1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* GFP bitmask for kmemleak internal allocations */ 118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 119 __GFP_NOLOCKDEP)) | \ 120 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 121 __GFP_NOWARN) 122 123 /* scanning area inside a memory block */ 124 struct kmemleak_scan_area { 125 struct hlist_node node; 126 unsigned long start; 127 size_t size; 128 }; 129 130 #define KMEMLEAK_GREY 0 131 #define KMEMLEAK_BLACK -1 132 133 /* 134 * Structure holding the metadata for each allocated memory block. 135 * Modifications to such objects should be made while holding the 136 * object->lock. Insertions or deletions from object_list, gray_list or 137 * rb_node are already protected by the corresponding locks or mutex (see 138 * the notes on locking above). These objects are reference-counted 139 * (use_count) and freed using the RCU mechanism. 140 */ 141 struct kmemleak_object { 142 raw_spinlock_t lock; 143 unsigned int flags; /* object status flags */ 144 struct list_head object_list; 145 struct list_head gray_list; 146 struct rb_node rb_node; 147 struct rcu_head rcu; /* object_list lockless traversal */ 148 /* object usage count; object freed when use_count == 0 */ 149 atomic_t use_count; 150 unsigned int del_state; /* deletion state */ 151 unsigned long pointer; 152 size_t size; 153 /* pass surplus references to this pointer */ 154 unsigned long excess_ref; 155 /* minimum number of a pointers found before it is considered leak */ 156 int min_count; 157 /* the total number of pointers found pointing to this object */ 158 int count; 159 /* checksum for detecting modified objects */ 160 u32 checksum; 161 /* memory ranges to be scanned inside an object (empty for all) */ 162 struct hlist_head area_list; 163 depot_stack_handle_t trace_handle; 164 unsigned long jiffies; /* creation timestamp */ 165 pid_t pid; /* pid of the current task */ 166 char comm[TASK_COMM_LEN]; /* executable name */ 167 }; 168 169 /* flag representing the memory block allocation status */ 170 #define OBJECT_ALLOCATED (1 << 0) 171 /* flag set after the first reporting of an unreference object */ 172 #define OBJECT_REPORTED (1 << 1) 173 /* flag set to not scan the object */ 174 #define OBJECT_NO_SCAN (1 << 2) 175 /* flag set to fully scan the object when scan_area allocation failed */ 176 #define OBJECT_FULL_SCAN (1 << 3) 177 /* flag set for object allocated with physical address */ 178 #define OBJECT_PHYS (1 << 4) 179 /* flag set for per-CPU pointers */ 180 #define OBJECT_PERCPU (1 << 5) 181 182 /* set when __remove_object() called */ 183 #define DELSTATE_REMOVED (1 << 0) 184 /* set to temporarily prevent deletion from object_list */ 185 #define DELSTATE_NO_DELETE (1 << 1) 186 187 #define HEX_PREFIX " " 188 /* number of bytes to print per line; must be 16 or 32 */ 189 #define HEX_ROW_SIZE 16 190 /* number of bytes to print at a time (1, 2, 4, 8) */ 191 #define HEX_GROUP_SIZE 1 192 /* include ASCII after the hex output */ 193 #define HEX_ASCII 1 194 /* max number of lines to be printed */ 195 #define HEX_MAX_LINES 2 196 197 /* the list of all allocated objects */ 198 static LIST_HEAD(object_list); 199 /* the list of gray-colored objects (see color_gray comment below) */ 200 static LIST_HEAD(gray_list); 201 /* memory pool allocation */ 202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 204 static LIST_HEAD(mem_pool_free_list); 205 /* search tree for object boundaries */ 206 static struct rb_root object_tree_root = RB_ROOT; 207 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 208 static struct rb_root object_phys_tree_root = RB_ROOT; 209 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 210 static struct rb_root object_percpu_tree_root = RB_ROOT; 211 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 212 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 213 214 /* allocation caches for kmemleak internal data */ 215 static struct kmem_cache *object_cache; 216 static struct kmem_cache *scan_area_cache; 217 218 /* set if tracing memory operations is enabled */ 219 static int kmemleak_enabled = 1; 220 /* same as above but only for the kmemleak_free() callback */ 221 static int kmemleak_free_enabled = 1; 222 /* set in the late_initcall if there were no errors */ 223 static int kmemleak_late_initialized; 224 /* set if a kmemleak warning was issued */ 225 static int kmemleak_warning; 226 /* set if a fatal kmemleak error has occurred */ 227 static int kmemleak_error; 228 229 /* minimum and maximum address that may be valid pointers */ 230 static unsigned long min_addr = ULONG_MAX; 231 static unsigned long max_addr; 232 233 static struct task_struct *scan_thread; 234 /* used to avoid reporting of recently allocated objects */ 235 static unsigned long jiffies_min_age; 236 static unsigned long jiffies_last_scan; 237 /* delay between automatic memory scannings */ 238 static unsigned long jiffies_scan_wait; 239 /* enables or disables the task stacks scanning */ 240 static int kmemleak_stack_scan = 1; 241 /* protects the memory scanning, parameters and debug/kmemleak file access */ 242 static DEFINE_MUTEX(scan_mutex); 243 /* setting kmemleak=on, will set this var, skipping the disable */ 244 static int kmemleak_skip_disable; 245 /* If there are leaks that can be reported */ 246 static bool kmemleak_found_leaks; 247 248 static bool kmemleak_verbose; 249 module_param_named(verbose, kmemleak_verbose, bool, 0600); 250 251 static void kmemleak_disable(void); 252 253 /* 254 * Print a warning and dump the stack trace. 255 */ 256 #define kmemleak_warn(x...) do { \ 257 pr_warn(x); \ 258 dump_stack(); \ 259 kmemleak_warning = 1; \ 260 } while (0) 261 262 /* 263 * Macro invoked when a serious kmemleak condition occurred and cannot be 264 * recovered from. Kmemleak will be disabled and further allocation/freeing 265 * tracing no longer available. 266 */ 267 #define kmemleak_stop(x...) do { \ 268 kmemleak_warn(x); \ 269 kmemleak_disable(); \ 270 } while (0) 271 272 #define warn_or_seq_printf(seq, fmt, ...) do { \ 273 if (seq) \ 274 seq_printf(seq, fmt, ##__VA_ARGS__); \ 275 else \ 276 pr_warn(fmt, ##__VA_ARGS__); \ 277 } while (0) 278 279 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 280 int rowsize, int groupsize, const void *buf, 281 size_t len, bool ascii) 282 { 283 if (seq) 284 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 285 buf, len, ascii); 286 else 287 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 288 rowsize, groupsize, buf, len, ascii); 289 } 290 291 /* 292 * Printing of the objects hex dump to the seq file. The number of lines to be 293 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 294 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 295 * with the object->lock held. 296 */ 297 static void hex_dump_object(struct seq_file *seq, 298 struct kmemleak_object *object) 299 { 300 const u8 *ptr = (const u8 *)object->pointer; 301 size_t len; 302 303 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) 304 return; 305 306 /* limit the number of lines to HEX_MAX_LINES */ 307 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 308 309 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 310 kasan_disable_current(); 311 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 312 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 313 kasan_enable_current(); 314 } 315 316 /* 317 * Object colors, encoded with count and min_count: 318 * - white - orphan object, not enough references to it (count < min_count) 319 * - gray - not orphan, not marked as false positive (min_count == 0) or 320 * sufficient references to it (count >= min_count) 321 * - black - ignore, it doesn't contain references (e.g. text section) 322 * (min_count == -1). No function defined for this color. 323 * Newly created objects don't have any color assigned (object->count == -1) 324 * before the next memory scan when they become white. