xref: /linux/mm/kmemleak.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (rwlock): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26  *   the metadata (e.g. count) are protected by this lock. Note that some
27  *   members of this structure may be protected by other means (atomic or
28  *   kmemleak_lock). This lock is also held when scanning the corresponding
29  *   memory block to avoid the kernel freeing it via the kmemleak_free()
30  *   callback. This is less heavyweight than holding a global lock like
31  *   kmemleak_lock during scanning
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102 
103 /*
104  * Kmemleak configuration and common defines.
105  */
106 #define MAX_TRACE		16	/* stack trace length */
107 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
109 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111 
112 #define BYTES_PER_POINTER	sizeof(void *)
113 
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 				 __GFP_NOWARN | __GFP_NOFAIL)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long start;
123 	size_t size;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * rb_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	spinlock_t lock;
139 	unsigned int flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct rb_node rb_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* pass surplus references to this pointer */
149 	unsigned long excess_ref;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 
172 #define HEX_PREFIX		"    "
173 /* number of bytes to print per line; must be 16 or 32 */
174 #define HEX_ROW_SIZE		16
175 /* number of bytes to print at a time (1, 2, 4, 8) */
176 #define HEX_GROUP_SIZE		1
177 /* include ASCII after the hex output */
178 #define HEX_ASCII		1
179 /* max number of lines to be printed */
180 #define HEX_MAX_LINES		2
181 
182 /* the list of all allocated objects */
183 static LIST_HEAD(object_list);
184 /* the list of gray-colored objects (see color_gray comment below) */
185 static LIST_HEAD(gray_list);
186 /* search tree for object boundaries */
187 static struct rb_root object_tree_root = RB_ROOT;
188 /* rw_lock protecting the access to object_list and object_tree_root */
189 static DEFINE_RWLOCK(kmemleak_lock);
190 
191 /* allocation caches for kmemleak internal data */
192 static struct kmem_cache *object_cache;
193 static struct kmem_cache *scan_area_cache;
194 
195 /* set if tracing memory operations is enabled */
196 static int kmemleak_enabled;
197 /* same as above but only for the kmemleak_free() callback */
198 static int kmemleak_free_enabled;
199 /* set in the late_initcall if there were no errors */
200 static int kmemleak_initialized;
201 /* enables or disables early logging of the memory operations */
202 static int kmemleak_early_log = 1;
203 /* set if a kmemleak warning was issued */
204 static int kmemleak_warning;
205 /* set if a fatal kmemleak error has occurred */
206 static int kmemleak_error;
207 
208 /* minimum and maximum address that may be valid pointers */
209 static unsigned long min_addr = ULONG_MAX;
210 static unsigned long max_addr;
211 
212 static struct task_struct *scan_thread;
213 /* used to avoid reporting of recently allocated objects */
214 static unsigned long jiffies_min_age;
215 static unsigned long jiffies_last_scan;
216 /* delay between automatic memory scannings */
217 static signed long jiffies_scan_wait;
218 /* enables or disables the task stacks scanning */
219 static int kmemleak_stack_scan = 1;
220 /* protects the memory scanning, parameters and debug/kmemleak file access */
221 static DEFINE_MUTEX(scan_mutex);
222 /* setting kmemleak=on, will set this var, skipping the disable */
223 static int kmemleak_skip_disable;
224 /* If there are leaks that can be reported */
225 static bool kmemleak_found_leaks;
226 
227 static bool kmemleak_verbose;
228 module_param_named(verbose, kmemleak_verbose, bool, 0600);
229 
230 /*
231  * Early object allocation/freeing logging. Kmemleak is initialized after the
232  * kernel allocator. However, both the kernel allocator and kmemleak may
233  * allocate memory blocks which need to be tracked. Kmemleak defines an
234  * arbitrary buffer to hold the allocation/freeing information before it is
235  * fully initialized.
236  */
237 
238 /* kmemleak operation type for early logging */
239 enum {
240 	KMEMLEAK_ALLOC,
241 	KMEMLEAK_ALLOC_PERCPU,
242 	KMEMLEAK_FREE,
243 	KMEMLEAK_FREE_PART,
244 	KMEMLEAK_FREE_PERCPU,
245 	KMEMLEAK_NOT_LEAK,
246 	KMEMLEAK_IGNORE,
247 	KMEMLEAK_SCAN_AREA,
248 	KMEMLEAK_NO_SCAN,
249 	KMEMLEAK_SET_EXCESS_REF
250 };
251 
252 /*
253  * Structure holding the information passed to kmemleak callbacks during the
254  * early logging.
255  */
256 struct early_log {
257 	int op_type;			/* kmemleak operation type */
258 	int min_count;			/* minimum reference count */
259 	const void *ptr;		/* allocated/freed memory block */
260 	union {
261 		size_t size;		/* memory block size */
262 		unsigned long excess_ref; /* surplus reference passing */
263 	};
264 	unsigned long trace[MAX_TRACE];	/* stack trace */
265 	unsigned int trace_len;		/* stack trace length */
266 };
267 
268 /* early logging buffer and current position */
269 static struct early_log
270 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271 static int crt_early_log __initdata;
272 
273 static void kmemleak_disable(void);
274 
275 /*
276  * Print a warning and dump the stack trace.
277  */
278 #define kmemleak_warn(x...)	do {		\
279 	pr_warn(x);				\
280 	dump_stack();				\
281 	kmemleak_warning = 1;			\
282 } while (0)
283 
284 /*
285  * Macro invoked when a serious kmemleak condition occurred and cannot be
286  * recovered from. Kmemleak will be disabled and further allocation/freeing
287  * tracing no longer available.
288  */
289 #define kmemleak_stop(x...)	do {	\
290 	kmemleak_warn(x);		\
291 	kmemleak_disable();		\
292 } while (0)
293 
294 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
295 	if (seq)					\
296 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
297 	else						\
298 		pr_warn(fmt, ##__VA_ARGS__);		\
299 } while (0)
300 
301 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
302 				 int rowsize, int groupsize, const void *buf,
303 				 size_t len, bool ascii)
304 {
305 	if (seq)
306 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
307 			     buf, len, ascii);
308 	else
309 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
310 			       rowsize, groupsize, buf, len, ascii);
311 }
312 
313 /*
314  * Printing of the objects hex dump to the seq file. The number of lines to be
315  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
316  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
317  * with the object->lock held.
318  */
319 static void hex_dump_object(struct seq_file *seq,
320 			    struct kmemleak_object *object)
321 {
322 	const u8 *ptr = (const u8 *)object->pointer;
323 	size_t len;
324 
325 	/* limit the number of lines to HEX_MAX_LINES */
326 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
327 
328 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
329 	kasan_disable_current();
330 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
331 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
332 	kasan_enable_current();
333 }
334 
335 /*
336  * Object colors, encoded with count and min_count:
337  * - white - orphan object, not enough references to it (count < min_count)
338  * - gray  - not orphan, not marked as false positive (min_count == 0) or
339  *		sufficient references to it (count >= min_count)
340  * - black - ignore, it doesn't contain references (e.g. text section)
341  *		(min_count == -1). No function defined for this color.
342  * Newly created objects don't have any color assigned (object->count == -1)
343  * before the next memory scan when they become white.
344  */
345 static bool color_white(const struct kmemleak_object *object)
346 {
347 	return object->count != KMEMLEAK_BLACK &&
348 		object->count < object->min_count;
349 }
350 
351 static bool color_gray(const struct kmemleak_object *object)
352 {
353 	return object->min_count != KMEMLEAK_BLACK &&
354 		object->count >= object->min_count;
355 }
356 
357 /*
358  * Objects are considered unreferenced only if their color is white, they have
359  * not be deleted and have a minimum age to avoid false positives caused by
360  * pointers temporarily stored in CPU registers.
361  */
362 static bool unreferenced_object(struct kmemleak_object *object)
363 {
364 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
365 		time_before_eq(object->jiffies + jiffies_min_age,
366 			       jiffies_last_scan);
367 }
368 
369 /*
370  * Printing of the unreferenced objects information to the seq file. The
371  * print_unreferenced function must be called with the object->lock held.
