xref: /linux/mm/kmemleak.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103 
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE		16	/* stack trace length */
108 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
109 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
110 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
112 
113 #define BYTES_PER_POINTER	sizeof(void *)
114 
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
117 					   __GFP_NOLOCKDEP)) | \
118 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
119 				 __GFP_NOWARN)
120 
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123 	struct hlist_node node;
124 	unsigned long start;
125 	size_t size;
126 };
127 
128 #define KMEMLEAK_GREY	0
129 #define KMEMLEAK_BLACK	-1
130 
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140 	raw_spinlock_t lock;
141 	unsigned int flags;		/* object status flags */
142 	struct list_head object_list;
143 	struct list_head gray_list;
144 	struct rb_node rb_node;
145 	struct rcu_head rcu;		/* object_list lockless traversal */
146 	/* object usage count; object freed when use_count == 0 */
147 	atomic_t use_count;
148 	unsigned long pointer;
149 	size_t size;
150 	/* pass surplus references to this pointer */
151 	unsigned long excess_ref;
152 	/* minimum number of a pointers found before it is considered leak */
153 	int min_count;
154 	/* the total number of pointers found pointing to this object */
155 	int count;
156 	/* checksum for detecting modified objects */
157 	u32 checksum;
158 	/* memory ranges to be scanned inside an object (empty for all) */
159 	struct hlist_head area_list;
160 	unsigned long trace[MAX_TRACE];
161 	unsigned int trace_len;
162 	unsigned long jiffies;		/* creation timestamp */
163 	pid_t pid;			/* pid of the current task */
164 	char comm[TASK_COMM_LEN];	/* executable name */
165 };
166 
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED	(1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED		(1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN		(1 << 2)
173 /* flag set to fully scan the object when scan_area allocation failed */
174 #define OBJECT_FULL_SCAN	(1 << 3)
175 
176 #define HEX_PREFIX		"    "
177 /* number of bytes to print per line; must be 16 or 32 */
178 #define HEX_ROW_SIZE		16
179 /* number of bytes to print at a time (1, 2, 4, 8) */
180 #define HEX_GROUP_SIZE		1
181 /* include ASCII after the hex output */
182 #define HEX_ASCII		1
183 /* max number of lines to be printed */
184 #define HEX_MAX_LINES		2
185 
186 /* the list of all allocated objects */
187 static LIST_HEAD(object_list);
188 /* the list of gray-colored objects (see color_gray comment below) */
189 static LIST_HEAD(gray_list);
190 /* memory pool allocation */
191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
193 static LIST_HEAD(mem_pool_free_list);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root = RB_ROOT;
196 /* protecting the access to object_list and object_tree_root */
197 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
198 
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache *object_cache;
201 static struct kmem_cache *scan_area_cache;
202 
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled = 1;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled = 1;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized;
209 /* set if a kmemleak warning was issued */
210 static int kmemleak_warning;
211 /* set if a fatal kmemleak error has occurred */
212 static int kmemleak_error;
213 
214 /* minimum and maximum address that may be valid pointers */
215 static unsigned long min_addr = ULONG_MAX;
216 static unsigned long max_addr;
217 
218 static struct task_struct *scan_thread;
219 /* used to avoid reporting of recently allocated objects */
220 static unsigned long jiffies_min_age;
221 static unsigned long jiffies_last_scan;
222 /* delay between automatic memory scannings */
223 static unsigned long jiffies_scan_wait;
224 /* enables or disables the task stacks scanning */
225 static int kmemleak_stack_scan = 1;
226 /* protects the memory scanning, parameters and debug/kmemleak file access */
227 static DEFINE_MUTEX(scan_mutex);
228 /* setting kmemleak=on, will set this var, skipping the disable */
229 static int kmemleak_skip_disable;
230 /* If there are leaks that can be reported */
231 static bool kmemleak_found_leaks;
232 
233 static bool kmemleak_verbose;
234 module_param_named(verbose, kmemleak_verbose, bool, 0600);
235 
236 static void kmemleak_disable(void);
237 
238 /*
239  * Print a warning and dump the stack trace.
240  */
241 #define kmemleak_warn(x...)	do {		\
242 	pr_warn(x);				\
243 	dump_stack();				\
244 	kmemleak_warning = 1;			\
245 } while (0)
246 
247 /*
248  * Macro invoked when a serious kmemleak condition occurred and cannot be
249  * recovered from. Kmemleak will be disabled and further allocation/freeing
250  * tracing no longer available.
251  */
252 #define kmemleak_stop(x...)	do {	\
253 	kmemleak_warn(x);		\
254 	kmemleak_disable();		\
255 } while (0)
256 
257 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
258 	if (seq)					\
259 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
260 	else						\
261 		pr_warn(fmt, ##__VA_ARGS__);		\
262 } while (0)
263 
264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
265 				 int rowsize, int groupsize, const void *buf,
266 				 size_t len, bool ascii)
267 {
268 	if (seq)
269 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
270 			     buf, len, ascii);
271 	else
272 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
273 			       rowsize, groupsize, buf, len, ascii);
274 }
275 
276 /*
277  * Printing of the objects hex dump to the seq file. The number of lines to be
278  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
279  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
280  * with the object->lock held.
281  */
282 static void hex_dump_object(struct seq_file *seq,
283 			    struct kmemleak_object *object)
284 {
285 	const u8 *ptr = (const u8 *)object->pointer;
286 	size_t len;
287 
288 	/* limit the number of lines to HEX_MAX_LINES */
289 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
290 
291 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
292 	kasan_disable_current();
293 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
294 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
295 	kasan_enable_current();
296 }
297 
298 /*
299  * Object colors, encoded with count and min_count:
300  * - white - orphan object, not enough references to it (count < min_count)
301  * - gray  - not orphan, not marked as false positive (min_count == 0) or
302  *		sufficient references to it (count >= min_count)
303  * - black - ignore, it doesn't contain references (e.g. text section)
304  *		(min_count == -1). No function defined for this color.
305  * Newly created objects don't have any color assigned (object->count == -1)
306  * before the next memory scan when they become white.
307  */
308 static bool color_white(const struct kmemleak_object *object)
309 {
310 	return object->count != KMEMLEAK_BLACK &&
311 		object->count < object->min_count;
312 }
313 
314 static bool color_gray(const struct kmemleak_object *object)
315 {
316 	return object->min_count != KMEMLEAK_BLACK &&
317 		object->count >= object->min_count;
318 }
319 
320 /*
321  * Objects are considered unreferenced only if their color is white, they have
322  * not be deleted and have a minimum age to avoid false positives caused by
323  * pointers temporarily stored in CPU registers.
324  */
325 static bool unreferenced_object(struct kmemleak_object *object)
326 {
327 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
328 		time_before_eq(object->jiffies + jiffies_min_age,
329 			       jiffies_last_scan);
330 }
331 
332 /*
333  * Printing of the unreferenced objects information to the seq file. The
334  * print_unreferenced function must be called with the object->lock held.
335  */
336 static void print_unreferenced(struct seq_file *seq,
337 			       struct kmemleak_object *object)
338 {
339 	int i;
340 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
341 
342 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
343 		   object->pointer, object->size);
344 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
345 		   object->comm, object->pid, object->jiffies,
346 		   msecs_age / 1000, msecs_age % 1000);
347 	hex_dump_object(seq, object);
348 	warn_or_seq_printf(seq, "  backtrace:\n");
349 
350 	for (i = 0; i < object->trace_len; i++) {
351 		void *ptr = (void *)object->trace[i];
352 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
353 	}
354 }
355 
356 /*
357  * Print the kmemleak_object information. This function is used mainly for
358  * debugging special cases when kmemleak operations. It must be called with
359  * the object->lock held.
