xref: /linux/mm/ksm.c (revision 011d8261117249eab97bc86a8e1ac7731e03e319)
1  /*
2   * Memory merging support.
3   *
4   * This code enables dynamic sharing of identical pages found in different
5   * memory areas, even if they are not shared by fork()
6   *
7   * Copyright (C) 2008-2009 Red Hat, Inc.
8   * Authors:
9   *	Izik Eidus
10   *	Andrea Arcangeli
11   *	Chris Wright
12   *	Hugh Dickins
13   *
14   * This work is licensed under the terms of the GNU GPL, version 2.
15   */
16  
17  #include <linux/errno.h>
18  #include <linux/mm.h>
19  #include <linux/fs.h>
20  #include <linux/mman.h>
21  #include <linux/sched.h>
22  #include <linux/sched/mm.h>
23  #include <linux/sched/coredump.h>
24  #include <linux/rwsem.h>
25  #include <linux/pagemap.h>
26  #include <linux/rmap.h>
27  #include <linux/spinlock.h>
28  #include <linux/jhash.h>
29  #include <linux/delay.h>
30  #include <linux/kthread.h>
31  #include <linux/wait.h>
32  #include <linux/slab.h>
33  #include <linux/rbtree.h>
34  #include <linux/memory.h>
35  #include <linux/mmu_notifier.h>
36  #include <linux/swap.h>
37  #include <linux/ksm.h>
38  #include <linux/hashtable.h>
39  #include <linux/freezer.h>
40  #include <linux/oom.h>
41  #include <linux/numa.h>
42  
43  #include <asm/tlbflush.h>
44  #include "internal.h"
45  
46  #ifdef CONFIG_NUMA
47  #define NUMA(x)		(x)
48  #define DO_NUMA(x)	do { (x); } while (0)
49  #else
50  #define NUMA(x)		(0)
51  #define DO_NUMA(x)	do { } while (0)
52  #endif
53  
54  /*
55   * A few notes about the KSM scanning process,
56   * to make it easier to understand the data structures below:
57   *
58   * In order to reduce excessive scanning, KSM sorts the memory pages by their
59   * contents into a data structure that holds pointers to the pages' locations.
60   *
61   * Since the contents of the pages may change at any moment, KSM cannot just
62   * insert the pages into a normal sorted tree and expect it to find anything.
63   * Therefore KSM uses two data structures - the stable and the unstable tree.
64   *
65   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66   * by their contents.  Because each such page is write-protected, searching on
67   * this tree is fully assured to be working (except when pages are unmapped),
68   * and therefore this tree is called the stable tree.
69   *
70   * In addition to the stable tree, KSM uses a second data structure called the
71   * unstable tree: this tree holds pointers to pages which have been found to
72   * be "unchanged for a period of time".  The unstable tree sorts these pages
73   * by their contents, but since they are not write-protected, KSM cannot rely
74   * upon the unstable tree to work correctly - the unstable tree is liable to
75   * be corrupted as its contents are modified, and so it is called unstable.
76   *
77   * KSM solves this problem by several techniques:
78   *
79   * 1) The unstable tree is flushed every time KSM completes scanning all
80   *    memory areas, and then the tree is rebuilt again from the beginning.
81   * 2) KSM will only insert into the unstable tree, pages whose hash value
82   *    has not changed since the previous scan of all memory areas.
83   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84   *    colors of the nodes and not on their contents, assuring that even when
85   *    the tree gets "corrupted" it won't get out of balance, so scanning time
86   *    remains the same (also, searching and inserting nodes in an rbtree uses
87   *    the same algorithm, so we have no overhead when we flush and rebuild).
88   * 4) KSM never flushes the stable tree, which means that even if it were to
89   *    take 10 attempts to find a page in the unstable tree, once it is found,
90   *    it is secured in the stable tree.  (When we scan a new page, we first
91   *    compare it against the stable tree, and then against the unstable tree.)
92   *
93   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94   * stable trees and multiple unstable trees: one of each for each NUMA node.
95   */
96  
97  /**
98   * struct mm_slot - ksm information per mm that is being scanned
99   * @link: link to the mm_slots hash list
100   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102   * @mm: the mm that this information is valid for
103   */
104  struct mm_slot {
105  	struct hlist_node link;
106  	struct list_head mm_list;
107  	struct rmap_item *rmap_list;
108  	struct mm_struct *mm;
109  };
110  
111  /**
112   * struct ksm_scan - cursor for scanning
113   * @mm_slot: the current mm_slot we are scanning
114   * @address: the next address inside that to be scanned
115   * @rmap_list: link to the next rmap to be scanned in the rmap_list
116   * @seqnr: count of completed full scans (needed when removing unstable node)
117   *
118   * There is only the one ksm_scan instance of this cursor structure.
119   */
120  struct ksm_scan {
121  	struct mm_slot *mm_slot;
122  	unsigned long address;
123  	struct rmap_item **rmap_list;
124  	unsigned long seqnr;
125  };
126  
127  /**
128   * struct stable_node - node of the stable rbtree
129   * @node: rb node of this ksm page in the stable tree
130   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131   * @list: linked into migrate_nodes, pending placement in the proper node tree
132   * @hlist: hlist head of rmap_items using this ksm page
133   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
135   */
136  struct stable_node {
137  	union {
138  		struct rb_node node;	/* when node of stable tree */
139  		struct {		/* when listed for migration */
140  			struct list_head *head;
141  			struct list_head list;
142  		};
143  	};
144  	struct hlist_head hlist;
145  	unsigned long kpfn;
146  #ifdef CONFIG_NUMA
147  	int nid;
148  #endif
149  };
150  
151  /**
152   * struct rmap_item - reverse mapping item for virtual addresses
153   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155   * @nid: NUMA node id of unstable tree in which linked (may not match page)
156   * @mm: the memory structure this rmap_item is pointing into
157   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158   * @oldchecksum: previous checksum of the page at that virtual address
159   * @node: rb node of this rmap_item in the unstable tree
160   * @head: pointer to stable_node heading this list in the stable tree
161   * @hlist: link into hlist of rmap_items hanging off that stable_node
162   */
163  struct rmap_item {
164  	struct rmap_item *rmap_list;
165  	union {
166  		struct anon_vma *anon_vma;	/* when stable */
167  #ifdef CONFIG_NUMA
168  		int nid;		/* when node of unstable tree */
169  #endif
170  	};
171  	struct mm_struct *mm;
172  	unsigned long address;		/* + low bits used for flags below */
173  	unsigned int oldchecksum;	/* when unstable */
174  	union {
175  		struct rb_node node;	/* when node of unstable tree */
176  		struct {		/* when listed from stable tree */
177  			struct stable_node *head;
178  			struct hlist_node hlist;
179  		};
180  	};
181  };
182  
183  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
184  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
185  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
186  
187  /* The stable and unstable tree heads */
188  static struct rb_root one_stable_tree[1] = { RB_ROOT };
189  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
190  static struct rb_root *root_stable_tree = one_stable_tree;
191  static struct rb_root *root_unstable_tree = one_unstable_tree;
192  
193  /* Recently migrated nodes of stable tree, pending proper placement */
194  static LIST_HEAD(migrate_nodes);
195  
196  #define MM_SLOTS_HASH_BITS 10
197  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
198  
199  static struct mm_slot ksm_mm_head = {
200  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
201  };
202  static struct ksm_scan ksm_scan = {
203  	.mm_slot = &ksm_mm_head,
204  };
205  
206  static struct kmem_cache *rmap_item_cache;
207  static struct kmem_cache *stable_node_cache;
208  static struct kmem_cache *mm_slot_cache;
209  
210  /* The number of nodes in the stable tree */
211  static unsigned long ksm_pages_shared;
212  
213  /* The number of page slots additionally sharing those nodes */
214  static unsigned long ksm_pages_sharing;
215  
216  /* The number of nodes in the unstable tree */
217  static unsigned long ksm_pages_unshared;
218  
219  /* The number of rmap_items in use: to calculate pages_volatile */
220  static unsigned long ksm_rmap_items;
221  
222  /* Number of pages ksmd should scan in one batch */
223  static unsigned int ksm_thread_pages_to_scan = 100;
224  
225  /* Milliseconds ksmd should sleep between batches */
226  static unsigned int ksm_thread_sleep_millisecs = 20;
227  
228  /* Checksum of an empty (zeroed) page */
229  static unsigned int zero_checksum __read_mostly;
230  
231  /* Whether to merge empty (zeroed) pages with actual zero pages */
232  static bool ksm_use_zero_pages __read_mostly;
233  
234  #ifdef CONFIG_NUMA
235  /* Zeroed when merging across nodes is not allowed */
236  static unsigned int ksm_merge_across_nodes = 1;
237  static int ksm_nr_node_ids = 1;
238  #else
239  #define ksm_merge_across_nodes	1U
240  #define ksm_nr_node_ids		1
241  #endif
242  
243  #define KSM_RUN_STOP	0
244  #define KSM_RUN_MERGE	1
245  #define KSM_RUN_UNMERGE	2
246  #define KSM_RUN_OFFLINE	4
247  static unsigned long ksm_run = KSM_RUN_STOP;
248  static void wait_while_offlining(void);
249  
250  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
251  static DEFINE_MUTEX(ksm_thread_mutex);
252  static DEFINE_SPINLOCK(ksm_mmlist_lock);
253  
254  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255  		sizeof(struct __struct), __alignof__(struct __struct),\
256  		(__flags), NULL)
257  
258  static int __init ksm_slab_init(void)
259  {
260  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
261  	if (!rmap_item_cache)
262  		goto out;
263  
264  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
265  	if (!stable_node_cache)
266  		goto out_free1;
267  
268  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
269  	if (!mm_slot_cache)
270  		goto out_free2;
271  
272  	return 0;
273  
274  out_free2:
275  	kmem_cache_destroy(stable_node_cache);
276  out_free1:
277  	kmem_cache_destroy(rmap_item_cache);
278  out:
279  	return -ENOMEM;
280  }
281  
282  static void __init ksm_slab_free(void)
283  {
284  	kmem_cache_destroy(mm_slot_cache);
285  	kmem_cache_destroy(stable_node_cache);
286  	kmem_cache_destroy(rmap_item_cache);
287  	mm_slot_cache = NULL;
288  }
289  
290  static inline struct rmap_item *alloc_rmap_item(void)
291  {
292  	struct rmap_item *rmap_item;
293  
294  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
295  						__GFP_NORETRY | __GFP_NOWARN);
296  	if (rmap_item)
297  		ksm_rmap_items++;
298  	return rmap_item;
299  }
300  
301  static inline void free_rmap_item(struct rmap_item *rmap_item)
302  {
303  	ksm_rmap_items--;
304  	rmap_item->mm = NULL;	/* debug safety */
305  	kmem_cache_free(rmap_item_cache, rmap_item);
306  }
307  
308  static inline struct stable_node *alloc_stable_node(void)
309  {
310  	/*
311  	 * The allocation can take too long with GFP_KERNEL when memory is under
312  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
313  	 * grants access to memory reserves, helping to avoid this problem.
