xref: /linux/mm/kmsan/hooks.c (revision b8e4b0529d59a3ccd0b25a31d3cfc8b0f3b34068)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KMSAN hooks for kernel subsystems.
4  *
5  * These functions handle creation of KMSAN metadata for memory allocations.
6  *
7  * Copyright (C) 2018-2022 Google LLC
8  * Author: Alexander Potapenko <glider@google.com>
9  *
10  */
11 
12 #include <linux/cacheflush.h>
13 #include <linux/dma-direction.h>
14 #include <linux/gfp.h>
15 #include <linux/kmsan.h>
16 #include <linux/mm.h>
17 #include <linux/mm_types.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 #include <linux/uaccess.h>
21 #include <linux/usb.h>
22 
23 #include "../internal.h"
24 #include "../slab.h"
25 #include "kmsan.h"
26 
27 /*
28  * Instrumented functions shouldn't be called under
29  * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
30  * skipping effects of functions like memset() inside instrumented code.
31  */
32 
33 void kmsan_task_create(struct task_struct *task)
34 {
35 	kmsan_enter_runtime();
36 	kmsan_internal_task_create(task);
37 	kmsan_leave_runtime();
38 }
39 
40 void kmsan_task_exit(struct task_struct *task)
41 {
42 	if (!kmsan_enabled || kmsan_in_runtime())
43 		return;
44 
45 	kmsan_disable_current();
46 }
47 
48 void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
49 {
50 	if (unlikely(object == NULL))
51 		return;
52 	if (!kmsan_enabled || kmsan_in_runtime())
53 		return;
54 	/*
55 	 * There's a ctor or this is an RCU cache - do nothing. The memory
56 	 * status hasn't changed since last use.
57 	 */
58 	if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
59 		return;
60 
61 	kmsan_enter_runtime();
62 	if (flags & __GFP_ZERO)
63 		kmsan_internal_unpoison_memory(object, s->object_size,
64 					       KMSAN_POISON_CHECK);
65 	else
66 		kmsan_internal_poison_memory(object, s->object_size, flags,
67 					     KMSAN_POISON_CHECK);
68 	kmsan_leave_runtime();
69 }
70 
71 void kmsan_slab_free(struct kmem_cache *s, void *object)
72 {
73 	if (!kmsan_enabled || kmsan_in_runtime())
74 		return;
75 
76 	/* RCU slabs could be legally used after free within the RCU period */
77 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
78 		return;
79 	/*
80 	 * If there's a constructor, freed memory must remain in the same state
81 	 * until the next allocation. We cannot save its state to detect
82 	 * use-after-free bugs, instead we just keep it unpoisoned.
83 	 */
84 	if (s->ctor)
85 		return;
86 	kmsan_enter_runtime();
87 	kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
88 				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
89 	kmsan_leave_runtime();
90 }
91 
92 void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
93 {
94 	if (unlikely(ptr == NULL))
95 		return;
96 	if (!kmsan_enabled || kmsan_in_runtime())
97 		return;
98 	kmsan_enter_runtime();
99 	if (flags & __GFP_ZERO)
100 		kmsan_internal_unpoison_memory((void *)ptr, size,
101 					       /*checked*/ true);
102 	else
103 		kmsan_internal_poison_memory((void *)ptr, size, flags,
104 					     KMSAN_POISON_CHECK);
105 	kmsan_leave_runtime();
106 }
107 
108 void kmsan_kfree_large(const void *ptr)
109 {
110 	struct page *page;
111 
112 	if (!kmsan_enabled || kmsan_in_runtime())
113 		return;
114 	kmsan_enter_runtime();
115 	page = virt_to_head_page((void *)ptr);
116 	KMSAN_WARN_ON(ptr != page_address(page));
117 	kmsan_internal_poison_memory((void *)ptr,
118 				     page_size(page),
119 				     GFP_KERNEL,
120 				     KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
121 	kmsan_leave_runtime();
122 }
123 
124 static unsigned long vmalloc_shadow(unsigned long addr)
125 {
126 	return (unsigned long)kmsan_get_metadata((void *)addr,
127 						 KMSAN_META_SHADOW);
128 }
129 
130 static unsigned long vmalloc_origin(unsigned long addr)
131 {
132 	return (unsigned long)kmsan_get_metadata((void *)addr,
133 						 KMSAN_META_ORIGIN);
134 }
135 
136 void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
137 {
138 	__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
139 	__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
140 	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
141 	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
142 }
143 
144 /*
145  * This function creates new shadow/origin pages for the physical pages mapped
146  * into the virtual memory. If those physical pages already had shadow/origin,
147  * those are ignored.
