xref: /linux/mm/ksm.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/mmu_notifier.h>
33 #include <linux/ksm.h>
34 
35 #include <asm/tlbflush.h>
36 
37 /*
38  * A few notes about the KSM scanning process,
39  * to make it easier to understand the data structures below:
40  *
41  * In order to reduce excessive scanning, KSM sorts the memory pages by their
42  * contents into a data structure that holds pointers to the pages' locations.
43  *
44  * Since the contents of the pages may change at any moment, KSM cannot just
45  * insert the pages into a normal sorted tree and expect it to find anything.
46  * Therefore KSM uses two data structures - the stable and the unstable tree.
47  *
48  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
49  * by their contents.  Because each such page is write-protected, searching on
50  * this tree is fully assured to be working (except when pages are unmapped),
51  * and therefore this tree is called the stable tree.
52  *
53  * In addition to the stable tree, KSM uses a second data structure called the
54  * unstable tree: this tree holds pointers to pages which have been found to
55  * be "unchanged for a period of time".  The unstable tree sorts these pages
56  * by their contents, but since they are not write-protected, KSM cannot rely
57  * upon the unstable tree to work correctly - the unstable tree is liable to
58  * be corrupted as its contents are modified, and so it is called unstable.
59  *
60  * KSM solves this problem by several techniques:
61  *
62  * 1) The unstable tree is flushed every time KSM completes scanning all
63  *    memory areas, and then the tree is rebuilt again from the beginning.
64  * 2) KSM will only insert into the unstable tree, pages whose hash value
65  *    has not changed since the previous scan of all memory areas.
66  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
67  *    colors of the nodes and not on their contents, assuring that even when
68  *    the tree gets "corrupted" it won't get out of balance, so scanning time
69  *    remains the same (also, searching and inserting nodes in an rbtree uses
70  *    the same algorithm, so we have no overhead when we flush and rebuild).
71  * 4) KSM never flushes the stable tree, which means that even if it were to
72  *    take 10 attempts to find a page in the unstable tree, once it is found,
73  *    it is secured in the stable tree.  (When we scan a new page, we first
74  *    compare it against the stable tree, and then against the unstable tree.)
75  */
76 
77 /**
78  * struct mm_slot - ksm information per mm that is being scanned
79  * @link: link to the mm_slots hash list
80  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
81  * @rmap_list: head for this mm_slot's list of rmap_items
82  * @mm: the mm that this information is valid for
83  */
84 struct mm_slot {
85 	struct hlist_node link;
86 	struct list_head mm_list;
87 	struct list_head rmap_list;
88 	struct mm_struct *mm;
89 };
90 
91 /**
92  * struct ksm_scan - cursor for scanning
93  * @mm_slot: the current mm_slot we are scanning
94  * @address: the next address inside that to be scanned
95  * @rmap_item: the current rmap that we are scanning inside the rmap_list
96  * @seqnr: count of completed full scans (needed when removing unstable node)
97  *
98  * There is only the one ksm_scan instance of this cursor structure.
99  */
100 struct ksm_scan {
101 	struct mm_slot *mm_slot;
102 	unsigned long address;
103 	struct rmap_item *rmap_item;
104 	unsigned long seqnr;
105 };
106 
107 /**
108  * struct rmap_item - reverse mapping item for virtual addresses
109  * @link: link into mm_slot's rmap_list (rmap_list is per mm)
110  * @mm: the memory structure this rmap_item is pointing into
111  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
112  * @oldchecksum: previous checksum of the page at that virtual address
113  * @node: rb_node of this rmap_item in either unstable or stable tree
114  * @next: next rmap_item hanging off the same node of the stable tree
115  * @prev: previous rmap_item hanging off the same node of the stable tree
116  */
117 struct rmap_item {
118 	struct list_head link;
119 	struct mm_struct *mm;
120 	unsigned long address;		/* + low bits used for flags below */
121 	union {
122 		unsigned int oldchecksum;		/* when unstable */
123 		struct rmap_item *next;			/* when stable */
124 	};
125 	union {
126 		struct rb_node node;			/* when tree node */
127 		struct rmap_item *prev;			/* in stable list */
128 	};
129 };
130 
131 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
132 #define NODE_FLAG	0x100	/* is a node of unstable or stable tree */
133 #define STABLE_FLAG	0x200	/* is a node or list item of stable tree */
134 
135 /* The stable and unstable tree heads */
136 static struct rb_root root_stable_tree = RB_ROOT;
137 static struct rb_root root_unstable_tree = RB_ROOT;
138 
139 #define MM_SLOTS_HASH_HEADS 1024
140 static struct hlist_head *mm_slots_hash;
141 
142 static struct mm_slot ksm_mm_head = {
143 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
144 };
145 static struct ksm_scan ksm_scan = {
146 	.mm_slot = &ksm_mm_head,
147 };
148 
149 static struct kmem_cache *rmap_item_cache;
150 static struct kmem_cache *mm_slot_cache;
151 
152 /* The number of nodes in the stable tree */
153 static unsigned long ksm_pages_shared;
154 
155 /* The number of page slots additionally sharing those nodes */
156 static unsigned long ksm_pages_sharing;
157 
158 /* The number of nodes in the unstable tree */
159 static unsigned long ksm_pages_unshared;
160 
161 /* The number of rmap_items in use: to calculate pages_volatile */
162 static unsigned long ksm_rmap_items;
163 
164 /* Limit on the number of unswappable pages used */
165 static unsigned long ksm_max_kernel_pages = 2000;
166 
167 /* Number of pages ksmd should scan in one batch */
168 static unsigned int ksm_thread_pages_to_scan = 200;
169 
170 /* Milliseconds ksmd should sleep between batches */
171 static unsigned int ksm_thread_sleep_millisecs = 20;
172 
173 #define KSM_RUN_STOP	0
174 #define KSM_RUN_MERGE	1
175 #define KSM_RUN_UNMERGE	2
176 static unsigned int ksm_run = KSM_RUN_MERGE;
177 
178 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
179 static DEFINE_MUTEX(ksm_thread_mutex);
180 static DEFINE_SPINLOCK(ksm_mmlist_lock);
181 
182 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
183 		sizeof(struct __struct), __alignof__(struct __struct),\
184 		(__flags), NULL)
185 
186 static int __init ksm_slab_init(void)
187 {
188 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
189 	if (!rmap_item_cache)
190 		goto out;
191 
192 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
193 	if (!mm_slot_cache)
194 		goto out_free;
195 
196 	return 0;
197 
198 out_free:
199 	kmem_cache_destroy(rmap_item_cache);
200 out:
201 	return -ENOMEM;
202 }
203 
204 static void __init ksm_slab_free(void)
205 {
206 	kmem_cache_destroy(mm_slot_cache);
207 	kmem_cache_destroy(rmap_item_cache);
208 	mm_slot_cache = NULL;
209 }
210 
211 static inline struct rmap_item *alloc_rmap_item(void)
212 {
213 	struct rmap_item *rmap_item;
214 
215 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
216 	if (rmap_item)
217 		ksm_rmap_items++;
218 	return rmap_item;
219 }
220 
221 static inline void free_rmap_item(struct rmap_item *rmap_item)
222 {
223 	ksm_rmap_items--;
224 	rmap_item->mm = NULL;	/* debug safety */
225 	kmem_cache_free(rmap_item_cache, rmap_item);
226 }
227 
228 static inline struct mm_slot *alloc_mm_slot(void)
229 {
230 	if (!mm_slot_cache)	/* initialization failed */
231 		return NULL;
232 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
233 }
234 
235 static inline void free_mm_slot(struct mm_slot *mm_slot)
236 {
237 	kmem_cache_free(mm_slot_cache, mm_slot);
238 }
239 
240 static int __init mm_slots_hash_init(void)
241 {
242 	mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
243 				GFP_KERNEL);
244 	if (!mm_slots_hash)
245 		return -ENOMEM;
246 	return 0;
247 }
248 
249 static void __init mm_slots_hash_free(void)
250 {
251 	kfree(mm_slots_hash);
252 }
253 
254 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
255 {
256 	struct mm_slot *mm_slot;
257 	struct hlist_head *bucket;
258 	struct hlist_node *node;
259 
260 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
261 				% MM_SLOTS_HASH_HEADS];
262 	hlist_for_each_entry(mm_slot, node, bucket, link) {
263 		if (mm == mm_slot->mm)
264 			return mm_slot;
265 	}
266 	return NULL;
267 }
268 
269 static void insert_to_mm_slots_hash(struct mm_struct *mm,
270 				    struct mm_slot *mm_slot)
271 {
272 	struct hlist_head *bucket;
273 
274 	bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
275 				% MM_SLOTS_HASH_HEADS];
276 	mm_slot->mm = mm;
277 	INIT_LIST_HEAD(&mm_slot->rmap_list);
278 	hlist_add_head(&mm_slot->link, bucket);
279 }
280 
281 static inline int in_stable_tree(struct rmap_item *rmap_item)
282 {
283 	return rmap_item->address & STABLE_FLAG;
284 }
285 
286 /*
287  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
288  * page tables after it has passed through ksm_exit() - which, if necessary,
289  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
290  * a special flag: they can just back out as soon as mm_users goes to zero.
