1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 26 * Accesses to the metadata (e.g. count) are protected by this lock. Note 27 * that some members of this structure may be protected by other means 28 * (atomic or kmemleak_lock). This lock is also held when scanning the 29 * corresponding memory block to avoid the kernel freeing it via the 30 * kmemleak_free() callback. This is less heavyweight than holding a global 31 * lock like kmemleak_lock during scanning. 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kmemleak.h> 101 #include <linux/memory_hotplug.h> 102 103 /* 104 * Kmemleak configuration and common defines. 105 */ 106 #define MAX_TRACE 16 /* stack trace length */ 107 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 108 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 109 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 110 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 111 112 #define BYTES_PER_POINTER sizeof(void *) 113 114 /* GFP bitmask for kmemleak internal allocations */ 115 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 116 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 117 __GFP_NOWARN) 118 119 /* scanning area inside a memory block */ 120 struct kmemleak_scan_area { 121 struct hlist_node node; 122 unsigned long start; 123 size_t size; 124 }; 125 126 #define KMEMLEAK_GREY 0 127 #define KMEMLEAK_BLACK -1 128 129 /* 130 * Structure holding the metadata for each allocated memory block. 131 * Modifications to such objects should be made while holding the 132 * object->lock. Insertions or deletions from object_list, gray_list or 133 * rb_node are already protected by the corresponding locks or mutex (see 134 * the notes on locking above). These objects are reference-counted 135 * (use_count) and freed using the RCU mechanism. 136 */ 137 struct kmemleak_object { 138 raw_spinlock_t lock; 139 unsigned int flags; /* object status flags */ 140 struct list_head object_list; 141 struct list_head gray_list; 142 struct rb_node rb_node; 143 struct rcu_head rcu; /* object_list lockless traversal */ 144 /* object usage count; object freed when use_count == 0 */ 145 atomic_t use_count; 146 unsigned long pointer; 147 size_t size; 148 /* pass surplus references to this pointer */ 149 unsigned long excess_ref; 150 /* minimum number of a pointers found before it is considered leak */ 151 int min_count; 152 /* the total number of pointers found pointing to this object */ 153 int count; 154 /* checksum for detecting modified objects */ 155 u32 checksum; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long trace[MAX_TRACE]; 159 unsigned int trace_len; 160 unsigned long jiffies; /* creation timestamp */ 161 pid_t pid; /* pid of the current task */ 162 char comm[TASK_COMM_LEN]; /* executable name */ 163 }; 164 165 /* flag representing the memory block allocation status */ 166 #define OBJECT_ALLOCATED (1 << 0) 167 /* flag set after the first reporting of an unreference object */ 168 #define OBJECT_REPORTED (1 << 1) 169 /* flag set to not scan the object */ 170 #define OBJECT_NO_SCAN (1 << 2) 171 /* flag set to fully scan the object when scan_area allocation failed */ 172 #define OBJECT_FULL_SCAN (1 << 3) 173 174 #define HEX_PREFIX " " 175 /* number of bytes to print per line; must be 16 or 32 */ 176 #define HEX_ROW_SIZE 16 177 /* number of bytes to print at a time (1, 2, 4, 8) */ 178 #define HEX_GROUP_SIZE 1 179 /* include ASCII after the hex output */ 180 #define HEX_ASCII 1 181 /* max number of lines to be printed */ 182 #define HEX_MAX_LINES 2 183 184 /* the list of all allocated objects */ 185 static LIST_HEAD(object_list); 186 /* the list of gray-colored objects (see color_gray comment below) */ 187 static LIST_HEAD(gray_list); 188 /* memory pool allocation */ 189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 191 static LIST_HEAD(mem_pool_free_list); 192 /* search tree for object boundaries */ 193 static struct rb_root object_tree_root = RB_ROOT; 194 /* protecting the access to object_list and object_tree_root */ 195 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 196 197 /* allocation caches for kmemleak internal data */ 198 static struct kmem_cache *object_cache; 199 static struct kmem_cache *scan_area_cache; 200 201 /* set if tracing memory operations is enabled */ 202 static int kmemleak_enabled = 1; 203 /* same as above but only for the kmemleak_free() callback */ 204 static int kmemleak_free_enabled = 1; 205 /* set in the late_initcall if there were no errors */ 206 static int kmemleak_initialized; 207 /* set if a kmemleak warning was issued */ 208 static int kmemleak_warning; 209 /* set if a fatal kmemleak error has occurred */ 210 static int kmemleak_error; 211 212 /* minimum and maximum address that may be valid pointers */ 213 static unsigned long min_addr = ULONG_MAX; 214 static unsigned long max_addr; 215 216 static struct task_struct *scan_thread; 217 /* used to avoid reporting of recently allocated objects */ 218 static unsigned long jiffies_min_age; 219 static unsigned long jiffies_last_scan; 220 /* delay between automatic memory scannings */ 221 static signed long jiffies_scan_wait; 222 /* enables or disables the task stacks scanning */ 223 static int kmemleak_stack_scan = 1; 224 /* protects the memory scanning, parameters and debug/kmemleak file access */ 225 static DEFINE_MUTEX(scan_mutex); 226 /* setting kmemleak=on, will set this var, skipping the disable */ 227 static int kmemleak_skip_disable; 228 /* If there are leaks that can be reported */ 229 static bool kmemleak_found_leaks; 230 231 static bool kmemleak_verbose; 232 module_param_named(verbose, kmemleak_verbose, bool, 0600); 233 234 static void kmemleak_disable(void); 235 236 /* 237 * Print a warning and dump the stack trace. 238 */ 239 #define kmemleak_warn(x...) do { \ 240 pr_warn(x); \ 241 dump_stack(); \ 242 kmemleak_warning = 1; \ 243 } while (0) 244 245 /* 246 * Macro invoked when a serious kmemleak condition occurred and cannot be 247 * recovered from. Kmemleak will be disabled and further allocation/freeing 248 * tracing no longer available. 249 */ 250 #define kmemleak_stop(x...) do { \ 251 kmemleak_warn(x); \ 252 kmemleak_disable(); \ 253 } while (0) 254 255 #define warn_or_seq_printf(seq, fmt, ...) do { \ 256 if (seq) \ 257 seq_printf(seq, fmt, ##__VA_ARGS__); \ 258 else \ 259 pr_warn(fmt, ##__VA_ARGS__); \ 260 } while (0) 261 262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 263 int rowsize, int groupsize, const void *buf, 264 size_t len, bool ascii) 265 { 266 if (seq) 267 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 268 buf, len, ascii); 269 else 270 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 271 rowsize, groupsize, buf, len, ascii); 272 } 273 274 /* 275 * Printing of the objects hex dump to the seq file. The number of lines to be 276 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 277 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 278 * with the object->lock held. 279 */ 280 static void hex_dump_object(struct seq_file *seq, 281 struct kmemleak_object *object) 282 { 283 const u8 *ptr = (const u8 *)object->pointer; 284 size_t len; 285 286 /* limit the number of lines to HEX_MAX_LINES */ 287 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 288 289 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 290 kasan_disable_current(); 291 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 292 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 293 kasan_enable_current(); 294 } 295 296 /* 297 * Object colors, encoded with count and min_count: 298 * - white - orphan object, not enough references to it (count < min_count) 299 * - gray - not orphan, not marked as false positive (min_count == 0) or 300 * sufficient references to it (count >= min_count) 301 * - black - ignore, it doesn't contain references (e.g. text section) 302 * (min_count == -1). No function defined for this color. 