1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled __read_mostly = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled __read_mostly = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 /* minimum and maximum address that may be valid per-CPU pointers */ 226 static unsigned long min_percpu_addr = ULONG_MAX; 227 static unsigned long max_percpu_addr; 228 229 static struct task_struct *scan_thread; 230 /* used to avoid reporting of recently allocated objects */ 231 static unsigned long jiffies_min_age; 232 static unsigned long jiffies_last_scan; 233 /* delay between automatic memory scannings */ 234 static unsigned long jiffies_scan_wait; 235 /* enables or disables the task stacks scanning */ 236 static int kmemleak_stack_scan = 1; 237 /* protects the memory scanning, parameters and debug/kmemleak file access */ 238 static DEFINE_MUTEX(scan_mutex); 239 /* setting kmemleak=on, will set this var, skipping the disable */ 240 static int kmemleak_skip_disable; 241 /* If there are leaks that can be reported */ 242 static bool kmemleak_found_leaks; 243 244 static bool kmemleak_verbose; 245 module_param_named(verbose, kmemleak_verbose, bool, 0600); 246 247 static void kmemleak_disable(void); 248 249 /* 250 * Print a warning and dump the stack trace. 251 */ 252 #define kmemleak_warn(x...) do { \ 253 pr_warn(x); \ 254 dump_stack(); \ 255 } while (0) 256 257 /* 258 * Macro invoked when a serious kmemleak condition occurred and cannot be 259 * recovered from. Kmemleak will be disabled and further allocation/freeing 260 * tracing no longer available. 261 */ 262 #define kmemleak_stop(x...) do { \ 263 kmemleak_warn(x); \ 264 kmemleak_disable(); \ 265 } while (0) 266 267 #define warn_or_seq_printf(seq, fmt, ...) do { \ 268 if (seq) \ 269 seq_printf(seq, fmt, ##__VA_ARGS__); \ 270 else \ 271 pr_warn(fmt, ##__VA_ARGS__); \ 272 } while (0) 273 274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 275 int rowsize, int groupsize, const void *buf, 276 size_t len, bool ascii) 277 { 278 if (seq) 279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 280 buf, len, ascii); 281 else 282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 283 rowsize, groupsize, buf, len, ascii); 284 } 285 286 /* 287 * Printing of the objects hex dump to the seq file. The number of lines to be 288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 290 * with the object->lock held. 291 */ 292 static void hex_dump_object(struct seq_file *seq, 293 struct kmemleak_object *object) 294 { 295 const u8 *ptr = (const u8 *)object->pointer; 296 size_t len; 297 298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 299 return; 300 301 if (object->flags & OBJECT_PERCPU) 302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 if (object->flags & OBJECT_PERCPU) 308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 309 len, raw_smp_processor_id()); 310 else 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 312 kasan_disable_current(); 313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 315 kasan_enable_current(); 316 } 317 318 /* 319 * Object colors, encoded with count and min_count: 320 * - white - orphan object, not enough references to it (count < min_count) 321 * - gray - not orphan, not marked as false positive (min_count == 0) or 322 * sufficient references to it (count >= min_count) 323 * - black - ignore, it doesn't contain references (e.g. text section) 324 * (min_count == -1). No function defined for this color. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 static const char *__object_type_str(struct kmemleak_object *object) 351 { 352 if (object->flags & OBJECT_PHYS) 353 return " (phys)"; 354 if (object->flags & OBJECT_PERCPU) 355 return " (percpu)"; 356 return ""; 357 } 358 359 /* 360 * Printing of the unreferenced objects information to the seq file. The 361 * print_unreferenced function must be called with the object->lock held. 362 */ 363 static void print_unreferenced(struct seq_file *seq, 364 struct kmemleak_object *object) 365 { 366 int i; 367 unsigned long *entries; 368 unsigned int nr_entries; 369 370 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n", 372 __object_type_str(object), 373 object->pointer, object->size); 374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 hex_dump_object(seq, object); 377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 378 379 for (i = 0; i < nr_entries; i++) { 380 void *ptr = (void *)entries[i]; 381 warn_or_seq_printf(seq, " %pS\n", ptr); 382 } 383 } 384 385 /* 386 * Print the kmemleak_object information. This function is used mainly for 387 * debugging special cases when kmemleak operations. It must be called with 388 * the object->lock held. 389 */ 390 static void dump_object_info(struct kmemleak_object *object) 391 { 392 pr_notice("Object%s 0x%08lx (size %zu):\n", 393 __object_type_str(object), object->pointer, object->size); 394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 395 object->comm, object->pid, object->jiffies); 396 pr_notice(" min_count = %d\n", object->min_count); 397 pr_notice(" count = %d\n", object->count); 398 pr_notice(" flags = 0x%x\n", object->flags); 399 pr_notice(" checksum = %u\n", object->checksum); 400 pr_notice(" backtrace:\n"); 401 if (object->trace_handle) 402 stack_depot_print(object->trace_handle); 403 } 404 405 static struct rb_root *object_tree(unsigned long objflags) 406 { 407 if (objflags & OBJECT_PHYS) 408 return &object_phys_tree_root; 409 if (objflags & OBJECT_PERCPU) 410 return &object_percpu_tree_root; 411 return &object_tree_root; 412 } 413 414 /* 415 * Look-up a memory block metadata (kmemleak_object) in the object search 416 * tree based on a pointer value. If alias is 0, only values pointing to the 417 * beginning of the memory block are allowed. The kmemleak_lock must be held 418 * when calling this function. 419 */ 420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 421 unsigned int objflags) 422 { 423 struct rb_node *rb = object_tree(objflags)->rb_node; 424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 425 426 while (rb) { 427 struct kmemleak_object *object; 428 unsigned long untagged_objp; 429 430 object = rb_entry(rb, struct kmemleak_object, rb_node); 431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 432 433 if (untagged_ptr < untagged_objp) 434 rb = object->rb_node.rb_left; 435 else if (untagged_objp + object->size <= untagged_ptr) 436 rb = object->rb_node.rb_right; 437 else if (untagged_objp == untagged_ptr || alias) 438 return object; 439 else { 440 kmemleak_warn("Found object by alias at 0x%08lx\n", 441 ptr); 442 dump_object_info(object); 443 break; 444 } 445 } 446 return NULL; 447 } 448 449 /* Look-up a kmemleak object which allocated with virtual address. */ 450 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 451 { 452 return __lookup_object(ptr, alias, 0); 453 } 454 455 /* 456 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 457 * that once an object's use_count reached 0, the RCU freeing was already 458 * registered and the object should no longer be used. This function must be 459 * called under the protection of rcu_read_lock(). 