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 /* 351 * Printing of the unreferenced objects information to the seq file. The 352 * print_unreferenced function must be called with the object->lock held. 353 */ 354 static void print_unreferenced(struct seq_file *seq, 355 struct kmemleak_object *object) 356 { 357 int i; 358 unsigned long *entries; 359 unsigned int nr_entries; 360 361 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 362 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 363 object->pointer, object->size); 364 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 365 object->comm, object->pid, object->jiffies); 366 hex_dump_object(seq, object); 367 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 368 369 for (i = 0; i < nr_entries; i++) { 370 void *ptr = (void *)entries[i]; 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 372 } 373 } 374 375 /* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380 static void dump_object_info(struct kmemleak_object *object) 381 { 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%x\n", object->flags); 389 pr_notice(" checksum = %u\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 if (object->trace_handle) 392 stack_depot_print(object->trace_handle); 393 } 394 395 static struct rb_root *object_tree(unsigned long objflags) 396 { 397 if (objflags & OBJECT_PHYS) 398 return &object_phys_tree_root; 399 if (objflags & OBJECT_PERCPU) 400 return &object_percpu_tree_root; 401 return &object_tree_root; 402 } 403 404 /* 405 * Look-up a memory block metadata (kmemleak_object) in the object search 406 * tree based on a pointer value. If alias is 0, only values pointing to the 407 * beginning of the memory block are allowed. The kmemleak_lock must be held 408 * when calling this function. 409 */ 410 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 411 unsigned int objflags) 412 { 413 struct rb_node *rb = object_tree(objflags)->rb_node; 414 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 415 416 while (rb) { 417 struct kmemleak_object *object; 418 unsigned long untagged_objp; 419 420 object = rb_entry(rb, struct kmemleak_object, rb_node); 421 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 422 423 if (untagged_ptr < untagged_objp) 424 rb = object->rb_node.rb_left; 425 else if (untagged_objp + object->size <= untagged_ptr) 426 rb = object->rb_node.rb_right; 427 else if (untagged_objp == untagged_ptr || alias) 428 return object; 429 else { 430 kmemleak_warn("Found object by alias at 0x%08lx\n", 431 ptr); 432 dump_object_info(object); 433 break; 434 } 435 } 436 return NULL; 437 } 438 439 /* Look-up a kmemleak object which allocated with virtual address. */ 440 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 441 { 442 return __lookup_object(ptr, alias, 0); 443 } 444 445 /* 446 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 447 * that once an object's use_count reached 0, the RCU freeing was already 448 * registered and the object should no longer be used. This function must be 449 * called under the protection of rcu_read_lock(). 450 */ 451 static int get_object(struct kmemleak_object *object) 452 { 453 return atomic_inc_not_zero(&object->use_count); 454 } 455 456 /* 457 * Memory pool allocation and freeing. kmemleak_lock must not be held. 458 */ 459 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 460 { 461 unsigned long flags; 462 struct kmemleak_object *object; 463 464 /* try the slab allocator first */ 465 if (object_cache) { 466 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 467 if (object) 468 return object; 469 } 470 471 /* slab allocation failed, try the memory pool */ 472 raw_spin_lock_irqsave(&kmemleak_lock, flags); 473 object = list_first_entry_or_null(&mem_pool_free_list, 474 typeof(*object), object_list); 475 if (object) 476 list_del(&object->object_list); 477 else if (mem_pool_free_count) 478 object = &mem_pool[--mem_pool_free_count]; 479 else 480 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 481 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 482 483 return object; 484 } 485 486 /* 487 * Return the object to either the slab allocator or the memory pool. 488 */ 489 static void mem_pool_free(struct kmemleak_object *object) 490 { 491 unsigned long flags; 492 493 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 494 kmem_cache_free(object_cache, object); 495 return; 496 } 497 498 /* add the object to the memory pool free list */ 499 raw_spin_lock_irqsave(&kmemleak_lock, flags); 500 list_add(&object->object_list, &mem_pool_free_list); 501 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 502 } 503 504 /* 505 * RCU callback to free a kmemleak_object. 506 */ 507 static void free_object_rcu(struct rcu_head *rcu) 508 { 509 struct hlist_node *tmp; 510 struct kmemleak_scan_area *area; 511 struct kmemleak_object *object = 512 container_of(rcu, struct kmemleak_object, rcu); 513 514 /* 515 * Once use_count is 0 (guaranteed by put_object), there is no other 516 * code accessing this object, hence no need for locking. 517 */ 518 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 519 hlist_del(&area->node); 520 kmem_cache_free(scan_area_cache, area); 521 } 522 mem_pool_free(object); 523 } 524 525 /* 526 * Decrement the object use_count. Once the count is 0, free the object using 527 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 528 * delete_object() path, the delayed RCU freeing ensures that there is no 529 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 530 * is also possible. 531 */ 532 static void put_object(struct kmemleak_object *object) 533 { 534 if (!atomic_dec_and_test(&object->use_count)) 535 return; 536 537 /* should only get here after delete_object was called */ 538 WARN_ON(object->flags & OBJECT_ALLOCATED); 539 540 /* 541 * It may be too early for the RCU callbacks, however, there is no 542 * concurrent object_list traversal when !object_cache and all objects 543 * came from the memory pool. Free the object directly. 544 */ 545 if (object_cache) 546 call_rcu(&object->rcu, free_object_rcu); 547 else 548 free_object_rcu(&object->rcu); 549 } 550 551 /* 552 * Look up an object in the object search tree and increase its use_count. 553 */ 554 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 555 unsigned int objflags) 556 { 557 unsigned long flags; 558 struct kmemleak_object *object; 559 560 rcu_read_lock(); 561 raw_spin_lock_irqsave(&kmemleak_lock, flags); 562 object = __lookup_object(ptr, alias, objflags); 563 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 564 565 /* check whether the object is still available */ 566 if (object && !get_object(object)) 567 object = NULL; 568 rcu_read_unlock(); 569 570 return object; 571 } 572 573 /* Look up and get an object which allocated with virtual address. */ 574 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 575 { 576 return __find_and_get_object(ptr, alias, 0); 577 } 578 579 /* 580 * Remove an object from its object tree and object_list. Must be called with 581 * the kmemleak_lock held _if_ kmemleak is still enabled. 582 */ 583 static void __remove_object(struct kmemleak_object *object) 584 { 585 rb_erase(&object->rb_node, object_tree(object->flags)); 586 if (!(object->del_state & DELSTATE_NO_DELETE)) 587 list_del_rcu(&object->object_list); 588 object->del_state |= DELSTATE_REMOVED; 589 } 590 591 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 592 int alias, 593 unsigned int objflags) 594 { 595 struct kmemleak_object *object; 596 597 object = __lookup_object(ptr, alias, objflags); 598 if (object) 599 __remove_object(object); 600 601 return object; 602 } 603 604 /* 605 * Look up an object in the object search tree and remove it from both object 606 * tree root and object_list. The returned object's use_count should be at 607 * least 1, as initially set by create_object(). 