1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/fs.h> 20 #include <linux/mman.h> 21 #include <linux/sched.h> 22 #include <linux/sched/mm.h> 23 #include <linux/sched/coredump.h> 24 #include <linux/rwsem.h> 25 #include <linux/pagemap.h> 26 #include <linux/rmap.h> 27 #include <linux/spinlock.h> 28 #include <linux/xxhash.h> 29 #include <linux/delay.h> 30 #include <linux/kthread.h> 31 #include <linux/wait.h> 32 #include <linux/slab.h> 33 #include <linux/rbtree.h> 34 #include <linux/memory.h> 35 #include <linux/mmu_notifier.h> 36 #include <linux/swap.h> 37 #include <linux/ksm.h> 38 #include <linux/hashtable.h> 39 #include <linux/freezer.h> 40 #include <linux/oom.h> 41 #include <linux/numa.h> 42 #include <linux/pagewalk.h> 43 44 #include <asm/tlbflush.h> 45 #include "internal.h" 46 #include "mm_slot.h" 47 48 #ifdef CONFIG_NUMA 49 #define NUMA(x) (x) 50 #define DO_NUMA(x) do { (x); } while (0) 51 #else 52 #define NUMA(x) (0) 53 #define DO_NUMA(x) do { } while (0) 54 #endif 55 56 /** 57 * DOC: Overview 58 * 59 * A few notes about the KSM scanning process, 60 * to make it easier to understand the data structures below: 61 * 62 * In order to reduce excessive scanning, KSM sorts the memory pages by their 63 * contents into a data structure that holds pointers to the pages' locations. 64 * 65 * Since the contents of the pages may change at any moment, KSM cannot just 66 * insert the pages into a normal sorted tree and expect it to find anything. 67 * Therefore KSM uses two data structures - the stable and the unstable tree. 68 * 69 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 70 * by their contents. Because each such page is write-protected, searching on 71 * this tree is fully assured to be working (except when pages are unmapped), 72 * and therefore this tree is called the stable tree. 73 * 74 * The stable tree node includes information required for reverse 75 * mapping from a KSM page to virtual addresses that map this page. 76 * 77 * In order to avoid large latencies of the rmap walks on KSM pages, 78 * KSM maintains two types of nodes in the stable tree: 79 * 80 * * the regular nodes that keep the reverse mapping structures in a 81 * linked list 82 * * the "chains" that link nodes ("dups") that represent the same 83 * write protected memory content, but each "dup" corresponds to a 84 * different KSM page copy of that content 85 * 86 * Internally, the regular nodes, "dups" and "chains" are represented 87 * using the same struct ksm_stable_node structure. 88 * 89 * In addition to the stable tree, KSM uses a second data structure called the 90 * unstable tree: this tree holds pointers to pages which have been found to 91 * be "unchanged for a period of time". The unstable tree sorts these pages 92 * by their contents, but since they are not write-protected, KSM cannot rely 93 * upon the unstable tree to work correctly - the unstable tree is liable to 94 * be corrupted as its contents are modified, and so it is called unstable. 95 * 96 * KSM solves this problem by several techniques: 97 * 98 * 1) The unstable tree is flushed every time KSM completes scanning all 99 * memory areas, and then the tree is rebuilt again from the beginning. 100 * 2) KSM will only insert into the unstable tree, pages whose hash value 101 * has not changed since the previous scan of all memory areas. 102 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 103 * colors of the nodes and not on their contents, assuring that even when 104 * the tree gets "corrupted" it won't get out of balance, so scanning time 105 * remains the same (also, searching and inserting nodes in an rbtree uses 106 * the same algorithm, so we have no overhead when we flush and rebuild). 107 * 4) KSM never flushes the stable tree, which means that even if it were to 108 * take 10 attempts to find a page in the unstable tree, once it is found, 109 * it is secured in the stable tree. (When we scan a new page, we first 110 * compare it against the stable tree, and then against the unstable tree.) 111 * 112 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 113 * stable trees and multiple unstable trees: one of each for each NUMA node. 114 */ 115 116 /** 117 * struct ksm_mm_slot - ksm information per mm that is being scanned 118 * @slot: hash lookup from mm to mm_slot 119 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 120 */ 121 struct ksm_mm_slot { 122 struct mm_slot slot; 123 struct ksm_rmap_item *rmap_list; 124 }; 125 126 /** 127 * struct ksm_scan - cursor for scanning 128 * @mm_slot: the current mm_slot we are scanning 129 * @address: the next address inside that to be scanned 130 * @rmap_list: link to the next rmap to be scanned in the rmap_list 131 * @seqnr: count of completed full scans (needed when removing unstable node) 132 * 133 * There is only the one ksm_scan instance of this cursor structure. 134 */ 135 struct ksm_scan { 136 struct ksm_mm_slot *mm_slot; 137 unsigned long address; 138 struct ksm_rmap_item **rmap_list; 139 unsigned long seqnr; 140 }; 141 142 /** 143 * struct ksm_stable_node - node of the stable rbtree 144 * @node: rb node of this ksm page in the stable tree 145 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 146 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 147 * @list: linked into migrate_nodes, pending placement in the proper node tree 148 * @hlist: hlist head of rmap_items using this ksm page 149 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 150 * @chain_prune_time: time of the last full garbage collection 151 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 152 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 153 */ 154 struct ksm_stable_node { 155 union { 156 struct rb_node node; /* when node of stable tree */ 157 struct { /* when listed for migration */ 158 struct list_head *head; 159 struct { 160 struct hlist_node hlist_dup; 161 struct list_head list; 162 }; 163 }; 164 }; 165 struct hlist_head hlist; 166 union { 167 unsigned long kpfn; 168 unsigned long chain_prune_time; 169 }; 170 /* 171 * STABLE_NODE_CHAIN can be any negative number in 172 * rmap_hlist_len negative range, but better not -1 to be able 173 * to reliably detect underflows. 174 */ 175 #define STABLE_NODE_CHAIN -1024 176 int rmap_hlist_len; 177 #ifdef CONFIG_NUMA 178 int nid; 179 #endif 180 }; 181 182 /** 183 * struct ksm_rmap_item - reverse mapping item for virtual addresses 184 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 185 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 186 * @nid: NUMA node id of unstable tree in which linked (may not match page) 187 * @mm: the memory structure this rmap_item is pointing into 188 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 189 * @oldchecksum: previous checksum of the page at that virtual address 190 * @node: rb node of this rmap_item in the unstable tree 191 * @head: pointer to stable_node heading this list in the stable tree 192 * @hlist: link into hlist of rmap_items hanging off that stable_node 193 */ 194 struct ksm_rmap_item { 195 struct ksm_rmap_item *rmap_list; 196 union { 197 struct anon_vma *anon_vma; /* when stable */ 198 #ifdef CONFIG_NUMA 199 int nid; /* when node of unstable tree */ 200 #endif 201 }; 202 struct mm_struct *mm; 203 unsigned long address; /* + low bits used for flags below */ 204 unsigned int oldchecksum; /* when unstable */ 205 union { 206 struct rb_node node; /* when node of unstable tree */ 207 struct { /* when listed from stable tree */ 208 struct ksm_stable_node *head; 209 struct hlist_node hlist; 210 }; 211 }; 212 }; 213 214 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 215 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 216 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 217 218 /* The stable and unstable tree heads */ 219 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 220 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 221 static struct rb_root *root_stable_tree = one_stable_tree; 222 static struct rb_root *root_unstable_tree = one_unstable_tree; 223 224 /* Recently migrated nodes of stable tree, pending proper placement */ 225 static LIST_HEAD(migrate_nodes); 226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 227 228 #define MM_SLOTS_HASH_BITS 10 229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 230 231 static struct ksm_mm_slot ksm_mm_head = { 232 .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node), 233 }; 234 static struct ksm_scan ksm_scan = { 235 .mm_slot = &ksm_mm_head, 236 }; 237 238 static struct kmem_cache *rmap_item_cache; 239 static struct kmem_cache *stable_node_cache; 240 static struct kmem_cache *mm_slot_cache; 241 242 /* The number of nodes in the stable tree */ 243 static unsigned long ksm_pages_shared; 244 245 /* The number of page slots additionally sharing those nodes */ 246 static unsigned long ksm_pages_sharing; 247 248 /* The number of nodes in the unstable tree */ 249 static unsigned long ksm_pages_unshared; 250 251 /* The number of rmap_items in use: to calculate pages_volatile */ 252 static unsigned long ksm_rmap_items; 253 254 /* The number of stable_node chains */ 255 static unsigned long ksm_stable_node_chains; 256 257 /* The number of stable_node dups linked to the stable_node chains */ 258 static unsigned long ksm_stable_node_dups; 259 260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000; 262 263 /* Maximum number of page slots sharing a stable node */ 264 static int ksm_max_page_sharing = 256; 265 266 /* Number of pages ksmd should scan in one batch */ 267 static unsigned int ksm_thread_pages_to_scan = 100; 268 269 /* Milliseconds ksmd should sleep between batches */ 270 static unsigned int ksm_thread_sleep_millisecs = 20; 271 272 /* Checksum of an empty (zeroed) page */ 273 static unsigned int zero_checksum __read_mostly; 274 275 /* Whether to merge empty (zeroed) pages with actual zero pages */ 276 static bool ksm_use_zero_pages __read_mostly; 277 278 #ifdef CONFIG_NUMA 279 /* Zeroed when merging across nodes is not allowed */ 280 static unsigned int ksm_merge_across_nodes = 1; 281 static int ksm_nr_node_ids = 1; 282 #else 283 #define ksm_merge_across_nodes 1U 284 #define ksm_nr_node_ids 1 285 #endif 286 287 #define KSM_RUN_STOP 0 288 #define KSM_RUN_MERGE 1 289 #define KSM_RUN_UNMERGE 2 290 #define KSM_RUN_OFFLINE 4 291 static unsigned long ksm_run = KSM_RUN_STOP; 292 static void wait_while_offlining(void); 293 294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 296 static DEFINE_MUTEX(ksm_thread_mutex); 297 static DEFINE_SPINLOCK(ksm_mmlist_lock); 298 299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 300 sizeof(struct __struct), __alignof__(struct __struct),\ 301 (__flags), NULL) 302 303 static int __init ksm_slab_init(void) 304 { 305 rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0); 306 if (!rmap_item_cache) 307 goto out; 308 309 stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0); 310 if (!stable_node_cache) 311 goto out_free1; 312 313 mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0); 314 if (!mm_slot_cache) 315 goto out_free2; 316 317 return 0; 318 319 out_free2: 320 kmem_cache_destroy(stable_node_cache); 321 out_free1: 322 kmem_cache_destroy(rmap_item_cache); 323 out: 324 return -ENOMEM; 325 } 326 327 static void __init ksm_slab_free(void) 328 { 329 kmem_cache_destroy(mm_slot_cache); 330 kmem_cache_destroy(stable_node_cache); 331 kmem_cache_destroy(rmap_item_cache); 332 mm_slot_cache = NULL; 333 } 334 335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain) 336 { 337 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 338 } 339 340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup) 341 { 342 return dup->head == STABLE_NODE_DUP_HEAD; 343 } 344 345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup, 346 struct ksm_stable_node *chain) 347 { 348 VM_BUG_ON(is_stable_node_dup(dup)); 349 dup->head = STABLE_NODE_DUP_HEAD; 350 VM_BUG_ON(!is_stable_node_chain(chain)); 351 hlist_add_head(&dup->hlist_dup, &chain->hlist); 352 ksm_stable_node_dups++; 353 } 354 355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup) 356 { 357 VM_BUG_ON(!is_stable_node_dup(dup)); 358 hlist_del(&dup->hlist_dup); 359 ksm_stable_node_dups--; 360 } 361 362 static inline void stable_node_dup_del(struct ksm_stable_node *dup) 363 { 364 VM_BUG_ON(is_stable_node_chain(dup)); 365 if (is_stable_node_dup(dup)) 366 __stable_node_dup_del(dup); 367 else 368 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 369 #ifdef CONFIG_DEBUG_VM 370 dup->head = NULL; 371 #endif 372 } 373 374 static inline struct ksm_rmap_item *alloc_rmap_item(void) 375 { 376 struct ksm_rmap_item *rmap_item; 377 378 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 379 __GFP_NORETRY | __GFP_NOWARN); 380 if (rmap_item) 381 ksm_rmap_items++; 382 return rmap_item; 383 } 384 385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item) 386 { 387 ksm_rmap_items--; 388 rmap_item->mm->ksm_rmap_items--; 389 rmap_item->mm = NULL; /* debug safety */ 390 kmem_cache_free(rmap_item_cache, rmap_item); 391 } 392 393 static inline struct ksm_stable_node *alloc_stable_node(void) 394 { 395 /* 396 * The allocation can take too long with GFP_KERNEL when memory is under 397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 398 * grants access to memory reserves, helping to avoid this problem. 