3056 	trace_ksm_exit(mm);
3057 }
3058 
3059 struct folio *ksm_might_need_to_copy(struct folio *folio,
3060 			struct vm_area_struct *vma, unsigned long addr)
3061 {
3062 	struct page *page = folio_page(folio, 0);
3063 	struct anon_vma *anon_vma = folio_anon_vma(folio);
3064 	struct folio *new_folio;
3065 
3066 	if (folio_test_large(folio))
3067 		return folio;
3068 
3069 	if (folio_test_ksm(folio)) {
3070 		if (folio_stable_node(folio) &&
3071 		    !(ksm_run & KSM_RUN_UNMERGE))
3072 			return folio;	/* no need to copy it */
3073 	} else if (!anon_vma) {
3074 		return folio;		/* no need to copy it */
3075 	} else if (folio->index == linear_page_index(vma, addr) &&
3076 			anon_vma->root == vma->anon_vma->root) {
3077 		return folio;		/* still no need to copy it */
3078 	}
3079 	if (PageHWPoison(page))
3080 		return ERR_PTR(-EHWPOISON);
3081 	if (!folio_test_uptodate(folio))
3082 		return folio;		/* let do_swap_page report the error */
3083 
3084 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
3085 	if (new_folio &&
3086 	    mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL)) {
3087 		folio_put(new_folio);
3088 		new_folio = NULL;
3089 	}
3090 	if (new_folio) {
3091 		if (copy_mc_user_highpage(folio_page(new_folio, 0), page,
3092 								addr, vma)) {
3093 			folio_put(new_folio);
3094 			memory_failure_queue(folio_pfn(folio), 0);
3095 			return ERR_PTR(-EHWPOISON);
3096 		}
3097 		folio_set_dirty(new_folio);
3098 		__folio_mark_uptodate(new_folio);
3099 		__folio_set_locked(new_folio);
3100 #ifdef CONFIG_SWAP
3101 		count_vm_event(KSM_SWPIN_COPY);
3102 #endif
3103 	}
3104 
3105 	return new_folio;
3106 }
3107 
3108 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
3109 {
3110 	struct ksm_stable_node *stable_node;
3111 	struct ksm_rmap_item *rmap_item;
3112 	int search_new_forks = 0;
3113 
3114 	VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
3115 
3116 	/*
3117 	 * Rely on the page lock to protect against concurrent modifications
3118 	 * to that page's node of the stable tree.
3119 	 */
3120 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3121 
3122 	stable_node = folio_stable_node(folio);
3123 	if (!stable_node)
3124 		return;
3125 again:
3126 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3127 		struct anon_vma *anon_vma = rmap_item->anon_vma;
3128 		struct anon_vma_chain *vmac;
3129 		struct vm_area_struct *vma;
3130 
3131 		cond_resched();
3132 		if (!anon_vma_trylock_read(anon_vma)) {
3133 			if (rwc->try_lock) {
3134 				rwc->contended = true;
3135 				return;
3136 			}
3137 			anon_vma_lock_read(anon_vma);
3138 		}
3139 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
3140 					       0, ULONG_MAX) {
3141 			unsigned long addr;
3142 
3143 			cond_resched();
3144 			vma = vmac->vma;
3145 
3146 			/* Ignore the stable/unstable/sqnr flags */
3147 			addr = rmap_item->address & PAGE_MASK;
3148 
3149 			if (addr < vma->vm_start || addr >= vma->vm_end)
3150 				continue;
3151 			/*
3152 			 * Initially we examine only the vma which covers this
3153 			 * rmap_item; but later, if there is still work to do,
3154 			 * we examine covering vmas in other mms: in case they
3155 			 * were forked from the original since ksmd passed.