291  * ksm_test_exit() is used throughout to make this test for exit: in some
292  * places for correctness, in some places just to avoid unnecessary work.
293  */
294 static inline bool ksm_test_exit(struct mm_struct *mm)
295 {
296 	return atomic_read(&mm->mm_users) == 0;
297 }
298 
299 /*
300  * We use break_ksm to break COW on a ksm page: it's a stripped down
301  *
302  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
303  *		put_page(page);
304  *
305  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
306  * in case the application has unmapped and remapped mm,addr meanwhile.
307  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
308  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
309  */
310 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
311 {
312 	struct page *page;
313 	int ret = 0;
314 
315 	do {
316 		cond_resched();
317 		page = follow_page(vma, addr, FOLL_GET);
318 		if (!page)
319 			break;
320 		if (PageKsm(page))
321 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
322 							FAULT_FLAG_WRITE);
323 		else
324 			ret = VM_FAULT_WRITE;
325 		put_page(page);
326 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
327 	/*
328 	 * We must loop because handle_mm_fault() may back out if there's
329 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
330 	 *
331 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
332 	 * COW has been broken, even if the vma does not permit VM_WRITE;
333 	 * but note that a concurrent fault might break PageKsm for us.
334 	 *
335 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
336 	 * backing file, which also invalidates anonymous pages: that's
337 	 * okay, that truncation will have unmapped the PageKsm for us.
338 	 *
339 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
340 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
341 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
342 	 * to user; and ksmd, having no mm, would never be chosen for that.
343 	 *
344 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
345 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
346 	 * even ksmd can fail in this way - though it's usually breaking ksm
347 	 * just to undo a merge it made a moment before, so unlikely to oom.
348 	 *
349 	 * That's a pity: we might therefore have more kernel pages allocated
350 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
351 	 * will retry to break_cow on each pass, so should recover the page
352 	 * in due course.  The important thing is to not let VM_MERGEABLE
353 	 * be cleared while any such pages might remain in the area.
354 	 */
355 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
356 }
357 
358 static void break_cow(struct mm_struct *mm, unsigned long addr)
359 {
360 	struct vm_area_struct *vma;
361 
362 	down_read(&mm->mmap_sem);
363 	if (ksm_test_exit(mm))
364 		goto out;
365 	vma = find_vma(mm, addr);
366 	if (!vma || vma->vm_start > addr)
367 		goto out;
368 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
369 		goto out;
370 	break_ksm(vma, addr);
371 out:
372 	up_read(&mm->mmap_sem);
373 }
374 
375 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
376 {
377 	struct mm_struct *mm = rmap_item->mm;
378 	unsigned long addr = rmap_item->address;
379 	struct vm_area_struct *vma;
380 	struct page *page;
381 
382 	down_read(&mm->mmap_sem);
383 	if (ksm_test_exit(mm))
384 		goto out;
385 	vma = find_vma(mm, addr);
386 	if (!vma || vma->vm_start > addr)
387 		goto out;
388 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
389 		goto out;
390 
391 	page = follow_page(vma, addr, FOLL_GET);
392 	if (!page)
393 		goto out;
394 	if (PageAnon(page)) {
395 		flush_anon_page(vma, page, addr);
396 		flush_dcache_page(page);
397 	} else {
398 		put_page(page);
399 out:		page = NULL;
400 	}
401 	up_read(&mm->mmap_sem);
402 	return page;
403 }
404 
405 /*
406  * get_ksm_page: checks if the page at the virtual address in rmap_item
407  * is still PageKsm, in which case we can trust the content of the page,
408  * and it returns the gotten page; but NULL if the page has been zapped.
409  */
410 static struct page *get_ksm_page(struct rmap_item *rmap_item)
411 {
412 	struct page *page;
413 
414 	page = get_mergeable_page(rmap_item);
415 	if (page && !PageKsm(page)) {
416 		put_page(page);
417 		page = NULL;
418 	}
419 	return page;
420 }
421 
422 /*
423  * Removing rmap_item from stable or unstable tree.
424  * This function will clean the information from the stable/unstable tree.
425  */
426 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
427 {
428 	if (in_stable_tree(rmap_item)) {
429 		struct rmap_item *next_item = rmap_item->next;
430 
431 		if (rmap_item->address & NODE_FLAG) {
432 			if (next_item) {
433 				rb_replace_node(&rmap_item->node,
434 						&next_item->node,
435 						&root_stable_tree);
436 				next_item->address |= NODE_FLAG;
437 				ksm_pages_sharing--;
438 			} else {
439 				rb_erase(&rmap_item->node, &root_stable_tree);
440 				ksm_pages_shared--;
441 			}
442 		} else {
443 			struct rmap_item *prev_item = rmap_item->prev;
444 
445 			BUG_ON(prev_item->next != rmap_item);
446 			prev_item->next = next_item;
447 			if (next_item) {
448 				BUG_ON(next_item->prev != rmap_item);
449 				next_item->prev = rmap_item->prev;
450 			}
451 			ksm_pages_sharing--;
452 		}
453 
454 		rmap_item->next = NULL;
455 
456 	} else if (rmap_item->address & NODE_FLAG) {
457 		unsigned char age;
458 		/*
459 		 * Usually ksmd can and must skip the rb_erase, because
460 		 * root_unstable_tree was already reset to RB_ROOT.
