xref: /linux/mm/kmemleak.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 					   __GFP_NOLOCKDEP)) | \
120 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
121 				 __GFP_NOWARN)
122 
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125 	struct hlist_node node;
126 	unsigned long start;
127 	size_t size;
128 };
129 
130 #define KMEMLEAK_GREY	0
131 #define KMEMLEAK_BLACK	-1
132 
133 /*
134  * Structure holding the metadata for each allocated memory block.
135  * Modifications to such objects should be made while holding the
136  * object->lock. Insertions or deletions from object_list, gray_list or
137  * rb_node are already protected by the corresponding locks or mutex (see
138  * the notes on locking above). These objects are reference-counted
139  * (use_count) and freed using the RCU mechanism.
140  */
141 struct kmemleak_object {
142 	raw_spinlock_t lock;
143 	unsigned int flags;		/* object status flags */
144 	struct list_head object_list;
145 	struct list_head gray_list;
146 	struct rb_node rb_node;
147 	struct rcu_head rcu;		/* object_list lockless traversal */
148 	/* object usage count; object freed when use_count == 0 */
149 	atomic_t use_count;
150 	unsigned int del_state;		/* deletion state */
151 	unsigned long pointer;
152 	size_t size;
153 	/* pass surplus references to this pointer */
154 	unsigned long excess_ref;
155 	/* minimum number of a pointers found before it is considered leak */
156 	int min_count;
157 	/* the total number of pointers found pointing to this object */
158 	int count;
159 	/* checksum for detecting modified objects */
160 	u32 checksum;
161 	/* memory ranges to be scanned inside an object (empty for all) */
162 	struct hlist_head area_list;
163 	depot_stack_handle_t trace_handle;
164 	unsigned long jiffies;		/* creation timestamp */
165 	pid_t pid;			/* pid of the current task */
166 	char comm[TASK_COMM_LEN];	/* executable name */
167 };
168 
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED	(1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED		(1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN		(1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN	(1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS		(1 << 4)
179 /* flag set for per-CPU pointers */
180 #define OBJECT_PERCPU		(1 << 5)
181 
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED	(1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE	(1 << 1)
186 
187 #define HEX_PREFIX		"    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE		16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE		1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII		1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES		2
196 
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
210 static struct rb_root object_percpu_tree_root = RB_ROOT;
211 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
212 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
213 
214 /* allocation caches for kmemleak internal data */
215 static struct kmem_cache *object_cache;
216 static struct kmem_cache *scan_area_cache;
217 
218 /* set if tracing memory operations is enabled */
219 static int kmemleak_enabled = 1;
220 /* same as above but only for the kmemleak_free() callback */
221 static int kmemleak_free_enabled = 1;
222 /* set in the late_initcall if there were no errors */
223 static int kmemleak_late_initialized;
224 /* set if a kmemleak warning was issued */
225 static int kmemleak_warning;
226 /* set if a fatal kmemleak error has occurred */
227 static int kmemleak_error;
228 
229 /* minimum and maximum address that may be valid pointers */
230 static unsigned long min_addr = ULONG_MAX;
231 static unsigned long max_addr;
232 
233 static struct task_struct *scan_thread;
234 /* used to avoid reporting of recently allocated objects */
235 static unsigned long jiffies_min_age;
236 static unsigned long jiffies_last_scan;
237 /* delay between automatic memory scannings */
238 static unsigned long jiffies_scan_wait;
239 /* enables or disables the task stacks scanning */
240 static int kmemleak_stack_scan = 1;
241 /* protects the memory scanning, parameters and debug/kmemleak file access */
242 static DEFINE_MUTEX(scan_mutex);
243 /* setting kmemleak=on, will set this var, skipping the disable */
244 static int kmemleak_skip_disable;
245 /* If there are leaks that can be reported */
246 static bool kmemleak_found_leaks;
247 
248 static bool kmemleak_verbose;
249 module_param_named(verbose, kmemleak_verbose, bool, 0600);
250 
251 static void kmemleak_disable(void);
252 
253 /*
254  * Print a warning and dump the stack trace.
255  */
256 #define kmemleak_warn(x...)	do {		\
257 	pr_warn(x);				\
258 	dump_stack();				\
259 	kmemleak_warning = 1;			\
260 } while (0)
261 
262 /*
263  * Macro invoked when a serious kmemleak condition occurred and cannot be
264  * recovered from. Kmemleak will be disabled and further allocation/freeing
265  * tracing no longer available.
266  */
267 #define kmemleak_stop(x...)	do {	\
268 	kmemleak_warn(x);		\
269 	kmemleak_disable();		\
270 } while (0)
271 
272 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
273 	if (seq)					\
274 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
275 	else						\
276 		pr_warn(fmt, ##__VA_ARGS__);		\
277 } while (0)
278 
279 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
280 				 int rowsize, int groupsize, const void *buf,
281 				 size_t len, bool ascii)
282 {
283 	if (seq)
284 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
285 			     buf, len, ascii);
286 	else
287 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
288 			       rowsize, groupsize, buf, len, ascii);
289 }
290 
291 /*
292  * Printing of the objects hex dump to the seq file. The number of lines to be
293  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
294  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
295  * with the object->lock held.
296  */
297 static void hex_dump_object(struct seq_file *seq,
298 			    struct kmemleak_object *object)
299 {
300 	const u8 *ptr = (const u8 *)object->pointer;
301 	size_t len;
302 
303 	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
304 		return;
305 
306 	/* limit the number of lines to HEX_MAX_LINES */
307 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308 
309 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
310 	kasan_disable_current();
311 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
312 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
313 	kasan_enable_current();
314 }
315 
316 /*
317  * Object colors, encoded with count and min_count:
318  * - white - orphan object, not enough references to it (count < min_count)
319  * - gray  - not orphan, not marked as false positive (min_count == 0) or
320  *		sufficient references to it (count >= min_count)
321  * - black - ignore, it doesn't contain references (e.g. text section)
322  *		(min_count == -1). No function defined for this color.
323  * Newly created objects don't have any color assigned (object->count == -1)
324  * before the next memory scan when they become white.
325  */
326 static bool color_white(const struct kmemleak_object *object)
327 {
328 	return object->count != KMEMLEAK_BLACK &&
329 		object->count < object->min_count;
330 }
331 
332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 	return object->min_count != KMEMLEAK_BLACK &&
335 		object->count >= object->min_count;
336 }
337 
338 /*
339  * Objects are considered unreferenced only if their color is white, they have
340  * not be deleted and have a minimum age to avoid false positives caused by
341  * pointers temporarily stored in CPU registers.
342  */
343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 		time_before_eq(object->jiffies + jiffies_min_age,
347 			       jiffies_last_scan);
348 }
349 
350 /*
351  * Printing of the unreferenced objects information to the seq file. The
352  * print_unreferenced function must be called with the object->lock held.
353  */
354 static void print_unreferenced(struct seq_file *seq,
355 			       struct kmemleak_object *object)
356 {
357 	int i;
358 	unsigned long *entries;
359 	unsigned int nr_entries;
360 
361 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
362 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 			  object->pointer, object->size);
364 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
365 			   object->comm, object->pid, object->jiffies);
366 	hex_dump_object(seq, object);
367 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
368 
369 	for (i = 0; i < nr_entries; i++) {
370 		void *ptr = (void *)entries[i];
371 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372 	}
373 }
374 
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 			object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 			object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%x\n", object->flags);
389 	pr_notice("  checksum = %u\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	if (object->trace_handle)
392 		stack_depot_print(object->trace_handle);
393 }
394 
395 static struct rb_root *object_tree(unsigned long objflags)
396 {
397 	if (objflags & OBJECT_PHYS)
398 		return &object_phys_tree_root;
399 	if (objflags & OBJECT_PERCPU)
400 		return &object_percpu_tree_root;
401 	return &object_tree_root;
402 }
403 
404 /*
405  * Look-up a memory block metadata (kmemleak_object) in the object search
406  * tree based on a pointer value. If alias is 0, only values pointing to the
407  * beginning of the memory block are allowed. The kmemleak_lock must be held
408  * when calling this function.
