1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a kmemleak warning was issued */ 219 static int kmemleak_warning; 220 /* set if a fatal kmemleak error has occurred */ 221 static int kmemleak_error; 222 223 /* minimum and maximum address that may be valid pointers */ 224 static unsigned long min_addr = ULONG_MAX; 225 static unsigned long max_addr; 226 227 static struct task_struct *scan_thread; 228 /* used to avoid reporting of recently allocated objects */ 229 static unsigned long jiffies_min_age; 230 static unsigned long jiffies_last_scan; 231 /* delay between automatic memory scannings */ 232 static unsigned long jiffies_scan_wait; 233 /* enables or disables the task stacks scanning */ 234 static int kmemleak_stack_scan = 1; 235 /* protects the memory scanning, parameters and debug/kmemleak file access */ 236 static DEFINE_MUTEX(scan_mutex); 237 /* setting kmemleak=on, will set this var, skipping the disable */ 238 static int kmemleak_skip_disable; 239 /* If there are leaks that can be reported */ 240 static bool kmemleak_found_leaks; 241 242 static bool kmemleak_verbose; 243 module_param_named(verbose, kmemleak_verbose, bool, 0600); 244 245 static void kmemleak_disable(void); 246 247 /* 248 * Print a warning and dump the stack trace. 249 */ 250 #define kmemleak_warn(x...) do { \ 251 pr_warn(x); \ 252 dump_stack(); \ 253 kmemleak_warning = 1; \ 254 } while (0) 255 256 /* 257 * Macro invoked when a serious kmemleak condition occurred and cannot be 258 * recovered from. Kmemleak will be disabled and further allocation/freeing 259 * tracing no longer available. 260 */ 261 #define kmemleak_stop(x...) do { \ 262 kmemleak_warn(x); \ 263 kmemleak_disable(); \ 264 } while (0) 265 266 #define warn_or_seq_printf(seq, fmt, ...) do { \ 267 if (seq) \ 268 seq_printf(seq, fmt, ##__VA_ARGS__); \ 269 else \ 270 pr_warn(fmt, ##__VA_ARGS__); \ 271 } while (0) 272 273 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 274 int rowsize, int groupsize, const void *buf, 275 size_t len, bool ascii) 276 { 277 if (seq) 278 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 279 buf, len, ascii); 280 else 281 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 282 rowsize, groupsize, buf, len, ascii); 283 } 284 285 /* 286 * Printing of the objects hex dump to the seq file. The number of lines to be 287 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 288 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 289 * with the object->lock held. 290 */ 291 static void hex_dump_object(struct seq_file *seq, 292 struct kmemleak_object *object) 293 { 294 const u8 *ptr = (const u8 *)object->pointer; 295 size_t len; 296 297 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) 298 return; 299 300 /* limit the number of lines to HEX_MAX_LINES */ 301 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 302 303 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 304 kasan_disable_current(); 305 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 306 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 307 kasan_enable_current(); 308 } 309 310 /* 311 * Object colors, encoded with count and min_count: 312 * - white - orphan object, not enough references to it (count < min_count) 313 * - gray - not orphan, not marked as false positive (min_count == 0) or 314 * sufficient references to it (count >= min_count) 315 * - black - ignore, it doesn't contain references (e.g. text section) 316 * (min_count == -1). No function defined for this color. 317 * Newly created objects don't have any color assigned (object->count == -1) 318 * before the next memory scan when they become white. 319 */ 320 static bool color_white(const struct kmemleak_object *object) 321 { 322 return object->count != KMEMLEAK_BLACK && 323 object->count < object->min_count; 324 } 325 326 static bool color_gray(const struct kmemleak_object *object) 327 { 328 return object->min_count != KMEMLEAK_BLACK && 329 object->count >= object->min_count; 330 } 331 332 /* 333 * Objects are considered unreferenced only if their color is white, they have 334 * not be deleted and have a minimum age to avoid false positives caused by 335 * pointers temporarily stored in CPU registers. 336 */ 337 static bool unreferenced_object(struct kmemleak_object *object) 338 { 339 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 340 time_before_eq(object->jiffies + jiffies_min_age, 341 jiffies_last_scan); 342 } 343 344 /* 345 * Printing of the unreferenced objects information to the seq file. The 346 * print_unreferenced function must be called with the object->lock held. 347 */ 348 static void print_unreferenced(struct seq_file *seq, 349 struct kmemleak_object *object) 350 { 351 int i; 352 unsigned long *entries; 353 unsigned int nr_entries; 354 355 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 356 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 357 object->pointer, object->size); 358 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 359 object->comm, object->pid, object->jiffies); 360 hex_dump_object(seq, object); 361 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 362 363 for (i = 0; i < nr_entries; i++) { 364 void *ptr = (void *)entries[i]; 365 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 366 } 367 } 368 369 /* 370 * Print the kmemleak_object information. This function is used mainly for 371 * debugging special cases when kmemleak operations. It must be called with 372 * the object->lock held. 373 */ 374 static void dump_object_info(struct kmemleak_object *object) 375 { 376 pr_notice("Object 0x%08lx (size %zu):\n", 377 object->pointer, object->size); 378 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 379 object->comm, object->pid, object->jiffies); 380 pr_notice(" min_count = %d\n", object->min_count); 381 pr_notice(" count = %d\n", object->count); 382 pr_notice(" flags = 0x%x\n", object->flags); 383 pr_notice(" checksum = %u\n", object->checksum); 384 pr_notice(" backtrace:\n"); 385 if (object->trace_handle) 386 stack_depot_print(object->trace_handle); 387 } 388 389 static struct rb_root *object_tree(unsigned long objflags) 390 { 391 if (objflags & OBJECT_PHYS) 392 return &object_phys_tree_root; 393 if (objflags & OBJECT_PERCPU) 394 return &object_percpu_tree_root; 395 return &object_tree_root; 396 } 397 398 /* 399 * Look-up a memory block metadata (kmemleak_object) in the object search 400 * tree based on a pointer value. If alias is 0, only values pointing to the 401 * beginning of the memory block are allowed. The kmemleak_lock must be held 402 * when calling this function. 403 */ 404 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 405 unsigned int objflags) 406 { 407 struct rb_node *rb = object_tree(objflags)->rb_node; 408 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 409 410 while (rb) { 411 struct kmemleak_object *object; 412 unsigned long untagged_objp; 413 414 object = rb_entry(rb, struct kmemleak_object, rb_node); 415 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 416 417 if (untagged_ptr < untagged_objp) 418 rb = object->rb_node.rb_left; 419 else if (untagged_objp + object->size <= untagged_ptr) 420 rb = object->rb_node.rb_right; 421 else if (untagged_objp == untagged_ptr || alias) 422 return object; 423 else { 424 kmemleak_warn("Found object by alias at 0x%08lx\n", 425 ptr); 426 dump_object_info(object); 427 break; 428 } 429 } 430 return NULL; 431 } 432 433 /* Look-up a kmemleak object which allocated with virtual address. */ 434 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 435 { 436 return __lookup_object(ptr, alias, 0); 437 } 438 439 /* 440 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 441 * that once an object's use_count reached 0, the RCU freeing was already 442 * registered and the object should no longer be used. This function must be 443 * called under the protection of rcu_read_lock(). 