303 * Newly created objects don't have any color assigned (object->count == -1) 304 * before the next memory scan when they become white. 305 */ 306 static bool color_white(const struct kmemleak_object *object) 307 { 308 return object->count != KMEMLEAK_BLACK && 309 object->count < object->min_count; 310 } 311 312 static bool color_gray(const struct kmemleak_object *object) 313 { 314 return object->min_count != KMEMLEAK_BLACK && 315 object->count >= object->min_count; 316 } 317 318 /* 319 * Objects are considered unreferenced only if their color is white, they have 320 * not be deleted and have a minimum age to avoid false positives caused by 321 * pointers temporarily stored in CPU registers. 322 */ 323 static bool unreferenced_object(struct kmemleak_object *object) 324 { 325 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 326 time_before_eq(object->jiffies + jiffies_min_age, 327 jiffies_last_scan); 328 } 329 330 /* 331 * Printing of the unreferenced objects information to the seq file. The 332 * print_unreferenced function must be called with the object->lock held. 333 */ 334 static void print_unreferenced(struct seq_file *seq, 335 struct kmemleak_object *object) 336 { 337 int i; 338 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 339 340 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 341 object->pointer, object->size); 342 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 343 object->comm, object->pid, object->jiffies, 344 msecs_age / 1000, msecs_age % 1000); 345 hex_dump_object(seq, object); 346 warn_or_seq_printf(seq, " backtrace:\n"); 347 348 for (i = 0; i < object->trace_len; i++) { 349 void *ptr = (void *)object->trace[i]; 350 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 351 } 352 } 353 354 /* 355 * Print the kmemleak_object information. This function is used mainly for 356 * debugging special cases when kmemleak operations. It must be called with 357 * the object->lock held. 358 */ 359 static void dump_object_info(struct kmemleak_object *object) 360 { 361 pr_notice("Object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 364 object->comm, object->pid, object->jiffies); 365 pr_notice(" min_count = %d\n", object->min_count); 366 pr_notice(" count = %d\n", object->count); 367 pr_notice(" flags = 0x%x\n", object->flags); 368 pr_notice(" checksum = %u\n", object->checksum); 369 pr_notice(" backtrace:\n"); 370 stack_trace_print(object->trace, object->trace_len, 4); 371 } 372 373 /* 374 * Look-up a memory block metadata (kmemleak_object) in the object search 375 * tree based on a pointer value. If alias is 0, only values pointing to the 376 * beginning of the memory block are allowed. The kmemleak_lock must be held 377 * when calling this function. 378 */ 379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 380 { 381 struct rb_node *rb = object_tree_root.rb_node; 382 383 while (rb) { 384 struct kmemleak_object *object = 385 rb_entry(rb, struct kmemleak_object, rb_node); 386 if (ptr < object->pointer) 387 rb = object->rb_node.rb_left; 388 else if (object->pointer + object->size <= ptr) 389 rb = object->rb_node.rb_right; 390 else if (object->pointer == ptr || alias) 391 return object; 392 else { 393 kmemleak_warn("Found object by alias at 0x%08lx\n", 394 ptr); 395 dump_object_info(object); 396 break; 397 } 398 } 399 return NULL; 400 } 401 402 /* 403 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 404 * that once an object's use_count reached 0, the RCU freeing was already 405 * registered and the object should no longer be used. This function must be 406 * called under the protection of rcu_read_lock(). 407 */ 408 static int get_object(struct kmemleak_object *object) 409 { 410 return atomic_inc_not_zero(&object->use_count); 411 } 412 413 /* 414 * Memory pool allocation and freeing. kmemleak_lock must not be held. 415 */ 416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 417 { 418 unsigned long flags; 419 struct kmemleak_object *object; 420 421 /* try the slab allocator first */ 422 if (object_cache) { 423 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 424 if (object) 425 return object; 426 } 427 428 /* slab allocation failed, try the memory pool */ 429 raw_spin_lock_irqsave(&kmemleak_lock, flags); 430 object = list_first_entry_or_null(&mem_pool_free_list, 431 typeof(*object), object_list); 432 if (object) 433 list_del(&object->object_list); 434 else if (mem_pool_free_count) 435 object = &mem_pool[--mem_pool_free_count]; 436 else 437 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 438 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 439 440 return object; 441 } 442 443 /* 444 * Return the object to either the slab allocator or the memory pool. 445 */ 446 static void mem_pool_free(struct kmemleak_object *object) 447 { 448 unsigned long flags; 449 450 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 451 kmem_cache_free(object_cache, object); 452 return; 453 } 454 455 /* add the object to the memory pool free list */ 456 raw_spin_lock_irqsave(&kmemleak_lock, flags); 457 list_add(&object->object_list, &mem_pool_free_list); 458 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 459 } 460 461 /* 462 * RCU callback to free a kmemleak_object. 463 */ 464 static void free_object_rcu(struct rcu_head *rcu) 465 { 466 struct hlist_node *tmp; 467 struct kmemleak_scan_area *area; 468 struct kmemleak_object *object = 469 container_of(rcu, struct kmemleak_object, rcu); 470 471 /* 472 * Once use_count is 0 (guaranteed by put_object), there is no other 473 * code accessing this object, hence no need for locking. 474 */ 475 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 476 hlist_del(&area->node); 477 kmem_cache_free(scan_area_cache, area); 478 } 479 mem_pool_free(object); 480 } 481 482 /* 483 * Decrement the object use_count. Once the count is 0, free the object using 484 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 485 * delete_object() path, the delayed RCU freeing ensures that there is no 486 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 487 * is also possible. 488 */ 489 static void put_object(struct kmemleak_object *object) 490 { 491 if (!atomic_dec_and_test(&object->use_count)) 492 return; 493 494 /* should only get here after delete_object was called */ 495 WARN_ON(object->flags & OBJECT_ALLOCATED); 496 497 /* 498 * It may be too early for the RCU callbacks, however, there is no 499 * concurrent object_list traversal when !object_cache and all objects 500 * came from the memory pool. Free the object directly. 501 */ 502 if (object_cache) 503 call_rcu(&object->rcu, free_object_rcu); 504 else 505 free_object_rcu(&object->rcu); 506 } 507 508 /* 509 * Look up an object in the object search tree and increase its use_count. 