409  */
410 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
411 					       unsigned int objflags)
412 {
413 	struct rb_node *rb = object_tree(objflags)->rb_node;
414 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
415 
416 	while (rb) {
417 		struct kmemleak_object *object;
418 		unsigned long untagged_objp;
419 
420 		object = rb_entry(rb, struct kmemleak_object, rb_node);
421 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
422 
423 		if (untagged_ptr < untagged_objp)
424 			rb = object->rb_node.rb_left;
425 		else if (untagged_objp + object->size <= untagged_ptr)
426 			rb = object->rb_node.rb_right;
427 		else if (untagged_objp == untagged_ptr || alias)
428 			return object;
429 		else {
430 			kmemleak_warn("Found object by alias at 0x%08lx\n",
431 				      ptr);
432 			dump_object_info(object);
433 			break;
434 		}
435 	}
436 	return NULL;
437 }
438 
439 /* Look-up a kmemleak object which allocated with virtual address. */
440 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
441 {
442 	return __lookup_object(ptr, alias, 0);
443 }
444 
445 /*
446  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
447  * that once an object's use_count reached 0, the RCU freeing was already
448  * registered and the object should no longer be used. This function must be
449  * called under the protection of rcu_read_lock().
450  */
451 static int get_object(struct kmemleak_object *object)
452 {
453 	return atomic_inc_not_zero(&object->use_count);
454 }
455 
456 /*
457  * Memory pool allocation and freeing. kmemleak_lock must not be held.
458  */
459 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
460 {
461 	unsigned long flags;
462 	struct kmemleak_object *object;
463 
464 	/* try the slab allocator first */
465 	if (object_cache) {
466 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
467 		if (object)
468 			return object;
469 	}
470 
471 	/* slab allocation failed, try the memory pool */
472 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
473 	object = list_first_entry_or_null(&mem_pool_free_list,
474 					  typeof(*object), object_list);
475 	if (object)
476 		list_del(&object->object_list);
477 	else if (mem_pool_free_count)
478 		object = &mem_pool[--mem_pool_free_count];
479 	else
480 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
481 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
482 
483 	return object;
484 }
485 
486 /*
487  * Return the object to either the slab allocator or the memory pool.
488  */
489 static void mem_pool_free(struct kmemleak_object *object)
490 {
491 	unsigned long flags;
492 
493 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
494 		kmem_cache_free(object_cache, object);
495 		return;
496 	}
497 
498 	/* add the object to the memory pool free list */
499 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
500 	list_add(&object->object_list, &mem_pool_free_list);
501 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
502 }
503 
504 /*
505  * RCU callback to free a kmemleak_object.
506  */
507 static void free_object_rcu(struct rcu_head *rcu)
508 {
509 	struct hlist_node *tmp;
510 	struct kmemleak_scan_area *area;
511 	struct kmemleak_object *object =
512 		container_of(rcu, struct kmemleak_object, rcu);
513 
514 	/*
515 	 * Once use_count is 0 (guaranteed by put_object), there is no other
516 	 * code accessing this object, hence no need for locking.
517 	 */
518 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
519 		hlist_del(&area->node);
520 		kmem_cache_free(scan_area_cache, area);
521 	}
522 	mem_pool_free(object);
523 }
524 
525 /*
526  * Decrement the object use_count. Once the count is 0, free the object using
527  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
528  * delete_object() path, the delayed RCU freeing ensures that there is no
529  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
530  * is also possible.
531  */
532 static void put_object(struct kmemleak_object *object)
533 {
534 	if (!atomic_dec_and_test(&object->use_count))
535 		return;
536 
537 	/* should only get here after delete_object was called */
538 	WARN_ON(object->flags & OBJECT_ALLOCATED);
539 
540 	/*
541 	 * It may be too early for the RCU callbacks, however, there is no
542 	 * concurrent object_list traversal when !object_cache and all objects
543 	 * came from the memory pool. Free the object directly.
544 	 */
545 	if (object_cache)
546 		call_rcu(&object->rcu, free_object_rcu);
547 	else
548 		free_object_rcu(&object->rcu);
549 }
550 
551 /*
552  * Look up an object in the object search tree and increase its use_count.
553  */
554 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
555 						     unsigned int objflags)
556 {
557 	unsigned long flags;
558 	struct kmemleak_object *object;
559 
560 	rcu_read_lock();
561 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
562 	object = __lookup_object(ptr, alias, objflags);
563 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
564 
565 	/* check whether the object is still available */
566 	if (object && !get_object(object))
567 		object = NULL;
568 	rcu_read_unlock();
569 
570 	return object;
571 }
572 
573 /* Look up and get an object which allocated with virtual address. */
574 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
575 {
576 	return __find_and_get_object(ptr, alias, 0);
577 }
578 
579 /*
580  * Remove an object from its object tree and object_list. Must be called with
581  * the kmemleak_lock held _if_ kmemleak is still enabled.
582  */
583 static void __remove_object(struct kmemleak_object *object)
584 {
585 	rb_erase(&object->rb_node, object_tree(object->flags));
586 	if (!(object->del_state & DELSTATE_NO_DELETE))
587 		list_del_rcu(&object->object_list);
588 	object->del_state |= DELSTATE_REMOVED;
589 }
590 
591 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
592 							int alias,
593 							unsigned int objflags)
594 {
595 	struct kmemleak_object *object;
596 
597 	object = __lookup_object(ptr, alias, objflags);
598 	if (object)
599 		__remove_object(object);
600 
601 	return object;
602 }
603 
604 /*
605  * Look up an object in the object search tree and remove it from both object
606  * tree root and object_list. The returned object's use_count should be at
607  * least 1, as initially set by create_object().
608  */
609 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
610 						      unsigned int objflags)
611 {
612 	unsigned long flags;
613 	struct kmemleak_object *object;
614 
615 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
616 	object = __find_and_remove_object(ptr, alias, objflags);
617 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
618 
619 	return object;
620 }
621 
622 static noinline depot_stack_handle_t set_track_prepare(void)
623 {
624 	depot_stack_handle_t trace_handle;
625 	unsigned long entries[MAX_TRACE];
626 	unsigned int nr_entries;
627 
628 	/*
629 	 * Use object_cache to determine whether kmemleak_init() has
630 	 * been invoked. stack_depot_early_init() is called before
631 	 * kmemleak_init() in mm_core_init().
632 	 */
633 	if (!object_cache)
634 		return 0;
635 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
636 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
637 
638 	return trace_handle;
639 }
640 
641 static struct kmemleak_object *__alloc_object(gfp_t gfp)
642 {
643 	struct kmemleak_object *object;
644 
645 	object = mem_pool_alloc(gfp);
646 	if (!object) {
647 		pr_warn("Cannot allocate a kmemleak_object structure\n");
648 		kmemleak_disable();
649 		return NULL;
650 	}
651 
652 	INIT_LIST_HEAD(&object->object_list);
653 	INIT_LIST_HEAD(&object->gray_list);
654 	INIT_HLIST_HEAD(&object->area_list);
655 	raw_spin_lock_init(&object->lock);
656 	atomic_set(&object->use_count, 1);
657 	object->excess_ref = 0;
658 	object->count = 0;			/* white color initially */
659 	object->checksum = 0;
660 	object->del_state = 0;
661 
662 	/* task information */
663 	if (in_hardirq()) {
664 		object->pid = 0;
665 		strncpy(object->comm, "hardirq", sizeof(object->comm));
666 	} else if (in_serving_softirq()) {
667 		object->pid = 0;
668 		strncpy(object->comm, "softirq", sizeof(object->comm));
669 	} else {
670 		object->pid = current->pid;
671 		/*
672 		 * There is a small chance of a race with set_task_comm(),
673 		 * however using get_task_comm() here may cause locking
674 		 * dependency issues with current->alloc_lock. In the worst
675 		 * case, the command line is not correct.