444 */ 445 static int get_object(struct kmemleak_object *object) 446 { 447 return atomic_inc_not_zero(&object->use_count); 448 } 449 450 /* 451 * Memory pool allocation and freeing. kmemleak_lock must not be held. 452 */ 453 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 454 { 455 unsigned long flags; 456 struct kmemleak_object *object; 457 458 /* try the slab allocator first */ 459 if (object_cache) { 460 object = kmem_cache_alloc_noprof(object_cache, 461 gfp_nested_mask(gfp)); 462 if (object) 463 return object; 464 } 465 466 /* slab allocation failed, try the memory pool */ 467 raw_spin_lock_irqsave(&kmemleak_lock, flags); 468 object = list_first_entry_or_null(&mem_pool_free_list, 469 typeof(*object), object_list); 470 if (object) 471 list_del(&object->object_list); 472 else if (mem_pool_free_count) 473 object = &mem_pool[--mem_pool_free_count]; 474 else 475 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 476 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 477 478 return object; 479 } 480 481 /* 482 * Return the object to either the slab allocator or the memory pool. 483 */ 484 static void mem_pool_free(struct kmemleak_object *object) 485 { 486 unsigned long flags; 487 488 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 489 kmem_cache_free(object_cache, object); 490 return; 491 } 492 493 /* add the object to the memory pool free list */ 494 raw_spin_lock_irqsave(&kmemleak_lock, flags); 495 list_add(&object->object_list, &mem_pool_free_list); 496 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 497 } 498 499 /* 500 * RCU callback to free a kmemleak_object. 501 */ 502 static void free_object_rcu(struct rcu_head *rcu) 503 { 504 struct hlist_node *tmp; 505 struct kmemleak_scan_area *area; 506 struct kmemleak_object *object = 507 container_of(rcu, struct kmemleak_object, rcu); 508 509 /* 510 * Once use_count is 0 (guaranteed by put_object), there is no other 511 * code accessing this object, hence no need for locking. 512 */ 513 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 514 hlist_del(&area->node); 515 kmem_cache_free(scan_area_cache, area); 516 } 517 mem_pool_free(object); 518 } 519 520 /* 521 * Decrement the object use_count. Once the count is 0, free the object using 522 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 523 * delete_object() path, the delayed RCU freeing ensures that there is no 524 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 525 * is also possible. 526 */ 527 static void put_object(struct kmemleak_object *object) 528 { 529 if (!atomic_dec_and_test(&object->use_count)) 530 return; 531 532 /* should only get here after delete_object was called */ 533 WARN_ON(object->flags & OBJECT_ALLOCATED); 534 535 /* 536 * It may be too early for the RCU callbacks, however, there is no 537 * concurrent object_list traversal when !object_cache and all objects 538 * came from the memory pool. Free the object directly. 539 */ 540 if (object_cache) 541 call_rcu(&object->rcu, free_object_rcu); 542 else 543 free_object_rcu(&object->rcu); 544 } 545 546 /* 547 * Look up an object in the object search tree and increase its use_count. 548 */ 549 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 550 unsigned int objflags) 551 { 552 unsigned long flags; 553 struct kmemleak_object *object; 554 555 rcu_read_lock(); 556 raw_spin_lock_irqsave(&kmemleak_lock, flags); 557 object = __lookup_object(ptr, alias, objflags); 558 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 559 560 /* check whether the object is still available */ 561 if (object && !get_object(object)) 562 object = NULL; 563 rcu_read_unlock(); 564 565 return object; 566 } 567 568 /* Look up and get an object which allocated with virtual address. */ 569 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 570 { 571 return __find_and_get_object(ptr, alias, 0); 572 } 573 574 /* 575 * Remove an object from its object tree and object_list. Must be called with 576 * the kmemleak_lock held _if_ kmemleak is still enabled. 577 */ 578 static void __remove_object(struct kmemleak_object *object) 579 { 580 rb_erase(&object->rb_node, object_tree(object->flags)); 581 if (!(object->del_state & DELSTATE_NO_DELETE)) 582 list_del_rcu(&object->object_list); 583 object->del_state |= DELSTATE_REMOVED; 584 } 585 586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 587 int alias, 588 unsigned int objflags) 589 { 590 struct kmemleak_object *object; 591 592 object = __lookup_object(ptr, alias, objflags); 593 if (object) 594 __remove_object(object); 595 596 return object; 597 } 598 599 /* 600 * Look up an object in the object search tree and remove it from both object 601 * tree root and object_list. The returned object's use_count should be at 602 * least 1, as initially set by create_object(). 603 */ 604 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 605 unsigned int objflags) 606 { 607 unsigned long flags; 608 struct kmemleak_object *object; 609 610 raw_spin_lock_irqsave(&kmemleak_lock, flags); 611 object = __find_and_remove_object(ptr, alias, objflags); 612 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 613 614 return object; 615 } 616 617 static noinline depot_stack_handle_t set_track_prepare(void) 618 { 619 depot_stack_handle_t trace_handle; 620 unsigned long entries[MAX_TRACE]; 621 unsigned int nr_entries; 622 623 /* 624 * Use object_cache to determine whether kmemleak_init() has 625 * been invoked. stack_depot_early_init() is called before 626 * kmemleak_init() in mm_core_init(). 627 */ 628 if (!object_cache) 629 return 0; 630 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 631 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 632 633 return trace_handle; 634 } 635 636 static struct kmemleak_object *__alloc_object(gfp_t gfp) 637 { 638 struct kmemleak_object *object; 639 640 object = mem_pool_alloc(gfp); 641 if (!object) { 642 pr_warn("Cannot allocate a kmemleak_object structure\n"); 643 kmemleak_disable(); 644 return NULL; 645 } 646 647 INIT_LIST_HEAD(&object->object_list); 648 INIT_LIST_HEAD(&object->gray_list); 649 INIT_HLIST_HEAD(&object->area_list); 650 raw_spin_lock_init(&object->lock); 651 atomic_set(&object->use_count, 1); 652 object->excess_ref = 0; 653 object->count = 0; /* white color initially */ 654 object->checksum = 0; 655 object->del_state = 0; 656 657 /* task information */ 658 if (in_hardirq()) { 659 object->pid = 0; 660 strncpy(object->comm, "hardirq", sizeof(object->comm)); 661 } else if (in_serving_softirq()) { 662 object->pid = 0; 663 strncpy(object->comm, "softirq", sizeof(object->comm)); 664 } else { 665 object->pid = current->pid; 666 /* 667 * There is a small chance of a race with set_task_comm(), 668 * however using get_task_comm() here may cause locking 669 * dependency issues with current->alloc_lock. In the worst 670 * case, the command line is not correct. 671 */ 672 strncpy(object->comm, current->comm, sizeof(object->comm)); 673 } 674 675 /* kernel backtrace */ 676 object->trace_handle = set_track_prepare(); 677 678 return object; 679 } 680 681 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 682 size_t size, int min_count, unsigned int objflags) 683 { 684 685 struct kmemleak_object *parent; 686 struct rb_node **link, *rb_parent; 687 unsigned long untagged_ptr; 688 unsigned long untagged_objp; 689 690 object->flags = OBJECT_ALLOCATED | objflags; 691 object->pointer = ptr; 692 object->size = kfence_ksize((void *)ptr) ?: size; 693 object->min_count = min_count; 694 object->jiffies = jiffies; 695 696 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 697 /* 698 * Only update min_addr and max_addr with object 699 * storing virtual address. 