xref: /linux/mm/kmemleak.c (revision bf070bb0e6c62ba3075db0a666763ba52c677102)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
84 #include <linux/fs.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/mutex.h>
90 #include <linux/rcupdate.h>
91 #include <linux/stacktrace.h>
92 #include <linux/cache.h>
93 #include <linux/percpu.h>
94 #include <linux/hardirq.h>
95 #include <linux/bootmem.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
107 
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
111 
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
115 
116 /*
117  * Kmemleak configuration and common defines.
118  */
119 #define MAX_TRACE		16	/* stack trace length */
120 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
121 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
122 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
124 
125 #define BYTES_PER_POINTER	sizeof(void *)
126 
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 				 __GFP_NOWARN)
131 
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area {
134 	struct hlist_node node;
135 	unsigned long start;
136 	size_t size;
137 };
138 
139 #define KMEMLEAK_GREY	0
140 #define KMEMLEAK_BLACK	-1
141 
142 /*
143  * Structure holding the metadata for each allocated memory block.
144  * Modifications to such objects should be made while holding the
145  * object->lock. Insertions or deletions from object_list, gray_list or
146  * rb_node are already protected by the corresponding locks or mutex (see
147  * the notes on locking above). These objects are reference-counted
148  * (use_count) and freed using the RCU mechanism.
149  */
150 struct kmemleak_object {
151 	spinlock_t lock;
152 	unsigned int flags;		/* object status flags */
153 	struct list_head object_list;
154 	struct list_head gray_list;
155 	struct rb_node rb_node;
156 	struct rcu_head rcu;		/* object_list lockless traversal */
157 	/* object usage count; object freed when use_count == 0 */
158 	atomic_t use_count;
159 	unsigned long pointer;
160 	size_t size;
161 	/* pass surplus references to this pointer */
162 	unsigned long excess_ref;
163 	/* minimum number of a pointers found before it is considered leak */
164 	int min_count;
165 	/* the total number of pointers found pointing to this object */
166 	int count;
167 	/* checksum for detecting modified objects */
168 	u32 checksum;
169 	/* memory ranges to be scanned inside an object (empty for all) */
170 	struct hlist_head area_list;
171 	unsigned long trace[MAX_TRACE];
172 	unsigned int trace_len;
173 	unsigned long jiffies;		/* creation timestamp */
174 	pid_t pid;			/* pid of the current task */
175 	char comm[TASK_COMM_LEN];	/* executable name */
176 };
177 
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED	(1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED		(1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN		(1 << 2)
184 
185 /* number of bytes to print per line; must be 16 or 32 */
186 #define HEX_ROW_SIZE		16
187 /* number of bytes to print at a time (1, 2, 4, 8) */
188 #define HEX_GROUP_SIZE		1
189 /* include ASCII after the hex output */
190 #define HEX_ASCII		1
191 /* max number of lines to be printed */
192 #define HEX_MAX_LINES		2
193 
194 /* the list of all allocated objects */
195 static LIST_HEAD(object_list);
196 /* the list of gray-colored objects (see color_gray comment below) */
197 static LIST_HEAD(gray_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* rw_lock protecting the access to object_list and object_tree_root */
201 static DEFINE_RWLOCK(kmemleak_lock);
202 
203 /* allocation caches for kmemleak internal data */
204 static struct kmem_cache *object_cache;
205 static struct kmem_cache *scan_area_cache;
206 
207 /* set if tracing memory operations is enabled */
208 static int kmemleak_enabled;
209 /* same as above but only for the kmemleak_free() callback */
210 static int kmemleak_free_enabled;
211 /* set in the late_initcall if there were no errors */
212 static int kmemleak_initialized;
213 /* enables or disables early logging of the memory operations */
214 static int kmemleak_early_log = 1;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219 
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223 
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static signed long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238 
239 /*
240  * Early object allocation/freeing logging. Kmemleak is initialized after the
241  * kernel allocator. However, both the kernel allocator and kmemleak may
242  * allocate memory blocks which need to be tracked. Kmemleak defines an
243  * arbitrary buffer to hold the allocation/freeing information before it is
244  * fully initialized.
245  */
246 
247 /* kmemleak operation type for early logging */
248 enum {
249 	KMEMLEAK_ALLOC,
250 	KMEMLEAK_ALLOC_PERCPU,
251 	KMEMLEAK_FREE,
252 	KMEMLEAK_FREE_PART,
253 	KMEMLEAK_FREE_PERCPU,
254 	KMEMLEAK_NOT_LEAK,
255 	KMEMLEAK_IGNORE,
256 	KMEMLEAK_SCAN_AREA,
257 	KMEMLEAK_NO_SCAN,
258 	KMEMLEAK_SET_EXCESS_REF
259 };
260 
261 /*
262  * Structure holding the information passed to kmemleak callbacks during the
263  * early logging.
264  */
265 struct early_log {
266 	int op_type;			/* kmemleak operation type */
267 	int min_count;			/* minimum reference count */
268 	const void *ptr;		/* allocated/freed memory block */
269 	union {
270 		size_t size;		/* memory block size */
271 		unsigned long excess_ref; /* surplus reference passing */
272 	};
273 	unsigned long trace[MAX_TRACE];	/* stack trace */
274 	unsigned int trace_len;		/* stack trace length */
275 };
276 
277 /* early logging buffer and current position */
278 static struct early_log
279 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
280 static int crt_early_log __initdata;
281 
282 static void kmemleak_disable(void);
283 
284 /*
285  * Print a warning and dump the stack trace.
286  */
287 #define kmemleak_warn(x...)	do {		\
288 	pr_warn(x);				\
289 	dump_stack();				\
290 	kmemleak_warning = 1;			\
291 } while (0)
292 
293 /*
294  * Macro invoked when a serious kmemleak condition occurred and cannot be
295  * recovered from. Kmemleak will be disabled and further allocation/freeing
296  * tracing no longer available.
297  */
298 #define kmemleak_stop(x...)	do {	\
299 	kmemleak_warn(x);		\
300 	kmemleak_disable();		\
301 } while (0)
302 
303 /*
304  * Printing of the objects hex dump to the seq file. The number of lines to be
305  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
306  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
307  * with the object->lock held.
308  */
309 static void hex_dump_object(struct seq_file *seq,
310 			    struct kmemleak_object *object)
311 {
312 	const u8 *ptr = (const u8 *)object->pointer;
313 	size_t len;
314 
315 	/* limit the number of lines to HEX_MAX_LINES */
316 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
317 
318 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
319 	kasan_disable_current();
320 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
321 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
322 	kasan_enable_current();
323 }
324 
325 /*
326  * Object colors, encoded with count and min_count:
327  * - white - orphan object, not enough references to it (count < min_count)
328  * - gray  - not orphan, not marked as false positive (min_count == 0) or
329  *		sufficient references to it (count >= min_count)
330  * - black - ignore, it doesn't contain references (e.g. text section)
331  *		(min_count == -1). No function defined for this color.
332  * Newly created objects don't have any color assigned (object->count == -1)
333  * before the next memory scan when they become white.
334  */
335 static bool color_white(const struct kmemleak_object *object)
336 {
337 	return object->count != KMEMLEAK_BLACK &&
338 		object->count < object->min_count;
339 }
340 
341 static bool color_gray(const struct kmemleak_object *object)
342 {
343 	return object->min_count != KMEMLEAK_BLACK &&
344 		object->count >= object->min_count;
345 }
346 
347 /*
348  * Objects are considered unreferenced only if their color is white, they have
349  * not be deleted and have a minimum age to avoid false positives caused by
350  * pointers temporarily stored in CPU registers.
351  */
352 static bool unreferenced_object(struct kmemleak_object *object)
353 {
354 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
355 		time_before_eq(object->jiffies + jiffies_min_age,
356 			       jiffies_last_scan);
357 }
358 
359 /*
360  * Printing of the unreferenced objects information to the seq file. The
361  * print_unreferenced function must be called with the object->lock held.
