1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/module.h> 90 #include <linux/mutex.h> 91 #include <linux/rcupdate.h> 92 #include <linux/stacktrace.h> 93 #include <linux/cache.h> 94 #include <linux/percpu.h> 95 #include <linux/memblock.h> 96 #include <linux/pfn.h> 97 #include <linux/mmzone.h> 98 #include <linux/slab.h> 99 #include <linux/thread_info.h> 100 #include <linux/err.h> 101 #include <linux/uaccess.h> 102 #include <linux/string.h> 103 #include <linux/nodemask.h> 104 #include <linux/mm.h> 105 #include <linux/workqueue.h> 106 #include <linux/crc32.h> 107 108 #include <asm/sections.h> 109 #include <asm/processor.h> 110 #include <linux/atomic.h> 111 112 #include <linux/kasan.h> 113 #include <linux/kmemleak.h> 114 #include <linux/memory_hotplug.h> 115 116 /* 117 * Kmemleak configuration and common defines. 118 */ 119 #define MAX_TRACE 16 /* stack trace length */ 120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 124 125 #define BYTES_PER_POINTER sizeof(void *) 126 127 /* GFP bitmask for kmemleak internal allocations */ 128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 129 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 130 __GFP_NOWARN | __GFP_NOFAIL) 131 132 /* scanning area inside a memory block */ 133 struct kmemleak_scan_area { 134 struct hlist_node node; 135 unsigned long start; 136 size_t size; 137 }; 138 139 #define KMEMLEAK_GREY 0 140 #define KMEMLEAK_BLACK -1 141 142 /* 143 * Structure holding the metadata for each allocated memory block. 144 * Modifications to such objects should be made while holding the 145 * object->lock. Insertions or deletions from object_list, gray_list or 146 * rb_node are already protected by the corresponding locks or mutex (see 147 * the notes on locking above). These objects are reference-counted 148 * (use_count) and freed using the RCU mechanism. 149 */ 150 struct kmemleak_object { 151 spinlock_t lock; 152 unsigned int flags; /* object status flags */ 153 struct list_head object_list; 154 struct list_head gray_list; 155 struct rb_node rb_node; 156 struct rcu_head rcu; /* object_list lockless traversal */ 157 /* object usage count; object freed when use_count == 0 */ 158 atomic_t use_count; 159 unsigned long pointer; 160 size_t size; 161 /* pass surplus references to this pointer */ 162 unsigned long excess_ref; 163 /* minimum number of a pointers found before it is considered leak */ 164 int min_count; 165 /* the total number of pointers found pointing to this object */ 166 int count; 167 /* checksum for detecting modified objects */ 168 u32 checksum; 169 /* memory ranges to be scanned inside an object (empty for all) */ 170 struct hlist_head area_list; 171 unsigned long trace[MAX_TRACE]; 172 unsigned int trace_len; 173 unsigned long jiffies; /* creation timestamp */ 174 pid_t pid; /* pid of the current task */ 175 char comm[TASK_COMM_LEN]; /* executable name */ 176 }; 177 178 /* flag representing the memory block allocation status */ 179 #define OBJECT_ALLOCATED (1 << 0) 180 /* flag set after the first reporting of an unreference object */ 181 #define OBJECT_REPORTED (1 << 1) 182 /* flag set to not scan the object */ 183 #define OBJECT_NO_SCAN (1 << 2) 184 185 #define HEX_PREFIX " " 186 /* number of bytes to print per line; must be 16 or 32 */ 187 #define HEX_ROW_SIZE 16 188 /* number of bytes to print at a time (1, 2, 4, 8) */ 189 #define HEX_GROUP_SIZE 1 190 /* include ASCII after the hex output */ 191 #define HEX_ASCII 1 192 /* max number of lines to be printed */ 193 #define HEX_MAX_LINES 2 194 195 /* the list of all allocated objects */ 196 static LIST_HEAD(object_list); 197 /* the list of gray-colored objects (see color_gray comment below) */ 198 static LIST_HEAD(gray_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* rw_lock protecting the access to object_list and object_tree_root */ 202 static DEFINE_RWLOCK(kmemleak_lock); 203 204 /* allocation caches for kmemleak internal data */ 205 static struct kmem_cache *object_cache; 206 static struct kmem_cache *scan_area_cache; 207 208 /* set if tracing memory operations is enabled */ 209 static int kmemleak_enabled; 210 /* same as above but only for the kmemleak_free() callback */ 211 static int kmemleak_free_enabled; 212 /* set in the late_initcall if there were no errors */ 213 static int kmemleak_initialized; 214 /* enables or disables