1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object_tree_root (or 18 * object_phys_tree_root). The object_list is the main list holding the 19 * metadata (struct kmemleak_object) for the allocated memory blocks. 20 * The object_tree_root and object_phys_tree_root are red 21 * black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The object_phys_tree_root is for objects 23 * allocated with physical address. The kmemleak_object structures are 24 * added to the object_list and object_tree_root (or object_phys_tree_root) 25 * in the create_object() function called from the kmemleak_alloc() (or 26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 27 * the kmemleak_free() callback 28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 29 * Accesses to the metadata (e.g. count) are protected by this lock. Note 30 * that some members of this structure may be protected by other means 31 * (atomic or kmemleak_lock). This lock is also held when scanning the 32 * corresponding memory block to avoid the kernel freeing it via the 33 * kmemleak_free() callback. This is less heavyweight than holding a global 34 * lock like kmemleak_lock during scanning. 35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 36 * unreferenced objects at a time. The gray_list contains the objects which 37 * are already referenced or marked as false positives and need to be 38 * scanned. This list is only modified during a scanning episode when the 39 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 40 * Note that the kmemleak_object.use_count is incremented when an object is 41 * added to the gray_list and therefore cannot be freed. This mutex also 42 * prevents multiple users of the "kmemleak" debugfs file together with 43 * modifications to the memory scanning parameters including the scan_thread 44 * pointer 45 * 46 * Locks and mutexes are acquired/nested in the following order: 47 * 48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 49 * 50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 51 * regions. 52 * 53 * The kmemleak_object structures have a use_count incremented or decremented 54 * using the get_object()/put_object() functions. When the use_count becomes 55 * 0, this count can no longer be incremented and put_object() schedules the 56 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 57 * function must be protected by rcu_read_lock() to avoid accessing a freed 58 * structure. 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include <linux/init.h> 64 #include <linux/kernel.h> 65 #include <linux/list.h> 66 #include <linux/sched/signal.h> 67 #include <linux/sched/task.h> 68 #include <linux/sched/task_stack.h> 69 #include <linux/jiffies.h> 70 #include <linux/delay.h> 71 #include <linux/export.h> 72 #include <linux/kthread.h> 73 #include <linux/rbtree.h> 74 #include <linux/fs.h> 75 #include <linux/debugfs.h> 76 #include <linux/seq_file.h> 77 #include <linux/cpumask.h> 78 #include <linux/spinlock.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/stackdepot.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/memblock.h> 87 #include <linux/pfn.h> 88 #include <linux/mmzone.h> 89 #include <linux/slab.h> 90 #include <linux/thread_info.h> 91 #include <linux/err.h> 92 #include <linux/uaccess.h> 93 #include <linux/string.h> 94 #include <linux/nodemask.h> 95 #include <linux/mm.h> 96 #include <linux/workqueue.h> 97 #include <linux/crc32.h> 98 99 #include <asm/sections.h> 100 #include <asm/processor.h> 101 #include <linux/atomic.h> 102 103 #include <linux/kasan.h> 104 #include <linux/kfence.h> 105 #include <linux/kmemleak.h> 106 #include <linux/memory_hotplug.h> 107 108 /* 109 * Kmemleak configuration and common defines. 110 */ 111 #define MAX_TRACE 16 /* stack trace length */ 112 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 113 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 114 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 115 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 116 117 #define BYTES_PER_POINTER sizeof(void *) 118 119 /* GFP bitmask for kmemleak internal allocations */ 120 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 121 __GFP_NOLOCKDEP)) | \ 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 123 __GFP_NOWARN) 124 125 /* scanning area inside a memory block */ 126 struct kmemleak_scan_area { 127 struct hlist_node node; 128 unsigned long start; 129 size_t size; 130 }; 131 132 #define KMEMLEAK_GREY 0 133 #define KMEMLEAK_BLACK -1 134 135 /* 136 * Structure holding the metadata for each allocated memory block. 137 * Modifications to such objects should be made while holding the 138 * object->lock. Insertions or deletions from object_list, gray_list or 139 * rb_node are already protected by the corresponding locks or mutex (see 140 * the notes on locking above). These objects are reference-counted 141 * (use_count) and freed using the RCU mechanism. 142 */ 143 struct kmemleak_object { 144 raw_spinlock_t lock; 145 unsigned int flags; /* object status flags */ 146 struct list_head object_list; 147 struct list_head gray_list; 148 struct rb_node rb_node; 149 struct rcu_head rcu; /* object_list lockless traversal */ 150 /* object usage count; object freed when use_count == 0 */ 151 atomic_t use_count; 152 unsigned int del_state; /* deletion state */ 153 unsigned long pointer; 154 size_t size; 155 /* pass surplus references to this pointer */ 156 unsigned long excess_ref; 157 /* minimum number of a pointers found before it is considered leak */ 158 int min_count; 159 /* the total number of pointers found pointing to this object */ 160 int count; 161 /* checksum for detecting modified objects */ 162 u32 checksum; 163 /* memory ranges to be scanned inside an object (empty for all) */ 164 struct hlist_head area_list; 165 depot_stack_handle_t trace_handle; 166 unsigned long jiffies; /* creation timestamp */ 167 pid_t pid; /* pid of the current task */ 168 char comm[TASK_COMM_LEN]; /* executable name */ 169 }; 170 171 /* flag representing the memory block allocation status */ 172 #define OBJECT_ALLOCATED (1 << 0) 173 /* flag set after the first reporting of an unreference object */ 174 #define OBJECT_REPORTED (1 << 1) 175 /* flag set to not scan the object */ 176 #define OBJECT_NO_SCAN (1 << 2) 177 /* flag set to fully scan the object when scan_area allocation failed */ 178 #define OBJECT_FULL_SCAN (1 << 3) 179 /* flag set for object allocated with physical address */ 180 #define OBJECT_PHYS (1 << 4) 181 182 /* set when __remove_object() called */ 183 #define DELSTATE_REMOVED (1 << 0) 184 /* set to temporarily prevent deletion from object_list */ 185 #define DELSTATE_NO_DELETE (1 << 1) 186 187 #define HEX_PREFIX " " 188 /* number of bytes to print per line; must be 16 or 32 */ 189 #define HEX_ROW_SIZE 16 190 /* number of bytes to print at a time (1, 2, 4, 8) */ 191 #define HEX_GROUP_SIZE 1 192 /* include ASCII after the hex output */ 193 #define HEX_ASCII 1 194 /* max number of lines to be printed */ 195 #define HEX_MAX_LINES 2 196 197 /* the list of all allocated objects */ 198 static LIST_HEAD(object_list); 199 /* the list of gray-colored objects (see color_gray comment below) */ 200 static LIST_HEAD(gray_list); 201 /* memory pool allocation */ 202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 204 static LIST_HEAD(mem_pool_free_list); 205 /* search tree for object boundaries */ 206 static struct rb_root object_tree_root = RB_ROOT; 207 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 208 static struct rb_root object_phys_tree_root = RB_ROOT; 209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 210 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 211 212 /* allocation caches for kmemleak internal data */ 213 static struct kmem_cache *object_cache; 214 static struct kmem_cache *scan_area_cache; 215 216 /* set if tracing memory operations is enabled */ 217 static int kmemleak_enabled = 1; 218 /* same as above but only for the kmemleak_free() callback */ 219 static int kmemleak_free_enabled = 1; 220 /* set in the late_initcall if there were no errors */ 221 static int kmemleak_late_initialized; 222 /* set if a kmemleak warning was issued */ 223 static int kmemleak_warning; 224 /* set if a fatal kmemleak error has occurred */ 225 static int kmemleak_error; 226 227 /* minimum and maximum address that may be valid pointers */ 228 static unsigned long min_addr = ULONG_MAX; 229 static unsigned long max_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 308 kasan_disable_current(); 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 311 kasan_enable_current(); 312 } 313 314 /* 315 * Object colors, encoded with count and min_count: 316 * - white - orphan object, not enough references to it (count < min_count) 317 * - gray - not orphan, not marked as false positive (min_count == 0) or 318 * sufficient references to it (count >= min_count) 319 * - black - ignore, it doesn't contain references (e.g. text section) 320 * (min_count == -1). No function defined for this color. 