360  */
361 static void dump_object_info(struct kmemleak_object *object)
362 {
363 	pr_notice("Object 0x%08lx (size %zu):\n",
364 		  object->pointer, object->size);
365 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
366 		  object->comm, object->pid, object->jiffies);
367 	pr_notice("  min_count = %d\n", object->min_count);
368 	pr_notice("  count = %d\n", object->count);
369 	pr_notice("  flags = 0x%x\n", object->flags);
370 	pr_notice("  checksum = %u\n", object->checksum);
371 	pr_notice("  backtrace:\n");
372 	stack_trace_print(object->trace, object->trace_len, 4);
373 }
374 
375 /*
376  * Look-up a memory block metadata (kmemleak_object) in the object search
377  * tree based on a pointer value. If alias is 0, only values pointing to the
378  * beginning of the memory block are allowed. The kmemleak_lock must be held
379  * when calling this function.
380  */
381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
382 {
383 	struct rb_node *rb = object_tree_root.rb_node;
384 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
385 
386 	while (rb) {
387 		struct kmemleak_object *object;
388 		unsigned long untagged_objp;
389 
390 		object = rb_entry(rb, struct kmemleak_object, rb_node);
391 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
392 
393 		if (untagged_ptr < untagged_objp)
394 			rb = object->rb_node.rb_left;
395 		else if (untagged_objp + object->size <= untagged_ptr)
396 			rb = object->rb_node.rb_right;
397 		else if (untagged_objp == untagged_ptr || alias)
398 			return object;
399 		else {
400 			kmemleak_warn("Found object by alias at 0x%08lx\n",
401 				      ptr);
402 			dump_object_info(object);
403 			break;
404 		}
405 	}
406 	return NULL;
407 }
408 
409 /*
410  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
411  * that once an object's use_count reached 0, the RCU freeing was already
412  * registered and the object should no longer be used. This function must be
413  * called under the protection of rcu_read_lock().
414  */
415 static int get_object(struct kmemleak_object *object)
416 {
417 	return atomic_inc_not_zero(&object->use_count);
418 }
419 
420 /*
421  * Memory pool allocation and freeing. kmemleak_lock must not be held.
422  */
423 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
424 {
425 	unsigned long flags;
426 	struct kmemleak_object *object;
427 
428 	/* try the slab allocator first */
429 	if (object_cache) {
430 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
431 		if (object)
432 			return object;
433 	}
434 
435 	/* slab allocation failed, try the memory pool */
436 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
437 	object = list_first_entry_or_null(&mem_pool_free_list,
438 					  typeof(*object), object_list);
439 	if (object)
440 		list_del(&object->object_list);
441 	else if (mem_pool_free_count)
442 		object = &mem_pool[--mem_pool_free_count];
443 	else
444 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
445 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
446 
447 	return object;
448 }
449 
450 /*
451  * Return the object to either the slab allocator or the memory pool.
452  */
453 static void mem_pool_free(struct kmemleak_object *object)
454 {
455 	unsigned long flags;
456 
457 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
458 		kmem_cache_free(object_cache, object);
459 		return;
460 	}
461 
462 	/* add the object to the memory pool free list */
463 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
464 	list_add(&object->object_list, &mem_pool_free_list);
465 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
466 }
467 
468 /*
469  * RCU callback to free a kmemleak_object.
470  */
471 static void free_object_rcu(struct rcu_head *rcu)
472 {
473 	struct hlist_node *tmp;
474 	struct kmemleak_scan_area *area;
475 	struct kmemleak_object *object =
476 		container_of(rcu, struct kmemleak_object, rcu);
477 
478 	/*
479 	 * Once use_count is 0 (guaranteed by put_object), there is no other
480 	 * code accessing this object, hence no need for locking.
481 	 */
482 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
483 		hlist_del(&area->node);
484 		kmem_cache_free(scan_area_cache, area);
485 	}
486 	mem_pool_free(object);
487 }
488 
489 /*
490  * Decrement the object use_count. Once the count is 0, free the object using
491  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
492  * delete_object() path, the delayed RCU freeing ensures that there is no
493  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
494  * is also possible.
495  */
496 static void put_object(struct kmemleak_object *object)
497 {
498 	if (!atomic_dec_and_test(&object->use_count))
499 		return;
500 
501 	/* should only get here after delete_object was called */
502 	WARN_ON(object->flags & OBJECT_ALLOCATED);
503 
504 	/*
505 	 * It may be too early for the RCU callbacks, however, there is no
506 	 * concurrent object_list traversal when !object_cache and all objects
507 	 * came from the memory pool. Free the object directly.
508 	 */
509 	if (object_cache)
510 		call_rcu(&object->rcu, free_object_rcu);
511 	else
512 		free_object_rcu(&object->rcu);
513 }
514 
515 /*
516  * Look up an object in the object search tree and increase its use_count.
517  */
518 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
519 {
520 	unsigned long flags;
521 	struct kmemleak_object *object;
522 
523 	rcu_read_lock();
524 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
525 	object = lookup_object(ptr, alias);
526 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
527 
528 	/* check whether the object is still available */
529 	if (object && !get_object(object))
530 		object = NULL;
531 	rcu_read_unlock();
532 
533 	return object;
534 }
535 
536 /*
537  * Remove an object from the object_tree_root and object_list. Must be called
538  * with the kmemleak_lock held _if_ kmemleak is still enabled.
539  */
540 static void __remove_object(struct kmemleak_object *object)
541 {
542 	rb_erase(&object->rb_node, &object_tree_root);
543 	list_del_rcu(&object->object_list);
544 }
545 
546 /*
547  * Look up an object in the object search tree and remove it from both
548  * object_tree_root and object_list. The returned object's use_count should be
549  * at least 1, as initially set by create_object().
550  */
551 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
552 {
553 	unsigned long flags;
554 	struct kmemleak_object *object;
555 
556 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
557 	object = lookup_object(ptr, alias);
558 	if (object)
559 		__remove_object(object);
560 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
561 
562 	return object;
563 }
564 
565 /*
566  * Save stack trace to the given array of MAX_TRACE size.
567  */
568 static int __save_stack_trace(unsigned long *trace)
569 {
570 	return stack_trace_save(trace, MAX_TRACE, 2);
571 }
572 
573 /*
574  * Create the metadata (struct kmemleak_object) corresponding to an allocated
575  * memory block and add it to the object_list and object_tree_root.