3156 			 */
3157 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
3158 				continue;
3159 
3160 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
3161 				continue;
3162 
3163 			if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
3164 				anon_vma_unlock_read(anon_vma);
3165 				return;
3166 			}
3167 			if (rwc->done && rwc->done(folio)) {
3168 				anon_vma_unlock_read(anon_vma);
3169 				return;
3170 			}
3171 		}
3172 		anon_vma_unlock_read(anon_vma);
3173 	}
3174 	if (!search_new_forks++)
3175 		goto again;
3176 }
3177 
3178 #ifdef CONFIG_MEMORY_FAILURE
3179 /*
3180  * Collect processes when the error hit an ksm page.
3181  */
3182 void collect_procs_ksm(struct folio *folio, struct page *page,
3183 		struct list_head *to_kill, int force_early)
3184 {
3185 	struct ksm_stable_node *stable_node;
3186 	struct ksm_rmap_item *rmap_item;
3187 	struct vm_area_struct *vma;
3188 	struct task_struct *tsk;
3189 
3190 	stable_node = folio_stable_node(folio);
3191 	if (!stable_node)
3192 		return;
3193 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
3194 		struct anon_vma *av = rmap_item->anon_vma;
3195 
3196 		anon_vma_lock_read(av);
3197 		rcu_read_lock();
3198 		for_each_process(tsk) {
3199 			struct anon_vma_chain *vmac;
3200 			unsigned long addr;
3201 			struct task_struct *t =
3202 				task_early_kill(tsk, force_early);
3203 			if (!t)
3204 				continue;
3205 			anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
3206 						       ULONG_MAX)
3207 			{
3208 				vma = vmac->vma;
3209 				if (vma->vm_mm == t->mm) {
3210 					addr = rmap_item->address & PAGE_MASK;
3211 					add_to_kill_ksm(t, page, vma, to_kill,
3212 							addr);
3213 				}
3214 			}
3215 		}
3216 		rcu_read_unlock();
3217 		anon_vma_unlock_read(av);
3218 	}
3219 }
3220 #endif
3221 
3222 #ifdef CONFIG_MIGRATION
3223 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
3224 {
3225 	struct ksm_stable_node *stable_node;
3226 
3227 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3228 	VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
3229 	VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
3230 
3231 	stable_node = folio_stable_node(folio);
3232 	if (stable_node) {
3233 		VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
3234 		stable_node->kpfn = folio_pfn(newfolio);
3235 		/*
3236 		 * newfolio->mapping was set in advance; now we need smp_wmb()
3237 		 * to make sure that the new stable_node->kpfn is visible
3238 		 * to ksm_get_folio() before it can see that folio->mapping
3239 		 * has gone stale (or that folio_test_swapcache has been cleared).
3240 		 */
3241 		smp_wmb();
3242 		folio_set_stable_node(folio, NULL);
3243 	}
3244 }
3245 #endif /* CONFIG_MIGRATION */
3246 
3247 #ifdef CONFIG_MEMORY_HOTREMOVE
3248 static void wait_while_offlining(void)
3249 {
3250 	while (ksm_run & KSM_RUN_OFFLINE) {
3251 		mutex_unlock(&ksm_thread_mutex);
3252 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
3253 			    TASK_UNINTERRUPTIBLE);
3254 		mutex_lock(&ksm_thread_mutex);
3255 	}
3256 }
3257 
3258 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
3259 					 unsigned long start_pfn,
3260 					 unsigned long end_pfn)
