1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/mutex.h> 90 #include <linux/rcupdate.h> 91 #include <linux/stacktrace.h> 92 #include <linux/cache.h> 93 #include <linux/percpu.h> 94 #include <linux/hardirq.h> 95 #include <linux/bootmem.h> 96 #include <linux/pfn.h> 97 #include <linux/mmzone.h> 98 #include <linux/slab.h> 99 #include <linux/thread_info.h> 100 #include <linux/err.h> 101 #include <linux/uaccess.h> 102 #include <linux/string.h> 103 #include <linux/nodemask.h> 104 #include <linux/mm.h> 105 #include <linux/workqueue.h> 106 #include <linux/crc32.h> 107 108 #include <asm/sections.h> 109 #include <asm/processor.h> 110 #include <linux/atomic.h> 111 112 #include <linux/kasan.h> 113 #include <linux/kmemleak.h> 114 #include <linux/memory_hotplug.h> 115 116 /* 117 * Kmemleak configuration and common defines. 118 */ 119 #define MAX_TRACE 16 /* stack trace length */ 120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 124 125 #define BYTES_PER_POINTER sizeof(void *) 126 127 /* GFP bitmask for kmemleak internal allocations */ 128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 129 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 130 __GFP_NOWARN) 131 132 /* scanning area inside a memory block */ 133 struct kmemleak_scan_area { 134 struct hlist_node node; 135 unsigned long start; 136 size_t size; 137 }; 138 139 #define KMEMLEAK_GREY 0 140 #define KMEMLEAK_BLACK -1 141 142 /* 143 * Structure holding the metadata for each allocated memory block. 144 * Modifications to such objects should be made while holding the 145 * object->lock. Insertions or deletions from object_list, gray_list or 146 * rb_node are already protected by the corresponding locks or mutex (see 147 * the notes on locking above). These objects are reference-counted 148 * (use_count) and freed using the RCU mechanism. 149 */ 150 struct kmemleak_object { 151 spinlock_t lock; 152 unsigned int flags; /* object status flags */ 153 struct list_head object_list; 154 struct list_head gray_list; 155 struct rb_node rb_node; 156 struct rcu_head rcu; /* object_list lockless traversal */ 157 /* object usage count; object freed when use_count == 0 */ 158 atomic_t use_count; 159 unsigned long pointer; 160 size_t size; 161 /* pass surplus references to this pointer */ 162 unsigned long excess_ref; 163 /* minimum number of a pointers found before it is considered leak */ 164 int min_count; 165 /* the total number of pointers found pointing to this object */ 166 int count; 167 /* checksum for detecting modified objects */ 168 u32 checksum; 169 /* memory ranges to be scanned inside an object (empty for all) */ 170 struct hlist_head area_list; 171 unsigned long trace[MAX_TRACE]; 172 unsigned int trace_len; 173 unsigned long jiffies; /* creation timestamp */ 174 pid_t pid; /* pid of the current task */ 175 char comm[TASK_COMM_LEN]; /* executable name */ 176 }; 177 178 /* flag representing the memory block allocation status */ 179 #define OBJECT_ALLOCATED (1 << 0) 180 /* flag set after the first reporting of an unreference object */ 181 #define OBJECT_REPORTED (1 << 1) 182 /* flag set to not scan the object */ 183 #define OBJECT_NO_SCAN (1 << 2) 184 185 /* number of bytes to print per line; must be 16 or 32 */ 186 #define HEX_ROW_SIZE 16 187 /* number of bytes to print at a time (1, 2, 4, 8) */ 188 #define HEX_GROUP_SIZE 1 189 /* include ASCII after the hex output */ 190 #define HEX_ASCII 1 191 /* max number of lines to be printed */ 192 #define HEX_MAX_LINES 2 193 194 /* the list of all allocated objects */ 195 static LIST_HEAD(object_list); 196 /* the list of gray-colored objects (see color_gray comment below) */ 197 static LIST_HEAD(gray_list); 198 /* search tree for object boundaries */ 199 static struct rb_root object_tree_root = RB_ROOT; 200 /* rw_lock protecting the access to object_list and object_tree_root */ 201 static DEFINE_RWLOCK(kmemleak_lock); 202 203 /* allocation caches for kmemleak internal data */ 204 static struct kmem_cache *object_cache; 205 static struct kmem_cache *scan_area_cache; 206 207 /* set if tracing memory operations is enabled */ 208 static int kmemleak_enabled; 209 /* same as above but only for the kmemleak_free() callback */ 210 static int kmemleak_free_enabled; 211 /* set in the late_initcall if there were no errors */ 212 static int kmemleak_initialized; 213 /* enables or disables early logging of the memory operations */ 214 static int kmemleak_early_log = 1; 215 /* set if a kmemleak warning was issued */ 216 static int kmemleak_warning; 217 /* set if a fatal kmemleak error has occurred */ 218 static int kmemleak_error; 219 220 /* minimum and maximum address that may be valid pointers */ 221 static unsigned long min_addr = ULONG_MAX; 222 static unsigned long max_addr; 223 224 static struct task_struct *scan_thread; 225 /* used to avoid reporting of recently allocated objects */ 226 static unsigned long jiffies_min_age; 227 static unsigned long jiffies_last_scan; 228 /* delay between automatic memory scannings */ 229 static signed long jiffies_scan_wait; 230 /* enables or disables the task stacks scanning */ 231 static int kmemleak_stack_scan = 1; 232 /* protects the memory scanning, parameters and debug/kmemleak file access */ 233 static DEFINE_MUTEX(scan_mutex); 234 /* setting kmemleak=on, will set this var, skipping the disable */ 235 static int kmemleak_skip_disable; 236 /* If there are leaks that can be reported */ 237 static bool kmemleak_found_leaks; 238 239 /* 240 * Early object allocation/freeing logging. Kmemleak is initialized after the 241 * kernel allocator. However, both the kernel allocator and kmemleak may 242 * allocate memory blocks which need to be tracked. Kmemleak defines an 243 * arbitrary buffer to hold the allocation/freeing information before it is 244 * fully initialized. 245 */ 246 247 /* kmemleak operation type for early logging */ 248 enum { 249 KMEMLEAK_ALLOC, 250 KMEMLEAK_ALLOC_PERCPU, 251 KMEMLEAK_FREE, 252 KMEMLEAK_FREE_PART, 253 KMEMLEAK_FREE_PERCPU, 254 KMEMLEAK_NOT_LEAK, 255 KMEMLEAK_IGNORE, 256 KMEMLEAK_SCAN_AREA, 257 KMEMLEAK_NO_SCAN, 258 KMEMLEAK_SET_EXCESS_REF 259 }; 260 261 /* 262 * Structure holding the information passed to kmemleak callbacks during the 263 * early logging. 264 */ 265 struct early_log { 266 int op_type; /* kmemleak operation type */ 267 int min_count; /* minimum reference count */ 268 const void *ptr; /* allocated/freed memory block */ 269 union { 270 size_t size; /* memory block size */ 271 unsigned long excess_ref; /* surplus reference passing */ 272 }; 273 unsigned long trace[MAX_TRACE]; /* stack trace */ 274 unsigned int trace_len; /* stack trace length */ 275 }; 276 277 /* early logging buffer and current position */ 278 static struct early_log 279 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 280 static int crt_early_log __initdata; 281 282 static void kmemleak_disable(void); 283 284 /* 285 * Print a warning and dump the stack trace. 286 */ 287 #define kmemleak_warn(x...) do { \ 288 pr_warn(x); \ 289 dump_stack(); \ 290 kmemleak_warning = 1; \ 291 } while (0) 292 293 /* 294 * Macro invoked when a serious kmemleak condition occurred and cannot be 295 * recovered from. Kmemleak will be disabled and further allocation/freeing 296 * tracing no longer available. 