321 * Newly created objects don't have any color assigned (object->count == -1) 322 * before the next memory scan when they become white. 323 */ 324 static bool color_white(const struct kmemleak_object *object) 325 { 326 return object->count != KMEMLEAK_BLACK && 327 object->count < object->min_count; 328 } 329 330 static bool color_gray(const struct kmemleak_object *object) 331 { 332 return object->min_count != KMEMLEAK_BLACK && 333 object->count >= object->min_count; 334 } 335 336 /* 337 * Objects are considered unreferenced only if their color is white, they have 338 * not be deleted and have a minimum age to avoid false positives caused by 339 * pointers temporarily stored in CPU registers. 340 */ 341 static bool unreferenced_object(struct kmemleak_object *object) 342 { 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 344 time_before_eq(object->jiffies + jiffies_min_age, 345 jiffies_last_scan); 346 } 347 348 /* 349 * Printing of the unreferenced objects information to the seq file. The 350 * print_unreferenced function must be called with the object->lock held. 351 */ 352 static void print_unreferenced(struct seq_file *seq, 353 struct kmemleak_object *object) 354 { 355 int i; 356 unsigned long *entries; 357 unsigned int nr_entries; 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 359 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 364 object->comm, object->pid, object->jiffies, 365 msecs_age / 1000, msecs_age % 1000); 366 hex_dump_object(seq, object); 367 warn_or_seq_printf(seq, " backtrace:\n"); 368 369 for (i = 0; i < nr_entries; i++) { 370 void *ptr = (void *)entries[i]; 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 372 } 373 } 374 375 /* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380 static void dump_object_info(struct kmemleak_object *object) 381 { 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%x\n", object->flags); 389 pr_notice(" checksum = %u\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 if (object->trace_handle) 392 stack_depot_print(object->trace_handle); 393 } 394 395 /* 396 * Look-up a memory block metadata (kmemleak_object) in the object search 397 * tree based on a pointer value. If alias is 0, only values pointing to the 398 * beginning of the memory block are allowed. The kmemleak_lock must be held 399 * when calling this function. 400 */ 401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 402 bool is_phys) 403 { 404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 405 object_tree_root.rb_node; 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 407 408 while (rb) { 409 struct kmemleak_object *object; 410 unsigned long untagged_objp; 411 412 object = rb_entry(rb, struct kmemleak_object, rb_node); 413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 414 415 if (untagged_ptr < untagged_objp) 416 rb = object->rb_node.rb_left; 417 else if (untagged_objp + object->size <= untagged_ptr) 418 rb = object->rb_node.rb_right; 419 else if (untagged_objp == untagged_ptr || alias) 420 return object; 421 else { 422 kmemleak_warn("Found object by alias at 0x%08lx\n", 423 ptr); 424 dump_object_info(object); 425 break; 426 } 427 } 428 return NULL; 429 } 430 431 /* Look-up a kmemleak object which allocated with virtual address. */ 432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 433 { 434 return __lookup_object(ptr, alias, false); 435 } 436 437 /* 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 439 * that once an object's use_count reached 0, the RCU freeing was already 440 * registered and the object should no longer be used. This function must be 441 * called under the protection of rcu_read_lock(). 442 */ 443 static int get_object(struct kmemleak_object *object) 444 { 445 return atomic_inc_not_zero(&object->use_count); 446 } 447 448 /* 449 * Memory pool allocation and freeing. kmemleak_lock must not be held. 450 */ 451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 452 { 453 unsigned long flags; 454 struct kmemleak_object *object; 455 456 /* try the slab allocator first */ 457 if (object_cache) { 458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 459 if (object) 460 return object; 461 } 462 463 /* slab allocation failed, try the memory pool */ 464 raw_spin_lock_irqsave(&kmemleak_lock, flags); 465 object = list_first_entry_or_null(&mem_pool_free_list, 466 typeof(*object), object_list); 467 if (object) 468 list_del(&object->object_list); 469 else if (mem_pool_free_count) 470 object = &mem_pool[--mem_pool_free_count]; 471 else 472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 474 475 return object; 476 } 477 478 /* 479 * Return the object to either the slab allocator or the memory pool. 480 */ 481 static void mem_pool_free(struct kmemleak_object *object) 482 { 483 unsigned long flags; 484 485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 486 kmem_cache_free(object_cache, object); 487 return; 488 } 489 490 /* add the object to the memory pool free list */ 491 raw_spin_lock_irqsave(&kmemleak_lock, flags); 492 list_add(&object->object_list, &mem_pool_free_list); 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 494 } 495 496 /* 497 * RCU callback to free a kmemleak_object. 498 */ 499 static void free_object_rcu(struct rcu_head *rcu) 500 { 501 struct hlist_node *tmp; 502 struct kmemleak_scan_area *area; 503 struct kmemleak_object *object = 504 container_of(rcu, struct kmemleak_object, rcu); 505 506 /* 507 * Once use_count is 0 (guaranteed by put_object), there is no other 508 * code accessing this object, hence no need for locking. 509 */ 510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 511 hlist_del(&area->node); 512 kmem_cache_free(scan_area_cache, area); 513 } 514 mem_pool_free(object); 515 } 516 517 /* 518 * Decrement the object use_count. Once the count is 0, free the object using 519 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 520 * delete_object() path, the delayed RCU freeing ensures that there is no 521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 522 * is also possible. 523 */ 524 static void put_object(struct kmemleak_object *object) 525 { 526 if (!atomic_dec_and_test(&object->use_count)) 527 return; 528 529 /* should only get here after delete_object was called */ 530 WARN_ON(object->flags & OBJECT_ALLOCATED); 531 532 /* 533 * It may be too early for the RCU callbacks, however, there is no 534 * concurrent object_list traversal when !object_cache and all objects 535 * came from the memory pool. Free the object directly. 536 */ 537 if (object_cache) 538 call_rcu(&object->rcu, free_object_rcu); 539 else 540 free_object_rcu(&object->rcu); 541 } 542 543 /* 544 * Look up an object in the object search tree and increase its use_count. 545 */ 546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 547 bool is_phys) 548 { 549 unsigned long flags; 550 struct kmemleak_object *object; 551 552 rcu_read_lock(); 553 raw_spin_lock_irqsave(&kmemleak_lock, flags); 554 object = __lookup_object(ptr, alias, is_phys); 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 556 557 /* check whether the object is still available */ 558 if (object && !get_object(object)) 559 object = NULL; 560 rcu_read_unlock(); 561 562 return object; 563 } 564 565 /* Look up and get an object which allocated with virtual address. */ 566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 567 { 568 return __find_and_get_object(ptr, alias, false); 569 } 570 571 /* 572 * Remove an object from the object_tree_root (or object_phys_tree_root) 573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 574 * is still enabled. 