576  */
577 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
578 					     int min_count, gfp_t gfp)
579 {
580 	unsigned long flags;
581 	struct kmemleak_object *object, *parent;
582 	struct rb_node **link, *rb_parent;
583 	unsigned long untagged_ptr;
584 	unsigned long untagged_objp;
585 
586 	object = mem_pool_alloc(gfp);
587 	if (!object) {
588 		pr_warn("Cannot allocate a kmemleak_object structure\n");
589 		kmemleak_disable();
590 		return NULL;
591 	}
592 
593 	INIT_LIST_HEAD(&object->object_list);
594 	INIT_LIST_HEAD(&object->gray_list);
595 	INIT_HLIST_HEAD(&object->area_list);
596 	raw_spin_lock_init(&object->lock);
597 	atomic_set(&object->use_count, 1);
598 	object->flags = OBJECT_ALLOCATED;
599 	object->pointer = ptr;
600 	object->size = kfence_ksize((void *)ptr) ?: size;
601 	object->excess_ref = 0;
602 	object->min_count = min_count;
603 	object->count = 0;			/* white color initially */
604 	object->jiffies = jiffies;
605 	object->checksum = 0;
606 
607 	/* task information */
608 	if (in_hardirq()) {
609 		object->pid = 0;
610 		strncpy(object->comm, "hardirq", sizeof(object->comm));
611 	} else if (in_serving_softirq()) {
612 		object->pid = 0;
613 		strncpy(object->comm, "softirq", sizeof(object->comm));
614 	} else {
615 		object->pid = current->pid;
616 		/*
617 		 * There is a small chance of a race with set_task_comm(),
618 		 * however using get_task_comm() here may cause locking
619 		 * dependency issues with current->alloc_lock. In the worst
620 		 * case, the command line is not correct.
621 		 */
622 		strncpy(object->comm, current->comm, sizeof(object->comm));
623 	}
624 
625 	/* kernel backtrace */
626 	object->trace_len = __save_stack_trace(object->trace);
627 
628 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
629 
630 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
631 	min_addr = min(min_addr, untagged_ptr);
632 	max_addr = max(max_addr, untagged_ptr + size);
633 	link = &object_tree_root.rb_node;
634 	rb_parent = NULL;
635 	while (*link) {
636 		rb_parent = *link;
637 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
638 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
639 		if (untagged_ptr + size <= untagged_objp)
640 			link = &parent->rb_node.rb_left;
641 		else if (untagged_objp + parent->size <= untagged_ptr)
642 			link = &parent->rb_node.rb_right;
643 		else {
644 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
645 				      ptr);
646 			/*
647 			 * No need for parent->lock here since "parent" cannot
648 			 * be freed while the kmemleak_lock is held.
649 			 */
650 			dump_object_info(parent);
651 			kmem_cache_free(object_cache, object);
652 			object = NULL;
653 			goto out;
654 		}
655 	}
656 	rb_link_node(&object->rb_node, rb_parent, link);
657 	rb_insert_color(&object->rb_node, &object_tree_root);
658 
659 	list_add_tail_rcu(&object->object_list, &object_list);
660 out:
661 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
662 	return object;
663 }
664 
665 /*
666  * Mark the object as not allocated and schedule RCU freeing via put_object().
667  */
668 static void __delete_object(struct kmemleak_object *object)
669 {
670 	unsigned long flags;
671 
672 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
673 	WARN_ON(atomic_read(&object->use_count) < 1);
674 
675 	/*
676 	 * Locking here also ensures that the corresponding memory block
677 	 * cannot be freed when it is being scanned.
678 	 */
679 	raw_spin_lock_irqsave(&object->lock, flags);
680 	object->flags &= ~OBJECT_ALLOCATED;
681 	raw_spin_unlock_irqrestore(&object->lock, flags);
682 	put_object(object);
683 }
684 
685 /*
686  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
687  * delete it.
688  */
689 static void delete_object_full(unsigned long ptr)
690 {
691 	struct kmemleak_object *object;
692 
693 	object = find_and_remove_object(ptr, 0);
694 	if (!object) {
695 #ifdef DEBUG
696 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
697 			      ptr);
698 #endif
699 		return;
700 	}
701 	__delete_object(object);
702 }
703 
704 /*
705  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
706  * delete it. If the memory block is partially freed, the function may create
707  * additional metadata for the remaining parts of the block.
708  */
709 static void delete_object_part(unsigned long ptr, size_t size)
710 {
711 	struct kmemleak_object *object;
712 	unsigned long start, end;
713 
714 	object = find_and_remove_object(ptr, 1);
715 	if (!object) {
716 #ifdef DEBUG
717 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
718 			      ptr, size);
719 #endif
720 		return;
721 	}
722 
723 	/*
724 	 * Create one or two objects that may result from the memory block
725 	 * split. Note that partial freeing is only done by free_bootmem() and
726 	 * this happens before kmemleak_init() is called.
727 	 */
728 	start = object->pointer;
729 	end = object->pointer + object->size;
730 	if (ptr > start)
731 		create_object(start, ptr - start, object->min_count,
732 			      GFP_KERNEL);
733 	if (ptr + size < end)
734 		create_object(ptr + size, end - ptr - size, object->min_count,
735 			      GFP_KERNEL);
736 
737 	__delete_object(object);
738 }
739 
740 static void __paint_it(struct kmemleak_object *object, int color)
741 {
742 	object->min_count = color;
743 	if (color == KMEMLEAK_BLACK)
744 		object->flags |= OBJECT_NO_SCAN;
745 }
746 
747 static void paint_it(struct kmemleak_object *object, int color)
748 {
749 	unsigned long flags;
750 
751 	raw_spin_lock_irqsave(&object->lock, flags);
752 	__paint_it(object, color);
753 	raw_spin_unlock_irqrestore(&object->lock, flags);
754 }
755 
756 static void paint_ptr(unsigned long ptr, int color)
757 {
758 	struct kmemleak_object *object;
759 
760 	object = find_and_get_object(ptr, 0);
761 	if (!object) {
762 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
763 			      ptr,
764 			      (color == KMEMLEAK_GREY) ? "Grey" :
765 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
766 		return;
767 	}
768 	paint_it(object, color);
769 	put_object(object);
770 }
771 
772 /*
773  * Mark an object permanently as gray-colored so that it can no longer be
774  * reported as a leak. This is used in general to mark a false positive.
775  */
776 static void make_gray_object(unsigned long ptr)
777 {
778 	paint_ptr(ptr, KMEMLEAK_GREY);
779 }
780 
781 /*
782  * Mark the object as black-colored so that it is ignored from scans and
783  * reporting.
784  */
785 static void make_black_object(unsigned long ptr)
786 {
787 	paint_ptr(ptr, KMEMLEAK_BLACK);
788 }
789 
790 /*
791  * Add a scanning area to the object. If at least one such area is added,
792  * kmemleak will only scan these ranges rather than the whole memory block.
793  */
794 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
795 {
796 	unsigned long flags;
797 	struct kmemleak_object *object;
798 	struct kmemleak_scan_area *area = NULL;
799 
800 	object = find_and_get_object(ptr, 1);
801 	if (!object) {
802 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
803 			      ptr);
804 		return;
805 	}
806 
807 	if (scan_area_cache)
808 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
809 
810 	raw_spin_lock_irqsave(&object->lock, flags);
811 	if (!area) {
812 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
813 		/* mark the object for full scan to avoid false positives */
814 		object->flags |= OBJECT_FULL_SCAN;
815 		goto out_unlock;
816 	}
817 	if (size == SIZE_MAX) {
818 		size = object->pointer + object->size - ptr;
819 	} else if (ptr + size > object->pointer + object->size) {
820 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
821 		dump_object_info(object);
822 		kmem_cache_free(scan_area_cache, area);
823 		goto out_unlock;
824 	}
825 
826 	INIT_HLIST_NODE(&area->node);
827 	area->start = ptr;
828 	area->size = size;
829 
830 	hlist_add_head(&area->node, &object->area_list);
831 out_unlock:
832 	raw_spin_unlock_irqrestore(&object->lock, flags);
833 	put_object(object);
834 }
835 
836 /*
837  * Any surplus references (object already gray) to 'ptr' are passed to
838  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
839  * vm_struct may be used as an alternative reference to the vmalloc'ed object
840  * (see free_thread_stack()).