297 */ 298 #define kmemleak_stop(x...) do { \ 299 kmemleak_warn(x); \ 300 kmemleak_disable(); \ 301 } while (0) 302 303 /* 304 * Printing of the objects hex dump to the seq file. The number of lines to be 305 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 306 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 307 * with the object->lock held. 308 */ 309 static void hex_dump_object(struct seq_file *seq, 310 struct kmemleak_object *object) 311 { 312 const u8 *ptr = (const u8 *)object->pointer; 313 size_t len; 314 315 /* limit the number of lines to HEX_MAX_LINES */ 316 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 317 318 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 319 kasan_disable_current(); 320 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 321 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 322 kasan_enable_current(); 323 } 324 325 /* 326 * Object colors, encoded with count and min_count: 327 * - white - orphan object, not enough references to it (count < min_count) 328 * - gray - not orphan, not marked as false positive (min_count == 0) or 329 * sufficient references to it (count >= min_count) 330 * - black - ignore, it doesn't contain references (e.g. text section) 331 * (min_count == -1). No function defined for this color. 332 * Newly created objects don't have any color assigned (object->count == -1) 333 * before the next memory scan when they become white. 334 */ 335 static bool color_white(const struct kmemleak_object *object) 336 { 337 return object->count != KMEMLEAK_BLACK && 338 object->count < object->min_count; 339 } 340 341 static bool color_gray(const struct kmemleak_object *object) 342 { 343 return object->min_count != KMEMLEAK_BLACK && 344 object->count >= object->min_count; 345 } 346 347 /* 348 * Objects are considered unreferenced only if their color is white, they have 349 * not be deleted and have a minimum age to avoid false positives caused by 350 * pointers temporarily stored in CPU registers. 351 */ 352 static bool unreferenced_object(struct kmemleak_object *object) 353 { 354 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 355 time_before_eq(object->jiffies + jiffies_min_age, 356 jiffies_last_scan); 357 } 358 359 /* 360 * Printing of the unreferenced objects information to the seq file. The 361 * print_unreferenced function must be called with the object->lock held. 362 */ 363 static void print_unreferenced(struct seq_file *seq, 364 struct kmemleak_object *object) 365 { 366 int i; 367 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 368 369 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 370 object->pointer, object->size); 371 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 372 object->comm, object->pid, object->jiffies, 373 msecs_age / 1000, msecs_age % 1000); 374 hex_dump_object(seq, object); 375 seq_printf(seq, " backtrace:\n"); 376 377 for (i = 0; i < object->trace_len; i++) { 378 void *ptr = (void *)object->trace[i]; 379 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 380 } 381 } 382 383 /* 384 * Print the kmemleak_object information. This function is used mainly for 385 * debugging special cases when kmemleak operations. It must be called with 386 * the object->lock held. 387 */ 388 static void dump_object_info(struct kmemleak_object *object) 389 { 390 struct stack_trace trace; 391 392 trace.nr_entries = object->trace_len; 393 trace.entries = object->trace; 394 395 pr_notice("Object 0x%08lx (size %zu):\n", 396 object->pointer, object->size); 397 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 398 object->comm, object->pid, object->jiffies); 399 pr_notice(" min_count = %d\n", object->min_count); 400 pr_notice(" count = %d\n", object->count); 401 pr_notice(" flags = 0x%x\n", object->flags); 402 pr_notice(" checksum = %u\n", object->checksum); 403 pr_notice(" backtrace:\n"); 404 print_stack_trace(&trace, 4); 405 } 406 407 /* 408 * Look-up a memory block metadata (kmemleak_object) in the object search 409 * tree based on a pointer value. If alias is 0, only values pointing to the 410 * beginning of the memory block are allowed. The kmemleak_lock must be held 411 * when calling this function. 412 */ 413 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 414 { 415 struct rb_node *rb = object_tree_root.rb_node; 416 417 while (rb) { 418 struct kmemleak_object *object = 419 rb_entry(rb, struct kmemleak_object, rb_node); 420 if (ptr < object->pointer) 421 rb = object->rb_node.rb_left; 422 else if (object->pointer + object->size <= ptr) 423 rb = object->rb_node.rb_right; 424 else if (object->pointer == ptr || alias) 425 return object; 426 else { 427 kmemleak_warn("Found object by alias at 0x%08lx\n", 428 ptr); 429 dump_object_info(object); 430 break; 431 } 432 } 433 return NULL; 434 } 435 436 /* 437 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 438 * that once an object's use_count reached 0, the RCU freeing was already 439 * registered and the object should no longer be used. This function must be 440 * called under the protection of rcu_read_lock(). 441 */ 442 static int get_object(struct kmemleak_object *object) 443 { 444 return atomic_inc_not_zero(&object->use_count); 445 } 446 447 /* 448 * RCU callback to free a kmemleak_object. 449 */ 450 static void free_object_rcu(struct rcu_head *rcu) 451 { 452 struct hlist_node *tmp; 453 struct kmemleak_scan_area *area; 454 struct kmemleak_object *object = 455 container_of(rcu, struct kmemleak_object, rcu); 456 457 /* 458 * Once use_count is 0 (guaranteed by put_object), there is no other 459 * code accessing this object, hence no need for locking. 460 */ 461 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 462 hlist_del(&area->node); 463 kmem_cache_free(scan_area_cache, area); 464 } 465 kmem_cache_free(object_cache, object); 466 } 467 468 /* 469 * Decrement the object use_count. Once the count is 0, free the object using 470 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 471 * delete_object() path, the delayed RCU freeing ensures that there is no 472 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 473 * is also possible. 474 */ 475 static void put_object(struct kmemleak_object *object) 476 { 477 if (!atomic_dec_and_test(&object->use_count)) 478 return; 479 480 /* should only get here after delete_object was called */ 481 WARN_ON(object->flags & OBJECT_ALLOCATED); 482 483 call_rcu(&object->rcu, free_object_rcu); 484 } 485 486 /* 487 * Look up an object in the object search tree and increase its use_count. 488 */ 489 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 490 { 491 unsigned long flags; 492 struct kmemleak_object *object; 493 494 rcu_read_lock(); 495 read_lock_irqsave(&kmemleak_lock, flags); 496 object = lookup_object(ptr, alias); 497 read_unlock_irqrestore(&kmemleak_lock, flags); 498 499 /* check whether the object is still available */ 500 if (object && !get_object(object)) 501 object = NULL; 502 rcu_read_unlock(); 503 504 return object; 505 } 506 507 /* 508 * Look up an object in the object search tree and remove it from both 509 * object_tree_root and object_list. The returned object's use_count should be 510 * at least 1, as initially set by create_object(). 