700 */ 701 if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) { 702 min_addr = min(min_addr, untagged_ptr); 703 max_addr = max(max_addr, untagged_ptr + size); 704 } 705 link = &object_tree(objflags)->rb_node; 706 rb_parent = NULL; 707 while (*link) { 708 rb_parent = *link; 709 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 710 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 711 if (untagged_ptr + size <= untagged_objp) 712 link = &parent->rb_node.rb_left; 713 else if (untagged_objp + parent->size <= untagged_ptr) 714 link = &parent->rb_node.rb_right; 715 else { 716 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 717 ptr); 718 /* 719 * No need for parent->lock here since "parent" cannot 720 * be freed while the kmemleak_lock is held. 721 */ 722 dump_object_info(parent); 723 return -EEXIST; 724 } 725 } 726 rb_link_node(&object->rb_node, rb_parent, link); 727 rb_insert_color(&object->rb_node, object_tree(objflags)); 728 list_add_tail_rcu(&object->object_list, &object_list); 729 730 return 0; 731 } 732 733 /* 734 * Create the metadata (struct kmemleak_object) corresponding to an allocated 735 * memory block and add it to the object_list and object tree. 736 */ 737 static void __create_object(unsigned long ptr, size_t size, 738 int min_count, gfp_t gfp, unsigned int objflags) 739 { 740 struct kmemleak_object *object; 741 unsigned long flags; 742 int ret; 743 744 object = __alloc_object(gfp); 745 if (!object) 746 return; 747 748 raw_spin_lock_irqsave(&kmemleak_lock, flags); 749 ret = __link_object(object, ptr, size, min_count, objflags); 750 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 751 if (ret) 752 mem_pool_free(object); 753 } 754 755 /* Create kmemleak object which allocated with virtual address. */ 756 static void create_object(unsigned long ptr, size_t size, 757 int min_count, gfp_t gfp) 758 { 759 __create_object(ptr, size, min_count, gfp, 0); 760 } 761 762 /* Create kmemleak object which allocated with physical address. */ 763 static void create_object_phys(unsigned long ptr, size_t size, 764 int min_count, gfp_t gfp) 765 { 766 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 767 } 768 769 /* Create kmemleak object corresponding to a per-CPU allocation. */ 770 static void create_object_percpu(unsigned long ptr, size_t size, 771 int min_count, gfp_t gfp) 772 { 773 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 774 } 775 776 /* 777 * Mark the object as not allocated and schedule RCU freeing via put_object(). 778 */ 779 static void __delete_object(struct kmemleak_object *object) 780 { 781 unsigned long flags; 782 783 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 784 WARN_ON(atomic_read(&object->use_count) < 1); 785 786 /* 787 * Locking here also ensures that the corresponding memory block 788 * cannot be freed when it is being scanned. 789 */ 790 raw_spin_lock_irqsave(&object->lock, flags); 791 object->flags &= ~OBJECT_ALLOCATED; 792 raw_spin_unlock_irqrestore(&object->lock, flags); 793 put_object(object); 794 } 795 796 /* 797 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 798 * delete it. 799 */ 800 static void delete_object_full(unsigned long ptr, unsigned int objflags) 801 { 802 struct kmemleak_object *object; 803 804 object = find_and_remove_object(ptr, 0, objflags); 805 if (!object) { 806 #ifdef DEBUG 807 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 808 ptr); 809 #endif 810 return; 811 } 812 __delete_object(object); 813 } 814 815 /* 816 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 817 * delete it. If the memory block is partially freed, the function may create 818 * additional metadata for the remaining parts of the block. 819 */ 820 static void delete_object_part(unsigned long ptr, size_t size, 821 unsigned int objflags) 822 { 823 struct kmemleak_object *object, *object_l, *object_r; 824 unsigned long start, end, flags; 825 826 object_l = __alloc_object(GFP_KERNEL); 827 if (!object_l) 828 return; 829 830 object_r = __alloc_object(GFP_KERNEL); 831 if (!object_r) 832 goto out; 833 834 raw_spin_lock_irqsave(&kmemleak_lock, flags); 835 object = __find_and_remove_object(ptr, 1, objflags); 836 if (!object) { 837 #ifdef DEBUG 838 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 839 ptr, size); 840 #endif 841 goto unlock; 842 } 843 844 /* 845 * Create one or two objects that may result from the memory block 846 * split. Note that partial freeing is only done by free_bootmem() and 847 * this happens before kmemleak_init() is called. 848 */ 849 start = object->pointer; 850 end = object->pointer + object->size; 851 if ((ptr > start) && 852 !__link_object(object_l, start, ptr - start, 853 object->min_count, objflags)) 854 object_l = NULL; 855 if ((ptr + size < end) && 856 !__link_object(object_r, ptr + size, end - ptr - size, 857 object->min_count, objflags)) 858 object_r = NULL; 859 860 unlock: 861 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 862 if (object) 863 __delete_object(object); 864 865 out: 866 if (object_l) 867 mem_pool_free(object_l); 868 if (object_r) 869 mem_pool_free(object_r); 870 } 871 872 static void __paint_it(struct kmemleak_object *object, int color) 873 { 874 object->min_count = color; 875 if (color == KMEMLEAK_BLACK) 876 object->flags |= OBJECT_NO_SCAN; 877 } 878 879 static void paint_it(struct kmemleak_object *object, int color) 880 { 881 unsigned long flags; 882 883 raw_spin_lock_irqsave(&object->lock, flags); 884 __paint_it(object, color); 885 raw_spin_unlock_irqrestore(&object->lock, flags); 886 } 887 888 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 889 { 890 struct kmemleak_object *object; 891 892 object = __find_and_get_object(ptr, 0, objflags); 893 if (!object) { 894 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 895 ptr, 896 (color == KMEMLEAK_GREY) ? "Grey" : 897 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 898 return; 899 } 900 paint_it(object, color); 901 put_object(object); 902 } 903 904 /* 905 * Mark an object permanently as gray-colored so that it can no longer be 906 * reported as a leak. This is used in general to mark a false positive. 907 */ 908 static void make_gray_object(unsigned long ptr) 909 { 910 paint_ptr(ptr, KMEMLEAK_GREY, 0); 911 } 912 913 /* 914 * Mark the object as black-colored so that it is ignored from scans and 915 * reporting. 916 */ 917 static void make_black_object(unsigned long ptr, unsigned int objflags) 918 { 919 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 920 } 921 922 /* 923 * Add a scanning area to the object. If at least one such area is added, 924 * kmemleak will only scan these ranges rather than the whole memory block. 