3261 {
3262 	if (stable_node->kpfn >= start_pfn &&
3263 	    stable_node->kpfn < end_pfn) {
3264 		/*
3265 		 * Don't ksm_get_folio, page has already gone:
3266 		 * which is why we keep kpfn instead of page*
3267 		 */
3268 		remove_node_from_stable_tree(stable_node);
3269 		return true;
3270 	}
3271 	return false;
3272 }
3273 
3274 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
3275 					   unsigned long start_pfn,
3276 					   unsigned long end_pfn,
3277 					   struct rb_root *root)
3278 {
3279 	struct ksm_stable_node *dup;
3280 	struct hlist_node *hlist_safe;
3281 
3282 	if (!is_stable_node_chain(stable_node)) {
3283 		VM_BUG_ON(is_stable_node_dup(stable_node));
3284 		return stable_node_dup_remove_range(stable_node, start_pfn,
3285 						    end_pfn);
3286 	}
3287 
3288 	hlist_for_each_entry_safe(dup, hlist_safe,
3289 				  &stable_node->hlist, hlist_dup) {
3290 		VM_BUG_ON(!is_stable_node_dup(dup));
3291 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3292 	}
3293 	if (hlist_empty(&stable_node->hlist)) {
3294 		free_stable_node_chain(stable_node, root);
3295 		return true; /* notify caller that tree was rebalanced */
3296 	} else
3297 		return false;
3298 }
3299 
3300 static void ksm_check_stable_tree(unsigned long start_pfn,
3301 				  unsigned long end_pfn)
3302 {
3303 	struct ksm_stable_node *stable_node, *next;
3304 	struct rb_node *node;
3305 	int nid;
3306 
3307 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3308 		node = rb_first(root_stable_tree + nid);
3309 		while (node) {
3310 			stable_node = rb_entry(node, struct ksm_stable_node, node);
3311 			if (stable_node_chain_remove_range(stable_node,
3312 							   start_pfn, end_pfn,
3313 							   root_stable_tree +
3314 							   nid))
3315 				node = rb_first(root_stable_tree + nid);
3316 			else
3317 				node = rb_next(node);
3318 			cond_resched();
3319 		}
3320 	}
3321 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3322 		if (stable_node->kpfn >= start_pfn &&
3323 		    stable_node->kpfn < end_pfn)
3324 			remove_node_from_stable_tree(stable_node);
3325 		cond_resched();
3326 	}
3327 }
3328 
3329 static int ksm_memory_callback(struct notifier_block *self,
3330 			       unsigned long action, void *arg)
3331 {
3332 	struct memory_notify *mn = arg;
3333 
3334 	switch (action) {
3335 	case MEM_GOING_OFFLINE:
3336 		/*
3337 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3338 		 * and remove_all_stable_nodes() while memory is going offline:
3339 		 * it is unsafe for them to touch the stable tree at this time.
3340 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
3341 		 * which do not need the ksm_thread_mutex are all safe.
3342 		 */
3343 		mutex_lock(&ksm_thread_mutex);
3344 		ksm_run |= KSM_RUN_OFFLINE;
3345 		mutex_unlock(&ksm_thread_mutex);
3346 		break;
3347 
3348 	case MEM_OFFLINE:
3349 		/*
3350 		 * Most of the work is done by page migration; but there might
3351 		 * be a few stable_nodes left over, still pointing to struct
3352 		 * pages which have been offlined: prune those from the tree,
3353 		 * otherwise ksm_get_folio() might later try to access a
3354 		 * non-existent struct page.