511 */ 512 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 513 { 514 unsigned long flags; 515 struct kmemleak_object *object; 516 517 write_lock_irqsave(&kmemleak_lock, flags); 518 object = lookup_object(ptr, alias); 519 if (object) { 520 rb_erase(&object->rb_node, &object_tree_root); 521 list_del_rcu(&object->object_list); 522 } 523 write_unlock_irqrestore(&kmemleak_lock, flags); 524 525 return object; 526 } 527 528 /* 529 * Save stack trace to the given array of MAX_TRACE size. 530 */ 531 static int __save_stack_trace(unsigned long *trace) 532 { 533 struct stack_trace stack_trace; 534 535 stack_trace.max_entries = MAX_TRACE; 536 stack_trace.nr_entries = 0; 537 stack_trace.entries = trace; 538 stack_trace.skip = 2; 539 save_stack_trace(&stack_trace); 540 541 return stack_trace.nr_entries; 542 } 543 544 /* 545 * Create the metadata (struct kmemleak_object) corresponding to an allocated 546 * memory block and add it to the object_list and object_tree_root. 547 */ 548 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 549 int min_count, gfp_t gfp) 550 { 551 unsigned long flags; 552 struct kmemleak_object *object, *parent; 553 struct rb_node **link, *rb_parent; 554 555 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 556 if (!object) { 557 pr_warn("Cannot allocate a kmemleak_object structure\n"); 558 kmemleak_disable(); 559 return NULL; 560 } 561 562 INIT_LIST_HEAD(&object->object_list); 563 INIT_LIST_HEAD(&object->gray_list); 564 INIT_HLIST_HEAD(&object->area_list); 565 spin_lock_init(&object->lock); 566 atomic_set(&object->use_count, 1); 567 object->flags = OBJECT_ALLOCATED; 568 object->pointer = ptr; 569 object->size = size; 570 object->excess_ref = 0; 571 object->min_count = min_count; 572 object->count = 0; /* white color initially */ 573 object->jiffies = jiffies; 574 object->checksum = 0; 575 576 /* task information */ 577 if (in_irq()) { 578 object->pid = 0; 579 strncpy(object->comm, "hardirq", sizeof(object->comm)); 580 } else if (in_softirq()) { 581 object->pid = 0; 582 strncpy(object->comm, "softirq", sizeof(object->comm)); 583 } else { 584 object->pid = current->pid; 585 /* 586 * There is a small chance of a race with set_task_comm(), 587 * however using get_task_comm() here may cause locking 588 * dependency issues with current->alloc_lock. In the worst 589 * case, the command line is not correct. 590 */ 591 strncpy(object->comm, current->comm, sizeof(object->comm)); 592 } 593 594 /* kernel backtrace */ 595 object->trace_len = __save_stack_trace(object->trace); 596 597 write_lock_irqsave(&kmemleak_lock, flags); 598 599 min_addr = min(min_addr, ptr); 600 max_addr = max(max_addr, ptr + size); 601 link = &object_tree_root.rb_node; 602 rb_parent = NULL; 603 while (*link) { 604 rb_parent = *link; 605 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 606 if (ptr + size <= parent->pointer) 607 link = &parent->rb_node.rb_left; 608 else if (parent->pointer + parent->size <= ptr) 609 link = &parent->rb_node.rb_right; 610 else { 611 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 612 ptr); 613 /* 614 * No need for parent->lock here since "parent" cannot 615 * be freed while the kmemleak_lock is held. 616 */ 617 dump_object_info(parent); 618 kmem_cache_free(object_cache, object); 619 object = NULL; 620 goto out; 621 } 622 } 623 rb_link_node(&object->rb_node, rb_parent, link); 624 rb_insert_color(&object->rb_node, &object_tree_root); 625 626 list_add_tail_rcu(&object->object_list, &object_list); 627 out: 628 write_unlock_irqrestore(&kmemleak_lock, flags); 629 return object; 630 } 631 632 /* 633 * Mark the object as not allocated and schedule RCU freeing via put_object(). 634 */ 635 static void __delete_object(struct kmemleak_object *object) 636 { 637 unsigned long flags; 638 639 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 640 WARN_ON(atomic_read(&object->use_count) < 1); 641 642 /* 643 * Locking here also ensures that the corresponding memory block 644 * cannot be freed when it is being scanned. 645 */ 646 spin_lock_irqsave(&object->lock, flags); 647 object->flags &= ~OBJECT_ALLOCATED; 648 spin_unlock_irqrestore(&object->lock, flags); 649 put_object(object); 650 } 651 652 /* 653 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 654 * delete it. 655 */ 656 static void delete_object_full(unsigned long ptr) 657 { 658 struct kmemleak_object *object; 659 660 object = find_and_remove_object(ptr, 0); 661 if (!object) { 662 #ifdef DEBUG 663 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 664 ptr); 665 #endif 666 return; 667 } 668 __delete_object(object); 669 } 670 671 /* 672 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 673 * delete it. If the memory block is partially freed, the function may create 674 * additional metadata for the remaining parts of the block. 675 */ 676 static void delete_object_part(unsigned long ptr, size_t size) 677 { 678 struct kmemleak_object *object; 679 unsigned long start, end; 680 681 object = find_and_remove_object(ptr, 1); 682 if (!object) { 683 #ifdef DEBUG 684 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 685 ptr, size); 686 #endif 687 return; 688 } 689 690 /* 691 * Create one or two objects that may result from the memory block 692 * split. Note that partial freeing is only done by free_bootmem() and 693 * this happens before kmemleak_init() is called. The path below is 694 * only executed during early log recording in kmemleak_init(), so 695 * GFP_KERNEL is enough. 696 */ 697 start = object->pointer; 698 end = object->pointer + object->size; 699 if (ptr > start) 700 create_object(start, ptr - start, object->min_count, 701 GFP_KERNEL); 702 if (ptr + size < end) 703 create_object(ptr + size, end - ptr - size, object->min_count, 704 GFP_KERNEL); 705 706 __delete_object(object); 707 } 708 709 static void __paint_it(struct kmemleak_object *object, int color) 710 { 711 object->min_count = color; 712 if (color == KMEMLEAK_BLACK) 713 object->flags |= OBJECT_NO_SCAN; 714 } 715 716 static void paint_it(struct kmemleak_object *object, int color) 717 { 718 unsigned long flags; 719 720 spin_lock_irqsave(&object->lock, flags); 721 __paint_it(object, color); 722 spin_unlock_irqrestore(&object->lock, flags); 723 } 724 725 static void paint_ptr(unsigned long ptr, int color) 726 { 727 struct kmemleak_object *object; 728 729 object = find_and_get_object(ptr, 0); 730 if (!object) { 731 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 732 ptr, 733 (color == KMEMLEAK_GREY) ? "Grey" : 734 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 735 return; 736 } 737 paint_it(object, color); 738 put_object(object); 739 } 740 741 /* 742 * Mark an object permanently as gray-colored so that it can no longer be 743 * reported as a leak. This is used in general to mark a false positive. 744 */ 745 static void make_gray_object(unsigned long ptr) 746 { 747 paint_ptr(ptr, KMEMLEAK_GREY); 748 } 749 750 /* 751 * Mark the object as black-colored so that it is ignored from scans and 752 * reporting. 753 */ 754 static void make_black_object(unsigned long ptr) 755 { 756 paint_ptr(ptr, KMEMLEAK_BLACK); 757 } 758 759 /* 760 * Add a scanning area to the object. If at least one such area is added, 761 * kmemleak will only scan these ranges rather than the whole memory block. 762 */ 763 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 764 { 765 unsigned long flags; 766 struct kmemleak_object *object; 767 struct kmemleak_scan_area *area; 768 769 object = find_and_get_object(ptr, 1); 770 if (!object) { 771 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 772 ptr); 773 return; 774 } 775 776 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 777 if (!area) { 778 pr_warn("Cannot allocate a scan area\n"); 779 goto out; 780 } 781 782 spin_lock_irqsave(&object->lock, flags); 783 if (size == SIZE_MAX) { 784 size = object->pointer + object->size - ptr; 785 } else if (ptr + size > object->pointer + object->size) { 786 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 787 dump_object_info(object); 788 kmem_cache_free(scan_area_cache, area); 789 goto out_unlock; 790 } 791 792 INIT_HLIST_NODE(&area->node); 793 area->start = ptr; 794 area->size = size; 795 796 hlist_add_head(&area->node, &object->area_list); 797 out_unlock: 798 spin_unlock_irqrestore(&object->lock, flags); 799 out: 800 put_object(object); 801 } 802 803 /* 804 * Any surplus references (object already gray) to 'ptr' are passed to 805 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 806 * vm_struct may be used as an alternative reference to the vmalloc'ed object 807 * (see free_thread_stack()). 