608 */ 609 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 610 unsigned int objflags) 611 { 612 unsigned long flags; 613 struct kmemleak_object *object; 614 615 raw_spin_lock_irqsave(&kmemleak_lock, flags); 616 object = __find_and_remove_object(ptr, alias, objflags); 617 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 618 619 return object; 620 } 621 622 static noinline depot_stack_handle_t set_track_prepare(void) 623 { 624 depot_stack_handle_t trace_handle; 625 unsigned long entries[MAX_TRACE]; 626 unsigned int nr_entries; 627 628 /* 629 * Use object_cache to determine whether kmemleak_init() has 630 * been invoked. stack_depot_early_init() is called before 631 * kmemleak_init() in mm_core_init(). 632 */ 633 if (!object_cache) 634 return 0; 635 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 636 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 637 638 return trace_handle; 639 } 640 641 static struct kmemleak_object *__alloc_object(gfp_t gfp) 642 { 643 struct kmemleak_object *object; 644 645 object = mem_pool_alloc(gfp); 646 if (!object) { 647 pr_warn("Cannot allocate a kmemleak_object structure\n"); 648 kmemleak_disable(); 649 return NULL; 650 } 651 652 INIT_LIST_HEAD(&object->object_list); 653 INIT_LIST_HEAD(&object->gray_list); 654 INIT_HLIST_HEAD(&object->area_list); 655 raw_spin_lock_init(&object->lock); 656 atomic_set(&object->use_count, 1); 657 object->excess_ref = 0; 658 object->count = 0; /* white color initially */ 659 object->checksum = 0; 660 object->del_state = 0; 661 662 /* task information */ 663 if (in_hardirq()) { 664 object->pid = 0; 665 strncpy(object->comm, "hardirq", sizeof(object->comm)); 666 } else if (in_serving_softirq()) { 667 object->pid = 0; 668 strncpy(object->comm, "softirq", sizeof(object->comm)); 669 } else { 670 object->pid = current->pid; 671 /* 672 * There is a small chance of a race with set_task_comm(), 673 * however using get_task_comm() here may cause locking 674 * dependency issues with current->alloc_lock. In the worst 675 * case, the command line is not correct. 676 */ 677 strncpy(object->comm, current->comm, sizeof(object->comm)); 678 } 679 680 /* kernel backtrace */ 681 object->trace_handle = set_track_prepare(); 682 683 return object; 684 } 685 686 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 687 size_t size, int min_count, unsigned int objflags) 688 { 689 690 struct kmemleak_object *parent; 691 struct rb_node **link, *rb_parent; 692 unsigned long untagged_ptr; 693 unsigned long untagged_objp; 694 695 object->flags = OBJECT_ALLOCATED | objflags; 696 object->pointer = ptr; 697 object->size = kfence_ksize((void *)ptr) ?: size; 698 object->min_count = min_count; 699 object->jiffies = jiffies; 700 701 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 702 /* 703 * Only update min_addr and max_addr with object 704 * storing virtual address. 705 */ 706 if (!(objflags & (OBJECT_PHYS | OBJECT_PERCPU))) { 707 min_addr = min(min_addr, untagged_ptr); 708 max_addr = max(max_addr, untagged_ptr + size); 709 } 710 link = &object_tree(objflags)->rb_node; 711 rb_parent = NULL; 712 while (*link) { 713 rb_parent = *link; 714 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 715 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 716 if (untagged_ptr + size <= untagged_objp) 717 link = &parent->rb_node.rb_left; 718 else if (untagged_objp + parent->size <= untagged_ptr) 719 link = &parent->rb_node.rb_right; 720 else { 721 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 722 ptr); 723 /* 724 * No need for parent->lock here since "parent" cannot 725 * be freed while the kmemleak_lock is held. 726 */ 727 dump_object_info(parent); 728 return -EEXIST; 729 } 730 } 731 rb_link_node(&object->rb_node, rb_parent, link); 732 rb_insert_color(&object->rb_node, object_tree(objflags)); 733 list_add_tail_rcu(&object->object_list, &object_list); 734 735 return 0; 736 } 737 738 /* 739 * Create the metadata (struct kmemleak_object) corresponding to an allocated 740 * memory block and add it to the object_list and object tree. 741 */ 742 static void __create_object(unsigned long ptr, size_t size, 743 int min_count, gfp_t gfp, unsigned int objflags) 744 { 745 struct kmemleak_object *object; 746 unsigned long flags; 747 int ret; 748 749 object = __alloc_object(gfp); 750 if (!object) 751 return; 752 753 raw_spin_lock_irqsave(&kmemleak_lock, flags); 754 ret = __link_object(object, ptr, size, min_count, objflags); 755 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 756 if (ret) 757 mem_pool_free(object); 758 } 759 760 /* Create kmemleak object which allocated with virtual address. */ 761 static void create_object(unsigned long ptr, size_t size, 762 int min_count, gfp_t gfp) 763 { 764 __create_object(ptr, size, min_count, gfp, 0); 765 } 766 767 /* Create kmemleak object which allocated with physical address. */ 768 static void create_object_phys(unsigned long ptr, size_t size, 769 int min_count, gfp_t gfp) 770 { 771 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 772 } 773 774 /* Create kmemleak object corresponding to a per-CPU allocation. */ 775 static void create_object_percpu(unsigned long ptr, size_t size, 776 int min_count, gfp_t gfp) 777 { 778 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 779 } 780 781 /* 782 * Mark the object as not allocated and schedule RCU freeing via put_object(). 783 */ 784 static void __delete_object(struct kmemleak_object *object) 785 { 786 unsigned long flags; 787 788 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 789 WARN_ON(atomic_read(&object->use_count) < 1); 790 791 /* 792 * Locking here also ensures that the corresponding memory block 793 * cannot be freed when it is being scanned. 794 */ 795 raw_spin_lock_irqsave(&object->lock, flags); 796 object->flags &= ~OBJECT_ALLOCATED; 797 raw_spin_unlock_irqrestore(&object->lock, flags); 798 put_object(object); 799 } 800 801 /* 802 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 803 * delete it. 804 */ 805 static void delete_object_full(unsigned long ptr, unsigned int objflags) 806 { 807 struct kmemleak_object *object; 808 809 object = find_and_remove_object(ptr, 0, objflags); 810 if (!object) { 811 #ifdef DEBUG 812 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 813 ptr); 814 #endif 815 return; 816 } 817 __delete_object(object); 818 } 819 820 /* 821 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 822 * delete it. If the memory block is partially freed, the function may create 823 * additional metadata for the remaining parts of the block. 824 */ 825 static void delete_object_part(unsigned long ptr, size_t size, 826 unsigned int objflags) 827 { 828 struct kmemleak_object *object, *object_l, *object_r; 829 unsigned long start, end, flags; 830 831 object_l = __alloc_object(GFP_KERNEL); 832 if (!object_l) 833 return; 834 835 object_r = __alloc_object(GFP_KERNEL); 836 if (!object_r) 837 goto out; 838 839 raw_spin_lock_irqsave(&kmemleak_lock, flags); 840 object = __find_and_remove_object(ptr, 1, objflags); 841 if (!object) { 842 #ifdef DEBUG 843 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 844 ptr, size); 845 #endif 846 goto unlock; 847 } 848 849 /* 850 * Create one or two objects that may result from the memory block 851 * split. Note that partial freeing is only done by free_bootmem() and 852 * this happens before kmemleak_init() is called. 853 */ 854 start = object->pointer; 855 end = object->pointer + object->size; 856 if ((ptr > start) && 857 !__link_object(object_l, start, ptr - start, 858 object->min_count, objflags)) 859 object_l = NULL; 860 if ((ptr + size < end) && 861 !