362  */
363 static void print_unreferenced(struct seq_file *seq,
364 			       struct kmemleak_object *object)
365 {
366 	int i;
367 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
368 
369 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
370 		   object->pointer, object->size);
371 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
372 		   object->comm, object->pid, object->jiffies,
373 		   msecs_age / 1000, msecs_age % 1000);
374 	hex_dump_object(seq, object);
375 	seq_printf(seq, "  backtrace:\n");
376 
377 	for (i = 0; i < object->trace_len; i++) {
378 		void *ptr = (void *)object->trace[i];
379 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
380 	}
381 }
382 
383 /*
384  * Print the kmemleak_object information. This function is used mainly for
385  * debugging special cases when kmemleak operations. It must be called with
386  * the object->lock held.
387  */
388 static void dump_object_info(struct kmemleak_object *object)
389 {
390 	struct stack_trace trace;
391 
392 	trace.nr_entries = object->trace_len;
393 	trace.entries = object->trace;
394 
395 	pr_notice("Object 0x%08lx (size %zu):\n",
396 		  object->pointer, object->size);
397 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
398 		  object->comm, object->pid, object->jiffies);
399 	pr_notice("  min_count = %d\n", object->min_count);
400 	pr_notice("  count = %d\n", object->count);
401 	pr_notice("  flags = 0x%x\n", object->flags);
402 	pr_notice("  checksum = %u\n", object->checksum);
403 	pr_notice("  backtrace:\n");
404 	print_stack_trace(&trace, 4);
405 }
406 
407 /*
408  * Look-up a memory block metadata (kmemleak_object) in the object search
409  * tree based on a pointer value. If alias is 0, only values pointing to the
410  * beginning of the memory block are allowed. The kmemleak_lock must be held
411  * when calling this function.
412  */
413 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
414 {
415 	struct rb_node *rb = object_tree_root.rb_node;
416 
417 	while (rb) {
418 		struct kmemleak_object *object =
419 			rb_entry(rb, struct kmemleak_object, rb_node);
420 		if (ptr < object->pointer)
421 			rb = object->rb_node.rb_left;
422 		else if (object->pointer + object->size <= ptr)
423 			rb = object->rb_node.rb_right;
424 		else if (object->pointer == ptr || alias)
425 			return object;
426 		else {
427 			kmemleak_warn("Found object by alias at 0x%08lx\n",
428 				      ptr);
429 			dump_object_info(object);
430 			break;
431 		}
432 	}
433 	return NULL;
434 }
435 
436 /*
437  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
438  * that once an object's use_count reached 0, the RCU freeing was already
439  * registered and the object should no longer be used. This function must be
440  * called under the protection of rcu_read_lock().
441  */
442 static int get_object(struct kmemleak_object *object)
443 {
444 	return atomic_inc_not_zero(&object->use_count);
445 }
446 
447 /*
448  * RCU callback to free a kmemleak_object.
449  */
450 static void free_object_rcu(struct rcu_head *rcu)
451 {
452 	struct hlist_node *tmp;
453 	struct kmemleak_scan_area *area;
454 	struct kmemleak_object *object =
455 		container_of(rcu, struct kmemleak_object, rcu);
456 
457 	/*
458 	 * Once use_count is 0 (guaranteed by put_object), there is no other
459 	 * code accessing this object, hence no need for locking.
460 	 */
461 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
462 		hlist_del(&area->node);
463 		kmem_cache_free(scan_area_cache, area);
464 	}
465 	kmem_cache_free(object_cache, object);
466 }
467 
468 /*
469  * Decrement the object use_count. Once the count is 0, free the object using
470  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
471  * delete_object() path, the delayed RCU freeing ensures that there is no
472  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
473  * is also possible.
474  */
475 static void put_object(struct kmemleak_object *object)
476 {
477 	if (!atomic_dec_and_test(&object->use_count))
478 		return;
479 
480 	/* should only get here after delete_object was called */
481 	WARN_ON(object->flags & OBJECT_ALLOCATED);
482 
483 	call_rcu(&object->rcu, free_object_rcu);
484 }
485 
486 /*
487  * Look up an object in the object search tree and increase its use_count.
488  */
489 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
490 {
491 	unsigned long flags;
492 	struct kmemleak_object *object;
493 
494 	rcu_read_lock();
495 	read_lock_irqsave(&kmemleak_lock, flags);
496 	object = lookup_object(ptr, alias);
497 	read_unlock_irqrestore(&kmemleak_lock, flags);
498 
499 	/* check whether the object is still available */
500 	if (object && !get_object(object))
501 		object = NULL;
502 	rcu_read_unlock();
503 
504 	return object;
505 }
506 
507 /*
508  * Look up an object in the object search tree and remove it from both
509  * object_tree_root and object_list. The returned object's use_count should be
510  * at least 1, as initially set by create_object().
511  */
512 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
513 {
514 	unsigned long flags;
515 	struct kmemleak_object *object;
516 
517 	write_lock_irqsave(&kmemleak_lock, flags);
518 	object = lookup_object(ptr, alias);
519 	if (object) {
520 		rb_erase(&object->rb_node, &object_tree_root);
521 		list_del_rcu(&object->object_list);
522 	}
523 	write_unlock_irqrestore(&kmemleak_lock, flags);
524 
525 	return object;
526 }
527 
528 /*
529  * Save stack trace to the given array of MAX_TRACE size.
530  */
531 static int __save_stack_trace(unsigned long *trace)
532 {
533 	struct stack_trace stack_trace;
534 
535 	stack_trace.max_entries = MAX_TRACE;
536 	stack_trace.nr_entries = 0;
537 	stack_trace.entries = trace;
538 	stack_trace.skip = 2;
539 	save_stack_trace(&stack_trace);
540 
541 	return stack_trace.nr_entries;
542 }
543 
544 /*
545  * Create the metadata (struct kmemleak_object) corresponding to an allocated
546  * memory block and add it to the object_list and object_tree_root.
547  */
548 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
549 					     int min_count, gfp_t gfp)
550 {
551 	unsigned long flags;
552 	struct kmemleak_object *object, *parent;
553 	struct rb_node **link, *rb_parent;
554 
555 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
556 	if (!object) {
557 		pr_warn("Cannot allocate a kmemleak_object structure\n");
558 		kmemleak_disable();
559 		return NULL;
560 	}
561 
562 	INIT_LIST_HEAD(&object->object_list);
563 	INIT_LIST_HEAD(&object->gray_list);
564 	INIT_HLIST_HEAD(&object->area_list);
565 	spin_lock_init(&object->lock);
566 	atomic_set(&object->use_count, 1);
567 	object->flags = OBJECT_ALLOCATED;
568 	object->pointer = ptr;
569 	object->size = size;
570 	object->excess_ref = 0;
571 	object->min_count = min_count;
572 	object->count = 0;			/* white color initially */
573 	object->jiffies = jiffies;
574 	object->checksum = 0;
575 
576 	/* task information */
577 	if (in_irq()) {
578 		object->pid = 0;
579 		strncpy(object->comm, "hardirq", sizeof(object->comm));
580 	} else if (in_softirq()) {
581 		object->pid = 0;
582 		strncpy(object->comm, "softirq", sizeof(object->comm));
583 	} else {
584 		object->pid = current->pid;
585 		/*
586 		 * There is a small chance of a race with set_task_comm(),
587 		 * however using get_task_comm() here may cause locking
588 		 * dependency issues with current->alloc_lock. In the worst
589 		 * case, the command line is not correct.
590 		 */
591 		strncpy(object->comm, current->comm, sizeof(object->comm));
592 	}
593 
594 	/* kernel backtrace */
595 	object->trace_len = __save_stack_trace(object->trace);
596 
597 	write_lock_irqsave(&kmemleak_lock, flags);
598 
599 	min_addr = min(min_addr, ptr);
600 	max_addr = max(max_addr, ptr + size);
601 	link = &object_tree_root.rb_node;
602 	rb_parent = NULL;
603 	while (*link) {
604 		rb_parent = *link;
605 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
606 		if (ptr + size <= parent->pointer)
607 			link = &parent->rb_node.rb_left;
608 		else if (parent->pointer + parent->size <= ptr)
609 			link = &parent->rb_node.rb_right;
610 		else {
611 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
612 				      ptr);
613 			/*
614 			 * No need for parent->lock here since "parent" cannot
615 			 * be freed while the kmemleak_lock is held.