460 */ 461 static int get_object(struct kmemleak_object *object) 462 { 463 return atomic_inc_not_zero(&object->use_count); 464 } 465 466 /* 467 * Memory pool allocation and freeing. kmemleak_lock must not be held. 468 */ 469 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 470 { 471 unsigned long flags; 472 struct kmemleak_object *object; 473 bool warn = false; 474 475 /* try the slab allocator first */ 476 if (object_cache) { 477 object = kmem_cache_alloc_noprof(object_cache, 478 gfp_nested_mask(gfp)); 479 if (object) 480 return object; 481 } 482 483 /* slab allocation failed, try the memory pool */ 484 raw_spin_lock_irqsave(&kmemleak_lock, flags); 485 object = list_first_entry_or_null(&mem_pool_free_list, 486 typeof(*object), object_list); 487 if (object) 488 list_del(&object->object_list); 489 else if (mem_pool_free_count) 490 object = &mem_pool[--mem_pool_free_count]; 491 else 492 warn = true; 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 494 if (warn) 495 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 496 497 return object; 498 } 499 500 /* 501 * Return the object to either the slab allocator or the memory pool. 502 */ 503 static void mem_pool_free(struct kmemleak_object *object) 504 { 505 unsigned long flags; 506 507 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 508 kmem_cache_free(object_cache, object); 509 return; 510 } 511 512 /* add the object to the memory pool free list */ 513 raw_spin_lock_irqsave(&kmemleak_lock, flags); 514 list_add(&object->object_list, &mem_pool_free_list); 515 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 516 } 517 518 /* 519 * RCU callback to free a kmemleak_object. 520 */ 521 static void free_object_rcu(struct rcu_head *rcu) 522 { 523 struct hlist_node *tmp; 524 struct kmemleak_scan_area *area; 525 struct kmemleak_object *object = 526 container_of(rcu, struct kmemleak_object, rcu); 527 528 /* 529 * Once use_count is 0 (guaranteed by put_object), there is no other 530 * code accessing this object, hence no need for locking. 531 */ 532 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 533 hlist_del(&area->node); 534 kmem_cache_free(scan_area_cache, area); 535 } 536 mem_pool_free(object); 537 } 538 539 /* 540 * Decrement the object use_count. Once the count is 0, free the object using 541 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 542 * delete_object() path, the delayed RCU freeing ensures that there is no 543 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 544 * is also possible. 545 */ 546 static void put_object(struct kmemleak_object *object) 547 { 548 if (!atomic_dec_and_test(&object->use_count)) 549 return; 550 551 /* should only get here after delete_object was called */ 552 WARN_ON(object->flags & OBJECT_ALLOCATED); 553 554 /* 555 * It may be too early for the RCU callbacks, however, there is no 556 * concurrent object_list traversal when !object_cache and all objects 557 * came from the memory pool. Free the object directly. 558 */ 559 if (object_cache) 560 call_rcu(&object->rcu, free_object_rcu); 561 else 562 free_object_rcu(&object->rcu); 563 } 564 565 /* 566 * Look up an object in the object search tree and increase its use_count. 567 */ 568 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 569 unsigned int objflags) 570 { 571 unsigned long flags; 572 struct kmemleak_object *object; 573 574 rcu_read_lock(); 575 raw_spin_lock_irqsave(&kmemleak_lock, flags); 576 object = __lookup_object(ptr, alias, objflags); 577 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 578 579 /* check whether the object is still available */ 580 if (object && !get_object(object)) 581 object = NULL; 582 rcu_read_unlock(); 583 584 return object; 585 } 586 587 /* Look up and get an object which allocated with virtual address. */ 588 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 589 { 590 return __find_and_get_object(ptr, alias, 0); 591 } 592 593 /* 594 * Remove an object from its object tree and object_list. Must be called with 595 * the kmemleak_lock held _if_ kmemleak is still enabled. 596 */ 597 static void __remove_object(struct kmemleak_object *object) 598 { 599 rb_erase(&object->rb_node, object_tree(object->flags)); 600 if (!(object->del_state & DELSTATE_NO_DELETE)) 601 list_del_rcu(&object->object_list); 602 object->del_state |= DELSTATE_REMOVED; 603 } 604 605 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 606 int alias, 607 unsigned int objflags) 608 { 609 struct kmemleak_object *object; 610 611 object = __lookup_object(ptr, alias, objflags); 612 if (object) 613 __remove_object(object); 614 615 return object; 616 } 617 618 /* 619 * Look up an object in the object search tree and remove it from both object 620 * tree root and object_list. The returned object's use_count should be at 621 * least 1, as initially set by create_object(). 622 */ 623 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 624 unsigned int objflags) 625 { 626 unsigned long flags; 627 struct kmemleak_object *object; 628 629 raw_spin_lock_irqsave(&kmemleak_lock, flags); 630 object = __find_and_remove_object(ptr, alias, objflags); 631 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 632 633 return object; 634 } 635 636 static noinline depot_stack_handle_t set_track_prepare(void) 637 { 638 depot_stack_handle_t trace_handle; 639 unsigned long entries[MAX_TRACE]; 640 unsigned int nr_entries; 641 642 /* 643 * Use object_cache to determine whether kmemleak_init() has 644 * been invoked. stack_depot_early_init() is called before 645 * kmemleak_init() in mm_core_init(). 646 */ 647 if (!object_cache) 648 return 0; 649 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 650 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 651 652 return trace_handle; 653 } 654 655 static struct kmemleak_object *__alloc_object(gfp_t gfp) 656 { 657 struct kmemleak_object *object; 658 659 object = mem_pool_alloc(gfp); 660 if (!object) { 661 pr_warn("Cannot allocate a kmemleak_object structure\n"); 662 kmemleak_disable(); 663 return NULL; 664 } 665 666 INIT_LIST_HEAD(&object->object_list); 667 INIT_LIST_HEAD(&object->gray_list); 668 INIT_HLIST_HEAD(&object->area_list); 669 raw_spin_lock_init(&object->lock); 670 atomic_set(&object->use_count, 1); 671 object->excess_ref = 0; 672 object->count = 0; /* white color initially */ 673 object->checksum = 0; 674 object->del_state = 0; 675 676 /* task information */ 677 if (in_hardirq()) { 678 object->pid = 0; 679 strscpy(object->comm, "hardirq"); 680 } else if (in_serving_softirq()) { 681 object->pid = 0; 682 strscpy(object->comm, "softirq"); 683 } else { 684 object->pid = current->pid; 685 /* 686 * There is a small chance of a race with set_task_comm(), 687 * however using get_task_comm() here may cause locking 688 * dependency issues with current->alloc_lock. In the worst 689 * case, the command line is not correct. 690 */ 691 strscpy(object->comm, current->comm); 692 } 693 694 /* kernel backtrace */ 695 object->trace_handle = set_track_prepare(); 696 697 return object; 698 } 699 700 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 701 size_t size, int min_count, unsigned int objflags) 702 { 703 704 struct kmemleak_object *parent; 705 struct rb_node **link, *rb_parent; 706 unsigned long untagged_ptr; 707 unsigned long untagged_objp; 708 709 object->flags = OBJECT_ALLOCATED | objflags; 710 object->pointer = ptr; 711 object->size = kfence_ksize((void *)ptr) ?: size; 712 object->min_count = min_count; 713 object->jiffies = jiffies; 714 715 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 716 /* 717 * Only update min_addr and max_addr with object storing virtual 718 * address. And update min_percpu_addr max_percpu_addr for per-CPU 719 * objects. 720 */ 721 if (objflags & OBJECT_PERCPU) { 722 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 723 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 724 } else if (!