676 		 */
677 		strncpy(object->comm, current->comm, sizeof(object->comm));
678 	}
679 
680 	/* kernel backtrace */
681 	object->trace_handle = set_track_prepare();
682 
683 	return object;
684 }
685 
686 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
687 			 size_t size, int min_count, unsigned int objflags)
688 {
689 
690 	struct kmemleak_object *parent;
691 	struct rb_node **link, *rb_parent;
692 	unsigned long untagged_ptr;
693 	unsigned long untagged_objp;
694 
695 	object->flags = OBJECT_ALLOCATED | objflags;
696 	object->pointer = ptr;
697 	object->size = kfence_ksize((void *)ptr) ?: size;
698 	object->min_count = min_count;
699 	object->jiffies = jiffies;
700 
701 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
702 	/*
703 	 * Only update min_addr and max_addr with object
704 	 * storing virtual address.
705 	 */
706 	if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) {
707 		min_addr = min(min_addr, untagged_ptr);
708 		max_addr = max(max_addr, untagged_ptr + size);
709 	}
710 	link = &object_tree(objflags)->rb_node;
711 	rb_parent = NULL;
712 	while (*link) {
713 		rb_parent = *link;
714 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
715 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
716 		if (untagged_ptr + size <= untagged_objp)
717 			link = &parent->rb_node.rb_left;
718 		else if (untagged_objp + parent->size <= untagged_ptr)
719 			link = &parent->rb_node.rb_right;
720 		else {
721 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
722 				      ptr);
723 			/*
724 			 * No need for parent->lock here since "parent" cannot
725 			 * be freed while the kmemleak_lock is held.
726 			 */
727 			dump_object_info(parent);
728 			return -EEXIST;
729 		}
730 	}
731 	rb_link_node(&object->rb_node, rb_parent, link);
732 	rb_insert_color(&object->rb_node, object_tree(objflags));
733 	list_add_tail_rcu(&object->object_list, &object_list);
734 
735 	return 0;
736 }
737 
738 /*
739  * Create the metadata (struct kmemleak_object) corresponding to an allocated
740  * memory block and add it to the object_list and object tree.
741  */
742 static void __create_object(unsigned long ptr, size_t size,
743 				int min_count, gfp_t gfp, unsigned int objflags)
744 {
745 	struct kmemleak_object *object;
746 	unsigned long flags;
747 	int ret;
748 
749 	object = __alloc_object(gfp);
750 	if (!object)
751 		return;
752 
753 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
754 	ret = __link_object(object, ptr, size, min_count, objflags);
755 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
756 	if (ret)
757 		mem_pool_free(object);
758 }
759 
760 /* Create kmemleak object which allocated with virtual address. */
761 static void create_object(unsigned long ptr, size_t size,
762 			  int min_count, gfp_t gfp)
763 {
764 	__create_object(ptr, size, min_count, gfp, 0);
765 }
766 
767 /* Create kmemleak object which allocated with physical address. */
768 static void create_object_phys(unsigned long ptr, size_t size,
769 			       int min_count, gfp_t gfp)
770 {
771 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
772 }
773 
774 /* Create kmemleak object corresponding to a per-CPU allocation. */
775 static void create_object_percpu(unsigned long ptr, size_t size,
776 				 int min_count, gfp_t gfp)
777 {
778 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
779 }
780 
781 /*
782  * Mark the object as not allocated and schedule RCU freeing via put_object().
783  */
784 static void __delete_object(struct kmemleak_object *object)
785 {
786 	unsigned long flags;
787 
788 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
789 	WARN_ON(atomic_read(&object->use_count) < 1);
790 
791 	/*
792 	 * Locking here also ensures that the corresponding memory block
793 	 * cannot be freed when it is being scanned.
794 	 */
795 	raw_spin_lock_irqsave(&object->lock, flags);
796 	object->flags &= ~OBJECT_ALLOCATED;
797 	raw_spin_unlock_irqrestore(&object->lock, flags);
798 	put_object(object);
799 }
800 
801 /*
802  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
803  * delete it.
804  */
805 static void delete_object_full(unsigned long ptr, unsigned int objflags)
806 {
807 	struct kmemleak_object *object;
808 
809 	object = find_and_remove_object(ptr, 0, objflags);
810 	if (!object) {
811 #ifdef DEBUG
812 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
813 			      ptr);
814 #endif
815 		return;
816 	}
817 	__delete_object(object);
818 }
819 
820 /*
821  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
822  * delete it. If the memory block is partially freed, the function may create
823  * additional metadata for the remaining parts of the block.
824  */
825 static void delete_object_part(unsigned long ptr, size_t size,
826 			       unsigned int objflags)
827 {
828 	struct kmemleak_object *object, *object_l, *object_r;
829 	unsigned long start, end, flags;
830 
831 	object_l = __alloc_object(GFP_KERNEL);
832 	if (!object_l)
833 		return;
834 
835 	object_r = __alloc_object(GFP_KERNEL);
836 	if (!object_r)
837 		goto out;
838 
839 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
840 	object = __find_and_remove_object(ptr, 1, objflags);
841 	if (!object) {
842 #ifdef DEBUG
843 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
844 			      ptr, size);
845 #endif
846 		goto unlock;
847 	}
848 
849 	/*
850 	 * Create one or two objects that may result from the memory block
851 	 * split. Note that partial freeing is only done by free_bootmem() and
852 	 * this happens before kmemleak_init() is called.
853 	 */
854 	start = object->pointer;
855 	end = object->pointer + object->size;
856 	if ((ptr > start) &&
857 	    !__link_object(object_l, start, ptr - start,
858 			   object->min_count, objflags))
859 		object_l = NULL;
860 	if ((ptr + size < end) &&
861 	    !__link_object(object_r, ptr + size, end - ptr - size,
862 			   object->min_count, objflags))
863 		object_r = NULL;
864 
865 unlock:
866 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
867 	if (object)
868 		__delete_object(object);
869 
870 out:
871 	if (object_l)
872 		mem_pool_free(object_l);
873 	if (object_r)
874 		mem_pool_free(object_r);
875 }
876 
877 static void __paint_it(struct kmemleak_object *object, int color)
878 {
879 	object->min_count = color;
880 	if (color == KMEMLEAK_BLACK)
881 		object->flags |= OBJECT_NO_SCAN;
882 }
883 
884 static void paint_it(struct kmemleak_object *object, int color)
885 {
886 	unsigned long flags;
887 
888 	raw_spin_lock_irqsave(&object->lock, flags);
889 	__paint_it(object, color);
890 	raw_spin_unlock_irqrestore(&object->lock, flags);
891 }
892 
893 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
894 {
895 	struct kmemleak_object *object;
896 
897 	object = __find_and_get_object(ptr, 0, objflags);
898 	if (!object) {
899 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
900 			      ptr,
901 			      (color == KMEMLEAK_GREY) ? "Grey" :
902 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
903 		return;
904 	}
905 	paint_it(object, color);
906 	put_object(object);
907 }
908 
909 /*
910  * Mark an object permanently as gray-colored so that it can no longer be
911  * reported as a leak. This is used in general to mark a false positive.
912  */
913 static void make_gray_object(unsigned long ptr)
914 {
915 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
916 }
917 
918 /*
919  * Mark the object as black-colored so that it is ignored from scans and
920  * reporting.
921  */
922 static void make_black_object(unsigned long ptr, unsigned int objflags)
923 {
924 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
925 }
926 
927 /*
928  * Add a scanning area to the object. If at least one such area is added,
929  * kmemleak will only scan these ranges rather than the whole memory block.
930  */
931 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
932 {
933 	unsigned long flags;
934 	struct kmemleak_object *object;
935 	struct kmemleak_scan_area *area = NULL;
936 	unsigned long untagged_ptr;
937 	unsigned long untagged_objp;
938 
939 	object = find_and_get_object(ptr, 1);
940 	if (!object) {
941 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
942 			      ptr);
943 		return;
944 	}
945 
946 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
947 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
948 
949 	if (scan_area_cache)
950 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
951 
952 	raw_spin_lock_irqsave(&object->lock, flags);
953 	if (!area) {
954 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
955 		/* mark the object for full scan to avoid false positives */
956 		object->flags |= OBJECT_FULL_SCAN;
957 		goto out_unlock;
958 	}
959 	if (size == SIZE_MAX) {
960 		size = untagged_objp + object->size - untagged_ptr;
961 	} else if (untagged_ptr + size > untagged_objp + object->size) {
962 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
963 		dump_object_info(object);
964 		kmem_cache_free(scan_area_cache, area);
965 		goto out_unlock;
966 	}
967 
968 	INIT_HLIST_NODE(&area->node);
969 	area->start = ptr;
970 	area->size = size;
971 
972 	hlist_add_head(&area->node, &object->area_list);
973 out_unlock:
974 	raw_spin_unlock_irqrestore(&object->lock, flags);
975 	put_object(object);
976 }
977 
978 /*
979  * Any surplus references (object already gray) to 'ptr' are passed to
980  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
981  * vm_struct may be used as an alternative reference to the vmalloc'ed object
982  * (see free_thread_stack()).