808 */ 809 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 810 { 811 unsigned long flags; 812 struct kmemleak_object *object; 813 814 object = find_and_get_object(ptr, 0); 815 if (!object) { 816 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 817 ptr); 818 return; 819 } 820 821 spin_lock_irqsave(&object->lock, flags); 822 object->excess_ref = excess_ref; 823 spin_unlock_irqrestore(&object->lock, flags); 824 put_object(object); 825 } 826 827 /* 828 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 829 * pointer. Such object will not be scanned by kmemleak but references to it 830 * are searched. 831 */ 832 static void object_no_scan(unsigned long ptr) 833 { 834 unsigned long flags; 835 struct kmemleak_object *object; 836 837 object = find_and_get_object(ptr, 0); 838 if (!object) { 839 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 840 return; 841 } 842 843 spin_lock_irqsave(&object->lock, flags); 844 object->flags |= OBJECT_NO_SCAN; 845 spin_unlock_irqrestore(&object->lock, flags); 846 put_object(object); 847 } 848 849 /* 850 * Log an early kmemleak_* call to the early_log buffer. These calls will be 851 * processed later once kmemleak is fully initialized. 852 */ 853 static void __init log_early(int op_type, const void *ptr, size_t size, 854 int min_count) 855 { 856 unsigned long flags; 857 struct early_log *log; 858 859 if (kmemleak_error) { 860 /* kmemleak stopped recording, just count the requests */ 861 crt_early_log++; 862 return; 863 } 864 865 if (crt_early_log >= ARRAY_SIZE(early_log)) { 866 crt_early_log++; 867 kmemleak_disable(); 868 return; 869 } 870 871 /* 872 * There is no need for locking since the kernel is still in UP mode 873 * at this stage. Disabling the IRQs is enough. 874 */ 875 local_irq_save(flags); 876 log = &early_log[crt_early_log]; 877 log->op_type = op_type; 878 log->ptr = ptr; 879 log->size = size; 880 log->min_count = min_count; 881 log->trace_len = __save_stack_trace(log->trace); 882 crt_early_log++; 883 local_irq_restore(flags); 884 } 885 886 /* 887 * Log an early allocated block and populate the stack trace. 888 */ 889 static void early_alloc(struct early_log *log) 890 { 891 struct kmemleak_object *object; 892 unsigned long flags; 893 int i; 894 895 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 896 return; 897 898 /* 899 * RCU locking needed to ensure object is not freed via put_object(). 900 */ 901 rcu_read_lock(); 902 object = create_object((unsigned long)log->ptr, log->size, 903 log->min_count, GFP_ATOMIC); 904 if (!object) 905 goto out; 906 spin_lock_irqsave(&object->lock, flags); 907 for (i = 0; i < log->trace_len; i++) 908 object->trace[i] = log->trace[i]; 909 object->trace_len = log->trace_len; 910 spin_unlock_irqrestore(&object->lock, flags); 911 out: 912 rcu_read_unlock(); 913 } 914 915 /* 916 * Log an early allocated block and populate the stack trace. 917 */ 918 static void early_alloc_percpu(struct early_log *log) 919 { 920 unsigned int cpu; 921 const void __percpu *ptr = log->ptr; 922 923 for_each_possible_cpu(cpu) { 924 log->ptr = per_cpu_ptr(ptr, cpu); 925 early_alloc(log); 926 } 927 } 928 929 /** 930 * kmemleak_alloc - register a newly allocated object 931 * @ptr: pointer to beginning of the object 932 * @size: size of the object 933 * @min_count: minimum number of references to this object. If during memory 934 * scanning a number of references less than @min_count is found, 935 * the object is reported as a memory leak. If @min_count is 0, 936 * the object is never reported as a leak. If @min_count is -1, 937 * the object is ignored (not scanned and not reported as a leak) 938 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 939 * 940 * This function is called from the kernel allocators when a new object 941 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 942 */ 943 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 944 gfp_t gfp) 945 { 946 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 947 948 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 949 create_object((unsigned long)ptr, size, min_count, gfp); 950 else if (kmemleak_early_log) 951 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 952 } 953 EXPORT_SYMBOL_GPL(kmemleak_alloc); 954 955 /** 956 * kmemleak_alloc_percpu - register a newly allocated __percpu object 957 * @ptr: __percpu pointer to beginning of the object 958 * @size: size of the object 959 * @gfp: flags used for kmemleak internal memory allocations 960 * 961 * This function is called from the kernel percpu allocator when a new object 962 * (memory block) is allocated (alloc_percpu). 963 */ 964 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 965 gfp_t gfp) 966 { 967 unsigned int cpu; 968 969 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 970 971 /* 972 * Percpu allocations are only scanned and not reported as leaks 973 * (min_count is set to 0). 974 */ 975 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 976 for_each_possible_cpu(cpu) 977 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 978 size, 0, gfp); 979 else if (kmemleak_early_log) 980 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 981 } 982 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 983 984 /** 985 * kmemleak_vmalloc - register a newly vmalloc'ed object 986 * @area: pointer to vm_struct 987 * @size: size of the object 988 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 989 * 990 * This function is called from the vmalloc() kernel allocator when a new 991 * object (memory block) is allocated. 992 */ 993 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 994 { 995 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 996 997 /* 998 * A min_count = 2 is needed because vm_struct contains a reference to 999 * the virtual address of the vmalloc'ed block. 1000 */ 1001 if (kmemleak_enabled) { 1002 create_object((unsigned long)area->addr, size, 2, gfp); 1003 object_set_excess_ref((unsigned long)area, 1004 (unsigned long)area->addr); 1005 } else if (kmemleak_early_log) { 1006 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1007 /* reusing early_log.size for storing area->addr */ 1008 log_early(KMEMLEAK_SET_EXCESS_REF, 1009 area, (unsigned long)area->addr, 0); 1010 } 1011 } 1012 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1013 1014 /** 1015 * kmemleak_free - unregister a previously registered object 1016 * @ptr: pointer to beginning of the object 1017 * 1018 * This function is called from the kernel allocators when an object (memory 1019 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1020 */ 1021 void __ref kmemleak_free(const void *ptr) 1022 { 1023 pr_debug("%s(0x%p)\n", __func__, ptr); 1024 1025 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1026 delete_object_full((unsigned long)ptr); 1027 else if (kmemleak_early_log) 1028 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1029 } 1030 EXPORT_SYMBOL_GPL(kmemleak_free); 1031 1032 /** 1033 * kmemleak_free_part - partially unregister a previously registered object 1034 * @ptr: pointer to the beginning or inside the object. This also 1035 * represents the start of the range to be freed 1036 * @size: size to be unregistered 1037 * 1038 * This function is called when only a part of a memory block is freed 1039 * (usually from the bootmem allocator). 1040 */ 1041 void __ref kmemleak_free_part(const void *ptr, size_t size) 1042 { 1043 pr_debug("%s(0x%p)\n", __func__, ptr); 1044 1045 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1046 delete_object_part((unsigned long)ptr, size); 1047 else if (kmemleak_early_log) 1048 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1049 } 1050 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1051 1052 /** 1053 * kmemleak_free_percpu - unregister a previously registered __percpu object 1054 * @ptr: __percpu pointer to beginning of the object 1055 * 1056 * This function is called from the kernel percpu allocator when an object 1057 * (memory block) is freed (free_percpu). 