(objflags & OBJECT_PHYS)) { 725 min_addr = min(min_addr, untagged_ptr); 726 max_addr = max(max_addr, untagged_ptr + size); 727 } 728 link = &object_tree(objflags)->rb_node; 729 rb_parent = NULL; 730 while (*link) { 731 rb_parent = *link; 732 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 733 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 734 if (untagged_ptr + size <= untagged_objp) 735 link = &parent->rb_node.rb_left; 736 else if (untagged_objp + parent->size <= untagged_ptr) 737 link = &parent->rb_node.rb_right; 738 else { 739 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 740 ptr); 741 /* 742 * No need for parent->lock here since "parent" cannot 743 * be freed while the kmemleak_lock is held. 744 */ 745 dump_object_info(parent); 746 return -EEXIST; 747 } 748 } 749 rb_link_node(&object->rb_node, rb_parent, link); 750 rb_insert_color(&object->rb_node, object_tree(objflags)); 751 list_add_tail_rcu(&object->object_list, &object_list); 752 753 return 0; 754 } 755 756 /* 757 * Create the metadata (struct kmemleak_object) corresponding to an allocated 758 * memory block and add it to the object_list and object tree. 759 */ 760 static void __create_object(unsigned long ptr, size_t size, 761 int min_count, gfp_t gfp, unsigned int objflags) 762 { 763 struct kmemleak_object *object; 764 unsigned long flags; 765 int ret; 766 767 object = __alloc_object(gfp); 768 if (!object) 769 return; 770 771 raw_spin_lock_irqsave(&kmemleak_lock, flags); 772 ret = __link_object(object, ptr, size, min_count, objflags); 773 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 774 if (ret) 775 mem_pool_free(object); 776 } 777 778 /* Create kmemleak object which allocated with virtual address. */ 779 static void create_object(unsigned long ptr, size_t size, 780 int min_count, gfp_t gfp) 781 { 782 __create_object(ptr, size, min_count, gfp, 0); 783 } 784 785 /* Create kmemleak object which allocated with physical address. */ 786 static void create_object_phys(unsigned long ptr, size_t size, 787 int min_count, gfp_t gfp) 788 { 789 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 790 } 791 792 /* Create kmemleak object corresponding to a per-CPU allocation. */ 793 static void create_object_percpu(unsigned long ptr, size_t size, 794 int min_count, gfp_t gfp) 795 { 796 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 797 } 798 799 /* 800 * Mark the object as not allocated and schedule RCU freeing via put_object(). 801 */ 802 static void __delete_object(struct kmemleak_object *object) 803 { 804 unsigned long flags; 805 806 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 807 WARN_ON(atomic_read(&object->use_count) < 1); 808 809 /* 810 * Locking here also ensures that the corresponding memory block 811 * cannot be freed when it is being scanned. 812 */ 813 raw_spin_lock_irqsave(&object->lock, flags); 814 object->flags &= ~OBJECT_ALLOCATED; 815 raw_spin_unlock_irqrestore(&object->lock, flags); 816 put_object(object); 817 } 818 819 /* 820 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 821 * delete it. 822 */ 823 static void delete_object_full(unsigned long ptr, unsigned int objflags) 824 { 825 struct kmemleak_object *object; 826 827 object = find_and_remove_object(ptr, 0, objflags); 828 if (!object) { 829 #ifdef DEBUG 830 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 831 ptr); 832 #endif 833 return; 834 } 835 __delete_object(object); 836 } 837 838 /* 839 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 840 * delete it. If the memory block is partially freed, the function may create 841 * additional metadata for the remaining parts of the block. 842 */ 843 static void delete_object_part(unsigned long ptr, size_t size, 844 unsigned int objflags) 845 { 846 struct kmemleak_object *object, *object_l, *object_r; 847 unsigned long start, end, flags; 848 849 object_l = __alloc_object(GFP_KERNEL); 850 if (!object_l) 851 return; 852 853 object_r = __alloc_object(GFP_KERNEL); 854 if (!object_r) 855 goto out; 856 857 raw_spin_lock_irqsave(&kmemleak_lock, flags); 858 object = __find_and_remove_object(ptr, 1, objflags); 859 if (!object) { 860 #ifdef DEBUG 861 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 862 ptr, size); 863 #endif 864 goto unlock; 865 } 866 867 /* 868 * Create one or two objects that may result from the memory block 869 * split. Note that partial freeing is only done by free_bootmem() and 870 * this happens before kmemleak_init() is called. 871 */ 872 start = object->pointer; 873 end = object->pointer + object->size; 874 if ((ptr > start) && 875 !__link_object(object_l, start, ptr - start, 876 object->min_count, objflags)) 877 object_l = NULL; 878 if ((ptr + size < end) && 879 !__link_object(object_r, ptr + size, end - ptr - size, 880 object->min_count, objflags)) 881 object_r = NULL; 882 883 unlock: 884 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 885 if (object) 886 __delete_object(object); 887 888 out: 889 if (object_l) 890 mem_pool_free(object_l); 891 if (object_r) 892 mem_pool_free(object_r); 893 } 894 895 static void __paint_it(struct kmemleak_object *object, int color) 896 { 897 object->min_count = color; 898 if (color == KMEMLEAK_BLACK) 899 object->flags |= OBJECT_NO_SCAN; 900 } 901 902 static void paint_it(struct kmemleak_object *object, int color) 903 { 904 unsigned long flags; 905 906 raw_spin_lock_irqsave(&object->lock, flags); 907 __paint_it(object, color); 908 raw_spin_unlock_irqrestore(&object->lock, flags); 909 } 910 911 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 912 { 913 struct kmemleak_object *object; 914 915 object = __find_and_get_object(ptr, 0, objflags); 916 if (!object) { 917 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 918 ptr, 919 (color == KMEMLEAK_GREY) ? "Grey" : 920 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 921 return; 922 } 923 paint_it(object, color); 924 put_object(object); 925 } 926 927 /* 928 * Mark an object permanently as gray-colored so that it can no longer be 929 * reported as a leak. This is used in general to mark a false positive. 930 */ 931 static void make_gray_object(unsigned long ptr) 932 { 933 paint_ptr(ptr, KMEMLEAK_GREY, 0); 934 } 935 936 /* 937 * Mark the object as black-colored so that it is ignored from scans and 938 * reporting. 939 */ 940 static void make_black_object(unsigned long ptr, unsigned int objflags) 941 { 942 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 943 } 944 945 /* 946 * Reset the checksum of an object. The immediate effect is that it will not 947 * be reported as a leak during the next scan until its checksum is updated. 948 */ 949 static void reset_checksum(unsigned long ptr) 950 { 951 unsigned long flags; 952 struct kmemleak_object *object; 953 954 object = find_and_get_object(ptr, 0); 955 if (!object) { 956 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n", 957 ptr); 958 return; 959 } 960 961 raw_spin_lock_irqsave(&object->lock, flags); 962 object->checksum = 0; 963 raw_spin_unlock_irqrestore(&object->lock, flags); 964 put_object(object); 965 } 966 967 /* 968 * Add a scanning area to the object. If at least one such area is added, 969 * kmemleak will only scan these ranges rather than the whole memory block. 970 */ 971 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 972 { 973 unsigned long flags; 974 struct kmemleak_object *object; 975 struct kmemleak_scan_area *area = NULL; 976 unsigned long untagged_ptr; 977 unsigned long untagged_objp; 978 979 object = find_and_get_object(ptr, 1); 980 if (!object) { 981 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 982 ptr); 983 return; 984 } 985 986 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 987 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 988 989 if (scan_area_cache) 990 area = kmem_cache_alloc_noprof(scan_area_cache, 991 gfp_nested_mask(gfp)); 992 993 raw_spin_lock_irqsave(&object->lock, flags); 994 if (!area) { 995 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 996 /* mark the object for full scan to avoid false positives */ 997 object->flags |= OBJECT_FULL_SCAN; 998 goto out_unlock; 999 } 1000 if (size == SIZE_MAX) { 1001 size = untagged_objp + object->size - untagged_ptr; 1002 } else if (untagged_ptr + size > untagged_objp + object->size) { 1003 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 1004 dump_object_info(object); 1005 kmem_cache_free(scan_area_cache, area); 1006 goto out_unlock; 1007 } 1008 1009 INIT_HLIST_NODE(&area->node); 1010 area->start = ptr; 1011 area->size = size; 1012 1013 hlist_add_head(&area->node, &object->area_list); 1014 out_unlock: 1015 raw_spin_unlock_irqrestore(&object->lock, flags); 1016 put_object(object); 1017 } 1018 1019 /* 1020 * Any surplus references (object already gray) to 'ptr' are passed to 1021 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 1022 * vm_struct may be used as an alternative reference to the vmalloc'ed object 1023 * (see free_thread_stack()). 