372  */
373 static void print_unreferenced(struct seq_file *seq,
374 			       struct kmemleak_object *object)
375 {
376 	int i;
377 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
378 
379 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
380 		   object->pointer, object->size);
381 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
382 		   object->comm, object->pid, object->jiffies,
383 		   msecs_age / 1000, msecs_age % 1000);
384 	hex_dump_object(seq, object);
385 	warn_or_seq_printf(seq, "  backtrace:\n");
386 
387 	for (i = 0; i < object->trace_len; i++) {
388 		void *ptr = (void *)object->trace[i];
389 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
390 	}
391 }
392 
393 /*
394  * Print the kmemleak_object information. This function is used mainly for
395  * debugging special cases when kmemleak operations. It must be called with
396  * the object->lock held.
397  */
398 static void dump_object_info(struct kmemleak_object *object)
399 {
400 	pr_notice("Object 0x%08lx (size %zu):\n",
401 		  object->pointer, object->size);
402 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
403 		  object->comm, object->pid, object->jiffies);
404 	pr_notice("  min_count = %d\n", object->min_count);
405 	pr_notice("  count = %d\n", object->count);
406 	pr_notice("  flags = 0x%x\n", object->flags);
407 	pr_notice("  checksum = %u\n", object->checksum);
408 	pr_notice("  backtrace:\n");
409 	stack_trace_print(object->trace, object->trace_len, 4);
410 }
411 
412 /*
413  * Look-up a memory block metadata (kmemleak_object) in the object search
414  * tree based on a pointer value. If alias is 0, only values pointing to the
415  * beginning of the memory block are allowed. The kmemleak_lock must be held
416  * when calling this function.
417  */
418 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
419 {
420 	struct rb_node *rb = object_tree_root.rb_node;
421 
422 	while (rb) {
423 		struct kmemleak_object *object =
424 			rb_entry(rb, struct kmemleak_object, rb_node);
425 		if (ptr < object->pointer)
426 			rb = object->rb_node.rb_left;
427 		else if (object->pointer + object->size <= ptr)
428 			rb = object->rb_node.rb_right;
429 		else if (object->pointer == ptr || alias)
430 			return object;
431 		else {
432 			kmemleak_warn("Found object by alias at 0x%08lx\n",
433 				      ptr);
434 			dump_object_info(object);
435 			break;
436 		}
437 	}
438 	return NULL;
439 }
440 
441 /*
442  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
443  * that once an object's use_count reached 0, the RCU freeing was already
444  * registered and the object should no longer be used. This function must be
445  * called under the protection of rcu_read_lock().
446  */
447 static int get_object(struct kmemleak_object *object)
448 {
449 	return atomic_inc_not_zero(&object->use_count);
450 }
451 
452 /*
453  * RCU callback to free a kmemleak_object.
454  */
455 static void free_object_rcu(struct rcu_head *rcu)
456 {
457 	struct hlist_node *tmp;
458 	struct kmemleak_scan_area *area;
459 	struct kmemleak_object *object =
460 		container_of(rcu, struct kmemleak_object, rcu);
461 
462 	/*
463 	 * Once use_count is 0 (guaranteed by put_object), there is no other
464 	 * code accessing this object, hence no need for locking.
465 	 */
466 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
467 		hlist_del(&area->node);
468 		kmem_cache_free(scan_area_cache, area);
469 	}
470 	kmem_cache_free(object_cache, object);
471 }
472 
473 /*
474  * Decrement the object use_count. Once the count is 0, free the object using
475  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
476  * delete_object() path, the delayed RCU freeing ensures that there is no
477  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
478  * is also possible.
479  */
480 static void put_object(struct kmemleak_object *object)
481 {
482 	if (!atomic_dec_and_test(&object->use_count))
483 		return;
484 
485 	/* should only get here after delete_object was called */
486 	WARN_ON(object->flags & OBJECT_ALLOCATED);
487 
488 	call_rcu(&object->rcu, free_object_rcu);
489 }
490 
491 /*
492  * Look up an object in the object search tree and increase its use_count.
493  */
494 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
495 {
496 	unsigned long flags;
497 	struct kmemleak_object *object;
498 
499 	rcu_read_lock();
500 	read_lock_irqsave(&kmemleak_lock, flags);
501 	object = lookup_object(ptr, alias);
502 	read_unlock_irqrestore(&kmemleak_lock, flags);
503 
504 	/* check whether the object is still available */
505 	if (object && !get_object(object))
506 		object = NULL;
507 	rcu_read_unlock();
508 
509 	return object;
510 }
511 
512 /*
513  * Look up an object in the object search tree and remove it from both
514  * object_tree_root and object_list. The returned object's use_count should be
515  * at least 1, as initially set by create_object().
516  */
517 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
518 {
519 	unsigned long flags;
520 	struct kmemleak_object *object;
521 
522 	write_lock_irqsave(&kmemleak_lock, flags);
523 	object = lookup_object(ptr, alias);
524 	if (object) {
525 		rb_erase(&object->rb_node, &object_tree_root);
526 		list_del_rcu(&object->object_list);
527 	}
528 	write_unlock_irqrestore(&kmemleak_lock, flags);
529 
530 	return object;
531 }
532 
533 /*
534  * Save stack trace to the given array of MAX_TRACE size.
535  */
536 static int __save_stack_trace(unsigned long *trace)
537 {
538 	return stack_trace_save(trace, MAX_TRACE, 2);
539 }
540 
541 /*
542  * Create the metadata (struct kmemleak_object) corresponding to an allocated
543  * memory block and add it to the object_list and object_tree_root.
544  */
545 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
546 					     int min_count, gfp_t gfp)
547 {
548 	unsigned long flags;
549 	struct kmemleak_object *object, *parent;
550 	struct rb_node **link, *rb_parent;
551 	unsigned long untagged_ptr;
552 
553 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
554 	if (!object) {
555 		pr_warn("Cannot allocate a kmemleak_object structure\n");
556 		kmemleak_disable();
557 		return NULL;
558 	}
559 
560 	INIT_LIST_HEAD(&object->object_list);
561 	INIT_LIST_HEAD(&object->gray_list);
562 	INIT_HLIST_HEAD(&object->area_list);
563 	spin_lock_init(&object->lock);
564 	atomic_set(&object->use_count, 1);
565 	object->flags = OBJECT_ALLOCATED;
566 	object->pointer = ptr;
567 	object->size = size;
568 	object->excess_ref = 0;
569 	object->min_count = min_count;
570 	object->count = 0;			/* white color initially */
571 	object->jiffies = jiffies;
572 	object->checksum = 0;
573 
574 	/* task information */
575 	if (in_irq()) {
576 		object->pid = 0;
577 		strncpy(object->comm, "hardirq", sizeof(object->comm));
578 	} else if (in_softirq()) {
579 		object->pid = 0;
580 		strncpy(object->comm, "softirq", sizeof(object->comm));
581 	} else {
582 		object->pid = current->pid;
583 		/*
584 		 * There is a small chance of a race with set_task_comm(),
585 		 * however using get_task_comm() here may cause locking
586 		 * dependency issues with current->alloc_lock. In the worst
587 		 * case, the command line is not correct.
588 		 */
589 		strncpy(object->comm, current->comm, sizeof(object->comm));
590 	}
591 
592 	/* kernel backtrace */
593 	object->trace_len = __save_stack_trace(object->trace);
594 
595 	write_lock_irqsave(&kmemleak_lock, flags);
596 
597 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
598 	min_addr = min(min_addr, untagged_ptr);
599 	max_addr = max(max_addr, untagged_ptr + size);
600 	link = &object_tree_root.rb_node;
601 	rb_parent = NULL;
602 	while (*link) {
603 		rb_parent = *link;
604 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
605 		if (ptr + size <= parent->pointer)
606 			link = &parent->rb_node.rb_left;
607 		else if (parent->pointer + parent->size <= ptr)
608 			link = &parent->rb_node.rb_right;
609 		else {
610 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
611 				      ptr);
612 			/*
613 			 * No need for parent->lock here since "parent" cannot
614 			 * be freed while the kmemleak_lock is held.