616 			 */
617 			dump_object_info(parent);
618 			kmem_cache_free(object_cache, object);
619 			object = NULL;
620 			goto out;
621 		}
622 	}
623 	rb_link_node(&object->rb_node, rb_parent, link);
624 	rb_insert_color(&object->rb_node, &object_tree_root);
625 
626 	list_add_tail_rcu(&object->object_list, &object_list);
627 out:
628 	write_unlock_irqrestore(&kmemleak_lock, flags);
629 	return object;
630 }
631 
632 /*
633  * Mark the object as not allocated and schedule RCU freeing via put_object().
634  */
635 static void __delete_object(struct kmemleak_object *object)
636 {
637 	unsigned long flags;
638 
639 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
640 	WARN_ON(atomic_read(&object->use_count) < 1);
641 
642 	/*
643 	 * Locking here also ensures that the corresponding memory block
644 	 * cannot be freed when it is being scanned.
645 	 */
646 	spin_lock_irqsave(&object->lock, flags);
647 	object->flags &= ~OBJECT_ALLOCATED;
648 	spin_unlock_irqrestore(&object->lock, flags);
649 	put_object(object);
650 }
651 
652 /*
653  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
654  * delete it.
655  */
656 static void delete_object_full(unsigned long ptr)
657 {
658 	struct kmemleak_object *object;
659 
660 	object = find_and_remove_object(ptr, 0);
661 	if (!object) {
662 #ifdef DEBUG
663 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
664 			      ptr);
665 #endif
666 		return;
667 	}
668 	__delete_object(object);
669 }
670 
671 /*
672  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
673  * delete it. If the memory block is partially freed, the function may create
674  * additional metadata for the remaining parts of the block.
675  */
676 static void delete_object_part(unsigned long ptr, size_t size)
677 {
678 	struct kmemleak_object *object;
679 	unsigned long start, end;
680 
681 	object = find_and_remove_object(ptr, 1);
682 	if (!object) {
683 #ifdef DEBUG
684 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
685 			      ptr, size);
686 #endif
687 		return;
688 	}
689 
690 	/*
691 	 * Create one or two objects that may result from the memory block
692 	 * split. Note that partial freeing is only done by free_bootmem() and
693 	 * this happens before kmemleak_init() is called. The path below is
694 	 * only executed during early log recording in kmemleak_init(), so
695 	 * GFP_KERNEL is enough.
696 	 */
697 	start = object->pointer;
698 	end = object->pointer + object->size;
699 	if (ptr > start)
700 		create_object(start, ptr - start, object->min_count,
701 			      GFP_KERNEL);
702 	if (ptr + size < end)
703 		create_object(ptr + size, end - ptr - size, object->min_count,
704 			      GFP_KERNEL);
705 
706 	__delete_object(object);
707 }
708 
709 static void __paint_it(struct kmemleak_object *object, int color)
710 {
711 	object->min_count = color;
712 	if (color == KMEMLEAK_BLACK)
713 		object->flags |= OBJECT_NO_SCAN;
714 }
715 
716 static void paint_it(struct kmemleak_object *object, int color)
717 {
718 	unsigned long flags;
719 
720 	spin_lock_irqsave(&object->lock, flags);
721 	__paint_it(object, color);
722 	spin_unlock_irqrestore(&object->lock, flags);
723 }
724 
725 static void paint_ptr(unsigned long ptr, int color)
726 {
727 	struct kmemleak_object *object;
728 
729 	object = find_and_get_object(ptr, 0);
730 	if (!object) {
731 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
732 			      ptr,
733 			      (color == KMEMLEAK_GREY) ? "Grey" :
734 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
735 		return;
736 	}
737 	paint_it(object, color);
738 	put_object(object);
739 }
740 
741 /*
742  * Mark an object permanently as gray-colored so that it can no longer be
743  * reported as a leak. This is used in general to mark a false positive.
744  */
745 static void make_gray_object(unsigned long ptr)
746 {
747 	paint_ptr(ptr, KMEMLEAK_GREY);
748 }
749 
750 /*
751  * Mark the object as black-colored so that it is ignored from scans and
752  * reporting.
753  */
754 static void make_black_object(unsigned long ptr)
755 {
756 	paint_ptr(ptr, KMEMLEAK_BLACK);
757 }
758 
759 /*
760  * Add a scanning area to the object. If at least one such area is added,
761  * kmemleak will only scan these ranges rather than the whole memory block.
762  */
763 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
764 {
765 	unsigned long flags;
766 	struct kmemleak_object *object;
767 	struct kmemleak_scan_area *area;
768 
769 	object = find_and_get_object(ptr, 1);
770 	if (!object) {
771 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
772 			      ptr);
773 		return;
774 	}
775 
776 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
777 	if (!area) {
778 		pr_warn("Cannot allocate a scan area\n");
779 		goto out;
780 	}
781 
782 	spin_lock_irqsave(&object->lock, flags);
783 	if (size == SIZE_MAX) {
784 		size = object->pointer + object->size - ptr;
785 	} else if (ptr + size > object->pointer + object->size) {
786 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
787 		dump_object_info(object);
788 		kmem_cache_free(scan_area_cache, area);
789 		goto out_unlock;
790 	}
791 
792 	INIT_HLIST_NODE(&area->node);
793 	area->start = ptr;
794 	area->size = size;
795 
796 	hlist_add_head(&area->node, &object->area_list);
797 out_unlock:
798 	spin_unlock_irqrestore(&object->lock, flags);
799 out:
800 	put_object(object);
801 }
802 
803 /*
804  * Any surplus references (object already gray) to 'ptr' are passed to
805  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
806  * vm_struct may be used as an alternative reference to the vmalloc'ed object
807  * (see free_thread_stack()).
808  */
809 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
810 {
811 	unsigned long flags;
812 	struct kmemleak_object *object;
813 
814 	object = find_and_get_object(ptr, 0);
815 	if (!object) {
816 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
817 			      ptr);
818 		return;
819 	}
820 
821 	spin_lock_irqsave(&object->lock, flags);
822 	object->excess_ref = excess_ref;
823 	spin_unlock_irqrestore(&object->lock, flags);
824 	put_object(object);
825 }
826 
827 /*
828  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
829  * pointer. Such object will not be scanned by kmemleak but references to it
830  * are searched.
831  */
832 static void object_no_scan(unsigned long ptr)
833 {
834 	unsigned long flags;
835 	struct kmemleak_object *object;
836 
837 	object = find_and_get_object(ptr, 0);
838 	if (!object) {
839 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
840 		return;
841 	}
842 
843 	spin_lock_irqsave(&object->lock, flags);
844 	object->flags |= OBJECT_NO_SCAN;
845 	spin_unlock_irqrestore(&object->lock, flags);
846 	put_object(object);
847 }
848 
849 /*
850  * Log an early kmemleak_* call to the early_log buffer. These calls will be
851  * processed later once kmemleak is fully initialized.
852  */
853 static void __init log_early(int op_type, const void *ptr, size_t size,
854 			     int min_count)
855 {
856 	unsigned long flags;
857 	struct early_log *log;
858 
859 	if (kmemleak_error) {
860 		/* kmemleak stopped recording, just count the requests */
861 		crt_early_log++;
862 		return;
863 	}
864 
865 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
866 		crt_early_log++;
867 		kmemleak_disable();
868 		return;
869 	}
870 
871 	/*
872 	 * There is no need for locking since the kernel is still in UP mode
873 	 * at this stage. Disabling the IRQs is enough.