841  */
842 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
843 {
844 	unsigned long flags;
845 	struct kmemleak_object *object;
846 
847 	object = find_and_get_object(ptr, 0);
848 	if (!object) {
849 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
850 			      ptr);
851 		return;
852 	}
853 
854 	raw_spin_lock_irqsave(&object->lock, flags);
855 	object->excess_ref = excess_ref;
856 	raw_spin_unlock_irqrestore(&object->lock, flags);
857 	put_object(object);
858 }
859 
860 /*
861  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
862  * pointer. Such object will not be scanned by kmemleak but references to it
863  * are searched.
864  */
865 static void object_no_scan(unsigned long ptr)
866 {
867 	unsigned long flags;
868 	struct kmemleak_object *object;
869 
870 	object = find_and_get_object(ptr, 0);
871 	if (!object) {
872 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
873 		return;
874 	}
875 
876 	raw_spin_lock_irqsave(&object->lock, flags);
877 	object->flags |= OBJECT_NO_SCAN;
878 	raw_spin_unlock_irqrestore(&object->lock, flags);
879 	put_object(object);
880 }
881 
882 /**
883  * kmemleak_alloc - register a newly allocated object
884  * @ptr:	pointer to beginning of the object
885  * @size:	size of the object
886  * @min_count:	minimum number of references to this object. If during memory
887  *		scanning a number of references less than @min_count is found,
888  *		the object is reported as a memory leak. If @min_count is 0,
889  *		the object is never reported as a leak. If @min_count is -1,
890  *		the object is ignored (not scanned and not reported as a leak)
891  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
892  *
893  * This function is called from the kernel allocators when a new object
894  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
895  */
896 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
897 			  gfp_t gfp)
898 {
899 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
900 
901 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
902 		create_object((unsigned long)ptr, size, min_count, gfp);
903 }
904 EXPORT_SYMBOL_GPL(kmemleak_alloc);
905 
906 /**
907  * kmemleak_alloc_percpu - register a newly allocated __percpu object
908  * @ptr:	__percpu pointer to beginning of the object
909  * @size:	size of the object
910  * @gfp:	flags used for kmemleak internal memory allocations
911  *
912  * This function is called from the kernel percpu allocator when a new object
913  * (memory block) is allocated (alloc_percpu).
914  */
915 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
916 				 gfp_t gfp)
917 {
918 	unsigned int cpu;
919 
920 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
921 
922 	/*
923 	 * Percpu allocations are only scanned and not reported as leaks
924 	 * (min_count is set to 0).
925 	 */
926 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
927 		for_each_possible_cpu(cpu)
928 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
929 				      size, 0, gfp);
930 }
931 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
932 
933 /**
934  * kmemleak_vmalloc - register a newly vmalloc'ed object
935  * @area:	pointer to vm_struct
936  * @size:	size of the object
937  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
938  *
939  * This function is called from the vmalloc() kernel allocator when a new
940  * object (memory block) is allocated.
941  */
942 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
943 {
944 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
945 
946 	/*
947 	 * A min_count = 2 is needed because vm_struct contains a reference to
948 	 * the virtual address of the vmalloc'ed block.
949 	 */
950 	if (kmemleak_enabled) {
951 		create_object((unsigned long)area->addr, size, 2, gfp);
952 		object_set_excess_ref((unsigned long)area,
953 				      (unsigned long)area->addr);
954 	}
955 }
956 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
957 
958 /**
959  * kmemleak_free - unregister a previously registered object
960  * @ptr:	pointer to beginning of the object
961  *
962  * This function is called from the kernel allocators when an object (memory
963  * block) is freed (kmem_cache_free, kfree, vfree etc.).
964  */
965 void __ref kmemleak_free(const void *ptr)
966 {
967 	pr_debug("%s(0x%p)\n", __func__, ptr);
968 
969 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
970 		delete_object_full((unsigned long)ptr);
971 }
972 EXPORT_SYMBOL_GPL(kmemleak_free);
973 
974 /**
975  * kmemleak_free_part - partially unregister a previously registered object
976  * @ptr:	pointer to the beginning or inside the object. This also
977  *		represents the start of the range to be freed
978  * @size:	size to be unregistered
979  *
980  * This function is called when only a part of a memory block is freed
981  * (usually from the bootmem allocator).
982  */
983 void __ref kmemleak_free_part(const void *ptr, size_t size)
984 {
985 	pr_debug("%s(0x%p)\n", __func__, ptr);
986 
987 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
988 		delete_object_part((unsigned long)ptr, size);
989 }
990 EXPORT_SYMBOL_GPL(kmemleak_free_part);
991 
992 /**
993  * kmemleak_free_percpu - unregister a previously registered __percpu object
994  * @ptr:	__percpu pointer to beginning of the object
995  *
996  * This function is called from the kernel percpu allocator when an object
997  * (memory block) is freed (free_percpu).
998  */
999 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1000 {
1001 	unsigned int cpu;
1002 
1003 	pr_debug("%s(0x%p)\n", __func__, ptr);
1004 
1005 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1006 		for_each_possible_cpu(cpu)
1007 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1008 								      cpu));
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1011 
1012 /**
1013  * kmemleak_update_trace - update object allocation stack trace
1014  * @ptr:	pointer to beginning of the object
1015  *
1016  * Override the object allocation stack trace for cases where the actual
1017  * allocation place is not always useful.
1018  */
1019 void __ref kmemleak_update_trace(const void *ptr)
1020 {
1021 	struct kmemleak_object *object;
1022 	unsigned long flags;
1023 
1024 	pr_debug("%s(0x%p)\n", __func__, ptr);
1025 
1026 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1027 		return;
1028 
1029 	object = find_and_get_object((unsigned long)ptr, 1);
1030 	if (!object) {
1031 #ifdef DEBUG
1032 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1033 			      ptr);
1034 #endif
1035 		return;
1036 	}
1037 
1038 	raw_spin_lock_irqsave(&object->lock, flags);
1039 	object->trace_len = __save_stack_trace(object->trace);
1040 	raw_spin_unlock_irqrestore(&object->lock, flags);
1041 
1042 	put_object(object);
1043 }
1044 EXPORT_SYMBOL(kmemleak_update_trace);
1045 
1046 /**
1047  * kmemleak_not_leak - mark an allocated object as false positive
1048  * @ptr:	pointer to beginning of the object
1049  *
1050  * Calling this function on an object will cause the memory block to no longer
1051  * be reported as leak and always be scanned.
1052  */
1053 void __ref kmemleak_not_leak(const void *ptr)
1054 {
1055 	pr_debug("%s(0x%p)\n", __func__, ptr);
1056 
1057 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 		make_gray_object((unsigned long)ptr);
1059 }
1060 EXPORT_SYMBOL(kmemleak_not_leak);
1061 
1062 /**
1063  * kmemleak_ignore - ignore an allocated object
1064  * @ptr:	pointer to beginning of the object
1065  *
1066  * Calling this function on an object will cause the memory block to be
1067  * ignored (not scanned and not reported as a leak). This is usually done when
1068  * it is known that the corresponding block is not a leak and does not contain
1069  * any references to other allocated memory blocks.