575 */ 576 static void __remove_object(struct kmemleak_object *object) 577 { 578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 579 &object_phys_tree_root : 580 &object_tree_root); 581 if (!(object->del_state & DELSTATE_NO_DELETE)) 582 list_del_rcu(&object->object_list); 583 object->del_state |= DELSTATE_REMOVED; 584 } 585 586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 587 int alias, 588 bool is_phys) 589 { 590 struct kmemleak_object *object; 591 592 object = __lookup_object(ptr, alias, is_phys); 593 if (object) 594 __remove_object(object); 595 596 return object; 597 } 598 599 /* 600 * Look up an object in the object search tree and remove it from both 601 * object_tree_root (or object_phys_tree_root) and object_list. The 602 * returned object's use_count should be at least 1, as initially set 603 * by create_object(). 604 */ 605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 606 bool is_phys) 607 { 608 unsigned long flags; 609 struct kmemleak_object *object; 610 611 raw_spin_lock_irqsave(&kmemleak_lock, flags); 612 object = __find_and_remove_object(ptr, alias, is_phys); 613 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 614 615 return object; 616 } 617 618 static noinline depot_stack_handle_t set_track_prepare(void) 619 { 620 depot_stack_handle_t trace_handle; 621 unsigned long entries[MAX_TRACE]; 622 unsigned int nr_entries; 623 624 /* 625 * Use object_cache to determine whether kmemleak_init() has 626 * been invoked. stack_depot_early_init() is called before 627 * kmemleak_init() in mm_core_init(). 628 */ 629 if (!object_cache) 630 return 0; 631 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 632 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 633 634 return trace_handle; 635 } 636 637 static struct kmemleak_object *__alloc_object(gfp_t gfp) 638 { 639 struct kmemleak_object *object; 640 641 object = mem_pool_alloc(gfp); 642 if (!object) { 643 pr_warn("Cannot allocate a kmemleak_object structure\n"); 644 kmemleak_disable(); 645 return NULL; 646 } 647 648 INIT_LIST_HEAD(&object->object_list); 649 INIT_LIST_HEAD(&object->gray_list); 650 INIT_HLIST_HEAD(&object->area_list); 651 raw_spin_lock_init(&object->lock); 652 atomic_set(&object->use_count, 1); 653 object->excess_ref = 0; 654 object->count = 0; /* white color initially */ 655 object->checksum = 0; 656 object->del_state = 0; 657 658 /* task information */ 659 if (in_hardirq()) { 660 object->pid = 0; 661 strncpy(object->comm, "hardirq", sizeof(object->comm)); 662 } else if (in_serving_softirq()) { 663 object->pid = 0; 664 strncpy(object->comm, "softirq", sizeof(object->comm)); 665 } else { 666 object->pid = current->pid; 667 /* 668 * There is a small chance of a race with set_task_comm(), 669 * however using get_task_comm() here may cause locking 670 * dependency issues with current->alloc_lock. In the worst 671 * case, the command line is not correct. 672 */ 673 strncpy(object->comm, current->comm, sizeof(object->comm)); 674 } 675 676 /* kernel backtrace */ 677 object->trace_handle = set_track_prepare(); 678 679 return object; 680 } 681 682 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 683 size_t size, int min_count, bool is_phys) 684 { 685 686 struct kmemleak_object *parent; 687 struct rb_node **link, *rb_parent; 688 unsigned long untagged_ptr; 689 unsigned long untagged_objp; 690 691 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 692 object->pointer = ptr; 693 object->size = kfence_ksize((void *)ptr) ?: size; 694 object->min_count = min_count; 695 object->jiffies = jiffies; 696 697 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 698 /* 699 * Only update min_addr and max_addr with object 700 * storing virtual address. 701 */ 702 if (!is_phys) { 703 min_addr = min(min_addr, untagged_ptr); 704 max_addr = max(max_addr, untagged_ptr + size); 705 } 706 link = is_phys ? &object_phys_tree_root.rb_node : 707 &object_tree_root.rb_node; 708 rb_parent = NULL; 709 while (*link) { 710 rb_parent = *link; 711 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 712 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 713 if (untagged_ptr + size <= untagged_objp) 714 link = &parent->rb_node.rb_left; 715 else if (untagged_objp + parent->size <= untagged_ptr) 716 link = &parent->rb_node.rb_right; 717 else { 718 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 719 ptr); 720 /* 721 * No need for parent->lock here since "parent" cannot 722 * be freed while the kmemleak_lock is held. 723 */ 724 dump_object_info(parent); 725 return -EEXIST; 726 } 727 } 728 rb_link_node(&object->rb_node, rb_parent, link); 729 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 730 &object_tree_root); 731 list_add_tail_rcu(&object->object_list, &object_list); 732 733 return 0; 734 } 735 736 /* 737 * Create the metadata (struct kmemleak_object) corresponding to an allocated 738 * memory block and add it to the object_list and object_tree_root (or 739 * object_phys_tree_root). 740 */ 741 static void __create_object(unsigned long ptr, size_t size, 742 int min_count, gfp_t gfp, bool is_phys) 743 { 744 struct kmemleak_object *object; 745 unsigned long flags; 746 int ret; 747 748 object = __alloc_object(gfp); 749 if (!object) 750 return; 751 752 raw_spin_lock_irqsave(&kmemleak_lock, flags); 753 ret = __link_object(object, ptr, size, min_count, is_phys); 754 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 755 if (ret) 756 mem_pool_free(object); 757 } 758 759 /* Create kmemleak object which allocated with virtual address. */ 760 static void create_object(unsigned long ptr, size_t size, 761 int min_count, gfp_t gfp) 762 { 763 __create_object(ptr, size, min_count, gfp, false); 764 } 765 766 /* Create kmemleak object which allocated with physical address. */ 767 static void create_object_phys(unsigned long ptr, size_t size, 768 int min_count, gfp_t gfp) 769 { 770 __create_object(ptr, size, min_count, gfp, true); 771 } 772 773 /* 774 * Mark the object as not allocated and schedule RCU freeing via put_object(). 775 */ 776 static void __delete_object(struct kmemleak_object *object) 777 { 778 unsigned long flags; 779 780 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 781 WARN_ON(atomic_read(&object->use_count) < 1); 782 783 /* 784 * Locking here also ensures that the corresponding memory block 785 * cannot be freed when it is being scanned. 786 */ 787 raw_spin_lock_irqsave(&object->lock, flags); 788 object->flags &= ~OBJECT_ALLOCATED; 789 raw_spin_unlock_irqrestore(&object->lock, flags); 790 put_object(object); 791 } 792 793 /* 794 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 795 * delete it. 796 */ 797 static void delete_object_full(unsigned long ptr) 798 { 799 struct kmemleak_object *object; 800 801 object = find_and_remove_object(ptr, 0, false); 802 if (!object) { 803 #ifdef DEBUG 804 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 805 ptr); 806 #endif 807 return; 808 } 809 __delete_object(object); 810 } 811 812 /* 813 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 814 * delete it. If the memory block is partially freed, the function may create 815 * additional metadata for the remaining parts of the block. 816 */ 817 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 818 { 819 struct kmemleak_object *object, *object_l, *object_r; 820 unsigned long start, end, flags; 821 822 object_l = __alloc_object(GFP_KERNEL); 823 if (!object_l) 824 return; 825 826 object_r = __alloc_object(GFP_KERNEL); 827 if (!object_r) 828 goto out; 829 830 raw_spin_lock_irqsave(&kmemleak_lock, flags); 831 object = __find_and_remove_object(ptr, 1, is_phys); 832 if (!object) { 833 #ifdef DEBUG 834 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 835 ptr, size); 836 #endif 837 goto unlock; 838 } 839 840 /* 841 * Create one or two objects that may result from the memory block 842 * split. Note that partial freeing is only done by free_bootmem() and 843 * this happens before kmemleak_init() is called. 