1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KMSAN hooks for kernel subsystems. 4 * 5 * These functions handle creation of KMSAN metadata for memory allocations. 6 * 7 * Copyright (C) 2018-2022 Google LLC 8 * Author: Alexander Potapenko <glider@google.com> 9 * 10 */ 11 12 #include <linux/cacheflush.h> 13 #include <linux/dma-direction.h> 14 #include <linux/gfp.h> 15 #include <linux/kmsan.h> 16 #include <linux/mm.h> 17 #include <linux/mm_types.h> 18 #include <linux/scatterlist.h> 19 #include <linux/slab.h> 20 #include <linux/uaccess.h> 21 #include <linux/usb.h> 22 23 #include "../internal.h" 24 #include "../slab.h" 25 #include "kmsan.h" 26 27 /* 28 * Instrumented functions shouldn't be called under 29 * kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to 30 * skipping effects of functions like memset() inside instrumented code. 31 */ 32 33 void kmsan_task_create(struct task_struct *task) 34 { 35 kmsan_enter_runtime(); 36 kmsan_internal_task_create(task); 37 kmsan_leave_runtime(); 38 } 39 40 void kmsan_task_exit(struct task_struct *task) 41 { 42 struct kmsan_ctx *ctx = &task->kmsan_ctx; 43 44 if (!kmsan_enabled || kmsan_in_runtime()) 45 return; 46 47 ctx->allow_reporting = false; 48 } 49 50 void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags) 51 { 52 if (unlikely(object == NULL)) 53 return; 54 if (!kmsan_enabled || kmsan_in_runtime()) 55 return; 56 /* 57 * There's a ctor or this is an RCU cache - do nothing. The memory 58 * status hasn't changed since last use. 59 */ 60 if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU)) 61 return; 62 63 kmsan_enter_runtime(); 64 if (flags & __GFP_ZERO) 65 kmsan_internal_unpoison_memory(object, s->object_size, 66 KMSAN_POISON_CHECK); 67 else 68 kmsan_internal_poison_memory(object, s->object_size, flags, 69 KMSAN_POISON_CHECK); 70 kmsan_leave_runtime(); 71 } 72 73 void kmsan_slab_free(struct kmem_cache *s, void *object) 74 { 75 if (!kmsan_enabled || kmsan_in_runtime()) 76 return; 77 78 /* RCU slabs could be legally used after free within the RCU period */ 79 if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))) 80 return; 81 /* 82 * If there's a constructor, freed memory must remain in the same state 83 * until the next allocation. We cannot save its state to detect 84 * use-after-free bugs, instead we just keep it unpoisoned. 85 */ 86 if (s->ctor) 87 return; 88 kmsan_enter_runtime(); 89 kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL, 90 KMSAN_POISON_CHECK | KMSAN_POISON_FREE); 91 kmsan_leave_runtime(); 92 } 93 94 void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) 95 { 96 if (unlikely(ptr == NULL)) 97 return; 98 if (!kmsan_enabled || kmsan_in_runtime()) 99 return; 100 kmsan_enter_runtime(); 101 if (flags & __GFP_ZERO) 102 kmsan_internal_unpoison_memory((void *)ptr, size, 103 /*checked*/ true); 104 else 105 kmsan_internal_poison_memory((void *)ptr, size, flags, 106 KMSAN_POISON_CHECK); 107 kmsan_leave_runtime(); 108 } 109 110 void kmsan_kfree_large(const void *ptr) 111 { 112 struct page *page; 113 114 if (!kmsan_enabled || kmsan_in_runtime()) 115 return; 116 kmsan_enter_runtime(); 117 page = virt_to_head_page((void *)ptr); 118 KMSAN_WARN_ON(ptr != page_address(page)); 119 kmsan_internal_poison_memory((void *)ptr, 120 PAGE_SIZE << compound_order(page), 121 GFP_KERNEL, 122 KMSAN_POISON_CHECK | KMSAN_POISON_FREE); 123 kmsan_leave_runtime(); 124 } 125 126 static unsigned long vmalloc_shadow(unsigned long addr) 127 { 128 return (unsigned long)kmsan_get_metadata((void *)addr, 129 KMSAN_META_SHADOW); 130 } 131 132 static unsigned long vmalloc_origin(unsigned long addr) 133 { 134 return (unsigned long)kmsan_get_metadata((void *)addr, 135 KMSAN_META_ORIGIN); 136 } 137 138 void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end) 139 { 140 __vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end)); 141 __vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end)); 142 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); 143 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); 144 } 145 146 /* 147 * This function creates new shadow/origin pages for the physical pages mapped 148 * into the virtual memory. If those physical pages already had shadow/origin, 149 * those are ignored. 