461 		 * But be careful when an mm is exiting: do the rb_erase
462 		 * if this rmap_item was inserted by this scan, rather
463 		 * than left over from before.
464 		 */
465 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
466 		BUG_ON(age > 1);
467 		if (!age)
468 			rb_erase(&rmap_item->node, &root_unstable_tree);
469 		ksm_pages_unshared--;
470 	}
471 
472 	rmap_item->address &= PAGE_MASK;
473 
474 	cond_resched();		/* we're called from many long loops */
475 }
476 
477 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
478 				       struct list_head *cur)
479 {
480 	struct rmap_item *rmap_item;
481 
482 	while (cur != &mm_slot->rmap_list) {
483 		rmap_item = list_entry(cur, struct rmap_item, link);
484 		cur = cur->next;
485 		remove_rmap_item_from_tree(rmap_item);
486 		list_del(&rmap_item->link);
487 		free_rmap_item(rmap_item);
488 	}
489 }
490 
491 /*
492  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
493  * than check every pte of a given vma, the locking doesn't quite work for
494  * that - an rmap_item is assigned to the stable tree after inserting ksm
495  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
496  * rmap_items from parent to child at fork time (so as not to waste time
497  * if exit comes before the next scan reaches it).
498  *
499  * Similarly, although we'd like to remove rmap_items (so updating counts
500  * and freeing memory) when unmerging an area, it's easier to leave that
501  * to the next pass of ksmd - consider, for example, how ksmd might be
502  * in cmp_and_merge_page on one of the rmap_items we would be removing.
503  */
504 static int unmerge_ksm_pages(struct vm_area_struct *vma,
505 			     unsigned long start, unsigned long end)
506 {
507 	unsigned long addr;
508 	int err = 0;
509 
510 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
511 		if (ksm_test_exit(vma->vm_mm))
512 			break;
513 		if (signal_pending(current))
514 			err = -ERESTARTSYS;
515 		else
516 			err = break_ksm(vma, addr);
517 	}
518 	return err;
519 }
520 
521 #ifdef CONFIG_SYSFS
522 /*
523  * Only called through the sysfs control interface:
524  */
525 static int unmerge_and_remove_all_rmap_items(void)
526 {
527 	struct mm_slot *mm_slot;
528 	struct mm_struct *mm;
529 	struct vm_area_struct *vma;
530 	int err = 0;
531 
532 	spin_lock(&ksm_mmlist_lock);
533 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
534 						struct mm_slot, mm_list);
535 	spin_unlock(&ksm_mmlist_lock);
536 
537 	for (mm_slot = ksm_scan.mm_slot;
538 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
539 		mm = mm_slot->mm;
540 		down_read(&mm->mmap_sem);
541 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
542 			if (ksm_test_exit(mm))
543 				break;
544 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
545 				continue;
546 			err = unmerge_ksm_pages(vma,
547 						vma->vm_start, vma->vm_end);
548 			if (err)
549 				goto error;
550 		}
551 
552 		remove_trailing_rmap_items(mm_slot, mm_slot->rmap_list.next);
553 
554 		spin_lock(&ksm_mmlist_lock);
555 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
556 						struct mm_slot, mm_list);
557 		if (ksm_test_exit(mm)) {
558 			hlist_del(&mm_slot->link);
559 			list_del(&mm_slot->mm_list);
560 			spin_unlock(&ksm_mmlist_lock);
561 
562 			free_mm_slot(mm_slot);
563 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
564 			up_read(&mm->mmap_sem);
565 			mmdrop(mm);
566 		} else {
567 			spin_unlock(&ksm_mmlist_lock);
568 			up_read(&mm->mmap_sem);
569 		}
570 	}
571 
572 	ksm_scan.seqnr = 0;
573 	return 0;
574 
575 error:
576 	up_read(&mm->mmap_sem);
577 	spin_lock(&ksm_mmlist_lock);
578 	ksm_scan.mm_slot = &ksm_mm_head;
579 	spin_unlock(&ksm_mmlist_lock);
580 	return err;
581 }
582 #endif /* CONFIG_SYSFS */
583 
584 static u32 calc_checksum(struct page *page)
585 {
586 	u32 checksum;
587 	void *addr = kmap_atomic(page, KM_USER0);
588 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
589 	kunmap_atomic(addr, KM_USER0);
590 	return checksum;
591 }
592 
593 static int memcmp_pages(struct page *page1, struct page *page2)
594 {
595 	char *addr1, *addr2;
596 	int ret;
597 
598 	addr1 = kmap_atomic(page1, KM_USER0);
599 	addr2 = kmap_atomic(page2, KM_USER1);
600 	ret = memcmp(addr1, addr2, PAGE_SIZE);
601 	kunmap_atomic(addr2, KM_USER1);
602 	kunmap_atomic(addr1, KM_USER0);
603 	return ret;
604 }
605 
606 static inline int pages_identical(struct page *page1, struct page *page2)
607 {
608 	return !memcmp_pages(page1, page2);
609 }
610 
611 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
612 			      pte_t *orig_pte)
613 {
614 	struct mm_struct *mm = vma->vm_mm;
615 	unsigned long addr;
616 	pte_t *ptep;
617 	spinlock_t *ptl;
618 	int swapped;
619 	int err = -EFAULT;
620 
621 	addr = page_address_in_vma(page, vma);
622 	if (addr == -EFAULT)
623 		goto out;
624 
625 	ptep = page_check_address(page, mm, addr, &ptl, 0);
626 	if (!ptep)
627 		goto out;
628 
629 	if (pte_write(*ptep)) {
630 		pte_t entry;
631 
632 		swapped = PageSwapCache(page);
633 		flush_cache_page(vma, addr, page_to_pfn(page));
634 		/*
635 		 * Ok this is tricky, when get_user_pages_fast() run it doesnt
636 		 * take any lock, therefore the check that we are going to make
637 		 * with the pagecount against the mapcount is racey and
638 		 * O_DIRECT can happen right after the check.
639 		 * So we clear the pte and flush the tlb before the check
640 		 * this assure us that no O_DIRECT can happen after the check
641 		 * or in the middle of the check.
642 		 */
643 		entry = ptep_clear_flush(vma, addr, ptep);
644 		/*
645 		 * Check that no O_DIRECT or similar I/O is in progress on the
646 		 * page
647 		 */
648 		if ((page_mapcount(page) + 2 + swapped) != page_count(page)) {
649 			set_pte_at_notify(mm, addr, ptep, entry);
650 			goto out_unlock;
651 		}
652 		entry = pte_wrprotect(entry);
653 		set_pte_at_notify(mm, addr, ptep, entry);
654 	}
655 	*orig_pte = *ptep;
656 	err = 0;
657 
658 out_unlock:
659 	pte_unmap_unlock(ptep, ptl);
660 out:
661 	return err;
662 }
663 
664 /**
665  * replace_page - replace page in vma by new ksm page
666  * @vma:      vma that holds the pte pointing to oldpage
667  * @oldpage:  the page we are replacing by newpage
668  * @newpage:  the ksm page we replace oldpage by
669  * @orig_pte: the original value of the pte
670  *
671  * Returns 0 on success, -EFAULT on failure.
