xref: /linux/mm/kmemleak.c (revision e7b2b108cdeab76a7e7324459e50b0c1214c0386)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60 
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98 
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102 
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107 
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE		16	/* stack trace length */
112 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
113 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
114 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
116 
117 #define BYTES_PER_POINTER	sizeof(void *)
118 
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 					   __GFP_NOLOCKDEP)) | \
122 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 				 __GFP_NOWARN)
124 
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127 	struct hlist_node node;
128 	unsigned long start;
129 	size_t size;
130 };
131 
132 #define KMEMLEAK_GREY	0
133 #define KMEMLEAK_BLACK	-1
134 
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144 	raw_spinlock_t lock;
145 	unsigned int flags;		/* object status flags */
146 	struct list_head object_list;
147 	struct list_head gray_list;
148 	struct rb_node rb_node;
149 	struct rcu_head rcu;		/* object_list lockless traversal */
150 	/* object usage count; object freed when use_count == 0 */
151 	atomic_t use_count;
152 	unsigned int del_state;		/* deletion state */
153 	unsigned long pointer;
154 	size_t size;
155 	/* pass surplus references to this pointer */
156 	unsigned long excess_ref;
157 	/* minimum number of a pointers found before it is considered leak */
158 	int min_count;
159 	/* the total number of pointers found pointing to this object */
160 	int count;
161 	/* checksum for detecting modified objects */
162 	u32 checksum;
163 	/* memory ranges to be scanned inside an object (empty for all) */
164 	struct hlist_head area_list;
165 	depot_stack_handle_t trace_handle;
166 	unsigned long jiffies;		/* creation timestamp */
167 	pid_t pid;			/* pid of the current task */
168 	char comm[TASK_COMM_LEN];	/* executable name */
169 };
170 
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED	(1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED		(1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN		(1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN	(1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS		(1 << 4)
181 
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED	(1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE	(1 << 1)
186 
187 #define HEX_PREFIX		"    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE		16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE		1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII		1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES		2
196 
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211 
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215 
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226 
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308 	kasan_disable_current();
309 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311 	kasan_enable_current();
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned long *entries;
357 	unsigned int nr_entries;
358 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359 
360 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362 			  object->pointer, object->size);
363 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364 			   object->comm, object->pid, object->jiffies,
365 			   msecs_age / 1000, msecs_age % 1000);
366 	hex_dump_object(seq, object);
367 	warn_or_seq_printf(seq, "  backtrace:\n");
368 
369 	for (i = 0; i < nr_entries; i++) {
370 		void *ptr = (void *)entries[i];
371 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372 	}
373 }
374 
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 			object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 			object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%x\n", object->flags);
389 	pr_notice("  checksum = %u\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	if (object->trace_handle)
392 		stack_depot_print(object->trace_handle);
393 }
394 
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 					       bool is_phys)
403 {
404 	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 			     object_tree_root.rb_node;
406 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407 
408 	while (rb) {
409 		struct kmemleak_object *object;
410 		unsigned long untagged_objp;
411 
412 		object = rb_entry(rb, struct kmemleak_object, rb_node);
413 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414 
415 		if (untagged_ptr < untagged_objp)
416 			rb = object->rb_node.rb_left;
417 		else if (untagged_objp + object->size <= untagged_ptr)
418 			rb = object->rb_node.rb_right;
419 		else if (untagged_objp == untagged_ptr || alias)
420 			return object;
421 		else {
422 			kmemleak_warn("Found object by alias at 0x%08lx\n",
423 				      ptr);
424 			dump_object_info(object);
425 			break;
426 		}
427 	}
428 	return NULL;
429 }
430 
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434 	return __lookup_object(ptr, alias, false);
435 }
436 
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445 	return atomic_inc_not_zero(&object->use_count);
446 }
447 
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453 	unsigned long flags;
454 	struct kmemleak_object *object;
455 
456 	/* try the slab allocator first */
457 	if (object_cache) {
458 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 		if (object)
460 			return object;
461 	}
462 
463 	/* slab allocation failed, try the memory pool */
464 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
465 	object = list_first_entry_or_null(&mem_pool_free_list,
466 					  typeof(*object), object_list);
467 	if (object)
468 		list_del(&object->object_list);
469 	else if (mem_pool_free_count)
470 		object = &mem_pool[--mem_pool_free_count];
471 	else
472 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474 
475 	return object;
476 }
477 
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483 	unsigned long flags;
484 
485 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 		kmem_cache_free(object_cache, object);
487 		return;
488 	}
489 
490 	/* add the object to the memory pool free list */
491 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
492 	list_add(&object->object_list, &mem_pool_free_list);
493 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495 
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501 	struct hlist_node *tmp;
502 	struct kmemleak_scan_area *area;
503 	struct kmemleak_object *object =
504 		container_of(rcu, struct kmemleak_object, rcu);
505 
506 	/*
507 	 * Once use_count is 0 (guaranteed by put_object), there is no other
508 	 * code accessing this object, hence no need for locking.
509 	 */
510 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 		hlist_del(&area->node);
512 		kmem_cache_free(scan_area_cache, area);
513 	}
514 	mem_pool_free(object);
515 }
516 
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526 	if (!atomic_dec_and_test(&object->use_count))
527 		return;
528 
529 	/* should only get here after delete_object was called */
530 	WARN_ON(object->flags & OBJECT_ALLOCATED);
531 
532 	/*
533 	 * It may be too early for the RCU callbacks, however, there is no
534 	 * concurrent object_list traversal when !object_cache and all objects
535 	 * came from the memory pool. Free the object directly.
536 	 */
537 	if (object_cache)
538 		call_rcu(&object->rcu, free_object_rcu);
539 	else
540 		free_object_rcu(&object->rcu);
541 }
542 
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 						     bool is_phys)
548 {
549 	unsigned long flags;
550 	struct kmemleak_object *object;
551 
552 	rcu_read_lock();
553 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
554 	object = __lookup_object(ptr, alias, is_phys);
555 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556 
557 	/* check whether the object is still available */
558 	if (object && !get_object(object))
559 		object = NULL;
560 	rcu_read_unlock();
561 
562 	return object;
563 }
564 
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568 	return __find_and_get_object(ptr, alias, false);
569 }
570 
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578 	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 				   &object_phys_tree_root :
580 				   &object_tree_root);
581 	if (!(object->del_state & DELSTATE_NO_DELETE))
582 		list_del_rcu(&object->object_list);
583 	object->del_state |= DELSTATE_REMOVED;
584 }
585 
586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587 							int alias,
588 							bool is_phys)
589 {
590 	struct kmemleak_object *object;
591 
592 	object = __lookup_object(ptr, alias, is_phys);
593 	if (object)
594 		__remove_object(object);
595 
596 	return object;
597 }
598 
599 /*
600  * Look up an object in the object search tree and remove it from both
601  * object_tree_root (or object_phys_tree_root) and object_list. The
602  * returned object's use_count should be at least 1, as initially set
603  * by create_object().