844 */ 845 start = object->pointer; 846 end = object->pointer + object->size; 847 if ((ptr > start) && 848 !__link_object(object_l, start, ptr - start, 849 object->min_count, is_phys)) 850 object_l = NULL; 851 if ((ptr + size < end) && 852 !__link_object(object_r, ptr + size, end - ptr - size, 853 object->min_count, is_phys)) 854 object_r = NULL; 855 856 unlock: 857 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 858 if (object) 859 __delete_object(object); 860 861 out: 862 if (object_l) 863 mem_pool_free(object_l); 864 if (object_r) 865 mem_pool_free(object_r); 866 } 867 868 static void __paint_it(struct kmemleak_object *object, int color) 869 { 870 object->min_count = color; 871 if (color == KMEMLEAK_BLACK) 872 object->flags |= OBJECT_NO_SCAN; 873 } 874 875 static void paint_it(struct kmemleak_object *object, int color) 876 { 877 unsigned long flags; 878 879 raw_spin_lock_irqsave(&object->lock, flags); 880 __paint_it(object, color); 881 raw_spin_unlock_irqrestore(&object->lock, flags); 882 } 883 884 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 885 { 886 struct kmemleak_object *object; 887 888 object = __find_and_get_object(ptr, 0, is_phys); 889 if (!object) { 890 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 891 ptr, 892 (color == KMEMLEAK_GREY) ? "Grey" : 893 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 894 return; 895 } 896 paint_it(object, color); 897 put_object(object); 898 } 899 900 /* 901 * Mark an object permanently as gray-colored so that it can no longer be 902 * reported as a leak. This is used in general to mark a false positive. 903 */ 904 static void make_gray_object(unsigned long ptr) 905 { 906 paint_ptr(ptr, KMEMLEAK_GREY, false); 907 } 908 909 /* 910 * Mark the object as black-colored so that it is ignored from scans and 911 * reporting. 912 */ 913 static void make_black_object(unsigned long ptr, bool is_phys) 914 { 915 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 916 } 917 918 /* 919 * Add a scanning area to the object. If at least one such area is added, 920 * kmemleak will only scan these ranges rather than the whole memory block. 921 */ 922 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 923 { 924 unsigned long flags; 925 struct kmemleak_object *object; 926 struct kmemleak_scan_area *area = NULL; 927 unsigned long untagged_ptr; 928 unsigned long untagged_objp; 929 930 object = find_and_get_object(ptr, 1); 931 if (!object) { 932 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 933 ptr); 934 return; 935 } 936 937 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 938 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 939 940 if (scan_area_cache) 941 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 942 943 raw_spin_lock_irqsave(&object->lock, flags); 944 if (!area) { 945 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 946 /* mark the object for full scan to avoid false positives */ 947 object->flags |= OBJECT_FULL_SCAN; 948 goto out_unlock; 949 } 950 if (size == SIZE_MAX) { 951 size = untagged_objp + object->size - untagged_ptr; 952 } else if (untagged_ptr + size > untagged_objp + object->size) { 953 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 954 dump_object_info(object); 955 kmem_cache_free(scan_area_cache, area); 956 goto out_unlock; 957 } 958 959 INIT_HLIST_NODE(&area->node); 960 area->start = ptr; 961 area->size = size; 962 963 hlist_add_head(&area->node, &object->area_list); 964 out_unlock: 965 raw_spin_unlock_irqrestore(&object->lock, flags); 966 put_object(object); 967 } 968 969 /* 970 * Any surplus references (object already gray) to 'ptr' are passed to 971 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 972 * vm_struct may be used as an alternative reference to the vmalloc'ed object 973 * (see free_thread_stack()). 974 */ 975 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 976 { 977 unsigned long flags; 978 struct kmemleak_object *object; 979 980 object = find_and_get_object(ptr, 0); 981 if (!object) { 982 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 983 ptr); 984 return; 985 } 986 987 raw_spin_lock_irqsave(&object->lock, flags); 988 object->excess_ref = excess_ref; 989 raw_spin_unlock_irqrestore(&object->lock, flags); 990 put_object(object); 991 } 992 993 /* 994 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 995 * pointer. Such object will not be scanned by kmemleak but references to it 996 * are searched. 997 */ 998 static void object_no_scan(unsigned long ptr) 999 { 1000 unsigned long flags; 1001 struct kmemleak_object *object; 1002 1003 object = find_and_get_object(ptr, 0); 1004 if (!object) { 1005 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1006 return; 1007 } 1008 1009 raw_spin_lock_irqsave(&object->lock, flags); 1010 object->flags |= OBJECT_NO_SCAN; 1011 raw_spin_unlock_irqrestore(&object->lock, flags); 1012 put_object(object); 1013 } 1014 1015 /** 1016 * kmemleak_alloc - register a newly allocated object 1017 * @ptr: pointer to beginning of the object 1018 * @size: size of the object 1019 * @min_count: minimum number of references to this object. If during memory 1020 * scanning a number of references less than @min_count is found, 1021 * the object is reported as a memory leak. If @min_count is 0, 1022 * the object is never reported as a leak. If @min_count is -1, 1023 * the object is ignored (not scanned and not reported as a leak) 1024 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1025 * 1026 * This function is called from the kernel allocators when a new object 1027 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1028 */ 1029 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1030 gfp_t gfp) 1031 { 1032 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1033 1034 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1035 create_object((unsigned long)ptr, size, min_count, gfp); 1036 } 1037 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1038 1039 /** 1040 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1041 * @ptr: __percpu pointer to beginning of the object 1042 * @size: size of the object 1043 * @gfp: flags used for kmemleak internal memory allocations 1044 * 1045 * This function is called from the kernel percpu allocator when a new object 1046 * (memory block) is allocated (alloc_percpu). 1047 */ 1048 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1049 gfp_t gfp) 1050 { 1051 unsigned int cpu; 1052 1053 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1054 1055 /* 1056 * Percpu allocations are only scanned and not reported as leaks 1057 * (min_count is set to 0). 1058 */ 1059 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1060 for_each_possible_cpu(cpu) 1061 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 1062 size, 0, gfp); 1063 } 1064 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1065 1066 /** 1067 * kmemleak_vmalloc - register a newly vmalloc'ed object 1068 * @area: pointer to vm_struct 1069 * @size: size of the object 1070 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1071 * 1072 * This function is called from the vmalloc() kernel allocator when a new 1073 * object (memory block) is allocated. 1074 */ 1075 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1076 { 1077 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1078 1079 /* 1080 * A min_count = 2 is needed because vm_struct contains a reference to 1081 * the virtual address of the vmalloc'ed block. 