925 */ 926 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 927 { 928 unsigned long flags; 929 struct kmemleak_object *object; 930 struct kmemleak_scan_area *area = NULL; 931 unsigned long untagged_ptr; 932 unsigned long untagged_objp; 933 934 object = find_and_get_object(ptr, 1); 935 if (!object) { 936 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 937 ptr); 938 return; 939 } 940 941 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 942 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 943 944 if (scan_area_cache) 945 area = kmem_cache_alloc_noprof(scan_area_cache, 946 gfp_nested_mask(gfp)); 947 948 raw_spin_lock_irqsave(&object->lock, flags); 949 if (!area) { 950 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 951 /* mark the object for full scan to avoid false positives */ 952 object->flags |= OBJECT_FULL_SCAN; 953 goto out_unlock; 954 } 955 if (size == SIZE_MAX) { 956 size = untagged_objp + object->size - untagged_ptr; 957 } else if (untagged_ptr + size > untagged_objp + object->size) { 958 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 959 dump_object_info(object); 960 kmem_cache_free(scan_area_cache, area); 961 goto out_unlock; 962 } 963 964 INIT_HLIST_NODE(&area->node); 965 area->start = ptr; 966 area->size = size; 967 968 hlist_add_head(&area->node, &object->area_list); 969 out_unlock: 970 raw_spin_unlock_irqrestore(&object->lock, flags); 971 put_object(object); 972 } 973 974 /* 975 * Any surplus references (object already gray) to 'ptr' are passed to 976 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 977 * vm_struct may be used as an alternative reference to the vmalloc'ed object 978 * (see free_thread_stack()). 979 */ 980 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 981 { 982 unsigned long flags; 983 struct kmemleak_object *object; 984 985 object = find_and_get_object(ptr, 0); 986 if (!object) { 987 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 988 ptr); 989 return; 990 } 991 992 raw_spin_lock_irqsave(&object->lock, flags); 993 object->excess_ref = excess_ref; 994 raw_spin_unlock_irqrestore(&object->lock, flags); 995 put_object(object); 996 } 997 998 /* 999 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 1000 * pointer. Such object will not be scanned by kmemleak but references to it 1001 * are searched. 1002 */ 1003 static void object_no_scan(unsigned long ptr) 1004 { 1005 unsigned long flags; 1006 struct kmemleak_object *object; 1007 1008 object = find_and_get_object(ptr, 0); 1009 if (!object) { 1010 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1011 return; 1012 } 1013 1014 raw_spin_lock_irqsave(&object->lock, flags); 1015 object->flags |= OBJECT_NO_SCAN; 1016 raw_spin_unlock_irqrestore(&object->lock, flags); 1017 put_object(object); 1018 } 1019 1020 /** 1021 * kmemleak_alloc - register a newly allocated object 1022 * @ptr: pointer to beginning of the object 1023 * @size: size of the object 1024 * @min_count: minimum number of references to this object. If during memory 1025 * scanning a number of references less than @min_count is found, 1026 * the object is reported as a memory leak. If @min_count is 0, 1027 * the object is never reported as a leak. If @min_count is -1, 1028 * the object is ignored (not scanned and not reported as a leak) 1029 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1030 * 1031 * This function is called from the kernel allocators when a new object 1032 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1033 */ 1034 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1035 gfp_t gfp) 1036 { 1037 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1038 1039 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1040 create_object((unsigned long)ptr, size, min_count, gfp); 1041 } 1042 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1043 1044 /** 1045 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1046 * @ptr: __percpu pointer to beginning of the object 1047 * @size: size of the object 1048 * @gfp: flags used for kmemleak internal memory allocations 1049 * 1050 * This function is called from the kernel percpu allocator when a new object 1051 * (memory block) is allocated (alloc_percpu). 1052 */ 1053 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1054 gfp_t gfp) 1055 { 1056 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1057 1058 /* 1059 * Percpu allocations are only scanned and not reported as leaks 1060 * (min_count is set to 0). 1061 */ 1062 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1063 create_object_percpu((unsigned long)ptr, size, 0, gfp); 1064 } 1065 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1066 1067 /** 1068 * kmemleak_vmalloc - register a newly vmalloc'ed object 1069 * @area: pointer to vm_struct 1070 * @size: size of the object 1071 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1072 * 1073 * This function is called from the vmalloc() kernel allocator when a new 1074 * object (memory block) is allocated. 1075 */ 1076 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1077 { 1078 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1079 1080 /* 1081 * A min_count = 2 is needed because vm_struct contains a reference to 1082 * the virtual address of the vmalloc'ed block. 1083 */ 1084 if (kmemleak_enabled) { 1085 create_object((unsigned long)area->addr, size, 2, gfp); 1086 object_set_excess_ref((unsigned long)area, 1087 (unsigned long)area->addr); 1088 } 1089 } 1090 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1091 1092 /** 1093 * kmemleak_free - unregister a previously registered object 1094 * @ptr: pointer to beginning of the object 1095 * 1096 * This function is called from the kernel allocators when an object (memory 1097 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1098 */ 1099 void __ref kmemleak_free(const void *ptr) 1100 { 1101 pr_debug("%s(0x%px)\n", __func__, ptr); 1102 1103 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1104 delete_object_full((unsigned long)ptr, 0); 1105 } 1106 EXPORT_SYMBOL_GPL(kmemleak_free); 1107 1108 /** 1109 * kmemleak_free_part - partially unregister a previously registered object 1110 * @ptr: pointer to the beginning or inside the object. This also 1111 * represents the start of the range to be freed 1112 * @size: size to be unregistered 1113 * 1114 * This function is called when only a part of a memory block is freed 1115 * (usually from the bootmem allocator). 1116 */ 1117 void __ref kmemleak_free_part(const void *ptr, size_t size) 1118 { 1119 pr_debug("%s(0x%px)\n", __func__, ptr); 1120 1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1122 delete_object_part((unsigned long)ptr, size, 0); 1123 } 1124 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1125 1126 /** 1127 * kmemleak_free_percpu - unregister a previously registered __percpu object 1128 * @ptr: __percpu pointer to beginning of the object 1129 * 1130 * This function is called from the kernel percpu allocator when an object 1131 * (memory block) is freed (free_percpu). 1132 */ 1133 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1134 { 1135 pr_debug("%s(0x%px)\n", __func__, ptr); 1136 1137 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1138 delete_object_full((unsigned long)ptr, OBJECT_PERCPU); 1139 } 1140 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1141 1142 /** 1143 * kmemleak_update_trace - update object allocation stack trace 1144 * @ptr: pointer to beginning of the object 1145 * 1146 * Override the object allocation stack trace for cases where the actual 1147 * allocation place is not always useful. 1148 */ 1149 void __ref kmemleak_update_trace(const void *ptr) 1150 { 1151 struct kmemleak_object *object; 1152 depot_stack_handle_t trace_handle; 1153 unsigned long flags; 1154 1155 pr_debug("%s(0x%px)\n", __func__, ptr); 1156 1157 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1158 return; 1159 1160 object = find_and_get_object((unsigned long)ptr, 1); 1161 if (!object) { 1162 #ifdef DEBUG 1163 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1164 ptr); 1165 #endif 1166 return; 1167 } 1168 1169 trace_handle = set_track_prepare(); 1170 raw_spin_lock_irqsave(&object->lock, flags); 1171 object->trace_handle = trace_handle; 1172 raw_spin_unlock_irqrestore(&object->lock, flags); 1173 1174 put_object(object); 1175 } 1176 EXPORT_SYMBOL(kmemleak_update_trace); 1177 1178 /** 1179 * kmemleak_not_leak - mark an allocated object as false positive 1180 * @ptr: pointer to beginning of the object 1181 * 1182 * Calling this function on an object will cause the memory block to no longer 1183 * be reported as leak and always be scanned. 