615 			 */
616 			dump_object_info(parent);
617 			kmem_cache_free(object_cache, object);
618 			object = NULL;
619 			goto out;
620 		}
621 	}
622 	rb_link_node(&object->rb_node, rb_parent, link);
623 	rb_insert_color(&object->rb_node, &object_tree_root);
624 
625 	list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627 	write_unlock_irqrestore(&kmemleak_lock, flags);
628 	return object;
629 }
630 
631 /*
632  * Mark the object as not allocated and schedule RCU freeing via put_object().
633  */
634 static void __delete_object(struct kmemleak_object *object)
635 {
636 	unsigned long flags;
637 
638 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 	WARN_ON(atomic_read(&object->use_count) < 1);
640 
641 	/*
642 	 * Locking here also ensures that the corresponding memory block
643 	 * cannot be freed when it is being scanned.
644 	 */
645 	spin_lock_irqsave(&object->lock, flags);
646 	object->flags &= ~OBJECT_ALLOCATED;
647 	spin_unlock_irqrestore(&object->lock, flags);
648 	put_object(object);
649 }
650 
651 /*
652  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653  * delete it.
654  */
655 static void delete_object_full(unsigned long ptr)
656 {
657 	struct kmemleak_object *object;
658 
659 	object = find_and_remove_object(ptr, 0);
660 	if (!object) {
661 #ifdef DEBUG
662 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 			      ptr);
664 #endif
665 		return;
666 	}
667 	__delete_object(object);
668 }
669 
670 /*
671  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672  * delete it. If the memory block is partially freed, the function may create
673  * additional metadata for the remaining parts of the block.
674  */
675 static void delete_object_part(unsigned long ptr, size_t size)
676 {
677 	struct kmemleak_object *object;
678 	unsigned long start, end;
679 
680 	object = find_and_remove_object(ptr, 1);
681 	if (!object) {
682 #ifdef DEBUG
683 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
684 			      ptr, size);
685 #endif
686 		return;
687 	}
688 
689 	/*
690 	 * Create one or two objects that may result from the memory block
691 	 * split. Note that partial freeing is only done by free_bootmem() and
692 	 * this happens before kmemleak_init() is called. The path below is
693 	 * only executed during early log recording in kmemleak_init(), so
694 	 * GFP_KERNEL is enough.
695 	 */
696 	start = object->pointer;
697 	end = object->pointer + object->size;
698 	if (ptr > start)
699 		create_object(start, ptr - start, object->min_count,
700 			      GFP_KERNEL);
701 	if (ptr + size < end)
702 		create_object(ptr + size, end - ptr - size, object->min_count,
703 			      GFP_KERNEL);
704 
705 	__delete_object(object);
706 }
707 
708 static void __paint_it(struct kmemleak_object *object, int color)
709 {
710 	object->min_count = color;
711 	if (color == KMEMLEAK_BLACK)
712 		object->flags |= OBJECT_NO_SCAN;
713 }
714 
715 static void paint_it(struct kmemleak_object *object, int color)
716 {
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&object->lock, flags);
720 	__paint_it(object, color);
721 	spin_unlock_irqrestore(&object->lock, flags);
722 }
723 
724 static void paint_ptr(unsigned long ptr, int color)
725 {
726 	struct kmemleak_object *object;
727 
728 	object = find_and_get_object(ptr, 0);
729 	if (!object) {
730 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
731 			      ptr,
732 			      (color == KMEMLEAK_GREY) ? "Grey" :
733 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 		return;
735 	}
736 	paint_it(object, color);
737 	put_object(object);
738 }
739 
740 /*
741  * Mark an object permanently as gray-colored so that it can no longer be
742  * reported as a leak. This is used in general to mark a false positive.
743  */
744 static void make_gray_object(unsigned long ptr)
745 {
746 	paint_ptr(ptr, KMEMLEAK_GREY);
747 }
748 
749 /*
750  * Mark the object as black-colored so that it is ignored from scans and
751  * reporting.
752  */
753 static void make_black_object(unsigned long ptr)
754 {
755 	paint_ptr(ptr, KMEMLEAK_BLACK);
756 }
757 
758 /*
759  * Add a scanning area to the object. If at least one such area is added,
760  * kmemleak will only scan these ranges rather than the whole memory block.
761  */
762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763 {
764 	unsigned long flags;
765 	struct kmemleak_object *object;
766 	struct kmemleak_scan_area *area;
767 
768 	object = find_and_get_object(ptr, 1);
769 	if (!object) {
770 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 			      ptr);
772 		return;
773 	}
774 
775 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 	if (!area) {
777 		pr_warn("Cannot allocate a scan area\n");
778 		goto out;
779 	}
780 
781 	spin_lock_irqsave(&object->lock, flags);
782 	if (size == SIZE_MAX) {
783 		size = object->pointer + object->size - ptr;
784 	} else if (ptr + size > object->pointer + object->size) {
785 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 		dump_object_info(object);
787 		kmem_cache_free(scan_area_cache, area);
788 		goto out_unlock;
789 	}
790 
791 	INIT_HLIST_NODE(&area->node);
792 	area->start = ptr;
793 	area->size = size;
794 
795 	hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797 	spin_unlock_irqrestore(&object->lock, flags);
798 out:
799 	put_object(object);
800 }
801 
802 /*
803  * Any surplus references (object already gray) to 'ptr' are passed to
804  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
805  * vm_struct may be used as an alternative reference to the vmalloc'ed object
806  * (see free_thread_stack()).
807  */
808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
809 {
810 	unsigned long flags;
811 	struct kmemleak_object *object;
812 
813 	object = find_and_get_object(ptr, 0);
814 	if (!object) {
815 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
816 			      ptr);
817 		return;
818 	}
819 
820 	spin_lock_irqsave(&object->lock, flags);
821 	object->excess_ref = excess_ref;
822 	spin_unlock_irqrestore(&object->lock, flags);
823 	put_object(object);
824 }
825 
826 /*
827  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
828  * pointer. Such object will not be scanned by kmemleak but references to it
829  * are searched.
830  */
831 static void object_no_scan(unsigned long ptr)
832 {
833 	unsigned long flags;
834 	struct kmemleak_object *object;
835 
836 	object = find_and_get_object(ptr, 0);
837 	if (!object) {
838 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
839 		return;
840 	}
841 
842 	spin_lock_irqsave(&object->lock, flags);
843 	object->flags |= OBJECT_NO_SCAN;
844 	spin_unlock_irqrestore(&object->lock, flags);
845 	put_object(object);
846 }
847 
848 /*
849  * Log an early kmemleak_* call to the early_log buffer. These calls will be
850  * processed later once kmemleak is fully initialized.
851  */
852 static void __init log_early(int op_type, const void *ptr, size_t size,
853 			     int min_count)
854 {
855 	unsigned long flags;
856 	struct early_log *log;
857 
858 	if (kmemleak_error) {
859 		/* kmemleak stopped recording, just count the requests */
860 		crt_early_log++;
861 		return;
862 	}
863 
864 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
865 		crt_early_log++;
866 		kmemleak_disable();
867 		return;
868 	}
869 
870 	/*
871 	 * There is no need for locking since the kernel is still in UP mode
872 	 * at this stage. Disabling the IRQs is enough.
873 	 */
874 	local_irq_save(flags);
875 	log = &early_log[crt_early_log];
876 	log->op_type = op_type;
877 	log->ptr = ptr;
878 	log->size = size;
879 	log->min_count = min_count;
880 	log->trace_len = __save_stack_trace(log->trace);
881 	crt_early_log++;
882 	local_irq_restore(flags);
883 }
884 
885 /*
886  * Log an early allocated block and populate the stack trace.
887  */
888 static void early_alloc(struct early_log *log)
889 {
890 	struct kmemleak_object *object;
891 	unsigned long flags;
892 	int i;
893 
894 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
895 		return;
896 
897 	/*
898 	 * RCU locking needed to ensure object is not freed via put_object().