314  	 */
315  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
316  }
317  
318  static inline void free_stable_node(struct stable_node *stable_node)
319  {
320  	kmem_cache_free(stable_node_cache, stable_node);
321  }
322  
323  static inline struct mm_slot *alloc_mm_slot(void)
324  {
325  	if (!mm_slot_cache)	/* initialization failed */
326  		return NULL;
327  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
328  }
329  
330  static inline void free_mm_slot(struct mm_slot *mm_slot)
331  {
332  	kmem_cache_free(mm_slot_cache, mm_slot);
333  }
334  
335  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
336  {
337  	struct mm_slot *slot;
338  
339  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
340  		if (slot->mm == mm)
341  			return slot;
342  
343  	return NULL;
344  }
345  
346  static void insert_to_mm_slots_hash(struct mm_struct *mm,
347  				    struct mm_slot *mm_slot)
348  {
349  	mm_slot->mm = mm;
350  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
351  }
352  
353  /*
354   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355   * page tables after it has passed through ksm_exit() - which, if necessary,
356   * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
357   * a special flag: they can just back out as soon as mm_users goes to zero.
358   * ksm_test_exit() is used throughout to make this test for exit: in some
359   * places for correctness, in some places just to avoid unnecessary work.
360   */
361  static inline bool ksm_test_exit(struct mm_struct *mm)
362  {
363  	return atomic_read(&mm->mm_users) == 0;
364  }
365  
366  /*
367   * We use break_ksm to break COW on a ksm page: it's a stripped down
368   *
369   *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
370   *		put_page(page);
371   *
372   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373   * in case the application has unmapped and remapped mm,addr meanwhile.
374   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
375   * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
376   *
377   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378   * of the process that owns 'vma'.  We also do not want to enforce
379   * protection keys here anyway.
380   */
381  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382  {
383  	struct page *page;
384  	int ret = 0;
385  
386  	do {
387  		cond_resched();
388  		page = follow_page(vma, addr,
389  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
390  		if (IS_ERR_OR_NULL(page))
391  			break;
392  		if (PageKsm(page))
393  			ret = handle_mm_fault(vma, addr,
394  					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
395  		else
396  			ret = VM_FAULT_WRITE;
397  		put_page(page);
398  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399  	/*
400  	 * We must loop because handle_mm_fault() may back out if there's
401  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
402  	 *
403  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404  	 * COW has been broken, even if the vma does not permit VM_WRITE;
405  	 * but note that a concurrent fault might break PageKsm for us.
406  	 *
407  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
408  	 * backing file, which also invalidates anonymous pages: that's
409  	 * okay, that truncation will have unmapped the PageKsm for us.
410  	 *
411  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
414  	 * to user; and ksmd, having no mm, would never be chosen for that.
415  	 *
416  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
417  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418  	 * even ksmd can fail in this way - though it's usually breaking ksm
419  	 * just to undo a merge it made a moment before, so unlikely to oom.
420  	 *
421  	 * That's a pity: we might therefore have more kernel pages allocated
422  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
423  	 * will retry to break_cow on each pass, so should recover the page
424  	 * in due course.  The important thing is to not let VM_MERGEABLE
425  	 * be cleared while any such pages might remain in the area.
426  	 */
427  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428  }
429  
430  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431  		unsigned long addr)
432  {
433  	struct vm_area_struct *vma;
434  	if (ksm_test_exit(mm))
435  		return NULL;
436  	vma = find_vma(mm, addr);
437  	if (!vma || vma->vm_start > addr)
438  		return NULL;
439  	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440  		return NULL;
441  	return vma;
442  }
443  
444  static void break_cow(struct rmap_item *rmap_item)
445  {
446  	struct mm_struct *mm = rmap_item->mm;
447  	unsigned long addr = rmap_item->address;
448  	struct vm_area_struct *vma;
449  
450  	/*
451  	 * It is not an accident that whenever we want to break COW
452  	 * to undo, we also need to drop a reference to the anon_vma.
453  	 */
454  	put_anon_vma(rmap_item->anon_vma);
455  
456  	down_read(&mm->mmap_sem);
457  	vma = find_mergeable_vma(mm, addr);
458  	if (vma)
459  		break_ksm(vma, addr);
460  	up_read(&mm->mmap_sem);
461  }
462  
463  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
464  {
465  	struct mm_struct *mm = rmap_item->mm;
466  	unsigned long addr = rmap_item->address;
467  	struct vm_area_struct *vma;
468  	struct page *page;
469  
470  	down_read(&mm->mmap_sem);
471  	vma = find_mergeable_vma(mm, addr);
472  	if (!vma)
473  		goto out;
474  
475  	page = follow_page(vma, addr, FOLL_GET);
476  	if (IS_ERR_OR_NULL(page))
477  		goto out;
478  	if (PageAnon(page)) {
479  		flush_anon_page(vma, page, addr);
480  		flush_dcache_page(page);
481  	} else {
482  		put_page(page);
483  out:
484  		page = NULL;
485  	}
486  	up_read(&mm->mmap_sem);
487  	return page;
488  }
489  
490  /*
491   * This helper is used for getting right index into array of tree roots.
492   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494   * every node has its own stable and unstable tree.
495   */
496  static inline int get_kpfn_nid(unsigned long kpfn)
497  {
498  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
499  }
500  
501  static void remove_node_from_stable_tree(struct stable_node *stable_node)
502  {
503  	struct rmap_item *rmap_item;
504  
505  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
506  		if (rmap_item->hlist.next)
507  			ksm_pages_sharing--;
508  		else
509  			ksm_pages_shared--;
510  		put_anon_vma(rmap_item->anon_vma);
511  		rmap_item->address &= PAGE_MASK;
512  		cond_resched();
513  	}
514  
515  	if (stable_node->head == &migrate_nodes)
516  		list_del(&stable_node->list);
517  	else
518  		rb_erase(&stable_node->node,
519  			 root_stable_tree + NUMA(stable_node->nid));
520  	free_stable_node(stable_node);
521  }
522  
523  /*
524   * get_ksm_page: checks if the page indicated by the stable node
525   * is still its ksm page, despite having held no reference to it.
526   * In which case we can trust the content of the page, and it
527   * returns the gotten page; but if the page has now been zapped,
528   * remove the stale node from the stable tree and return NULL.
529   * But beware, the stable node's page might be being migrated.
530   *
531   * You would expect the stable_node to hold a reference to the ksm page.
532   * But if it increments the page's count, swapping out has to wait for
533   * ksmd to come around again before it can free the page, which may take
534   * seconds or even minutes: much too unresponsive.  So instead we use a
535   * "keyhole reference": access to the ksm page from the stable node peeps
536   * out through its keyhole to see if that page still holds the right key,
537   * pointing back to this stable node.  This relies on freeing a PageAnon
538   * page to reset its page->mapping to NULL, and relies on no other use of
539   * a page to put something that might look like our key in page->mapping.
540   * is on its way to being freed; but it is an anomaly to bear in mind.
541   */
542  static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
543  {
544  	struct page *page;
545  	void *expected_mapping;
546  	unsigned long kpfn;
547  
548  	expected_mapping = (void *)((unsigned long)stable_node |
549  					PAGE_MAPPING_KSM);
550  again:
551  	kpfn = READ_ONCE(stable_node->kpfn);
552  	page = pfn_to_page(kpfn);
553  
554  	/*
555  	 * page is computed from kpfn, so on most architectures reading
556  	 * page->mapping is naturally ordered after reading node->kpfn,
557  	 * but on Alpha we need to be more careful.
558  	 */
559  	smp_read_barrier_depends();
560  	if (READ_ONCE(page->mapping) != expected_mapping)
561  		goto stale;
562  
563  	/*
564  	 * We cannot do anything with the page while its refcount is 0.
565  	 * Usually 0 means free, or tail of a higher-order page: in which
566  	 * case this node is no longer referenced, and should be freed;
567  	 * however, it might mean that the page is under page_freeze_refs().
568  	 * The __remove_mapping() case is easy, again the node is now stale;
569  	 * but if page is swapcache in migrate_page_move_mapping(), it might
570  	 * still be our page, in which case it's essential to keep the node.
571  	 */
572  	while (!get_page_unless_zero(page)) {
573  		/*
574  		 * Another check for page->mapping != expected_mapping would
575  		 * work here too.  We have chosen the !PageSwapCache test to
576  		 * optimize the common case, when the page is or is about to
577  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
578  		 * in the freeze_refs section of __remove_mapping(); but Anon
579  		 * page->mapping reset to NULL later, in free_pages_prepare().
580  		 */
581  		if (!PageSwapCache(page))
582  			goto stale;
583  		cpu_relax();
584  	}
585  
586  	if (READ_ONCE(page->mapping) != expected_mapping) {
587  		put_page(page);
588  		goto stale;
589  	}
590  
591  	if (lock_it) {
592  		lock_page(page);
593  		if (READ_ONCE(page->mapping) != expected_mapping) {
594  			unlock_page(page);
595  			put_page(page);
596  			goto stale;
597  		}
598  	}
599  	return page;
600  
601  stale:
602  	/*
603  	 * We come here from above when page->mapping or !PageSwapCache
604  	 * suggests that the node is stale; but it might be under migration.
605  	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606  	 * before checking whether node->kpfn has been changed.