983  */
984 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
985 {
986 	unsigned long flags;
987 	struct kmemleak_object *object;
988 
989 	object = find_and_get_object(ptr, 0);
990 	if (!object) {
991 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
992 			      ptr);
993 		return;
994 	}
995 
996 	raw_spin_lock_irqsave(&object->lock, flags);
997 	object->excess_ref = excess_ref;
998 	raw_spin_unlock_irqrestore(&object->lock, flags);
999 	put_object(object);
1000 }
1001 
1002 /*
1003  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1004  * pointer. Such object will not be scanned by kmemleak but references to it
1005  * are searched.
1006  */
1007 static void object_no_scan(unsigned long ptr)
1008 {
1009 	unsigned long flags;
1010 	struct kmemleak_object *object;
1011 
1012 	object = find_and_get_object(ptr, 0);
1013 	if (!object) {
1014 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1015 		return;
1016 	}
1017 
1018 	raw_spin_lock_irqsave(&object->lock, flags);
1019 	object->flags |= OBJECT_NO_SCAN;
1020 	raw_spin_unlock_irqrestore(&object->lock, flags);
1021 	put_object(object);
1022 }
1023 
1024 /**
1025  * kmemleak_alloc - register a newly allocated object
1026  * @ptr:	pointer to beginning of the object
1027  * @size:	size of the object
1028  * @min_count:	minimum number of references to this object. If during memory
1029  *		scanning a number of references less than @min_count is found,
1030  *		the object is reported as a memory leak. If @min_count is 0,
1031  *		the object is never reported as a leak. If @min_count is -1,
1032  *		the object is ignored (not scanned and not reported as a leak)
1033  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1034  *
1035  * This function is called from the kernel allocators when a new object
1036  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1037  */
1038 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1039 			  gfp_t gfp)
1040 {
1041 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1042 
1043 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1044 		create_object((unsigned long)ptr, size, min_count, gfp);
1045 }
1046 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1047 
1048 /**
1049  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1050  * @ptr:	__percpu pointer to beginning of the object
1051  * @size:	size of the object
1052  * @gfp:	flags used for kmemleak internal memory allocations
1053  *
1054  * This function is called from the kernel percpu allocator when a new object
1055  * (memory block) is allocated (alloc_percpu).
1056  */
1057 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1058 				 gfp_t gfp)
1059 {
1060 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1061 
1062 	/*
1063 	 * Percpu allocations are only scanned and not reported as leaks
1064 	 * (min_count is set to 0).
1065 	 */
1066 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 		create_object_percpu((unsigned long)ptr, size, 0, gfp);
1068 }
1069 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1070 
1071 /**
1072  * kmemleak_vmalloc - register a newly vmalloc'ed object
1073  * @area:	pointer to vm_struct
1074  * @size:	size of the object
1075  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1076  *
1077  * This function is called from the vmalloc() kernel allocator when a new
1078  * object (memory block) is allocated.
1079  */
1080 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1081 {
1082 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1083 
1084 	/*
1085 	 * A min_count = 2 is needed because vm_struct contains a reference to
1086 	 * the virtual address of the vmalloc'ed block.
1087 	 */
1088 	if (kmemleak_enabled) {
1089 		create_object((unsigned long)area->addr, size, 2, gfp);
1090 		object_set_excess_ref((unsigned long)area,
1091 				      (unsigned long)area->addr);
1092 	}
1093 }
1094 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1095 
1096 /**
1097  * kmemleak_free - unregister a previously registered object
1098  * @ptr:	pointer to beginning of the object
1099  *
1100  * This function is called from the kernel allocators when an object (memory
1101  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1102  */
1103 void __ref kmemleak_free(const void *ptr)
1104 {
1105 	pr_debug("%s(0x%px)\n", __func__, ptr);
1106 
1107 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1108 		delete_object_full((unsigned long)ptr, 0);
1109 }
1110 EXPORT_SYMBOL_GPL(kmemleak_free);
1111 
1112 /**
1113  * kmemleak_free_part - partially unregister a previously registered object
1114  * @ptr:	pointer to the beginning or inside the object. This also
1115  *		represents the start of the range to be freed
1116  * @size:	size to be unregistered
1117  *
1118  * This function is called when only a part of a memory block is freed
1119  * (usually from the bootmem allocator).
1120  */
1121 void __ref kmemleak_free_part(const void *ptr, size_t size)
1122 {
1123 	pr_debug("%s(0x%px)\n", __func__, ptr);
1124 
1125 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126 		delete_object_part((unsigned long)ptr, size, 0);
1127 }
1128 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1129 
1130 /**
1131  * kmemleak_free_percpu - unregister a previously registered __percpu object
1132  * @ptr:	__percpu pointer to beginning of the object
1133  *
1134  * This function is called from the kernel percpu allocator when an object
1135  * (memory block) is freed (free_percpu).
1136  */
1137 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1138 {
1139 	pr_debug("%s(0x%px)\n", __func__, ptr);
1140 
1141 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142 		delete_object_full((unsigned long)ptr, OBJECT_PERCPU);
1143 }
1144 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1145 
1146 /**
1147  * kmemleak_update_trace - update object allocation stack trace
1148  * @ptr:	pointer to beginning of the object
1149  *
1150  * Override the object allocation stack trace for cases where the actual
1151  * allocation place is not always useful.
1152  */
1153 void __ref kmemleak_update_trace(const void *ptr)
1154 {
1155 	struct kmemleak_object *object;
1156 	depot_stack_handle_t trace_handle;
1157 	unsigned long flags;
1158 
1159 	pr_debug("%s(0x%px)\n", __func__, ptr);
1160 
1161 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1162 		return;
1163 
1164 	object = find_and_get_object((unsigned long)ptr, 1);
1165 	if (!object) {
1166 #ifdef DEBUG
1167 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1168 			      ptr);
1169 #endif
1170 		return;
1171 	}
1172 
1173 	trace_handle = set_track_prepare();
1174 	raw_spin_lock_irqsave(&object->lock, flags);
1175 	object->trace_handle = trace_handle;
1176 	raw_spin_unlock_irqrestore(&object->lock, flags);
1177 
1178 	put_object(object);
1179 }
1180 EXPORT_SYMBOL(kmemleak_update_trace);
1181 
1182 /**
1183  * kmemleak_not_leak - mark an allocated object as false positive
1184  * @ptr:	pointer to beginning of the object
1185  *
1186  * Calling this function on an object will cause the memory block to no longer
1187  * be reported as leak and always be scanned.
1188  */
1189 void __ref kmemleak_not_leak(const void *ptr)
1190 {
1191 	pr_debug("%s(0x%px)\n", __func__, ptr);
1192 
1193 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1194 		make_gray_object((unsigned long)ptr);
1195 }
1196 EXPORT_SYMBOL(kmemleak_not_leak);
1197 
1198 /**
1199  * kmemleak_ignore - ignore an allocated object
1200  * @ptr:	pointer to beginning of the object
1201  *
1202  * Calling this function on an object will cause the memory block to be
1203  * ignored (not scanned and not reported as a leak). This is usually done when
1204  * it is known that the corresponding block is not a leak and does not contain
1205  * any references to other allocated memory blocks.