672  */
673 static int replace_page(struct vm_area_struct *vma, struct page *oldpage,
674 			struct page *newpage, pte_t orig_pte)
675 {
676 	struct mm_struct *mm = vma->vm_mm;
677 	pgd_t *pgd;
678 	pud_t *pud;
679 	pmd_t *pmd;
680 	pte_t *ptep;
681 	spinlock_t *ptl;
682 	unsigned long addr;
683 	pgprot_t prot;
684 	int err = -EFAULT;
685 
686 	prot = vm_get_page_prot(vma->vm_flags & ~VM_WRITE);
687 
688 	addr = page_address_in_vma(oldpage, vma);
689 	if (addr == -EFAULT)
690 		goto out;
691 
692 	pgd = pgd_offset(mm, addr);
693 	if (!pgd_present(*pgd))
694 		goto out;
695 
696 	pud = pud_offset(pgd, addr);
697 	if (!pud_present(*pud))
698 		goto out;
699 
700 	pmd = pmd_offset(pud, addr);
701 	if (!pmd_present(*pmd))
702 		goto out;
703 
704 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
705 	if (!pte_same(*ptep, orig_pte)) {
706 		pte_unmap_unlock(ptep, ptl);
707 		goto out;
708 	}
709 
710 	get_page(newpage);
711 	page_add_ksm_rmap(newpage);
712 
713 	flush_cache_page(vma, addr, pte_pfn(*ptep));
714 	ptep_clear_flush(vma, addr, ptep);
715 	set_pte_at_notify(mm, addr, ptep, mk_pte(newpage, prot));
716 
717 	page_remove_rmap(oldpage);
718 	put_page(oldpage);
719 
720 	pte_unmap_unlock(ptep, ptl);
721 	err = 0;
722 out:
723 	return err;
724 }
725 
726 /*
727  * try_to_merge_one_page - take two pages and merge them into one
728  * @vma: the vma that hold the pte pointing into oldpage
729  * @oldpage: the page that we want to replace with newpage
730  * @newpage: the page that we want to map instead of oldpage
731  *
732  * Note:
733  * oldpage should be a PageAnon page, while newpage should be a PageKsm page,
734  * or a newly allocated kernel page which page_add_ksm_rmap will make PageKsm.
735  *
736  * This function returns 0 if the pages were merged, -EFAULT otherwise.
737  */
738 static int try_to_merge_one_page(struct vm_area_struct *vma,
739 				 struct page *oldpage,
740 				 struct page *newpage)
741 {
742 	pte_t orig_pte = __pte(0);
743 	int err = -EFAULT;
744 
745 	if (!(vma->vm_flags & VM_MERGEABLE))
746 		goto out;
747 
748 	if (!PageAnon(oldpage))
749 		goto out;
750 
751 	get_page(newpage);
752 	get_page(oldpage);
753 
754 	/*
755 	 * We need the page lock to read a stable PageSwapCache in
756 	 * write_protect_page().  We use trylock_page() instead of
757 	 * lock_page() because we don't want to wait here - we
758 	 * prefer to continue scanning and merging different pages,
759 	 * then come back to this page when it is unlocked.
760 	 */
761 	if (!trylock_page(oldpage))
762 		goto out_putpage;
763 	/*
764 	 * If this anonymous page is mapped only here, its pte may need
765 	 * to be write-protected.  If it's mapped elsewhere, all of its
766 	 * ptes are necessarily already write-protected.  But in either
767 	 * case, we need to lock and check page_count is not raised.
768 	 */
769 	if (write_protect_page(vma, oldpage, &orig_pte)) {
770 		unlock_page(oldpage);
771 		goto out_putpage;
772 	}
773 	unlock_page(oldpage);
774 
775 	if (pages_identical(oldpage, newpage))
776 		err = replace_page(vma, oldpage, newpage, orig_pte);
777 
778 out_putpage:
779 	put_page(oldpage);
780 	put_page(newpage);
781 out:
782 	return err;
783 }
784 
785 /*
786  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
787  * but no new kernel page is allocated: kpage must already be a ksm page.
788  */
789 static int try_to_merge_with_ksm_page(struct mm_struct *mm1,
790 				      unsigned long addr1,
791 				      struct page *page1,
792 				      struct page *kpage)
793 {
794 	struct vm_area_struct *vma;
795 	int err = -EFAULT;
796 
797 	down_read(&mm1->mmap_sem);
798 	if (ksm_test_exit(mm1))
799 		goto out;
800 
801 	vma = find_vma(mm1, addr1);
802 	if (!vma || vma->vm_start > addr1)
803 		goto out;
804 
805 	err = try_to_merge_one_page(vma, page1, kpage);
806 out:
807 	up_read(&mm1->mmap_sem);
808 	return err;
809 }
810 
811 /*
812  * try_to_merge_two_pages - take two identical pages and prepare them
813  * to be merged into one page.
814  *
815  * This function returns 0 if we successfully mapped two identical pages
816  * into one page, -EFAULT otherwise.
817  *
818  * Note that this function allocates a new kernel page: if one of the pages
819  * is already a ksm page, try_to_merge_with_ksm_page should be used.
820  */
821 static int try_to_merge_two_pages(struct mm_struct *mm1, unsigned long addr1,
822 				  struct page *page1, struct mm_struct *mm2,
823 				  unsigned long addr2, struct page *page2)
824 {
825 	struct vm_area_struct *vma;
826 	struct page *kpage;
827 	int err = -EFAULT;
828 
829 	/*
830 	 * The number of nodes in the stable tree
831 	 * is the number of kernel pages that we hold.
832 	 */
833 	if (ksm_max_kernel_pages &&
834 	    ksm_max_kernel_pages <= ksm_pages_shared)
835 		return err;
836 
837 	kpage = alloc_page(GFP_HIGHUSER);
838 	if (!kpage)
839 		return err;
840 
841 	down_read(&mm1->mmap_sem);
842 	if (ksm_test_exit(mm1)) {
843 		up_read(&mm1->mmap_sem);
844 		goto out;
845 	}
846 	vma = find_vma(mm1, addr1);
847 	if (!vma || vma->vm_start > addr1) {
848 		up_read(&mm1->mmap_sem);
849 		goto out;
850 	}
851 
852 	copy_user_highpage(kpage, page1, addr1, vma);
853 	err = try_to_merge_one_page(vma, page1, kpage);
854 	up_read(&mm1->mmap_sem);
855 
856 	if (!err) {
857 		err = try_to_merge_with_ksm_page(mm2, addr2, page2, kpage);
858 		/*
859 		 * If that fails, we have a ksm page with only one pte
860 		 * pointing to it: so break it.
861 		 */
862 		if (err)
863 			break_cow(mm1, addr1);
864 	}
865 out:
866 	put_page(kpage);
867 	return err;
868 }
869 
870 /*
871  * stable_tree_search - search page inside the stable tree
872  * @page: the page that we are searching identical pages to.