3355 		 */
3356 		ksm_check_stable_tree(mn->start_pfn,
3357 				      mn->start_pfn + mn->nr_pages);
3358 		fallthrough;
3359 	case MEM_CANCEL_OFFLINE:
3360 		mutex_lock(&ksm_thread_mutex);
3361 		ksm_run &= ~KSM_RUN_OFFLINE;
3362 		mutex_unlock(&ksm_thread_mutex);
3363 
3364 		smp_mb();	/* wake_up_bit advises this */
3365 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3366 		break;
3367 	}
3368 	return NOTIFY_OK;
3369 }
3370 #else
3371 static void wait_while_offlining(void)
3372 {
3373 }
3374 #endif /* CONFIG_MEMORY_HOTREMOVE */
3375 
3376 #ifdef CONFIG_PROC_FS
3377 long ksm_process_profit(struct mm_struct *mm)
3378 {
3379 	return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3380 		mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3381 }
3382 #endif /* CONFIG_PROC_FS */
3383 
3384 #ifdef CONFIG_SYSFS
3385 /*
3386  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3387  */
3388 
3389 #define KSM_ATTR_RO(_name) \
3390 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3391 #define KSM_ATTR(_name) \
3392 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3393 
3394 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3395 				    struct kobj_attribute *attr, char *buf)
3396 {
3397 	return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3398 }
3399 
3400 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3401 				     struct kobj_attribute *attr,
3402 				     const char *buf, size_t count)
3403 {
3404 	unsigned int msecs;
3405 	int err;
3406 
3407 	err = kstrtouint(buf, 10, &msecs);
3408 	if (err)
3409 		return -EINVAL;
3410 
3411 	ksm_thread_sleep_millisecs = msecs;
3412 	wake_up_interruptible(&ksm_iter_wait);
3413 
3414 	return count;
3415 }
3416 KSM_ATTR(sleep_millisecs);
3417 
3418 static ssize_t pages_to_scan_show(struct kobject *kobj,
3419 				  struct kobj_attribute *attr, char *buf)
3420 {
3421 	return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3422 }
3423 
3424 static ssize_t pages_to_scan_store(struct kobject *kobj,
3425 				   struct kobj_attribute *attr,
3426 				   const char *buf, size_t count)
3427 {
3428 	unsigned int nr_pages;
3429 	int err;
3430 
3431 	if (ksm_advisor != KSM_ADVISOR_NONE)
3432 		return -EINVAL;
3433 
3434 	err = kstrtouint(buf, 10, &nr_pages);
3435 	if (err)
3436 		return -EINVAL;
3437 
3438 	ksm_thread_pages_to_scan = nr_pages;
3439 
3440 	return count;
3441 }
3442 KSM_ATTR(pages_to_scan);
3443 
3444 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3445 			char *buf)
3446 {
3447 	return sysfs_emit(buf, "%lu\n", ksm_run);
3448 }
3449 
3450 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3451 			 const char *buf, size_t count)
3452 {
3453 	unsigned int flags;
3454 	int err;
3455 
3456 	err = kstrtouint(buf, 10, &flags);
3457 	if (err)
3458 		return -EINVAL;
3459 	if (flags > KSM_RUN_UNMERGE)
3460 		return -EINVAL;
3461 
3462 	/*
3463 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3464 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3465 	 * breaking COW to free the pages_shared (but leaves mm_slots
3466 	 * on the list for when ksmd may be set running again).
3467 	 */
3468 
3469 	mutex_lock(&ksm_thread_mutex);
3470 	wait_while_offlining();
3471 	if (ksm_run != flags) {
3472 		ksm_run = flags;
3473 		if (flags & KSM_RUN_UNMERGE) {
3474 			set_current_oom_origin();
3475 			err = unmerge_and_remove_all_rmap_items();
3476 			clear_current_oom_origin();
3477 			if (err) {
3478 				ksm_run = KSM_RUN_STOP;
3479 				count = err;
3480 			}
3481 		}
3482 	}
3483 	mutex_unlock(&ksm_thread_mutex);
3484 
3485 	if (flags & KSM_RUN_MERGE)
3486 		wake_up_interruptible(&ksm_thread_wait);
3487 
3488 	return count;
3489 }
3490 KSM_ATTR(run);
3491 
3492 #ifdef CONFIG_NUMA
3493 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3494 				       struct kobj_attribute *attr, char *buf)
3495 {
3496 	return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3497 }
3498 
3499 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3500 				   struct kobj_attribute *attr,
3501 				   const char *buf, size_t count)
3502 {
3503 	int err;
3504 	unsigned long knob;
3505 
3506 	err = kstrtoul(buf, 10, &knob);
3507 	if (err)
3508 		return err;
3509 	if (knob > 1)
3510 		return -EINVAL;
3511 
3512 	mutex_lock(&ksm_thread_mutex);
3513 	wait_while_offlining();
3514 	if (ksm_merge_across_nodes != knob) {
3515 		if (ksm_pages_shared || remove_all_stable_nodes())
3516 			err = -EBUSY;
3517 		else if (root_stable_tree == one_stable_tree) {
3518 			struct rb_root *buf;
3519 			/*
3520 			 * This is the first time that we switch away from the
3521 			 * default of merging across nodes: must now allocate
3522 			 * a buffer to hold as many roots as may be needed.