604  */
605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606 						      bool is_phys)
607 {
608 	unsigned long flags;
609 	struct kmemleak_object *object;
610 
611 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
612 	object = __find_and_remove_object(ptr, alias, is_phys);
613 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614 
615 	return object;
616 }
617 
618 static noinline depot_stack_handle_t set_track_prepare(void)
619 {
620 	depot_stack_handle_t trace_handle;
621 	unsigned long entries[MAX_TRACE];
622 	unsigned int nr_entries;
623 
624 	/*
625 	 * Use object_cache to determine whether kmemleak_init() has
626 	 * been invoked. stack_depot_early_init() is called before
627 	 * kmemleak_init() in mm_core_init().
628 	 */
629 	if (!object_cache)
630 		return 0;
631 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633 
634 	return trace_handle;
635 }
636 
637 static struct kmemleak_object *__alloc_object(gfp_t gfp)
638 {
639 	struct kmemleak_object *object;
640 
641 	object = mem_pool_alloc(gfp);
642 	if (!object) {
643 		pr_warn("Cannot allocate a kmemleak_object structure\n");
644 		kmemleak_disable();
645 		return NULL;
646 	}
647 
648 	INIT_LIST_HEAD(&object->object_list);
649 	INIT_LIST_HEAD(&object->gray_list);
650 	INIT_HLIST_HEAD(&object->area_list);
651 	raw_spin_lock_init(&object->lock);
652 	atomic_set(&object->use_count, 1);
653 	object->excess_ref = 0;
654 	object->count = 0;			/* white color initially */
655 	object->checksum = 0;
656 	object->del_state = 0;
657 
658 	/* task information */
659 	if (in_hardirq()) {
660 		object->pid = 0;
661 		strncpy(object->comm, "hardirq", sizeof(object->comm));
662 	} else if (in_serving_softirq()) {
663 		object->pid = 0;
664 		strncpy(object->comm, "softirq", sizeof(object->comm));
665 	} else {
666 		object->pid = current->pid;
667 		/*
668 		 * There is a small chance of a race with set_task_comm(),
669 		 * however using get_task_comm() here may cause locking
670 		 * dependency issues with current->alloc_lock. In the worst
671 		 * case, the command line is not correct.
672 		 */
673 		strncpy(object->comm, current->comm, sizeof(object->comm));
674 	}
675 
676 	/* kernel backtrace */
677 	object->trace_handle = set_track_prepare();
678 
679 	return object;
680 }
681 
682 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
683 			 size_t size, int min_count, bool is_phys)
684 {
685 
686 	struct kmemleak_object *parent;
687 	struct rb_node **link, *rb_parent;
688 	unsigned long untagged_ptr;
689 	unsigned long untagged_objp;
690 
691 	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
692 	object->pointer = ptr;
693 	object->size = kfence_ksize((void *)ptr) ?: size;
694 	object->min_count = min_count;
695 	object->jiffies = jiffies;
696 
697 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
698 	/*
699 	 * Only update min_addr and max_addr with object
700 	 * storing virtual address.
701 	 */
702 	if (!is_phys) {
703 		min_addr = min(min_addr, untagged_ptr);
704 		max_addr = max(max_addr, untagged_ptr + size);
705 	}
706 	link = is_phys ? &object_phys_tree_root.rb_node :
707 		&object_tree_root.rb_node;
708 	rb_parent = NULL;
709 	while (*link) {
710 		rb_parent = *link;
711 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
712 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
713 		if (untagged_ptr + size <= untagged_objp)
714 			link = &parent->rb_node.rb_left;
715 		else if (untagged_objp + parent->size <= untagged_ptr)
716 			link = &parent->rb_node.rb_right;
717 		else {
718 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
719 				      ptr);
720 			/*
721 			 * No need for parent->lock here since "parent" cannot
722 			 * be freed while the kmemleak_lock is held.
723 			 */
724 			dump_object_info(parent);
725 			return -EEXIST;
726 		}
727 	}
728 	rb_link_node(&object->rb_node, rb_parent, link);
729 	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
730 					  &object_tree_root);
731 	list_add_tail_rcu(&object->object_list, &object_list);
732 
733 	return 0;
734 }
735 
736 /*
737  * Create the metadata (struct kmemleak_object) corresponding to an allocated
738  * memory block and add it to the object_list and object_tree_root (or
739  * object_phys_tree_root).
740  */
741 static void __create_object(unsigned long ptr, size_t size,
742 				int min_count, gfp_t gfp, bool is_phys)
743 {
744 	struct kmemleak_object *object;
745 	unsigned long flags;
746 	int ret;
747 
748 	object = __alloc_object(gfp);
749 	if (!object)
750 		return;
751 
752 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
753 	ret = __link_object(object, ptr, size, min_count, is_phys);
754 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
755 	if (ret)
756 		mem_pool_free(object);
757 }
758 
759 /* Create kmemleak object which allocated with virtual address. */
760 static void create_object(unsigned long ptr, size_t size,
761 			  int min_count, gfp_t gfp)
762 {
763 	__create_object(ptr, size, min_count, gfp, false);
764 }
765 
766 /* Create kmemleak object which allocated with physical address. */
767 static void create_object_phys(unsigned long ptr, size_t size,
768 			       int min_count, gfp_t gfp)
769 {
770 	__create_object(ptr, size, min_count, gfp, true);
771 }
772 
773 /*
774  * Mark the object as not allocated and schedule RCU freeing via put_object().
775  */
776 static void __delete_object(struct kmemleak_object *object)
777 {
778 	unsigned long flags;
779 
780 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
781 	WARN_ON(atomic_read(&object->use_count) < 1);
782 
783 	/*
784 	 * Locking here also ensures that the corresponding memory block
785 	 * cannot be freed when it is being scanned.
786 	 */
787 	raw_spin_lock_irqsave(&object->lock, flags);
788 	object->flags &= ~OBJECT_ALLOCATED;
789 	raw_spin_unlock_irqrestore(&object->lock, flags);
790 	put_object(object);
791 }
792 
793 /*
794  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
795  * delete it.
796  */
797 static void delete_object_full(unsigned long ptr)
798 {
799 	struct kmemleak_object *object;
800 
801 	object = find_and_remove_object(ptr, 0, false);
802 	if (!object) {
803 #ifdef DEBUG
804 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
805 			      ptr);
806 #endif
807 		return;
808 	}
809 	__delete_object(object);
810 }
811 
812 /*
813  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
814  * delete it. If the memory block is partially freed, the function may create
815  * additional metadata for the remaining parts of the block.
816  */
817 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
818 {
819 	struct kmemleak_object *object, *object_l, *object_r;
820 	unsigned long start, end, flags;
821 
822 	object_l = __alloc_object(GFP_KERNEL);
823 	if (!object_l)
824 		return;
825 
826 	object_r = __alloc_object(GFP_KERNEL);
827 	if (!object_r)
828 		goto out;
829 
830 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
831 	object = __find_and_remove_object(ptr, 1, is_phys);
832 	if (!object) {
833 #ifdef DEBUG
834 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
835 			      ptr, size);
836 #endif
837 		goto unlock;
838 	}
839 
840 	/*
841 	 * Create one or two objects that may result from the memory block
842 	 * split. Note that partial freeing is only done by free_bootmem() and
843 	 * this happens before kmemleak_init() is called.