150 */ 151 void kmsan_ioremap_page_range(unsigned long start, unsigned long end, 152 phys_addr_t phys_addr, pgprot_t prot, 153 unsigned int page_shift) 154 { 155 gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO; 156 struct page *shadow, *origin; 157 unsigned long off = 0; 158 int nr; 159 160 if (!kmsan_enabled || kmsan_in_runtime()) 161 return; 162 163 nr = (end - start) / PAGE_SIZE; 164 kmsan_enter_runtime(); 165 for (int i = 0; i < nr; i++, off += PAGE_SIZE) { 166 shadow = alloc_pages(gfp_mask, 1); 167 origin = alloc_pages(gfp_mask, 1); 168 __vmap_pages_range_noflush( 169 vmalloc_shadow(start + off), 170 vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow, 171 PAGE_SHIFT); 172 __vmap_pages_range_noflush( 173 vmalloc_origin(start + off), 174 vmalloc_origin(start + off + PAGE_SIZE), prot, &origin, 175 PAGE_SHIFT); 176 } 177 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); 178 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); 179 kmsan_leave_runtime(); 180 } 181 182 void kmsan_iounmap_page_range(unsigned long start, unsigned long end) 183 { 184 unsigned long v_shadow, v_origin; 185 struct page *shadow, *origin; 186 int nr; 187 188 if (!kmsan_enabled || kmsan_in_runtime()) 189 return; 190 191 nr = (end - start) / PAGE_SIZE; 192 kmsan_enter_runtime(); 193 v_shadow = (unsigned long)vmalloc_shadow(start); 194 v_origin = (unsigned long)vmalloc_origin(start); 195 for (int i = 0; i < nr; 196 i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) { 197 shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow); 198 origin = kmsan_vmalloc_to_page_or_null((void *)v_origin); 199 __vunmap_range_noflush(v_shadow, vmalloc_shadow(end)); 200 __vunmap_range_noflush(v_origin, vmalloc_origin(end)); 201 if (shadow) 202 __free_pages(shadow, 1); 203 if (origin) 204 __free_pages(origin, 1); 205 } 206 flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end)); 207 flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end)); 208 kmsan_leave_runtime(); 209 } 210 211 void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy, 212 size_t left) 213 { 214 unsigned long ua_flags; 215 216 if (!kmsan_enabled || kmsan_in_runtime()) 217 return; 218 /* 219 * At this point we've copied the memory already. It's hard to check it 220 * before copying, as the size of actually copied buffer is unknown. 221 */ 222 223 /* copy_to_user() may copy zero bytes. No need to check. */ 224 if (!to_copy) 225 return; 226 /* Or maybe copy_to_user() failed to copy anything. */ 227 if (to_copy <= left) 228 return; 229 230 ua_flags = user_access_save(); 231 if ((u64)to < TASK_SIZE) { 232 /* This is a user memory access, check it. */ 233 kmsan_internal_check_memory((void *)from, to_copy - left, to, 234 REASON_COPY_TO_USER); 235 } else { 236 /* Otherwise this is a kernel memory access. This happens when a 237 * compat syscall passes an argument allocated on the kernel 238 * stack to a real syscall. 239 * Don't check anything, just copy the shadow of the copied 240 * bytes. 