399 */ 400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 401 } 402 403 static inline void free_stable_node(struct ksm_stable_node *stable_node) 404 { 405 VM_BUG_ON(stable_node->rmap_hlist_len && 406 !is_stable_node_chain(stable_node)); 407 kmem_cache_free(stable_node_cache, stable_node); 408 } 409 410 /* 411 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 412 * page tables after it has passed through ksm_exit() - which, if necessary, 413 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 414 * a special flag: they can just back out as soon as mm_users goes to zero. 415 * ksm_test_exit() is used throughout to make this test for exit: in some 416 * places for correctness, in some places just to avoid unnecessary work. 417 */ 418 static inline bool ksm_test_exit(struct mm_struct *mm) 419 { 420 return atomic_read(&mm->mm_users) == 0; 421 } 422 423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next, 424 struct mm_walk *walk) 425 { 426 struct page *page = NULL; 427 spinlock_t *ptl; 428 pte_t *pte; 429 int ret; 430 431 if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 432 return 0; 433 434 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 435 if (pte_present(*pte)) { 436 page = vm_normal_page(walk->vma, addr, *pte); 437 } else if (!pte_none(*pte)) { 438 swp_entry_t entry = pte_to_swp_entry(*pte); 439 440 /* 441 * As KSM pages remain KSM pages until freed, no need to wait 442 * here for migration to end. 443 */ 444 if (is_migration_entry(entry)) 445 page = pfn_swap_entry_to_page(entry); 446 } 447 ret = page && PageKsm(page); 448 pte_unmap_unlock(pte, ptl); 449 return ret; 450 } 451 452 static const struct mm_walk_ops break_ksm_ops = { 453 .pmd_entry = break_ksm_pmd_entry, 454 }; 455 456 /* 457 * We use break_ksm to break COW on a ksm page by triggering unsharing, 458 * such that the ksm page will get replaced by an exclusive anonymous page. 459 * 460 * We take great care only to touch a ksm page, in a VM_MERGEABLE vma, 461 * in case the application has unmapped and remapped mm,addr meanwhile. 462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 463 * mmap of /dev/mem, where we would not want to touch it. 464 * 465 * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context 466 * of the process that owns 'vma'. We also do not want to enforce 467 * protection keys here anyway. 468 */ 469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 470 { 471 vm_fault_t ret = 0; 472 473 do { 474 int ksm_page; 475 476 cond_resched(); 477 ksm_page = walk_page_range_vma(vma, addr, addr + 1, 478 &break_ksm_ops, NULL); 479 if (WARN_ON_ONCE(ksm_page < 0)) 480 return ksm_page; 481 if (!ksm_page) 482 return 0; 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE, 485 NULL); 486 } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 487 /* 488 * We must loop until we no longer find a KSM page because 489 * handle_mm_fault() may back out if there's any difficulty e.g. if 490 * pte accessed bit gets updated concurrently. 491 * 492 * VM_FAULT_SIGBUS could occur if we race with truncation of the 493 * backing file, which also invalidates anonymous pages: that's 494 * okay, that truncation will have unmapped the PageKsm for us. 495 * 496 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 497 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 498 * current task has TIF_MEMDIE set, and will be OOM killed on return 499 * to user; and ksmd, having no mm, would never be chosen for that. 500 * 501 * But if the mm is in a limited mem_cgroup, then the fault may fail 502 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 503 * even ksmd can fail in this way - though it's usually breaking ksm 504 * just to undo a merge it made a moment before, so unlikely to oom. 505 * 506 * That's a pity: we might therefore have more kernel pages allocated 507 * than we're counting as nodes in the stable tree; but ksm_do_scan 508 * will retry to break_cow on each pass, so should recover the page 509 * in due course. The important thing is to not let VM_MERGEABLE 510 * be cleared while any such pages might remain in the area. 511 */ 512 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 513 } 514 515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 516 unsigned long addr) 517 { 518 struct vm_area_struct *vma; 519 if (ksm_test_exit(mm)) 520 return NULL; 521 vma = vma_lookup(mm, addr); 522 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 523 return NULL; 524 return vma; 525 } 526 527 static void break_cow(struct ksm_rmap_item *rmap_item) 528 { 529 struct mm_struct *mm = rmap_item->mm; 530 unsigned long addr = rmap_item->address; 531 struct vm_area_struct *vma; 532 533 /* 534 * It is not an accident that whenever we want to break COW 535 * to undo, we also need to drop a reference to the anon_vma. 536 */ 537 put_anon_vma(rmap_item->anon_vma); 538 539 mmap_read_lock(mm); 540 vma = find_mergeable_vma(mm, addr); 541 if (vma) 542 break_ksm(vma, addr); 543 mmap_read_unlock(mm); 544 } 545 546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item) 547 { 548 struct mm_struct *mm = rmap_item->mm; 549 unsigned long addr = rmap_item->address; 550 struct vm_area_struct *vma; 551 struct page *page; 552 553 mmap_read_lock(mm); 554 vma = find_mergeable_vma(mm, addr); 555 if (!vma) 556 goto out; 557 558 page = follow_page(vma, addr, FOLL_GET); 559 if (IS_ERR_OR_NULL(page)) 560 goto out; 561 if (is_zone_device_page(page)) 562 goto out_putpage; 563 if (PageAnon(page)) { 564 flush_anon_page(vma, page, addr); 565 flush_dcache_page(page); 566 } else { 567 out_putpage: 568 put_page(page); 569 out: 570 page = NULL; 571 } 572 mmap_read_unlock(mm); 573 return page; 574 } 575 576 /* 577 * This helper is used for getting right index into array of tree roots. 578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 579 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 580 * every node has its own stable and unstable tree. 581 */ 582 static inline int get_kpfn_nid(unsigned long kpfn) 583 { 584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 585 } 586 587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup, 588 struct rb_root *root) 589 { 590 struct ksm_stable_node *chain = alloc_stable_node(); 591 VM_BUG_ON(is_stable_node_chain(dup)); 592 if (likely(chain)) { 593 INIT_HLIST_HEAD(&chain->hlist); 594 chain->chain_prune_time = jiffies; 595 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 597 chain->nid = NUMA_NO_NODE; /* debug */ 598 #endif 599 ksm_stable_node_chains++; 600 601 /* 602 * Put the stable node chain in the first dimension of 603 * the stable tree and at the same time remove the old 604 * stable node. 605 */ 606 rb_replace_node(&dup->node, &chain->node, root); 607 608 /* 609 * Move the old stable node to the second dimension 610 * queued in the hlist_dup. The invariant is that all 611 * dup stable_nodes in the chain->hlist point to pages 612 * that are write protected and have the exact same 613 * content. 614 */ 615 stable_node_chain_add_dup(dup, chain); 616 } 617 return chain; 618 } 619 620 static inline void free_stable_node_chain(struct ksm_stable_node *chain, 621 struct rb_root *root) 622 { 623 rb_erase(&chain->node, root); 624 free_stable_node(chain); 625 ksm_stable_node_chains--; 626 } 627 628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node) 629 { 630 struct ksm_rmap_item *rmap_item; 631 632 /* check it's not STABLE_NODE_CHAIN or negative */ 633 BUG_ON(stable_node->rmap_hlist_len < 0); 634 635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 636 if (rmap_item->hlist.next) 637 ksm_pages_sharing--; 638 else 639 ksm_pages_shared--; 640 641 rmap_item->mm->ksm_merging_pages--; 642 643 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 644 stable_node->rmap_hlist_len--; 645 put_anon_vma(rmap_item->anon_vma); 646 rmap_item->address &= PAGE_MASK; 647 cond_resched(); 648 } 649 650 /* 651 * We need the second aligned pointer of the migrate_nodes 652 * list_head to stay clear from the rb_parent_color union 653 * (aligned and different than any node) and also different 654 * from &migrate_nodes. This will verify that future list.h changes 655 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 656 */ 657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 659 660 if (stable_node->head == &migrate_nodes) 661 list_del(&stable_node->list); 662 else 663 stable_node_dup_del(stable_node); 664 free_stable_node(stable_node); 665 } 666 667 enum get_ksm_page_flags { 668 GET_KSM_PAGE_NOLOCK, 669 GET_KSM_PAGE_LOCK, 670 GET_KSM_PAGE_TRYLOCK 671 }; 672 673 /* 674 * get_ksm_page: checks if the page indicated by the stable node 675 * is still its ksm page, despite having held no reference to it. 676 * In which case we can trust the content of the page, and it 677 * returns the gotten page; but if the page has now been zapped, 678 * remove the stale node from the stable tree and return NULL. 679 * But beware, the stable node's page might be being migrated. 680 * 681 * You would expect the stable_node to hold a reference to the ksm page. 682 * But if it increments the page's count, swapping out has to wait for 683 * ksmd to come around again before it can free the page, which may take 684 * seconds or even minutes: much too unresponsive. So instead we use a 685 * "keyhole reference": access to the ksm page from the stable node peeps 686 * out through its keyhole to see if that page still holds the right key, 687 * pointing back to this stable node. This relies on freeing a PageAnon 688 * page to reset its page->mapping to NULL, and relies on no other use of 689 * a page to put something that might look like our key in page->mapping. 690 * is on its way to being freed; but it is an anomaly to bear in mind. 691 */ 692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node, 693 enum get_ksm_page_flags flags) 694 { 695 struct page *page; 696 void *expected_mapping; 697 unsigned long kpfn; 698 699 expected_mapping = (void *)((unsigned long)stable_node | 700 PAGE_MAPPING_KSM); 701 again: 702 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 703 page = pfn_to_page(kpfn); 704 if (READ_ONCE(page->mapping) != expected_mapping) 705 goto stale; 706 707 /* 708 * We cannot do anything with the page while its refcount is 0. 709 * Usually 0 means free, or tail of a higher-order page: in which 710 * case this node is no longer referenced, and should be freed; 711 * however, it might mean that the page is under page_ref_freeze(). 712 * The __remove_mapping() case is easy, again the node is now stale; 713 * the same is in reuse_ksm_page() case; but if page is swapcache 714 * in folio_migrate_mapping(), it might still be our page, 715 * in which case it's essential to keep the node. 716 */ 717 while (!get_page_unless_zero(page)) { 718 /* 719 * Another check for page->mapping != expected_mapping would 720 * work here too. We have chosen the !PageSwapCache test to 721 * optimize the common case, when the page is or is about to 722 * be freed: PageSwapCache is cleared (under spin_lock_irq) 723 * in the ref_freeze section of __remove_mapping(); but Anon 724 * page->mapping reset to NULL later, in free_pages_prepare(). 725 */ 726 if (!PageSwapCache(page)) 727 goto stale; 728 cpu_relax(); 729 } 730 731 if (READ_ONCE(page->mapping) != expected_mapping) { 732 put_page(page); 733 goto stale; 734 } 735 736 if (flags == GET_KSM_PAGE_TRYLOCK) { 737 if (!trylock_page(page)) { 738 put_page(page); 739 return ERR_PTR(-EBUSY); 740 } 741 } else if (flags == GET_KSM_PAGE_LOCK) 742 lock_page(page); 743 744 if (flags != GET_KSM_PAGE_NOLOCK) { 745 if (READ_ONCE(page->mapping) != expected_mapping) { 746 unlock_page(page); 747 put_page(page); 748 goto stale; 749 } 750 } 751 return page; 752 753 stale: 754 /* 755 * We come here from above when page->mapping or !PageSwapCache 756 * suggests that the node is stale; but it might be under migration. 