__link_object(object_r, ptr + size, end - ptr - size, 862 object->min_count, objflags)) 863 object_r = NULL; 864 865 unlock: 866 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 867 if (object) 868 __delete_object(object); 869 870 out: 871 if (object_l) 872 mem_pool_free(object_l); 873 if (object_r) 874 mem_pool_free(object_r); 875 } 876 877 static void __paint_it(struct kmemleak_object *object, int color) 878 { 879 object->min_count = color; 880 if (color == KMEMLEAK_BLACK) 881 object->flags |= OBJECT_NO_SCAN; 882 } 883 884 static void paint_it(struct kmemleak_object *object, int color) 885 { 886 unsigned long flags; 887 888 raw_spin_lock_irqsave(&object->lock, flags); 889 __paint_it(object, color); 890 raw_spin_unlock_irqrestore(&object->lock, flags); 891 } 892 893 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 894 { 895 struct kmemleak_object *object; 896 897 object = __find_and_get_object(ptr, 0, objflags); 898 if (!object) { 899 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 900 ptr, 901 (color == KMEMLEAK_GREY) ? "Grey" : 902 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 903 return; 904 } 905 paint_it(object, color); 906 put_object(object); 907 } 908 909 /* 910 * Mark an object permanently as gray-colored so that it can no longer be 911 * reported as a leak. This is used in general to mark a false positive. 912 */ 913 static void make_gray_object(unsigned long ptr) 914 { 915 paint_ptr(ptr, KMEMLEAK_GREY, 0); 916 } 917 918 /* 919 * Mark the object as black-colored so that it is ignored from scans and 920 * reporting. 921 */ 922 static void make_black_object(unsigned long ptr, unsigned int objflags) 923 { 924 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 925 } 926 927 /* 928 * Add a scanning area to the object. If at least one such area is added, 929 * kmemleak will only scan these ranges rather than the whole memory block. 930 */ 931 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 932 { 933 unsigned long flags; 934 struct kmemleak_object *object; 935 struct kmemleak_scan_area *area = NULL; 936 unsigned long untagged_ptr; 937 unsigned long untagged_objp; 938 939 object = find_and_get_object(ptr, 1); 940 if (!object) { 941 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 942 ptr); 943 return; 944 } 945 946 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 947 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 948 949 if (scan_area_cache) 950 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 951 952 raw_spin_lock_irqsave(&object->lock, flags); 953 if (!area) { 954 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 955 /* mark the object for full scan to avoid false positives */ 956 object->flags |= OBJECT_FULL_SCAN; 957 goto out_unlock; 958 } 959 if (size == SIZE_MAX) { 960 size = untagged_objp + object->size - untagged_ptr; 961 } else if (untagged_ptr + size > untagged_objp + object->size) { 962 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 963 dump_object_info(object); 964 kmem_cache_free(scan_area_cache, area); 965 goto out_unlock; 966 } 967 968 INIT_HLIST_NODE(&area->node); 969 area->start = ptr; 970 area->size = size; 971 972 hlist_add_head(&area->node, &object->area_list); 973 out_unlock: 974 raw_spin_unlock_irqrestore(&object->lock, flags); 975 put_object(object); 976 } 977 978 /* 979 * Any surplus references (object already gray) to 'ptr' are passed to 980 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 981 * vm_struct may be used as an alternative reference to the vmalloc'ed object 982 * (see free_thread_stack()). 983 */ 984 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 985 { 986 unsigned long flags; 987 struct kmemleak_object *object; 988 989 object = find_and_get_object(ptr, 0); 990 if (!object) { 991 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 992 ptr); 993 return; 994 } 995 996 raw_spin_lock_irqsave(&object->lock, flags); 997 object->excess_ref = excess_ref; 998 raw_spin_unlock_irqrestore(&object->lock, flags); 999 put_object(object); 1000 } 1001 1002 /* 1003 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 1004 * pointer. Such object will not be scanned by kmemleak but references to it 1005 * are searched. 1006 */ 1007 static void object_no_scan(unsigned long ptr) 1008 { 1009 unsigned long flags; 1010 struct kmemleak_object *object; 1011 1012 object = find_and_get_object(ptr, 0); 1013 if (!object) { 1014 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1015 return; 1016 } 1017 1018 raw_spin_lock_irqsave(&object->lock, flags); 1019 object->flags |= OBJECT_NO_SCAN; 1020 raw_spin_unlock_irqrestore(&object->lock, flags); 1021 put_object(object); 1022 } 1023 1024 /** 1025 * kmemleak_alloc - register a newly allocated object 1026 * @ptr: pointer to beginning of the object 1027 * @size: size of the object 1028 * @min_count: minimum number of references to this object. If during memory 1029 * scanning a number of references less than @min_count is found, 1030 * the object is reported as a memory leak. If @min_count is 0, 1031 * the object is never reported as a leak. If @min_count is -1, 1032 * the object is ignored (not scanned and not reported as a leak) 1033 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1034 * 1035 * This function is called from the kernel allocators when a new object 1036 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1037 */ 1038 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1039 gfp_t gfp) 1040 { 1041 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1042 1043 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1044 create_object((unsigned long)ptr, size, min_count, gfp); 1045 } 1046 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1047 1048 /** 1049 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1050 * @ptr: __percpu pointer to beginning of the object 1051 * @size: size of the object 1052 * @gfp: flags used for kmemleak internal memory allocations 1053 * 1054 * This function is called from the kernel percpu allocator when a new object 1055 * (memory block) is allocated (alloc_percpu). 1056 */ 1057 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1058 gfp_t gfp) 1059 { 1060 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1061 1062 /* 1063 * Percpu allocations are only scanned and not reported as leaks 1064 * (min_count is set to 0). 1065 */ 1066 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1067 create_object_percpu((unsigned long)ptr, size, 0, gfp); 1068 } 1069 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1070 1071 /** 1072 * kmemleak_vmalloc - register a newly vmalloc'ed object 1073 * @area: pointer to vm_struct 1074 * @size: size of the object 1075 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1076 * 1077 * This function is called from the vmalloc() kernel allocator when a new 1078 * object (memory block) is allocated. 1079 */ 1080 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1081 { 1082 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1083 1084 /* 1085 * A min_count = 2 is needed because vm_struct contains a reference to 1086 * the virtual address of the vmalloc'ed block. 1087 */ 1088 if (kmemleak_enabled) { 1089 create_object((unsigned long)area->addr, size, 2, gfp); 1090 object_set_excess_ref((unsigned long)area, 1091 (unsigned long)area->addr); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1095 1096 /** 1097 * kmemleak_free - unregister a previously registered object 1098 * @ptr: pointer to beginning of the object 1099 * 1100 * This function is called from the kernel allocators when an object (memory 1101 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1102 */ 1103 void __ref kmemleak_free(const void *ptr) 1104 { 1105 pr_debug("%s(0x%px)\n", __func__, ptr); 1106 1107 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1108 delete_object_full((unsigned long)ptr, 0); 1109 } 1110 EXPORT_SYMBOL_GPL(kmemleak_free); 1111 1112 /** 1113 * kmemleak_free_part - partially unregister a previously registered object 1114 * @ptr: pointer to the beginning or inside the object. This also 1115 * represents the start of the range to be freed 1116 * @size: size to be unregistered 1117 * 1118 * This function is called when only a part of a memory block is freed 1119 * (usually from the bootmem allocator). 