873  * @page2: pointer into identical page that we are holding inside the stable
874  *	   tree that we have found.
875  * @rmap_item: the reverse mapping item
876  *
877  * This function checks if there is a page inside the stable tree
878  * with identical content to the page that we are scanning right now.
879  *
880  * This function return rmap_item pointer to the identical item if found,
881  * NULL otherwise.
882  */
883 static struct rmap_item *stable_tree_search(struct page *page,
884 					    struct page **page2,
885 					    struct rmap_item *rmap_item)
886 {
887 	struct rb_node *node = root_stable_tree.rb_node;
888 
889 	while (node) {
890 		struct rmap_item *tree_rmap_item, *next_rmap_item;
891 		int ret;
892 
893 		tree_rmap_item = rb_entry(node, struct rmap_item, node);
894 		while (tree_rmap_item) {
895 			BUG_ON(!in_stable_tree(tree_rmap_item));
896 			cond_resched();
897 			page2[0] = get_ksm_page(tree_rmap_item);
898 			if (page2[0])
899 				break;
900 			next_rmap_item = tree_rmap_item->next;
901 			remove_rmap_item_from_tree(tree_rmap_item);
902 			tree_rmap_item = next_rmap_item;
903 		}
904 		if (!tree_rmap_item)
905 			return NULL;
906 
907 		ret = memcmp_pages(page, page2[0]);
908 
909 		if (ret < 0) {
910 			put_page(page2[0]);
911 			node = node->rb_left;
912 		} else if (ret > 0) {
913 			put_page(page2[0]);
914 			node = node->rb_right;
915 		} else {
916 			return tree_rmap_item;
917 		}
918 	}
919 
920 	return NULL;
921 }
922 
923 /*
924  * stable_tree_insert - insert rmap_item pointing to new ksm page
925  * into the stable tree.
926  *
927  * @page: the page that we are searching identical page to inside the stable
928  *	  tree.
929  * @rmap_item: pointer to the reverse mapping item.
930  *
931  * This function returns rmap_item if success, NULL otherwise.
932  */
933 static struct rmap_item *stable_tree_insert(struct page *page,
934 					    struct rmap_item *rmap_item)
935 {
936 	struct rb_node **new = &root_stable_tree.rb_node;
937 	struct rb_node *parent = NULL;
938 
939 	while (*new) {
940 		struct rmap_item *tree_rmap_item, *next_rmap_item;
941 		struct page *tree_page;
942 		int ret;
943 
944 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
945 		while (tree_rmap_item) {
946 			BUG_ON(!in_stable_tree(tree_rmap_item));
947 			cond_resched();
948 			tree_page = get_ksm_page(tree_rmap_item);
949 			if (tree_page)
950 				break;
951 			next_rmap_item = tree_rmap_item->next;
952 			remove_rmap_item_from_tree(tree_rmap_item);
953 			tree_rmap_item = next_rmap_item;
954 		}
955 		if (!tree_rmap_item)
956 			return NULL;
957 
958 		ret = memcmp_pages(page, tree_page);
959 		put_page(tree_page);
960 
961 		parent = *new;
962 		if (ret < 0)
963 			new = &parent->rb_left;
964 		else if (ret > 0)
965 			new = &parent->rb_right;
966 		else {
967 			/*
968 			 * It is not a bug that stable_tree_search() didn't
969 			 * find this node: because at that time our page was
970 			 * not yet write-protected, so may have changed since.
971 			 */
972 			return NULL;
973 		}
974 	}
975 
976 	rmap_item->address |= NODE_FLAG | STABLE_FLAG;
977 	rmap_item->next = NULL;
978 	rb_link_node(&rmap_item->node, parent, new);
979 	rb_insert_color(&rmap_item->node, &root_stable_tree);
980 
981 	ksm_pages_shared++;
982 	return rmap_item;
983 }
984 
985 /*
986  * unstable_tree_search_insert - search and insert items into the unstable tree.
987  *
988  * @page: the page that we are going to search for identical page or to insert
989  *	  into the unstable tree
990  * @page2: pointer into identical page that was found inside the unstable tree
991  * @rmap_item: the reverse mapping item of page
992  *
993  * This function searches for a page in the unstable tree identical to the
994  * page currently being scanned; and if no identical page is found in the
995  * tree, we insert rmap_item as a new object into the unstable tree.
996  *
997  * This function returns pointer to rmap_item found to be identical
998  * to the currently scanned page, NULL otherwise.
999  *
1000  * This function does both searching and inserting, because they share
1001  * the same walking algorithm in an rbtree.
1002  */
1003 static struct rmap_item *unstable_tree_search_insert(struct page *page,
1004 						struct page **page2,
1005 						struct rmap_item *rmap_item)
1006 {
1007 	struct rb_node **new = &root_unstable_tree.rb_node;
1008 	struct rb_node *parent = NULL;
1009 
1010 	while (*new) {
1011 		struct rmap_item *tree_rmap_item;
1012 		int ret;
1013 
1014 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1015 		page2[0] = get_mergeable_page(tree_rmap_item);
1016 		if (!page2[0])
1017 			return NULL;
1018 
1019 		/*
1020 		 * Don't substitute an unswappable ksm page
1021 		 * just for one good swappable forked page.
1022 		 */
1023 		if (page == page2[0]) {
1024 			put_page(page2[0]);
1025 			return NULL;
1026 		}
1027 
1028 		ret = memcmp_pages(page, page2[0]);
1029 
1030 		parent = *new;
1031 		if (ret < 0) {
1032 			put_page(page2[0]);
1033 			new = &parent->rb_left;
1034 		} else if (ret > 0) {
1035 			put_page(page2[0]);
1036 			new = &parent->rb_right;
1037 		} else {
1038 			return tree_rmap_item;
1039 		}
1040 	}
1041 
1042 	rmap_item->address |= NODE_FLAG;
1043 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1044 	rb_link_node(&rmap_item->node, parent, new);
1045 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1046 
1047 	ksm_pages_unshared++;
1048 	return NULL;
1049 }
1050 
1051 /*
1052  * stable_tree_append - add another rmap_item to the linked list of
1053  * rmap_items hanging off a given node of the stable tree, all sharing
1054  * the same ksm page.
1055  */
1056 static void stable_tree_append(struct rmap_item *rmap_item,
1057 			       struct rmap_item *tree_rmap_item)
1058 {
1059 	rmap_item->next = tree_rmap_item->next;
1060 	rmap_item->prev = tree_rmap_item;
1061 
1062 	if (tree_rmap_item->next)
1063 		tree_rmap_item->next->prev = rmap_item;
1064 
1065 	tree_rmap_item->next = rmap_item;
1066 	rmap_item->address |= STABLE_FLAG;
1067 
1068 	ksm_pages_sharing++;
1069 }
1070 
1071 /*
1072  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1073  * if not, compare checksum to previous and if it's the same, see if page can
1074  * be inserted into the unstable tree, or merged with a page already there and
1075  * both transferred to the stable tree.
1076  *
1077  * @page: the page that we are searching identical page to.