757 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(), 758 * before checking whether node->kpfn has been changed. 759 */ 760 smp_rmb(); 761 if (READ_ONCE(stable_node->kpfn) != kpfn) 762 goto again; 763 remove_node_from_stable_tree(stable_node); 764 return NULL; 765 } 766 767 /* 768 * Removing rmap_item from stable or unstable tree. 769 * This function will clean the information from the stable/unstable tree. 770 */ 771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item) 772 { 773 if (rmap_item->address & STABLE_FLAG) { 774 struct ksm_stable_node *stable_node; 775 struct page *page; 776 777 stable_node = rmap_item->head; 778 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 779 if (!page) 780 goto out; 781 782 hlist_del(&rmap_item->hlist); 783 unlock_page(page); 784 put_page(page); 785 786 if (!hlist_empty(&stable_node->hlist)) 787 ksm_pages_sharing--; 788 else 789 ksm_pages_shared--; 790 791 rmap_item->mm->ksm_merging_pages--; 792 793 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 794 stable_node->rmap_hlist_len--; 795 796 put_anon_vma(rmap_item->anon_vma); 797 rmap_item->head = NULL; 798 rmap_item->address &= PAGE_MASK; 799 800 } else if (rmap_item->address & UNSTABLE_FLAG) { 801 unsigned char age; 802 /* 803 * Usually ksmd can and must skip the rb_erase, because 804 * root_unstable_tree was already reset to RB_ROOT. 805 * But be careful when an mm is exiting: do the rb_erase 806 * if this rmap_item was inserted by this scan, rather 807 * than left over from before. 808 */ 809 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 810 BUG_ON(age > 1); 811 if (!age) 812 rb_erase(&rmap_item->node, 813 root_unstable_tree + NUMA(rmap_item->nid)); 814 ksm_pages_unshared--; 815 rmap_item->address &= PAGE_MASK; 816 } 817 out: 818 cond_resched(); /* we're called from many long loops */ 819 } 820 821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list) 822 { 823 while (*rmap_list) { 824 struct ksm_rmap_item *rmap_item = *rmap_list; 825 *rmap_list = rmap_item->rmap_list; 826 remove_rmap_item_from_tree(rmap_item); 827 free_rmap_item(rmap_item); 828 } 829 } 830 831 /* 832 * Though it's very tempting to unmerge rmap_items from stable tree rather 833 * than check every pte of a given vma, the locking doesn't quite work for 834 * that - an rmap_item is assigned to the stable tree after inserting ksm 835 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 836 * rmap_items from parent to child at fork time (so as not to waste time 837 * if exit comes before the next scan reaches it). 838 * 839 * Similarly, although we'd like to remove rmap_items (so updating counts 840 * and freeing memory) when unmerging an area, it's easier to leave that 841 * to the next pass of ksmd - consider, for example, how ksmd might be 842 * in cmp_and_merge_page on one of the rmap_items we would be removing. 843 */ 844 static int unmerge_ksm_pages(struct vm_area_struct *vma, 845 unsigned long start, unsigned long end) 846 { 847 unsigned long addr; 848 int err = 0; 849 850 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 851 if (ksm_test_exit(vma->vm_mm)) 852 break; 853 if (signal_pending(current)) 854 err = -ERESTARTSYS; 855 else 856 err = break_ksm(vma, addr); 857 } 858 return err; 859 } 860 861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio) 862 { 863 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL; 864 } 865 866 static inline struct ksm_stable_node *page_stable_node(struct page *page) 867 { 868 return folio_stable_node(page_folio(page)); 869 } 870 871 static inline void set_page_stable_node(struct page *page, 872 struct ksm_stable_node *stable_node) 873 { 874 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page); 875 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 876 } 877 878 #ifdef CONFIG_SYSFS 879 /* 880 * Only called through the sysfs control interface: 881 */ 882 static int remove_stable_node(struct ksm_stable_node *stable_node) 883 { 884 struct page *page; 885 int err; 886 887 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 888 if (!page) { 889 /* 890 * get_ksm_page did remove_node_from_stable_tree itself. 891 */ 892 return 0; 893 } 894 895 /* 896 * Page could be still mapped if this races with __mmput() running in 897 * between ksm_exit() and exit_mmap(). Just refuse to let 898 * merge_across_nodes/max_page_sharing be switched. 899 */ 900 err = -EBUSY; 901 if (!page_mapped(page)) { 902 /* 903 * The stable node did not yet appear stale to get_ksm_page(), 904 * since that allows for an unmapped ksm page to be recognized 905 * right up until it is freed; but the node is safe to remove. 906 * This page might be in a pagevec waiting to be freed, 907 * or it might be PageSwapCache (perhaps under writeback), 908 * or it might have been removed from swapcache a moment ago. 909 */ 910 set_page_stable_node(page, NULL); 911 remove_node_from_stable_tree(stable_node); 912 err = 0; 913 } 914 915 unlock_page(page); 916 put_page(page); 917 return err; 918 } 919 920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node, 921 struct rb_root *root) 922 { 923 struct ksm_stable_node *dup; 924 struct hlist_node *hlist_safe; 925 926 if (!is_stable_node_chain(stable_node)) { 927 VM_BUG_ON(is_stable_node_dup(stable_node)); 928 if (remove_stable_node(stable_node)) 929 return true; 930 else 931 return false; 932 } 933 934 hlist_for_each_entry_safe(dup, hlist_safe, 935 &stable_node->hlist, hlist_dup) { 936 VM_BUG_ON(!is_stable_node_dup(dup)); 937 if (remove_stable_node(dup)) 938 return true; 939 } 940 BUG_ON(!hlist_empty(&stable_node->hlist)); 941 free_stable_node_chain(stable_node, root); 942 return false; 943 } 944 945 static int remove_all_stable_nodes(void) 946 { 947 struct ksm_stable_node *stable_node, *next; 948 int nid; 949 int err = 0; 950 951 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 952 while (root_stable_tree[nid].rb_node) { 953 stable_node = rb_entry(root_stable_tree[nid].rb_node, 954 struct ksm_stable_node, node); 955 if (remove_stable_node_chain(stable_node, 956 root_stable_tree + nid)) { 957 err = -EBUSY; 958 break; /* proceed to next nid */ 959 } 960 cond_resched(); 961 } 962 } 963 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 964 if (remove_stable_node(stable_node)) 965 err = -EBUSY; 966 cond_resched(); 967 } 968 return err; 969 } 970 971 static int unmerge_and_remove_all_rmap_items(void) 972 { 973 struct ksm_mm_slot *mm_slot; 974 struct mm_slot *slot; 975 struct mm_struct *mm; 976 struct vm_area_struct *vma; 977 int err = 0; 978 979 spin_lock(&ksm_mmlist_lock); 980 slot = list_entry(ksm_mm_head.slot.mm_node.next, 981 struct mm_slot, mm_node); 982 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 983 spin_unlock(&ksm_mmlist_lock); 984 985 for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head; 986 mm_slot = ksm_scan.mm_slot) { 987 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0); 988 989 mm = mm_slot->slot.mm; 990 mmap_read_lock(mm); 991 for_each_vma(vmi, vma) { 992 if (ksm_test_exit(mm)) 993 break; 994 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 995 continue; 996 err = unmerge_ksm_pages(vma, 997 vma->vm_start, vma->vm_end); 998 if (err) 999 goto error; 1000 } 1001 1002 remove_trailing_rmap_items(&mm_slot->rmap_list); 1003 mmap_read_unlock(mm); 1004 1005 spin_lock(&ksm_mmlist_lock); 1006 slot = list_entry(mm_slot->slot.mm_node.next, 1007 struct mm_slot, mm_node); 1008 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 1009 if (ksm_test_exit(mm)) { 1010 hash_del(&mm_slot->slot.hash); 1011 list_del(&mm_slot->slot.mm_node); 1012 spin_unlock(&ksm_mmlist_lock); 1013 1014 mm_slot_free(mm_slot_cache, mm_slot); 1015 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1016 mmdrop(mm); 1017 } else 1018 spin_unlock(&ksm_mmlist_lock); 1019 } 1020 1021 /* Clean up stable nodes, but don't worry if some are still busy */ 1022 remove_all_stable_nodes(); 1023 ksm_scan.seqnr = 0; 1024 return 0; 1025 1026 error: 1027 mmap_read_unlock(mm); 1028 spin_lock(&ksm_mmlist_lock); 1029 ksm_scan.mm_slot = &ksm_mm_head; 1030 spin_unlock(&ksm_mmlist_lock); 1031 return err; 1032 } 1033 #endif /* CONFIG_SYSFS */ 1034 1035 static u32 calc_checksum(struct page *page) 1036 { 1037 u32 checksum; 1038 void *addr = kmap_atomic(page); 1039 checksum = xxhash(addr, PAGE_SIZE, 0); 1040 kunmap_atomic(addr); 1041 return checksum; 1042 } 1043 1044 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1045 pte_t *orig_pte) 1046 { 1047 struct mm_struct *mm = vma->vm_mm; 1048 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0); 1049 int swapped; 1050 int err = -EFAULT; 1051 struct mmu_notifier_range range; 1052 bool anon_exclusive; 1053 1054 pvmw.address = page_address_in_vma(page, vma); 1055 if (pvmw.address == -EFAULT) 1056 goto out; 1057 1058 BUG_ON(PageTransCompound(page)); 1059 1060 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address, 1061 pvmw.address + PAGE_SIZE); 1062 mmu_notifier_invalidate_range_start(&range); 1063 1064 if (!page_vma_mapped_walk(&pvmw)) 1065 goto out_mn; 1066 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1067 goto out_unlock; 1068 1069 anon_exclusive = PageAnonExclusive(page); 1070 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1071 anon_exclusive || mm_tlb_flush_pending(mm)) { 1072 pte_t entry; 1073 1074 swapped = PageSwapCache(page); 1075 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1076 /* 1077 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1078 * take any lock, therefore the check that we are going to make 1079 * with the pagecount against the mapcount is racy and 1080 * O_DIRECT can happen right after the check. 1081 * So we clear the pte and flush the tlb before the check 1082 * this assure us that no O_DIRECT can happen after the check 1083 * or in the middle of the check. 1084 * 1085 * No need to notify as we are downgrading page table to read 1086 * only not changing it to point to a new page. 1087 * 1088 * See Documentation/mm/mmu_notifier.rst 1089 */ 1090 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1091 /* 1092 * Check that no O_DIRECT or similar I/O is in progress on the 1093 * page 1094 */ 1095 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1096 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1097 goto out_unlock; 1098 } 1099 1100 /* See page_try_share_anon_rmap(): clear PTE first. */ 1101 if (anon_exclusive && page_try_share_anon_rmap(page)) { 1102 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1103 goto out_unlock; 1104 } 1105 1106 if (pte_dirty(entry)) 1107 set_page_dirty(page); 1108 entry = pte_mkclean(entry); 1109 1110 if (pte_write(entry)) 1111 entry = pte_wrprotect(entry); 1112 1113 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1114 } 1115 *orig_pte = *pvmw.pte; 1116 err = 0; 1117 1118 out_unlock: 1119 page_vma_mapped_walk_done(&pvmw); 1120 out_mn: 1121 mmu_notifier_invalidate_range_end(&range); 1122 out: 1123 return err; 1124 } 1125 1126 /** 1127 * replace_page - replace page in vma by new ksm page 1128 * @vma: vma that holds the pte pointing to page 1129 * @page: the page we are replacing by kpage 1130 * @kpage: the ksm page we replace page by 1131 * @orig_pte: the original value of the pte 1132 * 1133 * Returns 0 on success, -EFAULT on failure. 1134 */ 1135 static int replace_page(struct vm_area_struct *vma, struct page *page, 1136 struct page *kpage, pte_t orig_pte) 1137 { 1138 struct mm_struct *mm = vma->vm_mm; 1139 struct folio *folio; 1140 pmd_t *pmd; 1141 pmd_t pmde; 1142 pte_t *ptep; 1143 pte_t newpte; 1144 spinlock_t *ptl; 1145 unsigned long addr; 1146 int err = -EFAULT; 1147 struct mmu_notifier_range range; 1148 1149 addr = page_address_in_vma(page, vma); 1150 if (addr == -EFAULT) 1151 goto out; 1152 1153 pmd = mm_find_pmd(mm, addr); 1154 if (!pmd) 1155 goto out; 1156 /* 1157 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() 1158 * without holding anon_vma lock for write. So when looking for a 1159 * genuine pmde (in which to find pte), test present and !THP together. 1160 */ 1161 pmde = *pmd; 1162 barrier(); 1163 if (!pmd_present(pmde) || pmd_trans_huge(pmde)) 1164 goto out; 1165 1166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 1167 addr + PAGE_SIZE); 1168 mmu_notifier_invalidate_range_start(&range); 1169 1170 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1171 if (!pte_same(*ptep, orig_pte)) { 1172 pte_unmap_unlock(ptep, ptl); 1173 goto out_mn; 1174 } 1175 VM_BUG_ON_PAGE(PageAnonExclusive(page), page); 1176 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage); 1177 1178 /* 1179 * No need to check ksm_use_zero_pages here: we can only have a 1180 * zero_page here if ksm_use_zero_pages was enabled already. 