874 	 */
875 	local_irq_save(flags);
876 	log = &early_log[crt_early_log];
877 	log->op_type = op_type;
878 	log->ptr = ptr;
879 	log->size = size;
880 	log->min_count = min_count;
881 	log->trace_len = __save_stack_trace(log->trace);
882 	crt_early_log++;
883 	local_irq_restore(flags);
884 }
885 
886 /*
887  * Log an early allocated block and populate the stack trace.
888  */
889 static void early_alloc(struct early_log *log)
890 {
891 	struct kmemleak_object *object;
892 	unsigned long flags;
893 	int i;
894 
895 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
896 		return;
897 
898 	/*
899 	 * RCU locking needed to ensure object is not freed via put_object().
900 	 */
901 	rcu_read_lock();
902 	object = create_object((unsigned long)log->ptr, log->size,
903 			       log->min_count, GFP_ATOMIC);
904 	if (!object)
905 		goto out;
906 	spin_lock_irqsave(&object->lock, flags);
907 	for (i = 0; i < log->trace_len; i++)
908 		object->trace[i] = log->trace[i];
909 	object->trace_len = log->trace_len;
910 	spin_unlock_irqrestore(&object->lock, flags);
911 out:
912 	rcu_read_unlock();
913 }
914 
915 /*
916  * Log an early allocated block and populate the stack trace.
917  */
918 static void early_alloc_percpu(struct early_log *log)
919 {
920 	unsigned int cpu;
921 	const void __percpu *ptr = log->ptr;
922 
923 	for_each_possible_cpu(cpu) {
924 		log->ptr = per_cpu_ptr(ptr, cpu);
925 		early_alloc(log);
926 	}
927 }
928 
929 /**
930  * kmemleak_alloc - register a newly allocated object
931  * @ptr:	pointer to beginning of the object
932  * @size:	size of the object
933  * @min_count:	minimum number of references to this object. If during memory
934  *		scanning a number of references less than @min_count is found,
935  *		the object is reported as a memory leak. If @min_count is 0,
936  *		the object is never reported as a leak. If @min_count is -1,
937  *		the object is ignored (not scanned and not reported as a leak)
938  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
939  *
940  * This function is called from the kernel allocators when a new object
941  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
942  */
943 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
944 			  gfp_t gfp)
945 {
946 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
947 
948 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
949 		create_object((unsigned long)ptr, size, min_count, gfp);
950 	else if (kmemleak_early_log)
951 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
952 }
953 EXPORT_SYMBOL_GPL(kmemleak_alloc);
954 
955 /**
956  * kmemleak_alloc_percpu - register a newly allocated __percpu object
957  * @ptr:	__percpu pointer to beginning of the object
958  * @size:	size of the object
959  * @gfp:	flags used for kmemleak internal memory allocations
960  *
961  * This function is called from the kernel percpu allocator when a new object
962  * (memory block) is allocated (alloc_percpu).
963  */
964 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
965 				 gfp_t gfp)
966 {
967 	unsigned int cpu;
968 
969 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
970 
971 	/*
972 	 * Percpu allocations are only scanned and not reported as leaks
973 	 * (min_count is set to 0).
974 	 */
975 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
976 		for_each_possible_cpu(cpu)
977 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
978 				      size, 0, gfp);
979 	else if (kmemleak_early_log)
980 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
981 }
982 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
983 
984 /**
985  * kmemleak_vmalloc - register a newly vmalloc'ed object
986  * @area:	pointer to vm_struct
987  * @size:	size of the object
988  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
989  *
990  * This function is called from the vmalloc() kernel allocator when a new
991  * object (memory block) is allocated.
992  */
993 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
994 {
995 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
996 
997 	/*
998 	 * A min_count = 2 is needed because vm_struct contains a reference to
999 	 * the virtual address of the vmalloc'ed block.
1000 	 */
1001 	if (kmemleak_enabled) {
1002 		create_object((unsigned long)area->addr, size, 2, gfp);
1003 		object_set_excess_ref((unsigned long)area,
1004 				      (unsigned long)area->addr);
1005 	} else if (kmemleak_early_log) {
1006 		log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1007 		/* reusing early_log.size for storing area->addr */
1008 		log_early(KMEMLEAK_SET_EXCESS_REF,
1009 			  area, (unsigned long)area->addr, 0);
1010 	}
1011 }
1012 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1013 
1014 /**
1015  * kmemleak_free - unregister a previously registered object
1016  * @ptr:	pointer to beginning of the object
1017  *
1018  * This function is called from the kernel allocators when an object (memory
1019  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1020  */
1021 void __ref kmemleak_free(const void *ptr)
1022 {
1023 	pr_debug("%s(0x%p)\n", __func__, ptr);
1024 
1025 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1026 		delete_object_full((unsigned long)ptr);
1027 	else if (kmemleak_early_log)
1028 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
1029 }
1030 EXPORT_SYMBOL_GPL(kmemleak_free);
1031 
1032 /**
1033  * kmemleak_free_part - partially unregister a previously registered object
1034  * @ptr:	pointer to the beginning or inside the object. This also
1035  *		represents the start of the range to be freed
1036  * @size:	size to be unregistered
1037  *
1038  * This function is called when only a part of a memory block is freed
1039  * (usually from the bootmem allocator).
1040  */
1041 void __ref kmemleak_free_part(const void *ptr, size_t size)
1042 {
1043 	pr_debug("%s(0x%p)\n", __func__, ptr);
1044 
1045 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1046 		delete_object_part((unsigned long)ptr, size);
1047 	else if (kmemleak_early_log)
1048 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
1049 }
1050 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1051 
1052 /**
1053  * kmemleak_free_percpu - unregister a previously registered __percpu object
1054  * @ptr:	__percpu pointer to beginning of the object
1055  *
1056  * This function is called from the kernel percpu allocator when an object
1057  * (memory block) is freed (free_percpu).
1058  */
1059 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1060 {
1061 	unsigned int cpu;
1062 
1063 	pr_debug("%s(0x%p)\n", __func__, ptr);
1064 
1065 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1066 		for_each_possible_cpu(cpu)
1067 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1068 								      cpu));
1069 	else if (kmemleak_early_log)
1070 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1071 }
1072 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1073 
1074 /**
1075  * kmemleak_update_trace - update object allocation stack trace
1076  * @ptr:	pointer to beginning of the object
1077  *
1078  * Override the object allocation stack trace for cases where the actual
1079  * allocation place is not always useful.
1080  */
1081 void __ref kmemleak_update_trace(const void *ptr)
1082 {
1083 	struct kmemleak_object *object;
1084 	unsigned long flags;
1085 
1086 	pr_debug("%s(0x%p)\n", __func__, ptr);
1087 
1088 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1089 		return;
1090 
1091 	object = find_and_get_object((unsigned long)ptr, 1);
1092 	if (!object) {
1093 #ifdef DEBUG
1094 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1095 			      ptr);
1096 #endif
1097 		return;
1098 	}
1099 
1100 	spin_lock_irqsave(&object->lock, flags);
1101 	object->trace_len = __save_stack_trace(object->trace);
1102 	spin_unlock_irqrestore(&object->lock, flags);
1103 
1104 	put_object(object);
1105 }
1106 EXPORT_SYMBOL(kmemleak_update_trace);
1107 
1108 /**
1109  * kmemleak_not_leak - mark an allocated object as false positive
1110  * @ptr:	pointer to beginning of the object
1111  *
1112  * Calling this function on an object will cause the memory block to no longer
1113  * be reported as leak and always be scanned.
1114  */
1115 void __ref kmemleak_not_leak(const void *ptr)
1116 {
1117 	pr_debug("%s(0x%p)\n", __func__, ptr);
1118 
1119 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1120 		make_gray_object((unsigned long)ptr);
1121 	else if (kmemleak_early_log)
1122 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1123 }
1124 EXPORT_SYMBOL(kmemleak_not_leak);
1125 
1126 /**
1127  * kmemleak_ignore - ignore an allocated object
1128  * @ptr:	pointer to beginning of the object
1129  *
1130  * Calling this function on an object will cause the memory block to be
1131  * ignored (not scanned and not reported as a leak). This is usually done when
1132  * it is known that the corresponding block is not a leak and does not contain
1133  * any references to other allocated memory blocks.