1184 */ 1185 void __ref kmemleak_not_leak(const void *ptr) 1186 { 1187 pr_debug("%s(0x%px)\n", __func__, ptr); 1188 1189 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1190 make_gray_object((unsigned long)ptr); 1191 } 1192 EXPORT_SYMBOL(kmemleak_not_leak); 1193 1194 /** 1195 * kmemleak_ignore - ignore an allocated object 1196 * @ptr: pointer to beginning of the object 1197 * 1198 * Calling this function on an object will cause the memory block to be 1199 * ignored (not scanned and not reported as a leak). This is usually done when 1200 * it is known that the corresponding block is not a leak and does not contain 1201 * any references to other allocated memory blocks. 1202 */ 1203 void __ref kmemleak_ignore(const void *ptr) 1204 { 1205 pr_debug("%s(0x%px)\n", __func__, ptr); 1206 1207 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1208 make_black_object((unsigned long)ptr, 0); 1209 } 1210 EXPORT_SYMBOL(kmemleak_ignore); 1211 1212 /** 1213 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1214 * @ptr: pointer to beginning or inside the object. This also 1215 * represents the start of the scan area 1216 * @size: size of the scan area 1217 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1218 * 1219 * This function is used when it is known that only certain parts of an object 1220 * contain references to other objects. Kmemleak will only scan these areas 1221 * reducing the number false negatives. 1222 */ 1223 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1224 { 1225 pr_debug("%s(0x%px)\n", __func__, ptr); 1226 1227 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1228 add_scan_area((unsigned long)ptr, size, gfp); 1229 } 1230 EXPORT_SYMBOL(kmemleak_scan_area); 1231 1232 /** 1233 * kmemleak_no_scan - do not scan an allocated object 1234 * @ptr: pointer to beginning of the object 1235 * 1236 * This function notifies kmemleak not to scan the given memory block. Useful 1237 * in situations where it is known that the given object does not contain any 1238 * references to other objects. Kmemleak will not scan such objects reducing 1239 * the number of false negatives. 1240 */ 1241 void __ref kmemleak_no_scan(const void *ptr) 1242 { 1243 pr_debug("%s(0x%px)\n", __func__, ptr); 1244 1245 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1246 object_no_scan((unsigned long)ptr); 1247 } 1248 EXPORT_SYMBOL(kmemleak_no_scan); 1249 1250 /** 1251 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1252 * address argument 1253 * @phys: physical address of the object 1254 * @size: size of the object 1255 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1256 */ 1257 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1258 { 1259 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1260 1261 if (kmemleak_enabled) 1262 /* 1263 * Create object with OBJECT_PHYS flag and 1264 * assume min_count 0. 1265 */ 1266 create_object_phys((unsigned long)phys, size, 0, gfp); 1267 } 1268 EXPORT_SYMBOL(kmemleak_alloc_phys); 1269 1270 /** 1271 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1272 * physical address argument 1273 * @phys: physical address if the beginning or inside an object. This 1274 * also represents the start of the range to be freed 1275 * @size: size to be unregistered 1276 */ 1277 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1278 { 1279 pr_debug("%s(0x%px)\n", __func__, &phys); 1280 1281 if (kmemleak_enabled) 1282 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1283 } 1284 EXPORT_SYMBOL(kmemleak_free_part_phys); 1285 1286 /** 1287 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1288 * address argument 1289 * @phys: physical address of the object 1290 */ 1291 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1292 { 1293 pr_debug("%s(0x%px)\n", __func__, &phys); 1294 1295 if (kmemleak_enabled) 1296 make_black_object((unsigned long)phys, OBJECT_PHYS); 1297 } 1298 EXPORT_SYMBOL(kmemleak_ignore_phys); 1299 1300 /* 1301 * Update an object's checksum and return true if it was modified. 1302 */ 1303 static bool update_checksum(struct kmemleak_object *object) 1304 { 1305 u32 old_csum = object->checksum; 1306 1307 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) 1308 return false; 1309 1310 kasan_disable_current(); 1311 kcsan_disable_current(); 1312 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1313 kasan_enable_current(); 1314 kcsan_enable_current(); 1315 1316 return object->checksum != old_csum; 1317 } 1318 1319 /* 1320 * Update an object's references. object->lock must be held by the caller. 1321 */ 1322 static void update_refs(struct kmemleak_object *object) 1323 { 1324 if (!color_white(object)) { 1325 /* non-orphan, ignored or new */ 1326 return; 1327 } 1328 1329 /* 1330 * Increase the object's reference count (number of pointers to the 1331 * memory block). If this count reaches the required minimum, the 1332 * object's color will become gray and it will be added to the 1333 * gray_list. 1334 */ 1335 object->count++; 1336 if (color_gray(object)) { 1337 /* put_object() called when removing from gray_list */ 1338 WARN_ON(!get_object(object)); 1339 list_add_tail(&object->gray_list, &gray_list); 1340 } 1341 } 1342 1343 /* 1344 * Memory scanning is a long process and it needs to be interruptible. This 1345 * function checks whether such interrupt condition occurred. 1346 */ 1347 static int scan_should_stop(void) 1348 { 1349 if (!kmemleak_enabled) 1350 return 1; 1351 1352 /* 1353 * This function may be called from either process or kthread context, 1354 * hence the need to check for both stop conditions. 1355 */ 1356 if (current->mm) 1357 return signal_pending(current); 1358 else 1359 return kthread_should_stop(); 1360 1361 return 0; 1362 } 1363 1364 /* 1365 * Scan a memory block (exclusive range) for valid pointers and add those 1366 * found to the gray list. 1367 */ 1368 static void scan_block(void *_start, void *_end, 1369 struct kmemleak_object *scanned) 1370 { 1371 unsigned long *ptr; 1372 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1373 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1374 unsigned long flags; 1375 unsigned long untagged_ptr; 1376 1377 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1378 for (ptr = start; ptr < end; ptr++) { 1379 struct kmemleak_object *object; 1380 unsigned long pointer; 1381 unsigned long excess_ref; 1382 1383 if (scan_should_stop()) 1384 break; 1385 1386 kasan_disable_current(); 1387 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1388 kasan_enable_current(); 1389 1390 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1391 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1392 continue; 1393 1394 /* 1395 * No need for get_object() here since we hold kmemleak_lock. 1396 * object->use_count cannot be dropped to 0 while the object 1397 * is still present in object_tree_root and object_list 1398 * (with updates protected by kmemleak_lock). 1399 */ 1400 object = lookup_object(pointer, 1); 1401 if (!object) 1402 continue; 1403 if (object == scanned) 1404 /* self referenced, ignore */ 1405 continue; 1406 1407 /* 1408 * Avoid the lockdep recursive warning on object->lock being 1409 * previously acquired in scan_object(). These locks are 1410 * enclosed by scan_mutex. 