1078  * @rmap_item: the reverse mapping into the virtual address of this page
1079  */
1080 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1081 {
1082 	struct page *page2[1];
1083 	struct rmap_item *tree_rmap_item;
1084 	unsigned int checksum;
1085 	int err;
1086 
1087 	if (in_stable_tree(rmap_item))
1088 		remove_rmap_item_from_tree(rmap_item);
1089 
1090 	/* We first start with searching the page inside the stable tree */
1091 	tree_rmap_item = stable_tree_search(page, page2, rmap_item);
1092 	if (tree_rmap_item) {
1093 		if (page == page2[0])			/* forked */
1094 			err = 0;
1095 		else
1096 			err = try_to_merge_with_ksm_page(rmap_item->mm,
1097 							 rmap_item->address,
1098 							 page, page2[0]);
1099 		put_page(page2[0]);
1100 
1101 		if (!err) {
1102 			/*
1103 			 * The page was successfully merged:
1104 			 * add its rmap_item to the stable tree.
1105 			 */
1106 			stable_tree_append(rmap_item, tree_rmap_item);
1107 		}
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * A ksm page might have got here by fork, but its other
1113 	 * references have already been removed from the stable tree.
1114 	 * Or it might be left over from a break_ksm which failed
1115 	 * when the mem_cgroup had reached its limit: try again now.
1116 	 */
1117 	if (PageKsm(page))
1118 		break_cow(rmap_item->mm, rmap_item->address);
1119 
1120 	/*
1121 	 * In case the hash value of the page was changed from the last time we
1122 	 * have calculated it, this page to be changed frequely, therefore we
1123 	 * don't want to insert it to the unstable tree, and we don't want to
1124 	 * waste our time to search if there is something identical to it there.
1125 	 */
1126 	checksum = calc_checksum(page);
1127 	if (rmap_item->oldchecksum != checksum) {
1128 		rmap_item->oldchecksum = checksum;
1129 		return;
1130 	}
1131 
1132 	tree_rmap_item = unstable_tree_search_insert(page, page2, rmap_item);
1133 	if (tree_rmap_item) {
1134 		err = try_to_merge_two_pages(rmap_item->mm,
1135 					     rmap_item->address, page,
1136 					     tree_rmap_item->mm,
1137 					     tree_rmap_item->address, page2[0]);
1138 		/*
1139 		 * As soon as we merge this page, we want to remove the
1140 		 * rmap_item of the page we have merged with from the unstable
1141 		 * tree, and insert it instead as new node in the stable tree.
1142 		 */
1143 		if (!err) {
1144 			rb_erase(&tree_rmap_item->node, &root_unstable_tree);
1145 			tree_rmap_item->address &= ~NODE_FLAG;
1146 			ksm_pages_unshared--;
1147 
1148 			/*
1149 			 * If we fail to insert the page into the stable tree,
1150 			 * we will have 2 virtual addresses that are pointing
1151 			 * to a ksm page left outside the stable tree,
1152 			 * in which case we need to break_cow on both.
1153 			 */
1154 			if (stable_tree_insert(page2[0], tree_rmap_item))
1155 				stable_tree_append(rmap_item, tree_rmap_item);
1156 			else {
1157 				break_cow(tree_rmap_item->mm,
1158 						tree_rmap_item->address);
1159 				break_cow(rmap_item->mm, rmap_item->address);
1160 			}
1161 		}
1162 
1163 		put_page(page2[0]);
1164 	}
1165 }
1166 
1167 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1168 					    struct list_head *cur,
1169 					    unsigned long addr)
1170 {
1171 	struct rmap_item *rmap_item;
1172 
1173 	while (cur != &mm_slot->rmap_list) {
1174 		rmap_item = list_entry(cur, struct rmap_item, link);
1175 		if ((rmap_item->address & PAGE_MASK) == addr) {
1176 			if (!in_stable_tree(rmap_item))
1177 				remove_rmap_item_from_tree(rmap_item);
1178 			return rmap_item;
1179 		}
1180 		if (rmap_item->address > addr)
1181 			break;
1182 		cur = cur->next;
1183 		remove_rmap_item_from_tree(rmap_item);
1184 		list_del(&rmap_item->link);
1185 		free_rmap_item(rmap_item);
1186 	}
1187 
1188 	rmap_item = alloc_rmap_item();
1189 	if (rmap_item) {
1190 		/* It has already been zeroed */
1191 		rmap_item->mm = mm_slot->mm;
1192 		rmap_item->address = addr;
1193 		list_add_tail(&rmap_item->link, cur);
1194 	}
1195 	return rmap_item;
1196 }
1197 
1198 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1199 {
1200 	struct mm_struct *mm;
1201 	struct mm_slot *slot;
1202 	struct vm_area_struct *vma;
1203 	struct rmap_item *rmap_item;
1204 
1205 	if (list_empty(&ksm_mm_head.mm_list))
1206 		return NULL;
1207 
1208 	slot = ksm_scan.mm_slot;
1209 	if (slot == &ksm_mm_head) {
1210 		root_unstable_tree = RB_ROOT;
1211 
1212 		spin_lock(&ksm_mmlist_lock);
1213 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1214 		ksm_scan.mm_slot = slot;
1215 		spin_unlock(&ksm_mmlist_lock);
1216 next_mm:
1217 		ksm_scan.address = 0;
1218 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1219 						struct rmap_item, link);
1220 	}
1221 
1222 	mm = slot->mm;
1223 	down_read(&mm->mmap_sem);
1224 	if (ksm_test_exit(mm))
1225 		vma = NULL;
1226 	else
1227 		vma = find_vma(mm, ksm_scan.address);
1228 
1229 	for (; vma; vma = vma->vm_next) {
1230 		if (!(vma->vm_flags & VM_MERGEABLE))
1231 			continue;
1232 		if (ksm_scan.address < vma->vm_start)
1233 			ksm_scan.address = vma->vm_start;
1234 		if (!vma->anon_vma)
1235 			ksm_scan.address = vma->vm_end;
1236 
1237 		while (ksm_scan.address < vma->vm_end) {
1238 			if (ksm_test_exit(mm))
1239 				break;
1240 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1241 			if (*page && PageAnon(*page)) {
1242 				flush_anon_page(vma, *page, ksm_scan.address);
1243 				flush_dcache_page(*page);
1244 				rmap_item = get_next_rmap_item(slot,
1245 					ksm_scan.rmap_item->link.next,
1246 					ksm_scan.address);
1247 				if (rmap_item) {
1248 					ksm_scan.rmap_item = rmap_item;
1249 					ksm_scan.address += PAGE_SIZE;
1250 				} else
1251 					put_page(*page);
1252 				up_read(&mm->mmap_sem);
1253 				return rmap_item;
1254 			}
1255 			if (*page)
1256 				put_page(*page);
1257 			ksm_scan.address += PAGE_SIZE;
1258 			cond_resched();
1259 		}
1260 	}
1261 
1262 	if (ksm_test_exit(mm)) {
1263 		ksm_scan.address = 0;
1264 		ksm_scan.rmap_item = list_entry(&slot->rmap_list,
1265 						struct rmap_item, link);
1266 	}
1267 	/*
1268 	 * Nuke all the rmap_items that are above this current rmap:
1269 	 * because there were no VM_MERGEABLE vmas with such addresses.