1024 */ 1025 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 1026 { 1027 unsigned long flags; 1028 struct kmemleak_object *object; 1029 1030 object = find_and_get_object(ptr, 0); 1031 if (!object) { 1032 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1033 ptr); 1034 return; 1035 } 1036 1037 raw_spin_lock_irqsave(&object->lock, flags); 1038 object->excess_ref = excess_ref; 1039 raw_spin_unlock_irqrestore(&object->lock, flags); 1040 put_object(object); 1041 } 1042 1043 /* 1044 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given 1045 * pointer. Such object will not be scanned by kmemleak but references to it 1046 * are searched. 1047 */ 1048 static void object_no_scan(unsigned long ptr) 1049 { 1050 unsigned long flags; 1051 struct kmemleak_object *object; 1052 1053 object = find_and_get_object(ptr, 0); 1054 if (!object) { 1055 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1056 return; 1057 } 1058 1059 raw_spin_lock_irqsave(&object->lock, flags); 1060 object->flags |= OBJECT_NO_SCAN; 1061 raw_spin_unlock_irqrestore(&object->lock, flags); 1062 put_object(object); 1063 } 1064 1065 /** 1066 * kmemleak_alloc - register a newly allocated object 1067 * @ptr: pointer to beginning of the object 1068 * @size: size of the object 1069 * @min_count: minimum number of references to this object. If during memory 1070 * scanning a number of references less than @min_count is found, 1071 * the object is reported as a memory leak. If @min_count is 0, 1072 * the object is never reported as a leak. If @min_count is -1, 1073 * the object is ignored (not scanned and not reported as a leak) 1074 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1075 * 1076 * This function is called from the kernel allocators when a new object 1077 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1078 */ 1079 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1080 gfp_t gfp) 1081 { 1082 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1083 1084 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1085 create_object((unsigned long)ptr, size, min_count, gfp); 1086 } 1087 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1088 1089 /** 1090 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1091 * @ptr: __percpu pointer to beginning of the object 1092 * @size: size of the object 1093 * @gfp: flags used for kmemleak internal memory allocations 1094 * 1095 * This function is called from the kernel percpu allocator when a new object 1096 * (memory block) is allocated (alloc_percpu). 1097 */ 1098 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1099 gfp_t gfp) 1100 { 1101 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1102 1103 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1104 create_object_percpu((__force unsigned long)ptr, size, 1, gfp); 1105 } 1106 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1107 1108 /** 1109 * kmemleak_vmalloc - register a newly vmalloc'ed object 1110 * @area: pointer to vm_struct 1111 * @size: size of the object 1112 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1113 * 1114 * This function is called from the vmalloc() kernel allocator when a new 1115 * object (memory block) is allocated. 1116 */ 1117 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1118 { 1119 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1120 1121 /* 1122 * A min_count = 2 is needed because vm_struct contains a reference to 1123 * the virtual address of the vmalloc'ed block. 1124 */ 1125 if (kmemleak_enabled) { 1126 create_object((unsigned long)area->addr, size, 2, gfp); 1127 object_set_excess_ref((unsigned long)area, 1128 (unsigned long)area->addr); 1129 } 1130 } 1131 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1132 1133 /** 1134 * kmemleak_free - unregister a previously registered object 1135 * @ptr: pointer to beginning of the object 1136 * 1137 * This function is called from the kernel allocators when an object (memory 1138 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1139 */ 1140 void __ref kmemleak_free(const void *ptr) 1141 { 1142 pr_debug("%s(0x%px)\n", __func__, ptr); 1143 1144 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1145 delete_object_full((unsigned long)ptr, 0); 1146 } 1147 EXPORT_SYMBOL_GPL(kmemleak_free); 1148 1149 /** 1150 * kmemleak_free_part - partially unregister a previously registered object 1151 * @ptr: pointer to the beginning or inside the object. This also 1152 * represents the start of the range to be freed 1153 * @size: size to be unregistered 1154 * 1155 * This function is called when only a part of a memory block is freed 1156 * (usually from the bootmem allocator). 1157 */ 1158 void __ref kmemleak_free_part(const void *ptr, size_t size) 1159 { 1160 pr_debug("%s(0x%px)\n", __func__, ptr); 1161 1162 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1163 delete_object_part((unsigned long)ptr, size, 0); 1164 } 1165 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1166 1167 /** 1168 * kmemleak_free_percpu - unregister a previously registered __percpu object 1169 * @ptr: __percpu pointer to beginning of the object 1170 * 1171 * This function is called from the kernel percpu allocator when an object 1172 * (memory block) is freed (free_percpu). 1173 */ 1174 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1175 { 1176 pr_debug("%s(0x%px)\n", __func__, ptr); 1177 1178 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1179 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1180 } 1181 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1182 1183 /** 1184 * kmemleak_update_trace - update object allocation stack trace 1185 * @ptr: pointer to beginning of the object 1186 * 1187 * Override the object allocation stack trace for cases where the actual 1188 * allocation place is not always useful. 1189 */ 1190 void __ref kmemleak_update_trace(const void *ptr) 1191 { 1192 struct kmemleak_object *object; 1193 depot_stack_handle_t trace_handle; 1194 unsigned long flags; 1195 1196 pr_debug("%s(0x%px)\n", __func__, ptr); 1197 1198 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1199 return; 1200 1201 object = find_and_get_object((unsigned long)ptr, 1); 1202 if (!object) { 1203 #ifdef DEBUG 1204 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1205 ptr); 1206 #endif 1207 return; 1208 } 1209 1210 trace_handle = set_track_prepare(); 1211 raw_spin_lock_irqsave(&object->lock, flags); 1212 object->trace_handle = trace_handle; 1213 raw_spin_unlock_irqrestore(&object->lock, flags); 1214 1215 put_object(object); 1216 } 1217 EXPORT_SYMBOL(kmemleak_update_trace); 1218 1219 /** 1220 * kmemleak_not_leak - mark an allocated object as false positive 1221 * @ptr: pointer to beginning of the object 1222 * 1223 * Calling this function on an object will cause the memory block to no longer 1224 * be reported as leak and always be scanned. 1225 */ 1226 void __ref kmemleak_not_leak(const void *ptr) 1227 { 1228 pr_debug("%s(0x%px)\n", __func__, ptr); 1229 1230 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1231 make_gray_object((unsigned long)ptr); 1232 } 1233 EXPORT_SYMBOL(kmemleak_not_leak); 1234 1235 /** 1236 * kmemleak_transient_leak - mark an allocated object as transient false positive 1237 * @ptr: pointer to beginning of the object 1238 * 1239 * Calling this function on an object will cause the memory block to not be 1240 * reported as a leak temporarily. This may happen, for example, if the object 1241 * is part of a singly linked list and the ->next reference to it is changed. 