1070  */
1071 void __ref kmemleak_ignore(const void *ptr)
1072 {
1073 	pr_debug("%s(0x%p)\n", __func__, ptr);
1074 
1075 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1076 		make_black_object((unsigned long)ptr);
1077 }
1078 EXPORT_SYMBOL(kmemleak_ignore);
1079 
1080 /**
1081  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1082  * @ptr:	pointer to beginning or inside the object. This also
1083  *		represents the start of the scan area
1084  * @size:	size of the scan area
1085  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1086  *
1087  * This function is used when it is known that only certain parts of an object
1088  * contain references to other objects. Kmemleak will only scan these areas
1089  * reducing the number false negatives.
1090  */
1091 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1092 {
1093 	pr_debug("%s(0x%p)\n", __func__, ptr);
1094 
1095 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1096 		add_scan_area((unsigned long)ptr, size, gfp);
1097 }
1098 EXPORT_SYMBOL(kmemleak_scan_area);
1099 
1100 /**
1101  * kmemleak_no_scan - do not scan an allocated object
1102  * @ptr:	pointer to beginning of the object
1103  *
1104  * This function notifies kmemleak not to scan the given memory block. Useful
1105  * in situations where it is known that the given object does not contain any
1106  * references to other objects. Kmemleak will not scan such objects reducing
1107  * the number of false negatives.
1108  */
1109 void __ref kmemleak_no_scan(const void *ptr)
1110 {
1111 	pr_debug("%s(0x%p)\n", __func__, ptr);
1112 
1113 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1114 		object_no_scan((unsigned long)ptr);
1115 }
1116 EXPORT_SYMBOL(kmemleak_no_scan);
1117 
1118 /**
1119  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1120  *			 address argument
1121  * @phys:	physical address of the object
1122  * @size:	size of the object
1123  * @min_count:	minimum number of references to this object.
1124  *              See kmemleak_alloc()
1125  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1126  */
1127 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1128 			       gfp_t gfp)
1129 {
1130 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1131 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1132 }
1133 EXPORT_SYMBOL(kmemleak_alloc_phys);
1134 
1135 /**
1136  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1137  *			     physical address argument
1138  * @phys:	physical address if the beginning or inside an object. This
1139  *		also represents the start of the range to be freed
1140  * @size:	size to be unregistered
1141  */
1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1143 {
1144 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1145 		kmemleak_free_part(__va(phys), size);
1146 }
1147 EXPORT_SYMBOL(kmemleak_free_part_phys);
1148 
1149 /**
1150  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1151  *			    address argument
1152  * @phys:	physical address of the object
1153  */
1154 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1155 {
1156 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1157 		kmemleak_not_leak(__va(phys));
1158 }
1159 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1160 
1161 /**
1162  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1163  *			  address argument
1164  * @phys:	physical address of the object
1165  */
1166 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1167 {
1168 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1169 		kmemleak_ignore(__va(phys));
1170 }
1171 EXPORT_SYMBOL(kmemleak_ignore_phys);
1172 
1173 /*
1174  * Update an object's checksum and return true if it was modified.
1175  */
1176 static bool update_checksum(struct kmemleak_object *object)
1177 {
1178 	u32 old_csum = object->checksum;
1179 
1180 	kasan_disable_current();
1181 	kcsan_disable_current();
1182 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1183 	kasan_enable_current();
1184 	kcsan_enable_current();
1185 
1186 	return object->checksum != old_csum;
1187 }
1188 
1189 /*
1190  * Update an object's references. object->lock must be held by the caller.
1191  */
1192 static void update_refs(struct kmemleak_object *object)
1193 {
1194 	if (!color_white(object)) {
1195 		/* non-orphan, ignored or new */
1196 		return;
1197 	}
1198 
1199 	/*
1200 	 * Increase the object's reference count (number of pointers to the
1201 	 * memory block). If this count reaches the required minimum, the
1202 	 * object's color will become gray and it will be added to the
1203 	 * gray_list.
1204 	 */
1205 	object->count++;
1206 	if (color_gray(object)) {
1207 		/* put_object() called when removing from gray_list */
1208 		WARN_ON(!get_object(object));
1209 		list_add_tail(&object->gray_list, &gray_list);
1210 	}
1211 }
1212 
1213 /*
1214  * Memory scanning is a long process and it needs to be interruptible. This
1215  * function checks whether such interrupt condition occurred.
1216  */
1217 static int scan_should_stop(void)
1218 {
1219 	if (!kmemleak_enabled)
1220 		return 1;
1221 
1222 	/*
1223 	 * This function may be called from either process or kthread context,
1224 	 * hence the need to check for both stop conditions.
1225 	 */
1226 	if (current->mm)
1227 		return signal_pending(current);
1228 	else
1229 		return kthread_should_stop();
1230 
1231 	return 0;
1232 }
1233 
1234 /*
1235  * Scan a memory block (exclusive range) for valid pointers and add those
1236  * found to the gray list.
1237  */
1238 static void scan_block(void *_start, void *_end,
1239 		       struct kmemleak_object *scanned)
1240 {
1241 	unsigned long *ptr;
1242 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1243 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1244 	unsigned long flags;
1245 	unsigned long untagged_ptr;
1246 
1247 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1248 	for (ptr = start; ptr < end; ptr++) {
1249 		struct kmemleak_object *object;
1250 		unsigned long pointer;
1251 		unsigned long excess_ref;
1252 
1253 		if (scan_should_stop())
1254 			break;
1255 
1256 		kasan_disable_current();
1257 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1258 		kasan_enable_current();
1259 
1260 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1261 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1262 			continue;
1263 
1264 		/*
1265 		 * No need for get_object() here since we hold kmemleak_lock.
1266 		 * object->use_count cannot be dropped to 0 while the object
1267 		 * is still present in object_tree_root and object_list
1268 		 * (with updates protected by kmemleak_lock).
1269 		 */
1270 		object = lookup_object(pointer, 1);
1271 		if (!object)
1272 			continue;
1273 		if (object == scanned)
1274 			/* self referenced, ignore */
1275 			continue;
1276 
1277 		/*
1278 		 * Avoid the lockdep recursive warning on object->lock being
1279 		 * previously acquired in scan_object(). These locks are
1280 		 * enclosed by scan_mutex.
1281 		 */
1282 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1283 		/* only pass surplus references (object already gray) */
1284 		if (color_gray(object)) {
1285 			excess_ref = object->excess_ref;
1286 			/* no need for update_refs() if object already gray */
1287 		} else {
1288 			excess_ref = 0;
1289 			update_refs(object);
1290 		}
1291 		raw_spin_unlock(&object->lock);
1292 
1293 		if (excess_ref) {
1294 			object = lookup_object(excess_ref, 0);
1295 			if (!object)
1296 				continue;
1297 			if (object == scanned)
1298 				/* circular reference, ignore */
1299 				continue;
1300 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1301 			update_refs(object);
1302 			raw_spin_unlock(&object->lock);
1303 		}
1304 	}
1305 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1306 }
1307 
1308 /*
1309  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1310  */
1311 #ifdef CONFIG_SMP
1312 static void scan_large_block(void *start, void *end)
1313 {
1314 	void *next;
1315 
1316 	while (start < end) {
1317 		next = min(start + MAX_SCAN_SIZE, end);
1318 		scan_block(start, next, NULL);
1319 		start = next;
1320 		cond_resched();
1321 	}
1322 }
1323 #endif
1324 
1325 /*
1326  * Scan a memory block corresponding to a kmemleak_object. A condition is
1327  * that object->use_count >= 1.