844 	 */
845 	start = object->pointer;
846 	end = object->pointer + object->size;
847 	if ((ptr > start) &&
848 	    !__link_object(object_l, start, ptr - start,
849 			   object->min_count, is_phys))
850 		object_l = NULL;
851 	if ((ptr + size < end) &&
852 	    !__link_object(object_r, ptr + size, end - ptr - size,
853 			   object->min_count, is_phys))
854 		object_r = NULL;
855 
856 unlock:
857 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
858 	if (object)
859 		__delete_object(object);
860 
861 out:
862 	if (object_l)
863 		mem_pool_free(object_l);
864 	if (object_r)
865 		mem_pool_free(object_r);
866 }
867 
868 static void __paint_it(struct kmemleak_object *object, int color)
869 {
870 	object->min_count = color;
871 	if (color == KMEMLEAK_BLACK)
872 		object->flags |= OBJECT_NO_SCAN;
873 }
874 
875 static void paint_it(struct kmemleak_object *object, int color)
876 {
877 	unsigned long flags;
878 
879 	raw_spin_lock_irqsave(&object->lock, flags);
880 	__paint_it(object, color);
881 	raw_spin_unlock_irqrestore(&object->lock, flags);
882 }
883 
884 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
885 {
886 	struct kmemleak_object *object;
887 
888 	object = __find_and_get_object(ptr, 0, is_phys);
889 	if (!object) {
890 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
891 			      ptr,
892 			      (color == KMEMLEAK_GREY) ? "Grey" :
893 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
894 		return;
895 	}
896 	paint_it(object, color);
897 	put_object(object);
898 }
899 
900 /*
901  * Mark an object permanently as gray-colored so that it can no longer be
902  * reported as a leak. This is used in general to mark a false positive.
903  */
904 static void make_gray_object(unsigned long ptr)
905 {
906 	paint_ptr(ptr, KMEMLEAK_GREY, false);
907 }
908 
909 /*
910  * Mark the object as black-colored so that it is ignored from scans and
911  * reporting.
912  */
913 static void make_black_object(unsigned long ptr, bool is_phys)
914 {
915 	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
916 }
917 
918 /*
919  * Add a scanning area to the object. If at least one such area is added,
920  * kmemleak will only scan these ranges rather than the whole memory block.
921  */
922 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
923 {
924 	unsigned long flags;
925 	struct kmemleak_object *object;
926 	struct kmemleak_scan_area *area = NULL;
927 	unsigned long untagged_ptr;
928 	unsigned long untagged_objp;
929 
930 	object = find_and_get_object(ptr, 1);
931 	if (!object) {
932 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
933 			      ptr);
934 		return;
935 	}
936 
937 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
938 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
939 
940 	if (scan_area_cache)
941 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
942 
943 	raw_spin_lock_irqsave(&object->lock, flags);
944 	if (!area) {
945 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
946 		/* mark the object for full scan to avoid false positives */
947 		object->flags |= OBJECT_FULL_SCAN;
948 		goto out_unlock;
949 	}
950 	if (size == SIZE_MAX) {
951 		size = untagged_objp + object->size - untagged_ptr;
952 	} else if (untagged_ptr + size > untagged_objp + object->size) {
953 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
954 		dump_object_info(object);
955 		kmem_cache_free(scan_area_cache, area);
956 		goto out_unlock;
957 	}
958 
959 	INIT_HLIST_NODE(&area->node);
960 	area->start = ptr;
961 	area->size = size;
962 
963 	hlist_add_head(&area->node, &object->area_list);
964 out_unlock:
965 	raw_spin_unlock_irqrestore(&object->lock, flags);
966 	put_object(object);
967 }
968 
969 /*
970  * Any surplus references (object already gray) to 'ptr' are passed to
971  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
972  * vm_struct may be used as an alternative reference to the vmalloc'ed object
973  * (see free_thread_stack()).
974  */
975 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
976 {
977 	unsigned long flags;
978 	struct kmemleak_object *object;
979 
980 	object = find_and_get_object(ptr, 0);
981 	if (!object) {
982 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
983 			      ptr);
984 		return;
985 	}
986 
987 	raw_spin_lock_irqsave(&object->lock, flags);
988 	object->excess_ref = excess_ref;
989 	raw_spin_unlock_irqrestore(&object->lock, flags);
990 	put_object(object);
991 }
992 
993 /*
994  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
995  * pointer. Such object will not be scanned by kmemleak but references to it
996  * are searched.
997  */
998 static void object_no_scan(unsigned long ptr)
999 {
1000 	unsigned long flags;
1001 	struct kmemleak_object *object;
1002 
1003 	object = find_and_get_object(ptr, 0);
1004 	if (!object) {
1005 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1006 		return;
1007 	}
1008 
1009 	raw_spin_lock_irqsave(&object->lock, flags);
1010 	object->flags |= OBJECT_NO_SCAN;
1011 	raw_spin_unlock_irqrestore(&object->lock, flags);
1012 	put_object(object);
1013 }
1014 
1015 /**
1016  * kmemleak_alloc - register a newly allocated object
1017  * @ptr:	pointer to beginning of the object
1018  * @size:	size of the object
1019  * @min_count:	minimum number of references to this object. If during memory
1020  *		scanning a number of references less than @min_count is found,
1021  *		the object is reported as a memory leak. If @min_count is 0,
1022  *		the object is never reported as a leak. If @min_count is -1,
1023  *		the object is ignored (not scanned and not reported as a leak)
1024  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1025  *
1026  * This function is called from the kernel allocators when a new object
1027  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1028  */
1029 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1030 			  gfp_t gfp)
1031 {
1032 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1033 
1034 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1035 		create_object((unsigned long)ptr, size, min_count, gfp);
1036 }
1037 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1038 
1039 /**
1040  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1041  * @ptr:	__percpu pointer to beginning of the object
1042  * @size:	size of the object
1043  * @gfp:	flags used for kmemleak internal memory allocations
1044  *
1045  * This function is called from the kernel percpu allocator when a new object
1046  * (memory block) is allocated (alloc_percpu).
1047  */
1048 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1049 				 gfp_t gfp)
1050 {
1051 	unsigned int cpu;
1052 
1053 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1054 
1055 	/*
1056 	 * Percpu allocations are only scanned and not reported as leaks
1057 	 * (min_count is set to 0).
1058 	 */
1059 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1060 		for_each_possible_cpu(cpu)
1061 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1062 				      size, 0, gfp);
1063 }
1064 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1065 
1066 /**
1067  * kmemleak_vmalloc - register a newly vmalloc'ed object
1068  * @area:	pointer to vm_struct
1069  * @size:	size of the object
1070  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1071  *
1072  * This function is called from the vmalloc() kernel allocator when a new
1073  * object (memory block) is allocated.
1074  */
1075 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1076 {
1077 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1078 
1079 	/*
1080 	 * A min_count = 2 is needed because vm_struct contains a reference to
1081 	 * the virtual address of the vmalloc'ed block.