1242 */ 1243 void __ref kmemleak_transient_leak(const void *ptr) 1244 { 1245 pr_debug("%s(0x%px)\n", __func__, ptr); 1246 1247 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1248 reset_checksum((unsigned long)ptr); 1249 } 1250 EXPORT_SYMBOL(kmemleak_transient_leak); 1251 1252 /** 1253 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu 1254 * address argument 1255 * @ptr: percpu address of the object 1256 */ 1257 void __ref kmemleak_ignore_percpu(const void __percpu *ptr) 1258 { 1259 pr_debug("%s(0x%px)\n", __func__, ptr); 1260 1261 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1262 make_black_object((unsigned long)ptr, OBJECT_PERCPU); 1263 } 1264 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu); 1265 1266 /** 1267 * kmemleak_ignore - ignore an allocated object 1268 * @ptr: pointer to beginning of the object 1269 * 1270 * Calling this function on an object will cause the memory block to be 1271 * ignored (not scanned and not reported as a leak). This is usually done when 1272 * it is known that the corresponding block is not a leak and does not contain 1273 * any references to other allocated memory blocks. 1274 */ 1275 void __ref kmemleak_ignore(const void *ptr) 1276 { 1277 pr_debug("%s(0x%px)\n", __func__, ptr); 1278 1279 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1280 make_black_object((unsigned long)ptr, 0); 1281 } 1282 EXPORT_SYMBOL(kmemleak_ignore); 1283 1284 /** 1285 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1286 * @ptr: pointer to beginning or inside the object. This also 1287 * represents the start of the scan area 1288 * @size: size of the scan area 1289 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1290 * 1291 * This function is used when it is known that only certain parts of an object 1292 * contain references to other objects. Kmemleak will only scan these areas 1293 * reducing the number false negatives. 1294 */ 1295 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1296 { 1297 pr_debug("%s(0x%px)\n", __func__, ptr); 1298 1299 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1300 add_scan_area((unsigned long)ptr, size, gfp); 1301 } 1302 EXPORT_SYMBOL(kmemleak_scan_area); 1303 1304 /** 1305 * kmemleak_no_scan - do not scan an allocated object 1306 * @ptr: pointer to beginning of the object 1307 * 1308 * This function notifies kmemleak not to scan the given memory block. Useful 1309 * in situations where it is known that the given object does not contain any 1310 * references to other objects. Kmemleak will not scan such objects reducing 1311 * the number of false negatives. 1312 */ 1313 void __ref kmemleak_no_scan(const void *ptr) 1314 { 1315 pr_debug("%s(0x%px)\n", __func__, ptr); 1316 1317 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1318 object_no_scan((unsigned long)ptr); 1319 } 1320 EXPORT_SYMBOL(kmemleak_no_scan); 1321 1322 /** 1323 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1324 * address argument 1325 * @phys: physical address of the object 1326 * @size: size of the object 1327 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1328 */ 1329 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1330 { 1331 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1332 1333 if (kmemleak_enabled) 1334 /* 1335 * Create object with OBJECT_PHYS flag and 1336 * assume min_count 0. 1337 */ 1338 create_object_phys((unsigned long)phys, size, 0, gfp); 1339 } 1340 EXPORT_SYMBOL(kmemleak_alloc_phys); 1341 1342 /** 1343 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1344 * physical address argument 1345 * @phys: physical address if the beginning or inside an object. This 1346 * also represents the start of the range to be freed 1347 * @size: size to be unregistered 1348 */ 1349 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1350 { 1351 pr_debug("%s(0x%px)\n", __func__, &phys); 1352 1353 if (kmemleak_enabled) 1354 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1355 } 1356 EXPORT_SYMBOL(kmemleak_free_part_phys); 1357 1358 /** 1359 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1360 * address argument 1361 * @phys: physical address of the object 1362 */ 1363 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1364 { 1365 pr_debug("%s(0x%px)\n", __func__, &phys); 1366 1367 if (kmemleak_enabled) 1368 make_black_object((unsigned long)phys, OBJECT_PHYS); 1369 } 1370 EXPORT_SYMBOL(kmemleak_ignore_phys); 1371 1372 /* 1373 * Update an object's checksum and return true if it was modified. 1374 */ 1375 static bool update_checksum(struct kmemleak_object *object) 1376 { 1377 u32 old_csum = object->checksum; 1378 1379 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1380 return false; 1381 1382 kasan_disable_current(); 1383 kcsan_disable_current(); 1384 if (object->flags & OBJECT_PERCPU) { 1385 unsigned int cpu; 1386 1387 object->checksum = 0; 1388 for_each_possible_cpu(cpu) { 1389 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1390 1391 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1392 } 1393 } else { 1394 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1395 } 1396 kasan_enable_current(); 1397 kcsan_enable_current(); 1398 1399 return object->checksum != old_csum; 1400 } 1401 1402 /* 1403 * Update an object's references. object->lock must be held by the caller. 1404 */ 1405 static void update_refs(struct kmemleak_object *object) 1406 { 1407 if (!color_white(object)) { 1408 /* non-orphan, ignored or new */ 1409 return; 1410 } 1411 1412 /* 1413 * Increase the object's reference count (number of pointers to the 1414 * memory block). If this count reaches the required minimum, the 1415 * object's color will become gray and it will be added to the 1416 * gray_list. 1417 */ 1418 object->count++; 1419 if (color_gray(object)) { 1420 /* put_object() called when removing from gray_list */ 1421 WARN_ON(!get_object(object)); 1422 list_add_tail(&object->gray_list, &gray_list); 1423 } 1424 } 1425 1426 static void pointer_update_refs(struct kmemleak_object *scanned, 1427 unsigned long pointer, unsigned int objflags) 1428 { 1429 struct kmemleak_object *object; 1430 unsigned long untagged_ptr; 1431 unsigned long excess_ref; 1432 1433 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1434 if (objflags & OBJECT_PERCPU) { 1435 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1436 return; 1437 } else { 1438 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1439 return; 1440 } 1441 1442 /* 1443 * No need for get_object() here since we hold kmemleak_lock. 1444 * object->use_count cannot be dropped to 0 while the object 1445 * is still present in object_tree_root and object_list 1446 * (with updates protected by kmemleak_lock). 1447 */ 1448 object = __lookup_object(pointer, 1, objflags); 1449 if (!object) 1450 return; 1451 if (object == scanned) 1452 /* self referenced, ignore */ 1453 return; 1454 1455 /* 1456 * Avoid the lockdep recursive warning on object->lock being 1457 * previously acquired in scan_object(). These locks are 1458 * enclosed by scan_mutex. 1459 */ 1460 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1461 /* only pass surplus references (object already gray) */ 1462 if (color_gray(object)) { 1463 excess_ref = object->excess_ref; 1464 /* no need for update_refs() if object already gray */ 1465 } else { 1466 excess_ref = 0; 1467 update_refs(object); 1468 } 1469 raw_spin_unlock(&object->lock); 1470 1471 if (excess_ref) { 1472 object = lookup_object(excess_ref, 0); 1473 if (!object) 1474 return; 1475 if (object == scanned) 1476 /* circular reference, ignore */ 1477 return; 1478 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1479 update_refs(object); 1480 raw_spin_unlock(&object->lock); 1481 } 1482 } 1483 1484 /* 1485 * Memory scanning is a long process and it needs to be interruptible. This 1486 * function checks whether such interrupt condition occurred. 1487 */ 1488 static int scan_should_stop(void) 1489 { 1490 if (!kmemleak_enabled) 1491 return 1; 1492 1493 /* 1494 * This function may be called from either process or kthread context, 1495 * hence the need to check for both stop conditions. 