1134  */
1135 void __ref kmemleak_ignore(const void *ptr)
1136 {
1137 	pr_debug("%s(0x%p)\n", __func__, ptr);
1138 
1139 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 		make_black_object((unsigned long)ptr);
1141 	else if (kmemleak_early_log)
1142 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1143 }
1144 EXPORT_SYMBOL(kmemleak_ignore);
1145 
1146 /**
1147  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1148  * @ptr:	pointer to beginning or inside the object. This also
1149  *		represents the start of the scan area
1150  * @size:	size of the scan area
1151  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1152  *
1153  * This function is used when it is known that only certain parts of an object
1154  * contain references to other objects. Kmemleak will only scan these areas
1155  * reducing the number false negatives.
1156  */
1157 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1158 {
1159 	pr_debug("%s(0x%p)\n", __func__, ptr);
1160 
1161 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1162 		add_scan_area((unsigned long)ptr, size, gfp);
1163 	else if (kmemleak_early_log)
1164 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1165 }
1166 EXPORT_SYMBOL(kmemleak_scan_area);
1167 
1168 /**
1169  * kmemleak_no_scan - do not scan an allocated object
1170  * @ptr:	pointer to beginning of the object
1171  *
1172  * This function notifies kmemleak not to scan the given memory block. Useful
1173  * in situations where it is known that the given object does not contain any
1174  * references to other objects. Kmemleak will not scan such objects reducing
1175  * the number of false negatives.
1176  */
1177 void __ref kmemleak_no_scan(const void *ptr)
1178 {
1179 	pr_debug("%s(0x%p)\n", __func__, ptr);
1180 
1181 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1182 		object_no_scan((unsigned long)ptr);
1183 	else if (kmemleak_early_log)
1184 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1185 }
1186 EXPORT_SYMBOL(kmemleak_no_scan);
1187 
1188 /**
1189  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1190  *			 address argument
1191  */
1192 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1193 			       gfp_t gfp)
1194 {
1195 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1196 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1197 }
1198 EXPORT_SYMBOL(kmemleak_alloc_phys);
1199 
1200 /**
1201  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1202  *			     physical address argument
1203  */
1204 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1205 {
1206 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1207 		kmemleak_free_part(__va(phys), size);
1208 }
1209 EXPORT_SYMBOL(kmemleak_free_part_phys);
1210 
1211 /**
1212  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1213  *			    address argument
1214  */
1215 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1216 {
1217 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1218 		kmemleak_not_leak(__va(phys));
1219 }
1220 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1221 
1222 /**
1223  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1224  *			  address argument
1225  */
1226 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1227 {
1228 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1229 		kmemleak_ignore(__va(phys));
1230 }
1231 EXPORT_SYMBOL(kmemleak_ignore_phys);
1232 
1233 /*
1234  * Update an object's checksum and return true if it was modified.
1235  */
1236 static bool update_checksum(struct kmemleak_object *object)
1237 {
1238 	u32 old_csum = object->checksum;
1239 
1240 	kasan_disable_current();
1241 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1242 	kasan_enable_current();
1243 
1244 	return object->checksum != old_csum;
1245 }
1246 
1247 /*
1248  * Update an object's references. object->lock must be held by the caller.
1249  */
1250 static void update_refs(struct kmemleak_object *object)
1251 {
1252 	if (!color_white(object)) {
1253 		/* non-orphan, ignored or new */
1254 		return;
1255 	}
1256 
1257 	/*
1258 	 * Increase the object's reference count (number of pointers to the
1259 	 * memory block). If this count reaches the required minimum, the
1260 	 * object's color will become gray and it will be added to the
1261 	 * gray_list.
1262 	 */
1263 	object->count++;
1264 	if (color_gray(object)) {
1265 		/* put_object() called when removing from gray_list */
1266 		WARN_ON(!get_object(object));
1267 		list_add_tail(&object->gray_list, &gray_list);
1268 	}
1269 }
1270 
1271 /*
1272  * Memory scanning is a long process and it needs to be interruptable. This
1273  * function checks whether such interrupt condition occurred.
1274  */
1275 static int scan_should_stop(void)
1276 {
1277 	if (!kmemleak_enabled)
1278 		return 1;
1279 
1280 	/*
1281 	 * This function may be called from either process or kthread context,
1282 	 * hence the need to check for both stop conditions.
1283 	 */
1284 	if (current->mm)
1285 		return signal_pending(current);
1286 	else
1287 		return kthread_should_stop();
1288 
1289 	return 0;
1290 }
1291 
1292 /*
1293  * Scan a memory block (exclusive range) for valid pointers and add those
1294  * found to the gray list.
1295  */
1296 static void scan_block(void *_start, void *_end,
1297 		       struct kmemleak_object *scanned)
1298 {
1299 	unsigned long *ptr;
1300 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1301 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1302 	unsigned long flags;
1303 
1304 	read_lock_irqsave(&kmemleak_lock, flags);
1305 	for (ptr = start; ptr < end; ptr++) {
1306 		struct kmemleak_object *object;
1307 		unsigned long pointer;
1308 		unsigned long excess_ref;
1309 
1310 		if (scan_should_stop())
1311 			break;
1312 
1313 		kasan_disable_current();
1314 		pointer = *ptr;
1315 		kasan_enable_current();
1316 
1317 		if (pointer < min_addr || pointer >= max_addr)
1318 			continue;
1319 
1320 		/*
1321 		 * No need for get_object() here since we hold kmemleak_lock.
1322 		 * object->use_count cannot be dropped to 0 while the object
1323 		 * is still present in object_tree_root and object_list
1324 		 * (with updates protected by kmemleak_lock).
1325 		 */
1326 		object = lookup_object(pointer, 1);
1327 		if (!object)
1328 			continue;
1329 		if (object == scanned)
1330 			/* self referenced, ignore */
1331 			continue;
1332 
1333 		/*
1334 		 * Avoid the lockdep recursive warning on object->lock being
1335 		 * previously acquired in scan_object(). These locks are
1336 		 * enclosed by scan_mutex.
1337 		 */
1338 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1339 		/* only pass surplus references (object already gray) */
1340 		if (color_gray(object)) {
1341 			excess_ref = object->excess_ref;
1342 			/* no need for update_refs() if object already gray */
1343 		} else {
1344 			excess_ref = 0;
1345 			update_refs(object);
1346 		}
1347 		spin_unlock(&object->lock);
1348 
1349 		if (excess_ref) {
1350 			object = lookup_object(excess_ref, 0);
1351 			if (!object)
1352 				continue;
1353 			if (object == scanned)
1354 				/* circular reference, ignore */
1355 				continue;
1356 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1357 			update_refs(object);
1358 			spin_unlock(&object->lock);
1359 		}
1360 	}
1361 	read_unlock_irqrestore(&kmemleak_lock, flags);
1362 }
1363 
1364 /*
1365  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366  */
1367 static void scan_large_block(void *start, void *end)
1368 {
1369 	void *next;
1370 
1371 	while (start < end) {
1372 		next = min(start + MAX_SCAN_SIZE, end);
1373 		scan_block(start, next, NULL);
1374 		start = next;
1375 		cond_resched();
1376 	}
1377 }
1378 
1379 /*
1380  * Scan a memory block corresponding to a kmemleak_object. A condition is
1381  * that object->use_count >= 1.
1382  */
1383 static void scan_object(struct kmemleak_object *object)
1384 {
1385 	struct kmemleak_scan_area *area;
1386 	unsigned long flags;
1387 
1388 	/*
1389 	 * Once the object->lock is acquired, the corresponding memory block
1390 	 * cannot be freed (the same lock is acquired in delete_object).