1058 */ 1059 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1060 { 1061 unsigned int cpu; 1062 1063 pr_debug("%s(0x%p)\n", __func__, ptr); 1064 1065 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1066 for_each_possible_cpu(cpu) 1067 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1068 cpu)); 1069 else if (kmemleak_early_log) 1070 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1071 } 1072 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1073 1074 /** 1075 * kmemleak_update_trace - update object allocation stack trace 1076 * @ptr: pointer to beginning of the object 1077 * 1078 * Override the object allocation stack trace for cases where the actual 1079 * allocation place is not always useful. 1080 */ 1081 void __ref kmemleak_update_trace(const void *ptr) 1082 { 1083 struct kmemleak_object *object; 1084 unsigned long flags; 1085 1086 pr_debug("%s(0x%p)\n", __func__, ptr); 1087 1088 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1089 return; 1090 1091 object = find_and_get_object((unsigned long)ptr, 1); 1092 if (!object) { 1093 #ifdef DEBUG 1094 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1095 ptr); 1096 #endif 1097 return; 1098 } 1099 1100 spin_lock_irqsave(&object->lock, flags); 1101 object->trace_len = __save_stack_trace(object->trace); 1102 spin_unlock_irqrestore(&object->lock, flags); 1103 1104 put_object(object); 1105 } 1106 EXPORT_SYMBOL(kmemleak_update_trace); 1107 1108 /** 1109 * kmemleak_not_leak - mark an allocated object as false positive 1110 * @ptr: pointer to beginning of the object 1111 * 1112 * Calling this function on an object will cause the memory block to no longer 1113 * be reported as leak and always be scanned. 1114 */ 1115 void __ref kmemleak_not_leak(const void *ptr) 1116 { 1117 pr_debug("%s(0x%p)\n", __func__, ptr); 1118 1119 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1120 make_gray_object((unsigned long)ptr); 1121 else if (kmemleak_early_log) 1122 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1123 } 1124 EXPORT_SYMBOL(kmemleak_not_leak); 1125 1126 /** 1127 * kmemleak_ignore - ignore an allocated object 1128 * @ptr: pointer to beginning of the object 1129 * 1130 * Calling this function on an object will cause the memory block to be 1131 * ignored (not scanned and not reported as a leak). This is usually done when 1132 * it is known that the corresponding block is not a leak and does not contain 1133 * any references to other allocated memory blocks. 1134 */ 1135 void __ref kmemleak_ignore(const void *ptr) 1136 { 1137 pr_debug("%s(0x%p)\n", __func__, ptr); 1138 1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1140 make_black_object((unsigned long)ptr); 1141 else if (kmemleak_early_log) 1142 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1143 } 1144 EXPORT_SYMBOL(kmemleak_ignore); 1145 1146 /** 1147 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1148 * @ptr: pointer to beginning or inside the object. This also 1149 * represents the start of the scan area 1150 * @size: size of the scan area 1151 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1152 * 1153 * This function is used when it is known that only certain parts of an object 1154 * contain references to other objects. Kmemleak will only scan these areas 1155 * reducing the number false negatives. 1156 */ 1157 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1158 { 1159 pr_debug("%s(0x%p)\n", __func__, ptr); 1160 1161 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1162 add_scan_area((unsigned long)ptr, size, gfp); 1163 else if (kmemleak_early_log) 1164 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1165 } 1166 EXPORT_SYMBOL(kmemleak_scan_area); 1167 1168 /** 1169 * kmemleak_no_scan - do not scan an allocated object 1170 * @ptr: pointer to beginning of the object 1171 * 1172 * This function notifies kmemleak not to scan the given memory block. Useful 1173 * in situations where it is known that the given object does not contain any 1174 * references to other objects. Kmemleak will not scan such objects reducing 1175 * the number of false negatives. 1176 */ 1177 void __ref kmemleak_no_scan(const void *ptr) 1178 { 1179 pr_debug("%s(0x%p)\n", __func__, ptr); 1180 1181 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1182 object_no_scan((unsigned long)ptr); 1183 else if (kmemleak_early_log) 1184 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1185 } 1186 EXPORT_SYMBOL(kmemleak_no_scan); 1187 1188 /** 1189 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1190 * address argument 1191 */ 1192 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1193 gfp_t gfp) 1194 { 1195 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1196 kmemleak_alloc(__va(phys), size, min_count, gfp); 1197 } 1198 EXPORT_SYMBOL(kmemleak_alloc_phys); 1199 1200 /** 1201 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1202 * physical address argument 1203 */ 1204 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1205 { 1206 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1207 kmemleak_free_part(__va(phys), size); 1208 } 1209 EXPORT_SYMBOL(kmemleak_free_part_phys); 1210 1211 /** 1212 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1213 * address argument 1214 */ 1215 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1216 { 1217 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1218 kmemleak_not_leak(__va(phys)); 1219 } 1220 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1221 1222 /** 1223 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1224 * address argument 1225 */ 1226 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1227 { 1228 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1229 kmemleak_ignore(__va(phys)); 1230 } 1231 EXPORT_SYMBOL(kmemleak_ignore_phys); 1232 1233 /* 1234 * Update an object's checksum and return true if it was modified. 1235 */ 1236 static bool update_checksum(struct kmemleak_object *object) 1237 { 1238 u32 old_csum = object->checksum; 1239 1240 kasan_disable_current(); 1241 object->checksum = crc32(0, (void *)object->pointer, object->size); 1242 kasan_enable_current(); 1243 1244 return object->checksum != old_csum; 1245 } 1246 1247 /* 1248 * Update an object's references. object->lock must be held by the caller. 1249 */ 1250 static void update_refs(struct kmemleak_object *object) 1251 { 1252 if (!color_white(object)) { 1253 /* non-orphan, ignored or new */ 1254 return; 1255 } 1256 1257 /* 1258 * Increase the object's reference count (number of pointers to the 1259 * memory block). If this count reaches the required minimum, the 1260 * object's color will become gray and it will be added to the 1261 * gray_list. 1262 */ 1263 object->count++; 1264 if (color_gray(object)) { 1265 /* put_object() called when removing from gray_list */ 1266 WARN_ON(!get_object(object)); 1267 list_add_tail(&object->gray_list, &gray_list); 1268 } 1269 } 1270 1271 /* 1272 * Memory scanning is a long process and it needs to be interruptable. This 1273 * function checks whether such interrupt condition occurred. 1274 */ 1275 static int scan_should_stop(void) 1276 { 1277 if (!kmemleak_enabled) 1278 return 1; 1279 1280 /* 1281 * This function may be called from either process or kthread context, 1282 * hence the need to check for both stop conditions. 