1082 */ 1083 if (kmemleak_enabled) { 1084 create_object((unsigned long)area->addr, size, 2, gfp); 1085 object_set_excess_ref((unsigned long)area, 1086 (unsigned long)area->addr); 1087 } 1088 } 1089 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1090 1091 /** 1092 * kmemleak_free - unregister a previously registered object 1093 * @ptr: pointer to beginning of the object 1094 * 1095 * This function is called from the kernel allocators when an object (memory 1096 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1097 */ 1098 void __ref kmemleak_free(const void *ptr) 1099 { 1100 pr_debug("%s(0x%px)\n", __func__, ptr); 1101 1102 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1103 delete_object_full((unsigned long)ptr); 1104 } 1105 EXPORT_SYMBOL_GPL(kmemleak_free); 1106 1107 /** 1108 * kmemleak_free_part - partially unregister a previously registered object 1109 * @ptr: pointer to the beginning or inside the object. This also 1110 * represents the start of the range to be freed 1111 * @size: size to be unregistered 1112 * 1113 * This function is called when only a part of a memory block is freed 1114 * (usually from the bootmem allocator). 1115 */ 1116 void __ref kmemleak_free_part(const void *ptr, size_t size) 1117 { 1118 pr_debug("%s(0x%px)\n", __func__, ptr); 1119 1120 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1121 delete_object_part((unsigned long)ptr, size, false); 1122 } 1123 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1124 1125 /** 1126 * kmemleak_free_percpu - unregister a previously registered __percpu object 1127 * @ptr: __percpu pointer to beginning of the object 1128 * 1129 * This function is called from the kernel percpu allocator when an object 1130 * (memory block) is freed (free_percpu). 1131 */ 1132 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1133 { 1134 unsigned int cpu; 1135 1136 pr_debug("%s(0x%px)\n", __func__, ptr); 1137 1138 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1139 for_each_possible_cpu(cpu) 1140 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1141 cpu)); 1142 } 1143 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1144 1145 /** 1146 * kmemleak_update_trace - update object allocation stack trace 1147 * @ptr: pointer to beginning of the object 1148 * 1149 * Override the object allocation stack trace for cases where the actual 1150 * allocation place is not always useful. 1151 */ 1152 void __ref kmemleak_update_trace(const void *ptr) 1153 { 1154 struct kmemleak_object *object; 1155 depot_stack_handle_t trace_handle; 1156 unsigned long flags; 1157 1158 pr_debug("%s(0x%px)\n", __func__, ptr); 1159 1160 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1161 return; 1162 1163 object = find_and_get_object((unsigned long)ptr, 1); 1164 if (!object) { 1165 #ifdef DEBUG 1166 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1167 ptr); 1168 #endif 1169 return; 1170 } 1171 1172 trace_handle = set_track_prepare(); 1173 raw_spin_lock_irqsave(&object->lock, flags); 1174 object->trace_handle = trace_handle; 1175 raw_spin_unlock_irqrestore(&object->lock, flags); 1176 1177 put_object(object); 1178 } 1179 EXPORT_SYMBOL(kmemleak_update_trace); 1180 1181 /** 1182 * kmemleak_not_leak - mark an allocated object as false positive 1183 * @ptr: pointer to beginning of the object 1184 * 1185 * Calling this function on an object will cause the memory block to no longer 1186 * be reported as leak and always be scanned. 1187 */ 1188 void __ref kmemleak_not_leak(const void *ptr) 1189 { 1190 pr_debug("%s(0x%px)\n", __func__, ptr); 1191 1192 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1193 make_gray_object((unsigned long)ptr); 1194 } 1195 EXPORT_SYMBOL(kmemleak_not_leak); 1196 1197 /** 1198 * kmemleak_ignore - ignore an allocated object 1199 * @ptr: pointer to beginning of the object 1200 * 1201 * Calling this function on an object will cause the memory block to be 1202 * ignored (not scanned and not reported as a leak). This is usually done when 1203 * it is known that the corresponding block is not a leak and does not contain 1204 * any references to other allocated memory blocks. 1205 */ 1206 void __ref kmemleak_ignore(const void *ptr) 1207 { 1208 pr_debug("%s(0x%px)\n", __func__, ptr); 1209 1210 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1211 make_black_object((unsigned long)ptr, false); 1212 } 1213 EXPORT_SYMBOL(kmemleak_ignore); 1214 1215 /** 1216 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1217 * @ptr: pointer to beginning or inside the object. This also 1218 * represents the start of the scan area 1219 * @size: size of the scan area 1220 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1221 * 1222 * This function is used when it is known that only certain parts of an object 1223 * contain references to other objects. Kmemleak will only scan these areas 1224 * reducing the number false negatives. 1225 */ 1226 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1227 { 1228 pr_debug("%s(0x%px)\n", __func__, ptr); 1229 1230 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1231 add_scan_area((unsigned long)ptr, size, gfp); 1232 } 1233 EXPORT_SYMBOL(kmemleak_scan_area); 1234 1235 /** 1236 * kmemleak_no_scan - do not scan an allocated object 1237 * @ptr: pointer to beginning of the object 1238 * 1239 * This function notifies kmemleak not to scan the given memory block. Useful 1240 * in situations where it is known that the given object does not contain any 1241 * references to other objects. Kmemleak will not scan such objects reducing 1242 * the number of false negatives. 1243 */ 1244 void __ref kmemleak_no_scan(const void *ptr) 1245 { 1246 pr_debug("%s(0x%px)\n", __func__, ptr); 1247 1248 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1249 object_no_scan((unsigned long)ptr); 1250 } 1251 EXPORT_SYMBOL(kmemleak_no_scan); 1252 1253 /** 1254 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1255 * address argument 1256 * @phys: physical address of the object 1257 * @size: size of the object 1258 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1259 */ 1260 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1261 { 1262 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1263 1264 if (kmemleak_enabled) 1265 /* 1266 * Create object with OBJECT_PHYS flag and 1267 * assume min_count 0. 1268 */ 1269 create_object_phys((unsigned long)phys, size, 0, gfp); 1270 } 1271 EXPORT_SYMBOL(kmemleak_alloc_phys); 1272 1273 /** 1274 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1275 * physical address argument 1276 * @phys: physical address if the beginning or inside an object. This 1277 * also represents the start of the range to be freed 1278 * @size: size to be unregistered 1279 */ 1280 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1281 { 1282 pr_debug("%s(0x%px)\n", __func__, &phys); 1283 1284 if (kmemleak_enabled) 1285 delete_object_part((unsigned long)phys, size, true); 1286 } 1287 EXPORT_SYMBOL(kmemleak_free_part_phys); 1288 1289 /** 1290 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1291 * address argument 1292 * @phys: physical address of the object 1293 */ 1294 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1295 { 1296 pr_debug("%s(0x%px)\n", __func__, &phys); 1297 1298 if (kmemleak_enabled) 1299 make_black_object((unsigned long)phys, true); 1300 } 1301 EXPORT_SYMBOL(kmemleak_ignore_phys); 1302 1303 /* 1304 * Update an object's checksum and return true if it was modified. 1305 */ 1306 static bool update_checksum(struct kmemleak_object *object) 1307 { 1308 u32 old_csum = object->checksum; 1309 1310 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1311 return false; 1312 1313 kasan_disable_current(); 1314 kcsan_disable_current(); 1315 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1316 kasan_enable_current(); 1317 kcsan_enable_current(); 1318 1319 return object->checksum != old_csum; 1320 } 1321 1322 /* 1323 * Update an object's references. object->lock must be held by the caller. 1324 */ 1325 static void update_refs(struct kmemleak_object *object) 1326 { 1327 if (!color_white(object)) { 1328 /* non-orphan, ignored or new */ 1329 return; 1330 } 1331 1332 /* 1333 * Increase the object's reference count (number of pointers to the 1334 * memory block). If this count reaches the required minimum, the 1335 * object's color will become gray and it will be added to the 1336 * gray_list. 1337 */ 1338 object->count++; 1339 if (color_gray(object)) { 1340 /* put_object() called when removing from gray_list */ 1341 WARN_ON(!get_object(object)); 1342 list_add_tail(&object->gray_list, &gray_list); 1343 } 1344 } 1345 1346 /* 1347 * Memory scanning is a long process and it needs to be interruptible. This 1348 * function checks whether such interrupt condition occurred. 