3523 			 * Allocate stable and unstable together:
3524 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
3525 			 */
3526 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3527 				      GFP_KERNEL);
3528 			/* Let us assume that RB_ROOT is NULL is zero */
3529 			if (!buf)
3530 				err = -ENOMEM;
3531 			else {
3532 				root_stable_tree = buf;
3533 				root_unstable_tree = buf + nr_node_ids;
3534 				/* Stable tree is empty but not the unstable */
3535 				root_unstable_tree[0] = one_unstable_tree[0];
3536 			}
3537 		}
3538 		if (!err) {
3539 			ksm_merge_across_nodes = knob;
3540 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3541 		}
3542 	}
3543 	mutex_unlock(&ksm_thread_mutex);
3544 
3545 	return err ? err : count;
3546 }
3547 KSM_ATTR(merge_across_nodes);
3548 #endif
3549 
3550 static ssize_t use_zero_pages_show(struct kobject *kobj,
3551 				   struct kobj_attribute *attr, char *buf)
3552 {
3553 	return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3554 }
3555 static ssize_t use_zero_pages_store(struct kobject *kobj,
3556 				   struct kobj_attribute *attr,
3557 				   const char *buf, size_t count)
3558 {
3559 	int err;
3560 	bool value;
3561 
3562 	err = kstrtobool(buf, &value);
3563 	if (err)
3564 		return -EINVAL;
3565 
3566 	ksm_use_zero_pages = value;
3567 
3568 	return count;
3569 }
3570 KSM_ATTR(use_zero_pages);
3571 
3572 static ssize_t max_page_sharing_show(struct kobject *kobj,
3573 				     struct kobj_attribute *attr, char *buf)
3574 {
3575 	return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3576 }
3577 
3578 static ssize_t max_page_sharing_store(struct kobject *kobj,
3579 				      struct kobj_attribute *attr,
3580 				      const char *buf, size_t count)
3581 {
3582 	int err;
3583 	int knob;
3584 
3585 	err = kstrtoint(buf, 10, &knob);
3586 	if (err)
3587 		return err;
3588 	/*
3589 	 * When a KSM page is created it is shared by 2 mappings. This
3590 	 * being a signed comparison, it implicitly verifies it's not
3591 	 * negative.
3592 	 */
3593 	if (knob < 2)
3594 		return -EINVAL;
3595 
3596 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3597 		return count;
3598 
3599 	mutex_lock(&ksm_thread_mutex);
3600 	wait_while_offlining();
3601 	if (ksm_max_page_sharing != knob) {
3602 		if (ksm_pages_shared || remove_all_stable_nodes())
3603 			err = -EBUSY;
3604 		else
3605 			ksm_max_page_sharing = knob;
3606 	}
3607 	mutex_unlock(&ksm_thread_mutex);
3608 
3609 	return err ? err : count;
3610 }
3611 KSM_ATTR(max_page_sharing);
3612 
3613 static ssize_t pages_scanned_show(struct kobject *kobj,
3614 				  struct kobj_attribute *attr, char *buf)
3615 {
3616 	return sysfs_emit(buf, "%lu\n", ksm_pages_scanned);
3617 }
3618 KSM_ATTR_RO(pages_scanned);
3619 
3620 static ssize_t pages_shared_show(struct kobject *kobj,
3621 				 struct kobj_attribute *attr, char *buf)
3622 {
3623 	return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3624 }
3625 KSM_ATTR_RO(pages_shared);
3626 
3627 static ssize_t pages_sharing_show(struct kobject *kobj,
3628 				  struct kobj_attribute *attr, char *buf)
3629 {
3630 	return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3631 }
3632 KSM_ATTR_RO(pages_sharing);
3633 
3634 static ssize_t pages_unshared_show(struct kobject *kobj,
3635 				   struct kobj_attribute *attr, char *buf)
3636 {
3637 	return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3638 }
3639 KSM_ATTR_RO(pages_unshared);
3640 
3641 static ssize_t pages_volatile_show(struct kobject *kobj,
3642 				   struct kobj_attribute *attr, char *buf)
3643 {
3644 	long ksm_pages_volatile;
3645 
3646 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3647 				- ksm_pages_sharing - ksm_pages_unshared;
3648 	/*
3649 	 * It was not worth any locking to calculate that statistic,
3650 	 * but it might therefore sometimes be negative: conceal that.