607  	 */
608  	smp_rmb();
609  	if (READ_ONCE(stable_node->kpfn) != kpfn)
610  		goto again;
611  	remove_node_from_stable_tree(stable_node);
612  	return NULL;
613  }
614  
615  /*
616   * Removing rmap_item from stable or unstable tree.
617   * This function will clean the information from the stable/unstable tree.
618   */
619  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
620  {
621  	if (rmap_item->address & STABLE_FLAG) {
622  		struct stable_node *stable_node;
623  		struct page *page;
624  
625  		stable_node = rmap_item->head;
626  		page = get_ksm_page(stable_node, true);
627  		if (!page)
628  			goto out;
629  
630  		hlist_del(&rmap_item->hlist);
631  		unlock_page(page);
632  		put_page(page);
633  
634  		if (!hlist_empty(&stable_node->hlist))
635  			ksm_pages_sharing--;
636  		else
637  			ksm_pages_shared--;
638  
639  		put_anon_vma(rmap_item->anon_vma);
640  		rmap_item->address &= PAGE_MASK;
641  
642  	} else if (rmap_item->address & UNSTABLE_FLAG) {
643  		unsigned char age;
644  		/*
645  		 * Usually ksmd can and must skip the rb_erase, because
646  		 * root_unstable_tree was already reset to RB_ROOT.
647  		 * But be careful when an mm is exiting: do the rb_erase
648  		 * if this rmap_item was inserted by this scan, rather
649  		 * than left over from before.
650  		 */
651  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
652  		BUG_ON(age > 1);
653  		if (!age)
654  			rb_erase(&rmap_item->node,
655  				 root_unstable_tree + NUMA(rmap_item->nid));
656  		ksm_pages_unshared--;
657  		rmap_item->address &= PAGE_MASK;
658  	}
659  out:
660  	cond_resched();		/* we're called from many long loops */
661  }
662  
663  static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
664  				       struct rmap_item **rmap_list)
665  {
666  	while (*rmap_list) {
667  		struct rmap_item *rmap_item = *rmap_list;
668  		*rmap_list = rmap_item->rmap_list;
669  		remove_rmap_item_from_tree(rmap_item);
670  		free_rmap_item(rmap_item);
671  	}
672  }
673  
674  /*
675   * Though it's very tempting to unmerge rmap_items from stable tree rather
676   * than check every pte of a given vma, the locking doesn't quite work for
677   * that - an rmap_item is assigned to the stable tree after inserting ksm
678   * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
679   * rmap_items from parent to child at fork time (so as not to waste time
680   * if exit comes before the next scan reaches it).
681   *
682   * Similarly, although we'd like to remove rmap_items (so updating counts
683   * and freeing memory) when unmerging an area, it's easier to leave that
684   * to the next pass of ksmd - consider, for example, how ksmd might be
685   * in cmp_and_merge_page on one of the rmap_items we would be removing.
686   */
687  static int unmerge_ksm_pages(struct vm_area_struct *vma,
688  			     unsigned long start, unsigned long end)
689  {
690  	unsigned long addr;
691  	int err = 0;
692  
693  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
694  		if (ksm_test_exit(vma->vm_mm))
695  			break;
696  		if (signal_pending(current))
697  			err = -ERESTARTSYS;
698  		else
699  			err = break_ksm(vma, addr);
700  	}
701  	return err;
702  }
703  
704  #ifdef CONFIG_SYSFS
705  /*
706   * Only called through the sysfs control interface:
707   */
708  static int remove_stable_node(struct stable_node *stable_node)
709  {
710  	struct page *page;
711  	int err;
712  
713  	page = get_ksm_page(stable_node, true);
714  	if (!page) {
715  		/*
716  		 * get_ksm_page did remove_node_from_stable_tree itself.
717  		 */
718  		return 0;
719  	}
720  
721  	if (WARN_ON_ONCE(page_mapped(page))) {
722  		/*
723  		 * This should not happen: but if it does, just refuse to let
724  		 * merge_across_nodes be switched - there is no need to panic.
725  		 */
726  		err = -EBUSY;
727  	} else {
728  		/*
729  		 * The stable node did not yet appear stale to get_ksm_page(),
730  		 * since that allows for an unmapped ksm page to be recognized
731  		 * right up until it is freed; but the node is safe to remove.
732  		 * This page might be in a pagevec waiting to be freed,
733  		 * or it might be PageSwapCache (perhaps under writeback),
734  		 * or it might have been removed from swapcache a moment ago.
735  		 */
736  		set_page_stable_node(page, NULL);
737  		remove_node_from_stable_tree(stable_node);
738  		err = 0;
739  	}
740  
741  	unlock_page(page);
742  	put_page(page);
743  	return err;
744  }
745  
746  static int remove_all_stable_nodes(void)
747  {
748  	struct stable_node *stable_node, *next;
749  	int nid;
750  	int err = 0;
751  
752  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
753  		while (root_stable_tree[nid].rb_node) {
754  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
755  						struct stable_node, node);
756  			if (remove_stable_node(stable_node)) {
757  				err = -EBUSY;
758  				break;	/* proceed to next nid */
759  			}
760  			cond_resched();
761  		}
762  	}
763  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
764  		if (remove_stable_node(stable_node))
765  			err = -EBUSY;
766  		cond_resched();
767  	}
768  	return err;
769  }
770  
771  static int unmerge_and_remove_all_rmap_items(void)
772  {
773  	struct mm_slot *mm_slot;
774  	struct mm_struct *mm;
775  	struct vm_area_struct *vma;
776  	int err = 0;
777  
778  	spin_lock(&ksm_mmlist_lock);
779  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780  						struct mm_slot, mm_list);
781  	spin_unlock(&ksm_mmlist_lock);
782  
783  	for (mm_slot = ksm_scan.mm_slot;
784  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785  		mm = mm_slot->mm;
786  		down_read(&mm->mmap_sem);
787  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
788  			if (ksm_test_exit(mm))
789  				break;
790  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791  				continue;
792  			err = unmerge_ksm_pages(vma,
793  						vma->vm_start, vma->vm_end);
794  			if (err)
795  				goto error;
796  		}
797  
798  		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799  		up_read(&mm->mmap_sem);
800  
801  		spin_lock(&ksm_mmlist_lock);
802  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
803  						struct mm_slot, mm_list);
804  		if (ksm_test_exit(mm)) {
805  			hash_del(&mm_slot->link);
806  			list_del(&mm_slot->mm_list);
807  			spin_unlock(&ksm_mmlist_lock);
808  
809  			free_mm_slot(mm_slot);
810  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
811  			mmdrop(mm);
812  		} else
813  			spin_unlock(&ksm_mmlist_lock);
814  	}
815  
816  	/* Clean up stable nodes, but don't worry if some are still busy */
817  	remove_all_stable_nodes();
818  	ksm_scan.seqnr = 0;
819  	return 0;
820  
821  error:
822  	up_read(&mm->mmap_sem);
823  	spin_lock(&ksm_mmlist_lock);
824  	ksm_scan.mm_slot = &ksm_mm_head;
825  	spin_unlock(&ksm_mmlist_lock);
826  	return err;
827  }
828  #endif /* CONFIG_SYSFS */
829  
830  static u32 calc_checksum(struct page *page)
831  {
832  	u32 checksum;
833  	void *addr = kmap_atomic(page);
834  	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835  	kunmap_atomic(addr);
836  	return checksum;
837  }
838  
839  static int memcmp_pages(struct page *page1, struct page *page2)
840  {
841  	char *addr1, *addr2;
842  	int ret;
843  
844  	addr1 = kmap_atomic(page1);
845  	addr2 = kmap_atomic(page2);
846  	ret = memcmp(addr1, addr2, PAGE_SIZE);
847  	kunmap_atomic(addr2);
848  	kunmap_atomic(addr1);
849  	return ret;
850  }
851  
852  static inline int pages_identical(struct page *page1, struct page *page2)
853  {
854  	return !memcmp_pages(page1, page2);
855  }
856  
857  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858  			      pte_t *orig_pte)
859  {
860  	struct mm_struct *mm = vma->vm_mm;
861  	struct page_vma_mapped_walk pvmw = {
862  		.page = page,
863  		.vma = vma,
864  	};
865  	int swapped;
866  	int err = -EFAULT;
867  	unsigned long mmun_start;	/* For mmu_notifiers */
868  	unsigned long mmun_end;		/* For mmu_notifiers */
869  
870  	pvmw.address = page_address_in_vma(page, vma);
871  	if (pvmw.address == -EFAULT)
872  		goto out;
873  
874  	BUG_ON(PageTransCompound(page));
875  
876  	mmun_start = pvmw.address;
877  	mmun_end   = pvmw.address + PAGE_SIZE;
878  	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879  
880  	if (!page_vma_mapped_walk(&pvmw))
881  		goto out_mn;
882  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
883  		goto out_unlock;
884  
885  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
886  	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
887  		pte_t entry;
888  
889  		swapped = PageSwapCache(page);
890  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
891  		/*
892  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
893  		 * take any lock, therefore the check that we are going to make
894  		 * with the pagecount against the mapcount is racey and
895  		 * O_DIRECT can happen right after the check.
896  		 * So we clear the pte and flush the tlb before the check
897  		 * this assure us that no O_DIRECT can happen after the check
898  		 * or in the middle of the check.
899  		 */
900  		entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
901  		/*
902  		 * Check that no O_DIRECT or similar I/O is in progress on the
903  		 * page
904  		 */
905  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
906  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
907  			goto out_unlock;
908  		}
909  		if (pte_dirty(entry))
910  			set_page_dirty(page);
911  
912  		if (pte_protnone(entry))
913  			entry = pte_mkclean(pte_clear_savedwrite(entry));
914  		else
915  			entry = pte_mkclean(pte_wrprotect(entry));
916  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
917  	}
918  	*orig_pte = *pvmw.pte;
919  	err = 0;
920  
921  out_unlock:
922  	page_vma_mapped_walk_done(&pvmw);
923  out_mn:
924  	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
925  out:
926  	return err;
927  }
928  
929  /**
930   * replace_page - replace page in vma by new ksm page
931   * @vma:      vma that holds the pte pointing to page
932   * @page:     the page we are replacing by kpage
933   * @kpage:    the ksm page we replace page by
934   * @orig_pte: the original value of the pte
935   *
936   * Returns 0 on success, -EFAULT on failure.