148  */
149 int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
150 			     phys_addr_t phys_addr, pgprot_t prot,
151 			     unsigned int page_shift)
152 {
153 	gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
154 	struct page *shadow, *origin;
155 	unsigned long off = 0;
156 	int nr, err = 0, clean = 0, mapped;
157 
158 	if (!kmsan_enabled || kmsan_in_runtime())
159 		return 0;
160 
161 	nr = (end - start) / PAGE_SIZE;
162 	kmsan_enter_runtime();
163 	for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
164 		shadow = alloc_pages(gfp_mask, 1);
165 		origin = alloc_pages(gfp_mask, 1);
166 		if (!shadow || !origin) {
167 			err = -ENOMEM;
168 			goto ret;
169 		}
170 		mapped = __vmap_pages_range_noflush(
171 			vmalloc_shadow(start + off),
172 			vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
173 			PAGE_SHIFT);
174 		if (mapped) {
175 			err = mapped;
176 			goto ret;
177 		}
178 		shadow = NULL;
179 		mapped = __vmap_pages_range_noflush(
180 			vmalloc_origin(start + off),
181 			vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
182 			PAGE_SHIFT);
183 		if (mapped) {
184 			__vunmap_range_noflush(
185 				vmalloc_shadow(start + off),
186 				vmalloc_shadow(start + off + PAGE_SIZE));
187 			err = mapped;
188 			goto ret;
189 		}
190 		origin = NULL;
191 	}
192 	/* Page mapping loop finished normally, nothing to clean up. */
193 	clean = 0;
194 
195 ret:
196 	if (clean > 0) {
197 		/*
198 		 * Something went wrong. Clean up shadow/origin pages allocated
199 		 * on the last loop iteration, then delete mappings created
200 		 * during the previous iterations.
201 		 */
202 		if (shadow)
203 			__free_pages(shadow, 1);
204 		if (origin)
205 			__free_pages(origin, 1);
206 		__vunmap_range_noflush(
207 			vmalloc_shadow(start),
208 			vmalloc_shadow(start + clean * PAGE_SIZE));
209 		__vunmap_range_noflush(
210 			vmalloc_origin(start),
211 			vmalloc_origin(start + clean * PAGE_SIZE));
212 	}
213 	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
214 	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
215 	kmsan_leave_runtime();
216 	return err;
217 }
218 
219 void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
220 {
221 	unsigned long v_shadow, v_origin;
222 	struct page *shadow, *origin;
223 	int nr;
224 
225 	if (!kmsan_enabled || kmsan_in_runtime())
226 		return;
227 
228 	nr = (end - start) / PAGE_SIZE;
229 	kmsan_enter_runtime();
230 	v_shadow = (unsigned long)vmalloc_shadow(start);
231 	v_origin = (unsigned long)vmalloc_origin(start);
232 	for (int i = 0; i < nr;
233 	     i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
234 		shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
235 		origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
236 		__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
237 		__vunmap_range_noflush(v_origin, vmalloc_origin(end));
238 		if (shadow)
239 			__free_pages(shadow, 1);
240 		if (origin)
241 			__free_pages(origin, 1);
242 	}
243 	flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
244 	flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
245 	kmsan_leave_runtime();
246 }
247 
248 void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
249 			size_t left)
250 {
251 	unsigned long ua_flags;
252 
253 	if (!kmsan_enabled || kmsan_in_runtime())
254 		return;
255 	/*
256 	 * At this point we've copied the memory already. It's hard to check it
257 	 * before copying, as the size of actually copied buffer is unknown.
258 	 */
259 
260 	/* copy_to_user() may copy zero bytes. No need to check. */
261 	if (!to_copy)
262 		return;
263 	/* Or maybe copy_to_user() failed to copy anything. */
264 	if (to_copy <= left)
265 		return;
266 
267 	ua_flags = user_access_save();
268 	if (!IS_ENABLED(CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE) ||
269 	    (u64)to < TASK_SIZE) {
270 		/* This is a user memory access, check it. */
271 		kmsan_internal_check_memory((void *)from, to_copy - left, to,
272 					    REASON_COPY_TO_USER);
273 	} else {
274 		/* Otherwise this is a kernel memory access. This happens when a
275 		 * compat syscall passes an argument allocated on the kernel
276 		 * stack to a real syscall.
277 		 * Don't check anything, just copy the shadow of the copied
278 		 * bytes.