1411 */ 1412 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1413 /* only pass surplus references (object already gray) */ 1414 if (color_gray(object)) { 1415 excess_ref = object->excess_ref; 1416 /* no need for update_refs() if object already gray */ 1417 } else { 1418 excess_ref = 0; 1419 update_refs(object); 1420 } 1421 raw_spin_unlock(&object->lock); 1422 1423 if (excess_ref) { 1424 object = lookup_object(excess_ref, 0); 1425 if (!object) 1426 continue; 1427 if (object == scanned) 1428 /* circular reference, ignore */ 1429 continue; 1430 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1431 update_refs(object); 1432 raw_spin_unlock(&object->lock); 1433 } 1434 } 1435 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1436 } 1437 1438 /* 1439 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1440 */ 1441 #ifdef CONFIG_SMP 1442 static void scan_large_block(void *start, void *end) 1443 { 1444 void *next; 1445 1446 while (start < end) { 1447 next = min(start + MAX_SCAN_SIZE, end); 1448 scan_block(start, next, NULL); 1449 start = next; 1450 cond_resched(); 1451 } 1452 } 1453 #endif 1454 1455 /* 1456 * Scan a memory block corresponding to a kmemleak_object. A condition is 1457 * that object->use_count >= 1. 1458 */ 1459 static void scan_object(struct kmemleak_object *object) 1460 { 1461 struct kmemleak_scan_area *area; 1462 unsigned long flags; 1463 1464 /* 1465 * Once the object->lock is acquired, the corresponding memory block 1466 * cannot be freed (the same lock is acquired in delete_object). 1467 */ 1468 raw_spin_lock_irqsave(&object->lock, flags); 1469 if (object->flags & OBJECT_NO_SCAN) 1470 goto out; 1471 if (!(object->flags & OBJECT_ALLOCATED)) 1472 /* already freed object */ 1473 goto out; 1474 1475 if (object->flags & OBJECT_PERCPU) { 1476 unsigned int cpu; 1477 1478 for_each_possible_cpu(cpu) { 1479 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1480 void *end = start + object->size; 1481 1482 scan_block(start, end, object); 1483 1484 raw_spin_unlock_irqrestore(&object->lock, flags); 1485 cond_resched(); 1486 raw_spin_lock_irqsave(&object->lock, flags); 1487 if (!(object->flags & OBJECT_ALLOCATED)) 1488 break; 1489 } 1490 } else if (hlist_empty(&object->area_list) || 1491 object->flags & OBJECT_FULL_SCAN) { 1492 void *start = object->flags & OBJECT_PHYS ? 1493 __va((phys_addr_t)object->pointer) : 1494 (void *)object->pointer; 1495 void *end = start + object->size; 1496 void *next; 1497 1498 do { 1499 next = min(start + MAX_SCAN_SIZE, end); 1500 scan_block(start, next, object); 1501 1502 start = next; 1503 if (start >= end) 1504 break; 1505 1506 raw_spin_unlock_irqrestore(&object->lock, flags); 1507 cond_resched(); 1508 raw_spin_lock_irqsave(&object->lock, flags); 1509 } while (object->flags & OBJECT_ALLOCATED); 1510 } else { 1511 hlist_for_each_entry(area, &object->area_list, node) 1512 scan_block((void *)area->start, 1513 (void *)(area->start + area->size), 1514 object); 1515 } 1516 out: 1517 raw_spin_unlock_irqrestore(&object->lock, flags); 1518 } 1519 1520 /* 1521 * Scan the objects already referenced (gray objects). More objects will be 1522 * referenced and, if there are no memory leaks, all the objects are scanned. 1523 */ 1524 static void scan_gray_list(void) 1525 { 1526 struct kmemleak_object *object, *tmp; 1527 1528 /* 1529 * The list traversal is safe for both tail additions and removals 1530 * from inside the loop. The kmemleak objects cannot be freed from 1531 * outside the loop because their use_count was incremented. 1532 */ 1533 object = list_entry(gray_list.next, typeof(*object), gray_list); 1534 while (&object->gray_list != &gray_list) { 1535 cond_resched(); 1536 1537 /* may add new objects to the list */ 1538 if (!scan_should_stop()) 1539 scan_object(object); 1540 1541 tmp = list_entry(object->gray_list.next, typeof(*object), 1542 gray_list); 1543 1544 /* remove the object from the list and release it */ 1545 list_del(&object->gray_list); 1546 put_object(object); 1547 1548 object = tmp; 1549 } 1550 WARN_ON(!list_empty(&gray_list)); 1551 } 1552 1553 /* 1554 * Conditionally call resched() in an object iteration loop while making sure 1555 * that the given object won't go away without RCU read lock by performing a 1556 * get_object() if necessaary. 1557 */ 1558 static void kmemleak_cond_resched(struct kmemleak_object *object) 1559 { 1560 if (!get_object(object)) 1561 return; /* Try next object */ 1562 1563 raw_spin_lock_irq(&kmemleak_lock); 1564 if (object->del_state & DELSTATE_REMOVED) 1565 goto unlock_put; /* Object removed */ 1566 object->del_state |= DELSTATE_NO_DELETE; 1567 raw_spin_unlock_irq(&kmemleak_lock); 1568 1569 rcu_read_unlock(); 1570 cond_resched(); 1571 rcu_read_lock(); 1572 1573 raw_spin_lock_irq(&kmemleak_lock); 1574 if (object->del_state & DELSTATE_REMOVED) 1575 list_del_rcu(&object->object_list); 1576 object->del_state &= ~DELSTATE_NO_DELETE; 1577 unlock_put: 1578 raw_spin_unlock_irq(&kmemleak_lock); 1579 put_object(object); 1580 } 1581 1582 /* 1583 * Scan data sections and all the referenced memory blocks allocated via the 1584 * kernel's standard allocators. This function must be called with the 1585 * scan_mutex held. 1586 */ 1587 static void kmemleak_scan(void) 1588 { 1589 struct kmemleak_object *object; 1590 struct zone *zone; 1591 int __maybe_unused i; 1592 int new_leaks = 0; 1593 1594 jiffies_last_scan = jiffies; 1595 1596 /* prepare the kmemleak_object's */ 1597 rcu_read_lock(); 1598 list_for_each_entry_rcu(object, &object_list, object_list) { 1599 raw_spin_lock_irq(&object->lock); 1600 #ifdef DEBUG 1601 /* 1602 * With a few exceptions there should be a maximum of 1603 * 1 reference to any object at this point. 1604 */ 1605 if (atomic_read(&object->use_count) > 1) { 1606 pr_debug("object->use_count = %d\n", 1607 atomic_read(&object->use_count)); 1608 dump_object_info(object); 1609 } 1610 #endif 1611 1612 /* ignore objects outside lowmem (paint them black) */ 1613 if ((object->flags & OBJECT_PHYS) && 1614 !(object->flags & OBJECT_NO_SCAN)) { 1615 unsigned long phys = object->pointer; 1616 1617 if (PHYS_PFN(phys) < min_low_pfn || 1618 PHYS_PFN(phys + object->size) >= max_low_pfn) 1619 __paint_it(object, KMEMLEAK_BLACK); 1620 } 1621 1622 /* reset the reference count (whiten the object) */ 1623 object->count = 0; 1624 if (color_gray(object) && get_object(object)) 1625 list_add_tail(&object->gray_list, &gray_list); 1626 1627 raw_spin_unlock_irq(&object->lock); 1628 1629 if (need_resched()) 1630 kmemleak_cond_resched(object); 1631 } 1632 rcu_read_unlock(); 1633 1634 #ifdef CONFIG_SMP 1635 /* per-cpu sections scanning */ 1636 for_each_possible_cpu(i) 1637 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1638 __per_cpu_end + per_cpu_offset(i)); 1639 #endif 1640 1641 /* 1642 * Struct page scanning for each node. 1643 */ 1644 get_online_mems(); 1645 for_each_populated_zone(zone) { 1646 unsigned long start_pfn = zone->zone_start_pfn; 1647 unsigned long end_pfn = zone_end_pfn(zone); 1648 unsigned long pfn; 1649 1650 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1651 struct page *page = pfn_to_online_page(pfn); 1652 1653 if (!(pfn & 63)) 1654 cond_resched(); 1655 1656 if (!page) 1657 continue; 1658 1659 /* only scan pages belonging to this zone */ 1660 if (page_zone(page) != zone) 1661 continue; 1662 /* only scan if page is in use */ 1663 if (page_count(page) == 0) 1664 continue; 1665 scan_block(page, page + 1, NULL); 1666 } 1667 } 1668 put_online_mems(); 1669 1670 /* 1671 * Scanning the task stacks (may introduce false negatives). 