937   */
938  static int replace_page(struct vm_area_struct *vma, struct page *page,
939  			struct page *kpage, pte_t orig_pte)
940  {
941  	struct mm_struct *mm = vma->vm_mm;
942  	pmd_t *pmd;
943  	pte_t *ptep;
944  	pte_t newpte;
945  	spinlock_t *ptl;
946  	unsigned long addr;
947  	int err = -EFAULT;
948  	unsigned long mmun_start;	/* For mmu_notifiers */
949  	unsigned long mmun_end;		/* For mmu_notifiers */
950  
951  	addr = page_address_in_vma(page, vma);
952  	if (addr == -EFAULT)
953  		goto out;
954  
955  	pmd = mm_find_pmd(mm, addr);
956  	if (!pmd)
957  		goto out;
958  
959  	mmun_start = addr;
960  	mmun_end   = addr + PAGE_SIZE;
961  	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
962  
963  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
964  	if (!pte_same(*ptep, orig_pte)) {
965  		pte_unmap_unlock(ptep, ptl);
966  		goto out_mn;
967  	}
968  
969  	/*
970  	 * No need to check ksm_use_zero_pages here: we can only have a
971  	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
972  	 */
973  	if (!is_zero_pfn(page_to_pfn(kpage))) {
974  		get_page(kpage);
975  		page_add_anon_rmap(kpage, vma, addr, false);
976  		newpte = mk_pte(kpage, vma->vm_page_prot);
977  	} else {
978  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
979  					       vma->vm_page_prot));
980  	}
981  
982  	flush_cache_page(vma, addr, pte_pfn(*ptep));
983  	ptep_clear_flush_notify(vma, addr, ptep);
984  	set_pte_at_notify(mm, addr, ptep, newpte);
985  
986  	page_remove_rmap(page, false);
987  	if (!page_mapped(page))
988  		try_to_free_swap(page);
989  	put_page(page);
990  
991  	pte_unmap_unlock(ptep, ptl);
992  	err = 0;
993  out_mn:
994  	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995  out:
996  	return err;
997  }
998  
999  /*
1000   * try_to_merge_one_page - take two pages and merge them into one
1001   * @vma: the vma that holds the pte pointing to page
1002   * @page: the PageAnon page that we want to replace with kpage
1003   * @kpage: the PageKsm page that we want to map instead of page,
1004   *         or NULL the first time when we want to use page as kpage.
1005   *
1006   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1007   */
1008  static int try_to_merge_one_page(struct vm_area_struct *vma,
1009  				 struct page *page, struct page *kpage)
1010  {
1011  	pte_t orig_pte = __pte(0);
1012  	int err = -EFAULT;
1013  
1014  	if (page == kpage)			/* ksm page forked */
1015  		return 0;
1016  
1017  	if (!PageAnon(page))
1018  		goto out;
1019  
1020  	/*
1021  	 * We need the page lock to read a stable PageSwapCache in
1022  	 * write_protect_page().  We use trylock_page() instead of
1023  	 * lock_page() because we don't want to wait here - we
1024  	 * prefer to continue scanning and merging different pages,
1025  	 * then come back to this page when it is unlocked.
1026  	 */
1027  	if (!trylock_page(page))
1028  		goto out;
1029  
1030  	if (PageTransCompound(page)) {
1031  		err = split_huge_page(page);
1032  		if (err)
1033  			goto out_unlock;
1034  	}
1035  
1036  	/*
1037  	 * If this anonymous page is mapped only here, its pte may need
1038  	 * to be write-protected.  If it's mapped elsewhere, all of its
1039  	 * ptes are necessarily already write-protected.  But in either
1040  	 * case, we need to lock and check page_count is not raised.
1041  	 */
1042  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1043  		if (!kpage) {
1044  			/*
1045  			 * While we hold page lock, upgrade page from
1046  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1047  			 * stable_tree_insert() will update stable_node.
1048  			 */
1049  			set_page_stable_node(page, NULL);
1050  			mark_page_accessed(page);
1051  			/*
1052  			 * Page reclaim just frees a clean page with no dirty
1053  			 * ptes: make sure that the ksm page would be swapped.
1054  			 */
1055  			if (!PageDirty(page))
1056  				SetPageDirty(page);
1057  			err = 0;
1058  		} else if (pages_identical(page, kpage))
1059  			err = replace_page(vma, page, kpage, orig_pte);
1060  	}
1061  
1062  	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063  		munlock_vma_page(page);
1064  		if (!PageMlocked(kpage)) {
1065  			unlock_page(page);
1066  			lock_page(kpage);
1067  			mlock_vma_page(kpage);
1068  			page = kpage;		/* for final unlock */
1069  		}
1070  	}
1071  
1072  out_unlock:
1073  	unlock_page(page);
1074  out:
1075  	return err;
1076  }
1077  
1078  /*
1079   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080   * but no new kernel page is allocated: kpage must already be a ksm page.
1081   *
1082   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1083   */
1084  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1085  				      struct page *page, struct page *kpage)
1086  {
1087  	struct mm_struct *mm = rmap_item->mm;
1088  	struct vm_area_struct *vma;
1089  	int err = -EFAULT;
1090  
1091  	down_read(&mm->mmap_sem);
1092  	vma = find_mergeable_vma(mm, rmap_item->address);
1093  	if (!vma)
1094  		goto out;
1095  
1096  	err = try_to_merge_one_page(vma, page, kpage);
1097  	if (err)
1098  		goto out;
1099  
1100  	/* Unstable nid is in union with stable anon_vma: remove first */
1101  	remove_rmap_item_from_tree(rmap_item);
1102  
1103  	/* Must get reference to anon_vma while still holding mmap_sem */
1104  	rmap_item->anon_vma = vma->anon_vma;
1105  	get_anon_vma(vma->anon_vma);
1106  out:
1107  	up_read(&mm->mmap_sem);
1108  	return err;
1109  }
1110  
1111  /*
1112   * try_to_merge_two_pages - take two identical pages and prepare them
1113   * to be merged into one page.
1114   *
1115   * This function returns the kpage if we successfully merged two identical
1116   * pages into one ksm page, NULL otherwise.
1117   *
1118   * Note that this function upgrades page to ksm page: if one of the pages
1119   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1120   */
1121  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1122  					   struct page *page,
1123  					   struct rmap_item *tree_rmap_item,
1124  					   struct page *tree_page)
1125  {
1126  	int err;
1127  
1128  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1129  	if (!err) {
1130  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1131  							tree_page, page);
1132  		/*
1133  		 * If that fails, we have a ksm page with only one pte
1134  		 * pointing to it: so break it.
1135  		 */
1136  		if (err)
1137  			break_cow(rmap_item);
1138  	}
1139  	return err ? NULL : page;
1140  }
1141  
1142  /*
1143   * stable_tree_search - search for page inside the stable tree
1144   *
1145   * This function checks if there is a page inside the stable tree
1146   * with identical content to the page that we are scanning right now.
1147   *
1148   * This function returns the stable tree node of identical content if found,
1149   * NULL otherwise.
1150   */
1151  static struct page *stable_tree_search(struct page *page)
1152  {
1153  	int nid;
1154  	struct rb_root *root;
1155  	struct rb_node **new;
1156  	struct rb_node *parent;
1157  	struct stable_node *stable_node;
1158  	struct stable_node *page_node;
1159  
1160  	page_node = page_stable_node(page);
1161  	if (page_node && page_node->head != &migrate_nodes) {
1162  		/* ksm page forked */
1163  		get_page(page);
1164  		return page;
1165  	}
1166  
1167  	nid = get_kpfn_nid(page_to_pfn(page));
1168  	root = root_stable_tree + nid;
1169  again:
1170  	new = &root->rb_node;
1171  	parent = NULL;
1172  
1173  	while (*new) {
1174  		struct page *tree_page;
1175  		int ret;
1176  
1177  		cond_resched();
1178  		stable_node = rb_entry(*new, struct stable_node, node);
1179  		tree_page = get_ksm_page(stable_node, false);
1180  		if (!tree_page) {
1181  			/*
1182  			 * If we walked over a stale stable_node,
1183  			 * get_ksm_page() will call rb_erase() and it
1184  			 * may rebalance the tree from under us. So
1185  			 * restart the search from scratch. Returning
1186  			 * NULL would be safe too, but we'd generate
1187  			 * false negative insertions just because some
1188  			 * stable_node was stale.
1189  			 */
1190  			goto again;
1191  		}
1192  
1193  		ret = memcmp_pages(page, tree_page);
1194  		put_page(tree_page);
1195  
1196  		parent = *new;
1197  		if (ret < 0)
1198  			new = &parent->rb_left;
1199  		else if (ret > 0)
1200  			new = &parent->rb_right;
1201  		else {
1202  			/*
1203  			 * Lock and unlock the stable_node's page (which
1204  			 * might already have been migrated) so that page
1205  			 * migration is sure to notice its raised count.
1206  			 * It would be more elegant to return stable_node
1207  			 * than kpage, but that involves more changes.
1208  			 */
1209  			tree_page = get_ksm_page(stable_node, true);
1210  			if (tree_page) {
1211  				unlock_page(tree_page);
1212  				if (get_kpfn_nid(stable_node->kpfn) !=
1213  						NUMA(stable_node->nid)) {
1214  					put_page(tree_page);
1215  					goto replace;
1216  				}
1217  				return tree_page;
1218  			}
1219  			/*
1220  			 * There is now a place for page_node, but the tree may
1221  			 * have been rebalanced, so re-evaluate parent and new.