510 */ 511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 512 { 513 unsigned long flags; 514 struct kmemleak_object *object; 515 516 rcu_read_lock(); 517 raw_spin_lock_irqsave(&kmemleak_lock, flags); 518 object = lookup_object(ptr, alias); 519 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 520 521 /* check whether the object is still available */ 522 if (object && !get_object(object)) 523 object = NULL; 524 rcu_read_unlock(); 525 526 return object; 527 } 528 529 /* 530 * Remove an object from the object_tree_root and object_list. Must be called 531 * with the kmemleak_lock held _if_ kmemleak is still enabled. 532 */ 533 static void __remove_object(struct kmemleak_object *object) 534 { 535 rb_erase(&object->rb_node, &object_tree_root); 536 list_del_rcu(&object->object_list); 537 } 538 539 /* 540 * Look up an object in the object search tree and remove it from both 541 * object_tree_root and object_list. The returned object's use_count should be 542 * at least 1, as initially set by create_object(). 543 */ 544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 545 { 546 unsigned long flags; 547 struct kmemleak_object *object; 548 549 raw_spin_lock_irqsave(&kmemleak_lock, flags); 550 object = lookup_object(ptr, alias); 551 if (object) 552 __remove_object(object); 553 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 554 555 return object; 556 } 557 558 /* 559 * Save stack trace to the given array of MAX_TRACE size. 560 */ 561 static int __save_stack_trace(unsigned long *trace) 562 { 563 return stack_trace_save(trace, MAX_TRACE, 2); 564 } 565 566 /* 567 * Create the metadata (struct kmemleak_object) corresponding to an allocated 568 * memory block and add it to the object_list and object_tree_root. 569 */ 570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 571 int min_count, gfp_t gfp) 572 { 573 unsigned long flags; 574 struct kmemleak_object *object, *parent; 575 struct rb_node **link, *rb_parent; 576 unsigned long untagged_ptr; 577 578 object = mem_pool_alloc(gfp); 579 if (!object) { 580 pr_warn("Cannot allocate a kmemleak_object structure\n"); 581 kmemleak_disable(); 582 return NULL; 583 } 584 585 INIT_LIST_HEAD(&object->object_list); 586 INIT_LIST_HEAD(&object->gray_list); 587 INIT_HLIST_HEAD(&object->area_list); 588 raw_spin_lock_init(&object->lock); 589 atomic_set(&object->use_count, 1); 590 object->flags = OBJECT_ALLOCATED; 591 object->pointer = ptr; 592 object->size = size; 593 object->excess_ref = 0; 594 object->min_count = min_count; 595 object->count = 0; /* white color initially */ 596 object->jiffies = jiffies; 597 object->checksum = 0; 598 599 /* task information */ 600 if (in_irq()) { 601 object->pid = 0; 602 strncpy(object->comm, "hardirq", sizeof(object->comm)); 603 } else if (in_serving_softirq()) { 604 object->pid = 0; 605 strncpy(object->comm, "softirq", sizeof(object->comm)); 606 } else { 607 object->pid = current->pid; 608 /* 609 * There is a small chance of a race with set_task_comm(), 610 * however using get_task_comm() here may cause locking 611 * dependency issues with current->alloc_lock. In the worst 612 * case, the command line is not correct. 613 */ 614 strncpy(object->comm, current->comm, sizeof(object->comm)); 615 } 616 617 /* kernel backtrace */ 618 object->trace_len = __save_stack_trace(object->trace); 619 620 raw_spin_lock_irqsave(&kmemleak_lock, flags); 621 622 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 623 min_addr = min(min_addr, untagged_ptr); 624 max_addr = max(max_addr, untagged_ptr + size); 625 link = &object_tree_root.rb_node; 626 rb_parent = NULL; 627 while (*link) { 628 rb_parent = *link; 629 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 630 if (ptr + size <= parent->pointer) 631 link = &parent->rb_node.rb_left; 632 else if (parent->pointer + parent->size <= ptr) 633 link = &parent->rb_node.rb_right; 634 else { 635 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 636 ptr); 637 /* 638 * No need for parent->lock here since "parent" cannot 639 * be freed while the kmemleak_lock is held. 640 */ 641 dump_object_info(parent); 642 kmem_cache_free(object_cache, object); 643 object = NULL; 644 goto out; 645 } 646 } 647 rb_link_node(&object->rb_node, rb_parent, link); 648 rb_insert_color(&object->rb_node, &object_tree_root); 649 650 list_add_tail_rcu(&object->object_list, &object_list); 651 out: 652 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 653 return object; 654 } 655 656 /* 657 * Mark the object as not allocated and schedule RCU freeing via put_object(). 658 */ 659 static void __delete_object(struct kmemleak_object *object) 660 { 661 unsigned long flags; 662 663 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 664 WARN_ON(atomic_read(&object->use_count) < 1); 665 666 /* 667 * Locking here also ensures that the corresponding memory block 668 * cannot be freed when it is being scanned. 669 */ 670 raw_spin_lock_irqsave(&object->lock, flags); 671 object->flags &= ~OBJECT_ALLOCATED; 672 raw_spin_unlock_irqrestore(&object->lock, flags); 673 put_object(object); 674 } 675 676 /* 677 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 678 * delete it. 679 */ 680 static void delete_object_full(unsigned long ptr) 681 { 682 struct kmemleak_object *object; 683 684 object = find_and_remove_object(ptr, 0); 685 if (!object) { 686 #ifdef DEBUG 687 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 688 ptr); 689 #endif 690 return; 691 } 692 __delete_object(object); 693 } 694 695 /* 696 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 697 * delete it. If the memory block is partially freed, the function may create 698 * additional metadata for the remaining parts of the block. 699 */ 700 static void delete_object_part(unsigned long ptr, size_t size) 701 { 702 struct kmemleak_object *object; 703 unsigned long start, end; 704 705 object = find_and_remove_object(ptr, 1); 706 if (!object) { 707 #ifdef DEBUG 708 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 709 ptr, size); 710 #endif 711 return; 712 } 713 714 /* 715 * Create one or two objects that may result from the memory block 716 * split. Note that partial freeing is only done by free_bootmem() and 717 * this happens before kmemleak_init() is called. 718 */ 719 start = object->pointer; 720 end = object->pointer + object->size; 721 if (ptr > start) 722 create_object(start, ptr - start, object->min_count, 723 GFP_KERNEL); 724 if (ptr + size < end) 725 create_object(ptr + size, end - ptr - size, object->min_count, 726 GFP_KERNEL); 727 728 __delete_object(object); 729 } 730 731 static void __paint_it(struct kmemleak_object *object, int color) 732 { 733 object->min_count = color; 734 if (color == KMEMLEAK_BLACK) 735 object->flags |= OBJECT_NO_SCAN; 736 } 737 738 static void paint_it(struct kmemleak_object *object, int color) 739 { 740 unsigned long flags; 741 742 raw_spin_lock_irqsave(&object->lock, flags); 743 __paint_it(object, color); 744 raw_spin_unlock_irqrestore(&object->lock, flags); 745 } 746 747 static void paint_ptr(unsigned long ptr, int color) 748 { 749 struct kmemleak_object *object; 750 751 object = find_and_get_object(ptr, 0); 752 if (!object) { 753 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 754 ptr, 755 (color == KMEMLEAK_GREY) ? "Grey" : 756 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 757 return; 758 } 759 paint_it(object, color); 760 put_object(object); 761 } 762 763 /* 764 * Mark an object permanently as gray-colored so that it can no longer be 765 * reported as a leak. This is used in general to mark a false positive. 