899 	 */
900 	rcu_read_lock();
901 	object = create_object((unsigned long)log->ptr, log->size,
902 			       log->min_count, GFP_ATOMIC);
903 	if (!object)
904 		goto out;
905 	spin_lock_irqsave(&object->lock, flags);
906 	for (i = 0; i < log->trace_len; i++)
907 		object->trace[i] = log->trace[i];
908 	object->trace_len = log->trace_len;
909 	spin_unlock_irqrestore(&object->lock, flags);
910 out:
911 	rcu_read_unlock();
912 }
913 
914 /*
915  * Log an early allocated block and populate the stack trace.
916  */
917 static void early_alloc_percpu(struct early_log *log)
918 {
919 	unsigned int cpu;
920 	const void __percpu *ptr = log->ptr;
921 
922 	for_each_possible_cpu(cpu) {
923 		log->ptr = per_cpu_ptr(ptr, cpu);
924 		early_alloc(log);
925 	}
926 }
927 
928 /**
929  * kmemleak_alloc - register a newly allocated object
930  * @ptr:	pointer to beginning of the object
931  * @size:	size of the object
932  * @min_count:	minimum number of references to this object. If during memory
933  *		scanning a number of references less than @min_count is found,
934  *		the object is reported as a memory leak. If @min_count is 0,
935  *		the object is never reported as a leak. If @min_count is -1,
936  *		the object is ignored (not scanned and not reported as a leak)
937  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
938  *
939  * This function is called from the kernel allocators when a new object
940  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
941  */
942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
943 			  gfp_t gfp)
944 {
945 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
946 
947 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
948 		create_object((unsigned long)ptr, size, min_count, gfp);
949 	else if (kmemleak_early_log)
950 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_alloc);
953 
954 /**
955  * kmemleak_alloc_percpu - register a newly allocated __percpu object
956  * @ptr:	__percpu pointer to beginning of the object
957  * @size:	size of the object
958  * @gfp:	flags used for kmemleak internal memory allocations
959  *
960  * This function is called from the kernel percpu allocator when a new object
961  * (memory block) is allocated (alloc_percpu).
962  */
963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
964 				 gfp_t gfp)
965 {
966 	unsigned int cpu;
967 
968 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
969 
970 	/*
971 	 * Percpu allocations are only scanned and not reported as leaks
972 	 * (min_count is set to 0).
973 	 */
974 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
975 		for_each_possible_cpu(cpu)
976 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
977 				      size, 0, gfp);
978 	else if (kmemleak_early_log)
979 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
980 }
981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
982 
983 /**
984  * kmemleak_vmalloc - register a newly vmalloc'ed object
985  * @area:	pointer to vm_struct
986  * @size:	size of the object
987  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
988  *
989  * This function is called from the vmalloc() kernel allocator when a new
990  * object (memory block) is allocated.
991  */
992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
993 {
994 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
995 
996 	/*
997 	 * A min_count = 2 is needed because vm_struct contains a reference to
998 	 * the virtual address of the vmalloc'ed block.
999 	 */
1000 	if (kmemleak_enabled) {
1001 		create_object((unsigned long)area->addr, size, 2, gfp);
1002 		object_set_excess_ref((unsigned long)area,
1003 				      (unsigned long)area->addr);
1004 	} else if (kmemleak_early_log) {
1005 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1006 		/* reusing early_log.size for storing area->addr */
1007 		log_early(KMEMLEAK_SET_EXCESS_REF,
1008 			  area, (unsigned long)area->addr, 0);
1009 	}
1010 }
1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1012 
1013 /**
1014  * kmemleak_free - unregister a previously registered object
1015  * @ptr:	pointer to beginning of the object
1016  *
1017  * This function is called from the kernel allocators when an object (memory
1018  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1019  */
1020 void __ref kmemleak_free(const void *ptr)
1021 {
1022 	pr_debug("%s(0x%p)\n", __func__, ptr);
1023 
1024 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1025 		delete_object_full((unsigned long)ptr);
1026 	else if (kmemleak_early_log)
1027 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1028 }
1029 EXPORT_SYMBOL_GPL(kmemleak_free);
1030 
1031 /**
1032  * kmemleak_free_part - partially unregister a previously registered object
1033  * @ptr:	pointer to the beginning or inside the object. This also
1034  *		represents the start of the range to be freed
1035  * @size:	size to be unregistered
1036  *
1037  * This function is called when only a part of a memory block is freed
1038  * (usually from the bootmem allocator).
1039  */
1040 void __ref kmemleak_free_part(const void *ptr, size_t size)
1041 {
1042 	pr_debug("%s(0x%p)\n", __func__, ptr);
1043 
1044 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1045 		delete_object_part((unsigned long)ptr, size);
1046 	else if (kmemleak_early_log)
1047 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1048 }
1049 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1050 
1051 /**
1052  * kmemleak_free_percpu - unregister a previously registered __percpu object
1053  * @ptr:	__percpu pointer to beginning of the object
1054  *
1055  * This function is called from the kernel percpu allocator when an object
1056  * (memory block) is freed (free_percpu).
1057  */
1058 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1059 {
1060 	unsigned int cpu;
1061 
1062 	pr_debug("%s(0x%p)\n", __func__, ptr);
1063 
1064 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1065 		for_each_possible_cpu(cpu)
1066 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1067 								      cpu));
1068 	else if (kmemleak_early_log)
1069 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1070 }
1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1072 
1073 /**
1074  * kmemleak_update_trace - update object allocation stack trace
1075  * @ptr:	pointer to beginning of the object
1076  *
1077  * Override the object allocation stack trace for cases where the actual
1078  * allocation place is not always useful.
1079  */
1080 void __ref kmemleak_update_trace(const void *ptr)
1081 {
1082 	struct kmemleak_object *object;
1083 	unsigned long flags;
1084 
1085 	pr_debug("%s(0x%p)\n", __func__, ptr);
1086 
1087 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1088 		return;
1089 
1090 	object = find_and_get_object((unsigned long)ptr, 1);
1091 	if (!object) {
1092 #ifdef DEBUG
1093 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1094 			      ptr);
1095 #endif
1096 		return;
1097 	}
1098 
1099 	spin_lock_irqsave(&object->lock, flags);
1100 	object->trace_len = __save_stack_trace(object->trace);
1101 	spin_unlock_irqrestore(&object->lock, flags);
1102 
1103 	put_object(object);
1104 }
1105 EXPORT_SYMBOL(kmemleak_update_trace);
1106 
1107 /**
1108  * kmemleak_not_leak - mark an allocated object as false positive
1109  * @ptr:	pointer to beginning of the object
1110  *
1111  * Calling this function on an object will cause the memory block to no longer
1112  * be reported as leak and always be scanned.
1113  */
1114 void __ref kmemleak_not_leak(const void *ptr)
1115 {
1116 	pr_debug("%s(0x%p)\n", __func__, ptr);
1117 
1118 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 		make_gray_object((unsigned long)ptr);
1120 	else if (kmemleak_early_log)
1121 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1122 }
1123 EXPORT_SYMBOL(kmemleak_not_leak);
1124 
1125 /**
1126  * kmemleak_ignore - ignore an allocated object
1127  * @ptr:	pointer to beginning of the object
1128  *
1129  * Calling this function on an object will cause the memory block to be
1130  * ignored (not scanned and not reported as a leak). This is usually done when
1131  * it is known that the corresponding block is not a leak and does not contain
1132  * any references to other allocated memory blocks.
1133  */
1134 void __ref kmemleak_ignore(const void *ptr)
1135 {
1136 	pr_debug("%s(0x%p)\n", __func__, ptr);
1137 
1138 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1139 		make_black_object((unsigned long)ptr);
1140 	else if (kmemleak_early_log)
1141 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1142 }
1143 EXPORT_SYMBOL(kmemleak_ignore);
1144 
1145 /**
1146  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1147  * @ptr:	pointer to beginning or inside the object. This also
1148  *		represents the start of the scan area
1149  * @size:	size of the scan area
1150  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1151  *
1152  * This function is used when it is known that only certain parts of an object
1153  * contain references to other objects. Kmemleak will only scan these areas
1154  * reducing the number false negatives.