1283 */ 1284 if (current->mm) 1285 return signal_pending(current); 1286 else 1287 return kthread_should_stop(); 1288 1289 return 0; 1290 } 1291 1292 /* 1293 * Scan a memory block (exclusive range) for valid pointers and add those 1294 * found to the gray list. 1295 */ 1296 static void scan_block(void *_start, void *_end, 1297 struct kmemleak_object *scanned) 1298 { 1299 unsigned long *ptr; 1300 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1301 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1302 unsigned long flags; 1303 1304 read_lock_irqsave(&kmemleak_lock, flags); 1305 for (ptr = start; ptr < end; ptr++) { 1306 struct kmemleak_object *object; 1307 unsigned long pointer; 1308 unsigned long excess_ref; 1309 1310 if (scan_should_stop()) 1311 break; 1312 1313 kasan_disable_current(); 1314 pointer = *ptr; 1315 kasan_enable_current(); 1316 1317 if (pointer < min_addr || pointer >= max_addr) 1318 continue; 1319 1320 /* 1321 * No need for get_object() here since we hold kmemleak_lock. 1322 * object->use_count cannot be dropped to 0 while the object 1323 * is still present in object_tree_root and object_list 1324 * (with updates protected by kmemleak_lock). 1325 */ 1326 object = lookup_object(pointer, 1); 1327 if (!object) 1328 continue; 1329 if (object == scanned) 1330 /* self referenced, ignore */ 1331 continue; 1332 1333 /* 1334 * Avoid the lockdep recursive warning on object->lock being 1335 * previously acquired in scan_object(). These locks are 1336 * enclosed by scan_mutex. 1337 */ 1338 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1339 /* only pass surplus references (object already gray) */ 1340 if (color_gray(object)) { 1341 excess_ref = object->excess_ref; 1342 /* no need for update_refs() if object already gray */ 1343 } else { 1344 excess_ref = 0; 1345 update_refs(object); 1346 } 1347 spin_unlock(&object->lock); 1348 1349 if (excess_ref) { 1350 object = lookup_object(excess_ref, 0); 1351 if (!object) 1352 continue; 1353 if (object == scanned) 1354 /* circular reference, ignore */ 1355 continue; 1356 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1357 update_refs(object); 1358 spin_unlock(&object->lock); 1359 } 1360 } 1361 read_unlock_irqrestore(&kmemleak_lock, flags); 1362 } 1363 1364 /* 1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1366 */ 1367 static void scan_large_block(void *start, void *end) 1368 { 1369 void *next; 1370 1371 while (start < end) { 1372 next = min(start + MAX_SCAN_SIZE, end); 1373 scan_block(start, next, NULL); 1374 start = next; 1375 cond_resched(); 1376 } 1377 } 1378 1379 /* 1380 * Scan a memory block corresponding to a kmemleak_object. A condition is 1381 * that object->use_count >= 1. 1382 */ 1383 static void scan_object(struct kmemleak_object *object) 1384 { 1385 struct kmemleak_scan_area *area; 1386 unsigned long flags; 1387 1388 /* 1389 * Once the object->lock is acquired, the corresponding memory block 1390 * cannot be freed (the same lock is acquired in delete_object). 1391 */ 1392 spin_lock_irqsave(&object->lock, flags); 1393 if (object->flags & OBJECT_NO_SCAN) 1394 goto out; 1395 if (!(object->flags & OBJECT_ALLOCATED)) 1396 /* already freed object */ 1397 goto out; 1398 if (hlist_empty(&object->area_list)) { 1399 void *start = (void *)object->pointer; 1400 void *end = (void *)(object->pointer + object->size); 1401 void *next; 1402 1403 do { 1404 next = min(start + MAX_SCAN_SIZE, end); 1405 scan_block(start, next, object); 1406 1407 start = next; 1408 if (start >= end) 1409 break; 1410 1411 spin_unlock_irqrestore(&object->lock, flags); 1412 cond_resched(); 1413 spin_lock_irqsave(&object->lock, flags); 1414 } while (object->flags & OBJECT_ALLOCATED); 1415 } else 1416 hlist_for_each_entry(area, &object->area_list, node) 1417 scan_block((void *)area->start, 1418 (void *)(area->start + area->size), 1419 object); 1420 out: 1421 spin_unlock_irqrestore(&object->lock, flags); 1422 } 1423 1424 /* 1425 * Scan the objects already referenced (gray objects). More objects will be 1426 * referenced and, if there are no memory leaks, all the objects are scanned. 1427 */ 1428 static void scan_gray_list(void) 1429 { 1430 struct kmemleak_object *object, *tmp; 1431 1432 /* 1433 * The list traversal is safe for both tail additions and removals 1434 * from inside the loop. The kmemleak objects cannot be freed from 1435 * outside the loop because their use_count was incremented. 1436 */ 1437 object = list_entry(gray_list.next, typeof(*object), gray_list); 1438 while (&object->gray_list != &gray_list) { 1439 cond_resched(); 1440 1441 /* may add new objects to the list */ 1442 if (!scan_should_stop()) 1443 scan_object(object); 1444 1445 tmp = list_entry(object->gray_list.next, typeof(*object), 1446 gray_list); 1447 1448 /* remove the object from the list and release it */ 1449 list_del(&object->gray_list); 1450 put_object(object); 1451 1452 object = tmp; 1453 } 1454 WARN_ON(!list_empty(&gray_list)); 1455 } 1456 1457 /* 1458 * Scan data sections and all the referenced memory blocks allocated via the 1459 * kernel's standard allocators. This function must be called with the 1460 * scan_mutex held. 1461 */ 1462 static void kmemleak_scan(void) 1463 { 1464 unsigned long flags; 1465 struct kmemleak_object *object; 1466 int i; 1467 int new_leaks = 0; 1468 1469 jiffies_last_scan = jiffies; 1470 1471 /* prepare the kmemleak_object's */ 1472 rcu_read_lock(); 1473 list_for_each_entry_rcu(object, &object_list, object_list) { 1474 spin_lock_irqsave(&object->lock, flags); 1475 #ifdef DEBUG 1476 /* 1477 * With a few exceptions there should be a maximum of 1478 * 1 reference to any object at this point. 1479 */ 1480 if (atomic_read(&object->use_count) > 1) { 1481 pr_debug("object->use_count = %d\n", 1482 atomic_read(&object->use_count)); 1483 dump_object_info(object); 1484 } 1485 #endif 1486 /* reset the reference count (whiten the object) */ 1487 object->count = 0; 1488 if (color_gray(object) && get_object(object)) 1489 list_add_tail(&object->gray_list, &gray_list); 1490 1491 spin_unlock_irqrestore(&object->lock, flags); 1492 } 1493 rcu_read_unlock(); 1494 1495 /* data/bss scanning */ 1496 scan_large_block(_sdata, _edata); 1497 scan_large_block(__bss_start, __bss_stop); 1498 scan_large_block(__start_ro_after_init, __end_ro_after_init); 1499 1500 #ifdef CONFIG_SMP 1501 /* per-cpu sections scanning */ 1502 for_each_possible_cpu(i) 1503 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1504 __per_cpu_end + per_cpu_offset(i)); 1505 #endif 1506 1507 /* 1508 * Struct page scanning for each node. 1509 */ 1510 get_online_mems(); 1511 for_each_online_node(i) { 1512 unsigned long start_pfn = node_start_pfn(i); 1513 unsigned long end_pfn = node_end_pfn(i); 1514 unsigned long pfn; 1515 1516 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1517 struct page *page; 1518 1519 if (!pfn_valid(pfn)) 1520 continue; 1521 page = pfn_to_page(pfn); 1522 /* only scan if page is in use */ 1523 if (page_count(page) == 0) 1524 continue; 1525 scan_block(page, page + 1, NULL); 1526 } 1527 } 1528 put_online_mems(); 1529 1530 /* 1531 * Scanning the task stacks (may introduce false negatives). 1532 */ 1533 if (kmemleak_stack_scan) { 1534 struct task_struct *p, *g; 1535 1536 read_lock(&tasklist_lock); 1537 do_each_thread(g, p) { 1538 void *stack = try_get_task_stack(p); 1539 if (stack) { 1540 scan_block(stack, stack + THREAD_SIZE, NULL); 1541 put_task_stack(p); 1542 } 1543 } while_each_thread(g, p); 1544 read_unlock(&tasklist_lock); 1545 } 1546 1547 /* 1548 * Scan the objects already referenced from the sections scanned 1549 * above. 