1181 */ 1182 if (!is_zero_pfn(page_to_pfn(kpage))) { 1183 get_page(kpage); 1184 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE); 1185 newpte = mk_pte(kpage, vma->vm_page_prot); 1186 } else { 1187 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1188 vma->vm_page_prot)); 1189 /* 1190 * We're replacing an anonymous page with a zero page, which is 1191 * not anonymous. We need to do proper accounting otherwise we 1192 * will get wrong values in /proc, and a BUG message in dmesg 1193 * when tearing down the mm. 1194 */ 1195 dec_mm_counter(mm, MM_ANONPAGES); 1196 } 1197 1198 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1199 /* 1200 * No need to notify as we are replacing a read only page with another 1201 * read only page with the same content. 1202 * 1203 * See Documentation/mm/mmu_notifier.rst 1204 */ 1205 ptep_clear_flush(vma, addr, ptep); 1206 set_pte_at_notify(mm, addr, ptep, newpte); 1207 1208 folio = page_folio(page); 1209 page_remove_rmap(page, vma, false); 1210 if (!folio_mapped(folio)) 1211 folio_free_swap(folio); 1212 folio_put(folio); 1213 1214 pte_unmap_unlock(ptep, ptl); 1215 err = 0; 1216 out_mn: 1217 mmu_notifier_invalidate_range_end(&range); 1218 out: 1219 return err; 1220 } 1221 1222 /* 1223 * try_to_merge_one_page - take two pages and merge them into one 1224 * @vma: the vma that holds the pte pointing to page 1225 * @page: the PageAnon page that we want to replace with kpage 1226 * @kpage: the PageKsm page that we want to map instead of page, 1227 * or NULL the first time when we want to use page as kpage. 1228 * 1229 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1230 */ 1231 static int try_to_merge_one_page(struct vm_area_struct *vma, 1232 struct page *page, struct page *kpage) 1233 { 1234 pte_t orig_pte = __pte(0); 1235 int err = -EFAULT; 1236 1237 if (page == kpage) /* ksm page forked */ 1238 return 0; 1239 1240 if (!PageAnon(page)) 1241 goto out; 1242 1243 /* 1244 * We need the page lock to read a stable PageSwapCache in 1245 * write_protect_page(). We use trylock_page() instead of 1246 * lock_page() because we don't want to wait here - we 1247 * prefer to continue scanning and merging different pages, 1248 * then come back to this page when it is unlocked. 1249 */ 1250 if (!trylock_page(page)) 1251 goto out; 1252 1253 if (PageTransCompound(page)) { 1254 if (split_huge_page(page)) 1255 goto out_unlock; 1256 } 1257 1258 /* 1259 * If this anonymous page is mapped only here, its pte may need 1260 * to be write-protected. If it's mapped elsewhere, all of its 1261 * ptes are necessarily already write-protected. But in either 1262 * case, we need to lock and check page_count is not raised. 1263 */ 1264 if (write_protect_page(vma, page, &orig_pte) == 0) { 1265 if (!kpage) { 1266 /* 1267 * While we hold page lock, upgrade page from 1268 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1269 * stable_tree_insert() will update stable_node. 1270 */ 1271 set_page_stable_node(page, NULL); 1272 mark_page_accessed(page); 1273 /* 1274 * Page reclaim just frees a clean page with no dirty 1275 * ptes: make sure that the ksm page would be swapped. 1276 */ 1277 if (!PageDirty(page)) 1278 SetPageDirty(page); 1279 err = 0; 1280 } else if (pages_identical(page, kpage)) 1281 err = replace_page(vma, page, kpage, orig_pte); 1282 } 1283 1284 out_unlock: 1285 unlock_page(page); 1286 out: 1287 return err; 1288 } 1289 1290 /* 1291 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1292 * but no new kernel page is allocated: kpage must already be a ksm page. 1293 * 1294 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1295 */ 1296 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item, 1297 struct page *page, struct page *kpage) 1298 { 1299 struct mm_struct *mm = rmap_item->mm; 1300 struct vm_area_struct *vma; 1301 int err = -EFAULT; 1302 1303 mmap_read_lock(mm); 1304 vma = find_mergeable_vma(mm, rmap_item->address); 1305 if (!vma) 1306 goto out; 1307 1308 err = try_to_merge_one_page(vma, page, kpage); 1309 if (err) 1310 goto out; 1311 1312 /* Unstable nid is in union with stable anon_vma: remove first */ 1313 remove_rmap_item_from_tree(rmap_item); 1314 1315 /* Must get reference to anon_vma while still holding mmap_lock */ 1316 rmap_item->anon_vma = vma->anon_vma; 1317 get_anon_vma(vma->anon_vma); 1318 out: 1319 mmap_read_unlock(mm); 1320 return err; 1321 } 1322 1323 /* 1324 * try_to_merge_two_pages - take two identical pages and prepare them 1325 * to be merged into one page. 1326 * 1327 * This function returns the kpage if we successfully merged two identical 1328 * pages into one ksm page, NULL otherwise. 1329 * 1330 * Note that this function upgrades page to ksm page: if one of the pages 1331 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1332 */ 1333 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item, 1334 struct page *page, 1335 struct ksm_rmap_item *tree_rmap_item, 1336 struct page *tree_page) 1337 { 1338 int err; 1339 1340 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1341 if (!err) { 1342 err = try_to_merge_with_ksm_page(tree_rmap_item, 1343 tree_page, page); 1344 /* 1345 * If that fails, we have a ksm page with only one pte 1346 * pointing to it: so break it. 1347 */ 1348 if (err) 1349 break_cow(rmap_item); 1350 } 1351 return err ? NULL : page; 1352 } 1353 1354 static __always_inline 1355 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset) 1356 { 1357 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1358 /* 1359 * Check that at least one mapping still exists, otherwise 1360 * there's no much point to merge and share with this 1361 * stable_node, as the underlying tree_page of the other 1362 * sharer is going to be freed soon. 1363 */ 1364 return stable_node->rmap_hlist_len && 1365 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1366 } 1367 1368 static __always_inline 1369 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node) 1370 { 1371 return __is_page_sharing_candidate(stable_node, 0); 1372 } 1373 1374 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup, 1375 struct ksm_stable_node **_stable_node, 1376 struct rb_root *root, 1377 bool prune_stale_stable_nodes) 1378 { 1379 struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1380 struct hlist_node *hlist_safe; 1381 struct page *_tree_page, *tree_page = NULL; 1382 int nr = 0; 1383 int found_rmap_hlist_len; 1384 1385 if (!prune_stale_stable_nodes || 1386 time_before(jiffies, stable_node->chain_prune_time + 1387 msecs_to_jiffies( 1388 ksm_stable_node_chains_prune_millisecs))) 1389 prune_stale_stable_nodes = false; 1390 else 1391 stable_node->chain_prune_time = jiffies; 1392 1393 hlist_for_each_entry_safe(dup, hlist_safe, 1394 &stable_node->hlist, hlist_dup) { 1395 cond_resched(); 1396 /* 1397 * We must walk all stable_node_dup to prune the stale 1398 * stable nodes during lookup. 1399 * 1400 * get_ksm_page can drop the nodes from the 1401 * stable_node->hlist if they point to freed pages 1402 * (that's why we do a _safe walk). The "dup" 1403 * stable_node parameter itself will be freed from 1404 * under us if it returns NULL. 1405 */ 1406 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1407 if (!_tree_page) 1408 continue; 1409 nr += 1; 1410 if (is_page_sharing_candidate(dup)) { 1411 if (!found || 1412 dup->rmap_hlist_len > found_rmap_hlist_len) { 1413 if (found) 1414 put_page(tree_page); 1415 found = dup; 1416 found_rmap_hlist_len = found->rmap_hlist_len; 1417 tree_page = _tree_page; 1418 1419 /* skip put_page for found dup */ 1420 if (!prune_stale_stable_nodes) 1421 break; 1422 continue; 1423 } 1424 } 1425 put_page(_tree_page); 1426 } 1427 1428 if (found) { 1429 /* 1430 * nr is counting all dups in the chain only if 1431 * prune_stale_stable_nodes is true, otherwise we may 1432 * break the loop at nr == 1 even if there are 1433 * multiple entries. 1434 */ 1435 if (prune_stale_stable_nodes && nr == 1) { 1436 /* 1437 * If there's not just one entry it would 1438 * corrupt memory, better BUG_ON. In KSM 1439 * context with no lock held it's not even 1440 * fatal. 1441 */ 1442 BUG_ON(stable_node->hlist.first->next); 1443 1444 /* 1445 * There's just one entry and it is below the 1446 * deduplication limit so drop the chain. 1447 */ 1448 rb_replace_node(&stable_node->node, &found->node, 1449 root); 1450 free_stable_node(stable_node); 1451 ksm_stable_node_chains--; 1452 ksm_stable_node_dups--; 1453 /* 1454 * NOTE: the caller depends on the stable_node 1455 * to be equal to stable_node_dup if the chain 1456 * was collapsed. 1457 */ 1458 *_stable_node = found; 1459 /* 1460 * Just for robustness, as stable_node is 1461 * otherwise left as a stable pointer, the 1462 * compiler shall optimize it away at build 1463 * time. 1464 */ 1465 stable_node = NULL; 1466 } else if (stable_node->hlist.first != &found->hlist_dup && 1467 __is_page_sharing_candidate(found, 1)) { 1468 /* 1469 * If the found stable_node dup can accept one 1470 * more future merge (in addition to the one 1471 * that is underway) and is not at the head of 1472 * the chain, put it there so next search will 1473 * be quicker in the !prune_stale_stable_nodes 1474 * case. 1475 * 1476 * NOTE: it would be inaccurate to use nr > 1 1477 * instead of checking the hlist.first pointer 1478 * directly, because in the 1479 * prune_stale_stable_nodes case "nr" isn't 1480 * the position of the found dup in the chain, 1481 * but the total number of dups in the chain. 1482 */ 1483 hlist_del(&found->hlist_dup); 1484 hlist_add_head(&found->hlist_dup, 1485 &stable_node->hlist); 1486 } 1487 } 1488 1489 *_stable_node_dup = found; 1490 return tree_page; 1491 } 1492 1493 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node, 1494 struct rb_root *root) 1495 { 1496 if (!is_stable_node_chain(stable_node)) 1497 return stable_node; 1498 if (hlist_empty(&stable_node->hlist)) { 1499 free_stable_node_chain(stable_node, root); 1500 return NULL; 1501 } 1502 return hlist_entry(stable_node->hlist.first, 1503 typeof(*stable_node), hlist_dup); 1504 } 1505 1506 /* 1507 * Like for get_ksm_page, this function can free the *_stable_node and 1508 * *_stable_node_dup if the returned tree_page is NULL. 1509 * 1510 * It can also free and overwrite *_stable_node with the found 1511 * stable_node_dup if the chain is collapsed (in which case 1512 * *_stable_node will be equal to *_stable_node_dup like if the chain 1513 * never existed). It's up to the caller to verify tree_page is not 1514 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1515 * 1516 * *_stable_node_dup is really a second output parameter of this 1517 * function and will be overwritten in all cases, the caller doesn't 1518 * need to initialize it. 1519 */ 1520 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup, 1521 struct ksm_stable_node **_stable_node, 1522 struct rb_root *root, 1523 bool prune_stale_stable_nodes) 1524 { 1525 struct ksm_stable_node *stable_node = *_stable_node; 1526 if (!is_stable_node_chain(stable_node)) { 1527 if (is_page_sharing_candidate(stable_node)) { 1528 *_stable_node_dup = stable_node; 1529 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1530 } 1531 /* 1532 * _stable_node_dup set to NULL means the stable_node 1533 * reached the ksm_max_page_sharing limit. 1534 */ 1535 *_stable_node_dup = NULL; 1536 return NULL; 1537 } 1538 return stable_node_dup(_stable_node_dup, _stable_node, root, 1539 prune_stale_stable_nodes); 1540 } 1541 1542 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d, 1543 struct ksm_stable_node **s_n, 1544 struct rb_root *root) 1545 { 1546 return __stable_node_chain(s_n_d, s_n, root, true); 1547 } 1548 1549 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d, 1550 struct ksm_stable_node *s_n, 1551 struct rb_root *root) 1552 { 1553 struct ksm_stable_node *old_stable_node = s_n; 1554 struct page *tree_page; 1555 1556 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1557 /* not pruning dups so s_n cannot have changed */ 1558 VM_BUG_ON(s_n != old_stable_node); 1559 return tree_page; 1560 } 1561 1562 /* 1563 * stable_tree_search - search for page inside the stable tree 1564 * 1565 * This function checks if there is a page inside the stable tree 1566 * with identical content to the page that we are scanning right now. 1567 * 1568 * This function returns the stable tree node of identical content if found, 1569 * NULL otherwise. 