3651 	 */
3652 	if (ksm_pages_volatile < 0)
3653 		ksm_pages_volatile = 0;
3654 	return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3655 }
3656 KSM_ATTR_RO(pages_volatile);
3657 
3658 static ssize_t pages_skipped_show(struct kobject *kobj,
3659 				  struct kobj_attribute *attr, char *buf)
3660 {
3661 	return sysfs_emit(buf, "%lu\n", ksm_pages_skipped);
3662 }
3663 KSM_ATTR_RO(pages_skipped);
3664 
3665 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3666 				struct kobj_attribute *attr, char *buf)
3667 {
3668 	return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3669 }
3670 KSM_ATTR_RO(ksm_zero_pages);
3671 
3672 static ssize_t general_profit_show(struct kobject *kobj,
3673 				   struct kobj_attribute *attr, char *buf)
3674 {
3675 	long general_profit;
3676 
3677 	general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3678 				ksm_rmap_items * sizeof(struct ksm_rmap_item);
3679 
3680 	return sysfs_emit(buf, "%ld\n", general_profit);
3681 }
3682 KSM_ATTR_RO(general_profit);
3683 
3684 static ssize_t stable_node_dups_show(struct kobject *kobj,
3685 				     struct kobj_attribute *attr, char *buf)
3686 {
3687 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3688 }
3689 KSM_ATTR_RO(stable_node_dups);
3690 
3691 static ssize_t stable_node_chains_show(struct kobject *kobj,
3692 				       struct kobj_attribute *attr, char *buf)
3693 {
3694 	return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3695 }
3696 KSM_ATTR_RO(stable_node_chains);
3697 
3698 static ssize_t
3699 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3700 					struct kobj_attribute *attr,
3701 					char *buf)
3702 {
3703 	return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3704 }
3705 
3706 static ssize_t
3707 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3708 					 struct kobj_attribute *attr,
3709 					 const char *buf, size_t count)
3710 {
3711 	unsigned int msecs;
3712 	int err;
3713 
3714 	err = kstrtouint(buf, 10, &msecs);
3715 	if (err)
3716 		return -EINVAL;
3717 
3718 	ksm_stable_node_chains_prune_millisecs = msecs;
3719 
3720 	return count;
3721 }
3722 KSM_ATTR(stable_node_chains_prune_millisecs);
3723 
3724 static ssize_t full_scans_show(struct kobject *kobj,
3725 			       struct kobj_attribute *attr, char *buf)
3726 {
3727 	return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3728 }
3729 KSM_ATTR_RO(full_scans);
3730 
3731 static ssize_t smart_scan_show(struct kobject *kobj,
3732 			       struct kobj_attribute *attr, char *buf)
3733 {
3734 	return sysfs_emit(buf, "%u\n", ksm_smart_scan);
3735 }
3736 
3737 static ssize_t smart_scan_store(struct kobject *kobj,
3738 				struct kobj_attribute *attr,
3739 				const char *buf, size_t count)
3740 {
3741 	int err;
3742 	bool value;
3743 
3744 	err = kstrtobool(buf, &value);
3745 	if (err)
3746 		return -EINVAL;
3747 
3748 	ksm_smart_scan = value;
3749 	return count;
3750 }