1222  			 */
1223  			if (page_node)
1224  				goto again;
1225  			return NULL;
1226  		}
1227  	}
1228  
1229  	if (!page_node)
1230  		return NULL;
1231  
1232  	list_del(&page_node->list);
1233  	DO_NUMA(page_node->nid = nid);
1234  	rb_link_node(&page_node->node, parent, new);
1235  	rb_insert_color(&page_node->node, root);
1236  	get_page(page);
1237  	return page;
1238  
1239  replace:
1240  	if (page_node) {
1241  		list_del(&page_node->list);
1242  		DO_NUMA(page_node->nid = nid);
1243  		rb_replace_node(&stable_node->node, &page_node->node, root);
1244  		get_page(page);
1245  	} else {
1246  		rb_erase(&stable_node->node, root);
1247  		page = NULL;
1248  	}
1249  	stable_node->head = &migrate_nodes;
1250  	list_add(&stable_node->list, stable_node->head);
1251  	return page;
1252  }
1253  
1254  /*
1255   * stable_tree_insert - insert stable tree node pointing to new ksm page
1256   * into the stable tree.
1257   *
1258   * This function returns the stable tree node just allocated on success,
1259   * NULL otherwise.
1260   */
1261  static struct stable_node *stable_tree_insert(struct page *kpage)
1262  {
1263  	int nid;
1264  	unsigned long kpfn;
1265  	struct rb_root *root;
1266  	struct rb_node **new;
1267  	struct rb_node *parent;
1268  	struct stable_node *stable_node;
1269  
1270  	kpfn = page_to_pfn(kpage);
1271  	nid = get_kpfn_nid(kpfn);
1272  	root = root_stable_tree + nid;
1273  again:
1274  	parent = NULL;
1275  	new = &root->rb_node;
1276  
1277  	while (*new) {
1278  		struct page *tree_page;
1279  		int ret;
1280  
1281  		cond_resched();
1282  		stable_node = rb_entry(*new, struct stable_node, node);
1283  		tree_page = get_ksm_page(stable_node, false);
1284  		if (!tree_page) {
1285  			/*
1286  			 * If we walked over a stale stable_node,
1287  			 * get_ksm_page() will call rb_erase() and it
1288  			 * may rebalance the tree from under us. So
1289  			 * restart the search from scratch. Returning
1290  			 * NULL would be safe too, but we'd generate
1291  			 * false negative insertions just because some
1292  			 * stable_node was stale.
1293  			 */
1294  			goto again;
1295  		}
1296  
1297  		ret = memcmp_pages(kpage, tree_page);
1298  		put_page(tree_page);
1299  
1300  		parent = *new;
1301  		if (ret < 0)
1302  			new = &parent->rb_left;
1303  		else if (ret > 0)
1304  			new = &parent->rb_right;
1305  		else {
1306  			/*
1307  			 * It is not a bug that stable_tree_search() didn't
1308  			 * find this node: because at that time our page was
1309  			 * not yet write-protected, so may have changed since.
1310  			 */
1311  			return NULL;
1312  		}
1313  	}
1314  
1315  	stable_node = alloc_stable_node();
1316  	if (!stable_node)
1317  		return NULL;
1318  
1319  	INIT_HLIST_HEAD(&stable_node->hlist);
1320  	stable_node->kpfn = kpfn;
1321  	set_page_stable_node(kpage, stable_node);
1322  	DO_NUMA(stable_node->nid = nid);
1323  	rb_link_node(&stable_node->node, parent, new);
1324  	rb_insert_color(&stable_node->node, root);
1325  
1326  	return stable_node;
1327  }
1328  
1329  /*
1330   * unstable_tree_search_insert - search for identical page,
1331   * else insert rmap_item into the unstable tree.
1332   *
1333   * This function searches for a page in the unstable tree identical to the
1334   * page currently being scanned; and if no identical page is found in the
1335   * tree, we insert rmap_item as a new object into the unstable tree.
1336   *
1337   * This function returns pointer to rmap_item found to be identical
1338   * to the currently scanned page, NULL otherwise.
1339   *
1340   * This function does both searching and inserting, because they share
1341   * the same walking algorithm in an rbtree.
1342   */
1343  static
1344  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1345  					      struct page *page,
1346  					      struct page **tree_pagep)
1347  {
1348  	struct rb_node **new;
1349  	struct rb_root *root;
1350  	struct rb_node *parent = NULL;
1351  	int nid;
1352  
1353  	nid = get_kpfn_nid(page_to_pfn(page));
1354  	root = root_unstable_tree + nid;
1355  	new = &root->rb_node;
1356  
1357  	while (*new) {
1358  		struct rmap_item *tree_rmap_item;
1359  		struct page *tree_page;
1360  		int ret;
1361  
1362  		cond_resched();
1363  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1364  		tree_page = get_mergeable_page(tree_rmap_item);
1365  		if (!tree_page)
1366  			return NULL;
1367  
1368  		/*
1369  		 * Don't substitute a ksm page for a forked page.
1370  		 */
1371  		if (page == tree_page) {
1372  			put_page(tree_page);
1373  			return NULL;
1374  		}
1375  
1376  		ret = memcmp_pages(page, tree_page);
1377  
1378  		parent = *new;
1379  		if (ret < 0) {
1380  			put_page(tree_page);
1381  			new = &parent->rb_left;
1382  		} else if (ret > 0) {
1383  			put_page(tree_page);
1384  			new = &parent->rb_right;
1385  		} else if (!ksm_merge_across_nodes &&
1386  			   page_to_nid(tree_page) != nid) {
1387  			/*
1388  			 * If tree_page has been migrated to another NUMA node,
1389  			 * it will be flushed out and put in the right unstable
1390  			 * tree next time: only merge with it when across_nodes.
1391  			 */
1392  			put_page(tree_page);
1393  			return NULL;
1394  		} else {
1395  			*tree_pagep = tree_page;
1396  			return tree_rmap_item;
1397  		}
1398  	}
1399  
1400  	rmap_item->address |= UNSTABLE_FLAG;
1401  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1402  	DO_NUMA(rmap_item->nid = nid);
1403  	rb_link_node(&rmap_item->node, parent, new);
1404  	rb_insert_color(&rmap_item->node, root);
1405  
1406  	ksm_pages_unshared++;
1407  	return NULL;
1408  }
1409  
1410  /*
1411   * stable_tree_append - add another rmap_item to the linked list of
1412   * rmap_items hanging off a given node of the stable tree, all sharing
1413   * the same ksm page.
1414   */
1415  static void stable_tree_append(struct rmap_item *rmap_item,
1416  			       struct stable_node *stable_node)
1417  {
1418  	rmap_item->head = stable_node;
1419  	rmap_item->address |= STABLE_FLAG;
1420  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1421  
1422  	if (rmap_item->hlist.next)
1423  		ksm_pages_sharing++;
1424  	else
1425  		ksm_pages_shared++;
1426  }
1427  
1428  /*
1429   * cmp_and_merge_page - first see if page can be merged into the stable tree;
1430   * if not, compare checksum to previous and if it's the same, see if page can
1431   * be inserted into the unstable tree, or merged with a page already there and
1432   * both transferred to the stable tree.
1433   *
1434   * @page: the page that we are searching identical page to.
1435   * @rmap_item: the reverse mapping into the virtual address of this page
1436   */
1437  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1438  {
1439  	struct rmap_item *tree_rmap_item;
1440  	struct page *tree_page = NULL;
1441  	struct stable_node *stable_node;
1442  	struct page *kpage;
1443  	unsigned int checksum;
1444  	int err;
1445  
1446  	stable_node = page_stable_node(page);
1447  	if (stable_node) {
1448  		if (stable_node->head != &migrate_nodes &&
1449  		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1450  			rb_erase(&stable_node->node,
1451  				 root_stable_tree + NUMA(stable_node->nid));
1452  			stable_node->head = &migrate_nodes;
1453  			list_add(&stable_node->list, stable_node->head);
1454  		}
1455  		if (stable_node->head != &migrate_nodes &&
1456  		    rmap_item->head == stable_node)
1457  			return;
1458  	}
1459  
1460  	/* We first start with searching the page inside the stable tree */
1461  	kpage = stable_tree_search(page);
1462  	if (kpage == page && rmap_item->head == stable_node) {
1463  		put_page(kpage);
1464  		return;
1465  	}
1466  
1467  	remove_rmap_item_from_tree(rmap_item);
1468  
1469  	if (kpage) {
1470  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1471  		if (!err) {
1472  			/*
1473  			 * The page was successfully merged:
1474  			 * add its rmap_item to the stable tree.
1475  			 */
1476  			lock_page(kpage);
1477  			stable_tree_append(rmap_item, page_stable_node(kpage));
1478  			unlock_page(kpage);
1479  		}
1480  		put_page(kpage);
1481  		return;
1482  	}
1483  
1484  	/*
1485  	 * If the hash value of the page has changed from the last time
1486  	 * we calculated it, this page is changing frequently: therefore we
1487  	 * don't want to insert it in the unstable tree, and we don't want
1488  	 * to waste our time searching for something identical to it there.
1489  	 */
1490  	checksum = calc_checksum(page);
1491  	if (rmap_item->oldchecksum != checksum) {
1492  		rmap_item->oldchecksum = checksum;
1493  		return;
1494  	}
1495  
1496  	/*
1497  	 * Same checksum as an empty page. We attempt to merge it with the
1498  	 * appropriate zero page if the user enabled this via sysfs.
1499  	 */
1500  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1501  		struct vm_area_struct *vma;
1502  
1503  		vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1504  		err = try_to_merge_one_page(vma, page,
1505  					    ZERO_PAGE(rmap_item->address));
1506  		/*
1507  		 * In case of failure, the page was not really empty, so we
1508  		 * need to continue. Otherwise we're done.
1509  		 */
1510  		if (!err)
1511  			return;
1512  	}
1513  	tree_rmap_item =
1514  		unstable_tree_search_insert(rmap_item, page, &tree_page);
1515  	if (tree_rmap_item) {
1516  		kpage = try_to_merge_two_pages(rmap_item, page,
1517  						tree_rmap_item, tree_page);
1518  		put_page(tree_page);
1519  		if (kpage) {
1520  			/*
1521  			 * The pages were successfully merged: insert new
1522  			 * node in the stable tree and add both rmap_items.