1270 	 */
1271 	remove_trailing_rmap_items(slot, ksm_scan.rmap_item->link.next);
1272 
1273 	spin_lock(&ksm_mmlist_lock);
1274 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1275 						struct mm_slot, mm_list);
1276 	if (ksm_scan.address == 0) {
1277 		/*
1278 		 * We've completed a full scan of all vmas, holding mmap_sem
1279 		 * throughout, and found no VM_MERGEABLE: so do the same as
1280 		 * __ksm_exit does to remove this mm from all our lists now.
1281 		 * This applies either when cleaning up after __ksm_exit
1282 		 * (but beware: we can reach here even before __ksm_exit),
1283 		 * or when all VM_MERGEABLE areas have been unmapped (and
1284 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1285 		 */
1286 		hlist_del(&slot->link);
1287 		list_del(&slot->mm_list);
1288 		spin_unlock(&ksm_mmlist_lock);
1289 
1290 		free_mm_slot(slot);
1291 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1292 		up_read(&mm->mmap_sem);
1293 		mmdrop(mm);
1294 	} else {
1295 		spin_unlock(&ksm_mmlist_lock);
1296 		up_read(&mm->mmap_sem);
1297 	}
1298 
1299 	/* Repeat until we've completed scanning the whole list */
1300 	slot = ksm_scan.mm_slot;
1301 	if (slot != &ksm_mm_head)
1302 		goto next_mm;
1303 
1304 	ksm_scan.seqnr++;
1305 	return NULL;
1306 }
1307 
1308 /**
1309  * ksm_do_scan  - the ksm scanner main worker function.
1310  * @scan_npages - number of pages we want to scan before we return.
1311  */
1312 static void ksm_do_scan(unsigned int scan_npages)
1313 {
1314 	struct rmap_item *rmap_item;
1315 	struct page *page;
1316 
1317 	while (scan_npages--) {
1318 		cond_resched();
1319 		rmap_item = scan_get_next_rmap_item(&page);
1320 		if (!rmap_item)
1321 			return;
1322 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1323 			cmp_and_merge_page(page, rmap_item);
1324 		else if (page_mapcount(page) == 1) {
1325 			/*
1326 			 * Replace now-unshared ksm page by ordinary page.
1327 			 */
1328 			break_cow(rmap_item->mm, rmap_item->address);
1329 			remove_rmap_item_from_tree(rmap_item);
1330 			rmap_item->oldchecksum = calc_checksum(page);
1331 		}
1332 		put_page(page);
1333 	}
1334 }
1335 
1336 static int ksmd_should_run(void)
1337 {
1338 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1339 }
1340 
1341 static int ksm_scan_thread(void *nothing)
1342 {
1343 	set_user_nice(current, 5);
1344 
1345 	while (!kthread_should_stop()) {
1346 		mutex_lock(&ksm_thread_mutex);
1347 		if (ksmd_should_run())
1348 			ksm_do_scan(ksm_thread_pages_to_scan);
1349 		mutex_unlock(&ksm_thread_mutex);
1350 
1351 		if (ksmd_should_run()) {
1352 			schedule_timeout_interruptible(
1353 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1354 		} else {
1355 			wait_event_interruptible(ksm_thread_wait,
1356 				ksmd_should_run() || kthread_should_stop());
1357 		}
1358 	}
1359 	return 0;
1360 }
1361 
1362 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1363 		unsigned long end, int advice, unsigned long *vm_flags)
1364 {
1365 	struct mm_struct *mm = vma->vm_mm;
1366 	int err;
1367 
1368 	switch (advice) {
1369 	case MADV_MERGEABLE:
1370 		/*
1371 		 * Be somewhat over-protective for now!
1372 		 */
1373 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1374 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1375 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1376 				 VM_MIXEDMAP  | VM_SAO))
1377 			return 0;		/* just ignore the advice */
1378 
1379 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1380 			err = __ksm_enter(mm);
1381 			if (err)
1382 				return err;
1383 		}
1384 
1385 		*vm_flags |= VM_MERGEABLE;
1386 		break;
1387 
1388 	case MADV_UNMERGEABLE:
1389 		if (!(*vm_flags & VM_MERGEABLE))
1390 			return 0;		/* just ignore the advice */
1391 
1392 		if (vma->anon_vma) {
1393 			err = unmerge_ksm_pages(vma, start, end);
1394 			if (err)
1395 				return err;
1396 		}
1397 
1398 		*vm_flags &= ~VM_MERGEABLE;
1399 		break;
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 int __ksm_enter(struct mm_struct *mm)
1406 {
1407 	struct mm_slot *mm_slot;
1408 	int needs_wakeup;
1409 
1410 	mm_slot = alloc_mm_slot();
1411 	if (!mm_slot)
1412 		return -ENOMEM;
1413 
1414 	/* Check ksm_run too?  Would need tighter locking */
1415 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1416 
1417 	spin_lock(&ksm_mmlist_lock);
1418 	insert_to_mm_slots_hash(mm, mm_slot);
1419 	/*
1420 	 * Insert just behind the scanning cursor, to let the area settle
1421 	 * down a little; when fork is followed by immediate exec, we don't
1422 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1423 	 */
1424 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1425 	spin_unlock(&ksm_mmlist_lock);
1426 
1427 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1428 	atomic_inc(&mm->mm_count);
1429 
1430 	if (needs_wakeup)
1431 		wake_up_interruptible(&ksm_thread_wait);
1432 
1433 	return 0;
1434 }
1435 
1436 void __ksm_exit(struct mm_struct *mm)
1437 {
1438 	struct mm_slot *mm_slot;
1439 	int easy_to_free = 0;
1440 
1441 	/*
1442 	 * This process is exiting: if it's straightforward (as is the
1443 	 * case when ksmd was never running), free mm_slot immediately.