1082 	 */
1083 	if (kmemleak_enabled) {
1084 		create_object((unsigned long)area->addr, size, 2, gfp);
1085 		object_set_excess_ref((unsigned long)area,
1086 				      (unsigned long)area->addr);
1087 	}
1088 }
1089 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1090 
1091 /**
1092  * kmemleak_free - unregister a previously registered object
1093  * @ptr:	pointer to beginning of the object
1094  *
1095  * This function is called from the kernel allocators when an object (memory
1096  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1097  */
1098 void __ref kmemleak_free(const void *ptr)
1099 {
1100 	pr_debug("%s(0x%px)\n", __func__, ptr);
1101 
1102 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1103 		delete_object_full((unsigned long)ptr);
1104 }
1105 EXPORT_SYMBOL_GPL(kmemleak_free);
1106 
1107 /**
1108  * kmemleak_free_part - partially unregister a previously registered object
1109  * @ptr:	pointer to the beginning or inside the object. This also
1110  *		represents the start of the range to be freed
1111  * @size:	size to be unregistered
1112  *
1113  * This function is called when only a part of a memory block is freed
1114  * (usually from the bootmem allocator).
1115  */
1116 void __ref kmemleak_free_part(const void *ptr, size_t size)
1117 {
1118 	pr_debug("%s(0x%px)\n", __func__, ptr);
1119 
1120 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1121 		delete_object_part((unsigned long)ptr, size, false);
1122 }
1123 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1124 
1125 /**
1126  * kmemleak_free_percpu - unregister a previously registered __percpu object
1127  * @ptr:	__percpu pointer to beginning of the object
1128  *
1129  * This function is called from the kernel percpu allocator when an object
1130  * (memory block) is freed (free_percpu).
1131  */
1132 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1133 {
1134 	unsigned int cpu;
1135 
1136 	pr_debug("%s(0x%px)\n", __func__, ptr);
1137 
1138 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1139 		for_each_possible_cpu(cpu)
1140 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1141 								      cpu));
1142 }
1143 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1144 
1145 /**
1146  * kmemleak_update_trace - update object allocation stack trace
1147  * @ptr:	pointer to beginning of the object
1148  *
1149  * Override the object allocation stack trace for cases where the actual
1150  * allocation place is not always useful.
1151  */
1152 void __ref kmemleak_update_trace(const void *ptr)
1153 {
1154 	struct kmemleak_object *object;
1155 	depot_stack_handle_t trace_handle;
1156 	unsigned long flags;
1157 
1158 	pr_debug("%s(0x%px)\n", __func__, ptr);
1159 
1160 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1161 		return;
1162 
1163 	object = find_and_get_object((unsigned long)ptr, 1);
1164 	if (!object) {
1165 #ifdef DEBUG
1166 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1167 			      ptr);
1168 #endif
1169 		return;
1170 	}
1171 
1172 	trace_handle = set_track_prepare();
1173 	raw_spin_lock_irqsave(&object->lock, flags);
1174 	object->trace_handle = trace_handle;
1175 	raw_spin_unlock_irqrestore(&object->lock, flags);
1176 
1177 	put_object(object);
1178 }
1179 EXPORT_SYMBOL(kmemleak_update_trace);
1180 
1181 /**
1182  * kmemleak_not_leak - mark an allocated object as false positive
1183  * @ptr:	pointer to beginning of the object
1184  *
1185  * Calling this function on an object will cause the memory block to no longer
1186  * be reported as leak and always be scanned.
1187  */
1188 void __ref kmemleak_not_leak(const void *ptr)
1189 {
1190 	pr_debug("%s(0x%px)\n", __func__, ptr);
1191 
1192 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1193 		make_gray_object((unsigned long)ptr);
1194 }
1195 EXPORT_SYMBOL(kmemleak_not_leak);
1196 
1197 /**
1198  * kmemleak_ignore - ignore an allocated object
1199  * @ptr:	pointer to beginning of the object
1200  *
1201  * Calling this function on an object will cause the memory block to be
1202  * ignored (not scanned and not reported as a leak). This is usually done when
1203  * it is known that the corresponding block is not a leak and does not contain
1204  * any references to other allocated memory blocks.
1205  */
1206 void __ref kmemleak_ignore(const void *ptr)
1207 {
1208 	pr_debug("%s(0x%px)\n", __func__, ptr);
1209 
1210 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1211 		make_black_object((unsigned long)ptr, false);
1212 }
1213 EXPORT_SYMBOL(kmemleak_ignore);
1214 
1215 /**
1216  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1217  * @ptr:	pointer to beginning or inside the object. This also
1218  *		represents the start of the scan area
1219  * @size:	size of the scan area
1220  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1221  *
1222  * This function is used when it is known that only certain parts of an object
1223  * contain references to other objects. Kmemleak will only scan these areas
1224  * reducing the number false negatives.
1225  */
1226 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1227 {
1228 	pr_debug("%s(0x%px)\n", __func__, ptr);
1229 
1230 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1231 		add_scan_area((unsigned long)ptr, size, gfp);
1232 }
1233 EXPORT_SYMBOL(kmemleak_scan_area);
1234 
1235 /**
1236  * kmemleak_no_scan - do not scan an allocated object
1237  * @ptr:	pointer to beginning of the object
1238  *
1239  * This function notifies kmemleak not to scan the given memory block. Useful
1240  * in situations where it is known that the given object does not contain any
1241  * references to other objects. Kmemleak will not scan such objects reducing
1242  * the number of false negatives.
1243  */
1244 void __ref kmemleak_no_scan(const void *ptr)
1245 {
1246 	pr_debug("%s(0x%px)\n", __func__, ptr);
1247 
1248 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1249 		object_no_scan((unsigned long)ptr);
1250 }
1251 EXPORT_SYMBOL(kmemleak_no_scan);
1252 
1253 /**
1254  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1255  *			 address argument
1256  * @phys:	physical address of the object
1257  * @size:	size of the object
1258  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1259  */
1260 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1261 {
1262 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1263 
1264 	if (kmemleak_enabled)
1265 		/*
1266 		 * Create object with OBJECT_PHYS flag and
1267 		 * assume min_count 0.
1268 		 */
1269 		create_object_phys((unsigned long)phys, size, 0, gfp);
1270 }
1271 EXPORT_SYMBOL(kmemleak_alloc_phys);
1272 
1273 /**
1274  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1275  *			     physical address argument
1276  * @phys:	physical address if the beginning or inside an object. This
1277  *		also represents the start of the range to be freed
1278  * @size:	size to be unregistered
1279  */
1280 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1281 {
1282 	pr_debug("%s(0x%px)\n", __func__, &phys);
1283 
1284 	if (kmemleak_enabled)
1285 		delete_object_part((unsigned long)phys, size, true);
1286 }
1287 EXPORT_SYMBOL(kmemleak_free_part_phys);
1288 
1289 /**
1290  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1291  *			  address argument
1292  * @phys:	physical address of the object
1293  */
1294 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1295 {
1296 	pr_debug("%s(0x%px)\n", __func__, &phys);
1297 
1298 	if (kmemleak_enabled)
1299 		make_black_object((unsigned long)phys, true);
1300 }
1301 EXPORT_SYMBOL(kmemleak_ignore_phys);
1302 
1303 /*
1304  * Update an object's checksum and return true if it was modified.
1305  */
1306 static bool update_checksum(struct kmemleak_object *object)
1307 {
1308 	u32 old_csum = object->checksum;
1309 
1310 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1311 		return false;
1312 
1313 	kasan_disable_current();
1314 	kcsan_disable_current();
1315 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1316 	kasan_enable_current();
1317 	kcsan_enable_current();
1318 
1319 	return object->checksum != old_csum;
1320 }
1321 
1322 /*
1323  * Update an object's references. object->lock must be held by the caller.