early logging of the memory operations */ 215 static int kmemleak_early_log = 1; 216 /* set if a kmemleak warning was issued */ 217 static int kmemleak_warning; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 static struct task_struct *scan_thread; 226 /* used to avoid reporting of recently allocated objects */ 227 static unsigned long jiffies_min_age; 228 static unsigned long jiffies_last_scan; 229 /* delay between automatic memory scannings */ 230 static signed long jiffies_scan_wait; 231 /* enables or disables the task stacks scanning */ 232 static int kmemleak_stack_scan = 1; 233 /* protects the memory scanning, parameters and debug/kmemleak file access */ 234 static DEFINE_MUTEX(scan_mutex); 235 /* setting kmemleak=on, will set this var, skipping the disable */ 236 static int kmemleak_skip_disable; 237 /* If there are leaks that can be reported */ 238 static bool kmemleak_found_leaks; 239 240 static bool kmemleak_verbose; 241 module_param_named(verbose, kmemleak_verbose, bool, 0600); 242 243 /* 244 * Early object allocation/freeing logging. Kmemleak is initialized after the 245 * kernel allocator. However, both the kernel allocator and kmemleak may 246 * allocate memory blocks which need to be tracked. Kmemleak defines an 247 * arbitrary buffer to hold the allocation/freeing information before it is 248 * fully initialized. 249 */ 250 251 /* kmemleak operation type for early logging */ 252 enum { 253 KMEMLEAK_ALLOC, 254 KMEMLEAK_ALLOC_PERCPU, 255 KMEMLEAK_FREE, 256 KMEMLEAK_FREE_PART, 257 KMEMLEAK_FREE_PERCPU, 258 KMEMLEAK_NOT_LEAK, 259 KMEMLEAK_IGNORE, 260 KMEMLEAK_SCAN_AREA, 261 KMEMLEAK_NO_SCAN, 262 KMEMLEAK_SET_EXCESS_REF 263 }; 264 265 /* 266 * Structure holding the information passed to kmemleak callbacks during the 267 * early logging. 268 */ 269 struct early_log { 270 int op_type; /* kmemleak operation type */ 271 int min_count; /* minimum reference count */ 272 const void *ptr; /* allocated/freed memory block */ 273 union { 274 size_t size; /* memory block size */ 275 unsigned long excess_ref; /* surplus reference passing */ 276 }; 277 unsigned long trace[MAX_TRACE]; /* stack trace */ 278 unsigned int trace_len; /* stack trace length */ 279 }; 280 281 /* early logging buffer and current position */ 282 static struct early_log 283 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 284 static int crt_early_log __initdata; 285 286 static void kmemleak_disable(void); 287 288 /* 289 * Print a warning and dump the stack trace. 290 */ 291 #define kmemleak_warn(x...) do { \ 292 pr_warn(x); \ 293 dump_stack(); \ 294 kmemleak_warning = 1; \ 295 } while (0) 296 297 /* 298 * Macro invoked when a serious kmemleak condition occurred and cannot be 299 * recovered from. Kmemleak will be disabled and further allocation/freeing 300 * tracing no longer available. 301 */ 302 #define kmemleak_stop(x...) do { \ 303 kmemleak_warn(x); \ 304 kmemleak_disable(); \ 305 } while (0) 306 307 #define warn_or_seq_printf(seq, fmt, ...) do { \ 308 if (seq) \ 309 seq_printf(seq, fmt, ##__VA_ARGS__); \ 310 else \ 311 pr_warn(fmt, ##__VA_ARGS__); \ 312 } while (0) 313 314 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 315 int rowsize, int groupsize, const void *buf, 316 size_t len, bool ascii) 317 { 318 if (seq) 319 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 320 buf, len, ascii); 321 else 322 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 323 rowsize, groupsize, buf, len, ascii); 324 } 325 326 /* 327 * Printing of the objects hex dump to the seq file. The number of lines to be 328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 330 * with the object->lock held. 331 */ 332 static void hex_dump_object(struct seq_file *seq, 333 struct kmemleak_object *object) 334 { 335 const u8 *ptr = (const u8 *)object->pointer; 336 size_t len; 337 338 /* limit the number of lines to HEX_MAX_LINES */ 339 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 340 341 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 342 kasan_disable_current(); 343 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 344 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 345 kasan_enable_current(); 346 } 347 348 /* 349 * Object colors, encoded with count and min_count: 350 * - white - orphan object, not enough references to it (count < min_count) 351 * - gray - not orphan, not marked as false positive (min_count == 0) or 352 * sufficient references to it (count >= min_count) 353 * - black - ignore, it doesn't contain references (e.g. text section) 354 * (min_count == -1). No function defined for this color. 