1444 	 * But if it's at the cursor or has rmap_items linked to it, use
1445 	 * mmap_sem to synchronize with any break_cows before pagetables
1446 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1447 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1448 	 */
1449 
1450 	spin_lock(&ksm_mmlist_lock);
1451 	mm_slot = get_mm_slot(mm);
1452 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1453 		if (list_empty(&mm_slot->rmap_list)) {
1454 			hlist_del(&mm_slot->link);
1455 			list_del(&mm_slot->mm_list);
1456 			easy_to_free = 1;
1457 		} else {
1458 			list_move(&mm_slot->mm_list,
1459 				  &ksm_scan.mm_slot->mm_list);
1460 		}
1461 	}
1462 	spin_unlock(&ksm_mmlist_lock);
1463 
1464 	if (easy_to_free) {
1465 		free_mm_slot(mm_slot);
1466 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1467 		mmdrop(mm);
1468 	} else if (mm_slot) {
1469 		down_write(&mm->mmap_sem);
1470 		up_write(&mm->mmap_sem);
1471 	}
1472 }
1473 
1474 #ifdef CONFIG_SYSFS
1475 /*
1476  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1477  */
1478 
1479 #define KSM_ATTR_RO(_name) \
1480 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1481 #define KSM_ATTR(_name) \
1482 	static struct kobj_attribute _name##_attr = \
1483 		__ATTR(_name, 0644, _name##_show, _name##_store)
1484 
1485 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1486 				    struct kobj_attribute *attr, char *buf)
1487 {
1488 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1489 }
1490 
1491 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1492 				     struct kobj_attribute *attr,
1493 				     const char *buf, size_t count)
1494 {
1495 	unsigned long msecs;
1496 	int err;
1497 
1498 	err = strict_strtoul(buf, 10, &msecs);
1499 	if (err || msecs > UINT_MAX)
1500 		return -EINVAL;
1501 
1502 	ksm_thread_sleep_millisecs = msecs;
1503 
1504 	return count;
1505 }
1506 KSM_ATTR(sleep_millisecs);
1507 
1508 static ssize_t pages_to_scan_show(struct kobject *kobj,
1509 				  struct kobj_attribute *attr, char *buf)
1510 {
1511 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1512 }
1513 
1514 static ssize_t pages_to_scan_store(struct kobject *kobj,
1515 				   struct kobj_attribute *attr,
1516 				   const char *buf, size_t count)
1517 {
1518 	int err;
1519 	unsigned long nr_pages;
1520 
1521 	err = strict_strtoul(buf, 10, &nr_pages);
1522 	if (err || nr_pages > UINT_MAX)
1523 		return -EINVAL;
1524 
1525 	ksm_thread_pages_to_scan = nr_pages;
1526 
1527 	return count;
1528 }
1529 KSM_ATTR(pages_to_scan);
1530 
1531 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1532 			char *buf)
1533 {
1534 	return sprintf(buf, "%u\n", ksm_run);
1535 }
1536 
1537 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1538 			 const char *buf, size_t count)
1539 {
1540 	int err;
1541 	unsigned long flags;
1542 
1543 	err = strict_strtoul(buf, 10, &flags);
1544 	if (err || flags > UINT_MAX)
1545 		return -EINVAL;
1546 	if (flags > KSM_RUN_UNMERGE)
1547 		return -EINVAL;
1548 
1549 	/*
1550 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1551 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1552 	 * breaking COW to free the unswappable pages_shared (but leaves
1553 	 * mm_slots on the list for when ksmd may be set running again).
1554 	 */
1555 
1556 	mutex_lock(&ksm_thread_mutex);
1557 	if (ksm_run != flags) {
1558 		ksm_run = flags;
1559 		if (flags & KSM_RUN_UNMERGE) {
1560 			current->flags |= PF_OOM_ORIGIN;
1561 			err = unmerge_and_remove_all_rmap_items();
1562 			current->flags &= ~PF_OOM_ORIGIN;
1563 			if (err) {
1564 				ksm_run = KSM_RUN_STOP;
1565 				count = err;
1566 			}
1567 		}
1568 	}
1569 	mutex_unlock(&ksm_thread_mutex);
1570 
1571 	if (flags & KSM_RUN_MERGE)
1572 		wake_up_interruptible(&ksm_thread_wait);
1573 
1574 	return count;
1575 }
1576 KSM_ATTR(run);
1577 
1578 static ssize_t max_kernel_pages_store(struct kobject *kobj,
1579 				      struct kobj_attribute *attr,
1580 				      const char *buf, size_t count)
1581 {
1582 	int err;
1583 	unsigned long nr_pages;
1584 
1585 	err = strict_strtoul(buf, 10, &nr_pages);
1586 	if (err)
1587 		return -EINVAL;
1588 
1589 	ksm_max_kernel_pages = nr_pages;
1590 
1591 	return count;
1592 }
1593 
1594 static ssize_t max_kernel_pages_show(struct kobject *kobj,
1595 				     struct kobj_attribute *attr, char *buf)
1596 {
1597 	return sprintf(buf, "%lu\n", ksm_max_kernel_pages);
1598 }
1599 KSM_ATTR(max_kernel_pages);
1600 
1601 static ssize_t pages_shared_show(struct kobject *kobj,
1602 				 struct kobj_attribute *attr, char *buf)
1603 {
1604 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1605 }
1606 KSM_ATTR_RO(pages_shared);
1607 
1608 static ssize_t pages_sharing_show(struct kobject *kobj,
1609 				  struct kobj_attribute *attr, char *buf)
1610 {
1611 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1612 }
1613 KSM_ATTR_RO(pages_sharing);
1614 
1615 static ssize_t pages_unshared_show(struct kobject *kobj,
1616 				   struct kobj_attribute *attr, char *buf)
1617 {
1618 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1619 }
1620 KSM_ATTR_RO(pages_unshared);
1621 
1622 static ssize_t pages_volatile_show(struct kobject *kobj,
1623 				   struct kobj_attribute *attr, char *buf)
1624 {
1625 	long ksm_pages_volatile;
1626 
1627 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1628 				- ksm_pages_sharing - ksm_pages_unshared;
1629 	/*
1630 	 * It was not worth any locking to calculate that statistic,
1631 	 * but it might therefore sometimes be negative: conceal that.
1632 	 */
1633 	if (ksm_pages_volatile < 0)
1634 		ksm_pages_volatile = 0;
1635 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1636 }
1637 KSM_ATTR_RO(pages_volatile);
1638 
1639 static ssize_t full_scans_show(struct kobject *kobj,
1640 			       struct kobj_attribute *attr, char *buf)
1641 {
1642 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1643 }
1644 KSM_ATTR_RO(full_scans);
1645 
1646 static struct attribute *ksm_attrs[] = {
1647 	&sleep_millisecs_attr.attr,
1648 	&pages_to_scan_attr.attr,
1649 	&run_attr.attr,
1650 	&max_kernel_pages_attr.attr,
1651 	&pages_shared_attr.attr,
1652 	&pages_sharing_attr.attr,
1653 	&pages_unshared_attr.attr,
1654 	&pages_volatile_attr.attr,
1655 	&full_scans_attr.attr,
1656 	NULL,
1657 };
1658 
1659 static struct attribute_group ksm_attr_group = {
1660 	.attrs = ksm_attrs,
1661 	.name = "ksm",
1662 };
1663 #endif /* CONFIG_SYSFS */
1664 
1665 static int __init ksm_init(void)
1666 {
1667 	struct task_struct *ksm_thread;
1668 	int err;
1669 
1670 	err = ksm_slab_init();
1671 	if (err)
1672 		goto out;
1673 
1674 	err = mm_slots_hash_init();
1675 	if (err)
1676 		goto out_free1;
1677 
1678 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1679 	if (IS_ERR(ksm_thread)) {
1680 		printk(KERN_ERR "ksm: creating kthread failed\n");
1681 		err = PTR_ERR(ksm_thread);
1682 		goto out_free2;
1683 	}
1684 
1685 #ifdef CONFIG_SYSFS
1686 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
1687 	if (err) {
1688 		printk(KERN_ERR "ksm: register sysfs failed\n");
1689 		kthread_stop(ksm_thread);
1690 		goto out_free2;
1691 	}
1692 #endif /* CONFIG_SYSFS */
1693 
1694 	return 0;
1695 
1696 out_free2:
1697 	mm_slots_hash_free();
1698 out_free1:
1699 	ksm_slab_free();
1700 out:
1701 	return err;
1702 }
1703 module_init(ksm_init)
1704