1324  */
1325 static void update_refs(struct kmemleak_object *object)
1326 {
1327 	if (!color_white(object)) {
1328 		/* non-orphan, ignored or new */
1329 		return;
1330 	}
1331 
1332 	/*
1333 	 * Increase the object's reference count (number of pointers to the
1334 	 * memory block). If this count reaches the required minimum, the
1335 	 * object's color will become gray and it will be added to the
1336 	 * gray_list.
1337 	 */
1338 	object->count++;
1339 	if (color_gray(object)) {
1340 		/* put_object() called when removing from gray_list */
1341 		WARN_ON(!get_object(object));
1342 		list_add_tail(&object->gray_list, &gray_list);
1343 	}
1344 }
1345 
1346 /*
1347  * Memory scanning is a long process and it needs to be interruptible. This
1348  * function checks whether such interrupt condition occurred.
1349  */
1350 static int scan_should_stop(void)
1351 {
1352 	if (!kmemleak_enabled)
1353 		return 1;
1354 
1355 	/*
1356 	 * This function may be called from either process or kthread context,
1357 	 * hence the need to check for both stop conditions.
1358 	 */
1359 	if (current->mm)
1360 		return signal_pending(current);
1361 	else
1362 		return kthread_should_stop();
1363 
1364 	return 0;
1365 }
1366 
1367 /*
1368  * Scan a memory block (exclusive range) for valid pointers and add those
1369  * found to the gray list.
1370  */
1371 static void scan_block(void *_start, void *_end,
1372 		       struct kmemleak_object *scanned)
1373 {
1374 	unsigned long *ptr;
1375 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1376 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1377 	unsigned long flags;
1378 	unsigned long untagged_ptr;
1379 
1380 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1381 	for (ptr = start; ptr < end; ptr++) {
1382 		struct kmemleak_object *object;
1383 		unsigned long pointer;
1384 		unsigned long excess_ref;
1385 
1386 		if (scan_should_stop())
1387 			break;
1388 
1389 		kasan_disable_current();
1390 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1391 		kasan_enable_current();
1392 
1393 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1394 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1395 			continue;
1396 
1397 		/*
1398 		 * No need for get_object() here since we hold kmemleak_lock.
1399 		 * object->use_count cannot be dropped to 0 while the object
1400 		 * is still present in object_tree_root and object_list
1401 		 * (with updates protected by kmemleak_lock).
1402 		 */
1403 		object = lookup_object(pointer, 1);
1404 		if (!object)
1405 			continue;
1406 		if (object == scanned)
1407 			/* self referenced, ignore */
1408 			continue;
1409 
1410 		/*
1411 		 * Avoid the lockdep recursive warning on object->lock being
1412 		 * previously acquired in scan_object(). These locks are
1413 		 * enclosed by scan_mutex.
1414 		 */
1415 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1416 		/* only pass surplus references (object already gray) */
1417 		if (color_gray(object)) {
1418 			excess_ref = object->excess_ref;
1419 			/* no need for update_refs() if object already gray */
1420 		} else {
1421 			excess_ref = 0;
1422 			update_refs(object);
1423 		}
1424 		raw_spin_unlock(&object->lock);
1425 
1426 		if (excess_ref) {
1427 			object = lookup_object(excess_ref, 0);
1428 			if (!object)
1429 				continue;
1430 			if (object == scanned)
1431 				/* circular reference, ignore */
1432 				continue;
1433 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1434 			update_refs(object);
1435 			raw_spin_unlock(&object->lock);
1436 		}
1437 	}
1438 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1439 }
1440 
1441 /*
1442  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1443  */
1444 #ifdef CONFIG_SMP
1445 static void scan_large_block(void *start, void *end)
1446 {
1447 	void *next;
1448 
1449 	while (start < end) {
1450 		next = min(start + MAX_SCAN_SIZE, end);
1451 		scan_block(start, next, NULL);
1452 		start = next;
1453 		cond_resched();
1454 	}
1455 }
1456 #endif
1457 
1458 /*
1459  * Scan a memory block corresponding to a kmemleak_object. A condition is
1460  * that object->use_count >= 1.
1461  */
1462 static void scan_object(struct kmemleak_object *object)
1463 {
1464 	struct kmemleak_scan_area *area;
1465 	unsigned long flags;
1466 	void *obj_ptr;
1467 
1468 	/*
1469 	 * Once the object->lock is acquired, the corresponding memory block
1470 	 * cannot be freed (the same lock is acquired in delete_object).
1471 	 */
1472 	raw_spin_lock_irqsave(&object->lock, flags);
1473 	if (object->flags & OBJECT_NO_SCAN)
1474 		goto out;
1475 	if (!(object->flags & OBJECT_ALLOCATED))
1476 		/* already freed object */
1477 		goto out;
1478 
1479 	obj_ptr = object->flags & OBJECT_PHYS ?
1480 		  __va((phys_addr_t)object->pointer) :
1481 		  (void *)object->pointer;
1482 
1483 	if (hlist_empty(&object->area_list) ||
1484 	    object->flags & OBJECT_FULL_SCAN) {
1485 		void *start = obj_ptr;
1486 		void *end = obj_ptr + object->size;
1487 		void *next;
1488 
1489 		do {
1490 			next = min(start + MAX_SCAN_SIZE, end);
1491 			scan_block(start, next, object);
1492 
1493 			start = next;
1494 			if (start >= end)
1495 				break;
1496 
1497 			raw_spin_unlock_irqrestore(&object->lock, flags);
1498 			cond_resched();
1499 			raw_spin_lock_irqsave(&object->lock, flags);
1500 		} while (object->flags & OBJECT_ALLOCATED);
1501 	} else
1502 		hlist_for_each_entry(area, &object->area_list, node)
1503 			scan_block((void *)area->start,
1504 				   (void *)(area->start + area->size),
1505 				   object);
1506 out:
1507 	raw_spin_unlock_irqrestore(&object->lock, flags);
1508 }
1509 
1510 /*
1511  * Scan the objects already referenced (gray objects). More objects will be
1512  * referenced and, if there are no memory leaks, all the objects are scanned.
1513  */
1514 static void scan_gray_list(void)
1515 {
1516 	struct kmemleak_object *object, *tmp;
1517 
1518 	/*
1519 	 * The list traversal is safe for both tail additions and removals
1520 	 * from inside the loop. The kmemleak objects cannot be freed from
1521 	 * outside the loop because their use_count was incremented.
1522 	 */
1523 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1524 	while (&object->gray_list != &gray_list) {
1525 		cond_resched();
1526 
1527 		/* may add new objects to the list */
1528 		if (!scan_should_stop())
1529 			scan_object(object);
1530 
1531 		tmp = list_entry(object->gray_list.next, typeof(*object),
1532 				 gray_list);
1533 
1534 		/* remove the object from the list and release it */
1535 		list_del(&object->gray_list);
1536 		put_object(object);
1537 
1538 		object = tmp;
1539 	}
1540 	WARN_ON(!list_empty(&gray_list));
1541 }
1542 
1543 /*
1544  * Conditionally call resched() in an object iteration loop while making sure
1545  * that the given object won't go away without RCU read lock by performing a
1546  * get_object() if necessaary.