1155  */
1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157 {
1158 	pr_debug("%s(0x%p)\n", __func__, ptr);
1159 
1160 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1161 		add_scan_area((unsigned long)ptr, size, gfp);
1162 	else if (kmemleak_early_log)
1163 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1164 }
1165 EXPORT_SYMBOL(kmemleak_scan_area);
1166 
1167 /**
1168  * kmemleak_no_scan - do not scan an allocated object
1169  * @ptr:	pointer to beginning of the object
1170  *
1171  * This function notifies kmemleak not to scan the given memory block. Useful
1172  * in situations where it is known that the given object does not contain any
1173  * references to other objects. Kmemleak will not scan such objects reducing
1174  * the number of false negatives.
1175  */
1176 void __ref kmemleak_no_scan(const void *ptr)
1177 {
1178 	pr_debug("%s(0x%p)\n", __func__, ptr);
1179 
1180 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1181 		object_no_scan((unsigned long)ptr);
1182 	else if (kmemleak_early_log)
1183 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1184 }
1185 EXPORT_SYMBOL(kmemleak_no_scan);
1186 
1187 /**
1188  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1189  *			 address argument
1190  * @phys:	physical address of the object
1191  * @size:	size of the object
1192  * @min_count:	minimum number of references to this object.
1193  *              See kmemleak_alloc()
1194  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1195  */
1196 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1197 			       gfp_t gfp)
1198 {
1199 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1200 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1201 }
1202 EXPORT_SYMBOL(kmemleak_alloc_phys);
1203 
1204 /**
1205  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1206  *			     physical address argument
1207  * @phys:	physical address if the beginning or inside an object. This
1208  *		also represents the start of the range to be freed
1209  * @size:	size to be unregistered
1210  */
1211 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1212 {
1213 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1214 		kmemleak_free_part(__va(phys), size);
1215 }
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1217 
1218 /**
1219  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1220  *			    address argument
1221  * @phys:	physical address of the object
1222  */
1223 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1224 {
1225 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1226 		kmemleak_not_leak(__va(phys));
1227 }
1228 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1229 
1230 /**
1231  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1232  *			  address argument
1233  * @phys:	physical address of the object
1234  */
1235 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1236 {
1237 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1238 		kmemleak_ignore(__va(phys));
1239 }
1240 EXPORT_SYMBOL(kmemleak_ignore_phys);
1241 
1242 /*
1243  * Update an object's checksum and return true if it was modified.
1244  */
1245 static bool update_checksum(struct kmemleak_object *object)
1246 {
1247 	u32 old_csum = object->checksum;
1248 
1249 	kasan_disable_current();
1250 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1251 	kasan_enable_current();
1252 
1253 	return object->checksum != old_csum;
1254 }
1255 
1256 /*
1257  * Update an object's references. object->lock must be held by the caller.
1258  */
1259 static void update_refs(struct kmemleak_object *object)
1260 {
1261 	if (!color_white(object)) {
1262 		/* non-orphan, ignored or new */
1263 		return;
1264 	}
1265 
1266 	/*
1267 	 * Increase the object's reference count (number of pointers to the
1268 	 * memory block). If this count reaches the required minimum, the
1269 	 * object's color will become gray and it will be added to the
1270 	 * gray_list.
1271 	 */
1272 	object->count++;
1273 	if (color_gray(object)) {
1274 		/* put_object() called when removing from gray_list */
1275 		WARN_ON(!get_object(object));
1276 		list_add_tail(&object->gray_list, &gray_list);
1277 	}
1278 }
1279 
1280 /*
1281  * Memory scanning is a long process and it needs to be interruptable. This
1282  * function checks whether such interrupt condition occurred.
1283  */
1284 static int scan_should_stop(void)
1285 {
1286 	if (!kmemleak_enabled)
1287 		return 1;
1288 
1289 	/*
1290 	 * This function may be called from either process or kthread context,
1291 	 * hence the need to check for both stop conditions.
1292 	 */
1293 	if (current->mm)
1294 		return signal_pending(current);
1295 	else
1296 		return kthread_should_stop();
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * Scan a memory block (exclusive range) for valid pointers and add those
1303  * found to the gray list.
1304  */
1305 static void scan_block(void *_start, void *_end,
1306 		       struct kmemleak_object *scanned)
1307 {
1308 	unsigned long *ptr;
1309 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1310 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1311 	unsigned long flags;
1312 	unsigned long untagged_ptr;
1313 
1314 	read_lock_irqsave(&kmemleak_lock, flags);
1315 	for (ptr = start; ptr < end; ptr++) {
1316 		struct kmemleak_object *object;
1317 		unsigned long pointer;
1318 		unsigned long excess_ref;
1319 
1320 		if (scan_should_stop())
1321 			break;
1322 
1323 		kasan_disable_current();
1324 		pointer = *ptr;
1325 		kasan_enable_current();
1326 
1327 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1328 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1329 			continue;
1330 
1331 		/*
1332 		 * No need for get_object() here since we hold kmemleak_lock.
1333 		 * object->use_count cannot be dropped to 0 while the object
1334 		 * is still present in object_tree_root and object_list
1335 		 * (with updates protected by kmemleak_lock).
1336 		 */
1337 		object = lookup_object(pointer, 1);
1338 		if (!object)
1339 			continue;
1340 		if (object == scanned)
1341 			/* self referenced, ignore */
1342 			continue;
1343 
1344 		/*
1345 		 * Avoid the lockdep recursive warning on object->lock being
1346 		 * previously acquired in scan_object(). These locks are
1347 		 * enclosed by scan_mutex.
1348 		 */
1349 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1350 		/* only pass surplus references (object already gray) */
1351 		if (color_gray(object)) {
1352 			excess_ref = object->excess_ref;
1353 			/* no need for update_refs() if object already gray */
1354 		} else {
1355 			excess_ref = 0;
1356 			update_refs(object);
1357 		}
1358 		spin_unlock(&object->lock);
1359 
1360 		if (excess_ref) {
1361 			object = lookup_object(excess_ref, 0);
1362 			if (!object)
1363 				continue;
1364 			if (object == scanned)
1365 				/* circular reference, ignore */
1366 				continue;
1367 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1368 			update_refs(object);
1369 			spin_unlock(&object->lock);
1370 		}
1371 	}
1372 	read_unlock_irqrestore(&kmemleak_lock, flags);
1373 }
1374 
1375 /*
1376  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1377  */
1378 #ifdef CONFIG_SMP
1379 static void scan_large_block(void *start, void *end)
1380 {
1381 	void *next;
1382 
1383 	while (start < end) {
1384 		next = min(start + MAX_SCAN_SIZE, end);
1385 		scan_block(start, next, NULL);
1386 		start = next;
1387 		cond_resched();
1388 	}
1389 }
1390 #endif
1391 
1392 /*
1393  * Scan a memory block corresponding to a kmemleak_object. A condition is
1394  * that object->use_count >= 1.
1395  */
1396 static void scan_object(struct kmemleak_object *object)
1397 {
1398 	struct kmemleak_scan_area *area;
1399 	unsigned long flags;
1400 
1401 	/*
1402 	 * Once the object->lock is acquired, the corresponding memory block
1403 	 * cannot be freed (the same lock is acquired in delete_object).