1391 	 */
1392 	spin_lock_irqsave(&object->lock, flags);
1393 	if (object->flags & OBJECT_NO_SCAN)
1394 		goto out;
1395 	if (!(object->flags & OBJECT_ALLOCATED))
1396 		/* already freed object */
1397 		goto out;
1398 	if (hlist_empty(&object->area_list)) {
1399 		void *start = (void *)object->pointer;
1400 		void *end = (void *)(object->pointer + object->size);
1401 		void *next;
1402 
1403 		do {
1404 			next = min(start + MAX_SCAN_SIZE, end);
1405 			scan_block(start, next, object);
1406 
1407 			start = next;
1408 			if (start >= end)
1409 				break;
1410 
1411 			spin_unlock_irqrestore(&object->lock, flags);
1412 			cond_resched();
1413 			spin_lock_irqsave(&object->lock, flags);
1414 		} while (object->flags & OBJECT_ALLOCATED);
1415 	} else
1416 		hlist_for_each_entry(area, &object->area_list, node)
1417 			scan_block((void *)area->start,
1418 				   (void *)(area->start + area->size),
1419 				   object);
1420 out:
1421 	spin_unlock_irqrestore(&object->lock, flags);
1422 }
1423 
1424 /*
1425  * Scan the objects already referenced (gray objects). More objects will be
1426  * referenced and, if there are no memory leaks, all the objects are scanned.
1427  */
1428 static void scan_gray_list(void)
1429 {
1430 	struct kmemleak_object *object, *tmp;
1431 
1432 	/*
1433 	 * The list traversal is safe for both tail additions and removals
1434 	 * from inside the loop. The kmemleak objects cannot be freed from
1435 	 * outside the loop because their use_count was incremented.
1436 	 */
1437 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1438 	while (&object->gray_list != &gray_list) {
1439 		cond_resched();
1440 
1441 		/* may add new objects to the list */
1442 		if (!scan_should_stop())
1443 			scan_object(object);
1444 
1445 		tmp = list_entry(object->gray_list.next, typeof(*object),
1446 				 gray_list);
1447 
1448 		/* remove the object from the list and release it */
1449 		list_del(&object->gray_list);
1450 		put_object(object);
1451 
1452 		object = tmp;
1453 	}
1454 	WARN_ON(!list_empty(&gray_list));
1455 }
1456 
1457 /*
1458  * Scan data sections and all the referenced memory blocks allocated via the
1459  * kernel's standard allocators. This function must be called with the
1460  * scan_mutex held.
1461  */
1462 static void kmemleak_scan(void)
1463 {
1464 	unsigned long flags;
1465 	struct kmemleak_object *object;
1466 	int i;
1467 	int new_leaks = 0;
1468 
1469 	jiffies_last_scan = jiffies;
1470 
1471 	/* prepare the kmemleak_object's */
1472 	rcu_read_lock();
1473 	list_for_each_entry_rcu(object, &object_list, object_list) {
1474 		spin_lock_irqsave(&object->lock, flags);
1475 #ifdef DEBUG
1476 		/*
1477 		 * With a few exceptions there should be a maximum of
1478 		 * 1 reference to any object at this point.
1479 		 */
1480 		if (atomic_read(&object->use_count) > 1) {
1481 			pr_debug("object->use_count = %d\n",
1482 				 atomic_read(&object->use_count));
1483 			dump_object_info(object);
1484 		}
1485 #endif
1486 		/* reset the reference count (whiten the object) */
1487 		object->count = 0;
1488 		if (color_gray(object) && get_object(object))
1489 			list_add_tail(&object->gray_list, &gray_list);
1490 
1491 		spin_unlock_irqrestore(&object->lock, flags);
1492 	}
1493 	rcu_read_unlock();
1494 
1495 	/* data/bss scanning */
1496 	scan_large_block(_sdata, _edata);
1497 	scan_large_block(__bss_start, __bss_stop);
1498 	scan_large_block(__start_ro_after_init, __end_ro_after_init);
1499 
1500 #ifdef CONFIG_SMP
1501 	/* per-cpu sections scanning */
1502 	for_each_possible_cpu(i)
1503 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1504 				 __per_cpu_end + per_cpu_offset(i));
1505 #endif
1506 
1507 	/*
1508 	 * Struct page scanning for each node.
1509 	 */
1510 	get_online_mems();
1511 	for_each_online_node(i) {
1512 		unsigned long start_pfn = node_start_pfn(i);
1513 		unsigned long end_pfn = node_end_pfn(i);
1514 		unsigned long pfn;
1515 
1516 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1517 			struct page *page;
1518 
1519 			if (!pfn_valid(pfn))
1520 				continue;
1521 			page = pfn_to_page(pfn);
1522 			/* only scan if page is in use */
1523 			if (page_count(page) == 0)
1524 				continue;
1525 			scan_block(page, page + 1, NULL);
1526 		}
1527 	}
1528 	put_online_mems();
1529 
1530 	/*
1531 	 * Scanning the task stacks (may introduce false negatives).
1532 	 */
1533 	if (kmemleak_stack_scan) {
1534 		struct task_struct *p, *g;
1535 
1536 		read_lock(&tasklist_lock);
1537 		do_each_thread(g, p) {
1538 			void *stack = try_get_task_stack(p);
1539 			if (stack) {
1540 				scan_block(stack, stack + THREAD_SIZE, NULL);
1541 				put_task_stack(p);
1542 			}
1543 		} while_each_thread(g, p);
1544 		read_unlock(&tasklist_lock);
1545 	}
1546 
1547 	/*
1548 	 * Scan the objects already referenced from the sections scanned
1549 	 * above.
1550 	 */
1551 	scan_gray_list();
1552 
1553 	/*
1554 	 * Check for new or unreferenced objects modified since the previous
1555 	 * scan and color them gray until the next scan.
1556 	 */
1557 	rcu_read_lock();
1558 	list_for_each_entry_rcu(object, &object_list, object_list) {
1559 		spin_lock_irqsave(&object->lock, flags);
1560 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1561 		    && update_checksum(object) && get_object(object)) {
1562 			/* color it gray temporarily */
1563 			object->count = object->min_count;
1564 			list_add_tail(&object->gray_list, &gray_list);
1565 		}
1566 		spin_unlock_irqrestore(&object->lock, flags);
1567 	}
1568 	rcu_read_unlock();
1569 
1570 	/*
1571 	 * Re-scan the gray list for modified unreferenced objects.
1572 	 */
1573 	scan_gray_list();
1574 
1575 	/*
1576 	 * If scanning was stopped do not report any new unreferenced objects.
1577 	 */
1578 	if (scan_should_stop())
1579 		return;
1580 
1581 	/*
1582 	 * Scanning result reporting.
1583 	 */
1584 	rcu_read_lock();
1585 	list_for_each_entry_rcu(object, &object_list, object_list) {
1586 		spin_lock_irqsave(&object->lock, flags);
1587 		if (unreferenced_object(object) &&
1588 		    !(object->flags & OBJECT_REPORTED)) {
1589 			object->flags |= OBJECT_REPORTED;
1590 			new_leaks++;
1591 		}
1592 		spin_unlock_irqrestore(&object->lock, flags);
1593 	}
1594 	rcu_read_unlock();
1595 
1596 	if (new_leaks) {
1597 		kmemleak_found_leaks = true;
1598 
1599 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1600 			new_leaks);
1601 	}
1602 
1603 }
1604 
1605 /*
1606  * Thread function performing automatic memory scanning. Unreferenced objects
1607  * at the end of a memory scan are reported but only the first time.
1608  */
1609 static int kmemleak_scan_thread(void *arg)
1610 {
1611 	static int first_run = 1;
1612 
1613 	pr_info("Automatic memory scanning thread started\n");
1614 	set_user_nice(current, 10);
1615 
1616 	/*
1617 	 * Wait before the first scan to allow the system to fully initialize.