1672 */ 1673 if (kmemleak_stack_scan) { 1674 struct task_struct *p, *g; 1675 1676 rcu_read_lock(); 1677 for_each_process_thread(g, p) { 1678 void *stack = try_get_task_stack(p); 1679 if (stack) { 1680 scan_block(stack, stack + THREAD_SIZE, NULL); 1681 put_task_stack(p); 1682 } 1683 } 1684 rcu_read_unlock(); 1685 } 1686 1687 /* 1688 * Scan the objects already referenced from the sections scanned 1689 * above. 1690 */ 1691 scan_gray_list(); 1692 1693 /* 1694 * Check for new or unreferenced objects modified since the previous 1695 * scan and color them gray until the next scan. 1696 */ 1697 rcu_read_lock(); 1698 list_for_each_entry_rcu(object, &object_list, object_list) { 1699 if (need_resched()) 1700 kmemleak_cond_resched(object); 1701 1702 /* 1703 * This is racy but we can save the overhead of lock/unlock 1704 * calls. The missed objects, if any, should be caught in 1705 * the next scan. 1706 */ 1707 if (!color_white(object)) 1708 continue; 1709 raw_spin_lock_irq(&object->lock); 1710 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1711 && update_checksum(object) && get_object(object)) { 1712 /* color it gray temporarily */ 1713 object->count = object->min_count; 1714 list_add_tail(&object->gray_list, &gray_list); 1715 } 1716 raw_spin_unlock_irq(&object->lock); 1717 } 1718 rcu_read_unlock(); 1719 1720 /* 1721 * Re-scan the gray list for modified unreferenced objects. 1722 */ 1723 scan_gray_list(); 1724 1725 /* 1726 * If scanning was stopped do not report any new unreferenced objects. 1727 */ 1728 if (scan_should_stop()) 1729 return; 1730 1731 /* 1732 * Scanning result reporting. 1733 */ 1734 rcu_read_lock(); 1735 list_for_each_entry_rcu(object, &object_list, object_list) { 1736 if (need_resched()) 1737 kmemleak_cond_resched(object); 1738 1739 /* 1740 * This is racy but we can save the overhead of lock/unlock 1741 * calls. The missed objects, if any, should be caught in 1742 * the next scan. 1743 */ 1744 if (!color_white(object)) 1745 continue; 1746 raw_spin_lock_irq(&object->lock); 1747 if (unreferenced_object(object) && 1748 !(object->flags & OBJECT_REPORTED)) { 1749 object->flags |= OBJECT_REPORTED; 1750 1751 if (kmemleak_verbose) 1752 print_unreferenced(NULL, object); 1753 1754 new_leaks++; 1755 } 1756 raw_spin_unlock_irq(&object->lock); 1757 } 1758 rcu_read_unlock(); 1759 1760 if (new_leaks) { 1761 kmemleak_found_leaks = true; 1762 1763 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1764 new_leaks); 1765 } 1766 1767 } 1768 1769 /* 1770 * Thread function performing automatic memory scanning. Unreferenced objects 1771 * at the end of a memory scan are reported but only the first time. 1772 */ 1773 static int kmemleak_scan_thread(void *arg) 1774 { 1775 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1776 1777 pr_info("Automatic memory scanning thread started\n"); 1778 set_user_nice(current, 10); 1779 1780 /* 1781 * Wait before the first scan to allow the system to fully initialize. 1782 */ 1783 if (first_run) { 1784 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1785 first_run = 0; 1786 while (timeout && !kthread_should_stop()) 1787 timeout = schedule_timeout_interruptible(timeout); 1788 } 1789 1790 while (!kthread_should_stop()) { 1791 signed long timeout = READ_ONCE(jiffies_scan_wait); 1792 1793 mutex_lock(&scan_mutex); 1794 kmemleak_scan(); 1795 mutex_unlock(&scan_mutex); 1796 1797 /* wait before the next scan */ 1798 while (timeout && !kthread_should_stop()) 1799 timeout = schedule_timeout_interruptible(timeout); 1800 } 1801 1802 pr_info("Automatic memory scanning thread ended\n"); 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * Start the automatic memory scanning thread. This function must be called 1809 * with the scan_mutex held. 1810 */ 1811 static void start_scan_thread(void) 1812 { 1813 if (scan_thread) 1814 return; 1815 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1816 if (IS_ERR(scan_thread)) { 1817 pr_warn("Failed to create the scan thread\n"); 1818 scan_thread = NULL; 1819 } 1820 } 1821 1822 /* 1823 * Stop the automatic memory scanning thread. 1824 */ 1825 static void stop_scan_thread(void) 1826 { 1827 if (scan_thread) { 1828 kthread_stop(scan_thread); 1829 scan_thread = NULL; 1830 } 1831 } 1832 1833 /* 1834 * Iterate over the object_list and return the first valid object at or after 1835 * the required position with its use_count incremented. The function triggers 1836 * a memory scanning when the pos argument points to the first position. 1837 */ 1838 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1839 { 1840 struct kmemleak_object *object; 1841 loff_t n = *pos; 1842 int err; 1843 1844 err = mutex_lock_interruptible(&scan_mutex); 1845 if (err < 0) 1846 return ERR_PTR(err); 1847 1848 rcu_read_lock(); 1849 list_for_each_entry_rcu(object, &object_list, object_list) { 1850 if (n-- > 0) 1851 continue; 1852 if (get_object(object)) 1853 goto out; 1854 } 1855 object = NULL; 1856 out: 1857 return object; 1858 } 1859 1860 /* 1861 * Return the next object in the object_list. The function decrements the 1862 * use_count of the previous object and increases that of the next one. 1863 */ 1864 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1865 { 1866 struct kmemleak_object *prev_obj = v; 1867 struct kmemleak_object *next_obj = NULL; 1868 struct kmemleak_object *obj = prev_obj; 1869 1870 ++(*pos); 1871 1872 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1873 if (get_object(obj)) { 1874 next_obj = obj; 1875 break; 1876 } 1877 } 1878 1879 put_object(prev_obj); 1880 return next_obj; 1881 } 1882 1883 /* 1884 * Decrement the use_count of the last object required, if any. 1885 */ 1886 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1887 { 1888 if (!IS_ERR(v)) { 1889 /* 1890 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1891 * waiting was interrupted, so only release it if !IS_ERR. 1892 */ 1893 rcu_read_unlock(); 1894 mutex_unlock(&scan_mutex); 1895 if (v) 1896 put_object(v); 1897 } 1898 } 1899 1900 /* 1901 * Print the information for an unreferenced object to the seq file. 1902 */ 1903 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1904 { 1905 struct kmemleak_object *object = v; 1906 unsigned long flags; 1907 1908 raw_spin_lock_irqsave(&object->lock, flags); 1909 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1910 print_unreferenced(seq, object); 1911 raw_spin_unlock_irqrestore(&object->lock, flags); 1912 return 0; 1913 } 1914 1915 static const struct seq_operations kmemleak_seq_ops = { 1916 .start = kmemleak_seq_start, 1917 .next = kmemleak_seq_next, 1918 .stop = kmemleak_seq_stop, 1919 .show = kmemleak_seq_show, 1920 }; 1921 1922 static int kmemleak_open(struct inode *inode, struct file *file) 1923 { 1924 return seq_open(file, &kmemleak_seq_ops); 1925 } 1926 1927 static int dump_str_object_info(const char *str) 1928 { 1929 unsigned long flags; 1930 struct kmemleak_object *object; 1931 unsigned long addr; 1932 1933 if (kstrtoul(str, 0, &addr)) 1934 return -EINVAL; 1935 object = find_and_get_object(addr, 0); 1936 if (!object) { 1937 pr_info("Unknown object at 0x%08lx\n", addr); 1938 return -EINVAL; 1939 } 1940 1941 raw_spin_lock_irqsave(&object->lock, flags); 1942 dump_object_info(object); 1943 raw_spin_unlock_irqrestore(&object->lock, flags); 1944 1945 put_object(object); 1946 return 0; 1947 } 1948 1949 /* 1950 * We use grey instead of black to ensure we can do future scans on the same 1951 * objects. If we did not do future scans these black objects could 1952 * potentially contain references to newly allocated objects in the future and 1953 * we'd end up with false positives. 