766 */ 767 static void make_gray_object(unsigned long ptr) 768 { 769 paint_ptr(ptr, KMEMLEAK_GREY); 770 } 771 772 /* 773 * Mark the object as black-colored so that it is ignored from scans and 774 * reporting. 775 */ 776 static void make_black_object(unsigned long ptr) 777 { 778 paint_ptr(ptr, KMEMLEAK_BLACK); 779 } 780 781 /* 782 * Add a scanning area to the object. If at least one such area is added, 783 * kmemleak will only scan these ranges rather than the whole memory block. 784 */ 785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 786 { 787 unsigned long flags; 788 struct kmemleak_object *object; 789 struct kmemleak_scan_area *area = NULL; 790 791 object = find_and_get_object(ptr, 1); 792 if (!object) { 793 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 794 ptr); 795 return; 796 } 797 798 if (scan_area_cache) 799 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 800 801 raw_spin_lock_irqsave(&object->lock, flags); 802 if (!area) { 803 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 804 /* mark the object for full scan to avoid false positives */ 805 object->flags |= OBJECT_FULL_SCAN; 806 goto out_unlock; 807 } 808 if (size == SIZE_MAX) { 809 size = object->pointer + object->size - ptr; 810 } else if (ptr + size > object->pointer + object->size) { 811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 812 dump_object_info(object); 813 kmem_cache_free(scan_area_cache, area); 814 goto out_unlock; 815 } 816 817 INIT_HLIST_NODE(&area->node); 818 area->start = ptr; 819 area->size = size; 820 821 hlist_add_head(&area->node, &object->area_list); 822 out_unlock: 823 raw_spin_unlock_irqrestore(&object->lock, flags); 824 put_object(object); 825 } 826 827 /* 828 * Any surplus references (object already gray) to 'ptr' are passed to 829 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 830 * vm_struct may be used as an alternative reference to the vmalloc'ed object 831 * (see free_thread_stack()). 832 */ 833 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 834 { 835 unsigned long flags; 836 struct kmemleak_object *object; 837 838 object = find_and_get_object(ptr, 0); 839 if (!object) { 840 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 841 ptr); 842 return; 843 } 844 845 raw_spin_lock_irqsave(&object->lock, flags); 846 object->excess_ref = excess_ref; 847 raw_spin_unlock_irqrestore(&object->lock, flags); 848 put_object(object); 849 } 850 851 /* 852 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 853 * pointer. Such object will not be scanned by kmemleak but references to it 854 * are searched. 855 */ 856 static void object_no_scan(unsigned long ptr) 857 { 858 unsigned long flags; 859 struct kmemleak_object *object; 860 861 object = find_and_get_object(ptr, 0); 862 if (!object) { 863 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 864 return; 865 } 866 867 raw_spin_lock_irqsave(&object->lock, flags); 868 object->flags |= OBJECT_NO_SCAN; 869 raw_spin_unlock_irqrestore(&object->lock, flags); 870 put_object(object); 871 } 872 873 /** 874 * kmemleak_alloc - register a newly allocated object 875 * @ptr: pointer to beginning of the object 876 * @size: size of the object 877 * @min_count: minimum number of references to this object. If during memory 878 * scanning a number of references less than @min_count is found, 879 * the object is reported as a memory leak. If @min_count is 0, 880 * the object is never reported as a leak. If @min_count is -1, 881 * the object is ignored (not scanned and not reported as a leak) 882 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 883 * 884 * This function is called from the kernel allocators when a new object 885 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 886 */ 887 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 888 gfp_t gfp) 889 { 890 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 891 892 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 893 create_object((unsigned long)ptr, size, min_count, gfp); 894 } 895 EXPORT_SYMBOL_GPL(kmemleak_alloc); 896 897 /** 898 * kmemleak_alloc_percpu - register a newly allocated __percpu object 899 * @ptr: __percpu pointer to beginning of the object 900 * @size: size of the object 901 * @gfp: flags used for kmemleak internal memory allocations 902 * 903 * This function is called from the kernel percpu allocator when a new object 904 * (memory block) is allocated (alloc_percpu). 905 */ 906 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 907 gfp_t gfp) 908 { 909 unsigned int cpu; 910 911 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 912 913 /* 914 * Percpu allocations are only scanned and not reported as leaks 915 * (min_count is set to 0). 916 */ 917 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 918 for_each_possible_cpu(cpu) 919 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 920 size, 0, gfp); 921 } 922 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 923 924 /** 925 * kmemleak_vmalloc - register a newly vmalloc'ed object 926 * @area: pointer to vm_struct 927 * @size: size of the object 928 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 929 * 930 * This function is called from the vmalloc() kernel allocator when a new 931 * object (memory block) is allocated. 932 */ 933 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 934 { 935 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 936 937 /* 938 * A min_count = 2 is needed because vm_struct contains a reference to 939 * the virtual address of the vmalloc'ed block. 940 */ 941 if (kmemleak_enabled) { 942 create_object((unsigned long)area->addr, size, 2, gfp); 943 object_set_excess_ref((unsigned long)area, 944 (unsigned long)area->addr); 945 } 946 } 947 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 948 949 /** 950 * kmemleak_free - unregister a previously registered object 951 * @ptr: pointer to beginning of the object 952 * 953 * This function is called from the kernel allocators when an object (memory 954 * block) is freed (kmem_cache_free, kfree, vfree etc.). 955 */ 956 void __ref kmemleak_free(const void *ptr) 957 { 958 pr_debug("%s(0x%p)\n", __func__, ptr); 959 960 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 961 delete_object_full((unsigned long)ptr); 962 } 963 EXPORT_SYMBOL_GPL(kmemleak_free); 964 965 /** 966 * kmemleak_free_part - partially unregister a previously registered object 967 * @ptr: pointer to the beginning or inside the object. This also 968 * represents the start of the range to be freed 969 * @size: size to be unregistered 970 * 971 * This function is called when only a part of a memory block is freed 972 * (usually from the bootmem allocator). 973 */ 974 void __ref kmemleak_free_part(const void *ptr, size_t size) 975 { 976 pr_debug("%s(0x%p)\n", __func__, ptr); 977 978 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 979 delete_object_part((unsigned long)ptr, size); 980 } 981 EXPORT_SYMBOL_GPL(kmemleak_free_part); 982 983 /** 984 * kmemleak_free_percpu - unregister a previously registered __percpu object 985 * @ptr: __percpu pointer to beginning of the object 986 * 987 * This function is called from the kernel percpu allocator when an object 988 * (memory block) is freed (free_percpu). 