1349 */ 1350 static int scan_should_stop(void) 1351 { 1352 if (!kmemleak_enabled) 1353 return 1; 1354 1355 /* 1356 * This function may be called from either process or kthread context, 1357 * hence the need to check for both stop conditions. 1358 */ 1359 if (current->mm) 1360 return signal_pending(current); 1361 else 1362 return kthread_should_stop(); 1363 1364 return 0; 1365 } 1366 1367 /* 1368 * Scan a memory block (exclusive range) for valid pointers and add those 1369 * found to the gray list. 1370 */ 1371 static void scan_block(void *_start, void *_end, 1372 struct kmemleak_object *scanned) 1373 { 1374 unsigned long *ptr; 1375 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1376 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1377 unsigned long flags; 1378 unsigned long untagged_ptr; 1379 1380 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1381 for (ptr = start; ptr < end; ptr++) { 1382 struct kmemleak_object *object; 1383 unsigned long pointer; 1384 unsigned long excess_ref; 1385 1386 if (scan_should_stop()) 1387 break; 1388 1389 kasan_disable_current(); 1390 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1391 kasan_enable_current(); 1392 1393 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1394 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1395 continue; 1396 1397 /* 1398 * No need for get_object() here since we hold kmemleak_lock. 1399 * object->use_count cannot be dropped to 0 while the object 1400 * is still present in object_tree_root and object_list 1401 * (with updates protected by kmemleak_lock). 1402 */ 1403 object = lookup_object(pointer, 1); 1404 if (!object) 1405 continue; 1406 if (object == scanned) 1407 /* self referenced, ignore */ 1408 continue; 1409 1410 /* 1411 * Avoid the lockdep recursive warning on object->lock being 1412 * previously acquired in scan_object(). These locks are 1413 * enclosed by scan_mutex. 1414 */ 1415 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1416 /* only pass surplus references (object already gray) */ 1417 if (color_gray(object)) { 1418 excess_ref = object->excess_ref; 1419 /* no need for update_refs() if object already gray */ 1420 } else { 1421 excess_ref = 0; 1422 update_refs(object); 1423 } 1424 raw_spin_unlock(&object->lock); 1425 1426 if (excess_ref) { 1427 object = lookup_object(excess_ref, 0); 1428 if (!object) 1429 continue; 1430 if (object == scanned) 1431 /* circular reference, ignore */ 1432 continue; 1433 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1434 update_refs(object); 1435 raw_spin_unlock(&object->lock); 1436 } 1437 } 1438 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1439 } 1440 1441 /* 1442 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1443 */ 1444 #ifdef CONFIG_SMP 1445 static void scan_large_block(void *start, void *end) 1446 { 1447 void *next; 1448 1449 while (start < end) { 1450 next = min(start + MAX_SCAN_SIZE, end); 1451 scan_block(start, next, NULL); 1452 start = next; 1453 cond_resched(); 1454 } 1455 } 1456 #endif 1457 1458 /* 1459 * Scan a memory block corresponding to a kmemleak_object. A condition is 1460 * that object->use_count >= 1. 1461 */ 1462 static void scan_object(struct kmemleak_object *object) 1463 { 1464 struct kmemleak_scan_area *area; 1465 unsigned long flags; 1466 void *obj_ptr; 1467 1468 /* 1469 * Once the object->lock is acquired, the corresponding memory block 1470 * cannot be freed (the same lock is acquired in delete_object). 1471 */ 1472 raw_spin_lock_irqsave(&object->lock, flags); 1473 if (object->flags & OBJECT_NO_SCAN) 1474 goto out; 1475 if (!(object->flags & OBJECT_ALLOCATED)) 1476 /* already freed object */ 1477 goto out; 1478 1479 obj_ptr = object->flags & OBJECT_PHYS ? 1480 __va((phys_addr_t)object->pointer) : 1481 (void *)object->pointer; 1482 1483 if (hlist_empty(&object->area_list) || 1484 object->flags & OBJECT_FULL_SCAN) { 1485 void *start = obj_ptr; 1486 void *end = obj_ptr + object->size; 1487 void *next; 1488 1489 do { 1490 next = min(start + MAX_SCAN_SIZE, end); 1491 scan_block(start, next, object); 1492 1493 start = next; 1494 if (start >= end) 1495 break; 1496 1497 raw_spin_unlock_irqrestore(&object->lock, flags); 1498 cond_resched(); 1499 raw_spin_lock_irqsave(&object->lock, flags); 1500 } while (object->flags & OBJECT_ALLOCATED); 1501 } else 1502 hlist_for_each_entry(area, &object->area_list, node) 1503 scan_block((void *)area->start, 1504 (void *)(area->start + area->size), 1505 object); 1506 out: 1507 raw_spin_unlock_irqrestore(&object->lock, flags); 1508 } 1509 1510 /* 1511 * Scan the objects already referenced (gray objects). More objects will be 1512 * referenced and, if there are no memory leaks, all the objects are scanned. 1513 */ 1514 static void scan_gray_list(void) 1515 { 1516 struct kmemleak_object *object, *tmp; 1517 1518 /* 1519 * The list traversal is safe for both tail additions and removals 1520 * from inside the loop. The kmemleak objects cannot be freed from 1521 * outside the loop because their use_count was incremented. 1522 */ 1523 object = list_entry(gray_list.next, typeof(*object), gray_list); 1524 while (&object->gray_list != &gray_list) { 1525 cond_resched(); 1526 1527 /* may add new objects to the list */ 1528 if (!scan_should_stop()) 1529 scan_object(object); 1530 1531 tmp = list_entry(object->gray_list.next, typeof(*object), 1532 gray_list); 1533 1534 /* remove the object from the list and release it */ 1535 list_del(&object->gray_list); 1536 put_object(object); 1537 1538 object = tmp; 1539 } 1540 WARN_ON(!list_empty(&gray_list)); 1541 } 1542 1543 /* 1544 * Conditionally call resched() in an object iteration loop while making sure 1545 * that the given object won't go away without RCU read lock by performing a 1546 * get_object() if necessaary. 1547 */ 1548 static void kmemleak_cond_resched(struct kmemleak_object *object) 1549 { 1550 if (!get_object(object)) 1551 return; /* Try next object */ 1552 1553 raw_spin_lock_irq(&kmemleak_lock); 1554 if (object->del_state & DELSTATE_REMOVED) 1555 goto unlock_put; /* Object removed */ 1556 object->del_state |= DELSTATE_NO_DELETE; 1557 raw_spin_unlock_irq(&kmemleak_lock); 1558 1559 rcu_read_unlock(); 1560 cond_resched(); 1561 rcu_read_lock(); 1562 1563 raw_spin_lock_irq(&kmemleak_lock); 1564 if (object->del_state & DELSTATE_REMOVED) 1565 list_del_rcu(&object->object_list); 1566 object->del_state &= ~DELSTATE_NO_DELETE; 1567 unlock_put: 1568 raw_spin_unlock_irq(&kmemleak_lock); 1569 put_object(object); 1570 } 1571 1572 /* 1573 * Scan data sections and all the referenced memory blocks allocated via the 1574 * kernel's standard allocators. This function must be called with the 1575 * scan_mutex held. 1576 */ 1577 static void kmemleak_scan(void) 1578 { 1579 struct kmemleak_object *object; 1580 struct zone *zone; 1581 int __maybe_unused i; 1582 int new_leaks = 0; 1583 1584 jiffies_last_scan = jiffies; 1585 1586 /* prepare the kmemleak_object's */ 1587 rcu_read_lock(); 1588 list_for_each_entry_rcu(object, &object_list, object_list) { 1589 raw_spin_lock_irq(&object->lock); 1590 #ifdef DEBUG 1591 /* 1592 * With a few exceptions there should be a maximum of 1593 * 1 reference to any object at this point. 1594 */ 1595 if (atomic_read(&object->use_count) > 1) { 1596 pr_debug("object->use_count = %d\n", 1597 atomic_read(&object->use_count)); 1598 dump_object_info(object); 1599 } 1600 #endif 1601 1602 /* ignore objects outside lowmem (paint them black) */ 1603 if ((object->flags & OBJECT_PHYS) && 1604 !