3751 KSM_ATTR(smart_scan);
3752 
3753 static ssize_t advisor_mode_show(struct kobject *kobj,
3754 				 struct kobj_attribute *attr, char *buf)
3755 {
3756 	const char *output;
3757 
3758 	if (ksm_advisor == KSM_ADVISOR_NONE)
3759 		output = "[none] scan-time";
3760 	else if (ksm_advisor == KSM_ADVISOR_SCAN_TIME)
3761 		output = "none [scan-time]";
3762 
3763 	return sysfs_emit(buf, "%s\n", output);
3764 }
3765 
3766 static ssize_t advisor_mode_store(struct kobject *kobj,
3767 				  struct kobj_attribute *attr, const char *buf,
3768 				  size_t count)
3769 {
3770 	enum ksm_advisor_type curr_advisor = ksm_advisor;
3771 
3772 	if (sysfs_streq("scan-time", buf))
3773 		ksm_advisor = KSM_ADVISOR_SCAN_TIME;
3774 	else if (sysfs_streq("none", buf))
3775 		ksm_advisor = KSM_ADVISOR_NONE;
3776 	else
3777 		return -EINVAL;
3778 
3779 	/* Set advisor default values */
3780 	if (curr_advisor != ksm_advisor)
3781 		set_advisor_defaults();
3782 
3783 	return count;
3784 }
3785 KSM_ATTR(advisor_mode);
3786 
3787 static ssize_t advisor_max_cpu_show(struct kobject *kobj,
3788 				    struct kobj_attribute *attr, char *buf)
3789 {
3790 	return sysfs_emit(buf, "%u\n", ksm_advisor_max_cpu);
3791 }
3792 
3793 static ssize_t advisor_max_cpu_store(struct kobject *kobj,
3794 				     struct kobj_attribute *attr,
3795 				     const char *buf, size_t count)
3796 {
3797 	int err;
3798 	unsigned long value;
3799 
3800 	err = kstrtoul(buf, 10, &value);
3801 	if (err)
3802 		return -EINVAL;
3803 
3804 	ksm_advisor_max_cpu = value;
3805 	return count;
3806 }
3807 KSM_ATTR(advisor_max_cpu);
3808 
3809 static ssize_t advisor_min_pages_to_scan_show(struct kobject *kobj,
3810 					struct kobj_attribute *attr, char *buf)
3811 {
3812 	return sysfs_emit(buf, "%lu\n", ksm_advisor_min_pages_to_scan);
3813 }
3814 
3815 static ssize_t advisor_min_pages_to_scan_store(struct kobject *kobj,
3816 					struct kobj_attribute *attr,
3817 					const char *buf, size_t count)
3818 {
3819 	int err;
3820 	unsigned long value;
3821 
3822 	err = kstrtoul(buf, 10, &value);
3823 	if (err)
3824 		return -EINVAL;
3825 
3826 	ksm_advisor_min_pages_to_scan = value;
3827 	return count;
3828 }
3829 KSM_ATTR(advisor_min_pages_to_scan);
3830 
3831 static ssize_t advisor_max_pages_to_scan_show(struct kobject *kobj,
3832 					struct kobj_attribute *attr, char *buf)
3833 {
3834 	return sysfs_emit(buf, "%lu\n", ksm_advisor_max_pages_to_scan);
3835 }
3836 
3837 static ssize_t advisor_max_pages_to_scan_store(struct kobject *kobj,
3838 					struct kobj_attribute *attr,
3839 					const char *buf, size_t count)
3840 {
3841 	int err;
3842 	unsigned long value;
3843 
3844 	err = kstrtoul(buf, 10, &value);
3845 	if (err)
3846 		return -EINVAL;
3847 
3848 	ksm_advisor_max_pages_to_scan = value;
3849 	return count;
3850 }
3851 KSM_ATTR(advisor_max_pages_to_scan);
3852 
3853 static ssize_t advisor_target_scan_time_show(struct kobject *kobj,