1496 */ 1497 if (current->mm) 1498 return signal_pending(current); 1499 else 1500 return kthread_should_stop(); 1501 1502 return 0; 1503 } 1504 1505 /* 1506 * Scan a memory block (exclusive range) for valid pointers and add those 1507 * found to the gray list. 1508 */ 1509 static void scan_block(void *_start, void *_end, 1510 struct kmemleak_object *scanned) 1511 { 1512 unsigned long *ptr; 1513 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1514 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1515 unsigned long flags; 1516 1517 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1518 for (ptr = start; ptr < end; ptr++) { 1519 unsigned long pointer; 1520 1521 if (scan_should_stop()) 1522 break; 1523 1524 kasan_disable_current(); 1525 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1526 kasan_enable_current(); 1527 1528 pointer_update_refs(scanned, pointer, 0); 1529 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1530 } 1531 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1532 } 1533 1534 /* 1535 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1536 */ 1537 #ifdef CONFIG_SMP 1538 static void scan_large_block(void *start, void *end) 1539 { 1540 void *next; 1541 1542 while (start < end) { 1543 next = min(start + MAX_SCAN_SIZE, end); 1544 scan_block(start, next, NULL); 1545 start = next; 1546 cond_resched(); 1547 } 1548 } 1549 #endif 1550 1551 /* 1552 * Scan a memory block corresponding to a kmemleak_object. A condition is 1553 * that object->use_count >= 1. 1554 */ 1555 static void scan_object(struct kmemleak_object *object) 1556 { 1557 struct kmemleak_scan_area *area; 1558 unsigned long flags; 1559 1560 /* 1561 * Once the object->lock is acquired, the corresponding memory block 1562 * cannot be freed (the same lock is acquired in delete_object). 1563 */ 1564 raw_spin_lock_irqsave(&object->lock, flags); 1565 if (object->flags & OBJECT_NO_SCAN) 1566 goto out; 1567 if (!(object->flags & OBJECT_ALLOCATED)) 1568 /* already freed object */ 1569 goto out; 1570 1571 if (object->flags & OBJECT_PERCPU) { 1572 unsigned int cpu; 1573 1574 for_each_possible_cpu(cpu) { 1575 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1576 void *end = start + object->size; 1577 1578 scan_block(start, end, object); 1579 1580 raw_spin_unlock_irqrestore(&object->lock, flags); 1581 cond_resched(); 1582 raw_spin_lock_irqsave(&object->lock, flags); 1583 if (!(object->flags & OBJECT_ALLOCATED)) 1584 break; 1585 } 1586 } else if (hlist_empty(&object->area_list) || 1587 object->flags & OBJECT_FULL_SCAN) { 1588 void *start = object->flags & OBJECT_PHYS ? 1589 __va((phys_addr_t)object->pointer) : 1590 (void *)object->pointer; 1591 void *end = start + object->size; 1592 void *next; 1593 1594 do { 1595 next = min(start + MAX_SCAN_SIZE, end); 1596 scan_block(start, next, object); 1597 1598 start = next; 1599 if (start >= end) 1600 break; 1601 1602 raw_spin_unlock_irqrestore(&object->lock, flags); 1603 cond_resched(); 1604 raw_spin_lock_irqsave(&object->lock, flags); 1605 } while (object->flags & OBJECT_ALLOCATED); 1606 } else { 1607 hlist_for_each_entry(area, &object->area_list, node) 1608 scan_block((void *)area->start, 1609 (void *)(area->start + area->size), 1610 object); 1611 } 1612 out: 1613 raw_spin_unlock_irqrestore(&object->lock, flags); 1614 } 1615 1616 /* 1617 * Scan the objects already referenced (gray objects). More objects will be 1618 * referenced and, if there are no memory leaks, all the objects are scanned. 1619 */ 1620 static void scan_gray_list(void) 1621 { 1622 struct kmemleak_object *object, *tmp; 1623 1624 /* 1625 * The list traversal is safe for both tail additions and removals 1626 * from inside the loop. The kmemleak objects cannot be freed from 1627 * outside the loop because their use_count was incremented. 1628 */ 1629 object = list_entry(gray_list.next, typeof(*object), gray_list); 1630 while (&object->gray_list != &gray_list) { 1631 cond_resched(); 1632 1633 /* may add new objects to the list */ 1634 if (!scan_should_stop()) 1635 scan_object(object); 1636 1637 tmp = list_entry(object->gray_list.next, typeof(*object), 1638 gray_list); 1639 1640 /* remove the object from the list and release it */ 1641 list_del(&object->gray_list); 1642 put_object(object); 1643 1644 object = tmp; 1645 } 1646 WARN_ON(!list_empty(&gray_list)); 1647 } 1648 1649 /* 1650 * Conditionally call resched() in an object iteration loop while making sure 1651 * that the given object won't go away without RCU read lock by performing a 1652 * get_object() if necessaary. 1653 */ 1654 static void kmemleak_cond_resched(struct kmemleak_object *object) 1655 { 1656 if (!get_object(object)) 1657 return; /* Try next object */ 1658 1659 raw_spin_lock_irq(&kmemleak_lock); 1660 if (object->del_state & DELSTATE_REMOVED) 1661 goto unlock_put; /* Object removed */ 1662 object->del_state |= DELSTATE_NO_DELETE; 1663 raw_spin_unlock_irq(&kmemleak_lock); 1664 1665 rcu_read_unlock(); 1666 cond_resched(); 1667 rcu_read_lock(); 1668 1669 raw_spin_lock_irq(&kmemleak_lock); 1670 if (object->del_state & DELSTATE_REMOVED) 1671 list_del_rcu(&object->object_list); 1672 object->del_state &= ~DELSTATE_NO_DELETE; 1673 unlock_put: 1674 raw_spin_unlock_irq(&kmemleak_lock); 1675 put_object(object); 1676 } 1677 1678 /* 1679 * Scan data sections and all the referenced memory blocks allocated via the 1680 * kernel's standard allocators. This function must be called with the 1681 * scan_mutex held. 1682 */ 1683 static void kmemleak_scan(void) 1684 { 1685 struct kmemleak_object *object; 1686 struct zone *zone; 1687 int __maybe_unused i; 1688 int new_leaks = 0; 1689 1690 jiffies_last_scan = jiffies; 1691 1692 /* prepare the kmemleak_object's */ 1693 rcu_read_lock(); 1694 list_for_each_entry_rcu(object, &object_list, object_list) { 1695 raw_spin_lock_irq(&object->lock); 1696 #ifdef DEBUG 1697 /* 1698 * With a few exceptions there should be a maximum of 1699 * 1 reference to any object at this point. 1700 */ 1701 if (atomic_read(&object->use_count) > 1) { 1702 pr_debug("object->use_count = %d\n", 1703 atomic_read(&object->use_count)); 1704 dump_object_info(object); 1705 } 1706 #endif 1707 1708 /* ignore objects outside lowmem (paint them black) */ 1709 if ((object->flags & OBJECT_PHYS) && 1710 !(object->flags & OBJECT_NO_SCAN)) { 1711 unsigned long phys = object->pointer; 1712 1713 if (PHYS_PFN(phys) < min_low_pfn || 1714 PHYS_PFN(phys + object->size) > max_low_pfn) 1715 __paint_it(object, KMEMLEAK_BLACK); 1716 } 1717 1718 /* reset the reference count (whiten the object) */ 1719 object->count = 0; 1720 if (color_gray(object) && get_object(object)) 1721 list_add_tail(&object->gray_list, &gray_list); 1722 1723 raw_spin_unlock_irq(&object->lock); 1724 1725 if (need_resched()) 1726 kmemleak_cond_resched(object); 1727 } 1728 rcu_read_unlock(); 1729 1730 #ifdef CONFIG_SMP 1731 /* per-cpu sections scanning */ 1732 for_each_possible_cpu(i) 1733 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1734 __per_cpu_end + per_cpu_offset(i)); 1735 #endif 1736 1737 /* 1738 * Struct page scanning for each node. 1739 */ 1740 get_online_mems(); 1741 for_each_populated_zone(zone) { 1742 unsigned long start_pfn = zone->zone_start_pfn; 1743 unsigned long end_pfn = zone_end_pfn(zone); 1744 unsigned long pfn; 1745 1746 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1747 struct page *page = pfn_to_online_page(pfn); 1748 1749 if (!(pfn & 63)) 1750 cond_resched(); 1751 1752 if (!page) 1753 continue; 1754 1755 /* only scan pages belonging to this zone */ 1756 if (page_zone(page) != zone) 1757 continue; 1758 /* only scan if page is in use */ 1759 if (page_count(page) == 0) 1760 continue; 1761 scan_block(page, page + 1, NULL); 1762 } 1763 } 1764 put_online_mems(); 1765 1766 /* 1767 * Scanning the task stacks (may introduce false negatives). 