(object->flags & OBJECT_NO_SCAN)) { 1605 unsigned long phys = object->pointer; 1606 1607 if (PHYS_PFN(phys) < min_low_pfn || 1608 PHYS_PFN(phys + object->size) >= max_low_pfn) 1609 __paint_it(object, KMEMLEAK_BLACK); 1610 } 1611 1612 /* reset the reference count (whiten the object) */ 1613 object->count = 0; 1614 if (color_gray(object) && get_object(object)) 1615 list_add_tail(&object->gray_list, &gray_list); 1616 1617 raw_spin_unlock_irq(&object->lock); 1618 1619 if (need_resched()) 1620 kmemleak_cond_resched(object); 1621 } 1622 rcu_read_unlock(); 1623 1624 #ifdef CONFIG_SMP 1625 /* per-cpu sections scanning */ 1626 for_each_possible_cpu(i) 1627 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1628 __per_cpu_end + per_cpu_offset(i)); 1629 #endif 1630 1631 /* 1632 * Struct page scanning for each node. 1633 */ 1634 get_online_mems(); 1635 for_each_populated_zone(zone) { 1636 unsigned long start_pfn = zone->zone_start_pfn; 1637 unsigned long end_pfn = zone_end_pfn(zone); 1638 unsigned long pfn; 1639 1640 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1641 struct page *page = pfn_to_online_page(pfn); 1642 1643 if (!(pfn & 63)) 1644 cond_resched(); 1645 1646 if (!page) 1647 continue; 1648 1649 /* only scan pages belonging to this zone */ 1650 if (page_zone(page) != zone) 1651 continue; 1652 /* only scan if page is in use */ 1653 if (page_count(page) == 0) 1654 continue; 1655 scan_block(page, page + 1, NULL); 1656 } 1657 } 1658 put_online_mems(); 1659 1660 /* 1661 * Scanning the task stacks (may introduce false negatives). 1662 */ 1663 if (kmemleak_stack_scan) { 1664 struct task_struct *p, *g; 1665 1666 rcu_read_lock(); 1667 for_each_process_thread(g, p) { 1668 void *stack = try_get_task_stack(p); 1669 if (stack) { 1670 scan_block(stack, stack + THREAD_SIZE, NULL); 1671 put_task_stack(p); 1672 } 1673 } 1674 rcu_read_unlock(); 1675 } 1676 1677 /* 1678 * Scan the objects already referenced from the sections scanned 1679 * above. 1680 */ 1681 scan_gray_list(); 1682 1683 /* 1684 * Check for new or unreferenced objects modified since the previous 1685 * scan and color them gray until the next scan. 1686 */ 1687 rcu_read_lock(); 1688 list_for_each_entry_rcu(object, &object_list, object_list) { 1689 if (need_resched()) 1690 kmemleak_cond_resched(object); 1691 1692 /* 1693 * This is racy but we can save the overhead of lock/unlock 1694 * calls. The missed objects, if any, should be caught in 1695 * the next scan. 1696 */ 1697 if (!color_white(object)) 1698 continue; 1699 raw_spin_lock_irq(&object->lock); 1700 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1701 && update_checksum(object) && get_object(object)) { 1702 /* color it gray temporarily */ 1703 object->count = object->min_count; 1704 list_add_tail(&object->gray_list, &gray_list); 1705 } 1706 raw_spin_unlock_irq(&object->lock); 1707 } 1708 rcu_read_unlock(); 1709 1710 /* 1711 * Re-scan the gray list for modified unreferenced objects. 1712 */ 1713 scan_gray_list(); 1714 1715 /* 1716 * If scanning was stopped do not report any new unreferenced objects. 1717 */ 1718 if (scan_should_stop()) 1719 return; 1720 1721 /* 1722 * Scanning result reporting. 1723 */ 1724 rcu_read_lock(); 1725 list_for_each_entry_rcu(object, &object_list, object_list) { 1726 if (need_resched()) 1727 kmemleak_cond_resched(object); 1728 1729 /* 1730 * This is racy but we can save the overhead of lock/unlock 1731 * calls. The missed objects, if any, should be caught in 1732 * the next scan. 1733 */ 1734 if (!color_white(object)) 1735 continue; 1736 raw_spin_lock_irq(&object->lock); 1737 if (unreferenced_object(object) && 1738 !(object->flags & OBJECT_REPORTED)) { 1739 object->flags |= OBJECT_REPORTED; 1740 1741 if (kmemleak_verbose) 1742 print_unreferenced(NULL, object); 1743 1744 new_leaks++; 1745 } 1746 raw_spin_unlock_irq(&object->lock); 1747 } 1748 rcu_read_unlock(); 1749 1750 if (new_leaks) { 1751 kmemleak_found_leaks = true; 1752 1753 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1754 new_leaks); 1755 } 1756 1757 } 1758 1759 /* 1760 * Thread function performing automatic memory scanning. Unreferenced objects 1761 * at the end of a memory scan are reported but only the first time. 1762 */ 1763 static int kmemleak_scan_thread(void *arg) 1764 { 1765 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1766 1767 pr_info("Automatic memory scanning thread started\n"); 1768 set_user_nice(current, 10); 1769 1770 /* 1771 * Wait before the first scan to allow the system to fully initialize. 1772 */ 1773 if (first_run) { 1774 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1775 first_run = 0; 1776 while (timeout && !kthread_should_stop()) 1777 timeout = schedule_timeout_interruptible(timeout); 1778 } 1779 1780 while (!kthread_should_stop()) { 1781 signed long timeout = READ_ONCE(jiffies_scan_wait); 1782 1783 mutex_lock(&scan_mutex); 1784 kmemleak_scan(); 1785 mutex_unlock(&scan_mutex); 1786 1787 /* wait before the next scan */ 1788 while (timeout && !kthread_should_stop()) 1789 timeout = schedule_timeout_interruptible(timeout); 1790 } 1791 1792 pr_info("Automatic memory scanning thread ended\n"); 1793 1794 return 0; 1795 } 1796 1797 /* 1798 * Start the automatic memory scanning thread. This function must be called 1799 * with the scan_mutex held. 1800 */ 1801 static void start_scan_thread(void) 1802 { 1803 if (scan_thread) 1804 return; 1805 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1806 if (IS_ERR(scan_thread)) { 1807 pr_warn("Failed to create the scan thread\n"); 1808 scan_thread = NULL; 1809 } 1810 } 1811 1812 /* 1813 * Stop the automatic memory scanning thread. 1814 */ 1815 static void stop_scan_thread(void) 1816 { 1817 if (scan_thread) { 1818 kthread_stop(scan_thread); 1819 scan_thread = NULL; 1820 } 1821 } 1822 1823 /* 1824 * Iterate over the object_list and return the first valid object at or after 1825 * the required position with its use_count incremented. The function triggers 1826 * a memory scanning when the pos argument points to the first position. 1827 */ 1828 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1829 { 1830 struct kmemleak_object *object; 1831 loff_t n = *pos; 1832 int err; 1833 1834 err = mutex_lock_interruptible(&scan_mutex); 1835 if (err < 0) 1836 return ERR_PTR(err); 1837 1838 rcu_read_lock(); 1839 list_for_each_entry_rcu(object, &object_list, object_list) { 1840 if (n-- > 0) 1841 continue; 1842 if (get_object(object)) 1843 goto out; 1844 } 1845 object = NULL; 1846 out: 1847 return object; 1848 } 1849 1850 /* 1851 * Return the next object in the object_list. The function decrements the 1852 * use_count of the previous object and increases that of the next one. 1853 */ 1854 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1855 { 1856 struct kmemleak_object *prev_obj = v; 1857 struct kmemleak_object *next_obj = NULL; 1858 struct kmemleak_object *obj = prev_obj; 1859 1860 ++(*pos); 1861 1862 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1863 if (get_object(obj)) { 1864 next_obj = obj; 1865 break; 1866 } 1867 } 1868 1869 put_object(prev_obj); 1870 return next_obj; 1871 } 1872 1873 /* 1874 * Decrement the use_count of the last object required, if any. 1875 */ 1876 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1877 { 1878 if (!IS_ERR(v)) { 1879 /* 1880 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1881 * waiting was interrupted, so only release it if !IS_ERR. 1882 */ 1883 rcu_read_unlock(); 1884 mutex_unlock(&scan_mutex); 1885 if (v) 1886 put_object(v); 1887 } 1888 } 1889 1890 /* 1891 * Print the information for an unreferenced object to the seq file. 1892 */ 1893 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1894 { 1895 struct kmemleak_object *object = v; 1896 unsigned long flags; 1897 1898 raw_spin_lock_irqsave(&object->lock, flags); 1899 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1900 print_unreferenced(seq, object); 1901 raw_spin_unlock_irqrestore(&object->lock, flags); 1902 return 0; 1903 } 1904 1905 static const struct seq_operations kmemleak_seq_ops = { 1906 .start = kmemleak_seq_start, 1907 .next = kmemleak_seq_next, 1908 .stop = kmemleak_seq_stop, 1909 .show = kmemleak_seq_show, 1910 }; 1911 1912 static int kmemleak_open(struct inode *inode, struct file *file) 1913 { 1914 return seq_open(file, &kmemleak_seq_ops); 1915 } 1916 1917 static int dump_str_object_info(const char *str) 1918 { 1919 unsigned long flags; 1920 struct kmemleak_object *object; 1921 unsigned long addr; 1922 1923 if (kstrtoul(str, 0, &addr)) 1924 return -EINVAL; 1925 object = find_and_get_object(addr, 0); 1926 if (!object) { 1927 pr_info("Unknown object at 0x%08lx\n", addr); 1928 return -EINVAL; 1929 } 1930 1931 raw_spin_lock_irqsave(&object->lock, flags); 1932 dump_object_info(object); 1933 raw_spin_unlock_irqrestore(&object->lock, flags); 1934 1935 put_object(object); 1936 return 0; 1937 } 1938 1939 /* 1940 * We use grey instead of black to ensure we can do future scans on the same 1941 * objects. If we did not do future scans these black objects could 1942 * potentially contain references to newly allocated objects in the future and 1943 * we'd end up with false positives. 