1120 */ 1121 void __ref kmemleak_free_part(const void *ptr, size_t size) 1122 { 1123 pr_debug("%s(0x%px)\n", __func__, ptr); 1124 1125 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1126 delete_object_part((unsigned long)ptr, size, 0); 1127 } 1128 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1129 1130 /** 1131 * kmemleak_free_percpu - unregister a previously registered __percpu object 1132 * @ptr: __percpu pointer to beginning of the object 1133 * 1134 * This function is called from the kernel percpu allocator when an object 1135 * (memory block) is freed (free_percpu). 1136 */ 1137 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1138 { 1139 pr_debug("%s(0x%px)\n", __func__, ptr); 1140 1141 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1142 delete_object_full((unsigned long)ptr, OBJECT_PERCPU); 1143 } 1144 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1145 1146 /** 1147 * kmemleak_update_trace - update object allocation stack trace 1148 * @ptr: pointer to beginning of the object 1149 * 1150 * Override the object allocation stack trace for cases where the actual 1151 * allocation place is not always useful. 1152 */ 1153 void __ref kmemleak_update_trace(const void *ptr) 1154 { 1155 struct kmemleak_object *object; 1156 depot_stack_handle_t trace_handle; 1157 unsigned long flags; 1158 1159 pr_debug("%s(0x%px)\n", __func__, ptr); 1160 1161 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1162 return; 1163 1164 object = find_and_get_object((unsigned long)ptr, 1); 1165 if (!object) { 1166 #ifdef DEBUG 1167 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1168 ptr); 1169 #endif 1170 return; 1171 } 1172 1173 trace_handle = set_track_prepare(); 1174 raw_spin_lock_irqsave(&object->lock, flags); 1175 object->trace_handle = trace_handle; 1176 raw_spin_unlock_irqrestore(&object->lock, flags); 1177 1178 put_object(object); 1179 } 1180 EXPORT_SYMBOL(kmemleak_update_trace); 1181 1182 /** 1183 * kmemleak_not_leak - mark an allocated object as false positive 1184 * @ptr: pointer to beginning of the object 1185 * 1186 * Calling this function on an object will cause the memory block to no longer 1187 * be reported as leak and always be scanned. 1188 */ 1189 void __ref kmemleak_not_leak(const void *ptr) 1190 { 1191 pr_debug("%s(0x%px)\n", __func__, ptr); 1192 1193 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1194 make_gray_object((unsigned long)ptr); 1195 } 1196 EXPORT_SYMBOL(kmemleak_not_leak); 1197 1198 /** 1199 * kmemleak_ignore - ignore an allocated object 1200 * @ptr: pointer to beginning of the object 1201 * 1202 * Calling this function on an object will cause the memory block to be 1203 * ignored (not scanned and not reported as a leak). This is usually done when 1204 * it is known that the corresponding block is not a leak and does not contain 1205 * any references to other allocated memory blocks. 1206 */ 1207 void __ref kmemleak_ignore(const void *ptr) 1208 { 1209 pr_debug("%s(0x%px)\n", __func__, ptr); 1210 1211 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1212 make_black_object((unsigned long)ptr, 0); 1213 } 1214 EXPORT_SYMBOL(kmemleak_ignore); 1215 1216 /** 1217 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1218 * @ptr: pointer to beginning or inside the object. This also 1219 * represents the start of the scan area 1220 * @size: size of the scan area 1221 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1222 * 1223 * This function is used when it is known that only certain parts of an object 1224 * contain references to other objects. Kmemleak will only scan these areas 1225 * reducing the number false negatives. 1226 */ 1227 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1228 { 1229 pr_debug("%s(0x%px)\n", __func__, ptr); 1230 1231 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1232 add_scan_area((unsigned long)ptr, size, gfp); 1233 } 1234 EXPORT_SYMBOL(kmemleak_scan_area); 1235 1236 /** 1237 * kmemleak_no_scan - do not scan an allocated object 1238 * @ptr: pointer to beginning of the object 1239 * 1240 * This function notifies kmemleak not to scan the given memory block. Useful 1241 * in situations where it is known that the given object does not contain any 1242 * references to other objects. Kmemleak will not scan such objects reducing 1243 * the number of false negatives. 1244 */ 1245 void __ref kmemleak_no_scan(const void *ptr) 1246 { 1247 pr_debug("%s(0x%px)\n", __func__, ptr); 1248 1249 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1250 object_no_scan((unsigned long)ptr); 1251 } 1252 EXPORT_SYMBOL(kmemleak_no_scan); 1253 1254 /** 1255 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1256 * address argument 1257 * @phys: physical address of the object 1258 * @size: size of the object 1259 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1260 */ 1261 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1262 { 1263 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1264 1265 if (kmemleak_enabled) 1266 /* 1267 * Create object with OBJECT_PHYS flag and 1268 * assume min_count 0. 1269 */ 1270 create_object_phys((unsigned long)phys, size, 0, gfp); 1271 } 1272 EXPORT_SYMBOL(kmemleak_alloc_phys); 1273 1274 /** 1275 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1276 * physical address argument 1277 * @phys: physical address if the beginning or inside an object. This 1278 * also represents the start of the range to be freed 1279 * @size: size to be unregistered 1280 */ 1281 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1282 { 1283 pr_debug("%s(0x%px)\n", __func__, &phys); 1284 1285 if (kmemleak_enabled) 1286 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1287 } 1288 EXPORT_SYMBOL(kmemleak_free_part_phys); 1289 1290 /** 1291 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1292 * address argument 1293 * @phys: physical address of the object 1294 */ 1295 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1296 { 1297 pr_debug("%s(0x%px)\n", __func__, &phys); 1298 1299 if (kmemleak_enabled) 1300 make_black_object((unsigned long)phys, OBJECT_PHYS); 1301 } 1302 EXPORT_SYMBOL(kmemleak_ignore_phys); 1303 1304 /* 1305 * Update an object's checksum and return true if it was modified. 1306 */ 1307 static bool update_checksum(struct kmemleak_object *object) 1308 { 1309 u32 old_csum = object->checksum; 1310 1311 if (WARN_ON_ONCE(object->flags & (OBJECT_PHYS | OBJECT_PERCPU))) 1312 return false; 1313 1314 kasan_disable_current(); 1315 kcsan_disable_current(); 1316 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1317 kasan_enable_current(); 1318 kcsan_enable_current(); 1319 1320 return object->checksum != old_csum; 1321 } 1322 1323 /* 1324 * Update an object's references. object->lock must be held by the caller. 1325 */ 1326 static void update_refs(struct kmemleak_object *object) 1327 { 1328 if (!color_white(object)) { 1329 /* non-orphan, ignored or new */ 1330 return; 1331 } 1332 1333 /* 1334 * Increase the object's reference count (number of pointers to the 1335 * memory block). If this count reaches the required minimum, the 1336 * object's color will become gray and it will be added to the 1337 * gray_list. 1338 */ 1339 object->count++; 1340 if (color_gray(object)) { 1341 /* put_object() called when removing from gray_list */ 1342 WARN_ON(!get_object(object)); 1343 list_add_tail(&object->gray_list, &gray_list); 1344 } 1345 } 1346 1347 /* 1348 * Memory scanning is a long process and it needs to be interruptible. This 1349 * function checks whether such interrupt condition occurred. 1350 */ 1351 static int scan_should_stop(void) 1352 { 1353 if (!kmemleak_enabled) 1354 return 1; 1355 1356 /* 1357 * This function may be called from either process or kthread context, 1358 * hence the need to check for both stop conditions. 