1570 */ 1571 static struct page *stable_tree_search(struct page *page) 1572 { 1573 int nid; 1574 struct rb_root *root; 1575 struct rb_node **new; 1576 struct rb_node *parent; 1577 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1578 struct ksm_stable_node *page_node; 1579 1580 page_node = page_stable_node(page); 1581 if (page_node && page_node->head != &migrate_nodes) { 1582 /* ksm page forked */ 1583 get_page(page); 1584 return page; 1585 } 1586 1587 nid = get_kpfn_nid(page_to_pfn(page)); 1588 root = root_stable_tree + nid; 1589 again: 1590 new = &root->rb_node; 1591 parent = NULL; 1592 1593 while (*new) { 1594 struct page *tree_page; 1595 int ret; 1596 1597 cond_resched(); 1598 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1599 stable_node_any = NULL; 1600 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1601 /* 1602 * NOTE: stable_node may have been freed by 1603 * chain_prune() if the returned stable_node_dup is 1604 * not NULL. stable_node_dup may have been inserted in 1605 * the rbtree instead as a regular stable_node (in 1606 * order to collapse the stable_node chain if a single 1607 * stable_node dup was found in it). In such case the 1608 * stable_node is overwritten by the callee to point 1609 * to the stable_node_dup that was collapsed in the 1610 * stable rbtree and stable_node will be equal to 1611 * stable_node_dup like if the chain never existed. 1612 */ 1613 if (!stable_node_dup) { 1614 /* 1615 * Either all stable_node dups were full in 1616 * this stable_node chain, or this chain was 1617 * empty and should be rb_erased. 1618 */ 1619 stable_node_any = stable_node_dup_any(stable_node, 1620 root); 1621 if (!stable_node_any) { 1622 /* rb_erase just run */ 1623 goto again; 1624 } 1625 /* 1626 * Take any of the stable_node dups page of 1627 * this stable_node chain to let the tree walk 1628 * continue. All KSM pages belonging to the 1629 * stable_node dups in a stable_node chain 1630 * have the same content and they're 1631 * write protected at all times. Any will work 1632 * fine to continue the walk. 1633 */ 1634 tree_page = get_ksm_page(stable_node_any, 1635 GET_KSM_PAGE_NOLOCK); 1636 } 1637 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1638 if (!tree_page) { 1639 /* 1640 * If we walked over a stale stable_node, 1641 * get_ksm_page() will call rb_erase() and it 1642 * may rebalance the tree from under us. So 1643 * restart the search from scratch. Returning 1644 * NULL would be safe too, but we'd generate 1645 * false negative insertions just because some 1646 * stable_node was stale. 1647 */ 1648 goto again; 1649 } 1650 1651 ret = memcmp_pages(page, tree_page); 1652 put_page(tree_page); 1653 1654 parent = *new; 1655 if (ret < 0) 1656 new = &parent->rb_left; 1657 else if (ret > 0) 1658 new = &parent->rb_right; 1659 else { 1660 if (page_node) { 1661 VM_BUG_ON(page_node->head != &migrate_nodes); 1662 /* 1663 * Test if the migrated page should be merged 1664 * into a stable node dup. If the mapcount is 1665 * 1 we can migrate it with another KSM page 1666 * without adding it to the chain. 1667 */ 1668 if (page_mapcount(page) > 1) 1669 goto chain_append; 1670 } 1671 1672 if (!stable_node_dup) { 1673 /* 1674 * If the stable_node is a chain and 1675 * we got a payload match in memcmp 1676 * but we cannot merge the scanned 1677 * page in any of the existing 1678 * stable_node dups because they're 1679 * all full, we need to wait the 1680 * scanned page to find itself a match 1681 * in the unstable tree to create a 1682 * brand new KSM page to add later to 1683 * the dups of this stable_node. 1684 */ 1685 return NULL; 1686 } 1687 1688 /* 1689 * Lock and unlock the stable_node's page (which 1690 * might already have been migrated) so that page 1691 * migration is sure to notice its raised count. 1692 * It would be more elegant to return stable_node 1693 * than kpage, but that involves more changes. 1694 */ 1695 tree_page = get_ksm_page(stable_node_dup, 1696 GET_KSM_PAGE_TRYLOCK); 1697 1698 if (PTR_ERR(tree_page) == -EBUSY) 1699 return ERR_PTR(-EBUSY); 1700 1701 if (unlikely(!tree_page)) 1702 /* 1703 * The tree may have been rebalanced, 1704 * so re-evaluate parent and new. 1705 */ 1706 goto again; 1707 unlock_page(tree_page); 1708 1709 if (get_kpfn_nid(stable_node_dup->kpfn) != 1710 NUMA(stable_node_dup->nid)) { 1711 put_page(tree_page); 1712 goto replace; 1713 } 1714 return tree_page; 1715 } 1716 } 1717 1718 if (!page_node) 1719 return NULL; 1720 1721 list_del(&page_node->list); 1722 DO_NUMA(page_node->nid = nid); 1723 rb_link_node(&page_node->node, parent, new); 1724 rb_insert_color(&page_node->node, root); 1725 out: 1726 if (is_page_sharing_candidate(page_node)) { 1727 get_page(page); 1728 return page; 1729 } else 1730 return NULL; 1731 1732 replace: 1733 /* 1734 * If stable_node was a chain and chain_prune collapsed it, 1735 * stable_node has been updated to be the new regular 1736 * stable_node. A collapse of the chain is indistinguishable 1737 * from the case there was no chain in the stable 1738 * rbtree. Otherwise stable_node is the chain and 1739 * stable_node_dup is the dup to replace. 1740 */ 1741 if (stable_node_dup == stable_node) { 1742 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1743 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1744 /* there is no chain */ 1745 if (page_node) { 1746 VM_BUG_ON(page_node->head != &migrate_nodes); 1747 list_del(&page_node->list); 1748 DO_NUMA(page_node->nid = nid); 1749 rb_replace_node(&stable_node_dup->node, 1750 &page_node->node, 1751 root); 1752 if (is_page_sharing_candidate(page_node)) 1753 get_page(page); 1754 else 1755 page = NULL; 1756 } else { 1757 rb_erase(&stable_node_dup->node, root); 1758 page = NULL; 1759 } 1760 } else { 1761 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1762 __stable_node_dup_del(stable_node_dup); 1763 if (page_node) { 1764 VM_BUG_ON(page_node->head != &migrate_nodes); 1765 list_del(&page_node->list); 1766 DO_NUMA(page_node->nid = nid); 1767 stable_node_chain_add_dup(page_node, stable_node); 1768 if (is_page_sharing_candidate(page_node)) 1769 get_page(page); 1770 else 1771 page = NULL; 1772 } else { 1773 page = NULL; 1774 } 1775 } 1776 stable_node_dup->head = &migrate_nodes; 1777 list_add(&stable_node_dup->list, stable_node_dup->head); 1778 return page; 1779 1780 chain_append: 1781 /* stable_node_dup could be null if it reached the limit */ 1782 if (!stable_node_dup) 1783 stable_node_dup = stable_node_any; 1784 /* 1785 * If stable_node was a chain and chain_prune collapsed it, 1786 * stable_node has been updated to be the new regular 1787 * stable_node. A collapse of the chain is indistinguishable 1788 * from the case there was no chain in the stable 1789 * rbtree. Otherwise stable_node is the chain and 1790 * stable_node_dup is the dup to replace. 1791 */ 1792 if (stable_node_dup == stable_node) { 1793 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1794 /* chain is missing so create it */ 1795 stable_node = alloc_stable_node_chain(stable_node_dup, 1796 root); 1797 if (!stable_node) 1798 return NULL; 1799 } 1800 /* 1801 * Add this stable_node dup that was 1802 * migrated to the stable_node chain 1803 * of the current nid for this page 1804 * content. 1805 */ 1806 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1807 VM_BUG_ON(page_node->head != &migrate_nodes); 1808 list_del(&page_node->list); 1809 DO_NUMA(page_node->nid = nid); 1810 stable_node_chain_add_dup(page_node, stable_node); 1811 goto out; 1812 } 1813 1814 /* 1815 * stable_tree_insert - insert stable tree node pointing to new ksm page 1816 * into the stable tree. 1817 * 1818 * This function returns the stable tree node just allocated on success, 1819 * NULL otherwise. 1820 */ 1821 static struct ksm_stable_node *stable_tree_insert(struct page *kpage) 1822 { 1823 int nid; 1824 unsigned long kpfn; 1825 struct rb_root *root; 1826 struct rb_node **new; 1827 struct rb_node *parent; 1828 struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any; 1829 bool need_chain = false; 1830 1831 kpfn = page_to_pfn(kpage); 1832 nid = get_kpfn_nid(kpfn); 1833 root = root_stable_tree + nid; 1834 again: 1835 parent = NULL; 1836 new = &root->rb_node; 1837 1838 while (*new) { 1839 struct page *tree_page; 1840 int ret; 1841 1842 cond_resched(); 1843 stable_node = rb_entry(*new, struct ksm_stable_node, node); 1844 stable_node_any = NULL; 1845 tree_page = chain(&stable_node_dup, stable_node, root); 1846 if (!stable_node_dup) { 1847 /* 1848 * Either all stable_node dups were full in 1849 * this stable_node chain, or this chain was 1850 * empty and should be rb_erased. 1851 */ 1852 stable_node_any = stable_node_dup_any(stable_node, 1853 root); 1854 if (!stable_node_any) { 1855 /* rb_erase just run */ 1856 goto again; 1857 } 1858 /* 1859 * Take any of the stable_node dups page of 1860 * this stable_node chain to let the tree walk 1861 * continue. All KSM pages belonging to the 1862 * stable_node dups in a stable_node chain 1863 * have the same content and they're 1864 * write protected at all times. Any will work 1865 * fine to continue the walk. 1866 */ 1867 tree_page = get_ksm_page(stable_node_any, 1868 GET_KSM_PAGE_NOLOCK); 1869 } 1870 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1871 if (!tree_page) { 1872 /* 1873 * If we walked over a stale stable_node, 1874 * get_ksm_page() will call rb_erase() and it 1875 * may rebalance the tree from under us. So 1876 * restart the search from scratch. Returning 1877 * NULL would be safe too, but we'd generate 1878 * false negative insertions just because some 1879 * stable_node was stale. 1880 */ 1881 goto again; 1882 } 1883 1884 ret = memcmp_pages(kpage, tree_page); 1885 put_page(tree_page); 1886 1887 parent = *new; 1888 if (ret < 0) 1889 new = &parent->rb_left; 1890 else if (ret > 0) 1891 new = &parent->rb_right; 1892 else { 1893 need_chain = true; 1894 break; 1895 } 1896 } 1897 1898 stable_node_dup = alloc_stable_node(); 1899 if (!stable_node_dup) 1900 return NULL; 1901 1902 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1903 stable_node_dup->kpfn = kpfn; 1904 set_page_stable_node(kpage, stable_node_dup); 1905 stable_node_dup->rmap_hlist_len = 0; 1906 DO_NUMA(stable_node_dup->nid = nid); 1907 if (!need_chain) { 1908 rb_link_node(&stable_node_dup->node, parent, new); 1909 rb_insert_color(&stable_node_dup->node, root); 1910 } else { 1911 if (!is_stable_node_chain(stable_node)) { 1912 struct ksm_stable_node *orig = stable_node; 1913 /* chain is missing so create it */ 1914 stable_node = alloc_stable_node_chain(orig, root); 1915 if (!stable_node) { 1916 free_stable_node(stable_node_dup); 1917 return NULL; 1918 } 1919 } 1920 stable_node_chain_add_dup(stable_node_dup, stable_node); 1921 } 1922 1923 return stable_node_dup; 1924 } 1925 1926 /* 1927 * unstable_tree_search_insert - search for identical page, 1928 * else insert rmap_item into the unstable tree. 1929 * 1930 * This function searches for a page in the unstable tree identical to the 1931 * page currently being scanned; and if no identical page is found in the 1932 * tree, we insert rmap_item as a new object into the unstable tree. 1933 * 1934 * This function returns pointer to rmap_item found to be identical 1935 * to the currently scanned page, NULL otherwise. 1936 * 1937 * This function does both searching and inserting, because they share 1938 * the same walking algorithm in an rbtree. 1939 */ 1940 static 1941 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item, 1942 struct page *page, 1943 struct page **tree_pagep) 1944 { 1945 struct rb_node **new; 1946 struct rb_root *root; 1947 struct rb_node *parent = NULL; 1948 int nid; 1949 1950 nid = get_kpfn_nid(page_to_pfn(page)); 1951 root = root_unstable_tree + nid; 1952 new = &root->rb_node; 1953 1954 while (*new) { 1955 struct ksm_rmap_item *tree_rmap_item; 1956 struct page *tree_page; 1957 int ret; 1958 1959 cond_resched(); 1960 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node); 1961 tree_page = get_mergeable_page(tree_rmap_item); 1962 if (!tree_page) 1963 return NULL; 1964 1965 /* 1966 * Don't substitute a ksm page for a forked page. 1967 */ 1968 if (page == tree_page) { 1969 put_page(tree_page); 1970 return NULL; 1971 } 1972 1973 ret = memcmp_pages(page, tree_page); 1974 1975 parent = *new; 1976 if (ret < 0) { 1977 put_page(tree_page); 1978 new = &parent->rb_left; 1979 } else if (ret > 0) { 1980 put_page(tree_page); 1981 new = &parent->rb_right; 1982 } else if (!ksm_merge_across_nodes && 1983 page_to_nid(tree_page) != nid) { 1984 /* 1985 * If tree_page has been migrated to another NUMA node, 1986 * it will be flushed out and put in the right unstable 1987 * tree next time: only merge with it when across_nodes. 