3854 					     struct kobj_attribute *attr, char *buf)
3855 {
3856 	return sysfs_emit(buf, "%lu\n", ksm_advisor_target_scan_time);
3857 }
3858 
3859 static ssize_t advisor_target_scan_time_store(struct kobject *kobj,
3860 					      struct kobj_attribute *attr,
3861 					      const char *buf, size_t count)
3862 {
3863 	int err;
3864 	unsigned long value;
3865 
3866 	err = kstrtoul(buf, 10, &value);
3867 	if (err)
3868 		return -EINVAL;
3869 	if (value < 1)
3870 		return -EINVAL;
3871 
3872 	ksm_advisor_target_scan_time = value;
3873 	return count;
3874 }
3875 KSM_ATTR(advisor_target_scan_time);
3876 
3877 static struct attribute *ksm_attrs[] = {
3878 	&sleep_millisecs_attr.attr,
3879 	&pages_to_scan_attr.attr,
3880 	&run_attr.attr,
3881 	&pages_scanned_attr.attr,
3882 	&pages_shared_attr.attr,
3883 	&pages_sharing_attr.attr,
3884 	&pages_unshared_attr.attr,
3885 	&pages_volatile_attr.attr,
3886 	&pages_skipped_attr.attr,
3887 	&ksm_zero_pages_attr.attr,
3888 	&full_scans_attr.attr,
3889 #ifdef CONFIG_NUMA
3890 	&merge_across_nodes_attr.attr,
3891 #endif
3892 	&max_page_sharing_attr.attr,
3893 	&stable_node_chains_attr.attr,
3894 	&stable_node_dups_attr.attr,
3895 	&stable_node_chains_prune_millisecs_attr.attr,
3896 	&use_zero_pages_attr.attr,
3897 	&general_profit_attr.attr,
3898 	&smart_scan_attr.attr,
3899 	&advisor_mode_attr.attr,
3900 	&advisor_max_cpu_attr.attr,
3901 	&advisor_min_pages_to_scan_attr.attr,
3902 	&advisor_max_pages_to_scan_attr.attr,
3903 	&advisor_target_scan_time_attr.attr,
3904 	NULL,
3905 };
3906 
3907 static const struct attribute_group ksm_attr_group = {
3908 	.attrs = ksm_attrs,
3909 	.name = "ksm",
3910 };
3911 #endif /* CONFIG_SYSFS */
3912 
3913 static int __init ksm_init(void)
3914 {
3915 	struct task_struct *ksm_thread;
3916 	int err;
3917 
3918 	/* The correct value depends on page size and endianness */
3919 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3920 	/* Default to false for backwards compatibility */
3921 	ksm_use_zero_pages = false;
3922 
3923 	err = ksm_slab_init();
3924 	if (err)
3925 		goto out;
3926 
3927 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3928 	if (IS_ERR(ksm_thread)) {
3929 		pr_err("ksm: creating kthread failed\n");
3930 		err = PTR_ERR(ksm_thread);
3931 		goto out_free;
3932 	}
3933 
3934 #ifdef CONFIG_SYSFS
3935 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3936 	if (err) {
3937 		pr_err("ksm: register sysfs failed\n");
3938 		kthread_stop(ksm_thread);
3939 		goto out_free;
3940 	}
3941 #else
3942 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3943 
3944 #endif /* CONFIG_SYSFS */
3945 
3946 #ifdef CONFIG_MEMORY_HOTREMOVE
3947 	/* There is no significance to this priority 100 */
3948 	hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3949 #endif
3950 	return 0;
3951 
3952 out_free:
3953 	ksm_slab_free();
3954 out:
3955 	return err;
3956 }
3957 subsys_initcall(ksm_init);
3958