989 */ 990 void __ref kmemleak_free_percpu(const void __percpu *ptr) 991 { 992 unsigned int cpu; 993 994 pr_debug("%s(0x%p)\n", __func__, ptr); 995 996 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 997 for_each_possible_cpu(cpu) 998 delete_object_full((unsigned long)per_cpu_ptr(ptr, 999 cpu)); 1000 } 1001 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1002 1003 /** 1004 * kmemleak_update_trace - update object allocation stack trace 1005 * @ptr: pointer to beginning of the object 1006 * 1007 * Override the object allocation stack trace for cases where the actual 1008 * allocation place is not always useful. 1009 */ 1010 void __ref kmemleak_update_trace(const void *ptr) 1011 { 1012 struct kmemleak_object *object; 1013 unsigned long flags; 1014 1015 pr_debug("%s(0x%p)\n", __func__, ptr); 1016 1017 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1018 return; 1019 1020 object = find_and_get_object((unsigned long)ptr, 1); 1021 if (!object) { 1022 #ifdef DEBUG 1023 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1024 ptr); 1025 #endif 1026 return; 1027 } 1028 1029 raw_spin_lock_irqsave(&object->lock, flags); 1030 object->trace_len = __save_stack_trace(object->trace); 1031 raw_spin_unlock_irqrestore(&object->lock, flags); 1032 1033 put_object(object); 1034 } 1035 EXPORT_SYMBOL(kmemleak_update_trace); 1036 1037 /** 1038 * kmemleak_not_leak - mark an allocated object as false positive 1039 * @ptr: pointer to beginning of the object 1040 * 1041 * Calling this function on an object will cause the memory block to no longer 1042 * be reported as leak and always be scanned. 1043 */ 1044 void __ref kmemleak_not_leak(const void *ptr) 1045 { 1046 pr_debug("%s(0x%p)\n", __func__, ptr); 1047 1048 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1049 make_gray_object((unsigned long)ptr); 1050 } 1051 EXPORT_SYMBOL(kmemleak_not_leak); 1052 1053 /** 1054 * kmemleak_ignore - ignore an allocated object 1055 * @ptr: pointer to beginning of the object 1056 * 1057 * Calling this function on an object will cause the memory block to be 1058 * ignored (not scanned and not reported as a leak). This is usually done when 1059 * it is known that the corresponding block is not a leak and does not contain 1060 * any references to other allocated memory blocks. 1061 */ 1062 void __ref kmemleak_ignore(const void *ptr) 1063 { 1064 pr_debug("%s(0x%p)\n", __func__, ptr); 1065 1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1067 make_black_object((unsigned long)ptr); 1068 } 1069 EXPORT_SYMBOL(kmemleak_ignore); 1070 1071 /** 1072 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1073 * @ptr: pointer to beginning or inside the object. This also 1074 * represents the start of the scan area 1075 * @size: size of the scan area 1076 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1077 * 1078 * This function is used when it is known that only certain parts of an object 1079 * contain references to other objects. Kmemleak will only scan these areas 1080 * reducing the number false negatives. 1081 */ 1082 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1083 { 1084 pr_debug("%s(0x%p)\n", __func__, ptr); 1085 1086 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1087 add_scan_area((unsigned long)ptr, size, gfp); 1088 } 1089 EXPORT_SYMBOL(kmemleak_scan_area); 1090 1091 /** 1092 * kmemleak_no_scan - do not scan an allocated object 1093 * @ptr: pointer to beginning of the object 1094 * 1095 * This function notifies kmemleak not to scan the given memory block. Useful 1096 * in situations where it is known that the given object does not contain any 1097 * references to other objects. Kmemleak will not scan such objects reducing 1098 * the number of false negatives. 1099 */ 1100 void __ref kmemleak_no_scan(const void *ptr) 1101 { 1102 pr_debug("%s(0x%p)\n", __func__, ptr); 1103 1104 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1105 object_no_scan((unsigned long)ptr); 1106 } 1107 EXPORT_SYMBOL(kmemleak_no_scan); 1108 1109 /** 1110 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1111 * address argument 1112 * @phys: physical address of the object 1113 * @size: size of the object 1114 * @min_count: minimum number of references to this object. 1115 * See kmemleak_alloc() 1116 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1117 */ 1118 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1119 gfp_t gfp) 1120 { 1121 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1122 kmemleak_alloc(__va(phys), size, min_count, gfp); 1123 } 1124 EXPORT_SYMBOL(kmemleak_alloc_phys); 1125 1126 /** 1127 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1128 * physical address argument 1129 * @phys: physical address if the beginning or inside an object. This 1130 * also represents the start of the range to be freed 1131 * @size: size to be unregistered 1132 */ 1133 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1134 { 1135 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1136 kmemleak_free_part(__va(phys), size); 1137 } 1138 EXPORT_SYMBOL(kmemleak_free_part_phys); 1139 1140 /** 1141 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1142 * address argument 1143 * @phys: physical address of the object 1144 */ 1145 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1146 { 1147 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1148 kmemleak_not_leak(__va(phys)); 1149 } 1150 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1151 1152 /** 1153 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1154 * address argument 1155 * @phys: physical address of the object 1156 */ 1157 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1158 { 1159 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1160 kmemleak_ignore(__va(phys)); 1161 } 1162 EXPORT_SYMBOL(kmemleak_ignore_phys); 1163 1164 /* 1165 * Update an object's checksum and return true if it was modified. 1166 */ 1167 static bool update_checksum(struct kmemleak_object *object) 1168 { 1169 u32 old_csum = object->checksum; 1170 1171 kasan_disable_current(); 1172 kcsan_disable_current(); 1173 object->checksum = crc32(0, (void *)object->pointer, object->size); 1174 kasan_enable_current(); 1175 kcsan_enable_current(); 1176 1177 return object->checksum != old_csum; 1178 } 1179 1180 /* 1181 * Update an object's references. object->lock must be held by the caller. 1182 */ 1183 static void update_refs(struct kmemleak_object *object) 1184 { 1185 if (!color_white(object)) { 1186 /* non-orphan, ignored or new */ 1187 return; 1188 } 1189 1190 /* 1191 * Increase the object's reference count (number of pointers to the 1192 * memory block). If this count reaches the required minimum, the 1193 * object's color will become gray and it will be added to the 1194 * gray_list. 1195 */ 1196 object->count++; 1197 if (color_gray(object)) { 1198 /* put_object() called when removing from gray_list */ 1199 WARN_ON(!get_object(object)); 1200 list_add_tail(&object->gray_list, &gray_list); 1201 } 1202 } 1203 1204 /* 1205 * Memory scanning is a long process and it needs to be interruptable. This 1206 * function checks whether such interrupt condition occurred. 1207 */ 1208 static int scan_should_stop(void) 1209 { 1210 if (!kmemleak_enabled) 1211 return 1; 1212 1213 /* 1214 * This function may be called from either process or kthread context, 1215 * hence the need to check for both stop conditions. 