1988 */ 1989 put_page(tree_page); 1990 return NULL; 1991 } else { 1992 *tree_pagep = tree_page; 1993 return tree_rmap_item; 1994 } 1995 } 1996 1997 rmap_item->address |= UNSTABLE_FLAG; 1998 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1999 DO_NUMA(rmap_item->nid = nid); 2000 rb_link_node(&rmap_item->node, parent, new); 2001 rb_insert_color(&rmap_item->node, root); 2002 2003 ksm_pages_unshared++; 2004 return NULL; 2005 } 2006 2007 /* 2008 * stable_tree_append - add another rmap_item to the linked list of 2009 * rmap_items hanging off a given node of the stable tree, all sharing 2010 * the same ksm page. 2011 */ 2012 static void stable_tree_append(struct ksm_rmap_item *rmap_item, 2013 struct ksm_stable_node *stable_node, 2014 bool max_page_sharing_bypass) 2015 { 2016 /* 2017 * rmap won't find this mapping if we don't insert the 2018 * rmap_item in the right stable_node 2019 * duplicate. page_migration could break later if rmap breaks, 2020 * so we can as well crash here. We really need to check for 2021 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2022 * for other negative values as an underflow if detected here 2023 * for the first time (and not when decreasing rmap_hlist_len) 2024 * would be sign of memory corruption in the stable_node. 2025 */ 2026 BUG_ON(stable_node->rmap_hlist_len < 0); 2027 2028 stable_node->rmap_hlist_len++; 2029 if (!max_page_sharing_bypass) 2030 /* possibly non fatal but unexpected overflow, only warn */ 2031 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2032 ksm_max_page_sharing); 2033 2034 rmap_item->head = stable_node; 2035 rmap_item->address |= STABLE_FLAG; 2036 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2037 2038 if (rmap_item->hlist.next) 2039 ksm_pages_sharing++; 2040 else 2041 ksm_pages_shared++; 2042 2043 rmap_item->mm->ksm_merging_pages++; 2044 } 2045 2046 /* 2047 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2048 * if not, compare checksum to previous and if it's the same, see if page can 2049 * be inserted into the unstable tree, or merged with a page already there and 2050 * both transferred to the stable tree. 2051 * 2052 * @page: the page that we are searching identical page to. 2053 * @rmap_item: the reverse mapping into the virtual address of this page 2054 */ 2055 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item) 2056 { 2057 struct mm_struct *mm = rmap_item->mm; 2058 struct ksm_rmap_item *tree_rmap_item; 2059 struct page *tree_page = NULL; 2060 struct ksm_stable_node *stable_node; 2061 struct page *kpage; 2062 unsigned int checksum; 2063 int err; 2064 bool max_page_sharing_bypass = false; 2065 2066 stable_node = page_stable_node(page); 2067 if (stable_node) { 2068 if (stable_node->head != &migrate_nodes && 2069 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2070 NUMA(stable_node->nid)) { 2071 stable_node_dup_del(stable_node); 2072 stable_node->head = &migrate_nodes; 2073 list_add(&stable_node->list, stable_node->head); 2074 } 2075 if (stable_node->head != &migrate_nodes && 2076 rmap_item->head == stable_node) 2077 return; 2078 /* 2079 * If it's a KSM fork, allow it to go over the sharing limit 2080 * without warnings. 2081 */ 2082 if (!is_page_sharing_candidate(stable_node)) 2083 max_page_sharing_bypass = true; 2084 } 2085 2086 /* We first start with searching the page inside the stable tree */ 2087 kpage = stable_tree_search(page); 2088 if (kpage == page && rmap_item->head == stable_node) { 2089 put_page(kpage); 2090 return; 2091 } 2092 2093 remove_rmap_item_from_tree(rmap_item); 2094 2095 if (kpage) { 2096 if (PTR_ERR(kpage) == -EBUSY) 2097 return; 2098 2099 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2100 if (!err) { 2101 /* 2102 * The page was successfully merged: 2103 * add its rmap_item to the stable tree. 2104 */ 2105 lock_page(kpage); 2106 stable_tree_append(rmap_item, page_stable_node(kpage), 2107 max_page_sharing_bypass); 2108 unlock_page(kpage); 2109 } 2110 put_page(kpage); 2111 return; 2112 } 2113 2114 /* 2115 * If the hash value of the page has changed from the last time 2116 * we calculated it, this page is changing frequently: therefore we 2117 * don't want to insert it in the unstable tree, and we don't want 2118 * to waste our time searching for something identical to it there. 2119 */ 2120 checksum = calc_checksum(page); 2121 if (rmap_item->oldchecksum != checksum) { 2122 rmap_item->oldchecksum = checksum; 2123 return; 2124 } 2125 2126 /* 2127 * Same checksum as an empty page. We attempt to merge it with the 2128 * appropriate zero page if the user enabled this via sysfs. 2129 */ 2130 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2131 struct vm_area_struct *vma; 2132 2133 mmap_read_lock(mm); 2134 vma = find_mergeable_vma(mm, rmap_item->address); 2135 if (vma) { 2136 err = try_to_merge_one_page(vma, page, 2137 ZERO_PAGE(rmap_item->address)); 2138 } else { 2139 /* 2140 * If the vma is out of date, we do not need to 2141 * continue. 2142 */ 2143 err = 0; 2144 } 2145 mmap_read_unlock(mm); 2146 /* 2147 * In case of failure, the page was not really empty, so we 2148 * need to continue. Otherwise we're done. 2149 */ 2150 if (!err) 2151 return; 2152 } 2153 tree_rmap_item = 2154 unstable_tree_search_insert(rmap_item, page, &tree_page); 2155 if (tree_rmap_item) { 2156 bool split; 2157 2158 kpage = try_to_merge_two_pages(rmap_item, page, 2159 tree_rmap_item, tree_page); 2160 /* 2161 * If both pages we tried to merge belong to the same compound 2162 * page, then we actually ended up increasing the reference 2163 * count of the same compound page twice, and split_huge_page 2164 * failed. 2165 * Here we set a flag if that happened, and we use it later to 2166 * try split_huge_page again. Since we call put_page right 2167 * afterwards, the reference count will be correct and 2168 * split_huge_page should succeed. 2169 */ 2170 split = PageTransCompound(page) 2171 && compound_head(page) == compound_head(tree_page); 2172 put_page(tree_page); 2173 if (kpage) { 2174 /* 2175 * The pages were successfully merged: insert new 2176 * node in the stable tree and add both rmap_items. 2177 */ 2178 lock_page(kpage); 2179 stable_node = stable_tree_insert(kpage); 2180 if (stable_node) { 2181 stable_tree_append(tree_rmap_item, stable_node, 2182 false); 2183 stable_tree_append(rmap_item, stable_node, 2184 false); 2185 } 2186 unlock_page(kpage); 2187 2188 /* 2189 * If we fail to insert the page into the stable tree, 2190 * we will have 2 virtual addresses that are pointing 2191 * to a ksm page left outside the stable tree, 2192 * in which case we need to break_cow on both. 2193 */ 2194 if (!stable_node) { 2195 break_cow(tree_rmap_item); 2196 break_cow(rmap_item); 2197 } 2198 } else if (split) { 2199 /* 2200 * We are here if we tried to merge two pages and 2201 * failed because they both belonged to the same 2202 * compound page. We will split the page now, but no 2203 * merging will take place. 2204 * We do not want to add the cost of a full lock; if 2205 * the page is locked, it is better to skip it and 2206 * perhaps try again later. 2207 */ 2208 if (!trylock_page(page)) 2209 return; 2210 split_huge_page(page); 2211 unlock_page(page); 2212 } 2213 } 2214 } 2215 2216 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot, 2217 struct ksm_rmap_item **rmap_list, 2218 unsigned long addr) 2219 { 2220 struct ksm_rmap_item *rmap_item; 2221 2222 while (*rmap_list) { 2223 rmap_item = *rmap_list; 2224 if ((rmap_item->address & PAGE_MASK) == addr) 2225 return rmap_item; 2226 if (rmap_item->address > addr) 2227 break; 2228 *rmap_list = rmap_item->rmap_list; 2229 remove_rmap_item_from_tree(rmap_item); 2230 free_rmap_item(rmap_item); 2231 } 2232 2233 rmap_item = alloc_rmap_item(); 2234 if (rmap_item) { 2235 /* It has already been zeroed */ 2236 rmap_item->mm = mm_slot->slot.mm; 2237 rmap_item->mm->ksm_rmap_items++; 2238 rmap_item->address = addr; 2239 rmap_item->rmap_list = *rmap_list; 2240 *rmap_list = rmap_item; 2241 } 2242 return rmap_item; 2243 } 2244 2245 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page) 2246 { 2247 struct mm_struct *mm; 2248 struct ksm_mm_slot *mm_slot; 2249 struct mm_slot *slot; 2250 struct vm_area_struct *vma; 2251 struct ksm_rmap_item *rmap_item; 2252 struct vma_iterator vmi; 2253 int nid; 2254 2255 if (list_empty(&ksm_mm_head.slot.mm_node)) 2256 return NULL; 2257 2258 mm_slot = ksm_scan.mm_slot; 2259 if (mm_slot == &ksm_mm_head) { 2260 /* 2261 * A number of pages can hang around indefinitely on per-cpu 2262 * pagevecs, raised page count preventing write_protect_page 2263 * from merging them. Though it doesn't really matter much, 2264 * it is puzzling to see some stuck in pages_volatile until 2265 * other activity jostles them out, and they also prevented 2266 * LTP's KSM test from succeeding deterministically; so drain 2267 * them here (here rather than on entry to ksm_do_scan(), 2268 * so we don't IPI too often when pages_to_scan is set low). 2269 */ 2270 lru_add_drain_all(); 2271 2272 /* 2273 * Whereas stale stable_nodes on the stable_tree itself 2274 * get pruned in the regular course of stable_tree_search(), 2275 * those moved out to the migrate_nodes list can accumulate: 2276 * so prune them once before each full scan. 2277 */ 2278 if (!ksm_merge_across_nodes) { 2279 struct ksm_stable_node *stable_node, *next; 2280 struct page *page; 2281 2282 list_for_each_entry_safe(stable_node, next, 2283 &migrate_nodes, list) { 2284 page = get_ksm_page(stable_node, 2285 GET_KSM_PAGE_NOLOCK); 2286 if (page) 2287 put_page(page); 2288 cond_resched(); 2289 } 2290 } 2291 2292 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2293 root_unstable_tree[nid] = RB_ROOT; 2294 2295 spin_lock(&ksm_mmlist_lock); 2296 slot = list_entry(mm_slot->slot.mm_node.next, 2297 struct mm_slot, mm_node); 2298 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2299 ksm_scan.mm_slot = mm_slot; 2300 spin_unlock(&ksm_mmlist_lock); 2301 /* 2302 * Although we tested list_empty() above, a racing __ksm_exit 2303 * of the last mm on the list may have removed it since then. 2304 */ 2305 if (mm_slot == &ksm_mm_head) 2306 return NULL; 2307 next_mm: 2308 ksm_scan.address = 0; 2309 ksm_scan.rmap_list = &mm_slot->rmap_list; 2310 } 2311 2312 slot = &mm_slot->slot; 2313 mm = slot->mm; 2314 vma_iter_init(&vmi, mm, ksm_scan.address); 2315 2316 mmap_read_lock(mm); 2317 if (ksm_test_exit(mm)) 2318 goto no_vmas; 2319 2320 for_each_vma(vmi, vma) { 2321 if (!(vma->vm_flags & VM_MERGEABLE)) 2322 continue; 2323 if (ksm_scan.address < vma->vm_start) 2324 ksm_scan.address = vma->vm_start; 2325 if (!vma->anon_vma) 2326 ksm_scan.address = vma->vm_end; 2327 2328 while (ksm_scan.address < vma->vm_end) { 2329 if (ksm_test_exit(mm)) 2330 break; 2331 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2332 if (IS_ERR_OR_NULL(*page)) { 2333 ksm_scan.address += PAGE_SIZE; 2334 cond_resched(); 2335 continue; 2336 } 2337 if (is_zone_device_page(*page)) 2338 goto next_page; 2339 if (PageAnon(*page)) { 2340 flush_anon_page(vma, *page, ksm_scan.address); 2341 flush_dcache_page(*page); 2342 rmap_item = get_next_rmap_item(mm_slot, 2343 ksm_scan.rmap_list, ksm_scan.address); 2344 if (rmap_item) { 2345 ksm_scan.rmap_list = 2346 &rmap_item->rmap_list; 2347 ksm_scan.address += PAGE_SIZE; 2348 } else 2349 put_page(*page); 2350 mmap_read_unlock(mm); 2351 return rmap_item; 2352 } 2353 next_page: 2354 put_page(*page); 2355 ksm_scan.address += PAGE_SIZE; 2356 cond_resched(); 2357 } 2358 } 2359 2360 if (ksm_test_exit(mm)) { 2361 no_vmas: 2362 ksm_scan.address = 0; 2363 ksm_scan.rmap_list = &mm_slot->rmap_list; 2364 } 2365 /* 2366 * Nuke all the rmap_items that are above this current rmap: 2367 * because there were no VM_MERGEABLE vmas with such addresses. 2368 */ 2369 remove_trailing_rmap_items(ksm_scan.rmap_list); 2370 2371 spin_lock(&ksm_mmlist_lock); 2372 slot = list_entry(mm_slot->slot.mm_node.next, 2373 struct mm_slot, mm_node); 2374 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2375 if (ksm_scan.address == 0) { 2376 /* 2377 * We've completed a full scan of all vmas, holding mmap_lock 2378 * throughout, and found no VM_MERGEABLE: so do the same as 2379 * __ksm_exit does to remove this mm from all our lists now. 2380 * This applies either when cleaning up after __ksm_exit 2381 * (but beware: we can reach here even before __ksm_exit), 2382 * or when all VM_MERGEABLE areas have been unmapped (and 2383 * mmap_lock then protects against race with MADV_MERGEABLE). 