1206  */
1207 void __ref kmemleak_ignore(const void *ptr)
1208 {
1209 	pr_debug("%s(0x%px)\n", __func__, ptr);
1210 
1211 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1212 		make_black_object((unsigned long)ptr, 0);
1213 }
1214 EXPORT_SYMBOL(kmemleak_ignore);
1215 
1216 /**
1217  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1218  * @ptr:	pointer to beginning or inside the object. This also
1219  *		represents the start of the scan area
1220  * @size:	size of the scan area
1221  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1222  *
1223  * This function is used when it is known that only certain parts of an object
1224  * contain references to other objects. Kmemleak will only scan these areas
1225  * reducing the number false negatives.
1226  */
1227 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1228 {
1229 	pr_debug("%s(0x%px)\n", __func__, ptr);
1230 
1231 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1232 		add_scan_area((unsigned long)ptr, size, gfp);
1233 }
1234 EXPORT_SYMBOL(kmemleak_scan_area);
1235 
1236 /**
1237  * kmemleak_no_scan - do not scan an allocated object
1238  * @ptr:	pointer to beginning of the object
1239  *
1240  * This function notifies kmemleak not to scan the given memory block. Useful
1241  * in situations where it is known that the given object does not contain any
1242  * references to other objects. Kmemleak will not scan such objects reducing
1243  * the number of false negatives.
1244  */
1245 void __ref kmemleak_no_scan(const void *ptr)
1246 {
1247 	pr_debug("%s(0x%px)\n", __func__, ptr);
1248 
1249 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1250 		object_no_scan((unsigned long)ptr);
1251 }
1252 EXPORT_SYMBOL(kmemleak_no_scan);
1253 
1254 /**
1255  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1256  *			 address argument
1257  * @phys:	physical address of the object
1258  * @size:	size of the object
1259  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1260  */
1261 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1262 {
1263 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1264 
1265 	if (kmemleak_enabled)
1266 		/*
1267 		 * Create object with OBJECT_PHYS flag and
1268 		 * assume min_count 0.
1269 		 */
1270 		create_object_phys((unsigned long)phys, size, 0, gfp);
1271 }
1272 EXPORT_SYMBOL(kmemleak_alloc_phys);
1273 
1274 /**
1275  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1276  *			     physical address argument
1277  * @phys:	physical address if the beginning or inside an object. This
1278  *		also represents the start of the range to be freed
1279  * @size:	size to be unregistered
1280  */
1281 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1282 {
1283 	pr_debug("%s(0x%px)\n", __func__, &phys);
1284 
1285 	if (kmemleak_enabled)
1286 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1287 }
1288 EXPORT_SYMBOL(kmemleak_free_part_phys);
1289 
1290 /**
1291  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1292  *			  address argument
1293  * @phys:	physical address of the object
1294  */
1295 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1296 {
1297 	pr_debug("%s(0x%px)\n", __func__, &phys);
1298 
1299 	if (kmemleak_enabled)
1300 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1301 }
1302 EXPORT_SYMBOL(kmemleak_ignore_phys);
1303 
1304 /*
1305  * Update an object's checksum and return true if it was modified.
1306  */
1307 static bool update_checksum(struct kmemleak_object *object)
1308 {
1309 	u32 old_csum = object->checksum;
1310 
1311 	if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU)))
1312 		return false;
1313 
1314 	kasan_disable_current();
1315 	kcsan_disable_current();
1316 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1317 	kasan_enable_current();
1318 	kcsan_enable_current();
1319 
1320 	return object->checksum != old_csum;
1321 }
1322 
1323 /*
1324  * Update an object's references. object->lock must be held by the caller.
1325  */
1326 static void update_refs(struct kmemleak_object *object)
1327 {
1328 	if (!color_white(object)) {
1329 		/* non-orphan, ignored or new */
1330 		return;
1331 	}
1332 
1333 	/*
1334 	 * Increase the object's reference count (number of pointers to the
1335 	 * memory block). If this count reaches the required minimum, the
1336 	 * object's color will become gray and it will be added to the
1337 	 * gray_list.
1338 	 */
1339 	object->count++;
1340 	if (color_gray(object)) {
1341 		/* put_object() called when removing from gray_list */
1342 		WARN_ON(!get_object(object));
1343 		list_add_tail(&object->gray_list, &gray_list);
1344 	}
1345 }
1346 
1347 /*
1348  * Memory scanning is a long process and it needs to be interruptible. This
1349  * function checks whether such interrupt condition occurred.
1350  */
1351 static int scan_should_stop(void)
1352 {
1353 	if (!kmemleak_enabled)
1354 		return 1;
1355 
1356 	/*
1357 	 * This function may be called from either process or kthread context,
1358 	 * hence the need to check for both stop conditions.
1359 	 */
1360 	if (current->mm)
1361 		return signal_pending(current);
1362 	else
1363 		return kthread_should_stop();
1364 
1365 	return 0;
1366 }
1367 
1368 /*
1369  * Scan a memory block (exclusive range) for valid pointers and add those
1370  * found to the gray list.
1371  */
1372 static void scan_block(void *_start, void *_end,
1373 		       struct kmemleak_object *scanned)
1374 {
1375 	unsigned long *ptr;
1376 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1377 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1378 	unsigned long flags;
1379 	unsigned long untagged_ptr;
1380 
1381 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1382 	for (ptr = start; ptr < end; ptr++) {
1383 		struct kmemleak_object *object;
1384 		unsigned long pointer;
1385 		unsigned long excess_ref;
1386 
1387 		if (scan_should_stop())
1388 			break;
1389 
1390 		kasan_disable_current();
1391 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1392 		kasan_enable_current();
1393 
1394 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1395 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1396 			continue;
1397 
1398 		/*
1399 		 * No need for get_object() here since we hold kmemleak_lock.
1400 		 * object->use_count cannot be dropped to 0 while the object
1401 		 * is still present in object_tree_root and object_list
1402 		 * (with updates protected by kmemleak_lock).
1403 		 */
1404 		object = lookup_object(pointer, 1);
1405 		if (!object)
1406 			continue;
1407 		if (object == scanned)
1408 			/* self referenced, ignore */
1409 			continue;
1410 
1411 		/*
1412 		 * Avoid the lockdep recursive warning on object->lock being
1413 		 * previously acquired in scan_object(). These locks are
1414 		 * enclosed by scan_mutex.
1415 		 */
1416 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1417 		/* only pass surplus references (object already gray) */
1418 		if (color_gray(object)) {
1419 			excess_ref = object->excess_ref;
1420 			/* no need for update_refs() if object already gray */
1421 		} else {
1422 			excess_ref = 0;
1423 			update_refs(object);
1424 		}
1425 		raw_spin_unlock(&object->lock);
1426 
1427 		if (excess_ref) {
1428 			object = lookup_object(excess_ref, 0);
1429 			if (!object)
1430 				continue;
1431 			if (object == scanned)
1432 				/* circular reference, ignore */
1433 				continue;
1434 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1435 			update_refs(object);
1436 			raw_spin_unlock(&object->lock);
1437 		}
1438 	}
1439 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1440 }
1441 
1442 /*
1443  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1444  */
1445 #ifdef CONFIG_SMP
1446 static void scan_large_block(void *start, void *end)
1447 {
1448 	void *next;
1449 
1450 	while (start < end) {
1451 		next = min(start + MAX_SCAN_SIZE, end);
1452 		scan_block(start, next, NULL);
1453 		start = next;
1454 		cond_resched();
1455 	}
1456 }
1457 #endif
1458 
1459 /*
1460  * Scan a memory block corresponding to a kmemleak_object. A condition is
1461  * that object->use_count >= 1.
1462  */
1463 static void scan_object(struct kmemleak_object *object)
1464 {
1465 	struct kmemleak_scan_area *area;
1466 	unsigned long flags;
1467 
1468 	/*
1469 	 * Once the object->lock is acquired, the corresponding memory block
1470 	 * cannot be freed (the same lock is acquired in delete_object).