1359 */ 1360 if (current->mm) 1361 return signal_pending(current); 1362 else 1363 return kthread_should_stop(); 1364 1365 return 0; 1366 } 1367 1368 /* 1369 * Scan a memory block (exclusive range) for valid pointers and add those 1370 * found to the gray list. 1371 */ 1372 static void scan_block(void *_start, void *_end, 1373 struct kmemleak_object *scanned) 1374 { 1375 unsigned long *ptr; 1376 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1377 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1378 unsigned long flags; 1379 unsigned long untagged_ptr; 1380 1381 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1382 for (ptr = start; ptr < end; ptr++) { 1383 struct kmemleak_object *object; 1384 unsigned long pointer; 1385 unsigned long excess_ref; 1386 1387 if (scan_should_stop()) 1388 break; 1389 1390 kasan_disable_current(); 1391 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1392 kasan_enable_current(); 1393 1394 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1395 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1396 continue; 1397 1398 /* 1399 * No need for get_object() here since we hold kmemleak_lock. 1400 * object->use_count cannot be dropped to 0 while the object 1401 * is still present in object_tree_root and object_list 1402 * (with updates protected by kmemleak_lock). 1403 */ 1404 object = lookup_object(pointer, 1); 1405 if (!object) 1406 continue; 1407 if (object == scanned) 1408 /* self referenced, ignore */ 1409 continue; 1410 1411 /* 1412 * Avoid the lockdep recursive warning on object->lock being 1413 * previously acquired in scan_object(). These locks are 1414 * enclosed by scan_mutex. 1415 */ 1416 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1417 /* only pass surplus references (object already gray) */ 1418 if (color_gray(object)) { 1419 excess_ref = object->excess_ref; 1420 /* no need for update_refs() if object already gray */ 1421 } else { 1422 excess_ref = 0; 1423 update_refs(object); 1424 } 1425 raw_spin_unlock(&object->lock); 1426 1427 if (excess_ref) { 1428 object = lookup_object(excess_ref, 0); 1429 if (!object) 1430 continue; 1431 if (object == scanned) 1432 /* circular reference, ignore */ 1433 continue; 1434 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1435 update_refs(object); 1436 raw_spin_unlock(&object->lock); 1437 } 1438 } 1439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1440 } 1441 1442 /* 1443 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1444 */ 1445 #ifdef CONFIG_SMP 1446 static void scan_large_block(void *start, void *end) 1447 { 1448 void *next; 1449 1450 while (start < end) { 1451 next = min(start + MAX_SCAN_SIZE, end); 1452 scan_block(start, next, NULL); 1453 start = next; 1454 cond_resched(); 1455 } 1456 } 1457 #endif 1458 1459 /* 1460 * Scan a memory block corresponding to a kmemleak_object. A condition is 1461 * that object->use_count >= 1. 1462 */ 1463 static void scan_object(struct kmemleak_object *object) 1464 { 1465 struct kmemleak_scan_area *area; 1466 unsigned long flags; 1467 1468 /* 1469 * Once the object->lock is acquired, the corresponding memory block 1470 * cannot be freed (the same lock is acquired in delete_object). 1471 */ 1472 raw_spin_lock_irqsave(&object->lock, flags); 1473 if (object->flags & OBJECT_NO_SCAN) 1474 goto out; 1475 if (!(object->flags & OBJECT_ALLOCATED)) 1476 /* already freed object */ 1477 goto out; 1478 1479 if (object->flags & OBJECT_PERCPU) { 1480 unsigned int cpu; 1481 1482 for_each_possible_cpu(cpu) { 1483 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1484 void *end = start + object->size; 1485 1486 scan_block(start, end, object); 1487 1488 raw_spin_unlock_irqrestore(&object->lock, flags); 1489 cond_resched(); 1490 raw_spin_lock_irqsave(&object->lock, flags); 1491 if (!(object->flags & OBJECT_ALLOCATED)) 1492 break; 1493 } 1494 } else if (hlist_empty(&object->area_list) || 1495 object->flags & OBJECT_FULL_SCAN) { 1496 void *start = object->flags & OBJECT_PHYS ? 1497 __va((phys_addr_t)object->pointer) : 1498 (void *)object->pointer; 1499 void *end = start + object->size; 1500 void *next; 1501 1502 do { 1503 next = min(start + MAX_SCAN_SIZE, end); 1504 scan_block(start, next, object); 1505 1506 start = next; 1507 if (start >= end) 1508 break; 1509 1510 raw_spin_unlock_irqrestore(&object->lock, flags); 1511 cond_resched(); 1512 raw_spin_lock_irqsave(&object->lock, flags); 1513 } while (object->flags & OBJECT_ALLOCATED); 1514 } else { 1515 hlist_for_each_entry(area, &object->area_list, node) 1516 scan_block((void *)area->start, 1517 (void *)(area->start + area->size), 1518 object); 1519 } 1520 out: 1521 raw_spin_unlock_irqrestore(&object->lock, flags); 1522 } 1523 1524 /* 1525 * Scan the objects already referenced (gray objects). More objects will be 1526 * referenced and, if there are no memory leaks, all the objects are scanned. 1527 */ 1528 static void scan_gray_list(void) 1529 { 1530 struct kmemleak_object *object, *tmp; 1531 1532 /* 1533 * The list traversal is safe for both tail additions and removals 1534 * from inside the loop. The kmemleak objects cannot be freed from 1535 * outside the loop because their use_count was incremented. 1536 */ 1537 object = list_entry(gray_list.next, typeof(*object), gray_list); 1538 while (&object->gray_list != &gray_list) { 1539 cond_resched(); 1540 1541 /* may add new objects to the list */ 1542 if (!scan_should_stop()) 1543 scan_object(object); 1544 1545 tmp = list_entry(object->gray_list.next, typeof(*object), 1546 gray_list); 1547 1548 /* remove the object from the list and release it */ 1549 list_del(&object->gray_list); 1550 put_object(object); 1551 1552 object = tmp; 1553 } 1554 WARN_ON(!list_empty(&gray_list)); 1555 } 1556 1557 /* 1558 * Conditionally call resched() in an object iteration loop while making sure 1559 * that the given object won't go away without RCU read lock by performing a 1560 * get_object() if necessaary. 1561 */ 1562 static void kmemleak_cond_resched(struct kmemleak_object *object) 1563 { 1564 if (!get_object(object)) 1565 return; /* Try next object */ 1566 1567 raw_spin_lock_irq(&kmemleak_lock); 1568 if (object->del_state & DELSTATE_REMOVED) 1569 goto unlock_put; /* Object removed */ 1570 object->del_state |= DELSTATE_NO_DELETE; 1571 raw_spin_unlock_irq(&kmemleak_lock); 1572 1573 rcu_read_unlock(); 1574 cond_resched(); 1575 rcu_read_lock(); 1576 1577 raw_spin_lock_irq(&kmemleak_lock); 1578 if (object->del_state & DELSTATE_REMOVED) 1579 list_del_rcu(&object->object_list); 1580 object->del_state &= ~DELSTATE_NO_DELETE; 1581 unlock_put: 1582 raw_spin_unlock_irq(&kmemleak_lock); 1583 put_object(object); 1584 } 1585 1586 /* 1587 * Scan data sections and all the referenced memory blocks allocated via the 1588 * kernel's standard allocators. This function must be called with the 1589 * scan_mutex held. 1590 */ 1591 static void kmemleak_scan(void) 1592 { 1593 struct kmemleak_object *object; 1594 struct zone *zone; 1595 int __maybe_unused i; 1596 int new_leaks = 0; 1597 1598 jiffies_last_scan = jiffies; 1599 1600 /* prepare the kmemleak_object's */ 1601 rcu_read_lock(); 1602 list_for_each_entry_rcu(object, &object_list, object_list) { 1603 raw_spin_lock_irq(&object->lock); 1604 #ifdef DEBUG 1605 /* 1606 * With a few exceptions there should be a maximum of 1607 * 1 reference to any object at this point. 1608 */ 1609 if (atomic_read(&object->use_count) > 1) { 1610 pr_debug("object->use_count = %d\n", 1611 atomic_read(&object->use_count)); 1612 dump_object_info(object); 1613 } 1614 #endif 1615 1616 /* ignore objects outside lowmem (paint them black) */ 1617 if ((object->flags & OBJECT_PHYS) && 1618 !(object->flags & OBJECT_NO_SCAN)) { 1619 unsigned long phys = object->pointer; 1620 1621 if (PHYS_PFN(phys) < min_low_pfn || 1622 PHYS_PFN(phys + object->size) >= max_low_pfn) 1623 __paint_it(object, KMEMLEAK_BLACK); 1624 } 1625 1626 /* reset the reference count (whiten the object) */ 1627 object->count = 0; 1628 if (color_gray(object) && get_object(object)) 1629 list_add_tail(&object->gray_list, &gray_list); 1630 1631 raw_spin_unlock_irq(&object->lock); 1632 1633 if (need_resched()) 1634 kmemleak_cond_resched(object); 1635 } 1636 rcu_read_unlock(); 1637 1638 #ifdef CONFIG_SMP 1639 /* per-cpu sections scanning */ 1640 for_each_possible_cpu(i) 1641 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1642 __per_cpu_end + per_cpu_offset(i)); 1643 #endif 1644 1645 /* 1646 * Struct page scanning for each node. 1647 */ 1648 get_online_mems(); 1649 for_each_populated_zone(zone) { 1650 unsigned long start_pfn = zone->zone_start_pfn; 1651 unsigned long end_pfn = zone_end_pfn(zone); 1652 unsigned long pfn; 1653 1654 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1655 struct page *page = pfn_to_online_page(pfn); 1656 1657 if (!