241 */ 242 kmsan_internal_memmove_metadata((void *)to, (void *)from, 243 to_copy - left); 244 } 245 user_access_restore(ua_flags); 246 } 247 EXPORT_SYMBOL(kmsan_copy_to_user); 248 249 /* Helper function to check an URB. */ 250 void kmsan_handle_urb(const struct urb *urb, bool is_out) 251 { 252 if (!urb) 253 return; 254 if (is_out) 255 kmsan_internal_check_memory(urb->transfer_buffer, 256 urb->transfer_buffer_length, 257 /*user_addr*/ 0, REASON_SUBMIT_URB); 258 else 259 kmsan_internal_unpoison_memory(urb->transfer_buffer, 260 urb->transfer_buffer_length, 261 /*checked*/ false); 262 } 263 EXPORT_SYMBOL_GPL(kmsan_handle_urb); 264 265 static void kmsan_handle_dma_page(const void *addr, size_t size, 266 enum dma_data_direction dir) 267 { 268 switch (dir) { 269 case DMA_BIDIRECTIONAL: 270 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, 271 REASON_ANY); 272 kmsan_internal_unpoison_memory((void *)addr, size, 273 /*checked*/ false); 274 break; 275 case DMA_TO_DEVICE: 276 kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, 277 REASON_ANY); 278 break; 279 case DMA_FROM_DEVICE: 280 kmsan_internal_unpoison_memory((void *)addr, size, 281 /*checked*/ false); 282 break; 283 case DMA_NONE: 284 break; 285 } 286 } 287 288 /* Helper function to handle DMA data transfers. */ 289 void kmsan_handle_dma(struct page *page, size_t offset, size_t size, 290 enum dma_data_direction dir) 291 { 292 u64 page_offset, to_go, addr; 293 294 if (PageHighMem(page)) 295 return; 296 addr = (u64)page_address(page) + offset; 297 /* 298 * The kernel may occasionally give us adjacent DMA pages not belonging 299 * to the same allocation. Process them separately to avoid triggering 300 * internal KMSAN checks. 301 */ 302 while (size > 0) { 303 page_offset = addr % PAGE_SIZE; 304 to_go = min(PAGE_SIZE - page_offset, (u64)size); 305 kmsan_handle_dma_page((void *)addr, to_go, dir); 306 addr += to_go; 307 size -= to_go; 308 } 309 } 310 311 void kmsan_handle_dma_sg(struct scatterlist *sg, int nents, 312 enum dma_data_direction dir) 313 { 314 struct scatterlist *item; 315 int i; 316 317 for_each_sg(sg, item, nents, i) 318 kmsan_handle_dma(sg_page(item), item->offset, item->length, 319 dir); 320 } 321 322 /* Functions from kmsan-checks.h follow. */ 323 void kmsan_poison_memory(const void *address, size_t size, gfp_t flags) 324 { 325 if (!kmsan_enabled || kmsan_in_runtime()) 326 return; 327 kmsan_enter_runtime(); 328 /* The users may want to poison/unpoison random memory. */ 329 kmsan_internal_poison_memory((void *)address, size, flags, 330 KMSAN_POISON_NOCHECK); 331 kmsan_leave_runtime(); 332 } 333 EXPORT_SYMBOL(kmsan_poison_memory); 334 335 void kmsan_unpoison_memory(const void *address, size_t size) 336 { 337 unsigned long ua_flags; 338 339 if (!kmsan_enabled || kmsan_in_runtime()) 340 return; 341 342 ua_flags = user_access_save(); 343 kmsan_enter_runtime(); 344 /* The users may want to poison/unpoison random memory. */ 345 kmsan_internal_unpoison_memory((void *)address, size, 346 KMSAN_POISON_NOCHECK); 347 kmsan_leave_runtime(); 348 user_access_restore(ua_flags); 349 } 350 EXPORT_SYMBOL(kmsan_unpoison_memory); 351 352 /* 353 * Version of kmsan_unpoison_memory() that can be called from within the KMSAN 354 * runtime. 355 * 356 * Non-instrumented IRQ entry functions receive struct pt_regs from assembly 357 * code. Those regs need to be unpoisoned, otherwise using them will result in 358 * false positives. 359 * Using kmsan_unpoison_memory() is not an option in entry code, because the 360 * return value of in_task() is inconsistent - as a result, certain calls to 361 * kmsan_unpoison_memory() are ignored. kmsan_unpoison_entry_regs() ensures that 362 * the registers are unpoisoned even if kmsan_in_runtime() is true in the early 363 * entry code. 364 */ 365 void kmsan_unpoison_entry_regs(const struct pt_regs *regs) 366 { 367 unsigned long ua_flags; 368 369 if (!kmsan_enabled) 370 return; 371 372 ua_flags = user_access_save(); 373 kmsan_internal_unpoison_memory((void *)regs, sizeof(*regs), 374 KMSAN_POISON_NOCHECK); 375 user_access_restore(ua_flags); 376 } 377 378 void kmsan_check_memory(const void *addr, size_t size) 379 { 380 if (!kmsan_enabled) 381 return; 382 return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0, 383 REASON_ANY); 384 } 385 EXPORT_SYMBOL(kmsan_check_memory); 386