1523  			 */
1524  			lock_page(kpage);
1525  			stable_node = stable_tree_insert(kpage);
1526  			if (stable_node) {
1527  				stable_tree_append(tree_rmap_item, stable_node);
1528  				stable_tree_append(rmap_item, stable_node);
1529  			}
1530  			unlock_page(kpage);
1531  
1532  			/*
1533  			 * If we fail to insert the page into the stable tree,
1534  			 * we will have 2 virtual addresses that are pointing
1535  			 * to a ksm page left outside the stable tree,
1536  			 * in which case we need to break_cow on both.
1537  			 */
1538  			if (!stable_node) {
1539  				break_cow(tree_rmap_item);
1540  				break_cow(rmap_item);
1541  			}
1542  		}
1543  	}
1544  }
1545  
1546  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1547  					    struct rmap_item **rmap_list,
1548  					    unsigned long addr)
1549  {
1550  	struct rmap_item *rmap_item;
1551  
1552  	while (*rmap_list) {
1553  		rmap_item = *rmap_list;
1554  		if ((rmap_item->address & PAGE_MASK) == addr)
1555  			return rmap_item;
1556  		if (rmap_item->address > addr)
1557  			break;
1558  		*rmap_list = rmap_item->rmap_list;
1559  		remove_rmap_item_from_tree(rmap_item);
1560  		free_rmap_item(rmap_item);
1561  	}
1562  
1563  	rmap_item = alloc_rmap_item();
1564  	if (rmap_item) {
1565  		/* It has already been zeroed */
1566  		rmap_item->mm = mm_slot->mm;
1567  		rmap_item->address = addr;
1568  		rmap_item->rmap_list = *rmap_list;
1569  		*rmap_list = rmap_item;
1570  	}
1571  	return rmap_item;
1572  }
1573  
1574  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1575  {
1576  	struct mm_struct *mm;
1577  	struct mm_slot *slot;
1578  	struct vm_area_struct *vma;
1579  	struct rmap_item *rmap_item;
1580  	int nid;
1581  
1582  	if (list_empty(&ksm_mm_head.mm_list))
1583  		return NULL;
1584  
1585  	slot = ksm_scan.mm_slot;
1586  	if (slot == &ksm_mm_head) {
1587  		/*
1588  		 * A number of pages can hang around indefinitely on per-cpu
1589  		 * pagevecs, raised page count preventing write_protect_page
1590  		 * from merging them.  Though it doesn't really matter much,
1591  		 * it is puzzling to see some stuck in pages_volatile until
1592  		 * other activity jostles them out, and they also prevented
1593  		 * LTP's KSM test from succeeding deterministically; so drain
1594  		 * them here (here rather than on entry to ksm_do_scan(),
1595  		 * so we don't IPI too often when pages_to_scan is set low).
1596  		 */
1597  		lru_add_drain_all();
1598  
1599  		/*
1600  		 * Whereas stale stable_nodes on the stable_tree itself
1601  		 * get pruned in the regular course of stable_tree_search(),
1602  		 * those moved out to the migrate_nodes list can accumulate:
1603  		 * so prune them once before each full scan.
1604  		 */
1605  		if (!ksm_merge_across_nodes) {
1606  			struct stable_node *stable_node, *next;
1607  			struct page *page;
1608  
1609  			list_for_each_entry_safe(stable_node, next,
1610  						 &migrate_nodes, list) {
1611  				page = get_ksm_page(stable_node, false);
1612  				if (page)
1613  					put_page(page);
1614  				cond_resched();
1615  			}
1616  		}
1617  
1618  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1619  			root_unstable_tree[nid] = RB_ROOT;
1620  
1621  		spin_lock(&ksm_mmlist_lock);
1622  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1623  		ksm_scan.mm_slot = slot;
1624  		spin_unlock(&ksm_mmlist_lock);
1625  		/*
1626  		 * Although we tested list_empty() above, a racing __ksm_exit
1627  		 * of the last mm on the list may have removed it since then.
1628  		 */
1629  		if (slot == &ksm_mm_head)
1630  			return NULL;
1631  next_mm:
1632  		ksm_scan.address = 0;
1633  		ksm_scan.rmap_list = &slot->rmap_list;
1634  	}
1635  
1636  	mm = slot->mm;
1637  	down_read(&mm->mmap_sem);
1638  	if (ksm_test_exit(mm))
1639  		vma = NULL;
1640  	else
1641  		vma = find_vma(mm, ksm_scan.address);
1642  
1643  	for (; vma; vma = vma->vm_next) {
1644  		if (!(vma->vm_flags & VM_MERGEABLE))
1645  			continue;
1646  		if (ksm_scan.address < vma->vm_start)
1647  			ksm_scan.address = vma->vm_start;
1648  		if (!vma->anon_vma)
1649  			ksm_scan.address = vma->vm_end;
1650  
1651  		while (ksm_scan.address < vma->vm_end) {
1652  			if (ksm_test_exit(mm))
1653  				break;
1654  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1655  			if (IS_ERR_OR_NULL(*page)) {
1656  				ksm_scan.address += PAGE_SIZE;
1657  				cond_resched();
1658  				continue;
1659  			}
1660  			if (PageAnon(*page)) {
1661  				flush_anon_page(vma, *page, ksm_scan.address);
1662  				flush_dcache_page(*page);
1663  				rmap_item = get_next_rmap_item(slot,
1664  					ksm_scan.rmap_list, ksm_scan.address);
1665  				if (rmap_item) {
1666  					ksm_scan.rmap_list =
1667  							&rmap_item->rmap_list;
1668  					ksm_scan.address += PAGE_SIZE;
1669  				} else
1670  					put_page(*page);
1671  				up_read(&mm->mmap_sem);
1672  				return rmap_item;
1673  			}
1674  			put_page(*page);
1675  			ksm_scan.address += PAGE_SIZE;
1676  			cond_resched();
1677  		}
1678  	}
1679  
1680  	if (ksm_test_exit(mm)) {
1681  		ksm_scan.address = 0;
1682  		ksm_scan.rmap_list = &slot->rmap_list;
1683  	}
1684  	/*
1685  	 * Nuke all the rmap_items that are above this current rmap:
1686  	 * because there were no VM_MERGEABLE vmas with such addresses.
1687  	 */
1688  	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1689  
1690  	spin_lock(&ksm_mmlist_lock);
1691  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1692  						struct mm_slot, mm_list);
1693  	if (ksm_scan.address == 0) {
1694  		/*
1695  		 * We've completed a full scan of all vmas, holding mmap_sem
1696  		 * throughout, and found no VM_MERGEABLE: so do the same as
1697  		 * __ksm_exit does to remove this mm from all our lists now.
1698  		 * This applies either when cleaning up after __ksm_exit
1699  		 * (but beware: we can reach here even before __ksm_exit),
1700  		 * or when all VM_MERGEABLE areas have been unmapped (and
1701  		 * mmap_sem then protects against race with MADV_MERGEABLE).
1702  		 */
1703  		hash_del(&slot->link);
1704  		list_del(&slot->mm_list);
1705  		spin_unlock(&ksm_mmlist_lock);
1706  
1707  		free_mm_slot(slot);
1708  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1709  		up_read(&mm->mmap_sem);
1710  		mmdrop(mm);
1711  	} else {
1712  		up_read(&mm->mmap_sem);
1713  		/*
1714  		 * up_read(&mm->mmap_sem) first because after
1715  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1716  		 * already have been freed under us by __ksm_exit()
1717  		 * because the "mm_slot" is still hashed and
1718  		 * ksm_scan.mm_slot doesn't point to it anymore.
1719  		 */
1720  		spin_unlock(&ksm_mmlist_lock);
1721  	}
1722  
1723  	/* Repeat until we've completed scanning the whole list */
1724  	slot = ksm_scan.mm_slot;
1725  	if (slot != &ksm_mm_head)
1726  		goto next_mm;
1727  
1728  	ksm_scan.seqnr++;
1729  	return NULL;
1730  }
1731  
1732  /**
1733   * ksm_do_scan  - the ksm scanner main worker function.
1734   * @scan_npages - number of pages we want to scan before we return.
1735   */
1736  static void ksm_do_scan(unsigned int scan_npages)
1737  {
1738  	struct rmap_item *rmap_item;
1739  	struct page *uninitialized_var(page);
1740  
1741  	while (scan_npages-- && likely(!freezing(current))) {
1742  		cond_resched();
1743  		rmap_item = scan_get_next_rmap_item(&page);
1744  		if (!rmap_item)
1745  			return;
1746  		cmp_and_merge_page(page, rmap_item);
1747  		put_page(page);
1748  	}
1749  }
1750  
1751  static int ksmd_should_run(void)
1752  {
1753  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1754  }
1755  
1756  static int ksm_scan_thread(void *nothing)
1757  {
1758  	set_freezable();
1759  	set_user_nice(current, 5);
1760  
1761  	while (!kthread_should_stop()) {
1762  		mutex_lock(&ksm_thread_mutex);
1763  		wait_while_offlining();
1764  		if (ksmd_should_run())
1765  			ksm_do_scan(ksm_thread_pages_to_scan);
1766  		mutex_unlock(&ksm_thread_mutex);
1767  
1768  		try_to_freeze();
1769  
1770  		if (ksmd_should_run()) {
1771  			schedule_timeout_interruptible(
1772  				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1773  		} else {
1774  			wait_event_freezable(ksm_thread_wait,
1775  				ksmd_should_run() || kthread_should_stop());
1776  		}
1777  	}
1778  	return 0;
1779  }
1780  
1781  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1782  		unsigned long end, int advice, unsigned long *vm_flags)
1783  {
1784  	struct mm_struct *mm = vma->vm_mm;
1785  	int err;
1786  
1787  	switch (advice) {
1788  	case MADV_MERGEABLE:
1789  		/*
1790  		 * Be somewhat over-protective for now!