1216 */ 1217 if (current->mm) 1218 return signal_pending(current); 1219 else 1220 return kthread_should_stop(); 1221 1222 return 0; 1223 } 1224 1225 /* 1226 * Scan a memory block (exclusive range) for valid pointers and add those 1227 * found to the gray list. 1228 */ 1229 static void scan_block(void *_start, void *_end, 1230 struct kmemleak_object *scanned) 1231 { 1232 unsigned long *ptr; 1233 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1234 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1235 unsigned long flags; 1236 unsigned long untagged_ptr; 1237 1238 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1239 for (ptr = start; ptr < end; ptr++) { 1240 struct kmemleak_object *object; 1241 unsigned long pointer; 1242 unsigned long excess_ref; 1243 1244 if (scan_should_stop()) 1245 break; 1246 1247 kasan_disable_current(); 1248 pointer = *ptr; 1249 kasan_enable_current(); 1250 1251 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1252 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1253 continue; 1254 1255 /* 1256 * No need for get_object() here since we hold kmemleak_lock. 1257 * object->use_count cannot be dropped to 0 while the object 1258 * is still present in object_tree_root and object_list 1259 * (with updates protected by kmemleak_lock). 1260 */ 1261 object = lookup_object(pointer, 1); 1262 if (!object) 1263 continue; 1264 if (object == scanned) 1265 /* self referenced, ignore */ 1266 continue; 1267 1268 /* 1269 * Avoid the lockdep recursive warning on object->lock being 1270 * previously acquired in scan_object(). These locks are 1271 * enclosed by scan_mutex. 1272 */ 1273 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1274 /* only pass surplus references (object already gray) */ 1275 if (color_gray(object)) { 1276 excess_ref = object->excess_ref; 1277 /* no need for update_refs() if object already gray */ 1278 } else { 1279 excess_ref = 0; 1280 update_refs(object); 1281 } 1282 raw_spin_unlock(&object->lock); 1283 1284 if (excess_ref) { 1285 object = lookup_object(excess_ref, 0); 1286 if (!object) 1287 continue; 1288 if (object == scanned) 1289 /* circular reference, ignore */ 1290 continue; 1291 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1292 update_refs(object); 1293 raw_spin_unlock(&object->lock); 1294 } 1295 } 1296 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1297 } 1298 1299 /* 1300 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1301 */ 1302 #ifdef CONFIG_SMP 1303 static void scan_large_block(void *start, void *end) 1304 { 1305 void *next; 1306 1307 while (start < end) { 1308 next = min(start + MAX_SCAN_SIZE, end); 1309 scan_block(start, next, NULL); 1310 start = next; 1311 cond_resched(); 1312 } 1313 } 1314 #endif 1315 1316 /* 1317 * Scan a memory block corresponding to a kmemleak_object. A condition is 1318 * that object->use_count >= 1. 1319 */ 1320 static void scan_object(struct kmemleak_object *object) 1321 { 1322 struct kmemleak_scan_area *area; 1323 unsigned long flags; 1324 1325 /* 1326 * Once the object->lock is acquired, the corresponding memory block 1327 * cannot be freed (the same lock is acquired in delete_object). 1328 */ 1329 raw_spin_lock_irqsave(&object->lock, flags); 1330 if (object->flags & OBJECT_NO_SCAN) 1331 goto out; 1332 if (!(object->flags & OBJECT_ALLOCATED)) 1333 /* already freed object */ 1334 goto out; 1335 if (hlist_empty(&object->area_list) || 1336 object->flags & OBJECT_FULL_SCAN) { 1337 void *start = (void *)object->pointer; 1338 void *end = (void *)(object->pointer + object->size); 1339 void *next; 1340 1341 do { 1342 next = min(start + MAX_SCAN_SIZE, end); 1343 scan_block(start, next, object); 1344 1345 start = next; 1346 if (start >= end) 1347 break; 1348 1349 raw_spin_unlock_irqrestore(&object->lock, flags); 1350 cond_resched(); 1351 raw_spin_lock_irqsave(&object->lock, flags); 1352 } while (object->flags & OBJECT_ALLOCATED); 1353 } else 1354 hlist_for_each_entry(area, &object->area_list, node) 1355 scan_block((void *)area->start, 1356 (void *)(area->start + area->size), 1357 object); 1358 out: 1359 raw_spin_unlock_irqrestore(&object->lock, flags); 1360 } 1361 1362 /* 1363 * Scan the objects already referenced (gray objects). More objects will be 1364 * referenced and, if there are no memory leaks, all the objects are scanned. 1365 */ 1366 static void scan_gray_list(void) 1367 { 1368 struct kmemleak_object *object, *tmp; 1369 1370 /* 1371 * The list traversal is safe for both tail additions and removals 1372 * from inside the loop. The kmemleak objects cannot be freed from 1373 * outside the loop because their use_count was incremented. 1374 */ 1375 object = list_entry(gray_list.next, typeof(*object), gray_list); 1376 while (&object->gray_list != &gray_list) { 1377 cond_resched(); 1378 1379 /* may add new objects to the list */ 1380 if (!scan_should_stop()) 1381 scan_object(object); 1382 1383 tmp = list_entry(object->gray_list.next, typeof(*object), 1384 gray_list); 1385 1386 /* remove the object from the list and release it */ 1387 list_del(&object->gray_list); 1388 put_object(object); 1389 1390 object = tmp; 1391 } 1392 WARN_ON(!list_empty(&gray_list)); 1393 } 1394 1395 /* 1396 * Scan data sections and all the referenced memory blocks allocated via the 1397 * kernel's standard allocators. This function must be called with the 1398 * scan_mutex held. 1399 */ 1400 static void kmemleak_scan(void) 1401 { 1402 unsigned long flags; 1403 struct kmemleak_object *object; 1404 int i; 1405 int new_leaks = 0; 1406 1407 jiffies_last_scan = jiffies; 1408 1409 /* prepare the kmemleak_object's */ 1410 rcu_read_lock(); 1411 list_for_each_entry_rcu(object, &object_list, object_list) { 1412 raw_spin_lock_irqsave(&object->lock, flags); 1413 #ifdef DEBUG 1414 /* 1415 * With a few exceptions there should be a maximum of 1416 * 1 reference to any object at this point. 1417 */ 1418 if (atomic_read(&object->use_count) > 1) { 1419 pr_debug("object->use_count = %d\n", 1420 atomic_read(&object->use_count)); 1421 dump_object_info(object); 1422 } 1423 #endif 1424 /* reset the reference count (whiten the object) */ 1425 object->count = 0; 1426 if (color_gray(object) && get_object(object)) 1427 list_add_tail(&object->gray_list, &gray_list); 1428 1429 raw_spin_unlock_irqrestore(&object->lock, flags); 1430 } 1431 rcu_read_unlock(); 1432 1433 #ifdef CONFIG_SMP 1434 /* per-cpu sections scanning */ 1435 for_each_possible_cpu(i) 1436 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1437 __per_cpu_end + per_cpu_offset(i)); 1438 #endif 1439 1440 /* 1441 * Struct page scanning for each node. 1442 */ 1443 get_online_mems(); 1444 for_each_online_node(i) { 1445 unsigned long start_pfn = node_start_pfn(i); 1446 unsigned long end_pfn = node_end_pfn(i); 1447 unsigned long pfn; 1448 1449 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1450 struct page *page = pfn_to_online_page(pfn); 1451 1452 if (!page) 1453 continue; 1454 1455 /* only scan pages belonging to this node */ 1456 if (page_to_nid(page) != i) 1457 continue; 1458 /* only scan if page is in use */ 1459 if (page_count(page) == 0) 1460 continue; 1461 scan_block(page, page + 1, NULL); 1462 if (!