1550 */ 1551 scan_gray_list(); 1552 1553 /* 1554 * Check for new or unreferenced objects modified since the previous 1555 * scan and color them gray until the next scan. 1556 */ 1557 rcu_read_lock(); 1558 list_for_each_entry_rcu(object, &object_list, object_list) { 1559 spin_lock_irqsave(&object->lock, flags); 1560 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1561 && update_checksum(object) && get_object(object)) { 1562 /* color it gray temporarily */ 1563 object->count = object->min_count; 1564 list_add_tail(&object->gray_list, &gray_list); 1565 } 1566 spin_unlock_irqrestore(&object->lock, flags); 1567 } 1568 rcu_read_unlock(); 1569 1570 /* 1571 * Re-scan the gray list for modified unreferenced objects. 1572 */ 1573 scan_gray_list(); 1574 1575 /* 1576 * If scanning was stopped do not report any new unreferenced objects. 1577 */ 1578 if (scan_should_stop()) 1579 return; 1580 1581 /* 1582 * Scanning result reporting. 1583 */ 1584 rcu_read_lock(); 1585 list_for_each_entry_rcu(object, &object_list, object_list) { 1586 spin_lock_irqsave(&object->lock, flags); 1587 if (unreferenced_object(object) && 1588 !(object->flags & OBJECT_REPORTED)) { 1589 object->flags |= OBJECT_REPORTED; 1590 new_leaks++; 1591 } 1592 spin_unlock_irqrestore(&object->lock, flags); 1593 } 1594 rcu_read_unlock(); 1595 1596 if (new_leaks) { 1597 kmemleak_found_leaks = true; 1598 1599 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1600 new_leaks); 1601 } 1602 1603 } 1604 1605 /* 1606 * Thread function performing automatic memory scanning. Unreferenced objects 1607 * at the end of a memory scan are reported but only the first time. 1608 */ 1609 static int kmemleak_scan_thread(void *arg) 1610 { 1611 static int first_run = 1; 1612 1613 pr_info("Automatic memory scanning thread started\n"); 1614 set_user_nice(current, 10); 1615 1616 /* 1617 * Wait before the first scan to allow the system to fully initialize. 1618 */ 1619 if (first_run) { 1620 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1621 first_run = 0; 1622 while (timeout && !kthread_should_stop()) 1623 timeout = schedule_timeout_interruptible(timeout); 1624 } 1625 1626 while (!kthread_should_stop()) { 1627 signed long timeout = jiffies_scan_wait; 1628 1629 mutex_lock(&scan_mutex); 1630 kmemleak_scan(); 1631 mutex_unlock(&scan_mutex); 1632 1633 /* wait before the next scan */ 1634 while (timeout && !kthread_should_stop()) 1635 timeout = schedule_timeout_interruptible(timeout); 1636 } 1637 1638 pr_info("Automatic memory scanning thread ended\n"); 1639 1640 return 0; 1641 } 1642 1643 /* 1644 * Start the automatic memory scanning thread. This function must be called 1645 * with the scan_mutex held. 1646 */ 1647 static void start_scan_thread(void) 1648 { 1649 if (scan_thread) 1650 return; 1651 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1652 if (IS_ERR(scan_thread)) { 1653 pr_warn("Failed to create the scan thread\n"); 1654 scan_thread = NULL; 1655 } 1656 } 1657 1658 /* 1659 * Stop the automatic memory scanning thread. This function must be called 1660 * with the scan_mutex held. 1661 */ 1662 static void stop_scan_thread(void) 1663 { 1664 if (scan_thread) { 1665 kthread_stop(scan_thread); 1666 scan_thread = NULL; 1667 } 1668 } 1669 1670 /* 1671 * Iterate over the object_list and return the first valid object at or after 1672 * the required position with its use_count incremented. The function triggers 1673 * a memory scanning when the pos argument points to the first position. 1674 */ 1675 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1676 { 1677 struct kmemleak_object *object; 1678 loff_t n = *pos; 1679 int err; 1680 1681 err = mutex_lock_interruptible(&scan_mutex); 1682 if (err < 0) 1683 return ERR_PTR(err); 1684 1685 rcu_read_lock(); 1686 list_for_each_entry_rcu(object, &object_list, object_list) { 1687 if (n-- > 0) 1688 continue; 1689 if (get_object(object)) 1690 goto out; 1691 } 1692 object = NULL; 1693 out: 1694 return object; 1695 } 1696 1697 /* 1698 * Return the next object in the object_list. The function decrements the 1699 * use_count of the previous object and increases that of the next one. 1700 */ 1701 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1702 { 1703 struct kmemleak_object *prev_obj = v; 1704 struct kmemleak_object *next_obj = NULL; 1705 struct kmemleak_object *obj = prev_obj; 1706 1707 ++(*pos); 1708 1709 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1710 if (get_object(obj)) { 1711 next_obj = obj; 1712 break; 1713 } 1714 } 1715 1716 put_object(prev_obj); 1717 return next_obj; 1718 } 1719 1720 /* 1721 * Decrement the use_count of the last object required, if any. 1722 */ 1723 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1724 { 1725 if (!IS_ERR(v)) { 1726 /* 1727 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1728 * waiting was interrupted, so only release it if !IS_ERR. 1729 */ 1730 rcu_read_unlock(); 1731 mutex_unlock(&scan_mutex); 1732 if (v) 1733 put_object(v); 1734 } 1735 } 1736 1737 /* 1738 * Print the information for an unreferenced object to the seq file. 1739 */ 1740 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1741 { 1742 struct kmemleak_object *object = v; 1743 unsigned long flags; 1744 1745 spin_lock_irqsave(&object->lock, flags); 1746 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1747 print_unreferenced(seq, object); 1748 spin_unlock_irqrestore(&object->lock, flags); 1749 return 0; 1750 } 1751 1752 static const struct seq_operations kmemleak_seq_ops = { 1753 .start = kmemleak_seq_start, 1754 .next = kmemleak_seq_next, 1755 .stop = kmemleak_seq_stop, 1756 .show = kmemleak_seq_show, 1757 }; 1758 1759 static int kmemleak_open(struct inode *inode, struct file *file) 1760 { 1761 return seq_open(file, &kmemleak_seq_ops); 1762 } 1763 1764 static int dump_str_object_info(const char *str) 1765 { 1766 unsigned long flags; 1767 struct kmemleak_object *object; 1768 unsigned long addr; 1769 1770 if (kstrtoul(str, 0, &addr)) 1771 return -EINVAL; 1772 object = find_and_get_object(addr, 0); 1773 if (!object) { 1774 pr_info("Unknown object at 0x%08lx\n", addr); 1775 return -EINVAL; 1776 } 1777 1778 spin_lock_irqsave(&object->lock, flags); 1779 dump_object_info(object); 1780 spin_unlock_irqrestore(&object->lock, flags); 1781 1782 put_object(object); 1783 return 0; 1784 } 1785 1786 /* 1787 * We use grey instead of black to ensure we can do future scans on the same 1788 * objects. If we did not do future scans these black objects could 1789 * potentially contain references to newly allocated objects in the future and 1790 * we'd end up with false positives. 1791 */ 1792 static void kmemleak_clear(void) 1793 { 1794 struct kmemleak_object *object; 1795 unsigned long flags; 1796 1797 rcu_read_lock(); 1798 list_for_each_entry_rcu(object, &object_list, object_list) { 1799 spin_lock_irqsave(&object->lock, flags); 1800 if ((object->flags & OBJECT_REPORTED) && 1801 unreferenced_object(object)) 1802 __paint_it(object, KMEMLEAK_GREY); 1803 spin_unlock_irqrestore(&object->lock, flags); 1804 } 1805 rcu_read_unlock(); 1806 1807 kmemleak_found_leaks = false; 1808 } 1809 1810 static void __kmemleak_do_cleanup(void); 1811 1812 /* 1813 * File write operation to configure kmemleak at run-time. The following 1814 * commands can be written to the /sys/kernel/debug/kmemleak file: 1815 * off - disable kmemleak (irreversible) 1816 * stack=on - enable the task stacks scanning 1817 * stack=off - disable the tasks stacks scanning 1818 * scan=on - start the automatic memory scanning thread 1819 * scan=off - stop the automatic memory scanning thread 1820 * scan=... - set the automatic memory scanning period in seconds (0 to 1821 * disable it) 1822 * scan - trigger a memory scan 1823 * clear - mark all current reported unreferenced kmemleak objects as 1824 * grey to ignore printing them, or free all kmemleak objects 1825 * if kmemleak has been disabled. 