1547  */
1548 static void kmemleak_cond_resched(struct kmemleak_object *object)
1549 {
1550 	if (!get_object(object))
1551 		return;	/* Try next object */
1552 
1553 	raw_spin_lock_irq(&kmemleak_lock);
1554 	if (object->del_state & DELSTATE_REMOVED)
1555 		goto unlock_put;	/* Object removed */
1556 	object->del_state |= DELSTATE_NO_DELETE;
1557 	raw_spin_unlock_irq(&kmemleak_lock);
1558 
1559 	rcu_read_unlock();
1560 	cond_resched();
1561 	rcu_read_lock();
1562 
1563 	raw_spin_lock_irq(&kmemleak_lock);
1564 	if (object->del_state & DELSTATE_REMOVED)
1565 		list_del_rcu(&object->object_list);
1566 	object->del_state &= ~DELSTATE_NO_DELETE;
1567 unlock_put:
1568 	raw_spin_unlock_irq(&kmemleak_lock);
1569 	put_object(object);
1570 }
1571 
1572 /*
1573  * Scan data sections and all the referenced memory blocks allocated via the
1574  * kernel's standard allocators. This function must be called with the
1575  * scan_mutex held.
1576  */
1577 static void kmemleak_scan(void)
1578 {
1579 	struct kmemleak_object *object;
1580 	struct zone *zone;
1581 	int __maybe_unused i;
1582 	int new_leaks = 0;
1583 
1584 	jiffies_last_scan = jiffies;
1585 
1586 	/* prepare the kmemleak_object's */
1587 	rcu_read_lock();
1588 	list_for_each_entry_rcu(object, &object_list, object_list) {
1589 		raw_spin_lock_irq(&object->lock);
1590 #ifdef DEBUG
1591 		/*
1592 		 * With a few exceptions there should be a maximum of
1593 		 * 1 reference to any object at this point.
1594 		 */
1595 		if (atomic_read(&object->use_count) > 1) {
1596 			pr_debug("object->use_count = %d\n",
1597 				 atomic_read(&object->use_count));
1598 			dump_object_info(object);
1599 		}
1600 #endif
1601 
1602 		/* ignore objects outside lowmem (paint them black) */
1603 		if ((object->flags & OBJECT_PHYS) &&
1604 		   !(object->flags & OBJECT_NO_SCAN)) {
1605 			unsigned long phys = object->pointer;
1606 
1607 			if (PHYS_PFN(phys) < min_low_pfn ||
1608 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1609 				__paint_it(object, KMEMLEAK_BLACK);
1610 		}
1611 
1612 		/* reset the reference count (whiten the object) */
1613 		object->count = 0;
1614 		if (color_gray(object) && get_object(object))
1615 			list_add_tail(&object->gray_list, &gray_list);
1616 
1617 		raw_spin_unlock_irq(&object->lock);
1618 
1619 		if (need_resched())
1620 			kmemleak_cond_resched(object);
1621 	}
1622 	rcu_read_unlock();
1623 
1624 #ifdef CONFIG_SMP
1625 	/* per-cpu sections scanning */
1626 	for_each_possible_cpu(i)
1627 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1628 				 __per_cpu_end + per_cpu_offset(i));
1629 #endif
1630 
1631 	/*
1632 	 * Struct page scanning for each node.
1633 	 */
1634 	get_online_mems();
1635 	for_each_populated_zone(zone) {
1636 		unsigned long start_pfn = zone->zone_start_pfn;
1637 		unsigned long end_pfn = zone_end_pfn(zone);
1638 		unsigned long pfn;
1639 
1640 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1641 			struct page *page = pfn_to_online_page(pfn);
1642 
1643 			if (!(pfn & 63))
1644 				cond_resched();
1645 
1646 			if (!page)
1647 				continue;
1648 
1649 			/* only scan pages belonging to this zone */
1650 			if (page_zone(page) != zone)
1651 				continue;
1652 			/* only scan if page is in use */
1653 			if (page_count(page) == 0)
1654 				continue;
1655 			scan_block(page, page + 1, NULL);
1656 		}
1657 	}
1658 	put_online_mems();
1659 
1660 	/*
1661 	 * Scanning the task stacks (may introduce false negatives).
1662 	 */
1663 	if (kmemleak_stack_scan) {
1664 		struct task_struct *p, *g;
1665 
1666 		rcu_read_lock();
1667 		for_each_process_thread(g, p) {
1668 			void *stack = try_get_task_stack(p);
1669 			if (stack) {
1670 				scan_block(stack, stack + THREAD_SIZE, NULL);
1671 				put_task_stack(p);
1672 			}
1673 		}
1674 		rcu_read_unlock();
1675 	}
1676 
1677 	/*
1678 	 * Scan the objects already referenced from the sections scanned
1679 	 * above.
1680 	 */
1681 	scan_gray_list();
1682 
1683 	/*
1684 	 * Check for new or unreferenced objects modified since the previous
1685 	 * scan and color them gray until the next scan.
1686 	 */
1687 	rcu_read_lock();
1688 	list_for_each_entry_rcu(object, &object_list, object_list) {
1689 		if (need_resched())
1690 			kmemleak_cond_resched(object);
1691 
1692 		/*
1693 		 * This is racy but we can save the overhead of lock/unlock
1694 		 * calls. The missed objects, if any, should be caught in
1695 		 * the next scan.
1696 		 */
1697 		if (!color_white(object))
1698 			continue;
1699 		raw_spin_lock_irq(&object->lock);
1700 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1701 		    && update_checksum(object) && get_object(object)) {
1702 			/* color it gray temporarily */
1703 			object->count = object->min_count;
1704 			list_add_tail(&object->gray_list, &gray_list);
1705 		}
1706 		raw_spin_unlock_irq(&object->lock);
1707 	}
1708 	rcu_read_unlock();
1709 
1710 	/*
1711 	 * Re-scan the gray list for modified unreferenced objects.
1712 	 */
1713 	scan_gray_list();
1714 
1715 	/*
1716 	 * If scanning was stopped do not report any new unreferenced objects.
1717 	 */
1718 	if (scan_should_stop())
1719 		return;
1720 
1721 	/*
1722 	 * Scanning result reporting.
1723 	 */
1724 	rcu_read_lock();
1725 	list_for_each_entry_rcu(object, &object_list, object_list) {
1726 		if (need_resched())
1727 			kmemleak_cond_resched(object);
1728 
1729 		/*
1730 		 * This is racy but we can save the overhead of lock/unlock
1731 		 * calls. The missed objects, if any, should be caught in
1732 		 * the next scan.
1733 		 */
1734 		if (!color_white(object))
1735 			continue;
1736 		raw_spin_lock_irq(&object->lock);
1737 		if (unreferenced_object(object) &&
1738 		    !(object->flags & OBJECT_REPORTED)) {
1739 			object->flags |= OBJECT_REPORTED;
1740 
1741 			if (kmemleak_verbose)
1742 				print_unreferenced(NULL, object);
1743 
1744 			new_leaks++;
1745 		}
1746 		raw_spin_unlock_irq(&object->lock);
1747 	}
1748 	rcu_read_unlock();
1749 
1750 	if (new_leaks) {
1751 		kmemleak_found_leaks = true;
1752 
1753 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1754 			new_leaks);
1755 	}
1756 
1757 }
1758 
1759 /*
1760  * Thread function performing automatic memory scanning. Unreferenced objects
1761  * at the end of a memory scan are reported but only the first time.