2384 */ 2385 hash_del(&mm_slot->slot.hash); 2386 list_del(&mm_slot->slot.mm_node); 2387 spin_unlock(&ksm_mmlist_lock); 2388 2389 mm_slot_free(mm_slot_cache, mm_slot); 2390 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2391 mmap_read_unlock(mm); 2392 mmdrop(mm); 2393 } else { 2394 mmap_read_unlock(mm); 2395 /* 2396 * mmap_read_unlock(mm) first because after 2397 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2398 * already have been freed under us by __ksm_exit() 2399 * because the "mm_slot" is still hashed and 2400 * ksm_scan.mm_slot doesn't point to it anymore. 2401 */ 2402 spin_unlock(&ksm_mmlist_lock); 2403 } 2404 2405 /* Repeat until we've completed scanning the whole list */ 2406 mm_slot = ksm_scan.mm_slot; 2407 if (mm_slot != &ksm_mm_head) 2408 goto next_mm; 2409 2410 ksm_scan.seqnr++; 2411 return NULL; 2412 } 2413 2414 /** 2415 * ksm_do_scan - the ksm scanner main worker function. 2416 * @scan_npages: number of pages we want to scan before we return. 2417 */ 2418 static void ksm_do_scan(unsigned int scan_npages) 2419 { 2420 struct ksm_rmap_item *rmap_item; 2421 struct page *page; 2422 2423 while (scan_npages-- && likely(!freezing(current))) { 2424 cond_resched(); 2425 rmap_item = scan_get_next_rmap_item(&page); 2426 if (!rmap_item) 2427 return; 2428 cmp_and_merge_page(page, rmap_item); 2429 put_page(page); 2430 } 2431 } 2432 2433 static int ksmd_should_run(void) 2434 { 2435 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node); 2436 } 2437 2438 static int ksm_scan_thread(void *nothing) 2439 { 2440 unsigned int sleep_ms; 2441 2442 set_freezable(); 2443 set_user_nice(current, 5); 2444 2445 while (!kthread_should_stop()) { 2446 mutex_lock(&ksm_thread_mutex); 2447 wait_while_offlining(); 2448 if (ksmd_should_run()) 2449 ksm_do_scan(ksm_thread_pages_to_scan); 2450 mutex_unlock(&ksm_thread_mutex); 2451 2452 try_to_freeze(); 2453 2454 if (ksmd_should_run()) { 2455 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2456 wait_event_interruptible_timeout(ksm_iter_wait, 2457 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2458 msecs_to_jiffies(sleep_ms)); 2459 } else { 2460 wait_event_freezable(ksm_thread_wait, 2461 ksmd_should_run() || kthread_should_stop()); 2462 } 2463 } 2464 return 0; 2465 } 2466 2467 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2468 unsigned long end, int advice, unsigned long *vm_flags) 2469 { 2470 struct mm_struct *mm = vma->vm_mm; 2471 int err; 2472 2473 switch (advice) { 2474 case MADV_MERGEABLE: 2475 /* 2476 * Be somewhat over-protective for now! 2477 */ 2478 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2479 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2480 VM_HUGETLB | VM_MIXEDMAP)) 2481 return 0; /* just ignore the advice */ 2482 2483 if (vma_is_dax(vma)) 2484 return 0; 2485 2486 #ifdef VM_SAO 2487 if (*vm_flags & VM_SAO) 2488 return 0; 2489 #endif 2490 #ifdef VM_SPARC_ADI 2491 if (*vm_flags & VM_SPARC_ADI) 2492 return 0; 2493 #endif 2494 2495 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2496 err = __ksm_enter(mm); 2497 if (err) 2498 return err; 2499 } 2500 2501 *vm_flags |= VM_MERGEABLE; 2502 break; 2503 2504 case MADV_UNMERGEABLE: 2505 if (!(*vm_flags & VM_MERGEABLE)) 2506 return 0; /* just ignore the advice */ 2507 2508 if (vma->anon_vma) { 2509 err = unmerge_ksm_pages(vma, start, end); 2510 if (err) 2511 return err; 2512 } 2513 2514 *vm_flags &= ~VM_MERGEABLE; 2515 break; 2516 } 2517 2518 return 0; 2519 } 2520 EXPORT_SYMBOL_GPL(ksm_madvise); 2521 2522 int __ksm_enter(struct mm_struct *mm) 2523 { 2524 struct ksm_mm_slot *mm_slot; 2525 struct mm_slot *slot; 2526 int needs_wakeup; 2527 2528 mm_slot = mm_slot_alloc(mm_slot_cache); 2529 if (!mm_slot) 2530 return -ENOMEM; 2531 2532 slot = &mm_slot->slot; 2533 2534 /* Check ksm_run too? Would need tighter locking */ 2535 needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node); 2536 2537 spin_lock(&ksm_mmlist_lock); 2538 mm_slot_insert(mm_slots_hash, mm, slot); 2539 /* 2540 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2541 * insert just behind the scanning cursor, to let the area settle 2542 * down a little; when fork is followed by immediate exec, we don't 2543 * want ksmd to waste time setting up and tearing down an rmap_list. 2544 * 2545 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2546 * scanning cursor, otherwise KSM pages in newly forked mms will be 2547 * missed: then we might as well insert at the end of the list. 2548 */ 2549 if (ksm_run & KSM_RUN_UNMERGE) 2550 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node); 2551 else 2552 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node); 2553 spin_unlock(&ksm_mmlist_lock); 2554 2555 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2556 mmgrab(mm); 2557 2558 if (needs_wakeup) 2559 wake_up_interruptible(&ksm_thread_wait); 2560 2561 return 0; 2562 } 2563 2564 void __ksm_exit(struct mm_struct *mm) 2565 { 2566 struct ksm_mm_slot *mm_slot; 2567 struct mm_slot *slot; 2568 int easy_to_free = 0; 2569 2570 /* 2571 * This process is exiting: if it's straightforward (as is the 2572 * case when ksmd was never running), free mm_slot immediately. 2573 * But if it's at the cursor or has rmap_items linked to it, use 2574 * mmap_lock to synchronize with any break_cows before pagetables 2575 * are freed, and leave the mm_slot on the list for ksmd to free. 2576 * Beware: ksm may already have noticed it exiting and freed the slot. 2577 */ 2578 2579 spin_lock(&ksm_mmlist_lock); 2580 slot = mm_slot_lookup(mm_slots_hash, mm); 2581 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot); 2582 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2583 if (!mm_slot->rmap_list) { 2584 hash_del(&slot->hash); 2585 list_del(&slot->mm_node); 2586 easy_to_free = 1; 2587 } else { 2588 list_move(&slot->mm_node, 2589 &ksm_scan.mm_slot->slot.mm_node); 2590 } 2591 } 2592 spin_unlock(&ksm_mmlist_lock); 2593 2594 if (easy_to_free) { 2595 mm_slot_free(mm_slot_cache, mm_slot); 2596 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2597 mmdrop(mm); 2598 } else if (mm_slot) { 2599 mmap_write_lock(mm); 2600 mmap_write_unlock(mm); 2601 } 2602 } 2603 2604 struct page *ksm_might_need_to_copy(struct page *page, 2605 struct vm_area_struct *vma, unsigned long address) 2606 { 2607 struct folio *folio = page_folio(page); 2608 struct anon_vma *anon_vma = folio_anon_vma(folio); 2609 struct page *new_page; 2610 2611 if (PageKsm(page)) { 2612 if (page_stable_node(page) && 2613 !(ksm_run & KSM_RUN_UNMERGE)) 2614 return page; /* no need to copy it */ 2615 } else if (!anon_vma) { 2616 return page; /* no need to copy it */ 2617 } else if (page->index == linear_page_index(vma, address) && 2618 anon_vma->root == vma->anon_vma->root) { 2619 return page; /* still no need to copy it */ 2620 } 2621 if (!PageUptodate(page)) 2622 return page; /* let do_swap_page report the error */ 2623 2624 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2625 if (new_page && 2626 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) { 2627 put_page(new_page); 2628 new_page = NULL; 2629 } 2630 if (new_page) { 2631 if (copy_mc_user_highpage(new_page, page, address, vma)) { 2632 put_page(new_page); 2633 memory_failure_queue(page_to_pfn(page), 0); 2634 return ERR_PTR(-EHWPOISON); 2635 } 2636 SetPageDirty(new_page); 2637 __SetPageUptodate(new_page); 2638 __SetPageLocked(new_page); 2639 #ifdef CONFIG_SWAP 2640 count_vm_event(KSM_SWPIN_COPY); 2641 #endif 2642 } 2643 2644 return new_page; 2645 } 2646 2647 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc) 2648 { 2649 struct ksm_stable_node *stable_node; 2650 struct ksm_rmap_item *rmap_item; 2651 int search_new_forks = 0; 2652 2653 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio); 2654 2655 /* 2656 * Rely on the page lock to protect against concurrent modifications 2657 * to that page's node of the stable tree. 2658 */ 2659 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2660 2661 stable_node = folio_stable_node(folio); 2662 if (!stable_node) 2663 return; 2664 again: 2665 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2666 struct anon_vma *anon_vma = rmap_item->anon_vma; 2667 struct anon_vma_chain *vmac; 2668 struct vm_area_struct *vma; 2669 2670 cond_resched(); 2671 if (!anon_vma_trylock_read(anon_vma)) { 2672 if (rwc->try_lock) { 2673 rwc->contended = true; 2674 return; 2675 } 2676 anon_vma_lock_read(anon_vma); 2677 } 2678 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2679 0, ULONG_MAX) { 2680 unsigned long addr; 2681 2682 cond_resched(); 2683 vma = vmac->vma; 2684 2685 /* Ignore the stable/unstable/sqnr flags */ 2686 addr = rmap_item->address & PAGE_MASK; 2687 2688 if (addr < vma->vm_start || addr >= vma->vm_end) 2689 continue; 2690 /* 2691 * Initially we examine only the vma which covers this 2692 * rmap_item; but later, if there is still work to do, 2693 * we examine covering vmas in other mms: in case they 2694 * were forked from the original since ksmd passed. 2695 */ 2696 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2697 continue; 2698 2699 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2700 continue; 2701 2702 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) { 2703 anon_vma_unlock_read(anon_vma); 2704 return; 2705 } 2706 if (rwc->done && rwc->done(folio)) { 2707 anon_vma_unlock_read(anon_vma); 2708 return; 2709 } 2710 } 2711 anon_vma_unlock_read(anon_vma); 2712 } 2713 if (!search_new_forks++) 2714 goto again; 2715 } 2716 2717 #ifdef CONFIG_MIGRATION 2718 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio) 2719 { 2720 struct ksm_stable_node *stable_node; 2721 2722 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2723 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio); 2724 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio); 2725 2726 stable_node = folio_stable_node(folio); 2727 if (stable_node) { 2728 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio); 2729 stable_node->kpfn = folio_pfn(newfolio); 2730 /* 2731 * newfolio->mapping was set in advance; now we need smp_wmb() 2732 * to make sure that the new stable_node->kpfn is visible 2733 * to get_ksm_page() before it can see that folio->mapping 2734 * has gone stale (or that folio_test_swapcache has been cleared). 2735 */ 2736 smp_wmb(); 2737 set_page_stable_node(&folio->page, NULL); 2738 } 2739 } 2740 #endif /* CONFIG_MIGRATION */ 2741 2742 #ifdef CONFIG_MEMORY_HOTREMOVE 2743 static void wait_while_offlining(void) 2744 { 2745 while (ksm_run & KSM_RUN_OFFLINE) { 2746 mutex_unlock(&ksm_thread_mutex); 2747 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2748 TASK_UNINTERRUPTIBLE); 2749 mutex_lock(&ksm_thread_mutex); 2750 } 2751 } 2752 2753 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node, 2754 unsigned long start_pfn, 2755 unsigned long end_pfn) 2756 { 2757 if (stable_node->kpfn >= start_pfn && 2758 stable_node->kpfn < end_pfn) { 2759 /* 2760 * Don't get_ksm_page, page has already gone: 2761 * which is why we keep kpfn instead of page* 2762 */ 2763 remove_node_from_stable_tree(stable_node); 2764 return true; 2765 } 2766 return false; 2767 } 2768 2769 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node, 2770 unsigned long start_pfn, 2771 unsigned long end_pfn, 2772 struct rb_root *root) 2773 { 2774 struct ksm_stable_node *dup; 2775 struct hlist_node *hlist_safe; 2776 2777 if (!is_stable_node_chain(stable_node)) { 2778 VM_BUG_ON(is_stable_node_dup(stable_node)); 2779 return stable_node_dup_remove_range(stable_node, start_pfn, 2780 end_pfn); 2781 } 2782 2783 hlist_for_each_entry_safe(dup, hlist_safe, 2784 &stable_node->hlist, hlist_dup) { 2785 VM_BUG_ON(!is_stable_node_dup(dup)); 2786 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2787 } 2788 if (hlist_empty(&stable_node->hlist)) { 2789 free_stable_node_chain(stable_node, root); 2790 return true; /* notify caller that tree was rebalanced */ 2791 } else 2792 return false; 2793 } 2794 2795 static void ksm_check_stable_tree(unsigned long start_pfn, 2796 unsigned long end_pfn) 2797 { 2798 struct ksm_stable_node *stable_node, *next; 2799 struct rb_node *node; 2800 int nid; 2801 2802 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2803 