1471 	 */
1472 	raw_spin_lock_irqsave(&object->lock, flags);
1473 	if (object->flags & OBJECT_NO_SCAN)
1474 		goto out;
1475 	if (!(object->flags & OBJECT_ALLOCATED))
1476 		/* already freed object */
1477 		goto out;
1478 
1479 	if (object->flags & OBJECT_PERCPU) {
1480 		unsigned int cpu;
1481 
1482 		for_each_possible_cpu(cpu) {
1483 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1484 			void *end = start + object->size;
1485 
1486 			scan_block(start, end, object);
1487 
1488 			raw_spin_unlock_irqrestore(&object->lock, flags);
1489 			cond_resched();
1490 			raw_spin_lock_irqsave(&object->lock, flags);
1491 			if (!(object->flags & OBJECT_ALLOCATED))
1492 				break;
1493 		}
1494 	} else if (hlist_empty(&object->area_list) ||
1495 	    object->flags & OBJECT_FULL_SCAN) {
1496 		void *start = object->flags & OBJECT_PHYS ?
1497 				__va((phys_addr_t)object->pointer) :
1498 				(void *)object->pointer;
1499 		void *end = start + object->size;
1500 		void *next;
1501 
1502 		do {
1503 			next = min(start + MAX_SCAN_SIZE, end);
1504 			scan_block(start, next, object);
1505 
1506 			start = next;
1507 			if (start >= end)
1508 				break;
1509 
1510 			raw_spin_unlock_irqrestore(&object->lock, flags);
1511 			cond_resched();
1512 			raw_spin_lock_irqsave(&object->lock, flags);
1513 		} while (object->flags & OBJECT_ALLOCATED);
1514 	} else {
1515 		hlist_for_each_entry(area, &object->area_list, node)
1516 			scan_block((void *)area->start,
1517 				   (void *)(area->start + area->size),
1518 				   object);
1519 	}
1520 out:
1521 	raw_spin_unlock_irqrestore(&object->lock, flags);
1522 }
1523 
1524 /*
1525  * Scan the objects already referenced (gray objects). More objects will be
1526  * referenced and, if there are no memory leaks, all the objects are scanned.
1527  */
1528 static void scan_gray_list(void)
1529 {
1530 	struct kmemleak_object *object, *tmp;
1531 
1532 	/*
1533 	 * The list traversal is safe for both tail additions and removals
1534 	 * from inside the loop. The kmemleak objects cannot be freed from
1535 	 * outside the loop because their use_count was incremented.
1536 	 */
1537 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1538 	while (&object->gray_list != &gray_list) {
1539 		cond_resched();
1540 
1541 		/* may add new objects to the list */
1542 		if (!scan_should_stop())
1543 			scan_object(object);
1544 
1545 		tmp = list_entry(object->gray_list.next, typeof(*object),
1546 				 gray_list);
1547 
1548 		/* remove the object from the list and release it */
1549 		list_del(&object->gray_list);
1550 		put_object(object);
1551 
1552 		object = tmp;
1553 	}
1554 	WARN_ON(!list_empty(&gray_list));
1555 }
1556 
1557 /*
1558  * Conditionally call resched() in an object iteration loop while making sure
1559  * that the given object won't go away without RCU read lock by performing a
1560  * get_object() if necessaary.
1561  */
1562 static void kmemleak_cond_resched(struct kmemleak_object *object)
1563 {
1564 	if (!get_object(object))
1565 		return;	/* Try next object */
1566 
1567 	raw_spin_lock_irq(&kmemleak_lock);
1568 	if (object->del_state & DELSTATE_REMOVED)
1569 		goto unlock_put;	/* Object removed */
1570 	object->del_state |= DELSTATE_NO_DELETE;
1571 	raw_spin_unlock_irq(&kmemleak_lock);
1572 
1573 	rcu_read_unlock();
1574 	cond_resched();
1575 	rcu_read_lock();
1576 
1577 	raw_spin_lock_irq(&kmemleak_lock);
1578 	if (object->del_state & DELSTATE_REMOVED)
1579 		list_del_rcu(&object->object_list);
1580 	object->del_state &= ~DELSTATE_NO_DELETE;
1581 unlock_put:
1582 	raw_spin_unlock_irq(&kmemleak_lock);
1583 	put_object(object);
1584 }
1585 
1586 /*
1587  * Scan data sections and all the referenced memory blocks allocated via the
1588  * kernel's standard allocators. This function must be called with the
1589  * scan_mutex held.
1590  */
1591 static void kmemleak_scan(void)
1592 {
1593 	struct kmemleak_object *object;
1594 	struct zone *zone;
1595 	int __maybe_unused i;
1596 	int new_leaks = 0;
1597 
1598 	jiffies_last_scan = jiffies;
1599 
1600 	/* prepare the kmemleak_object's */
1601 	rcu_read_lock();
1602 	list_for_each_entry_rcu(object, &object_list, object_list) {
1603 		raw_spin_lock_irq(&object->lock);
1604 #ifdef DEBUG
1605 		/*
1606 		 * With a few exceptions there should be a maximum of
1607 		 * 1 reference to any object at this point.
1608 		 */
1609 		if (atomic_read(&object->use_count) > 1) {
1610 			pr_debug("object->use_count = %d\n",
1611 				 atomic_read(&object->use_count));
1612 			dump_object_info(object);
1613 		}
1614 #endif
1615 
1616 		/* ignore objects outside lowmem (paint them black) */
1617 		if ((object->flags & OBJECT_PHYS) &&
1618 		   !(object->flags & OBJECT_NO_SCAN)) {
1619 			unsigned long phys = object->pointer;
1620 
1621 			if (PHYS_PFN(phys) < min_low_pfn ||
1622 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1623 				__paint_it(object, KMEMLEAK_BLACK);
1624 		}
1625 
1626 		/* reset the reference count (whiten the object) */
1627 		object->count = 0;
1628 		if (color_gray(object) && get_object(object))
1629 			list_add_tail(&object->gray_list, &gray_list);
1630 
1631 		raw_spin_unlock_irq(&object->lock);
1632 
1633 		if (need_resched())
1634 			kmemleak_cond_resched(object);
1635 	}
1636 	rcu_read_unlock();
1637 
1638 #ifdef CONFIG_SMP
1639 	/* per-cpu sections scanning */
1640 	for_each_possible_cpu(i)
1641 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1642 				 __per_cpu_end + per_cpu_offset(i));
1643 #endif
1644 
1645 	/*
1646 	 * Struct page scanning for each node.
1647 	 */
1648 	get_online_mems();
1649 	for_each_populated_zone(zone) {
1650 		unsigned long start_pfn = zone->zone_start_pfn;
1651 		unsigned long end_pfn = zone_end_pfn(zone);
1652 		unsigned long pfn;
1653 
1654 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1655 			struct page *page = pfn_to_online_page(pfn);
1656 
1657 			if (!(pfn & 63))
1658 				cond_resched();
1659 
1660 			if (!page)
1661 				continue;
1662 
1663 			/* only scan pages belonging to this zone */
1664 			if (page_zone(page) != zone)
1665 				continue;
1666 			/* only scan if page is in use */
1667 			if (page_count(page) == 0)
1668 				continue;
1669 			scan_block(page, page + 1, NULL);
1670 		}
1671 	}
1672 	put_online_mems();
1673 
1674 	/*
1675 	 * Scanning the task stacks (may introduce false negatives).
1676 	 */
1677 	if (kmemleak_stack_scan) {
1678 		struct task_struct *p, *g;
1679 
1680 		rcu_read_lock();
1681 		for_each_process_thread(g, p) {
1682 			void *stack = try_get_task_stack(p);
1683 			if (stack) {
1684 				scan_block(stack, stack + THREAD_SIZE, NULL);
1685 				put_task_stack(p);
1686 			}
1687 		}
1688 		rcu_read_unlock();
1689 	}
1690 
1691 	/*
1692 	 * Scan the objects already referenced from the sections scanned
1693 	 * above.
1694 	 */
1695 	scan_gray_list();
1696 
1697 	/*
1698 	 * Check for new or unreferenced objects modified since the previous
1699 	 * scan and color them gray until the next scan.
1700 	 */
1701 	rcu_read_lock();
1702 	list_for_each_entry_rcu(object, &object_list, object_list) {
1703 		if (need_resched())
1704 			kmemleak_cond_resched(object);
1705 
1706 		/*
1707 		 * This is racy but we can save the overhead of lock/unlock
1708 		 * calls. The missed objects, if any, should be caught in
1709 		 * the next scan.