355 * Newly created objects don't have any color assigned (object->count == -1) 356 * before the next memory scan when they become white. 357 */ 358 static bool color_white(const struct kmemleak_object *object) 359 { 360 return object->count != KMEMLEAK_BLACK && 361 object->count < object->min_count; 362 } 363 364 static bool color_gray(const struct kmemleak_object *object) 365 { 366 return object->min_count != KMEMLEAK_BLACK && 367 object->count >= object->min_count; 368 } 369 370 /* 371 * Objects are considered unreferenced only if their color is white, they have 372 * not be deleted and have a minimum age to avoid false positives caused by 373 * pointers temporarily stored in CPU registers. 374 */ 375 static bool unreferenced_object(struct kmemleak_object *object) 376 { 377 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 378 time_before_eq(object->jiffies + jiffies_min_age, 379 jiffies_last_scan); 380 } 381 382 /* 383 * Printing of the unreferenced objects information to the seq file. The 384 * print_unreferenced function must be called with the object->lock held. 385 */ 386 static void print_unreferenced(struct seq_file *seq, 387 struct kmemleak_object *object) 388 { 389 int i; 390 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 391 392 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 393 object->pointer, object->size); 394 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 395 object->comm, object->pid, object->jiffies, 396 msecs_age / 1000, msecs_age % 1000); 397 hex_dump_object(seq, object); 398 warn_or_seq_printf(seq, " backtrace:\n"); 399 400 for (i = 0; i < object->trace_len; i++) { 401 void *ptr = (void *)object->trace[i]; 402 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 403 } 404 } 405 406 /* 407 * Print the kmemleak_object information. This function is used mainly for 408 * debugging special cases when kmemleak operations. It must be called with 409 * the object->lock held. 410 */ 411 static void dump_object_info(struct kmemleak_object *object) 412 { 413 struct stack_trace trace; 414 415 trace.nr_entries = object->trace_len; 416 trace.entries = object->trace; 417 418 pr_notice("Object 0x%08lx (size %zu):\n", 419 object->pointer, object->size); 420 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 421 object->comm, object->pid, object->jiffies); 422 pr_notice(" min_count = %d\n", object->min_count); 423 pr_notice(" count = %d\n", object->count); 424 pr_notice(" flags = 0x%x\n", object->flags); 425 pr_notice(" checksum = %u\n", object->checksum); 426 pr_notice(" backtrace:\n"); 427 print_stack_trace(&trace, 4); 428 } 429 430 /* 431 * Look-up a memory block metadata (kmemleak_object) in the object search 432 * tree based on a pointer value. If alias is 0, only values pointing to the 433 * beginning of the memory block are allowed. The kmemleak_lock must be held 434 * when calling this function. 435 */ 436 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 437 { 438 struct rb_node *rb = object_tree_root.rb_node; 439 440 while (rb) { 441 struct kmemleak_object *object = 442 rb_entry(rb, struct kmemleak_object, rb_node); 443 if (ptr < object->pointer) 444 rb = object->rb_node.rb_left; 445 else if (object->pointer + object->size <= ptr) 446 rb = object->rb_node.rb_right; 447 else if (object->pointer == ptr || alias) 448 return object; 449 else { 450 kmemleak_warn("Found object by alias at 0x%08lx\n", 451 ptr); 452 dump_object_info(object); 453 break; 454 } 455 } 456 return NULL; 457 } 458 459 /* 460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 461 * that once an object's use_count reached 0, the RCU freeing was already 462 * registered and the object should no longer be used. This function must be 463 * called under the protection of rcu_read_lock(). 464 */ 465 static int get_object(struct kmemleak_object *object) 466 { 467 return atomic_inc_not_zero(&object->use_count); 468 } 469 470 /* 471 * RCU callback to free a kmemleak_object. 