node = rb_first(root_stable_tree + nid); 2804 while (node) { 2805 stable_node = rb_entry(node, struct ksm_stable_node, node); 2806 if (stable_node_chain_remove_range(stable_node, 2807 start_pfn, end_pfn, 2808 root_stable_tree + 2809 nid)) 2810 node = rb_first(root_stable_tree + nid); 2811 else 2812 node = rb_next(node); 2813 cond_resched(); 2814 } 2815 } 2816 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2817 if (stable_node->kpfn >= start_pfn && 2818 stable_node->kpfn < end_pfn) 2819 remove_node_from_stable_tree(stable_node); 2820 cond_resched(); 2821 } 2822 } 2823 2824 static int ksm_memory_callback(struct notifier_block *self, 2825 unsigned long action, void *arg) 2826 { 2827 struct memory_notify *mn = arg; 2828 2829 switch (action) { 2830 case MEM_GOING_OFFLINE: 2831 /* 2832 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2833 * and remove_all_stable_nodes() while memory is going offline: 2834 * it is unsafe for them to touch the stable tree at this time. 2835 * But unmerge_ksm_pages(), rmap lookups and other entry points 2836 * which do not need the ksm_thread_mutex are all safe. 2837 */ 2838 mutex_lock(&ksm_thread_mutex); 2839 ksm_run |= KSM_RUN_OFFLINE; 2840 mutex_unlock(&ksm_thread_mutex); 2841 break; 2842 2843 case MEM_OFFLINE: 2844 /* 2845 * Most of the work is done by page migration; but there might 2846 * be a few stable_nodes left over, still pointing to struct 2847 * pages which have been offlined: prune those from the tree, 2848 * otherwise get_ksm_page() might later try to access a 2849 * non-existent struct page. 2850 */ 2851 ksm_check_stable_tree(mn->start_pfn, 2852 mn->start_pfn + mn->nr_pages); 2853 fallthrough; 2854 case MEM_CANCEL_OFFLINE: 2855 mutex_lock(&ksm_thread_mutex); 2856 ksm_run &= ~KSM_RUN_OFFLINE; 2857 mutex_unlock(&ksm_thread_mutex); 2858 2859 smp_mb(); /* wake_up_bit advises this */ 2860 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2861 break; 2862 } 2863 return NOTIFY_OK; 2864 } 2865 #else 2866 static void wait_while_offlining(void) 2867 { 2868 } 2869 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2870 2871 #ifdef CONFIG_SYSFS 2872 /* 2873 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2874 */ 2875 2876 #define KSM_ATTR_RO(_name) \ 2877 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2878 #define KSM_ATTR(_name) \ 2879 static struct kobj_attribute _name##_attr = __ATTR_RW(_name) 2880 2881 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2882 struct kobj_attribute *attr, char *buf) 2883 { 2884 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs); 2885 } 2886 2887 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2888 struct kobj_attribute *attr, 2889 const char *buf, size_t count) 2890 { 2891 unsigned int msecs; 2892 int err; 2893 2894 err = kstrtouint(buf, 10, &msecs); 2895 if (err) 2896 return -EINVAL; 2897 2898 ksm_thread_sleep_millisecs = msecs; 2899 wake_up_interruptible(&ksm_iter_wait); 2900 2901 return count; 2902 } 2903 KSM_ATTR(sleep_millisecs); 2904 2905 static ssize_t pages_to_scan_show(struct kobject *kobj, 2906 struct kobj_attribute *attr, char *buf) 2907 { 2908 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan); 2909 } 2910 2911 static ssize_t pages_to_scan_store(struct kobject *kobj, 2912 struct kobj_attribute *attr, 2913 const char *buf, size_t count) 2914 { 2915 unsigned int nr_pages; 2916 int err; 2917 2918 err = kstrtouint(buf, 10, &nr_pages); 2919 if (err) 2920 return -EINVAL; 2921 2922 ksm_thread_pages_to_scan = nr_pages; 2923 2924 return count; 2925 } 2926 KSM_ATTR(pages_to_scan); 2927 2928 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2929 char *buf) 2930 { 2931 return sysfs_emit(buf, "%lu\n", ksm_run); 2932 } 2933 2934 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2935 const char *buf, size_t count) 2936 { 2937 unsigned int flags; 2938 int err; 2939 2940 err = kstrtouint(buf, 10, &flags); 2941 if (err) 2942 return -EINVAL; 2943 if (flags > KSM_RUN_UNMERGE) 2944 return -EINVAL; 2945 2946 /* 2947 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2948 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2949 * breaking COW to free the pages_shared (but leaves mm_slots 2950 * on the list for when ksmd may be set running again). 2951 */ 2952 2953 mutex_lock(&ksm_thread_mutex); 2954 wait_while_offlining(); 2955 if (ksm_run != flags) { 2956 ksm_run = flags; 2957 if (flags & KSM_RUN_UNMERGE) { 2958 set_current_oom_origin(); 2959 err = unmerge_and_remove_all_rmap_items(); 2960 clear_current_oom_origin(); 2961 if (err) { 2962 ksm_run = KSM_RUN_STOP; 2963 count = err; 2964 } 2965 } 2966 } 2967 mutex_unlock(&ksm_thread_mutex); 2968 2969 if (flags & KSM_RUN_MERGE) 2970 wake_up_interruptible(&ksm_thread_wait); 2971 2972 return count; 2973 } 2974 KSM_ATTR(run); 2975 2976 #ifdef CONFIG_NUMA 2977 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2978 struct kobj_attribute *attr, char *buf) 2979 { 2980 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes); 2981 } 2982 2983 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2984 struct kobj_attribute *attr, 2985 const char *buf, size_t count) 2986 { 2987 int err; 2988 unsigned long knob; 2989 2990 err = kstrtoul(buf, 10, &knob); 2991 if (err) 2992 return err; 2993 if (knob > 1) 2994 return -EINVAL; 2995 2996 mutex_lock(&ksm_thread_mutex); 2997 wait_while_offlining(); 2998 if (ksm_merge_across_nodes != knob) { 2999 if (ksm_pages_shared || remove_all_stable_nodes()) 3000 err = -EBUSY; 3001 else if (root_stable_tree == one_stable_tree) { 3002 struct rb_root *buf; 3003 /* 3004 * This is the first time that we switch away from the 3005 * default of merging across nodes: must now allocate 3006 * a buffer to hold as many roots as may be needed. 3007 * Allocate stable and unstable together: 3008 * MAXSMP NODES_SHIFT 10 will use 16kB. 3009 */ 3010 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 3011 GFP_KERNEL); 3012 /* Let us assume that RB_ROOT is NULL is zero */ 3013 if (!buf) 3014 err = -ENOMEM; 3015 else { 3016 root_stable_tree = buf; 3017 root_unstable_tree = buf + nr_node_ids; 3018 /* Stable tree is empty but not the unstable */ 3019 root_unstable_tree[0] = one_unstable_tree[0]; 3020 } 3021 } 3022 if (!err) { 3023 ksm_merge_across_nodes = knob; 3024 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 3025 } 3026 } 3027 mutex_unlock(&ksm_thread_mutex); 3028 3029 return err ? err : count; 3030 } 3031 KSM_ATTR(merge_across_nodes); 3032 #endif 3033 3034 static ssize_t use_zero_pages_show(struct kobject *kobj, 3035 struct kobj_attribute *attr, char *buf) 3036 { 3037 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages); 3038 } 3039 static ssize_t use_zero_pages_store(struct kobject *kobj, 3040 struct kobj_attribute *attr, 3041 const char *buf, size_t count) 3042 { 3043 int err; 3044 bool value; 3045 3046 err = kstrtobool(buf, &value); 3047 if (err) 3048 return -EINVAL; 3049 3050 ksm_use_zero_pages = value; 3051 3052 return count; 3053 } 3054 KSM_ATTR(use_zero_pages); 3055 3056 static ssize_t max_page_sharing_show(struct kobject *kobj, 3057 struct kobj_attribute *attr, char *buf) 3058 { 3059 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing); 3060 } 3061 3062 static ssize_t max_page_sharing_store(struct kobject *kobj, 3063 struct kobj_attribute *attr, 3064 const char *buf, size_t count) 3065 { 3066 int err; 3067 int knob; 3068 3069 err = kstrtoint(buf, 10, &knob); 3070 if (err) 3071 return err; 3072 /* 3073 * When a KSM page is created it is shared by 2 mappings. This 3074 * being a signed comparison, it implicitly verifies it's not 3075 * negative. 3076 */ 3077 if (knob < 2) 3078 return -EINVAL; 3079 3080 if (READ_ONCE(ksm_max_page_sharing) == knob) 3081 return count; 3082 3083 mutex_lock(&ksm_thread_mutex); 3084 wait_while_offlining(); 3085 if (ksm_max_page_sharing != knob) { 3086 if (ksm_pages_shared || remove_all_stable_nodes()) 3087 err = -EBUSY; 3088 else 3089 ksm_max_page_sharing = knob; 3090 } 3091 mutex_unlock(&ksm_thread_mutex); 3092 3093 return err ? err : count; 3094 } 3095 KSM_ATTR(max_page_sharing); 3096 3097 static ssize_t pages_shared_show(struct kobject *kobj, 3098 struct kobj_attribute *attr, char *buf) 3099 { 3100 return sysfs_emit(buf, "%lu\n", ksm_pages_shared); 3101 } 3102 KSM_ATTR_RO(pages_shared); 3103 3104 static ssize_t pages_sharing_show(struct kobject *kobj, 3105 struct kobj_attribute *attr, char *buf) 3106 { 3107 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing); 3108 } 3109 KSM_ATTR_RO(pages_sharing); 3110 3111 static ssize_t pages_unshared_show(struct kobject *kobj, 3112 struct kobj_attribute *attr, char *buf) 3113 { 3114 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared); 3115 } 3116 KSM_ATTR_RO(pages_unshared); 3117 3118 static ssize_t pages_volatile_show(struct kobject *kobj, 3119 struct kobj_attribute *attr, char *buf) 3120 { 3121 long ksm_pages_volatile; 3122 3123 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3124 - ksm_pages_sharing - ksm_pages_unshared; 3125 /* 3126 * It was not worth any locking to calculate that statistic, 3127 * but it might therefore sometimes be negative: conceal that. 3128 */ 3129 if (ksm_pages_volatile < 0) 3130 ksm_pages_volatile = 0; 3131 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile); 3132 } 3133 KSM_ATTR_RO(pages_volatile); 3134 3135 static ssize_t stable_node_dups_show(struct kobject *kobj, 3136 struct kobj_attribute *attr, char *buf) 3137 { 3138 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups); 3139 } 3140 KSM_ATTR_RO(stable_node_dups); 3141 3142 static ssize_t stable_node_chains_show(struct kobject *kobj, 3143 struct kobj_attribute *attr, char *buf) 3144 { 3145 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains); 3146 } 3147 KSM_ATTR_RO(stable_node_chains); 3148 3149 static ssize_t 3150 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3151 struct kobj_attribute *attr, 3152 char *buf) 3153 { 3154 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3155 } 3156 3157 static ssize_t 3158 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3159 struct kobj_attribute *attr, 3160 const char *buf, size_t count) 3161 { 3162 unsigned int msecs; 3163 int err; 3164 3165 err = kstrtouint(buf, 10, &msecs); 3166 if (err) 3167 return -EINVAL; 3168 3169 ksm_stable_node_chains_prune_millisecs = msecs; 3170 3171 return count; 3172 } 3173 KSM_ATTR(stable_node_chains_prune_millisecs); 3174 3175 static ssize_t full_scans_show(struct kobject *kobj, 3176 struct kobj_attribute *attr, char *buf) 3177 { 3178 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr); 3179 } 3180 KSM_ATTR_RO(full_scans); 3181 3182 static struct attribute *ksm_attrs[] = { 3183 &sleep_millisecs_attr.attr, 3184 &pages_to_scan_attr.attr, 3185 &run_attr.attr, 3186 &pages_shared_attr.attr, 3187 &pages_sharing_attr.attr, 3188 &pages_unshared_attr.attr, 3189 &pages_volatile_attr.attr, 3190 &full_scans_attr.attr, 3191 #ifdef CONFIG_NUMA 3192 &merge_across_nodes_attr.attr, 3193 #endif 3194 &max_page_sharing_attr.attr, 3195 &stable_node_chains_attr.attr, 3196 &stable_node_dups_attr.attr, 3197 &stable_node_chains_prune_millisecs_attr.attr, 3198 &use_zero_pages_attr.attr, 3199 NULL, 3200 }; 3201 3202 static const struct attribute_group ksm_attr_group = { 3203 .attrs = ksm_attrs, 3204 .name = "ksm", 3205 }; 3206 #endif /* CONFIG_SYSFS */ 3207 3208 static int __init ksm_init(void) 3209 { 3210 struct task_struct *ksm_thread; 3211 int err; 3212 3213 /* The correct value depends on page size and endianness */ 3214 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3215 /* Default to false for backwards compatibility */ 3216 ksm_use_zero_pages = false; 3217 3218 err = ksm_slab_init(); 3219 if (err) 3220 goto out; 3221 3222 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3223 if (IS_ERR(ksm_thread)) { 3224 pr_err("ksm: creating kthread failed\n"); 3225 err = PTR_ERR(ksm_thread); 3226 goto out_free; 3227 } 3228 3229 #ifdef CONFIG_SYSFS 3230 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3231 if (err) { 3232 pr_err("ksm: register sysfs failed\n"); 3233 kthread_stop(ksm_thread); 3234 goto out_free; 3235 } 3236 #else 3237 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3238 3239 #endif /* CONFIG_SYSFS */ 3240 3241 #ifdef CONFIG_MEMORY_HOTREMOVE 3242 /* There is no significance to this priority 100 */ 3243 hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI); 3244 #endif 3245 return 0; 3246 3247 out_free: 3248 ksm_slab_free(); 3249 out: 3250 return err; 3251 } 3252 subsys_initcall(ksm_init); 3253