1826 * dump=... - dump information about the object found at the given address 1827 */ 1828 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1829 size_t size, loff_t *ppos) 1830 { 1831 char buf[64]; 1832 int buf_size; 1833 int ret; 1834 1835 buf_size = min(size, (sizeof(buf) - 1)); 1836 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1837 return -EFAULT; 1838 buf[buf_size] = 0; 1839 1840 ret = mutex_lock_interruptible(&scan_mutex); 1841 if (ret < 0) 1842 return ret; 1843 1844 if (strncmp(buf, "clear", 5) == 0) { 1845 if (kmemleak_enabled) 1846 kmemleak_clear(); 1847 else 1848 __kmemleak_do_cleanup(); 1849 goto out; 1850 } 1851 1852 if (!kmemleak_enabled) { 1853 ret = -EBUSY; 1854 goto out; 1855 } 1856 1857 if (strncmp(buf, "off", 3) == 0) 1858 kmemleak_disable(); 1859 else if (strncmp(buf, "stack=on", 8) == 0) 1860 kmemleak_stack_scan = 1; 1861 else if (strncmp(buf, "stack=off", 9) == 0) 1862 kmemleak_stack_scan = 0; 1863 else if (strncmp(buf, "scan=on", 7) == 0) 1864 start_scan_thread(); 1865 else if (strncmp(buf, "scan=off", 8) == 0) 1866 stop_scan_thread(); 1867 else if (strncmp(buf, "scan=", 5) == 0) { 1868 unsigned long secs; 1869 1870 ret = kstrtoul(buf + 5, 0, &secs); 1871 if (ret < 0) 1872 goto out; 1873 stop_scan_thread(); 1874 if (secs) { 1875 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1876 start_scan_thread(); 1877 } 1878 } else if (strncmp(buf, "scan", 4) == 0) 1879 kmemleak_scan(); 1880 else if (strncmp(buf, "dump=", 5) == 0) 1881 ret = dump_str_object_info(buf + 5); 1882 else 1883 ret = -EINVAL; 1884 1885 out: 1886 mutex_unlock(&scan_mutex); 1887 if (ret < 0) 1888 return ret; 1889 1890 /* ignore the rest of the buffer, only one command at a time */ 1891 *ppos += size; 1892 return size; 1893 } 1894 1895 static const struct file_operations kmemleak_fops = { 1896 .owner = THIS_MODULE, 1897 .open = kmemleak_open, 1898 .read = seq_read, 1899 .write = kmemleak_write, 1900 .llseek = seq_lseek, 1901 .release = seq_release, 1902 }; 1903 1904 static void __kmemleak_do_cleanup(void) 1905 { 1906 struct kmemleak_object *object; 1907 1908 rcu_read_lock(); 1909 list_for_each_entry_rcu(object, &object_list, object_list) 1910 delete_object_full(object->pointer); 1911 rcu_read_unlock(); 1912 } 1913 1914 /* 1915 * Stop the memory scanning thread and free the kmemleak internal objects if 1916 * no previous scan thread (otherwise, kmemleak may still have some useful 1917 * information on memory leaks). 1918 */ 1919 static void kmemleak_do_cleanup(struct work_struct *work) 1920 { 1921 stop_scan_thread(); 1922 1923 /* 1924 * Once the scan thread has stopped, it is safe to no longer track 1925 * object freeing. Ordering of the scan thread stopping and the memory 1926 * accesses below is guaranteed by the kthread_stop() function. 1927 */ 1928 kmemleak_free_enabled = 0; 1929 1930 if (!kmemleak_found_leaks) 1931 __kmemleak_do_cleanup(); 1932 else 1933 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1934 } 1935 1936 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1937 1938 /* 1939 * Disable kmemleak. No memory allocation/freeing will be traced once this 1940 * function is called. Disabling kmemleak is an irreversible operation. 1941 */ 1942 static void kmemleak_disable(void) 1943 { 1944 /* atomically check whether it was already invoked */ 1945 if (cmpxchg(&kmemleak_error, 0, 1)) 1946 return; 1947 1948 /* stop any memory operation tracing */ 1949 kmemleak_enabled = 0; 1950 1951 /* check whether it is too early for a kernel thread */ 1952 if (kmemleak_initialized) 1953 schedule_work(&cleanup_work); 1954 else 1955 kmemleak_free_enabled = 0; 1956 1957 pr_info("Kernel memory leak detector disabled\n"); 1958 } 1959 1960 /* 1961 * Allow boot-time kmemleak disabling (enabled by default). 1962 */ 1963 static int kmemleak_boot_config(char *str) 1964 { 1965 if (!str) 1966 return -EINVAL; 1967 if (strcmp(str, "off") == 0) 1968 kmemleak_disable(); 1969 else if (strcmp(str, "on") == 0) 1970 kmemleak_skip_disable = 1; 1971 else 1972 return -EINVAL; 1973 return 0; 1974 } 1975 early_param("kmemleak", kmemleak_boot_config); 1976 1977 static void __init print_log_trace(struct early_log *log) 1978 { 1979 struct stack_trace trace; 1980 1981 trace.nr_entries = log->trace_len; 1982 trace.entries = log->trace; 1983 1984 pr_notice("Early log backtrace:\n"); 1985 print_stack_trace(&trace, 2); 1986 } 1987 1988 /* 1989 * Kmemleak initialization. 1990 */ 1991 void __init kmemleak_init(void) 1992 { 1993 int i; 1994 unsigned long flags; 1995 1996 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1997 if (!kmemleak_skip_disable) { 1998 kmemleak_early_log = 0; 1999 kmemleak_disable(); 2000 return; 2001 } 2002 #endif 2003 2004 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2005 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2006 2007 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2008 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2009 2010 if (crt_early_log > ARRAY_SIZE(early_log)) 2011 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2012 crt_early_log); 2013 2014 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2015 local_irq_save(flags); 2016 kmemleak_early_log = 0; 2017 if (kmemleak_error) { 2018 local_irq_restore(flags); 2019 return; 2020 } else { 2021 kmemleak_enabled = 1; 2022 kmemleak_free_enabled = 1; 2023 } 2024 local_irq_restore(flags); 2025 2026 /* 2027 * This is the point where tracking allocations is safe. Automatic 2028 * scanning is started during the late initcall. Add the early logged 2029 * callbacks to the kmemleak infrastructure. 2030 */ 2031 for (i = 0; i < crt_early_log; i++) { 2032 struct early_log *log = &early_log[i]; 2033 2034 switch (log->op_type) { 2035 case KMEMLEAK_ALLOC: 2036 early_alloc(log); 2037 break; 2038 case KMEMLEAK_ALLOC_PERCPU: 2039 early_alloc_percpu(log); 2040 break; 2041 case KMEMLEAK_FREE: 2042 kmemleak_free(log->ptr); 2043 break; 2044 case KMEMLEAK_FREE_PART: 2045 kmemleak_free_part(log->ptr, log->size); 2046 break; 2047 case KMEMLEAK_FREE_PERCPU: 2048 kmemleak_free_percpu(log->ptr); 2049 break; 2050 case KMEMLEAK_NOT_LEAK: 2051 kmemleak_not_leak(log->ptr); 2052 break; 2053 case KMEMLEAK_IGNORE: 2054 kmemleak_ignore(log->ptr); 2055 break; 2056 case KMEMLEAK_SCAN_AREA: 2057 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2058 break; 2059 case KMEMLEAK_NO_SCAN: 2060 kmemleak_no_scan(log->ptr); 2061 break; 2062 case KMEMLEAK_SET_EXCESS_REF: 2063 object_set_excess_ref((unsigned long)log->ptr, 2064 log->excess_ref); 2065 break; 2066 default: 2067 kmemleak_warn("Unknown early log operation: %d\n", 2068 log->op_type); 2069 } 2070 2071 if (kmemleak_warning) { 2072 print_log_trace(log); 2073 kmemleak_warning = 0; 2074 } 2075 } 2076 } 2077 2078 /* 2079 * Late initialization function. 2080 */ 2081 static int __init kmemleak_late_init(void) 2082 { 2083 struct dentry *dentry; 2084 2085 kmemleak_initialized = 1; 2086 2087 if (kmemleak_error) { 2088 /* 2089 * Some error occurred and kmemleak was disabled. There is a 2090 * small chance that kmemleak_disable() was called immediately 2091 * after setting kmemleak_initialized and we may end up with 2092 * two clean-up threads but serialized by scan_mutex. 2093 */ 2094 schedule_work(&cleanup_work); 2095 return -ENOMEM; 2096 } 2097 2098 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, 2099 &kmemleak_fops); 2100 if (!dentry) 2101 pr_warn("Failed to create the debugfs kmemleak file\n"); 2102 mutex_lock(&scan_mutex); 2103 start_scan_thread(); 2104 mutex_unlock(&scan_mutex); 2105 2106 pr_info("Kernel memory leak detector initialized\n"); 2107 2108 return 0; 2109 } 2110 late_initcall(kmemleak_late_init); 2111