(pfn & 63)) 1658 cond_resched(); 1659 1660 if (!page) 1661 continue; 1662 1663 /* only scan pages belonging to this zone */ 1664 if (page_zone(page) != zone) 1665 continue; 1666 /* only scan if page is in use */ 1667 if (page_count(page) == 0) 1668 continue; 1669 scan_block(page, page + 1, NULL); 1670 } 1671 } 1672 put_online_mems(); 1673 1674 /* 1675 * Scanning the task stacks (may introduce false negatives). 1676 */ 1677 if (kmemleak_stack_scan) { 1678 struct task_struct *p, *g; 1679 1680 rcu_read_lock(); 1681 for_each_process_thread(g, p) { 1682 void *stack = try_get_task_stack(p); 1683 if (stack) { 1684 scan_block(stack, stack + THREAD_SIZE, NULL); 1685 put_task_stack(p); 1686 } 1687 } 1688 rcu_read_unlock(); 1689 } 1690 1691 /* 1692 * Scan the objects already referenced from the sections scanned 1693 * above. 1694 */ 1695 scan_gray_list(); 1696 1697 /* 1698 * Check for new or unreferenced objects modified since the previous 1699 * scan and color them gray until the next scan. 1700 */ 1701 rcu_read_lock(); 1702 list_for_each_entry_rcu(object, &object_list, object_list) { 1703 if (need_resched()) 1704 kmemleak_cond_resched(object); 1705 1706 /* 1707 * This is racy but we can save the overhead of lock/unlock 1708 * calls. The missed objects, if any, should be caught in 1709 * the next scan. 1710 */ 1711 if (!color_white(object)) 1712 continue; 1713 raw_spin_lock_irq(&object->lock); 1714 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1715 && update_checksum(object) && get_object(object)) { 1716 /* color it gray temporarily */ 1717 object->count = object->min_count; 1718 list_add_tail(&object->gray_list, &gray_list); 1719 } 1720 raw_spin_unlock_irq(&object->lock); 1721 } 1722 rcu_read_unlock(); 1723 1724 /* 1725 * Re-scan the gray list for modified unreferenced objects. 1726 */ 1727 scan_gray_list(); 1728 1729 /* 1730 * If scanning was stopped do not report any new unreferenced objects. 1731 */ 1732 if (scan_should_stop()) 1733 return; 1734 1735 /* 1736 * Scanning result reporting. 1737 */ 1738 rcu_read_lock(); 1739 list_for_each_entry_rcu(object, &object_list, object_list) { 1740 if (need_resched()) 1741 kmemleak_cond_resched(object); 1742 1743 /* 1744 * This is racy but we can save the overhead of lock/unlock 1745 * calls. The missed objects, if any, should be caught in 1746 * the next scan. 1747 */ 1748 if (!color_white(object)) 1749 continue; 1750 raw_spin_lock_irq(&object->lock); 1751 if (unreferenced_object(object) && 1752 !(object->flags & OBJECT_REPORTED)) { 1753 object->flags |= OBJECT_REPORTED; 1754 1755 if (kmemleak_verbose) 1756 print_unreferenced(NULL, object); 1757 1758 new_leaks++; 1759 } 1760 raw_spin_unlock_irq(&object->lock); 1761 } 1762 rcu_read_unlock(); 1763 1764 if (new_leaks) { 1765 kmemleak_found_leaks = true; 1766 1767 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1768 new_leaks); 1769 } 1770 1771 } 1772 1773 /* 1774 * Thread function performing automatic memory scanning. Unreferenced objects 1775 * at the end of a memory scan are reported but only the first time. 1776 */ 1777 static int kmemleak_scan_thread(void *arg) 1778 { 1779 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1780 1781 pr_info("Automatic memory scanning thread started\n"); 1782 set_user_nice(current, 10); 1783 1784 /* 1785 * Wait before the first scan to allow the system to fully initialize. 1786 */ 1787 if (first_run) { 1788 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1789 first_run = 0; 1790 while (timeout && !kthread_should_stop()) 1791 timeout = schedule_timeout_interruptible(timeout); 1792 } 1793 1794 while (!kthread_should_stop()) { 1795 signed long timeout = READ_ONCE(jiffies_scan_wait); 1796 1797 mutex_lock(&scan_mutex); 1798 kmemleak_scan(); 1799 mutex_unlock(&scan_mutex); 1800 1801 /* wait before the next scan */ 1802 while (timeout && !kthread_should_stop()) 1803 timeout = schedule_timeout_interruptible(timeout); 1804 } 1805 1806 pr_info("Automatic memory scanning thread ended\n"); 1807 1808 return 0; 1809 } 1810 1811 /* 1812 * Start the automatic memory scanning thread. This function must be called 1813 * with the scan_mutex held. 1814 */ 1815 static void start_scan_thread(void) 1816 { 1817 if (scan_thread) 1818 return; 1819 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1820 if (IS_ERR(scan_thread)) { 1821 pr_warn("Failed to create the scan thread\n"); 1822 scan_thread = NULL; 1823 } 1824 } 1825 1826 /* 1827 * Stop the automatic memory scanning thread. 1828 */ 1829 static void stop_scan_thread(void) 1830 { 1831 if (scan_thread) { 1832 kthread_stop(scan_thread); 1833 scan_thread = NULL; 1834 } 1835 } 1836 1837 /* 1838 * Iterate over the object_list and return the first valid object at or after 1839 * the required position with its use_count incremented. The function triggers 1840 * a memory scanning when the pos argument points to the first position. 1841 */ 1842 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1843 { 1844 struct kmemleak_object *object; 1845 loff_t n = *pos; 1846 int err; 1847 1848 err = mutex_lock_interruptible(&scan_mutex); 1849 if (err < 0) 1850 return ERR_PTR(err); 1851 1852 rcu_read_lock(); 1853 list_for_each_entry_rcu(object, &object_list, object_list) { 1854 if (n-- > 0) 1855 continue; 1856 if (get_object(object)) 1857 goto out; 1858 } 1859 object = NULL; 1860 out: 1861 return object; 1862 } 1863 1864 /* 1865 * Return the next object in the object_list. The function decrements the 1866 * use_count of the previous object and increases that of the next one. 1867 */ 1868 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1869 { 1870 struct kmemleak_object *prev_obj = v; 1871 struct kmemleak_object *next_obj = NULL; 1872 struct kmemleak_object *obj = prev_obj; 1873 1874 ++(*pos); 1875 1876 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1877 if (get_object(obj)) { 1878 next_obj = obj; 1879 break; 1880 } 1881 } 1882 1883 put_object(prev_obj); 1884 return next_obj; 1885 } 1886 1887 /* 1888 * Decrement the use_count of the last object required, if any. 1889 */ 1890 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1891 { 1892 if (!IS_ERR(v)) { 1893 /* 1894 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1895 * waiting was interrupted, so only release it if !IS_ERR. 1896 */ 1897 rcu_read_unlock(); 1898 mutex_unlock(&scan_mutex); 1899 if (v) 1900 put_object(v); 1901 } 1902 } 1903 1904 /* 1905 * Print the information for an unreferenced object to the seq file. 1906 */ 1907 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1908 { 1909 struct kmemleak_object *object = v; 1910 unsigned long flags; 1911 1912 raw_spin_lock_irqsave(&object->lock, flags); 1913 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1914 print_unreferenced(seq, object); 1915 raw_spin_unlock_irqrestore(&object->lock, flags); 1916 return 0; 1917 } 1918 1919 static const struct seq_operations kmemleak_seq_ops = { 1920 .start = kmemleak_seq_start, 1921 .next = kmemleak_seq_next, 1922 .stop = kmemleak_seq_stop, 1923 .show = kmemleak_seq_show, 1924 }; 1925 1926 static int kmemleak_open(struct inode *inode, struct file *file) 1927 { 1928 return seq_open(file, &kmemleak_seq_ops); 1929 } 1930 1931 static int dump_str_object_info(const char *str) 1932 { 1933 unsigned long flags; 1934 struct kmemleak_object *object; 1935 unsigned long addr; 1936 1937 if (kstrtoul(str, 0, &addr)) 1938 return -EINVAL; 1939 object = find_and_get_object(addr, 0); 1940 if (!object) { 1941 pr_info("Unknown object at 0x%08lx\n", addr); 1942 return -EINVAL; 1943 } 1944 1945 raw_spin_lock_irqsave(&object->lock, flags); 1946 dump_object_info(object); 1947 raw_spin_unlock_irqrestore(&object->lock, flags); 1948 1949 put_object(object); 1950 return 0; 1951 } 1952 1953 /* 1954 * We use grey instead of black to ensure we can do future scans on the same 1955 * objects. If we did not do future scans these black objects could 1956 * potentially contain references to newly allocated objects in the future and 1957 * we'd end up with false positives. 