1762  */
1763 static int kmemleak_scan_thread(void *arg)
1764 {
1765 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1766 
1767 	pr_info("Automatic memory scanning thread started\n");
1768 	set_user_nice(current, 10);
1769 
1770 	/*
1771 	 * Wait before the first scan to allow the system to fully initialize.
1772 	 */
1773 	if (first_run) {
1774 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1775 		first_run = 0;
1776 		while (timeout && !kthread_should_stop())
1777 			timeout = schedule_timeout_interruptible(timeout);
1778 	}
1779 
1780 	while (!kthread_should_stop()) {
1781 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1782 
1783 		mutex_lock(&scan_mutex);
1784 		kmemleak_scan();
1785 		mutex_unlock(&scan_mutex);
1786 
1787 		/* wait before the next scan */
1788 		while (timeout && !kthread_should_stop())
1789 			timeout = schedule_timeout_interruptible(timeout);
1790 	}
1791 
1792 	pr_info("Automatic memory scanning thread ended\n");
1793 
1794 	return 0;
1795 }
1796 
1797 /*
1798  * Start the automatic memory scanning thread. This function must be called
1799  * with the scan_mutex held.
1800  */
1801 static void start_scan_thread(void)
1802 {
1803 	if (scan_thread)
1804 		return;
1805 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1806 	if (IS_ERR(scan_thread)) {
1807 		pr_warn("Failed to create the scan thread\n");
1808 		scan_thread = NULL;
1809 	}
1810 }
1811 
1812 /*
1813  * Stop the automatic memory scanning thread.
1814  */
1815 static void stop_scan_thread(void)
1816 {
1817 	if (scan_thread) {
1818 		kthread_stop(scan_thread);
1819 		scan_thread = NULL;
1820 	}
1821 }
1822 
1823 /*
1824  * Iterate over the object_list and return the first valid object at or after
1825  * the required position with its use_count incremented. The function triggers
1826  * a memory scanning when the pos argument points to the first position.
1827  */
1828 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1829 {
1830 	struct kmemleak_object *object;
1831 	loff_t n = *pos;
1832 	int err;
1833 
1834 	err = mutex_lock_interruptible(&scan_mutex);
1835 	if (err < 0)
1836 		return ERR_PTR(err);
1837 
1838 	rcu_read_lock();
1839 	list_for_each_entry_rcu(object, &object_list, object_list) {
1840 		if (n-- > 0)
1841 			continue;
1842 		if (get_object(object))
1843 			goto out;
1844 	}
1845 	object = NULL;
1846 out:
1847 	return object;
1848 }
1849 
1850 /*
1851  * Return the next object in the object_list. The function decrements the
1852  * use_count of the previous object and increases that of the next one.
1853  */
1854 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1855 {
1856 	struct kmemleak_object *prev_obj = v;
1857 	struct kmemleak_object *next_obj = NULL;
1858 	struct kmemleak_object *obj = prev_obj;
1859 
1860 	++(*pos);
1861 
1862 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1863 		if (get_object(obj)) {
1864 			next_obj = obj;
1865 			break;
1866 		}
1867 	}
1868 
1869 	put_object(prev_obj);
1870 	return next_obj;
1871 }
1872 
1873 /*
1874  * Decrement the use_count of the last object required, if any.
1875  */
1876 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1877 {
1878 	if (!IS_ERR(v)) {
1879 		/*
1880 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1881 		 * waiting was interrupted, so only release it if !IS_ERR.
1882 		 */
1883 		rcu_read_unlock();
1884 		mutex_unlock(&scan_mutex);
1885 		if (v)
1886 			put_object(v);
1887 	}
1888 }
1889 
1890 /*
1891  * Print the information for an unreferenced object to the seq file.
1892  */
1893 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1894 {
1895 	struct kmemleak_object *object = v;
1896 	unsigned long flags;
1897 
1898 	raw_spin_lock_irqsave(&object->lock, flags);
1899 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1900 		print_unreferenced(seq, object);
1901 	raw_spin_unlock_irqrestore(&object->lock, flags);
1902 	return 0;
1903 }
1904 
1905 static const struct seq_operations kmemleak_seq_ops = {
1906 	.start = kmemleak_seq_start,
1907 	.next  = kmemleak_seq_next,
1908 	.stop  = kmemleak_seq_stop,
1909 	.show  = kmemleak_seq_show,
1910 };
1911 
1912 static int kmemleak_open(struct inode *inode, struct file *file)
1913 {
1914 	return seq_open(file, &kmemleak_seq_ops);
1915 }
1916 
1917 static int dump_str_object_info(const char *str)
1918 {
1919 	unsigned long flags;
1920 	struct kmemleak_object *object;
1921 	unsigned long addr;
1922 
1923 	if (kstrtoul(str, 0, &addr))
1924 		return -EINVAL;
1925 	object = find_and_get_object(addr, 0);
1926 	if (!object) {
1927 		pr_info("Unknown object at 0x%08lx\n", addr);
1928 		return -EINVAL;
1929 	}
1930 
1931 	raw_spin_lock_irqsave(&object->lock, flags);
1932 	dump_object_info(object);
1933 	raw_spin_unlock_irqrestore(&object->lock, flags);
1934 
1935 	put_object(object);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * We use grey instead of black to ensure we can do future scans on the same
1941  * objects. If we did not do future scans these black objects could
1942  * potentially contain references to newly allocated objects in the future and
1943  * we'd end up with false positives.
1944  */
1945 static void kmemleak_clear(void)
1946 {
1947 	struct kmemleak_object *object;
1948 
1949 	rcu_read_lock();
1950 	list_for_each_entry_rcu(object, &object_list, object_list) {
1951 		raw_spin_lock_irq(&object->lock);
1952 		if ((object->flags & OBJECT_REPORTED) &&
1953 		    unreferenced_object(object))
1954 			__paint_it(object, KMEMLEAK_GREY);
1955 		raw_spin_unlock_irq(&object->lock);
1956 	}
1957 	rcu_read_unlock();
1958 
1959 	kmemleak_found_leaks = false;
1960 }
1961 
1962 static void __kmemleak_do_cleanup(void);
1963 
1964 /*
1965  * File write operation to configure kmemleak at run-time. The following
1966  * commands can be written to the /sys/kernel/debug/kmemleak file:
1967  *   off	- disable kmemleak (irreversible)
1968  *   stack=on	- enable the task stacks scanning
1969  *   stack=off	- disable the tasks stacks scanning
1970  *   scan=on	- start the automatic memory scanning thread
1971  *   scan=off	- stop the automatic memory scanning thread
1972  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1973  *		  disable it)
1974  *   scan	- trigger a memory scan
1975  *   clear	- mark all current reported unreferenced kmemleak objects as
1976  *		  grey to ignore printing them, or free all kmemleak objects
1977  *		  if kmemleak has been disabled.