1791  		 */
1792  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1793  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1794  				 VM_HUGETLB | VM_MIXEDMAP))
1795  			return 0;		/* just ignore the advice */
1796  
1797  #ifdef VM_SAO
1798  		if (*vm_flags & VM_SAO)
1799  			return 0;
1800  #endif
1801  
1802  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1803  			err = __ksm_enter(mm);
1804  			if (err)
1805  				return err;
1806  		}
1807  
1808  		*vm_flags |= VM_MERGEABLE;
1809  		break;
1810  
1811  	case MADV_UNMERGEABLE:
1812  		if (!(*vm_flags & VM_MERGEABLE))
1813  			return 0;		/* just ignore the advice */
1814  
1815  		if (vma->anon_vma) {
1816  			err = unmerge_ksm_pages(vma, start, end);
1817  			if (err)
1818  				return err;
1819  		}
1820  
1821  		*vm_flags &= ~VM_MERGEABLE;
1822  		break;
1823  	}
1824  
1825  	return 0;
1826  }
1827  
1828  int __ksm_enter(struct mm_struct *mm)
1829  {
1830  	struct mm_slot *mm_slot;
1831  	int needs_wakeup;
1832  
1833  	mm_slot = alloc_mm_slot();
1834  	if (!mm_slot)
1835  		return -ENOMEM;
1836  
1837  	/* Check ksm_run too?  Would need tighter locking */
1838  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1839  
1840  	spin_lock(&ksm_mmlist_lock);
1841  	insert_to_mm_slots_hash(mm, mm_slot);
1842  	/*
1843  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844  	 * insert just behind the scanning cursor, to let the area settle
1845  	 * down a little; when fork is followed by immediate exec, we don't
1846  	 * want ksmd to waste time setting up and tearing down an rmap_list.
1847  	 *
1848  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1850  	 * missed: then we might as well insert at the end of the list.
1851  	 */
1852  	if (ksm_run & KSM_RUN_UNMERGE)
1853  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1854  	else
1855  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1856  	spin_unlock(&ksm_mmlist_lock);
1857  
1858  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1859  	mmgrab(mm);
1860  
1861  	if (needs_wakeup)
1862  		wake_up_interruptible(&ksm_thread_wait);
1863  
1864  	return 0;
1865  }
1866  
1867  void __ksm_exit(struct mm_struct *mm)
1868  {
1869  	struct mm_slot *mm_slot;
1870  	int easy_to_free = 0;
1871  
1872  	/*
1873  	 * This process is exiting: if it's straightforward (as is the
1874  	 * case when ksmd was never running), free mm_slot immediately.
1875  	 * But if it's at the cursor or has rmap_items linked to it, use
1876  	 * mmap_sem to synchronize with any break_cows before pagetables
1877  	 * are freed, and leave the mm_slot on the list for ksmd to free.
1878  	 * Beware: ksm may already have noticed it exiting and freed the slot.
1879  	 */
1880  
1881  	spin_lock(&ksm_mmlist_lock);
1882  	mm_slot = get_mm_slot(mm);
1883  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1884  		if (!mm_slot->rmap_list) {
1885  			hash_del(&mm_slot->link);
1886  			list_del(&mm_slot->mm_list);
1887  			easy_to_free = 1;
1888  		} else {
1889  			list_move(&mm_slot->mm_list,
1890  				  &ksm_scan.mm_slot->mm_list);
1891  		}
1892  	}
1893  	spin_unlock(&ksm_mmlist_lock);
1894  
1895  	if (easy_to_free) {
1896  		free_mm_slot(mm_slot);
1897  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1898  		mmdrop(mm);
1899  	} else if (mm_slot) {
1900  		down_write(&mm->mmap_sem);
1901  		up_write(&mm->mmap_sem);
1902  	}
1903  }
1904  
1905  struct page *ksm_might_need_to_copy(struct page *page,
1906  			struct vm_area_struct *vma, unsigned long address)
1907  {
1908  	struct anon_vma *anon_vma = page_anon_vma(page);
1909  	struct page *new_page;
1910  
1911  	if (PageKsm(page)) {
1912  		if (page_stable_node(page) &&
1913  		    !(ksm_run & KSM_RUN_UNMERGE))
1914  			return page;	/* no need to copy it */
1915  	} else if (!anon_vma) {
1916  		return page;		/* no need to copy it */
1917  	} else if (anon_vma->root == vma->anon_vma->root &&
1918  		 page->index == linear_page_index(vma, address)) {
1919  		return page;		/* still no need to copy it */
1920  	}
1921  	if (!PageUptodate(page))
1922  		return page;		/* let do_swap_page report the error */
1923  
1924  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1925  	if (new_page) {
1926  		copy_user_highpage(new_page, page, address, vma);
1927  
1928  		SetPageDirty(new_page);
1929  		__SetPageUptodate(new_page);
1930  		__SetPageLocked(new_page);
1931  	}
1932  
1933  	return new_page;
1934  }
1935  
1936  int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1937  {
1938  	struct stable_node *stable_node;
1939  	struct rmap_item *rmap_item;
1940  	int ret = SWAP_AGAIN;
1941  	int search_new_forks = 0;
1942  
1943  	VM_BUG_ON_PAGE(!PageKsm(page), page);
1944  
1945  	/*
1946  	 * Rely on the page lock to protect against concurrent modifications
1947  	 * to that page's node of the stable tree.
1948  	 */
1949  	VM_BUG_ON_PAGE(!PageLocked(page), page);
1950  
1951  	stable_node = page_stable_node(page);
1952  	if (!stable_node)
1953  		return ret;
1954  again:
1955  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1956  		struct anon_vma *anon_vma = rmap_item->anon_vma;
1957  		struct anon_vma_chain *vmac;
1958  		struct vm_area_struct *vma;
1959  
1960  		cond_resched();
1961  		anon_vma_lock_read(anon_vma);
1962  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1963  					       0, ULONG_MAX) {
1964  			cond_resched();
1965  			vma = vmac->vma;
1966  			if (rmap_item->address < vma->vm_start ||
1967  			    rmap_item->address >= vma->vm_end)
1968  				continue;
1969  			/*
1970  			 * Initially we examine only the vma which covers this
1971  			 * rmap_item; but later, if there is still work to do,
1972  			 * we examine covering vmas in other mms: in case they
1973  			 * were forked from the original since ksmd passed.
1974  			 */
1975  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1976  				continue;
1977  
1978  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1979  				continue;
1980  
1981  			ret = rwc->rmap_one(page, vma,
1982  					rmap_item->address, rwc->arg);
1983  			if (ret != SWAP_AGAIN) {
1984  				anon_vma_unlock_read(anon_vma);
1985  				goto out;
1986  			}
1987  			if (rwc->done && rwc->done(page)) {
1988  				anon_vma_unlock_read(anon_vma);
1989  				goto out;
1990  			}
1991  		}
1992  		anon_vma_unlock_read(anon_vma);
1993  	}
1994  	if (!search_new_forks++)
1995  		goto again;
1996  out:
1997  	return ret;
1998  }
1999  
2000  #ifdef CONFIG_MIGRATION
2001  void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2002  {
2003  	struct stable_node *stable_node;
2004  
2005  	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2006  	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2007  	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2008  
2009  	stable_node = page_stable_node(newpage);
2010  	if (stable_node) {
2011  		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2012  		stable_node->kpfn = page_to_pfn(newpage);
2013  		/*
2014  		 * newpage->mapping was set in advance; now we need smp_wmb()
2015  		 * to make sure that the new stable_node->kpfn is visible
2016  		 * to get_ksm_page() before it can see that oldpage->mapping
2017  		 * has gone stale (or that PageSwapCache has been cleared).
2018  		 */
2019  		smp_wmb();
2020  		set_page_stable_node(oldpage, NULL);
2021  	}
2022  }
2023  #endif /* CONFIG_MIGRATION */
2024  
2025  #ifdef CONFIG_MEMORY_HOTREMOVE
2026  static void wait_while_offlining(void)
2027  {
2028  	while (ksm_run & KSM_RUN_OFFLINE) {
2029  		mutex_unlock(&ksm_thread_mutex);
2030  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2031  			    TASK_UNINTERRUPTIBLE);
2032  		mutex_lock(&ksm_thread_mutex);
2033  	}
2034  }
2035  
2036  static void ksm_check_stable_tree(unsigned long start_pfn,
2037  				  unsigned long end_pfn)
2038  {
2039  	struct stable_node *stable_node, *next;
2040  	struct rb_node *node;
2041  	int nid;
2042  
2043  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2044  		node = rb_first(root_stable_tree + nid);
2045  		while (node) {
2046  			stable_node = rb_entry(node, struct stable_node, node);
2047  			if (stable_node->kpfn >= start_pfn &&
2048  			    stable_node->kpfn < end_pfn) {
2049  				/*
2050  				 * Don't get_ksm_page, page has already gone:
2051  				 * which is why we keep kpfn instead of page*
2052  				 */
2053  				remove_node_from_stable_tree(stable_node);
2054  				node = rb_first(root_stable_tree + nid);
2055  			} else
2056  				node = rb_next(node);
2057  			cond_resched();
2058  		}
2059  	}
2060  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2061  		if (stable_node->kpfn >= start_pfn &&
2062  		    stable_node->kpfn < end_pfn)
2063  			remove_node_from_stable_tree(stable_node);
2064  		cond_resched();
2065  	}
2066  }
2067  
2068  static int ksm_memory_callback(struct notifier_block *self,
2069  			       unsigned long action, void *arg)
2070  {
2071  	struct memory_notify *mn = arg;
2072  
2073  	switch (action) {
2074  	case MEM_GOING_OFFLINE:
2075  		/*
2076  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2077  		 * and remove_all_stable_nodes() while memory is going offline:
2078  		 * it is unsafe for them to touch the stable tree at this time.
2079  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2080  		 * which do not need the ksm_thread_mutex are all safe.
2081  		 */
2082  		mutex_lock(&ksm_thread_mutex);
2083  		ksm_run |= KSM_RUN_OFFLINE;
2084  		mutex_unlock(&ksm_thread_mutex);
2085  		break;
2086  
2087  	case MEM_OFFLINE:
2088  		/*
2089  		 * Most of the work is done by page migration; but there might
2090  		 * be a few stable_nodes left over, still pointing to struct
2091  		 * pages which have been offlined: prune those from the tree,
2092  		 * otherwise get_ksm_page() might later try to access a
2093  		 * non-existent struct page.