1958 */ 1959 static void kmemleak_clear(void) 1960 { 1961 struct kmemleak_object *object; 1962 1963 rcu_read_lock(); 1964 list_for_each_entry_rcu(object, &object_list, object_list) { 1965 raw_spin_lock_irq(&object->lock); 1966 if ((object->flags & OBJECT_REPORTED) && 1967 unreferenced_object(object)) 1968 __paint_it(object, KMEMLEAK_GREY); 1969 raw_spin_unlock_irq(&object->lock); 1970 } 1971 rcu_read_unlock(); 1972 1973 kmemleak_found_leaks = false; 1974 } 1975 1976 static void __kmemleak_do_cleanup(void); 1977 1978 /* 1979 * File write operation to configure kmemleak at run-time. The following 1980 * commands can be written to the /sys/kernel/debug/kmemleak file: 1981 * off - disable kmemleak (irreversible) 1982 * stack=on - enable the task stacks scanning 1983 * stack=off - disable the tasks stacks scanning 1984 * scan=on - start the automatic memory scanning thread 1985 * scan=off - stop the automatic memory scanning thread 1986 * scan=... - set the automatic memory scanning period in seconds (0 to 1987 * disable it) 1988 * scan - trigger a memory scan 1989 * clear - mark all current reported unreferenced kmemleak objects as 1990 * grey to ignore printing them, or free all kmemleak objects 1991 * if kmemleak has been disabled. 1992 * dump=... - dump information about the object found at the given address 1993 */ 1994 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1995 size_t size, loff_t *ppos) 1996 { 1997 char buf[64]; 1998 int buf_size; 1999 int ret; 2000 2001 buf_size = min(size, (sizeof(buf) - 1)); 2002 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2003 return -EFAULT; 2004 buf[buf_size] = 0; 2005 2006 ret = mutex_lock_interruptible(&scan_mutex); 2007 if (ret < 0) 2008 return ret; 2009 2010 if (strncmp(buf, "clear", 5) == 0) { 2011 if (kmemleak_enabled) 2012 kmemleak_clear(); 2013 else 2014 __kmemleak_do_cleanup(); 2015 goto out; 2016 } 2017 2018 if (!kmemleak_enabled) { 2019 ret = -EPERM; 2020 goto out; 2021 } 2022 2023 if (strncmp(buf, "off", 3) == 0) 2024 kmemleak_disable(); 2025 else if (strncmp(buf, "stack=on", 8) == 0) 2026 kmemleak_stack_scan = 1; 2027 else if (strncmp(buf, "stack=off", 9) == 0) 2028 kmemleak_stack_scan = 0; 2029 else if (strncmp(buf, "scan=on", 7) == 0) 2030 start_scan_thread(); 2031 else if (strncmp(buf, "scan=off", 8) == 0) 2032 stop_scan_thread(); 2033 else if (strncmp(buf, "scan=", 5) == 0) { 2034 unsigned secs; 2035 unsigned long msecs; 2036 2037 ret = kstrtouint(buf + 5, 0, &secs); 2038 if (ret < 0) 2039 goto out; 2040 2041 msecs = secs * MSEC_PER_SEC; 2042 if (msecs > UINT_MAX) 2043 msecs = UINT_MAX; 2044 2045 stop_scan_thread(); 2046 if (msecs) { 2047 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2048 start_scan_thread(); 2049 } 2050 } else if (strncmp(buf, "scan", 4) == 0) 2051 kmemleak_scan(); 2052 else if (strncmp(buf, "dump=", 5) == 0) 2053 ret = dump_str_object_info(buf + 5); 2054 else 2055 ret = -EINVAL; 2056 2057 out: 2058 mutex_unlock(&scan_mutex); 2059 if (ret < 0) 2060 return ret; 2061 2062 /* ignore the rest of the buffer, only one command at a time */ 2063 *ppos += size; 2064 return size; 2065 } 2066 2067 static const struct file_operations kmemleak_fops = { 2068 .owner = THIS_MODULE, 2069 .open = kmemleak_open, 2070 .read = seq_read, 2071 .write = kmemleak_write, 2072 .llseek = seq_lseek, 2073 .release = seq_release, 2074 }; 2075 2076 static void __kmemleak_do_cleanup(void) 2077 { 2078 struct kmemleak_object *object, *tmp; 2079 2080 /* 2081 * Kmemleak has already been disabled, no need for RCU list traversal 2082 * or kmemleak_lock held. 2083 */ 2084 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2085 __remove_object(object); 2086 __delete_object(object); 2087 } 2088 } 2089 2090 /* 2091 * Stop the memory scanning thread and free the kmemleak internal objects if 2092 * no previous scan thread (otherwise, kmemleak may still have some useful 2093 * information on memory leaks). 2094 */ 2095 static void kmemleak_do_cleanup(struct work_struct *work) 2096 { 2097 stop_scan_thread(); 2098 2099 mutex_lock(&scan_mutex); 2100 /* 2101 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2102 * longer track object freeing. Ordering of the scan thread stopping and 2103 * the memory accesses below is guaranteed by the kthread_stop() 2104 * function. 2105 */ 2106 kmemleak_free_enabled = 0; 2107 mutex_unlock(&scan_mutex); 2108 2109 if (!kmemleak_found_leaks) 2110 __kmemleak_do_cleanup(); 2111 else 2112 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2113 } 2114 2115 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2116 2117 /* 2118 * Disable kmemleak. No memory allocation/freeing will be traced once this 2119 * function is called. Disabling kmemleak is an irreversible operation. 2120 */ 2121 static void kmemleak_disable(void) 2122 { 2123 /* atomically check whether it was already invoked */ 2124 if (cmpxchg(&kmemleak_error, 0, 1)) 2125 return; 2126 2127 /* stop any memory operation tracing */ 2128 kmemleak_enabled = 0; 2129 2130 /* check whether it is too early for a kernel thread */ 2131 if (kmemleak_late_initialized) 2132 schedule_work(&cleanup_work); 2133 else 2134 kmemleak_free_enabled = 0; 2135 2136 pr_info("Kernel memory leak detector disabled\n"); 2137 } 2138 2139 /* 2140 * Allow boot-time kmemleak disabling (enabled by default). 2141 */ 2142 static int __init kmemleak_boot_config(char *str) 2143 { 2144 if (!str) 2145 return -EINVAL; 2146 if (strcmp(str, "off") == 0) 2147 kmemleak_disable(); 2148 else if (strcmp(str, "on") == 0) { 2149 kmemleak_skip_disable = 1; 2150 stack_depot_request_early_init(); 2151 } 2152 else 2153 return -EINVAL; 2154 return 0; 2155 } 2156 early_param("kmemleak", kmemleak_boot_config); 2157 2158 /* 2159 * Kmemleak initialization. 2160 */ 2161 void __init kmemleak_init(void) 2162 { 2163 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2164 if (!kmemleak_skip_disable) { 2165 kmemleak_disable(); 2166 return; 2167 } 2168 #endif 2169 2170 if (kmemleak_error) 2171 return; 2172 2173 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2174 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2175 2176 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2177 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2178 2179 /* register the data/bss sections */ 2180 create_object((unsigned long)_sdata, _edata - _sdata, 2181 KMEMLEAK_GREY, GFP_ATOMIC); 2182 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2183 KMEMLEAK_GREY, GFP_ATOMIC); 2184 /* only register .data..ro_after_init if not within .data */ 2185 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2186 create_object((unsigned long)__start_ro_after_init, 2187 __end_ro_after_init - __start_ro_after_init, 2188 KMEMLEAK_GREY, GFP_ATOMIC); 2189 } 2190 2191 /* 2192 * Late initialization function. 2193 */ 2194 static int __init kmemleak_late_init(void) 2195 { 2196 kmemleak_late_initialized = 1; 2197 2198 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2199 2200 if (kmemleak_error) { 2201 /* 2202 * Some error occurred and kmemleak was disabled. There is a 2203 * small chance that kmemleak_disable() was called immediately 2204 * after setting kmemleak_late_initialized and we may end up with 2205 * two clean-up threads but serialized by scan_mutex. 2206 */ 2207 schedule_work(&cleanup_work); 2208 return -ENOMEM; 2209 } 2210 2211 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2212 mutex_lock(&scan_mutex); 2213 start_scan_thread(); 2214 mutex_unlock(&scan_mutex); 2215 } 2216 2217 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2218 mem_pool_free_count); 2219 2220 return 0; 2221 } 2222 late_initcall(kmemleak_late_init); 2223