1404 	 */
1405 	spin_lock_irqsave(&object->lock, flags);
1406 	if (object->flags & OBJECT_NO_SCAN)
1407 		goto out;
1408 	if (!(object->flags & OBJECT_ALLOCATED))
1409 		/* already freed object */
1410 		goto out;
1411 	if (hlist_empty(&object->area_list)) {
1412 		void *start = (void *)object->pointer;
1413 		void *end = (void *)(object->pointer + object->size);
1414 		void *next;
1415 
1416 		do {
1417 			next = min(start + MAX_SCAN_SIZE, end);
1418 			scan_block(start, next, object);
1419 
1420 			start = next;
1421 			if (start >= end)
1422 				break;
1423 
1424 			spin_unlock_irqrestore(&object->lock, flags);
1425 			cond_resched();
1426 			spin_lock_irqsave(&object->lock, flags);
1427 		} while (object->flags & OBJECT_ALLOCATED);
1428 	} else
1429 		hlist_for_each_entry(area, &object->area_list, node)
1430 			scan_block((void *)area->start,
1431 				   (void *)(area->start + area->size),
1432 				   object);
1433 out:
1434 	spin_unlock_irqrestore(&object->lock, flags);
1435 }
1436 
1437 /*
1438  * Scan the objects already referenced (gray objects). More objects will be
1439  * referenced and, if there are no memory leaks, all the objects are scanned.
1440  */
1441 static void scan_gray_list(void)
1442 {
1443 	struct kmemleak_object *object, *tmp;
1444 
1445 	/*
1446 	 * The list traversal is safe for both tail additions and removals
1447 	 * from inside the loop. The kmemleak objects cannot be freed from
1448 	 * outside the loop because their use_count was incremented.
1449 	 */
1450 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1451 	while (&object->gray_list != &gray_list) {
1452 		cond_resched();
1453 
1454 		/* may add new objects to the list */
1455 		if (!scan_should_stop())
1456 			scan_object(object);
1457 
1458 		tmp = list_entry(object->gray_list.next, typeof(*object),
1459 				 gray_list);
1460 
1461 		/* remove the object from the list and release it */
1462 		list_del(&object->gray_list);
1463 		put_object(object);
1464 
1465 		object = tmp;
1466 	}
1467 	WARN_ON(!list_empty(&gray_list));
1468 }
1469 
1470 /*
1471  * Scan data sections and all the referenced memory blocks allocated via the
1472  * kernel's standard allocators. This function must be called with the
1473  * scan_mutex held.
1474  */
1475 static void kmemleak_scan(void)
1476 {
1477 	unsigned long flags;
1478 	struct kmemleak_object *object;
1479 	int i;
1480 	int new_leaks = 0;
1481 
1482 	jiffies_last_scan = jiffies;
1483 
1484 	/* prepare the kmemleak_object's */
1485 	rcu_read_lock();
1486 	list_for_each_entry_rcu(object, &object_list, object_list) {
1487 		spin_lock_irqsave(&object->lock, flags);
1488 #ifdef DEBUG
1489 		/*
1490 		 * With a few exceptions there should be a maximum of
1491 		 * 1 reference to any object at this point.
1492 		 */
1493 		if (atomic_read(&object->use_count) > 1) {
1494 			pr_debug("object->use_count = %d\n",
1495 				 atomic_read(&object->use_count));
1496 			dump_object_info(object);
1497 		}
1498 #endif
1499 		/* reset the reference count (whiten the object) */
1500 		object->count = 0;
1501 		if (color_gray(object) && get_object(object))
1502 			list_add_tail(&object->gray_list, &gray_list);
1503 
1504 		spin_unlock_irqrestore(&object->lock, flags);
1505 	}
1506 	rcu_read_unlock();
1507 
1508 #ifdef CONFIG_SMP
1509 	/* per-cpu sections scanning */
1510 	for_each_possible_cpu(i)
1511 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1512 				 __per_cpu_end + per_cpu_offset(i));
1513 #endif
1514 
1515 	/*
1516 	 * Struct page scanning for each node.
1517 	 */
1518 	get_online_mems();
1519 	for_each_online_node(i) {
1520 		unsigned long start_pfn = node_start_pfn(i);
1521 		unsigned long end_pfn = node_end_pfn(i);
1522 		unsigned long pfn;
1523 
1524 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 			struct page *page = pfn_to_online_page(pfn);
1526 
1527 			if (!page)
1528 				continue;
1529 
1530 			/* only scan pages belonging to this node */
1531 			if (page_to_nid(page) != i)
1532 				continue;
1533 			/* only scan if page is in use */
1534 			if (page_count(page) == 0)
1535 				continue;
1536 			scan_block(page, page + 1, NULL);
1537 			if (!(pfn & 63))
1538 				cond_resched();
1539 		}
1540 	}
1541 	put_online_mems();
1542 
1543 	/*
1544 	 * Scanning the task stacks (may introduce false negatives).
1545 	 */
1546 	if (kmemleak_stack_scan) {
1547 		struct task_struct *p, *g;
1548 
1549 		read_lock(&tasklist_lock);
1550 		do_each_thread(g, p) {
1551 			void *stack = try_get_task_stack(p);
1552 			if (stack) {
1553 				scan_block(stack, stack + THREAD_SIZE, NULL);
1554 				put_task_stack(p);
1555 			}
1556 		} while_each_thread(g, p);
1557 		read_unlock(&tasklist_lock);
1558 	}
1559 
1560 	/*
1561 	 * Scan the objects already referenced from the sections scanned
1562 	 * above.
1563 	 */
1564 	scan_gray_list();
1565 
1566 	/*
1567 	 * Check for new or unreferenced objects modified since the previous
1568 	 * scan and color them gray until the next scan.
1569 	 */
1570 	rcu_read_lock();
1571 	list_for_each_entry_rcu(object, &object_list, object_list) {
1572 		spin_lock_irqsave(&object->lock, flags);
1573 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1574 		    && update_checksum(object) && get_object(object)) {
1575 			/* color it gray temporarily */
1576 			object->count = object->min_count;
1577 			list_add_tail(&object->gray_list, &gray_list);
1578 		}
1579 		spin_unlock_irqrestore(&object->lock, flags);
1580 	}
1581 	rcu_read_unlock();
1582 
1583 	/*
1584 	 * Re-scan the gray list for modified unreferenced objects.
1585 	 */
1586 	scan_gray_list();
1587 
1588 	/*
1589 	 * If scanning was stopped do not report any new unreferenced objects.
1590 	 */
1591 	if (scan_should_stop())
1592 		return;
1593 
1594 	/*
1595 	 * Scanning result reporting.
1596 	 */
1597 	rcu_read_lock();
1598 	list_for_each_entry_rcu(object, &object_list, object_list) {
1599 		spin_lock_irqsave(&object->lock, flags);
1600 		if (unreferenced_object(object) &&
1601 		    !(object->flags & OBJECT_REPORTED)) {
1602 			object->flags |= OBJECT_REPORTED;
1603 
1604 			if (kmemleak_verbose)
1605 				print_unreferenced(NULL, object);
1606 
1607 			new_leaks++;
1608 		}
1609 		spin_unlock_irqrestore(&object->lock, flags);
1610 	}
1611 	rcu_read_unlock();
1612 
1613 	if (new_leaks) {
1614 		kmemleak_found_leaks = true;
1615 
1616 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1617 			new_leaks);
1618 	}
1619 
1620 }
1621 
1622 /*
1623  * Thread function performing automatic memory scanning. Unreferenced objects
1624  * at the end of a memory scan are reported but only the first time.
1625  */
1626 static int kmemleak_scan_thread(void *arg)
1627 {
1628 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1629 
1630 	pr_info("Automatic memory scanning thread started\n");
1631 	set_user_nice(current, 10);
1632 
1633 	/*
1634 	 * Wait before the first scan to allow the system to fully initialize.
1635 	 */
1636 	if (first_run) {
1637 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1638 		first_run = 0;
1639 		while (timeout && !kthread_should_stop())
1640 			timeout = schedule_timeout_interruptible(timeout);
1641 	}
1642 
1643 	while (!kthread_should_stop()) {
1644 		signed long timeout = jiffies_scan_wait;
1645 
1646 		mutex_lock(&scan_mutex);
1647 		kmemleak_scan();
1648 		mutex_unlock(&scan_mutex);
1649 
1650 		/* wait before the next scan */
1651 		while (timeout && !kthread_should_stop())
1652 			timeout = schedule_timeout_interruptible(timeout);
1653 	}
1654 
1655 	pr_info("Automatic memory scanning thread ended\n");
1656 
1657 	return 0;
1658 }
1659 
1660 /*
1661  * Start the automatic memory scanning thread. This function must be called
1662  * with the scan_mutex held.