1710 		 */
1711 		if (!color_white(object))
1712 			continue;
1713 		raw_spin_lock_irq(&object->lock);
1714 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1715 		    && update_checksum(object) && get_object(object)) {
1716 			/* color it gray temporarily */
1717 			object->count = object->min_count;
1718 			list_add_tail(&object->gray_list, &gray_list);
1719 		}
1720 		raw_spin_unlock_irq(&object->lock);
1721 	}
1722 	rcu_read_unlock();
1723 
1724 	/*
1725 	 * Re-scan the gray list for modified unreferenced objects.
1726 	 */
1727 	scan_gray_list();
1728 
1729 	/*
1730 	 * If scanning was stopped do not report any new unreferenced objects.
1731 	 */
1732 	if (scan_should_stop())
1733 		return;
1734 
1735 	/*
1736 	 * Scanning result reporting.
1737 	 */
1738 	rcu_read_lock();
1739 	list_for_each_entry_rcu(object, &object_list, object_list) {
1740 		if (need_resched())
1741 			kmemleak_cond_resched(object);
1742 
1743 		/*
1744 		 * This is racy but we can save the overhead of lock/unlock
1745 		 * calls. The missed objects, if any, should be caught in
1746 		 * the next scan.
1747 		 */
1748 		if (!color_white(object))
1749 			continue;
1750 		raw_spin_lock_irq(&object->lock);
1751 		if (unreferenced_object(object) &&
1752 		    !(object->flags & OBJECT_REPORTED)) {
1753 			object->flags |= OBJECT_REPORTED;
1754 
1755 			if (kmemleak_verbose)
1756 				print_unreferenced(NULL, object);
1757 
1758 			new_leaks++;
1759 		}
1760 		raw_spin_unlock_irq(&object->lock);
1761 	}
1762 	rcu_read_unlock();
1763 
1764 	if (new_leaks) {
1765 		kmemleak_found_leaks = true;
1766 
1767 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1768 			new_leaks);
1769 	}
1770 
1771 }
1772 
1773 /*
1774  * Thread function performing automatic memory scanning. Unreferenced objects
1775  * at the end of a memory scan are reported but only the first time.
1776  */
1777 static int kmemleak_scan_thread(void *arg)
1778 {
1779 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1780 
1781 	pr_info("Automatic memory scanning thread started\n");
1782 	set_user_nice(current, 10);
1783 
1784 	/*
1785 	 * Wait before the first scan to allow the system to fully initialize.
1786 	 */
1787 	if (first_run) {
1788 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1789 		first_run = 0;
1790 		while (timeout && !kthread_should_stop())
1791 			timeout = schedule_timeout_interruptible(timeout);
1792 	}
1793 
1794 	while (!kthread_should_stop()) {
1795 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1796 
1797 		mutex_lock(&scan_mutex);
1798 		kmemleak_scan();
1799 		mutex_unlock(&scan_mutex);
1800 
1801 		/* wait before the next scan */
1802 		while (timeout && !kthread_should_stop())
1803 			timeout = schedule_timeout_interruptible(timeout);
1804 	}
1805 
1806 	pr_info("Automatic memory scanning thread ended\n");
1807 
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Start the automatic memory scanning thread. This function must be called
1813  * with the scan_mutex held.
1814  */
1815 static void start_scan_thread(void)
1816 {
1817 	if (scan_thread)
1818 		return;
1819 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1820 	if (IS_ERR(scan_thread)) {
1821 		pr_warn("Failed to create the scan thread\n");
1822 		scan_thread = NULL;
1823 	}
1824 }
1825 
1826 /*
1827  * Stop the automatic memory scanning thread.
1828  */
1829 static void stop_scan_thread(void)
1830 {
1831 	if (scan_thread) {
1832 		kthread_stop(scan_thread);
1833 		scan_thread = NULL;
1834 	}
1835 }
1836 
1837 /*
1838  * Iterate over the object_list and return the first valid object at or after
1839  * the required position with its use_count incremented. The function triggers
1840  * a memory scanning when the pos argument points to the first position.
1841  */
1842 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1843 {
1844 	struct kmemleak_object *object;
1845 	loff_t n = *pos;
1846 	int err;
1847 
1848 	err = mutex_lock_interruptible(&scan_mutex);
1849 	if (err < 0)
1850 		return ERR_PTR(err);
1851 
1852 	rcu_read_lock();
1853 	list_for_each_entry_rcu(object, &object_list, object_list) {
1854 		if (n-- > 0)
1855 			continue;
1856 		if (get_object(object))
1857 			goto out;
1858 	}
1859 	object = NULL;
1860 out:
1861 	return object;
1862 }
1863 
1864 /*
1865  * Return the next object in the object_list. The function decrements the
1866  * use_count of the previous object and increases that of the next one.
1867  */
1868 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1869 {
1870 	struct kmemleak_object *prev_obj = v;
1871 	struct kmemleak_object *next_obj = NULL;
1872 	struct kmemleak_object *obj = prev_obj;
1873 
1874 	++(*pos);
1875 
1876 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1877 		if (get_object(obj)) {
1878 			next_obj = obj;
1879 			break;
1880 		}
1881 	}
1882 
1883 	put_object(prev_obj);
1884 	return next_obj;
1885 }
1886 
1887 /*
1888  * Decrement the use_count of the last object required, if any.
1889  */
1890 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1891 {
1892 	if (!IS_ERR(v)) {
1893 		/*
1894 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1895 		 * waiting was interrupted, so only release it if !IS_ERR.
1896 		 */
1897 		rcu_read_unlock();
1898 		mutex_unlock(&scan_mutex);
1899 		if (v)
1900 			put_object(v);
1901 	}
1902 }
1903 
1904 /*
1905  * Print the information for an unreferenced object to the seq file.
1906  */
1907 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1908 {
1909 	struct kmemleak_object *object = v;
1910 	unsigned long flags;
1911 
1912 	raw_spin_lock_irqsave(&object->lock, flags);
1913 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1914 		print_unreferenced(seq, object);
1915 	raw_spin_unlock_irqrestore(&object->lock, flags);
1916 	return 0;
1917 }
1918 
1919 static const struct seq_operations kmemleak_seq_ops = {
1920 	.start = kmemleak_seq_start,
1921 	.next  = kmemleak_seq_next,
1922 	.stop  = kmemleak_seq_stop,
1923 	.show  = kmemleak_seq_show,
1924 };
1925 
1926 static int kmemleak_open(struct inode *inode, struct file *file)
1927 {
1928 	return seq_open(file, &kmemleak_seq_ops);
1929 }
1930 
1931 static int dump_str_object_info(const char *str)
1932 {
1933 	unsigned long flags;
1934 	struct kmemleak_object *object;
1935 	unsigned long addr;
1936 
1937 	if (kstrtoul(str, 0, &addr))
1938 		return -EINVAL;
1939 	object = find_and_get_object(addr, 0);
1940 	if (!object) {
1941 		pr_info("Unknown object at 0x%08lx\n", addr);
1942 		return -EINVAL;
1943 	}
1944 
1945 	raw_spin_lock_irqsave(&object->lock, flags);
1946 	dump_object_info(object);
1947 	raw_spin_unlock_irqrestore(&object->lock, flags);
1948 
1949 	put_object(object);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * We use grey instead of black to ensure we can do future scans on the same
1955  * objects. If we did not do future scans these black objects could
1956  * potentially contain references to newly allocated objects in the future and
1957  * we'd end up with false positives.
1958  */
1959 static void kmemleak_clear(void)
1960 {
1961 	struct kmemleak_object *object;
1962 
1963 	rcu_read_lock();
1964 	list_for_each_entry_rcu(object, &object_list, object_list) {
1965 		raw_spin_lock_irq(&object->lock);
1966 		if ((object->flags & OBJECT_REPORTED) &&
1967 		    unreferenced_object(object))
1968 			__paint_it(object, KMEMLEAK_GREY);
1969 		raw_spin_unlock_irq(&object->lock);
1970 	}
1971 	rcu_read_unlock();
1972 
1973 	kmemleak_found_leaks = false;
1974 }
1975 
1976 static void __kmemleak_do_cleanup(void);
1977 
1978 /*
1979  * File write operation to configure kmemleak at run-time. The following
1980  * commands can be written to the /sys/kernel/debug/kmemleak file:
1981  *   off	- disable kmemleak (irreversible)
1982  *   stack=on	- enable the task stacks scanning
1983  *   stack=off	- disable the tasks stacks scanning
1984  *   scan=on	- start the automatic memory scanning thread
1985  *   scan=off	- stop the automatic memory scanning thread
1986  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1987  *		  disable it)
1988  *   scan	- trigger a memory scan
1989  *   clear	- mark all current reported unreferenced kmemleak objects as
1990  *		  grey to ignore printing them, or free all kmemleak objects
1991  *		  if kmemleak has been disabled.