1618 	 */
1619 	if (first_run) {
1620 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1621 		first_run = 0;
1622 		while (timeout && !kthread_should_stop())
1623 			timeout = schedule_timeout_interruptible(timeout);
1624 	}
1625 
1626 	while (!kthread_should_stop()) {
1627 		signed long timeout = jiffies_scan_wait;
1628 
1629 		mutex_lock(&scan_mutex);
1630 		kmemleak_scan();
1631 		mutex_unlock(&scan_mutex);
1632 
1633 		/* wait before the next scan */
1634 		while (timeout && !kthread_should_stop())
1635 			timeout = schedule_timeout_interruptible(timeout);
1636 	}
1637 
1638 	pr_info("Automatic memory scanning thread ended\n");
1639 
1640 	return 0;
1641 }
1642 
1643 /*
1644  * Start the automatic memory scanning thread. This function must be called
1645  * with the scan_mutex held.
1646  */
1647 static void start_scan_thread(void)
1648 {
1649 	if (scan_thread)
1650 		return;
1651 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1652 	if (IS_ERR(scan_thread)) {
1653 		pr_warn("Failed to create the scan thread\n");
1654 		scan_thread = NULL;
1655 	}
1656 }
1657 
1658 /*
1659  * Stop the automatic memory scanning thread. This function must be called
1660  * with the scan_mutex held.
1661  */
1662 static void stop_scan_thread(void)
1663 {
1664 	if (scan_thread) {
1665 		kthread_stop(scan_thread);
1666 		scan_thread = NULL;
1667 	}
1668 }
1669 
1670 /*
1671  * Iterate over the object_list and return the first valid object at or after
1672  * the required position with its use_count incremented. The function triggers
1673  * a memory scanning when the pos argument points to the first position.
1674  */
1675 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1676 {
1677 	struct kmemleak_object *object;
1678 	loff_t n = *pos;
1679 	int err;
1680 
1681 	err = mutex_lock_interruptible(&scan_mutex);
1682 	if (err < 0)
1683 		return ERR_PTR(err);
1684 
1685 	rcu_read_lock();
1686 	list_for_each_entry_rcu(object, &object_list, object_list) {
1687 		if (n-- > 0)
1688 			continue;
1689 		if (get_object(object))
1690 			goto out;
1691 	}
1692 	object = NULL;
1693 out:
1694 	return object;
1695 }
1696 
1697 /*
1698  * Return the next object in the object_list. The function decrements the
1699  * use_count of the previous object and increases that of the next one.
1700  */
1701 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1702 {
1703 	struct kmemleak_object *prev_obj = v;
1704 	struct kmemleak_object *next_obj = NULL;
1705 	struct kmemleak_object *obj = prev_obj;
1706 
1707 	++(*pos);
1708 
1709 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1710 		if (get_object(obj)) {
1711 			next_obj = obj;
1712 			break;
1713 		}
1714 	}
1715 
1716 	put_object(prev_obj);
1717 	return next_obj;
1718 }
1719 
1720 /*
1721  * Decrement the use_count of the last object required, if any.
1722  */
1723 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1724 {
1725 	if (!IS_ERR(v)) {
1726 		/*
1727 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1728 		 * waiting was interrupted, so only release it if !IS_ERR.
1729 		 */
1730 		rcu_read_unlock();
1731 		mutex_unlock(&scan_mutex);
1732 		if (v)
1733 			put_object(v);
1734 	}
1735 }
1736 
1737 /*
1738  * Print the information for an unreferenced object to the seq file.
1739  */
1740 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1741 {
1742 	struct kmemleak_object *object = v;
1743 	unsigned long flags;
1744 
1745 	spin_lock_irqsave(&object->lock, flags);
1746 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1747 		print_unreferenced(seq, object);
1748 	spin_unlock_irqrestore(&object->lock, flags);
1749 	return 0;
1750 }
1751 
1752 static const struct seq_operations kmemleak_seq_ops = {
1753 	.start = kmemleak_seq_start,
1754 	.next  = kmemleak_seq_next,
1755 	.stop  = kmemleak_seq_stop,
1756 	.show  = kmemleak_seq_show,
1757 };
1758 
1759 static int kmemleak_open(struct inode *inode, struct file *file)
1760 {
1761 	return seq_open(file, &kmemleak_seq_ops);
1762 }
1763 
1764 static int dump_str_object_info(const char *str)
1765 {
1766 	unsigned long flags;
1767 	struct kmemleak_object *object;
1768 	unsigned long addr;
1769 
1770 	if (kstrtoul(str, 0, &addr))
1771 		return -EINVAL;
1772 	object = find_and_get_object(addr, 0);
1773 	if (!object) {
1774 		pr_info("Unknown object at 0x%08lx\n", addr);
1775 		return -EINVAL;
1776 	}
1777 
1778 	spin_lock_irqsave(&object->lock, flags);
1779 	dump_object_info(object);
1780 	spin_unlock_irqrestore(&object->lock, flags);
1781 
1782 	put_object(object);
1783 	return 0;
1784 }
1785 
1786 /*
1787  * We use grey instead of black to ensure we can do future scans on the same
1788  * objects. If we did not do future scans these black objects could
1789  * potentially contain references to newly allocated objects in the future and
1790  * we'd end up with false positives.
1791  */
1792 static void kmemleak_clear(void)
1793 {
1794 	struct kmemleak_object *object;
1795 	unsigned long flags;
1796 
1797 	rcu_read_lock();
1798 	list_for_each_entry_rcu(object, &object_list, object_list) {
1799 		spin_lock_irqsave(&object->lock, flags);
1800 		if ((object->flags & OBJECT_REPORTED) &&
1801 		    unreferenced_object(object))
1802 			__paint_it(object, KMEMLEAK_GREY);
1803 		spin_unlock_irqrestore(&object->lock, flags);
1804 	}
1805 	rcu_read_unlock();
1806 
1807 	kmemleak_found_leaks = false;
1808 }
1809 
1810 static void __kmemleak_do_cleanup(void);
1811 
1812 /*
1813  * File write operation to configure kmemleak at run-time. The following
1814  * commands can be written to the /sys/kernel/debug/kmemleak file:
1815  *   off	- disable kmemleak (irreversible)
1816  *   stack=on	- enable the task stacks scanning
1817  *   stack=off	- disable the tasks stacks scanning
1818  *   scan=on	- start the automatic memory scanning thread
1819  *   scan=off	- stop the automatic memory scanning thread
1820  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1821  *		  disable it)
1822  *   scan	- trigger a memory scan
1823  *   clear	- mark all current reported unreferenced kmemleak objects as
1824  *		  grey to ignore printing them, or free all kmemleak objects
1825  *		  if kmemleak has been disabled.