2094  		 */
2095  		ksm_check_stable_tree(mn->start_pfn,
2096  				      mn->start_pfn + mn->nr_pages);
2097  		/* fallthrough */
2098  
2099  	case MEM_CANCEL_OFFLINE:
2100  		mutex_lock(&ksm_thread_mutex);
2101  		ksm_run &= ~KSM_RUN_OFFLINE;
2102  		mutex_unlock(&ksm_thread_mutex);
2103  
2104  		smp_mb();	/* wake_up_bit advises this */
2105  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2106  		break;
2107  	}
2108  	return NOTIFY_OK;
2109  }
2110  #else
2111  static void wait_while_offlining(void)
2112  {
2113  }
2114  #endif /* CONFIG_MEMORY_HOTREMOVE */
2115  
2116  #ifdef CONFIG_SYSFS
2117  /*
2118   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2119   */
2120  
2121  #define KSM_ATTR_RO(_name) \
2122  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2123  #define KSM_ATTR(_name) \
2124  	static struct kobj_attribute _name##_attr = \
2125  		__ATTR(_name, 0644, _name##_show, _name##_store)
2126  
2127  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2128  				    struct kobj_attribute *attr, char *buf)
2129  {
2130  	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2131  }
2132  
2133  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2134  				     struct kobj_attribute *attr,
2135  				     const char *buf, size_t count)
2136  {
2137  	unsigned long msecs;
2138  	int err;
2139  
2140  	err = kstrtoul(buf, 10, &msecs);
2141  	if (err || msecs > UINT_MAX)
2142  		return -EINVAL;
2143  
2144  	ksm_thread_sleep_millisecs = msecs;
2145  
2146  	return count;
2147  }
2148  KSM_ATTR(sleep_millisecs);
2149  
2150  static ssize_t pages_to_scan_show(struct kobject *kobj,
2151  				  struct kobj_attribute *attr, char *buf)
2152  {
2153  	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2154  }
2155  
2156  static ssize_t pages_to_scan_store(struct kobject *kobj,
2157  				   struct kobj_attribute *attr,
2158  				   const char *buf, size_t count)
2159  {
2160  	int err;
2161  	unsigned long nr_pages;
2162  
2163  	err = kstrtoul(buf, 10, &nr_pages);
2164  	if (err || nr_pages > UINT_MAX)
2165  		return -EINVAL;
2166  
2167  	ksm_thread_pages_to_scan = nr_pages;
2168  
2169  	return count;
2170  }
2171  KSM_ATTR(pages_to_scan);
2172  
2173  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2174  			char *buf)
2175  {
2176  	return sprintf(buf, "%lu\n", ksm_run);
2177  }
2178  
2179  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2180  			 const char *buf, size_t count)
2181  {
2182  	int err;
2183  	unsigned long flags;
2184  
2185  	err = kstrtoul(buf, 10, &flags);
2186  	if (err || flags > UINT_MAX)
2187  		return -EINVAL;
2188  	if (flags > KSM_RUN_UNMERGE)
2189  		return -EINVAL;
2190  
2191  	/*
2192  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2193  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2194  	 * breaking COW to free the pages_shared (but leaves mm_slots
2195  	 * on the list for when ksmd may be set running again).
2196  	 */
2197  
2198  	mutex_lock(&ksm_thread_mutex);
2199  	wait_while_offlining();
2200  	if (ksm_run != flags) {
2201  		ksm_run = flags;
2202  		if (flags & KSM_RUN_UNMERGE) {
2203  			set_current_oom_origin();
2204  			err = unmerge_and_remove_all_rmap_items();
2205  			clear_current_oom_origin();
2206  			if (err) {
2207  				ksm_run = KSM_RUN_STOP;
2208  				count = err;
2209  			}
2210  		}
2211  	}
2212  	mutex_unlock(&ksm_thread_mutex);
2213  
2214  	if (flags & KSM_RUN_MERGE)
2215  		wake_up_interruptible(&ksm_thread_wait);
2216  
2217  	return count;
2218  }
2219  KSM_ATTR(run);
2220  
2221  #ifdef CONFIG_NUMA
2222  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2223  				struct kobj_attribute *attr, char *buf)
2224  {
2225  	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2226  }
2227  
2228  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2229  				   struct kobj_attribute *attr,
2230  				   const char *buf, size_t count)
2231  {
2232  	int err;
2233  	unsigned long knob;
2234  
2235  	err = kstrtoul(buf, 10, &knob);
2236  	if (err)
2237  		return err;
2238  	if (knob > 1)
2239  		return -EINVAL;
2240  
2241  	mutex_lock(&ksm_thread_mutex);
2242  	wait_while_offlining();
2243  	if (ksm_merge_across_nodes != knob) {
2244  		if (ksm_pages_shared || remove_all_stable_nodes())
2245  			err = -EBUSY;
2246  		else if (root_stable_tree == one_stable_tree) {
2247  			struct rb_root *buf;
2248  			/*
2249  			 * This is the first time that we switch away from the
2250  			 * default of merging across nodes: must now allocate
2251  			 * a buffer to hold as many roots as may be needed.
2252  			 * Allocate stable and unstable together:
2253  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2254  			 */
2255  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2256  				      GFP_KERNEL);
2257  			/* Let us assume that RB_ROOT is NULL is zero */
2258  			if (!buf)
2259  				err = -ENOMEM;
2260  			else {
2261  				root_stable_tree = buf;
2262  				root_unstable_tree = buf + nr_node_ids;
2263  				/* Stable tree is empty but not the unstable */
2264  				root_unstable_tree[0] = one_unstable_tree[0];
2265  			}
2266  		}
2267  		if (!err) {
2268  			ksm_merge_across_nodes = knob;
2269  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2270  		}
2271  	}
2272  	mutex_unlock(&ksm_thread_mutex);
2273  
2274  	return err ? err : count;
2275  }
2276  KSM_ATTR(merge_across_nodes);
2277  #endif
2278  
2279  static ssize_t use_zero_pages_show(struct kobject *kobj,
2280  				struct kobj_attribute *attr, char *buf)
2281  {
2282  	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2283  }
2284  static ssize_t use_zero_pages_store(struct kobject *kobj,
2285  				   struct kobj_attribute *attr,
2286  				   const char *buf, size_t count)
2287  {
2288  	int err;
2289  	bool value;
2290  
2291  	err = kstrtobool(buf, &value);
2292  	if (err)
2293  		return -EINVAL;
2294  
2295  	ksm_use_zero_pages = value;
2296  
2297  	return count;
2298  }
2299  KSM_ATTR(use_zero_pages);
2300  
2301  static ssize_t pages_shared_show(struct kobject *kobj,
2302  				 struct kobj_attribute *attr, char *buf)
2303  {
2304  	return sprintf(buf, "%lu\n", ksm_pages_shared);
2305  }
2306  KSM_ATTR_RO(pages_shared);
2307  
2308  static ssize_t pages_sharing_show(struct kobject *kobj,
2309  				  struct kobj_attribute *attr, char *buf)
2310  {
2311  	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2312  }
2313  KSM_ATTR_RO(pages_sharing);
2314  
2315  static ssize_t pages_unshared_show(struct kobject *kobj,
2316  				   struct kobj_attribute *attr, char *buf)
2317  {
2318  	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2319  }
2320  KSM_ATTR_RO(pages_unshared);
2321  
2322  static ssize_t pages_volatile_show(struct kobject *kobj,
2323  				   struct kobj_attribute *attr, char *buf)
2324  {
2325  	long ksm_pages_volatile;
2326  
2327  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2328  				- ksm_pages_sharing - ksm_pages_unshared;
2329  	/*
2330  	 * It was not worth any locking to calculate that statistic,
2331  	 * but it might therefore sometimes be negative: conceal that.
2332  	 */
2333  	if (ksm_pages_volatile < 0)
2334  		ksm_pages_volatile = 0;
2335  	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2336  }
2337  KSM_ATTR_RO(pages_volatile);
2338  
2339  static ssize_t full_scans_show(struct kobject *kobj,
2340  			       struct kobj_attribute *attr, char *buf)
2341  {
2342  	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2343  }
2344  KSM_ATTR_RO(full_scans);
2345  
2346  static struct attribute *ksm_attrs[] = {
2347  	&sleep_millisecs_attr.attr,
2348  	&pages_to_scan_attr.attr,
2349  	&run_attr.attr,
2350  	&pages_shared_attr.attr,
2351  	&pages_sharing_attr.attr,
2352  	&pages_unshared_attr.attr,
2353  	&pages_volatile_attr.attr,
2354  	&full_scans_attr.attr,
2355  #ifdef CONFIG_NUMA
2356  	&merge_across_nodes_attr.attr,
2357  #endif
2358  	&use_zero_pages_attr.attr,
2359  	NULL,
2360  };
2361  
2362  static struct attribute_group ksm_attr_group = {
2363  	.attrs = ksm_attrs,
2364  	.name = "ksm",
2365  };
2366  #endif /* CONFIG_SYSFS */
2367  
2368  static int __init ksm_init(void)
2369  {
2370  	struct task_struct *ksm_thread;
2371  	int err;
2372  
2373  	/* The correct value depends on page size and endianness */
2374  	zero_checksum = calc_checksum(ZERO_PAGE(0));
2375  	/* Default to false for backwards compatibility */
2376  	ksm_use_zero_pages = false;
2377  
2378  	err = ksm_slab_init();
2379  	if (err)
2380  		goto out;
2381  
2382  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2383  	if (IS_ERR(ksm_thread)) {
2384  		pr_err("ksm: creating kthread failed\n");
2385  		err = PTR_ERR(ksm_thread);
2386  		goto out_free;
2387  	}
2388  
2389  #ifdef CONFIG_SYSFS
2390  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2391  	if (err) {
2392  		pr_err("ksm: register sysfs failed\n");
2393  		kthread_stop(ksm_thread);
2394  		goto out_free;
2395  	}
2396  #else
2397  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2398  
2399  #endif /* CONFIG_SYSFS */
2400  
2401  #ifdef CONFIG_MEMORY_HOTREMOVE
2402  	/* There is no significance to this priority 100 */
2403  	hotplug_memory_notifier(ksm_memory_callback, 100);
2404  #endif
2405  	return 0;
2406  
2407  out_free:
2408  	ksm_slab_free();
2409  out:
2410  	return err;
2411  }
2412  subsys_initcall(ksm_init);
2413