1944 */ 1945 static void kmemleak_clear(void) 1946 { 1947 struct kmemleak_object *object; 1948 1949 rcu_read_lock(); 1950 list_for_each_entry_rcu(object, &object_list, object_list) { 1951 raw_spin_lock_irq(&object->lock); 1952 if ((object->flags & OBJECT_REPORTED) && 1953 unreferenced_object(object)) 1954 __paint_it(object, KMEMLEAK_GREY); 1955 raw_spin_unlock_irq(&object->lock); 1956 } 1957 rcu_read_unlock(); 1958 1959 kmemleak_found_leaks = false; 1960 } 1961 1962 static void __kmemleak_do_cleanup(void); 1963 1964 /* 1965 * File write operation to configure kmemleak at run-time. The following 1966 * commands can be written to the /sys/kernel/debug/kmemleak file: 1967 * off - disable kmemleak (irreversible) 1968 * stack=on - enable the task stacks scanning 1969 * stack=off - disable the tasks stacks scanning 1970 * scan=on - start the automatic memory scanning thread 1971 * scan=off - stop the automatic memory scanning thread 1972 * scan=... - set the automatic memory scanning period in seconds (0 to 1973 * disable it) 1974 * scan - trigger a memory scan 1975 * clear - mark all current reported unreferenced kmemleak objects as 1976 * grey to ignore printing them, or free all kmemleak objects 1977 * if kmemleak has been disabled. 1978 * dump=... - dump information about the object found at the given address 1979 */ 1980 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1981 size_t size, loff_t *ppos) 1982 { 1983 char buf[64]; 1984 int buf_size; 1985 int ret; 1986 1987 buf_size = min(size, (sizeof(buf) - 1)); 1988 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1989 return -EFAULT; 1990 buf[buf_size] = 0; 1991 1992 ret = mutex_lock_interruptible(&scan_mutex); 1993 if (ret < 0) 1994 return ret; 1995 1996 if (strncmp(buf, "clear", 5) == 0) { 1997 if (kmemleak_enabled) 1998 kmemleak_clear(); 1999 else 2000 __kmemleak_do_cleanup(); 2001 goto out; 2002 } 2003 2004 if (!kmemleak_enabled) { 2005 ret = -EPERM; 2006 goto out; 2007 } 2008 2009 if (strncmp(buf, "off", 3) == 0) 2010 kmemleak_disable(); 2011 else if (strncmp(buf, "stack=on", 8) == 0) 2012 kmemleak_stack_scan = 1; 2013 else if (strncmp(buf, "stack=off", 9) == 0) 2014 kmemleak_stack_scan = 0; 2015 else if (strncmp(buf, "scan=on", 7) == 0) 2016 start_scan_thread(); 2017 else if (strncmp(buf, "scan=off", 8) == 0) 2018 stop_scan_thread(); 2019 else if (strncmp(buf, "scan=", 5) == 0) { 2020 unsigned secs; 2021 unsigned long msecs; 2022 2023 ret = kstrtouint(buf + 5, 0, &secs); 2024 if (ret < 0) 2025 goto out; 2026 2027 msecs = secs * MSEC_PER_SEC; 2028 if (msecs > UINT_MAX) 2029 msecs = UINT_MAX; 2030 2031 stop_scan_thread(); 2032 if (msecs) { 2033 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2034 start_scan_thread(); 2035 } 2036 } else if (strncmp(buf, "scan", 4) == 0) 2037 kmemleak_scan(); 2038 else if (strncmp(buf, "dump=", 5) == 0) 2039 ret = dump_str_object_info(buf + 5); 2040 else 2041 ret = -EINVAL; 2042 2043 out: 2044 mutex_unlock(&scan_mutex); 2045 if (ret < 0) 2046 return ret; 2047 2048 /* ignore the rest of the buffer, only one command at a time */ 2049 *ppos += size; 2050 return size; 2051 } 2052 2053 static const struct file_operations kmemleak_fops = { 2054 .owner = THIS_MODULE, 2055 .open = kmemleak_open, 2056 .read = seq_read, 2057 .write = kmemleak_write, 2058 .llseek = seq_lseek, 2059 .release = seq_release, 2060 }; 2061 2062 static void __kmemleak_do_cleanup(void) 2063 { 2064 struct kmemleak_object *object, *tmp; 2065 2066 /* 2067 * Kmemleak has already been disabled, no need for RCU list traversal 2068 * or kmemleak_lock held. 2069 */ 2070 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2071 __remove_object(object); 2072 __delete_object(object); 2073 } 2074 } 2075 2076 /* 2077 * Stop the memory scanning thread and free the kmemleak internal objects if 2078 * no previous scan thread (otherwise, kmemleak may still have some useful 2079 * information on memory leaks). 2080 */ 2081 static void kmemleak_do_cleanup(struct work_struct *work) 2082 { 2083 stop_scan_thread(); 2084 2085 mutex_lock(&scan_mutex); 2086 /* 2087 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2088 * longer track object freeing. Ordering of the scan thread stopping and 2089 * the memory accesses below is guaranteed by the kthread_stop() 2090 * function. 2091 */ 2092 kmemleak_free_enabled = 0; 2093 mutex_unlock(&scan_mutex); 2094 2095 if (!kmemleak_found_leaks) 2096 __kmemleak_do_cleanup(); 2097 else 2098 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2099 } 2100 2101 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2102 2103 /* 2104 * Disable kmemleak. No memory allocation/freeing will be traced once this 2105 * function is called. Disabling kmemleak is an irreversible operation. 2106 */ 2107 static void kmemleak_disable(void) 2108 { 2109 /* atomically check whether it was already invoked */ 2110 if (cmpxchg(&kmemleak_error, 0, 1)) 2111 return; 2112 2113 /* stop any memory operation tracing */ 2114 kmemleak_enabled = 0; 2115 2116 /* check whether it is too early for a kernel thread */ 2117 if (kmemleak_late_initialized) 2118 schedule_work(&cleanup_work); 2119 else 2120 kmemleak_free_enabled = 0; 2121 2122 pr_info("Kernel memory leak detector disabled\n"); 2123 } 2124 2125 /* 2126 * Allow boot-time kmemleak disabling (enabled by default). 2127 */ 2128 static int __init kmemleak_boot_config(char *str) 2129 { 2130 if (!str) 2131 return -EINVAL; 2132 if (strcmp(str, "off") == 0) 2133 kmemleak_disable(); 2134 else if (strcmp(str, "on") == 0) { 2135 kmemleak_skip_disable = 1; 2136 stack_depot_request_early_init(); 2137 } 2138 else 2139 return -EINVAL; 2140 return 0; 2141 } 2142 early_param("kmemleak", kmemleak_boot_config); 2143 2144 /* 2145 * Kmemleak initialization. 2146 */ 2147 void __init kmemleak_init(void) 2148 { 2149 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2150 if (!kmemleak_skip_disable) { 2151 kmemleak_disable(); 2152 return; 2153 } 2154 #endif 2155 2156 if (kmemleak_error) 2157 return; 2158 2159 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2160 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2161 2162 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2163 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2164 2165 /* register the data/bss sections */ 2166 create_object((unsigned long)_sdata, _edata - _sdata, 2167 KMEMLEAK_GREY, GFP_ATOMIC); 2168 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2169 KMEMLEAK_GREY, GFP_ATOMIC); 2170 /* only register .data..ro_after_init if not within .data */ 2171 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2172 create_object((unsigned long)__start_ro_after_init, 2173 __end_ro_after_init - __start_ro_after_init, 2174 KMEMLEAK_GREY, GFP_ATOMIC); 2175 } 2176 2177 /* 2178 * Late initialization function. 2179 */ 2180 static int __init kmemleak_late_init(void) 2181 { 2182 kmemleak_late_initialized = 1; 2183 2184 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2185 2186 if (kmemleak_error) { 2187 /* 2188 * Some error occurred and kmemleak was disabled. There is a 2189 * small chance that kmemleak_disable() was called immediately 2190 * after setting kmemleak_late_initialized and we may end up with 2191 * two clean-up threads but serialized by scan_mutex. 2192 */ 2193 schedule_work(&cleanup_work); 2194 return -ENOMEM; 2195 } 2196 2197 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2198 mutex_lock(&scan_mutex); 2199 start_scan_thread(); 2200 mutex_unlock(&scan_mutex); 2201 } 2202 2203 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2204 mem_pool_free_count); 2205 2206 return 0; 2207 } 2208 late_initcall(kmemleak_late_init); 2209