1663  */
1664 static void start_scan_thread(void)
1665 {
1666 	if (scan_thread)
1667 		return;
1668 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1669 	if (IS_ERR(scan_thread)) {
1670 		pr_warn("Failed to create the scan thread\n");
1671 		scan_thread = NULL;
1672 	}
1673 }
1674 
1675 /*
1676  * Stop the automatic memory scanning thread.
1677  */
1678 static void stop_scan_thread(void)
1679 {
1680 	if (scan_thread) {
1681 		kthread_stop(scan_thread);
1682 		scan_thread = NULL;
1683 	}
1684 }
1685 
1686 /*
1687  * Iterate over the object_list and return the first valid object at or after
1688  * the required position with its use_count incremented. The function triggers
1689  * a memory scanning when the pos argument points to the first position.
1690  */
1691 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1692 {
1693 	struct kmemleak_object *object;
1694 	loff_t n = *pos;
1695 	int err;
1696 
1697 	err = mutex_lock_interruptible(&scan_mutex);
1698 	if (err < 0)
1699 		return ERR_PTR(err);
1700 
1701 	rcu_read_lock();
1702 	list_for_each_entry_rcu(object, &object_list, object_list) {
1703 		if (n-- > 0)
1704 			continue;
1705 		if (get_object(object))
1706 			goto out;
1707 	}
1708 	object = NULL;
1709 out:
1710 	return object;
1711 }
1712 
1713 /*
1714  * Return the next object in the object_list. The function decrements the
1715  * use_count of the previous object and increases that of the next one.
1716  */
1717 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1718 {
1719 	struct kmemleak_object *prev_obj = v;
1720 	struct kmemleak_object *next_obj = NULL;
1721 	struct kmemleak_object *obj = prev_obj;
1722 
1723 	++(*pos);
1724 
1725 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1726 		if (get_object(obj)) {
1727 			next_obj = obj;
1728 			break;
1729 		}
1730 	}
1731 
1732 	put_object(prev_obj);
1733 	return next_obj;
1734 }
1735 
1736 /*
1737  * Decrement the use_count of the last object required, if any.
1738  */
1739 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1740 {
1741 	if (!IS_ERR(v)) {
1742 		/*
1743 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1744 		 * waiting was interrupted, so only release it if !IS_ERR.
1745 		 */
1746 		rcu_read_unlock();
1747 		mutex_unlock(&scan_mutex);
1748 		if (v)
1749 			put_object(v);
1750 	}
1751 }
1752 
1753 /*
1754  * Print the information for an unreferenced object to the seq file.
1755  */
1756 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1757 {
1758 	struct kmemleak_object *object = v;
1759 	unsigned long flags;
1760 
1761 	spin_lock_irqsave(&object->lock, flags);
1762 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1763 		print_unreferenced(seq, object);
1764 	spin_unlock_irqrestore(&object->lock, flags);
1765 	return 0;
1766 }
1767 
1768 static const struct seq_operations kmemleak_seq_ops = {
1769 	.start = kmemleak_seq_start,
1770 	.next  = kmemleak_seq_next,
1771 	.stop  = kmemleak_seq_stop,
1772 	.show  = kmemleak_seq_show,
1773 };
1774 
1775 static int kmemleak_open(struct inode *inode, struct file *file)
1776 {
1777 	return seq_open(file, &kmemleak_seq_ops);
1778 }
1779 
1780 static int dump_str_object_info(const char *str)
1781 {
1782 	unsigned long flags;
1783 	struct kmemleak_object *object;
1784 	unsigned long addr;
1785 
1786 	if (kstrtoul(str, 0, &addr))
1787 		return -EINVAL;
1788 	object = find_and_get_object(addr, 0);
1789 	if (!object) {
1790 		pr_info("Unknown object at 0x%08lx\n", addr);
1791 		return -EINVAL;
1792 	}
1793 
1794 	spin_lock_irqsave(&object->lock, flags);
1795 	dump_object_info(object);
1796 	spin_unlock_irqrestore(&object->lock, flags);
1797 
1798 	put_object(object);
1799 	return 0;
1800 }
1801 
1802 /*
1803  * We use grey instead of black to ensure we can do future scans on the same
1804  * objects. If we did not do future scans these black objects could
1805  * potentially contain references to newly allocated objects in the future and
1806  * we'd end up with false positives.
1807  */
1808 static void kmemleak_clear(void)
1809 {
1810 	struct kmemleak_object *object;
1811 	unsigned long flags;
1812 
1813 	rcu_read_lock();
1814 	list_for_each_entry_rcu(object, &object_list, object_list) {
1815 		spin_lock_irqsave(&object->lock, flags);
1816 		if ((object->flags & OBJECT_REPORTED) &&
1817 		    unreferenced_object(object))
1818 			__paint_it(object, KMEMLEAK_GREY);
1819 		spin_unlock_irqrestore(&object->lock, flags);
1820 	}
1821 	rcu_read_unlock();
1822 
1823 	kmemleak_found_leaks = false;
1824 }
1825 
1826 static void __kmemleak_do_cleanup(void);
1827 
1828 /*
1829  * File write operation to configure kmemleak at run-time. The following
1830  * commands can be written to the /sys/kernel/debug/kmemleak file:
1831  *   off	- disable kmemleak (irreversible)
1832  *   stack=on	- enable the task stacks scanning
1833  *   stack=off	- disable the tasks stacks scanning
1834  *   scan=on	- start the automatic memory scanning thread
1835  *   scan=off	- stop the automatic memory scanning thread
1836  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1837  *		  disable it)
1838  *   scan	- trigger a memory scan
1839  *   clear	- mark all current reported unreferenced kmemleak objects as
1840  *		  grey to ignore printing them, or free all kmemleak objects
1841  *		  if kmemleak has been disabled.
1842  *   dump=...	- dump information about the object found at the given address
1843  */
1844 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1845 			      size_t size, loff_t *ppos)
1846 {
1847 	char buf[64];
1848 	int buf_size;
1849 	int ret;
1850 
1851 	buf_size = min(size, (sizeof(buf) - 1));
1852 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1853 		return -EFAULT;
1854 	buf[buf_size] = 0;
1855 
1856 	ret = mutex_lock_interruptible(&scan_mutex);
1857 	if (ret < 0)
1858 		return ret;
1859 
1860 	if (strncmp(buf, "clear", 5) == 0) {
1861 		if (kmemleak_enabled)
1862 			kmemleak_clear();
1863 		else
1864 			__kmemleak_do_cleanup();
1865 		goto out;
1866 	}
1867 
1868 	if (!kmemleak_enabled) {
1869 		ret = -EBUSY;
1870 		goto out;
1871 	}
1872 
1873 	if (strncmp(buf, "off", 3) == 0)
1874 		kmemleak_disable();
1875 	else if (strncmp(buf, "stack=on", 8) == 0)
1876 		kmemleak_stack_scan = 1;
1877 	else if (strncmp(buf, "stack=off", 9) == 0)
1878 		kmemleak_stack_scan = 0;
1879 	else if (strncmp(buf, "scan=on", 7) == 0)
1880 		start_scan_thread();
1881 	else if (strncmp(buf, "scan=off", 8) == 0)
1882 		stop_scan_thread();
1883 	else if (strncmp(buf, "scan=", 5) == 0) {
1884 		unsigned long secs;
1885 
1886 		ret = kstrtoul(buf + 5, 0, &secs);
1887 		if (ret < 0)
1888 			goto out;
1889 		stop_scan_thread();
1890 		if (secs) {
1891 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1892 			start_scan_thread();
1893 		}
1894 	} else if (strncmp(buf, "scan", 4) == 0)
1895 		kmemleak_scan();
1896 	else if (strncmp(buf, "dump=", 5) == 0)
1897 		ret = dump_str_object_info(buf + 5);
1898 	else
1899 		ret = -EINVAL;
1900 
1901 out:
1902 	mutex_unlock(&scan_mutex);
1903 	if (ret < 0)
1904 		return ret;
1905 
1906 	/* ignore the rest of the buffer, only one command at a time */
1907 	*ppos += size;
1908 	return size;
1909 }
1910 
1911 static const struct file_operations kmemleak_fops = {
1912 	.owner		= THIS_MODULE,
1913 	.open		= kmemleak_open,
1914 	.read		= seq_read,
1915 	.write		= kmemleak_write,
1916 	.llseek		= seq_lseek,
1917 	.release	= seq_release,
1918 };
1919 
1920 static void __kmemleak_do_cleanup(void)
1921 {
1922 	struct kmemleak_object *object;
1923 
1924 	rcu_read_lock();
1925 	list_for_each_entry_rcu(object, &object_list, object_list)
1926 		delete_object_full(object->pointer);
1927 	rcu_read_unlock();
1928 }
1929 
1930 /*
1931  * Stop the memory scanning thread and free the kmemleak internal objects if
1932  * no previous scan thread (otherwise, kmemleak may still have some useful
1933  * information on memory leaks).