1768 */ 1769 if (kmemleak_stack_scan) { 1770 struct task_struct *p, *g; 1771 1772 rcu_read_lock(); 1773 for_each_process_thread(g, p) { 1774 void *stack = try_get_task_stack(p); 1775 if (stack) { 1776 scan_block(stack, stack + THREAD_SIZE, NULL); 1777 put_task_stack(p); 1778 } 1779 } 1780 rcu_read_unlock(); 1781 } 1782 1783 /* 1784 * Scan the objects already referenced from the sections scanned 1785 * above. 1786 */ 1787 scan_gray_list(); 1788 1789 /* 1790 * Check for new or unreferenced objects modified since the previous 1791 * scan and color them gray until the next scan. 1792 */ 1793 rcu_read_lock(); 1794 list_for_each_entry_rcu(object, &object_list, object_list) { 1795 if (need_resched()) 1796 kmemleak_cond_resched(object); 1797 1798 /* 1799 * This is racy but we can save the overhead of lock/unlock 1800 * calls. The missed objects, if any, should be caught in 1801 * the next scan. 1802 */ 1803 if (!color_white(object)) 1804 continue; 1805 raw_spin_lock_irq(&object->lock); 1806 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1807 && update_checksum(object) && get_object(object)) { 1808 /* color it gray temporarily */ 1809 object->count = object->min_count; 1810 list_add_tail(&object->gray_list, &gray_list); 1811 } 1812 raw_spin_unlock_irq(&object->lock); 1813 } 1814 rcu_read_unlock(); 1815 1816 /* 1817 * Re-scan the gray list for modified unreferenced objects. 1818 */ 1819 scan_gray_list(); 1820 1821 /* 1822 * If scanning was stopped do not report any new unreferenced objects. 1823 */ 1824 if (scan_should_stop()) 1825 return; 1826 1827 /* 1828 * Scanning result reporting. 1829 */ 1830 rcu_read_lock(); 1831 list_for_each_entry_rcu(object, &object_list, object_list) { 1832 if (need_resched()) 1833 kmemleak_cond_resched(object); 1834 1835 /* 1836 * This is racy but we can save the overhead of lock/unlock 1837 * calls. The missed objects, if any, should be caught in 1838 * the next scan. 1839 */ 1840 if (!color_white(object)) 1841 continue; 1842 raw_spin_lock_irq(&object->lock); 1843 if (unreferenced_object(object) && 1844 !(object->flags & OBJECT_REPORTED)) { 1845 object->flags |= OBJECT_REPORTED; 1846 1847 if (kmemleak_verbose) 1848 print_unreferenced(NULL, object); 1849 1850 new_leaks++; 1851 } 1852 raw_spin_unlock_irq(&object->lock); 1853 } 1854 rcu_read_unlock(); 1855 1856 if (new_leaks) { 1857 kmemleak_found_leaks = true; 1858 1859 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1860 new_leaks); 1861 } 1862 1863 } 1864 1865 /* 1866 * Thread function performing automatic memory scanning. Unreferenced objects 1867 * at the end of a memory scan are reported but only the first time. 1868 */ 1869 static int kmemleak_scan_thread(void *arg) 1870 { 1871 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1872 1873 pr_info("Automatic memory scanning thread started\n"); 1874 set_user_nice(current, 10); 1875 1876 /* 1877 * Wait before the first scan to allow the system to fully initialize. 1878 */ 1879 if (first_run) { 1880 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN); 1881 first_run = 0; 1882 while (timeout && !kthread_should_stop()) 1883 timeout = schedule_timeout_interruptible(timeout); 1884 } 1885 1886 while (!kthread_should_stop()) { 1887 signed long timeout = READ_ONCE(jiffies_scan_wait); 1888 1889 mutex_lock(&scan_mutex); 1890 kmemleak_scan(); 1891 mutex_unlock(&scan_mutex); 1892 1893 /* wait before the next scan */ 1894 while (timeout && !kthread_should_stop()) 1895 timeout = schedule_timeout_interruptible(timeout); 1896 } 1897 1898 pr_info("Automatic memory scanning thread ended\n"); 1899 1900 return 0; 1901 } 1902 1903 /* 1904 * Start the automatic memory scanning thread. This function must be called 1905 * with the scan_mutex held. 1906 */ 1907 static void start_scan_thread(void) 1908 { 1909 if (scan_thread) 1910 return; 1911 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1912 if (IS_ERR(scan_thread)) { 1913 pr_warn("Failed to create the scan thread\n"); 1914 scan_thread = NULL; 1915 } 1916 } 1917 1918 /* 1919 * Stop the automatic memory scanning thread. 1920 */ 1921 static void stop_scan_thread(void) 1922 { 1923 if (scan_thread) { 1924 kthread_stop(scan_thread); 1925 scan_thread = NULL; 1926 } 1927 } 1928 1929 /* 1930 * Iterate over the object_list and return the first valid object at or after 1931 * the required position with its use_count incremented. The function triggers 1932 * a memory scanning when the pos argument points to the first position. 1933 */ 1934 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1935 { 1936 struct kmemleak_object *object; 1937 loff_t n = *pos; 1938 int err; 1939 1940 err = mutex_lock_interruptible(&scan_mutex); 1941 if (err < 0) 1942 return ERR_PTR(err); 1943 1944 rcu_read_lock(); 1945 list_for_each_entry_rcu(object, &object_list, object_list) { 1946 if (n-- > 0) 1947 continue; 1948 if (get_object(object)) 1949 goto out; 1950 } 1951 object = NULL; 1952 out: 1953 return object; 1954 } 1955 1956 /* 1957 * Return the next object in the object_list. The function decrements the 1958 * use_count of the previous object and increases that of the next one. 1959 */ 1960 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1961 { 1962 struct kmemleak_object *prev_obj = v; 1963 struct kmemleak_object *next_obj = NULL; 1964 struct kmemleak_object *obj = prev_obj; 1965 1966 ++(*pos); 1967 1968 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1969 if (get_object(obj)) { 1970 next_obj = obj; 1971 break; 1972 } 1973 } 1974 1975 put_object(prev_obj); 1976 return next_obj; 1977 } 1978 1979 /* 1980 * Decrement the use_count of the last object required, if any. 1981 */ 1982 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1983 { 1984 if (!IS_ERR(v)) { 1985 /* 1986 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1987 * waiting was interrupted, so only release it if !IS_ERR. 1988 */ 1989 rcu_read_unlock(); 1990 mutex_unlock(&scan_mutex); 1991 if (v) 1992 put_object(v); 1993 } 1994 } 1995 1996 /* 1997 * Print the information for an unreferenced object to the seq file. 1998 */ 1999 static int kmemleak_seq_show(struct seq_file *seq, void *v) 2000 { 2001 struct kmemleak_object *object = v; 2002 unsigned long flags; 2003 2004 raw_spin_lock_irqsave(&object->lock, flags); 2005 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 2006 print_unreferenced(seq, object); 2007 raw_spin_unlock_irqrestore(&object->lock, flags); 2008 return 0; 2009 } 2010 2011 static const struct seq_operations kmemleak_seq_ops = { 2012 .start = kmemleak_seq_start, 2013 .next = kmemleak_seq_next, 2014 .stop = kmemleak_seq_stop, 2015 .show = kmemleak_seq_show, 2016 }; 2017 2018 static int kmemleak_open(struct inode *inode, struct file *file) 2019 { 2020 return seq_open(file, &kmemleak_seq_ops); 2021 } 2022 2023 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags) 2024 { 2025 unsigned long flags; 2026 struct kmemleak_object *object; 2027 2028 object = __find_and_get_object(addr, 1, objflags); 2029 if (!object) 2030 return false; 2031 2032 raw_spin_lock_irqsave(&object->lock, flags); 2033 dump_object_info(object); 2034 raw_spin_unlock_irqrestore(&object->lock, flags); 2035 2036 put_object(object); 2037 2038 return true; 2039 } 2040 2041 static int dump_str_object_info(const char *str) 2042 { 2043 unsigned long addr; 2044 bool found = false; 2045 2046 if (kstrtoul(str, 0, &addr)) 2047 return -EINVAL; 2048 2049 found |= __dump_str_object_info(addr, 0); 2050 found |= __dump_str_object_info(addr, OBJECT_PHYS); 2051 found |= __dump_str_object_info(addr, OBJECT_PERCPU); 2052 2053 if (!found) { 2054 pr_info("Unknown object at 0x%08lx\n", addr); 2055 return -EINVAL; 2056 } 2057 2058 return 0; 2059 } 2060 2061 /* 2062 * We use grey instead of black to ensure we can do future scans on the same 2063 * objects. If we did not do future scans these black objects could 2064 * potentially contain references to newly allocated objects in the future and 2065 * we'd end up with false positives. 