279 		 */
280 		kmsan_internal_memmove_metadata((void *)to, (void *)from,
281 						to_copy - left);
282 	}
283 	user_access_restore(ua_flags);
284 }
285 EXPORT_SYMBOL(kmsan_copy_to_user);
286 
287 void kmsan_memmove(void *to, const void *from, size_t size)
288 {
289 	if (!kmsan_enabled || kmsan_in_runtime())
290 		return;
291 
292 	kmsan_enter_runtime();
293 	kmsan_internal_memmove_metadata(to, (void *)from, size);
294 	kmsan_leave_runtime();
295 }
296 EXPORT_SYMBOL(kmsan_memmove);
297 
298 /* Helper function to check an URB. */
299 void kmsan_handle_urb(const struct urb *urb, bool is_out)
300 {
301 	if (!urb)
302 		return;
303 	if (is_out)
304 		kmsan_internal_check_memory(urb->transfer_buffer,
305 					    urb->transfer_buffer_length,
306 					    /*user_addr*/ NULL,
307 					    REASON_SUBMIT_URB);
308 	else
309 		kmsan_internal_unpoison_memory(urb->transfer_buffer,
310 					       urb->transfer_buffer_length,
311 					       /*checked*/ false);
312 }
313 EXPORT_SYMBOL_GPL(kmsan_handle_urb);
314 
315 static void kmsan_handle_dma_page(const void *addr, size_t size,
316 				  enum dma_data_direction dir)
317 {
318 	switch (dir) {
319 	case DMA_BIDIRECTIONAL:
320 		kmsan_internal_check_memory((void *)addr, size,
321 					    /*user_addr*/ NULL, REASON_ANY);
322 		kmsan_internal_unpoison_memory((void *)addr, size,
323 					       /*checked*/ false);
324 		break;
325 	case DMA_TO_DEVICE:
326 		kmsan_internal_check_memory((void *)addr, size,
327 					    /*user_addr*/ NULL, REASON_ANY);
328 		break;
329 	case DMA_FROM_DEVICE:
330 		kmsan_internal_unpoison_memory((void *)addr, size,
331 					       /*checked*/ false);
332 		break;
333 	case DMA_NONE:
334 		break;
335 	}
336 }
337 
338 /* Helper function to handle DMA data transfers. */
339 void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
340 		      enum dma_data_direction dir)
341 {
342 	u64 page_offset, to_go, addr;
343 
344 	if (PageHighMem(page))
345 		return;
346 	addr = (u64)page_address(page) + offset;
347 	/*
348 	 * The kernel may occasionally give us adjacent DMA pages not belonging
349 	 * to the same allocation. Process them separately to avoid triggering
350 	 * internal KMSAN checks.
351 	 */
352 	while (size > 0) {
353 		page_offset = offset_in_page(addr);
354 		to_go = min(PAGE_SIZE - page_offset, (u64)size);
355 		kmsan_handle_dma_page((void *)addr, to_go, dir);
356 		addr += to_go;
357 		size -= to_go;
358 	}
359 }
360 
361 void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
362 			 enum dma_data_direction dir)
363 {
364 	struct scatterlist *item;
365 	int i;
366 
367 	for_each_sg(sg, item, nents, i)
368 		kmsan_handle_dma(sg_page(item), item->offset, item->length,
369 				 dir);
370 }
371 
372 /* Functions from kmsan-checks.h follow. */
373 
374 /*
375  * To create an origin, kmsan_poison_memory() unwinds the stacks and stores it
376  * into the stack depot. This may cause deadlocks if done from within KMSAN
377  * runtime, therefore we bail out if kmsan_in_runtime().
378  */
379 void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
380 {
381 	if (!kmsan_enabled || kmsan_in_runtime())
382 		return;
383 	kmsan_enter_runtime();
384 	/* The users may want to poison/unpoison random memory. */
385 	kmsan_internal_poison_memory((void *)address, size, flags,
386 				     KMSAN_POISON_NOCHECK);
387 	kmsan_leave_runtime();
388 }
389 EXPORT_SYMBOL(kmsan_poison_memory);
390 
391 /*
392  * Unlike kmsan_poison_memory(), this function can be used from within KMSAN
393  * runtime, because it does not trigger allocations or call instrumented code.
394  */
395 void kmsan_unpoison_memory(const void *address, size_t size)
396 {
397 	unsigned long ua_flags;
398 
399 	if (!kmsan_enabled)
400 		return;
401 
402 	ua_flags = user_access_save();
403 	/* The users may want to poison/unpoison random memory. */
404 	kmsan_internal_unpoison_memory((void *)address, size,
405 				       KMSAN_POISON_NOCHECK);
406 	user_access_restore(ua_flags);
407 }
408 EXPORT_SYMBOL(kmsan_unpoison_memory);
409 
410 /*
411  * Version of kmsan_unpoison_memory() called from IRQ entry functions.
412  */
413 void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
414 {
415 	kmsan_unpoison_memory((void *)regs, sizeof(*regs));
416 }
417 
418 void kmsan_check_memory(const void *addr, size_t size)
419 {
420 	if (!kmsan_enabled)
421 		return;
422 	return kmsan_internal_check_memory((void *)addr, size,
423 					   /*user_addr*/ NULL, REASON_ANY);
424 }
425 EXPORT_SYMBOL(kmsan_check_memory);
426 
427 void kmsan_enable_current(void)
428 {
429 	KMSAN_WARN_ON(current->kmsan_ctx.depth == 0);
430 	current->kmsan_ctx.depth--;
431 }
432 EXPORT_SYMBOL(kmsan_enable_current);
433 
434 void kmsan_disable_current(void)
435 {
436 	current->kmsan_ctx.depth++;
437 	KMSAN_WARN_ON(current->kmsan_ctx.depth == 0);
438 }
439 EXPORT_SYMBOL(kmsan_disable_current);
440