1328  */
1329 static void scan_object(struct kmemleak_object *object)
1330 {
1331 	struct kmemleak_scan_area *area;
1332 	unsigned long flags;
1333 
1334 	/*
1335 	 * Once the object->lock is acquired, the corresponding memory block
1336 	 * cannot be freed (the same lock is acquired in delete_object).
1337 	 */
1338 	raw_spin_lock_irqsave(&object->lock, flags);
1339 	if (object->flags & OBJECT_NO_SCAN)
1340 		goto out;
1341 	if (!(object->flags & OBJECT_ALLOCATED))
1342 		/* already freed object */
1343 		goto out;
1344 	if (hlist_empty(&object->area_list) ||
1345 	    object->flags & OBJECT_FULL_SCAN) {
1346 		void *start = (void *)object->pointer;
1347 		void *end = (void *)(object->pointer + object->size);
1348 		void *next;
1349 
1350 		do {
1351 			next = min(start + MAX_SCAN_SIZE, end);
1352 			scan_block(start, next, object);
1353 
1354 			start = next;
1355 			if (start >= end)
1356 				break;
1357 
1358 			raw_spin_unlock_irqrestore(&object->lock, flags);
1359 			cond_resched();
1360 			raw_spin_lock_irqsave(&object->lock, flags);
1361 		} while (object->flags & OBJECT_ALLOCATED);
1362 	} else
1363 		hlist_for_each_entry(area, &object->area_list, node)
1364 			scan_block((void *)area->start,
1365 				   (void *)(area->start + area->size),
1366 				   object);
1367 out:
1368 	raw_spin_unlock_irqrestore(&object->lock, flags);
1369 }
1370 
1371 /*
1372  * Scan the objects already referenced (gray objects). More objects will be
1373  * referenced and, if there are no memory leaks, all the objects are scanned.
1374  */
1375 static void scan_gray_list(void)
1376 {
1377 	struct kmemleak_object *object, *tmp;
1378 
1379 	/*
1380 	 * The list traversal is safe for both tail additions and removals
1381 	 * from inside the loop. The kmemleak objects cannot be freed from
1382 	 * outside the loop because their use_count was incremented.
1383 	 */
1384 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1385 	while (&object->gray_list != &gray_list) {
1386 		cond_resched();
1387 
1388 		/* may add new objects to the list */
1389 		if (!scan_should_stop())
1390 			scan_object(object);
1391 
1392 		tmp = list_entry(object->gray_list.next, typeof(*object),
1393 				 gray_list);
1394 
1395 		/* remove the object from the list and release it */
1396 		list_del(&object->gray_list);
1397 		put_object(object);
1398 
1399 		object = tmp;
1400 	}
1401 	WARN_ON(!list_empty(&gray_list));
1402 }
1403 
1404 /*
1405  * Scan data sections and all the referenced memory blocks allocated via the
1406  * kernel's standard allocators. This function must be called with the
1407  * scan_mutex held.
1408  */
1409 static void kmemleak_scan(void)
1410 {
1411 	unsigned long flags;
1412 	struct kmemleak_object *object;
1413 	struct zone *zone;
1414 	int __maybe_unused i;
1415 	int new_leaks = 0;
1416 
1417 	jiffies_last_scan = jiffies;
1418 
1419 	/* prepare the kmemleak_object's */
1420 	rcu_read_lock();
1421 	list_for_each_entry_rcu(object, &object_list, object_list) {
1422 		raw_spin_lock_irqsave(&object->lock, flags);
1423 #ifdef DEBUG
1424 		/*
1425 		 * With a few exceptions there should be a maximum of
1426 		 * 1 reference to any object at this point.
1427 		 */
1428 		if (atomic_read(&object->use_count) > 1) {
1429 			pr_debug("object->use_count = %d\n",
1430 				 atomic_read(&object->use_count));
1431 			dump_object_info(object);
1432 		}
1433 #endif
1434 		/* reset the reference count (whiten the object) */
1435 		object->count = 0;
1436 		if (color_gray(object) && get_object(object))
1437 			list_add_tail(&object->gray_list, &gray_list);
1438 
1439 		raw_spin_unlock_irqrestore(&object->lock, flags);
1440 	}
1441 	rcu_read_unlock();
1442 
1443 #ifdef CONFIG_SMP
1444 	/* per-cpu sections scanning */
1445 	for_each_possible_cpu(i)
1446 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1447 				 __per_cpu_end + per_cpu_offset(i));
1448 #endif
1449 
1450 	/*
1451 	 * Struct page scanning for each node.
1452 	 */
1453 	get_online_mems();
1454 	for_each_populated_zone(zone) {
1455 		unsigned long start_pfn = zone->zone_start_pfn;
1456 		unsigned long end_pfn = zone_end_pfn(zone);
1457 		unsigned long pfn;
1458 
1459 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1460 			struct page *page = pfn_to_online_page(pfn);
1461 
1462 			if (!page)
1463 				continue;
1464 
1465 			/* only scan pages belonging to this zone */
1466 			if (page_zone(page) != zone)
1467 				continue;
1468 			/* only scan if page is in use */
1469 			if (page_count(page) == 0)
1470 				continue;
1471 			scan_block(page, page + 1, NULL);
1472 			if (!(pfn & 63))
1473 				cond_resched();
1474 		}
1475 	}
1476 	put_online_mems();
1477 
1478 	/*
1479 	 * Scanning the task stacks (may introduce false negatives).
1480 	 */
1481 	if (kmemleak_stack_scan) {
1482 		struct task_struct *p, *g;
1483 
1484 		rcu_read_lock();
1485 		for_each_process_thread(g, p) {
1486 			void *stack = try_get_task_stack(p);
1487 			if (stack) {
1488 				scan_block(stack, stack + THREAD_SIZE, NULL);
1489 				put_task_stack(p);
1490 			}
1491 		}
1492 		rcu_read_unlock();
1493 	}
1494 
1495 	/*
1496 	 * Scan the objects already referenced from the sections scanned
1497 	 * above.
1498 	 */
1499 	scan_gray_list();
1500 
1501 	/*
1502 	 * Check for new or unreferenced objects modified since the previous
1503 	 * scan and color them gray until the next scan.
1504 	 */
1505 	rcu_read_lock();
1506 	list_for_each_entry_rcu(object, &object_list, object_list) {
1507 		raw_spin_lock_irqsave(&object->lock, flags);
1508 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1509 		    && update_checksum(object) && get_object(object)) {
1510 			/* color it gray temporarily */
1511 			object->count = object->min_count;
1512 			list_add_tail(&object->gray_list, &gray_list);
1513 		}
1514 		raw_spin_unlock_irqrestore(&object->lock, flags);
1515 	}
1516 	rcu_read_unlock();
1517 
1518 	/*
1519 	 * Re-scan the gray list for modified unreferenced objects.
1520 	 */
1521 	scan_gray_list();
1522 
1523 	/*
1524 	 * If scanning was stopped do not report any new unreferenced objects.
1525 	 */
1526 	if (scan_should_stop())
1527 		return;
1528 
1529 	/*
1530 	 * Scanning result reporting.