1978  *   dump=...	- dump information about the object found at the given address
1979  */
1980 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1981 			      size_t size, loff_t *ppos)
1982 {
1983 	char buf[64];
1984 	int buf_size;
1985 	int ret;
1986 
1987 	buf_size = min(size, (sizeof(buf) - 1));
1988 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1989 		return -EFAULT;
1990 	buf[buf_size] = 0;
1991 
1992 	ret = mutex_lock_interruptible(&scan_mutex);
1993 	if (ret < 0)
1994 		return ret;
1995 
1996 	if (strncmp(buf, "clear", 5) == 0) {
1997 		if (kmemleak_enabled)
1998 			kmemleak_clear();
1999 		else
2000 			__kmemleak_do_cleanup();
2001 		goto out;
2002 	}
2003 
2004 	if (!kmemleak_enabled) {
2005 		ret = -EPERM;
2006 		goto out;
2007 	}
2008 
2009 	if (strncmp(buf, "off", 3) == 0)
2010 		kmemleak_disable();
2011 	else if (strncmp(buf, "stack=on", 8) == 0)
2012 		kmemleak_stack_scan = 1;
2013 	else if (strncmp(buf, "stack=off", 9) == 0)
2014 		kmemleak_stack_scan = 0;
2015 	else if (strncmp(buf, "scan=on", 7) == 0)
2016 		start_scan_thread();
2017 	else if (strncmp(buf, "scan=off", 8) == 0)
2018 		stop_scan_thread();
2019 	else if (strncmp(buf, "scan=", 5) == 0) {
2020 		unsigned secs;
2021 		unsigned long msecs;
2022 
2023 		ret = kstrtouint(buf + 5, 0, &secs);
2024 		if (ret < 0)
2025 			goto out;
2026 
2027 		msecs = secs * MSEC_PER_SEC;
2028 		if (msecs > UINT_MAX)
2029 			msecs = UINT_MAX;
2030 
2031 		stop_scan_thread();
2032 		if (msecs) {
2033 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2034 			start_scan_thread();
2035 		}
2036 	} else if (strncmp(buf, "scan", 4) == 0)
2037 		kmemleak_scan();
2038 	else if (strncmp(buf, "dump=", 5) == 0)
2039 		ret = dump_str_object_info(buf + 5);
2040 	else
2041 		ret = -EINVAL;
2042 
2043 out:
2044 	mutex_unlock(&scan_mutex);
2045 	if (ret < 0)
2046 		return ret;
2047 
2048 	/* ignore the rest of the buffer, only one command at a time */
2049 	*ppos += size;
2050 	return size;
2051 }
2052 
2053 static const struct file_operations kmemleak_fops = {
2054 	.owner		= THIS_MODULE,
2055 	.open		= kmemleak_open,
2056 	.read		= seq_read,
2057 	.write		= kmemleak_write,
2058 	.llseek		= seq_lseek,
2059 	.release	= seq_release,
2060 };
2061 
2062 static void __kmemleak_do_cleanup(void)
2063 {
2064 	struct kmemleak_object *object, *tmp;
2065 
2066 	/*
2067 	 * Kmemleak has already been disabled, no need for RCU list traversal
2068 	 * or kmemleak_lock held.
2069 	 */
2070 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2071 		__remove_object(object);
2072 		__delete_object(object);
2073 	}
2074 }
2075 
2076 /*
2077  * Stop the memory scanning thread and free the kmemleak internal objects if
2078  * no previous scan thread (otherwise, kmemleak may still have some useful
2079  * information on memory leaks).
2080  */
2081 static void kmemleak_do_cleanup(struct work_struct *work)
2082 {
2083 	stop_scan_thread();
2084 
2085 	mutex_lock(&scan_mutex);
2086 	/*
2087 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2088 	 * longer track object freeing. Ordering of the scan thread stopping and
2089 	 * the memory accesses below is guaranteed by the kthread_stop()
2090 	 * function.
2091 	 */
2092 	kmemleak_free_enabled = 0;
2093 	mutex_unlock(&scan_mutex);
2094 
2095 	if (!kmemleak_found_leaks)
2096 		__kmemleak_do_cleanup();
2097 	else
2098 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2099 }
2100 
2101 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2102 
2103 /*
2104  * Disable kmemleak. No memory allocation/freeing will be traced once this
2105  * function is called. Disabling kmemleak is an irreversible operation.
2106  */
2107 static void kmemleak_disable(void)
2108 {
2109 	/* atomically check whether it was already invoked */
2110 	if (cmpxchg(&kmemleak_error, 0, 1))
2111 		return;
2112 
2113 	/* stop any memory operation tracing */
2114 	kmemleak_enabled = 0;
2115 
2116 	/* check whether it is too early for a kernel thread */
2117 	if (kmemleak_late_initialized)
2118 		schedule_work(&cleanup_work);
2119 	else
2120 		kmemleak_free_enabled = 0;
2121 
2122 	pr_info("Kernel memory leak detector disabled\n");
2123 }
2124 
2125 /*
2126  * Allow boot-time kmemleak disabling (enabled by default).
2127  */
2128 static int __init kmemleak_boot_config(char *str)
2129 {
2130 	if (!str)
2131 		return -EINVAL;
2132 	if (strcmp(str, "off") == 0)
2133 		kmemleak_disable();
2134 	else if (strcmp(str, "on") == 0) {
2135 		kmemleak_skip_disable = 1;
2136 		stack_depot_request_early_init();
2137 	}
2138 	else
2139 		return -EINVAL;
2140 	return 0;
2141 }
2142 early_param("kmemleak", kmemleak_boot_config);
2143 
2144 /*
2145  * Kmemleak initialization.
2146  */
2147 void __init kmemleak_init(void)
2148 {
2149 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2150 	if (!kmemleak_skip_disable) {
2151 		kmemleak_disable();
2152 		return;
2153 	}
2154 #endif
2155 
2156 	if (kmemleak_error)
2157 		return;
2158 
2159 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2160 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2161 
2162 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2163 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2164 
2165 	/* register the data/bss sections */
2166 	create_object((unsigned long)_sdata, _edata - _sdata,
2167 		      KMEMLEAK_GREY, GFP_ATOMIC);
2168 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2169 		      KMEMLEAK_GREY, GFP_ATOMIC);
2170 	/* only register .data..ro_after_init if not within .data */
2171 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2172 		create_object((unsigned long)__start_ro_after_init,
2173 			      __end_ro_after_init - __start_ro_after_init,
2174 			      KMEMLEAK_GREY, GFP_ATOMIC);
2175 }
2176 
2177 /*
2178  * Late initialization function.
2179  */
2180 static int __init kmemleak_late_init(void)
2181 {
2182 	kmemleak_late_initialized = 1;
2183 
2184 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2185 
2186 	if (kmemleak_error) {
2187 		/*
2188 		 * Some error occurred and kmemleak was disabled. There is a
2189 		 * small chance that kmemleak_disable() was called immediately
2190 		 * after setting kmemleak_late_initialized and we may end up with
2191 		 * two clean-up threads but serialized by scan_mutex.
2192 		 */
2193 		schedule_work(&cleanup_work);
2194 		return -ENOMEM;
2195 	}
2196 
2197 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2198 		mutex_lock(&scan_mutex);
2199 		start_scan_thread();
2200 		mutex_unlock(&scan_mutex);
2201 	}
2202 
2203 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2204 		mem_pool_free_count);
2205 
2206 	return 0;
2207 }
2208 late_initcall(kmemleak_late_init);
2209