1934  */
1935 static void kmemleak_do_cleanup(struct work_struct *work)
1936 {
1937 	stop_scan_thread();
1938 
1939 	mutex_lock(&scan_mutex);
1940 	/*
1941 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1942 	 * longer track object freeing. Ordering of the scan thread stopping and
1943 	 * the memory accesses below is guaranteed by the kthread_stop()
1944 	 * function.
1945 	 */
1946 	kmemleak_free_enabled = 0;
1947 	mutex_unlock(&scan_mutex);
1948 
1949 	if (!kmemleak_found_leaks)
1950 		__kmemleak_do_cleanup();
1951 	else
1952 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1953 }
1954 
1955 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1956 
1957 /*
1958  * Disable kmemleak. No memory allocation/freeing will be traced once this
1959  * function is called. Disabling kmemleak is an irreversible operation.
1960  */
1961 static void kmemleak_disable(void)
1962 {
1963 	/* atomically check whether it was already invoked */
1964 	if (cmpxchg(&kmemleak_error, 0, 1))
1965 		return;
1966 
1967 	/* stop any memory operation tracing */
1968 	kmemleak_enabled = 0;
1969 
1970 	/* check whether it is too early for a kernel thread */
1971 	if (kmemleak_initialized)
1972 		schedule_work(&cleanup_work);
1973 	else
1974 		kmemleak_free_enabled = 0;
1975 
1976 	pr_info("Kernel memory leak detector disabled\n");
1977 }
1978 
1979 /*
1980  * Allow boot-time kmemleak disabling (enabled by default).
1981  */
1982 static int __init kmemleak_boot_config(char *str)
1983 {
1984 	if (!str)
1985 		return -EINVAL;
1986 	if (strcmp(str, "off") == 0)
1987 		kmemleak_disable();
1988 	else if (strcmp(str, "on") == 0)
1989 		kmemleak_skip_disable = 1;
1990 	else
1991 		return -EINVAL;
1992 	return 0;
1993 }
1994 early_param("kmemleak", kmemleak_boot_config);
1995 
1996 static void __init print_log_trace(struct early_log *log)
1997 {
1998 	pr_notice("Early log backtrace:\n");
1999 	stack_trace_print(log->trace, log->trace_len, 2);
2000 }
2001 
2002 /*
2003  * Kmemleak initialization.
2004  */
2005 void __init kmemleak_init(void)
2006 {
2007 	int i;
2008 	unsigned long flags;
2009 
2010 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2011 	if (!kmemleak_skip_disable) {
2012 		kmemleak_early_log = 0;
2013 		kmemleak_disable();
2014 		return;
2015 	}
2016 #endif
2017 
2018 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2019 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2020 
2021 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2022 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2023 
2024 	if (crt_early_log > ARRAY_SIZE(early_log))
2025 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2026 			crt_early_log);
2027 
2028 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2029 	local_irq_save(flags);
2030 	kmemleak_early_log = 0;
2031 	if (kmemleak_error) {
2032 		local_irq_restore(flags);
2033 		return;
2034 	} else {
2035 		kmemleak_enabled = 1;
2036 		kmemleak_free_enabled = 1;
2037 	}
2038 	local_irq_restore(flags);
2039 
2040 	/* register the data/bss sections */
2041 	create_object((unsigned long)_sdata, _edata - _sdata,
2042 		      KMEMLEAK_GREY, GFP_ATOMIC);
2043 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2044 		      KMEMLEAK_GREY, GFP_ATOMIC);
2045 	/* only register .data..ro_after_init if not within .data */
2046 	if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
2047 		create_object((unsigned long)__start_ro_after_init,
2048 			      __end_ro_after_init - __start_ro_after_init,
2049 			      KMEMLEAK_GREY, GFP_ATOMIC);
2050 
2051 	/*
2052 	 * This is the point where tracking allocations is safe. Automatic
2053 	 * scanning is started during the late initcall. Add the early logged
2054 	 * callbacks to the kmemleak infrastructure.
2055 	 */
2056 	for (i = 0; i < crt_early_log; i++) {
2057 		struct early_log *log = &early_log[i];
2058 
2059 		switch (log->op_type) {
2060 		case KMEMLEAK_ALLOC:
2061 			early_alloc(log);
2062 			break;
2063 		case KMEMLEAK_ALLOC_PERCPU:
2064 			early_alloc_percpu(log);
2065 			break;
2066 		case KMEMLEAK_FREE:
2067 			kmemleak_free(log->ptr);
2068 			break;
2069 		case KMEMLEAK_FREE_PART:
2070 			kmemleak_free_part(log->ptr, log->size);
2071 			break;
2072 		case KMEMLEAK_FREE_PERCPU:
2073 			kmemleak_free_percpu(log->ptr);
2074 			break;
2075 		case KMEMLEAK_NOT_LEAK:
2076 			kmemleak_not_leak(log->ptr);
2077 			break;
2078 		case KMEMLEAK_IGNORE:
2079 			kmemleak_ignore(log->ptr);
2080 			break;
2081 		case KMEMLEAK_SCAN_AREA:
2082 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2083 			break;
2084 		case KMEMLEAK_NO_SCAN:
2085 			kmemleak_no_scan(log->ptr);
2086 			break;
2087 		case KMEMLEAK_SET_EXCESS_REF:
2088 			object_set_excess_ref((unsigned long)log->ptr,
2089 					      log->excess_ref);
2090 			break;
2091 		default:
2092 			kmemleak_warn("Unknown early log operation: %d\n",
2093 				      log->op_type);
2094 		}
2095 
2096 		if (kmemleak_warning) {
2097 			print_log_trace(log);
2098 			kmemleak_warning = 0;
2099 		}
2100 	}
2101 }
2102 
2103 /*
2104  * Late initialization function.
2105  */
2106 static int __init kmemleak_late_init(void)
2107 {
2108 	struct dentry *dentry;
2109 
2110 	kmemleak_initialized = 1;
2111 
2112 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2113 				     &kmemleak_fops);
2114 	if (!dentry)
2115 		pr_warn("Failed to create the debugfs kmemleak file\n");
2116 
2117 	if (kmemleak_error) {
2118 		/*
2119 		 * Some error occurred and kmemleak was disabled. There is a
2120 		 * small chance that kmemleak_disable() was called immediately
2121 		 * after setting kmemleak_initialized and we may end up with
2122 		 * two clean-up threads but serialized by scan_mutex.
2123 		 */
2124 		schedule_work(&cleanup_work);
2125 		return -ENOMEM;
2126 	}
2127 
2128 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2129 		mutex_lock(&scan_mutex);
2130 		start_scan_thread();
2131 		mutex_unlock(&scan_mutex);
2132 	}
2133 
2134 	pr_info("Kernel memory leak detector initialized\n");
2135 
2136 	return 0;
2137 }
2138 late_initcall(kmemleak_late_init);
2139