1531 	 */
1532 	rcu_read_lock();
1533 	list_for_each_entry_rcu(object, &object_list, object_list) {
1534 		raw_spin_lock_irqsave(&object->lock, flags);
1535 		if (unreferenced_object(object) &&
1536 		    !(object->flags & OBJECT_REPORTED)) {
1537 			object->flags |= OBJECT_REPORTED;
1538 
1539 			if (kmemleak_verbose)
1540 				print_unreferenced(NULL, object);
1541 
1542 			new_leaks++;
1543 		}
1544 		raw_spin_unlock_irqrestore(&object->lock, flags);
1545 	}
1546 	rcu_read_unlock();
1547 
1548 	if (new_leaks) {
1549 		kmemleak_found_leaks = true;
1550 
1551 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1552 			new_leaks);
1553 	}
1554 
1555 }
1556 
1557 /*
1558  * Thread function performing automatic memory scanning. Unreferenced objects
1559  * at the end of a memory scan are reported but only the first time.
1560  */
1561 static int kmemleak_scan_thread(void *arg)
1562 {
1563 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1564 
1565 	pr_info("Automatic memory scanning thread started\n");
1566 	set_user_nice(current, 10);
1567 
1568 	/*
1569 	 * Wait before the first scan to allow the system to fully initialize.
1570 	 */
1571 	if (first_run) {
1572 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1573 		first_run = 0;
1574 		while (timeout && !kthread_should_stop())
1575 			timeout = schedule_timeout_interruptible(timeout);
1576 	}
1577 
1578 	while (!kthread_should_stop()) {
1579 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1580 
1581 		mutex_lock(&scan_mutex);
1582 		kmemleak_scan();
1583 		mutex_unlock(&scan_mutex);
1584 
1585 		/* wait before the next scan */
1586 		while (timeout && !kthread_should_stop())
1587 			timeout = schedule_timeout_interruptible(timeout);
1588 	}
1589 
1590 	pr_info("Automatic memory scanning thread ended\n");
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * Start the automatic memory scanning thread. This function must be called
1597  * with the scan_mutex held.
1598  */
1599 static void start_scan_thread(void)
1600 {
1601 	if (scan_thread)
1602 		return;
1603 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1604 	if (IS_ERR(scan_thread)) {
1605 		pr_warn("Failed to create the scan thread\n");
1606 		scan_thread = NULL;
1607 	}
1608 }
1609 
1610 /*
1611  * Stop the automatic memory scanning thread.
1612  */
1613 static void stop_scan_thread(void)
1614 {
1615 	if (scan_thread) {
1616 		kthread_stop(scan_thread);
1617 		scan_thread = NULL;
1618 	}
1619 }
1620 
1621 /*
1622  * Iterate over the object_list and return the first valid object at or after
1623  * the required position with its use_count incremented. The function triggers
1624  * a memory scanning when the pos argument points to the first position.
1625  */
1626 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1627 {
1628 	struct kmemleak_object *object;
1629 	loff_t n = *pos;
1630 	int err;
1631 
1632 	err = mutex_lock_interruptible(&scan_mutex);
1633 	if (err < 0)
1634 		return ERR_PTR(err);
1635 
1636 	rcu_read_lock();
1637 	list_for_each_entry_rcu(object, &object_list, object_list) {
1638 		if (n-- > 0)
1639 			continue;
1640 		if (get_object(object))
1641 			goto out;
1642 	}
1643 	object = NULL;
1644 out:
1645 	return object;
1646 }
1647 
1648 /*
1649  * Return the next object in the object_list. The function decrements the
1650  * use_count of the previous object and increases that of the next one.
1651  */
1652 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1653 {
1654 	struct kmemleak_object *prev_obj = v;
1655 	struct kmemleak_object *next_obj = NULL;
1656 	struct kmemleak_object *obj = prev_obj;
1657 
1658 	++(*pos);
1659 
1660 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1661 		if (get_object(obj)) {
1662 			next_obj = obj;
1663 			break;
1664 		}
1665 	}
1666 
1667 	put_object(prev_obj);
1668 	return next_obj;
1669 }
1670 
1671 /*
1672  * Decrement the use_count of the last object required, if any.
1673  */
1674 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1675 {
1676 	if (!IS_ERR(v)) {
1677 		/*
1678 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1679 		 * waiting was interrupted, so only release it if !IS_ERR.
1680 		 */
1681 		rcu_read_unlock();
1682 		mutex_unlock(&scan_mutex);
1683 		if (v)
1684 			put_object(v);
1685 	}
1686 }
1687 
1688 /*
1689  * Print the information for an unreferenced object to the seq file.
1690  */
1691 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1692 {
1693 	struct kmemleak_object *object = v;
1694 	unsigned long flags;
1695 
1696 	raw_spin_lock_irqsave(&object->lock, flags);
1697 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1698 		print_unreferenced(seq, object);
1699 	raw_spin_unlock_irqrestore(&object->lock, flags);
1700 	return 0;
1701 }
1702 
1703 static const struct seq_operations kmemleak_seq_ops = {
1704 	.start = kmemleak_seq_start,
1705 	.next  = kmemleak_seq_next,
1706 	.stop  = kmemleak_seq_stop,
1707 	.show  = kmemleak_seq_show,
1708 };
1709 
1710 static int kmemleak_open(struct inode *inode, struct file *file)
1711 {
1712 	return seq_open(file, &kmemleak_seq_ops);
1713 }
1714 
1715 static int dump_str_object_info(const char *str)
1716 {
1717 	unsigned long flags;
1718 	struct kmemleak_object *object;
1719 	unsigned long addr;
1720 
1721 	if (kstrtoul(str, 0, &addr))
1722 		return -EINVAL;
1723 	object = find_and_get_object(addr, 0);
1724 	if (!object) {
1725 		pr_info("Unknown object at 0x%08lx\n", addr);
1726 		return -EINVAL;
1727 	}
1728 
1729 	raw_spin_lock_irqsave(&object->lock, flags);
1730 	dump_object_info(object);
1731 	raw_spin_unlock_irqrestore(&object->lock, flags);
1732 
1733 	put_object(object);
1734 	return 0;
1735 }
1736 
1737 /*
1738  * We use grey instead of black to ensure we can do future scans on the same
1739  * objects. If we did not do future scans these black objects could
1740  * potentially contain references to newly allocated objects in the future and
1741  * we'd end up with false positives.
1742  */
1743 static void kmemleak_clear(void)
1744 {
1745 	struct kmemleak_object *object;
1746 	unsigned long flags;
1747 
1748 	rcu_read_lock();
1749 	list_for_each_entry_rcu(object, &object_list, object_list) {
1750 		raw_spin_lock_irqsave(&object->lock, flags);
1751 		if ((object->flags & OBJECT_REPORTED) &&
1752 		    unreferenced_object(object))
1753 			__paint_it(object, KMEMLEAK_GREY);
1754 		raw_spin_unlock_irqrestore(&object->lock, flags);
1755 	}
1756 	rcu_read_unlock();
1757 
1758 	kmemleak_found_leaks = false;
1759 }
1760 
1761 static void __kmemleak_do_cleanup(void);
1762 
1763 /*
1764  * File write operation to configure kmemleak at run-time. The following
1765  * commands can be written to the /sys/kernel/debug/kmemleak file:
1766  *   off	- disable kmemleak (irreversible)
1767  *   stack=on	- enable the task stacks scanning
1768  *   stack=off	- disable the tasks stacks scanning
1769  *   scan=on	- start the automatic memory scanning thread
1770  *   scan=off	- stop the automatic memory scanning thread
1771  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1772  *		  disable it)
1773  *   scan	- trigger a memory scan
1774  *   clear	- mark all current reported unreferenced kmemleak objects as
1775  *		  grey to ignore printing them, or free all kmemleak objects
1776  *		  if kmemleak has been disabled.