1826  *   dump=...	- dump information about the object found at the given address
1827  */
1828 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1829 			      size_t size, loff_t *ppos)
1830 {
1831 	char buf[64];
1832 	int buf_size;
1833 	int ret;
1834 
1835 	buf_size = min(size, (sizeof(buf) - 1));
1836 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1837 		return -EFAULT;
1838 	buf[buf_size] = 0;
1839 
1840 	ret = mutex_lock_interruptible(&scan_mutex);
1841 	if (ret < 0)
1842 		return ret;
1843 
1844 	if (strncmp(buf, "clear", 5) == 0) {
1845 		if (kmemleak_enabled)
1846 			kmemleak_clear();
1847 		else
1848 			__kmemleak_do_cleanup();
1849 		goto out;
1850 	}
1851 
1852 	if (!kmemleak_enabled) {
1853 		ret = -EBUSY;
1854 		goto out;
1855 	}
1856 
1857 	if (strncmp(buf, "off", 3) == 0)
1858 		kmemleak_disable();
1859 	else if (strncmp(buf, "stack=on", 8) == 0)
1860 		kmemleak_stack_scan = 1;
1861 	else if (strncmp(buf, "stack=off", 9) == 0)
1862 		kmemleak_stack_scan = 0;
1863 	else if (strncmp(buf, "scan=on", 7) == 0)
1864 		start_scan_thread();
1865 	else if (strncmp(buf, "scan=off", 8) == 0)
1866 		stop_scan_thread();
1867 	else if (strncmp(buf, "scan=", 5) == 0) {
1868 		unsigned long secs;
1869 
1870 		ret = kstrtoul(buf + 5, 0, &secs);
1871 		if (ret < 0)
1872 			goto out;
1873 		stop_scan_thread();
1874 		if (secs) {
1875 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1876 			start_scan_thread();
1877 		}
1878 	} else if (strncmp(buf, "scan", 4) == 0)
1879 		kmemleak_scan();
1880 	else if (strncmp(buf, "dump=", 5) == 0)
1881 		ret = dump_str_object_info(buf + 5);
1882 	else
1883 		ret = -EINVAL;
1884 
1885 out:
1886 	mutex_unlock(&scan_mutex);
1887 	if (ret < 0)
1888 		return ret;
1889 
1890 	/* ignore the rest of the buffer, only one command at a time */
1891 	*ppos += size;
1892 	return size;
1893 }
1894 
1895 static const struct file_operations kmemleak_fops = {
1896 	.owner		= THIS_MODULE,
1897 	.open		= kmemleak_open,
1898 	.read		= seq_read,
1899 	.write		= kmemleak_write,
1900 	.llseek		= seq_lseek,
1901 	.release	= seq_release,
1902 };
1903 
1904 static void __kmemleak_do_cleanup(void)
1905 {
1906 	struct kmemleak_object *object;
1907 
1908 	rcu_read_lock();
1909 	list_for_each_entry_rcu(object, &object_list, object_list)
1910 		delete_object_full(object->pointer);
1911 	rcu_read_unlock();
1912 }
1913 
1914 /*
1915  * Stop the memory scanning thread and free the kmemleak internal objects if
1916  * no previous scan thread (otherwise, kmemleak may still have some useful
1917  * information on memory leaks).
1918  */
1919 static void kmemleak_do_cleanup(struct work_struct *work)
1920 {
1921 	stop_scan_thread();
1922 
1923 	/*
1924 	 * Once the scan thread has stopped, it is safe to no longer track
1925 	 * object freeing. Ordering of the scan thread stopping and the memory
1926 	 * accesses below is guaranteed by the kthread_stop() function.
1927 	 */
1928 	kmemleak_free_enabled = 0;
1929 
1930 	if (!kmemleak_found_leaks)
1931 		__kmemleak_do_cleanup();
1932 	else
1933 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1934 }
1935 
1936 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1937 
1938 /*
1939  * Disable kmemleak. No memory allocation/freeing will be traced once this
1940  * function is called. Disabling kmemleak is an irreversible operation.
1941  */
1942 static void kmemleak_disable(void)
1943 {
1944 	/* atomically check whether it was already invoked */
1945 	if (cmpxchg(&kmemleak_error, 0, 1))
1946 		return;
1947 
1948 	/* stop any memory operation tracing */
1949 	kmemleak_enabled = 0;
1950 
1951 	/* check whether it is too early for a kernel thread */
1952 	if (kmemleak_initialized)
1953 		schedule_work(&cleanup_work);
1954 	else
1955 		kmemleak_free_enabled = 0;
1956 
1957 	pr_info("Kernel memory leak detector disabled\n");
1958 }
1959 
1960 /*
1961  * Allow boot-time kmemleak disabling (enabled by default).
1962  */
1963 static int kmemleak_boot_config(char *str)
1964 {
1965 	if (!str)
1966 		return -EINVAL;
1967 	if (strcmp(str, "off") == 0)
1968 		kmemleak_disable();
1969 	else if (strcmp(str, "on") == 0)
1970 		kmemleak_skip_disable = 1;
1971 	else
1972 		return -EINVAL;
1973 	return 0;
1974 }
1975 early_param("kmemleak", kmemleak_boot_config);
1976 
1977 static void __init print_log_trace(struct early_log *log)
1978 {
1979 	struct stack_trace trace;
1980 
1981 	trace.nr_entries = log->trace_len;
1982 	trace.entries = log->trace;
1983 
1984 	pr_notice("Early log backtrace:\n");
1985 	print_stack_trace(&trace, 2);
1986 }
1987 
1988 /*
1989  * Kmemleak initialization.
1990  */
1991 void __init kmemleak_init(void)
1992 {
1993 	int i;
1994 	unsigned long flags;
1995 
1996 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1997 	if (!kmemleak_skip_disable) {
1998 		kmemleak_early_log = 0;
1999 		kmemleak_disable();
2000 		return;
2001 	}
2002 #endif
2003 
2004 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2005 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2006 
2007 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2008 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2009 
2010 	if (crt_early_log > ARRAY_SIZE(early_log))
2011 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2012 			crt_early_log);
2013 
2014 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
2015 	local_irq_save(flags);
2016 	kmemleak_early_log = 0;
2017 	if (kmemleak_error) {
2018 		local_irq_restore(flags);
2019 		return;
2020 	} else {
2021 		kmemleak_enabled = 1;
2022 		kmemleak_free_enabled = 1;
2023 	}
2024 	local_irq_restore(flags);
2025 
2026 	/*
2027 	 * This is the point where tracking allocations is safe. Automatic
2028 	 * scanning is started during the late initcall. Add the early logged
2029 	 * callbacks to the kmemleak infrastructure.
2030 	 */
2031 	for (i = 0; i < crt_early_log; i++) {
2032 		struct early_log *log = &early_log[i];
2033 
2034 		switch (log->op_type) {
2035 		case KMEMLEAK_ALLOC:
2036 			early_alloc(log);
2037 			break;
2038 		case KMEMLEAK_ALLOC_PERCPU:
2039 			early_alloc_percpu(log);
2040 			break;
2041 		case KMEMLEAK_FREE:
2042 			kmemleak_free(log->ptr);
2043 			break;
2044 		case KMEMLEAK_FREE_PART:
2045 			kmemleak_free_part(log->ptr, log->size);
2046 			break;
2047 		case KMEMLEAK_FREE_PERCPU:
2048 			kmemleak_free_percpu(log->ptr);
2049 			break;
2050 		case KMEMLEAK_NOT_LEAK:
2051 			kmemleak_not_leak(log->ptr);
2052 			break;
2053 		case KMEMLEAK_IGNORE:
2054 			kmemleak_ignore(log->ptr);
2055 			break;
2056 		case KMEMLEAK_SCAN_AREA:
2057 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
2058 			break;
2059 		case KMEMLEAK_NO_SCAN:
2060 			kmemleak_no_scan(log->ptr);
2061 			break;
2062 		case KMEMLEAK_SET_EXCESS_REF:
2063 			object_set_excess_ref((unsigned long)log->ptr,
2064 					      log->excess_ref);
2065 			break;
2066 		default:
2067 			kmemleak_warn("Unknown early log operation: %d\n",
2068 				      log->op_type);
2069 		}
2070 
2071 		if (kmemleak_warning) {
2072 			print_log_trace(log);
2073 			kmemleak_warning = 0;
2074 		}
2075 	}
2076 }
2077 
2078 /*
2079  * Late initialization function.
2080  */
2081 static int __init kmemleak_late_init(void)
2082 {
2083 	struct dentry *dentry;
2084 
2085 	kmemleak_initialized = 1;
2086 
2087 	if (kmemleak_error) {
2088 		/*
2089 		 * Some error occurred and kmemleak was disabled. There is a
2090 		 * small chance that kmemleak_disable() was called immediately
2091 		 * after setting kmemleak_initialized and we may end up with
2092 		 * two clean-up threads but serialized by scan_mutex.
2093 		 */
2094 		schedule_work(&cleanup_work);
2095 		return -ENOMEM;
2096 	}
2097 
2098 	dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
2099 				     &kmemleak_fops);
2100 	if (!dentry)
2101 		pr_warn("Failed to create the debugfs kmemleak file\n");
2102 	mutex_lock(&scan_mutex);
2103 	start_scan_thread();
2104 	mutex_unlock(&scan_mutex);
2105 
2106 	pr_info("Kernel memory leak detector initialized\n");
2107 
2108 	return 0;
2109 }
2110 late_initcall(kmemleak_late_init);
2111