2066 */ 2067 static void kmemleak_clear(void) 2068 { 2069 struct kmemleak_object *object; 2070 2071 rcu_read_lock(); 2072 list_for_each_entry_rcu(object, &object_list, object_list) { 2073 raw_spin_lock_irq(&object->lock); 2074 if ((object->flags & OBJECT_REPORTED) && 2075 unreferenced_object(object)) 2076 __paint_it(object, KMEMLEAK_GREY); 2077 raw_spin_unlock_irq(&object->lock); 2078 } 2079 rcu_read_unlock(); 2080 2081 kmemleak_found_leaks = false; 2082 } 2083 2084 static void __kmemleak_do_cleanup(void); 2085 2086 /* 2087 * File write operation to configure kmemleak at run-time. The following 2088 * commands can be written to the /sys/kernel/debug/kmemleak file: 2089 * off - disable kmemleak (irreversible) 2090 * stack=on - enable the task stacks scanning 2091 * stack=off - disable the tasks stacks scanning 2092 * scan=on - start the automatic memory scanning thread 2093 * scan=off - stop the automatic memory scanning thread 2094 * scan=... - set the automatic memory scanning period in seconds (0 to 2095 * disable it) 2096 * scan - trigger a memory scan 2097 * clear - mark all current reported unreferenced kmemleak objects as 2098 * grey to ignore printing them, or free all kmemleak objects 2099 * if kmemleak has been disabled. 2100 * dump=... - dump information about the object found at the given address 2101 */ 2102 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2103 size_t size, loff_t *ppos) 2104 { 2105 char buf[64]; 2106 int buf_size; 2107 int ret; 2108 2109 buf_size = min(size, (sizeof(buf) - 1)); 2110 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2111 return -EFAULT; 2112 buf[buf_size] = 0; 2113 2114 ret = mutex_lock_interruptible(&scan_mutex); 2115 if (ret < 0) 2116 return ret; 2117 2118 if (strncmp(buf, "clear", 5) == 0) { 2119 if (kmemleak_enabled) 2120 kmemleak_clear(); 2121 else 2122 __kmemleak_do_cleanup(); 2123 goto out; 2124 } 2125 2126 if (!kmemleak_enabled) { 2127 ret = -EPERM; 2128 goto out; 2129 } 2130 2131 if (strncmp(buf, "off", 3) == 0) 2132 kmemleak_disable(); 2133 else if (strncmp(buf, "stack=on", 8) == 0) 2134 kmemleak_stack_scan = 1; 2135 else if (strncmp(buf, "stack=off", 9) == 0) 2136 kmemleak_stack_scan = 0; 2137 else if (strncmp(buf, "scan=on", 7) == 0) 2138 start_scan_thread(); 2139 else if (strncmp(buf, "scan=off", 8) == 0) 2140 stop_scan_thread(); 2141 else if (strncmp(buf, "scan=", 5) == 0) { 2142 unsigned secs; 2143 unsigned long msecs; 2144 2145 ret = kstrtouint(buf + 5, 0, &secs); 2146 if (ret < 0) 2147 goto out; 2148 2149 msecs = secs * MSEC_PER_SEC; 2150 if (msecs > UINT_MAX) 2151 msecs = UINT_MAX; 2152 2153 stop_scan_thread(); 2154 if (msecs) { 2155 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2156 start_scan_thread(); 2157 } 2158 } else if (strncmp(buf, "scan", 4) == 0) 2159 kmemleak_scan(); 2160 else if (strncmp(buf, "dump=", 5) == 0) 2161 ret = dump_str_object_info(buf + 5); 2162 else 2163 ret = -EINVAL; 2164 2165 out: 2166 mutex_unlock(&scan_mutex); 2167 if (ret < 0) 2168 return ret; 2169 2170 /* ignore the rest of the buffer, only one command at a time */ 2171 *ppos += size; 2172 return size; 2173 } 2174 2175 static const struct file_operations kmemleak_fops = { 2176 .owner = THIS_MODULE, 2177 .open = kmemleak_open, 2178 .read = seq_read, 2179 .write = kmemleak_write, 2180 .llseek = seq_lseek, 2181 .release = seq_release, 2182 }; 2183 2184 static void __kmemleak_do_cleanup(void) 2185 { 2186 struct kmemleak_object *object, *tmp; 2187 unsigned int cnt = 0; 2188 2189 /* 2190 * Kmemleak has already been disabled, no need for RCU list traversal 2191 * or kmemleak_lock held. 2192 */ 2193 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2194 __remove_object(object); 2195 __delete_object(object); 2196 2197 /* Call cond_resched() once per 64 iterations to avoid soft lockup */ 2198 if (!(++cnt & 0x3f)) 2199 cond_resched(); 2200 } 2201 } 2202 2203 /* 2204 * Stop the memory scanning thread and free the kmemleak internal objects if 2205 * no previous scan thread (otherwise, kmemleak may still have some useful 2206 * information on memory leaks). 2207 */ 2208 static void kmemleak_do_cleanup(struct work_struct *work) 2209 { 2210 stop_scan_thread(); 2211 2212 mutex_lock(&scan_mutex); 2213 /* 2214 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2215 * longer track object freeing. Ordering of the scan thread stopping and 2216 * the memory accesses below is guaranteed by the kthread_stop() 2217 * function. 2218 */ 2219 kmemleak_free_enabled = 0; 2220 mutex_unlock(&scan_mutex); 2221 2222 if (!kmemleak_found_leaks) 2223 __kmemleak_do_cleanup(); 2224 else 2225 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2226 } 2227 2228 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2229 2230 /* 2231 * Disable kmemleak. No memory allocation/freeing will be traced once this 2232 * function is called. Disabling kmemleak is an irreversible operation. 2233 */ 2234 static void kmemleak_disable(void) 2235 { 2236 /* atomically check whether it was already invoked */ 2237 if (cmpxchg(&kmemleak_error, 0, 1)) 2238 return; 2239 2240 /* stop any memory operation tracing */ 2241 kmemleak_enabled = 0; 2242 2243 /* check whether it is too early for a kernel thread */ 2244 if (kmemleak_late_initialized) 2245 schedule_work(&cleanup_work); 2246 else 2247 kmemleak_free_enabled = 0; 2248 2249 pr_info("Kernel memory leak detector disabled\n"); 2250 } 2251 2252 /* 2253 * Allow boot-time kmemleak disabling (enabled by default). 2254 */ 2255 static int __init kmemleak_boot_config(char *str) 2256 { 2257 if (!str) 2258 return -EINVAL; 2259 if (strcmp(str, "off") == 0) 2260 kmemleak_disable(); 2261 else if (strcmp(str, "on") == 0) { 2262 kmemleak_skip_disable = 1; 2263 stack_depot_request_early_init(); 2264 } 2265 else 2266 return -EINVAL; 2267 return 0; 2268 } 2269 early_param("kmemleak", kmemleak_boot_config); 2270 2271 /* 2272 * Kmemleak initialization. 2273 */ 2274 void __init kmemleak_init(void) 2275 { 2276 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2277 if (!kmemleak_skip_disable) { 2278 kmemleak_disable(); 2279 return; 2280 } 2281 #endif 2282 2283 if (kmemleak_error) 2284 return; 2285 2286 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2287 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT); 2288 2289 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2290 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2291 2292 /* register the data/bss sections */ 2293 create_object((unsigned long)_sdata, _edata - _sdata, 2294 KMEMLEAK_GREY, GFP_ATOMIC); 2295 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2296 KMEMLEAK_GREY, GFP_ATOMIC); 2297 /* only register .data..ro_after_init if not within .data */ 2298 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2299 create_object((unsigned long)__start_ro_after_init, 2300 __end_ro_after_init - __start_ro_after_init, 2301 KMEMLEAK_GREY, GFP_ATOMIC); 2302 } 2303 2304 /* 2305 * Late initialization function. 2306 */ 2307 static int __init kmemleak_late_init(void) 2308 { 2309 kmemleak_late_initialized = 1; 2310 2311 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2312 2313 if (kmemleak_error) { 2314 /* 2315 * Some error occurred and kmemleak was disabled. There is a 2316 * small chance that kmemleak_disable() was called immediately 2317 * after setting kmemleak_late_initialized and we may end up with 2318 * two clean-up threads but serialized by scan_mutex. 2319 */ 2320 schedule_work(&cleanup_work); 2321 return -ENOMEM; 2322 } 2323 2324 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2325 mutex_lock(&scan_mutex); 2326 start_scan_thread(); 2327 mutex_unlock(&scan_mutex); 2328 } 2329 2330 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2331 mem_pool_free_count); 2332 2333 return 0; 2334 } 2335 late_initcall(kmemleak_late_init); 2336