(pfn & 63)) 1463 cond_resched(); 1464 } 1465 } 1466 put_online_mems(); 1467 1468 /* 1469 * Scanning the task stacks (may introduce false negatives). 1470 */ 1471 if (kmemleak_stack_scan) { 1472 struct task_struct *p, *g; 1473 1474 rcu_read_lock(); 1475 for_each_process_thread(g, p) { 1476 void *stack = try_get_task_stack(p); 1477 if (stack) { 1478 scan_block(stack, stack + THREAD_SIZE, NULL); 1479 put_task_stack(p); 1480 } 1481 } 1482 rcu_read_unlock(); 1483 } 1484 1485 /* 1486 * Scan the objects already referenced from the sections scanned 1487 * above. 1488 */ 1489 scan_gray_list(); 1490 1491 /* 1492 * Check for new or unreferenced objects modified since the previous 1493 * scan and color them gray until the next scan. 1494 */ 1495 rcu_read_lock(); 1496 list_for_each_entry_rcu(object, &object_list, object_list) { 1497 raw_spin_lock_irqsave(&object->lock, flags); 1498 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1499 && update_checksum(object) && get_object(object)) { 1500 /* color it gray temporarily */ 1501 object->count = object->min_count; 1502 list_add_tail(&object->gray_list, &gray_list); 1503 } 1504 raw_spin_unlock_irqrestore(&object->lock, flags); 1505 } 1506 rcu_read_unlock(); 1507 1508 /* 1509 * Re-scan the gray list for modified unreferenced objects. 1510 */ 1511 scan_gray_list(); 1512 1513 /* 1514 * If scanning was stopped do not report any new unreferenced objects. 1515 */ 1516 if (scan_should_stop()) 1517 return; 1518 1519 /* 1520 * Scanning result reporting. 1521 */ 1522 rcu_read_lock(); 1523 list_for_each_entry_rcu(object, &object_list, object_list) { 1524 raw_spin_lock_irqsave(&object->lock, flags); 1525 if (unreferenced_object(object) && 1526 !(object->flags & OBJECT_REPORTED)) { 1527 object->flags |= OBJECT_REPORTED; 1528 1529 if (kmemleak_verbose) 1530 print_unreferenced(NULL, object); 1531 1532 new_leaks++; 1533 } 1534 raw_spin_unlock_irqrestore(&object->lock, flags); 1535 } 1536 rcu_read_unlock(); 1537 1538 if (new_leaks) { 1539 kmemleak_found_leaks = true; 1540 1541 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1542 new_leaks); 1543 } 1544 1545 } 1546 1547 /* 1548 * Thread function performing automatic memory scanning. Unreferenced objects 1549 * at the end of a memory scan are reported but only the first time. 1550 */ 1551 static int kmemleak_scan_thread(void *arg) 1552 { 1553 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1554 1555 pr_info("Automatic memory scanning thread started\n"); 1556 set_user_nice(current, 10); 1557 1558 /* 1559 * Wait before the first scan to allow the system to fully initialize. 1560 */ 1561 if (first_run) { 1562 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1563 first_run = 0; 1564 while (timeout && !kthread_should_stop()) 1565 timeout = schedule_timeout_interruptible(timeout); 1566 } 1567 1568 while (!kthread_should_stop()) { 1569 signed long timeout = jiffies_scan_wait; 1570 1571 mutex_lock(&scan_mutex); 1572 kmemleak_scan(); 1573 mutex_unlock(&scan_mutex); 1574 1575 /* wait before the next scan */ 1576 while (timeout && !kthread_should_stop()) 1577 timeout = schedule_timeout_interruptible(timeout); 1578 } 1579 1580 pr_info("Automatic memory scanning thread ended\n"); 1581 1582 return 0; 1583 } 1584 1585 /* 1586 * Start the automatic memory scanning thread. This function must be called 1587 * with the scan_mutex held. 1588 */ 1589 static void start_scan_thread(void) 1590 { 1591 if (scan_thread) 1592 return; 1593 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1594 if (IS_ERR(scan_thread)) { 1595 pr_warn("Failed to create the scan thread\n"); 1596 scan_thread = NULL; 1597 } 1598 } 1599 1600 /* 1601 * Stop the automatic memory scanning thread. 1602 */ 1603 static void stop_scan_thread(void) 1604 { 1605 if (scan_thread) { 1606 kthread_stop(scan_thread); 1607 scan_thread = NULL; 1608 } 1609 } 1610 1611 /* 1612 * Iterate over the object_list and return the first valid object at or after 1613 * the required position with its use_count incremented. The function triggers 1614 * a memory scanning when the pos argument points to the first position. 1615 */ 1616 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1617 { 1618 struct kmemleak_object *object; 1619 loff_t n = *pos; 1620 int err; 1621 1622 err = mutex_lock_interruptible(&scan_mutex); 1623 if (err < 0) 1624 return ERR_PTR(err); 1625 1626 rcu_read_lock(); 1627 list_for_each_entry_rcu(object, &object_list, object_list) { 1628 if (n-- > 0) 1629 continue; 1630 if (get_object(object)) 1631 goto out; 1632 } 1633 object = NULL; 1634 out: 1635 return object; 1636 } 1637 1638 /* 1639 * Return the next object in the object_list. The function decrements the 1640 * use_count of the previous object and increases that of the next one. 1641 */ 1642 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1643 { 1644 struct kmemleak_object *prev_obj = v; 1645 struct kmemleak_object *next_obj = NULL; 1646 struct kmemleak_object *obj = prev_obj; 1647 1648 ++(*pos); 1649 1650 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1651 if (get_object(obj)) { 1652 next_obj = obj; 1653 break; 1654 } 1655 } 1656 1657 put_object(prev_obj); 1658 return next_obj; 1659 } 1660 1661 /* 1662 * Decrement the use_count of the last object required, if any. 1663 */ 1664 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1665 { 1666 if (!IS_ERR(v)) { 1667 /* 1668 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1669 * waiting was interrupted, so only release it if !IS_ERR. 1670 */ 1671 rcu_read_unlock(); 1672 mutex_unlock(&scan_mutex); 1673 if (v) 1674 put_object(v); 1675 } 1676 } 1677 1678 /* 1679 * Print the information for an unreferenced object to the seq file. 1680 */ 1681 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1682 { 1683 struct kmemleak_object *object = v; 1684 unsigned long flags; 1685 1686 raw_spin_lock_irqsave(&object->lock, flags); 1687 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1688 print_unreferenced(seq, object); 1689 raw_spin_unlock_irqrestore(&object->lock, flags); 1690 return 0; 1691 } 1692 1693 static const struct seq_operations kmemleak_seq_ops = { 1694 .start = kmemleak_seq_start, 1695 .next = kmemleak_seq_next, 1696 .stop = kmemleak_seq_stop, 1697 .show = kmemleak_seq_show, 1698 }; 1699 1700 static int kmemleak_open(struct inode *inode, struct file *file) 1701 { 1702 return seq_open(file, &kmemleak_seq_ops); 1703 } 1704 1705 static int dump_str_object_info(const char *str) 1706 { 1707 unsigned long flags; 1708 struct kmemleak_object *object; 1709 unsigned long addr; 1710 1711 if (kstrtoul(str, 0, &addr)) 1712 return -EINVAL; 1713 object = find_and_get_object(addr, 0); 1714 if (!object) { 1715 pr_info("Unknown object at 0x%08lx\n", addr); 1716 return -EINVAL; 1717 } 1718 1719 raw_spin_lock_irqsave(&object->lock, flags); 1720 dump_object_info(object); 1721 raw_spin_unlock_irqrestore(&object->lock, flags); 1722 1723 put_object(object); 1724 return 0; 1725 } 1726 1727 /* 1728 * We use grey instead of black to ensure we can do future scans on the same 1729 * objects. If we did not do future scans these black objects could 1730 * potentially contain references to newly allocated objects in the future and 1731 * we'd end up with false positives. 