1777  *   dump=...	- dump information about the object found at the given address
1778  */
1779 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1780 			      size_t size, loff_t *ppos)
1781 {
1782 	char buf[64];
1783 	int buf_size;
1784 	int ret;
1785 
1786 	buf_size = min(size, (sizeof(buf) - 1));
1787 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1788 		return -EFAULT;
1789 	buf[buf_size] = 0;
1790 
1791 	ret = mutex_lock_interruptible(&scan_mutex);
1792 	if (ret < 0)
1793 		return ret;
1794 
1795 	if (strncmp(buf, "clear", 5) == 0) {
1796 		if (kmemleak_enabled)
1797 			kmemleak_clear();
1798 		else
1799 			__kmemleak_do_cleanup();
1800 		goto out;
1801 	}
1802 
1803 	if (!kmemleak_enabled) {
1804 		ret = -EPERM;
1805 		goto out;
1806 	}
1807 
1808 	if (strncmp(buf, "off", 3) == 0)
1809 		kmemleak_disable();
1810 	else if (strncmp(buf, "stack=on", 8) == 0)
1811 		kmemleak_stack_scan = 1;
1812 	else if (strncmp(buf, "stack=off", 9) == 0)
1813 		kmemleak_stack_scan = 0;
1814 	else if (strncmp(buf, "scan=on", 7) == 0)
1815 		start_scan_thread();
1816 	else if (strncmp(buf, "scan=off", 8) == 0)
1817 		stop_scan_thread();
1818 	else if (strncmp(buf, "scan=", 5) == 0) {
1819 		unsigned secs;
1820 		unsigned long msecs;
1821 
1822 		ret = kstrtouint(buf + 5, 0, &secs);
1823 		if (ret < 0)
1824 			goto out;
1825 
1826 		msecs = secs * MSEC_PER_SEC;
1827 		if (msecs > UINT_MAX)
1828 			msecs = UINT_MAX;
1829 
1830 		stop_scan_thread();
1831 		if (msecs) {
1832 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1833 			start_scan_thread();
1834 		}
1835 	} else if (strncmp(buf, "scan", 4) == 0)
1836 		kmemleak_scan();
1837 	else if (strncmp(buf, "dump=", 5) == 0)
1838 		ret = dump_str_object_info(buf + 5);
1839 	else
1840 		ret = -EINVAL;
1841 
1842 out:
1843 	mutex_unlock(&scan_mutex);
1844 	if (ret < 0)
1845 		return ret;
1846 
1847 	/* ignore the rest of the buffer, only one command at a time */
1848 	*ppos += size;
1849 	return size;
1850 }
1851 
1852 static const struct file_operations kmemleak_fops = {
1853 	.owner		= THIS_MODULE,
1854 	.open		= kmemleak_open,
1855 	.read		= seq_read,
1856 	.write		= kmemleak_write,
1857 	.llseek		= seq_lseek,
1858 	.release	= seq_release,
1859 };
1860 
1861 static void __kmemleak_do_cleanup(void)
1862 {
1863 	struct kmemleak_object *object, *tmp;
1864 
1865 	/*
1866 	 * Kmemleak has already been disabled, no need for RCU list traversal
1867 	 * or kmemleak_lock held.
1868 	 */
1869 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1870 		__remove_object(object);
1871 		__delete_object(object);
1872 	}
1873 }
1874 
1875 /*
1876  * Stop the memory scanning thread and free the kmemleak internal objects if
1877  * no previous scan thread (otherwise, kmemleak may still have some useful
1878  * information on memory leaks).
1879  */
1880 static void kmemleak_do_cleanup(struct work_struct *work)
1881 {
1882 	stop_scan_thread();
1883 
1884 	mutex_lock(&scan_mutex);
1885 	/*
1886 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1887 	 * longer track object freeing. Ordering of the scan thread stopping and
1888 	 * the memory accesses below is guaranteed by the kthread_stop()
1889 	 * function.
1890 	 */
1891 	kmemleak_free_enabled = 0;
1892 	mutex_unlock(&scan_mutex);
1893 
1894 	if (!kmemleak_found_leaks)
1895 		__kmemleak_do_cleanup();
1896 	else
1897 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1898 }
1899 
1900 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1901 
1902 /*
1903  * Disable kmemleak. No memory allocation/freeing will be traced once this
1904  * function is called. Disabling kmemleak is an irreversible operation.
1905  */
1906 static void kmemleak_disable(void)
1907 {
1908 	/* atomically check whether it was already invoked */
1909 	if (cmpxchg(&kmemleak_error, 0, 1))
1910 		return;
1911 
1912 	/* stop any memory operation tracing */
1913 	kmemleak_enabled = 0;
1914 
1915 	/* check whether it is too early for a kernel thread */
1916 	if (kmemleak_initialized)
1917 		schedule_work(&cleanup_work);
1918 	else
1919 		kmemleak_free_enabled = 0;
1920 
1921 	pr_info("Kernel memory leak detector disabled\n");
1922 }
1923 
1924 /*
1925  * Allow boot-time kmemleak disabling (enabled by default).
1926  */
1927 static int __init kmemleak_boot_config(char *str)
1928 {
1929 	if (!str)
1930 		return -EINVAL;
1931 	if (strcmp(str, "off") == 0)
1932 		kmemleak_disable();
1933 	else if (strcmp(str, "on") == 0)
1934 		kmemleak_skip_disable = 1;
1935 	else
1936 		return -EINVAL;
1937 	return 0;
1938 }
1939 early_param("kmemleak", kmemleak_boot_config);
1940 
1941 /*
1942  * Kmemleak initialization.
1943  */
1944 void __init kmemleak_init(void)
1945 {
1946 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1947 	if (!kmemleak_skip_disable) {
1948 		kmemleak_disable();
1949 		return;
1950 	}
1951 #endif
1952 
1953 	if (kmemleak_error)
1954 		return;
1955 
1956 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1957 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1958 
1959 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1960 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1961 
1962 	/* register the data/bss sections */
1963 	create_object((unsigned long)_sdata, _edata - _sdata,
1964 		      KMEMLEAK_GREY, GFP_ATOMIC);
1965 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1966 		      KMEMLEAK_GREY, GFP_ATOMIC);
1967 	/* only register .data..ro_after_init if not within .data */
1968 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1969 		create_object((unsigned long)__start_ro_after_init,
1970 			      __end_ro_after_init - __start_ro_after_init,
1971 			      KMEMLEAK_GREY, GFP_ATOMIC);
1972 }
1973 
1974 /*
1975  * Late initialization function.
1976  */
1977 static int __init kmemleak_late_init(void)
1978 {
1979 	kmemleak_initialized = 1;
1980 
1981 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1982 
1983 	if (kmemleak_error) {
1984 		/*
1985 		 * Some error occurred and kmemleak was disabled. There is a
1986 		 * small chance that kmemleak_disable() was called immediately
1987 		 * after setting kmemleak_initialized and we may end up with
1988 		 * two clean-up threads but serialized by scan_mutex.
1989 		 */
1990 		schedule_work(&cleanup_work);
1991 		return -ENOMEM;
1992 	}
1993 
1994 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1995 		mutex_lock(&scan_mutex);
1996 		start_scan_thread();
1997 		mutex_unlock(&scan_mutex);
1998 	}
1999 
2000 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2001 		mem_pool_free_count);
2002 
2003 	return 0;
2004 }
2005 late_initcall(kmemleak_late_init);
2006