1992  *   dump=...	- dump information about the object found at the given address
1993  */
1994 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1995 			      size_t size, loff_t *ppos)
1996 {
1997 	char buf[64];
1998 	int buf_size;
1999 	int ret;
2000 
2001 	buf_size = min(size, (sizeof(buf) - 1));
2002 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2003 		return -EFAULT;
2004 	buf[buf_size] = 0;
2005 
2006 	ret = mutex_lock_interruptible(&scan_mutex);
2007 	if (ret < 0)
2008 		return ret;
2009 
2010 	if (strncmp(buf, "clear", 5) == 0) {
2011 		if (kmemleak_enabled)
2012 			kmemleak_clear();
2013 		else
2014 			__kmemleak_do_cleanup();
2015 		goto out;
2016 	}
2017 
2018 	if (!kmemleak_enabled) {
2019 		ret = -EPERM;
2020 		goto out;
2021 	}
2022 
2023 	if (strncmp(buf, "off", 3) == 0)
2024 		kmemleak_disable();
2025 	else if (strncmp(buf, "stack=on", 8) == 0)
2026 		kmemleak_stack_scan = 1;
2027 	else if (strncmp(buf, "stack=off", 9) == 0)
2028 		kmemleak_stack_scan = 0;
2029 	else if (strncmp(buf, "scan=on", 7) == 0)
2030 		start_scan_thread();
2031 	else if (strncmp(buf, "scan=off", 8) == 0)
2032 		stop_scan_thread();
2033 	else if (strncmp(buf, "scan=", 5) == 0) {
2034 		unsigned secs;
2035 		unsigned long msecs;
2036 
2037 		ret = kstrtouint(buf + 5, 0, &secs);
2038 		if (ret < 0)
2039 			goto out;
2040 
2041 		msecs = secs * MSEC_PER_SEC;
2042 		if (msecs > UINT_MAX)
2043 			msecs = UINT_MAX;
2044 
2045 		stop_scan_thread();
2046 		if (msecs) {
2047 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2048 			start_scan_thread();
2049 		}
2050 	} else if (strncmp(buf, "scan", 4) == 0)
2051 		kmemleak_scan();
2052 	else if (strncmp(buf, "dump=", 5) == 0)
2053 		ret = dump_str_object_info(buf + 5);
2054 	else
2055 		ret = -EINVAL;
2056 
2057 out:
2058 	mutex_unlock(&scan_mutex);
2059 	if (ret < 0)
2060 		return ret;
2061 
2062 	/* ignore the rest of the buffer, only one command at a time */
2063 	*ppos += size;
2064 	return size;
2065 }
2066 
2067 static const struct file_operations kmemleak_fops = {
2068 	.owner		= THIS_MODULE,
2069 	.open		= kmemleak_open,
2070 	.read		= seq_read,
2071 	.write		= kmemleak_write,
2072 	.llseek		= seq_lseek,
2073 	.release	= seq_release,
2074 };
2075 
2076 static void __kmemleak_do_cleanup(void)
2077 {
2078 	struct kmemleak_object *object, *tmp;
2079 
2080 	/*
2081 	 * Kmemleak has already been disabled, no need for RCU list traversal
2082 	 * or kmemleak_lock held.
2083 	 */
2084 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2085 		__remove_object(object);
2086 		__delete_object(object);
2087 	}
2088 }
2089 
2090 /*
2091  * Stop the memory scanning thread and free the kmemleak internal objects if
2092  * no previous scan thread (otherwise, kmemleak may still have some useful
2093  * information on memory leaks).
2094  */
2095 static void kmemleak_do_cleanup(struct work_struct *work)
2096 {
2097 	stop_scan_thread();
2098 
2099 	mutex_lock(&scan_mutex);
2100 	/*
2101 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2102 	 * longer track object freeing. Ordering of the scan thread stopping and
2103 	 * the memory accesses below is guaranteed by the kthread_stop()
2104 	 * function.
2105 	 */
2106 	kmemleak_free_enabled = 0;
2107 	mutex_unlock(&scan_mutex);
2108 
2109 	if (!kmemleak_found_leaks)
2110 		__kmemleak_do_cleanup();
2111 	else
2112 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2113 }
2114 
2115 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2116 
2117 /*
2118  * Disable kmemleak. No memory allocation/freeing will be traced once this
2119  * function is called. Disabling kmemleak is an irreversible operation.
2120  */
2121 static void kmemleak_disable(void)
2122 {
2123 	/* atomically check whether it was already invoked */
2124 	if (cmpxchg(&kmemleak_error, 0, 1))
2125 		return;
2126 
2127 	/* stop any memory operation tracing */
2128 	kmemleak_enabled = 0;
2129 
2130 	/* check whether it is too early for a kernel thread */
2131 	if (kmemleak_late_initialized)
2132 		schedule_work(&cleanup_work);
2133 	else
2134 		kmemleak_free_enabled = 0;
2135 
2136 	pr_info("Kernel memory leak detector disabled\n");
2137 }
2138 
2139 /*
2140  * Allow boot-time kmemleak disabling (enabled by default).
2141  */
2142 static int __init kmemleak_boot_config(char *str)
2143 {
2144 	if (!str)
2145 		return -EINVAL;
2146 	if (strcmp(str, "off") == 0)
2147 		kmemleak_disable();
2148 	else if (strcmp(str, "on") == 0) {
2149 		kmemleak_skip_disable = 1;
2150 		stack_depot_request_early_init();
2151 	}
2152 	else
2153 		return -EINVAL;
2154 	return 0;
2155 }
2156 early_param("kmemleak", kmemleak_boot_config);
2157 
2158 /*
2159  * Kmemleak initialization.
2160  */
2161 void __init kmemleak_init(void)
2162 {
2163 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2164 	if (!kmemleak_skip_disable) {
2165 		kmemleak_disable();
2166 		return;
2167 	}
2168 #endif
2169 
2170 	if (kmemleak_error)
2171 		return;
2172 
2173 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2174 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2175 
2176 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2177 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2178 
2179 	/* register the data/bss sections */
2180 	create_object((unsigned long)_sdata, _edata - _sdata,
2181 		      KMEMLEAK_GREY, GFP_ATOMIC);
2182 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2183 		      KMEMLEAK_GREY, GFP_ATOMIC);
2184 	/* only register .data..ro_after_init if not within .data */
2185 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2186 		create_object((unsigned long)__start_ro_after_init,
2187 			      __end_ro_after_init - __start_ro_after_init,
2188 			      KMEMLEAK_GREY, GFP_ATOMIC);
2189 }
2190 
2191 /*
2192  * Late initialization function.
2193  */
2194 static int __init kmemleak_late_init(void)
2195 {
2196 	kmemleak_late_initialized = 1;
2197 
2198 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2199 
2200 	if (kmemleak_error) {
2201 		/*
2202 		 * Some error occurred and kmemleak was disabled. There is a
2203 		 * small chance that kmemleak_disable() was called immediately
2204 		 * after setting kmemleak_late_initialized and we may end up with
2205 		 * two clean-up threads but serialized by scan_mutex.
2206 		 */
2207 		schedule_work(&cleanup_work);
2208 		return -ENOMEM;
2209 	}
2210 
2211 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2212 		mutex_lock(&scan_mutex);
2213 		start_scan_thread();
2214 		mutex_unlock(&scan_mutex);
2215 	}
2216 
2217 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2218 		mem_pool_free_count);
2219 
2220 	return 0;
2221 }
2222 late_initcall(kmemleak_late_init);
2223