1954 */ 1955 static void kmemleak_clear(void) 1956 { 1957 struct kmemleak_object *object; 1958 1959 rcu_read_lock(); 1960 list_for_each_entry_rcu(object, &object_list, object_list) { 1961 raw_spin_lock_irq(&object->lock); 1962 if ((object->flags & OBJECT_REPORTED) && 1963 unreferenced_object(object)) 1964 __paint_it(object, KMEMLEAK_GREY); 1965 raw_spin_unlock_irq(&object->lock); 1966 } 1967 rcu_read_unlock(); 1968 1969 kmemleak_found_leaks = false; 1970 } 1971 1972 static void __kmemleak_do_cleanup(void); 1973 1974 /* 1975 * File write operation to configure kmemleak at run-time. The following 1976 * commands can be written to the /sys/kernel/debug/kmemleak file: 1977 * off - disable kmemleak (irreversible) 1978 * stack=on - enable the task stacks scanning 1979 * stack=off - disable the tasks stacks scanning 1980 * scan=on - start the automatic memory scanning thread 1981 * scan=off - stop the automatic memory scanning thread 1982 * scan=... - set the automatic memory scanning period in seconds (0 to 1983 * disable it) 1984 * scan - trigger a memory scan 1985 * clear - mark all current reported unreferenced kmemleak objects as 1986 * grey to ignore printing them, or free all kmemleak objects 1987 * if kmemleak has been disabled. 1988 * dump=... - dump information about the object found at the given address 1989 */ 1990 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1991 size_t size, loff_t *ppos) 1992 { 1993 char buf[64]; 1994 int buf_size; 1995 int ret; 1996 1997 buf_size = min(size, (sizeof(buf) - 1)); 1998 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1999 return -EFAULT; 2000 buf[buf_size] = 0; 2001 2002 ret = mutex_lock_interruptible(&scan_mutex); 2003 if (ret < 0) 2004 return ret; 2005 2006 if (strncmp(buf, "clear", 5) == 0) { 2007 if (kmemleak_enabled) 2008 kmemleak_clear(); 2009 else 2010 __kmemleak_do_cleanup(); 2011 goto out; 2012 } 2013 2014 if (!kmemleak_enabled) { 2015 ret = -EPERM; 2016 goto out; 2017 } 2018 2019 if (strncmp(buf, "off", 3) == 0) 2020 kmemleak_disable(); 2021 else if (strncmp(buf, "stack=on", 8) == 0) 2022 kmemleak_stack_scan = 1; 2023 else if (strncmp(buf, "stack=off", 9) == 0) 2024 kmemleak_stack_scan = 0; 2025 else if (strncmp(buf, "scan=on", 7) == 0) 2026 start_scan_thread(); 2027 else if (strncmp(buf, "scan=off", 8) == 0) 2028 stop_scan_thread(); 2029 else if (strncmp(buf, "scan=", 5) == 0) { 2030 unsigned secs; 2031 unsigned long msecs; 2032 2033 ret = kstrtouint(buf + 5, 0, &secs); 2034 if (ret < 0) 2035 goto out; 2036 2037 msecs = secs * MSEC_PER_SEC; 2038 if (msecs > UINT_MAX) 2039 msecs = UINT_MAX; 2040 2041 stop_scan_thread(); 2042 if (msecs) { 2043 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2044 start_scan_thread(); 2045 } 2046 } else if (strncmp(buf, "scan", 4) == 0) 2047 kmemleak_scan(); 2048 else if (strncmp(buf, "dump=", 5) == 0) 2049 ret = dump_str_object_info(buf + 5); 2050 else 2051 ret = -EINVAL; 2052 2053 out: 2054 mutex_unlock(&scan_mutex); 2055 if (ret < 0) 2056 return ret; 2057 2058 /* ignore the rest of the buffer, only one command at a time */ 2059 *ppos += size; 2060 return size; 2061 } 2062 2063 static const struct file_operations kmemleak_fops = { 2064 .owner = THIS_MODULE, 2065 .open = kmemleak_open, 2066 .read = seq_read, 2067 .write = kmemleak_write, 2068 .llseek = seq_lseek, 2069 .release = seq_release, 2070 }; 2071 2072 static void __kmemleak_do_cleanup(void) 2073 { 2074 struct kmemleak_object *object, *tmp; 2075 2076 /* 2077 * Kmemleak has already been disabled, no need for RCU list traversal 2078 * or kmemleak_lock held. 2079 */ 2080 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2081 __remove_object(object); 2082 __delete_object(object); 2083 } 2084 } 2085 2086 /* 2087 * Stop the memory scanning thread and free the kmemleak internal objects if 2088 * no previous scan thread (otherwise, kmemleak may still have some useful 2089 * information on memory leaks). 2090 */ 2091 static void kmemleak_do_cleanup(struct work_struct *work) 2092 { 2093 stop_scan_thread(); 2094 2095 mutex_lock(&scan_mutex); 2096 /* 2097 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2098 * longer track object freeing. Ordering of the scan thread stopping and 2099 * the memory accesses below is guaranteed by the kthread_stop() 2100 * function. 2101 */ 2102 kmemleak_free_enabled = 0; 2103 mutex_unlock(&scan_mutex); 2104 2105 if (!kmemleak_found_leaks) 2106 __kmemleak_do_cleanup(); 2107 else 2108 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2109 } 2110 2111 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2112 2113 /* 2114 * Disable kmemleak. No memory allocation/freeing will be traced once this 2115 * function is called. Disabling kmemleak is an irreversible operation. 2116 */ 2117 static void kmemleak_disable(void) 2118 { 2119 /* atomically check whether it was already invoked */ 2120 if (cmpxchg(&kmemleak_error, 0, 1)) 2121 return; 2122 2123 /* stop any memory operation tracing */ 2124 kmemleak_enabled = 0; 2125 2126 /* check whether it is too early for a kernel thread */ 2127 if (kmemleak_late_initialized) 2128 schedule_work(&cleanup_work); 2129 else 2130 kmemleak_free_enabled = 0; 2131 2132 pr_info("Kernel memory leak detector disabled\n"); 2133 } 2134 2135 /* 2136 * Allow boot-time kmemleak disabling (enabled by default). 2137 */ 2138 static int __init kmemleak_boot_config(char *str) 2139 { 2140 if (!str) 2141 return -EINVAL; 2142 if (strcmp(str, "off") == 0) 2143 kmemleak_disable(); 2144 else if (strcmp(str, "on") == 0) { 2145 kmemleak_skip_disable = 1; 2146 stack_depot_request_early_init(); 2147 } 2148 else 2149 return -EINVAL; 2150 return 0; 2151 } 2152 early_param("kmemleak", kmemleak_boot_config); 2153 2154 /* 2155 * Kmemleak initialization. 2156 */ 2157 void __init kmemleak_init(void) 2158 { 2159 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2160 if (!kmemleak_skip_disable) { 2161 kmemleak_disable(); 2162 return; 2163 } 2164 #endif 2165 2166 if (kmemleak_error) 2167 return; 2168 2169 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2170 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2171 2172 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2173 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2174 2175 /* register the data/bss sections */ 2176 create_object((unsigned long)_sdata, _edata - _sdata, 2177 KMEMLEAK_GREY, GFP_ATOMIC); 2178 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2179 KMEMLEAK_GREY, GFP_ATOMIC); 2180 /* only register .data..ro_after_init if not within .data */ 2181 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2182 create_object((unsigned long)__start_ro_after_init, 2183 __end_ro_after_init - __start_ro_after_init, 2184 KMEMLEAK_GREY, GFP_ATOMIC); 2185 } 2186 2187 /* 2188 * Late initialization function. 2189 */ 2190 static int __init kmemleak_late_init(void) 2191 { 2192 kmemleak_late_initialized = 1; 2193 2194 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2195 2196 if (kmemleak_error) { 2197 /* 2198 * Some error occurred and kmemleak was disabled. There is a 2199 * small chance that kmemleak_disable() was called immediately 2200 * after setting kmemleak_late_initialized and we may end up with 2201 * two clean-up threads but serialized by scan_mutex. 2202 */ 2203 schedule_work(&cleanup_work); 2204 return -ENOMEM; 2205 } 2206 2207 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2208 mutex_lock(&scan_mutex); 2209 start_scan_thread(); 2210 mutex_unlock(&scan_mutex); 2211 } 2212 2213 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2214 mem_pool_free_count); 2215 2216 return 0; 2217 } 2218 late_initcall(kmemleak_late_init); 2219