1732 */ 1733 static void kmemleak_clear(void) 1734 { 1735 struct kmemleak_object *object; 1736 unsigned long flags; 1737 1738 rcu_read_lock(); 1739 list_for_each_entry_rcu(object, &object_list, object_list) { 1740 raw_spin_lock_irqsave(&object->lock, flags); 1741 if ((object->flags & OBJECT_REPORTED) && 1742 unreferenced_object(object)) 1743 __paint_it(object, KMEMLEAK_GREY); 1744 raw_spin_unlock_irqrestore(&object->lock, flags); 1745 } 1746 rcu_read_unlock(); 1747 1748 kmemleak_found_leaks = false; 1749 } 1750 1751 static void __kmemleak_do_cleanup(void); 1752 1753 /* 1754 * File write operation to configure kmemleak at run-time. The following 1755 * commands can be written to the /sys/kernel/debug/kmemleak file: 1756 * off - disable kmemleak (irreversible) 1757 * stack=on - enable the task stacks scanning 1758 * stack=off - disable the tasks stacks scanning 1759 * scan=on - start the automatic memory scanning thread 1760 * scan=off - stop the automatic memory scanning thread 1761 * scan=... - set the automatic memory scanning period in seconds (0 to 1762 * disable it) 1763 * scan - trigger a memory scan 1764 * clear - mark all current reported unreferenced kmemleak objects as 1765 * grey to ignore printing them, or free all kmemleak objects 1766 * if kmemleak has been disabled. 1767 * dump=... - dump information about the object found at the given address 1768 */ 1769 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1770 size_t size, loff_t *ppos) 1771 { 1772 char buf[64]; 1773 int buf_size; 1774 int ret; 1775 1776 buf_size = min(size, (sizeof(buf) - 1)); 1777 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1778 return -EFAULT; 1779 buf[buf_size] = 0; 1780 1781 ret = mutex_lock_interruptible(&scan_mutex); 1782 if (ret < 0) 1783 return ret; 1784 1785 if (strncmp(buf, "clear", 5) == 0) { 1786 if (kmemleak_enabled) 1787 kmemleak_clear(); 1788 else 1789 __kmemleak_do_cleanup(); 1790 goto out; 1791 } 1792 1793 if (!kmemleak_enabled) { 1794 ret = -EPERM; 1795 goto out; 1796 } 1797 1798 if (strncmp(buf, "off", 3) == 0) 1799 kmemleak_disable(); 1800 else if (strncmp(buf, "stack=on", 8) == 0) 1801 kmemleak_stack_scan = 1; 1802 else if (strncmp(buf, "stack=off", 9) == 0) 1803 kmemleak_stack_scan = 0; 1804 else if (strncmp(buf, "scan=on", 7) == 0) 1805 start_scan_thread(); 1806 else if (strncmp(buf, "scan=off", 8) == 0) 1807 stop_scan_thread(); 1808 else if (strncmp(buf, "scan=", 5) == 0) { 1809 unsigned long secs; 1810 1811 ret = kstrtoul(buf + 5, 0, &secs); 1812 if (ret < 0) 1813 goto out; 1814 stop_scan_thread(); 1815 if (secs) { 1816 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1817 start_scan_thread(); 1818 } 1819 } else if (strncmp(buf, "scan", 4) == 0) 1820 kmemleak_scan(); 1821 else if (strncmp(buf, "dump=", 5) == 0) 1822 ret = dump_str_object_info(buf + 5); 1823 else 1824 ret = -EINVAL; 1825 1826 out: 1827 mutex_unlock(&scan_mutex); 1828 if (ret < 0) 1829 return ret; 1830 1831 /* ignore the rest of the buffer, only one command at a time */ 1832 *ppos += size; 1833 return size; 1834 } 1835 1836 static const struct file_operations kmemleak_fops = { 1837 .owner = THIS_MODULE, 1838 .open = kmemleak_open, 1839 .read = seq_read, 1840 .write = kmemleak_write, 1841 .llseek = seq_lseek, 1842 .release = seq_release, 1843 }; 1844 1845 static void __kmemleak_do_cleanup(void) 1846 { 1847 struct kmemleak_object *object, *tmp; 1848 1849 /* 1850 * Kmemleak has already been disabled, no need for RCU list traversal 1851 * or kmemleak_lock held. 1852 */ 1853 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1854 __remove_object(object); 1855 __delete_object(object); 1856 } 1857 } 1858 1859 /* 1860 * Stop the memory scanning thread and free the kmemleak internal objects if 1861 * no previous scan thread (otherwise, kmemleak may still have some useful 1862 * information on memory leaks). 1863 */ 1864 static void kmemleak_do_cleanup(struct work_struct *work) 1865 { 1866 stop_scan_thread(); 1867 1868 mutex_lock(&scan_mutex); 1869 /* 1870 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1871 * longer track object freeing. Ordering of the scan thread stopping and 1872 * the memory accesses below is guaranteed by the kthread_stop() 1873 * function. 1874 */ 1875 kmemleak_free_enabled = 0; 1876 mutex_unlock(&scan_mutex); 1877 1878 if (!kmemleak_found_leaks) 1879 __kmemleak_do_cleanup(); 1880 else 1881 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1882 } 1883 1884 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1885 1886 /* 1887 * Disable kmemleak. No memory allocation/freeing will be traced once this 1888 * function is called. Disabling kmemleak is an irreversible operation. 1889 */ 1890 static void kmemleak_disable(void) 1891 { 1892 /* atomically check whether it was already invoked */ 1893 if (cmpxchg(&kmemleak_error, 0, 1)) 1894 return; 1895 1896 /* stop any memory operation tracing */ 1897 kmemleak_enabled = 0; 1898 1899 /* check whether it is too early for a kernel thread */ 1900 if (kmemleak_initialized) 1901 schedule_work(&cleanup_work); 1902 else 1903 kmemleak_free_enabled = 0; 1904 1905 pr_info("Kernel memory leak detector disabled\n"); 1906 } 1907 1908 /* 1909 * Allow boot-time kmemleak disabling (enabled by default). 1910 */ 1911 static int __init kmemleak_boot_config(char *str) 1912 { 1913 if (!str) 1914 return -EINVAL; 1915 if (strcmp(str, "off") == 0) 1916 kmemleak_disable(); 1917 else if (strcmp(str, "on") == 0) 1918 kmemleak_skip_disable = 1; 1919 else 1920 return -EINVAL; 1921 return 0; 1922 } 1923 early_param("kmemleak", kmemleak_boot_config); 1924 1925 /* 1926 * Kmemleak initialization. 1927 */ 1928 void __init kmemleak_init(void) 1929 { 1930 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1931 if (!kmemleak_skip_disable) { 1932 kmemleak_disable(); 1933 return; 1934 } 1935 #endif 1936 1937 if (kmemleak_error) 1938 return; 1939 1940 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1941 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1942 1943 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1944 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1945 1946 /* register the data/bss sections */ 1947 create_object((unsigned long)_sdata, _edata - _sdata, 1948 KMEMLEAK_GREY, GFP_ATOMIC); 1949 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1950 KMEMLEAK_GREY, GFP_ATOMIC); 1951 /* only register .data..ro_after_init if not within .data */ 1952 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 1953 create_object((unsigned long)__start_ro_after_init, 1954 __end_ro_after_init - __start_ro_after_init, 1955 KMEMLEAK_GREY, GFP_ATOMIC); 1956 } 1957 1958 /* 1959 * Late initialization function. 1960 */ 1961 static int __init kmemleak_late_init(void) 1962 { 1963 kmemleak_initialized = 1; 1964 1965 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1966 1967 if (kmemleak_error) { 1968 /* 1969 * Some error occurred and kmemleak was disabled. There is a 1970 * small chance that kmemleak_disable() was called immediately 1971 * after setting kmemleak_initialized and we may end up with 1972 * two clean-up threads but serialized by scan_mutex. 1973 */ 1974 schedule_work(&cleanup_work); 1975 return -ENOMEM; 1976 } 1977 1978 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 1979 mutex_lock(&scan_mutex); 1980 start_scan_thread(); 1981 mutex_unlock(&scan_mutex); 1982 } 1983 1984 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 1985 mem_pool_free_count); 1986 1987 return 0; 1988 } 1989 late_initcall(kmemleak_late_init); 1990