472 */ 473 static void free_object_rcu(struct rcu_head *rcu) 474 { 475 struct hlist_node *tmp; 476 struct kmemleak_scan_area *area; 477 struct kmemleak_object *object = 478 container_of(rcu, struct kmemleak_object, rcu); 479 480 /* 481 * Once use_count is 0 (guaranteed by put_object), there is no other 482 * code accessing this object, hence no need for locking. 483 */ 484 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 485 hlist_del(&area->node); 486 kmem_cache_free(scan_area_cache, area); 487 } 488 kmem_cache_free(object_cache, object); 489 } 490 491 /* 492 * Decrement the object use_count. Once the count is 0, free the object using 493 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 494 * delete_object() path, the delayed RCU freeing ensures that there is no 495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 496 * is also possible. 497 */ 498 static void put_object(struct kmemleak_object *object) 499 { 500 if (!atomic_dec_and_test(&object->use_count)) 501 return; 502 503 /* should only get here after delete_object was called */ 504 WARN_ON(object->flags & OBJECT_ALLOCATED); 505 506 call_rcu(&object->rcu, free_object_rcu); 507 } 508 509 /* 510 * Look up an object in the object search tree and increase its use_count. 511 */ 512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 513 { 514 unsigned long flags; 515 struct kmemleak_object *object; 516 517 rcu_read_lock(); 518 read_lock_irqsave(&kmemleak_lock, flags); 519 object = lookup_object(ptr, alias); 520 read_unlock_irqrestore(&kmemleak_lock, flags); 521 522 /* check whether the object is still available */ 523 if (object && !get_object(object)) 524 object = NULL; 525 rcu_read_unlock(); 526 527 return object; 528 } 529 530 /* 531 * Look up an object in the object search tree and remove it from both 532 * object_tree_root and object_list. The returned object's use_count should be 533 * at least 1, as initially set by create_object(). 534 */ 535 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 536 { 537 unsigned long flags; 538 struct kmemleak_object *object; 539 540 write_lock_irqsave(&kmemleak_lock, flags); 541 object = lookup_object(ptr, alias); 542 if (object) { 543 rb_erase(&object->rb_node, &object_tree_root); 544 list_del_rcu(&object->object_list); 545 } 546 write_unlock_irqrestore(&kmemleak_lock, flags); 547 548 return object; 549 } 550 551 /* 552 * Save stack trace to the given array of MAX_TRACE size. 553 */ 554 static int __save_stack_trace(unsigned long *trace) 555 { 556 struct stack_trace stack_trace; 557 558 stack_trace.max_entries = MAX_TRACE; 559 stack_trace.nr_entries = 0; 560 stack_trace.entries = trace; 561 stack_trace.skip = 2; 562 save_stack_trace(&stack_trace); 563 564 return stack_trace.nr_entries; 565 } 566 567 /* 568 * Create the metadata (struct kmemleak_object) corresponding to an allocated 569 * memory block and add it to the object_list and object_tree_root. 570 */ 571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 572 int min_count, gfp_t gfp) 573 { 574 unsigned long flags; 575 struct kmemleak_object *object, *parent; 576 struct rb_node **link, *rb_parent; 577 unsigned long untagged_ptr; 578 579 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 580 if (!object) { 581 pr_warn("Cannot allocate a kmemleak_object structure\n"); 582 kmemleak_disable(); 583 return NULL; 584 } 585 586 INIT_LIST_HEAD(&object->object_list); 587 INIT_LIST_HEAD(&object->gray_list); 588 INIT_HLIST_HEAD(&object->area_list); 589 spin_lock_init(&object->lock); 590 atomic_set(&object->use_count, 1); 591 object->flags = OBJECT_ALLOCATED; 592 object->pointer = ptr; 593 object->size = size; 594 object->excess_ref = 0; 595 object->min_count = min_count; 596 object->count = 0; /* white color initially */ 597 object->jiffies = jiffies; 598 object->checksum = 0; 599 600 /* task information */ 601 if (in_irq()) { 602 object->pid = 0; 603 strncpy(object->comm, "hardirq", sizeof(object->comm)); 604 } else if (in_softirq()) { 605 object->pid = 0; 606 strncpy(object->comm, "softirq", sizeof(object->comm)); 607 } else { 608 object->pid = current->pid; 609 /* 610 * There is a small chance of a race with set_task_comm(), 611 * however using get_task_comm() here may cause locking 612 * dependency issues with current->alloc_lock. In the worst 613 * case, the command line is not correct. 614 */ 615 strncpy(object->comm, current->comm, sizeof(object->comm)); 616 } 617 618 /* kernel backtrace */ 619 object->trace_len = __save_stack_trace(object->trace); 620 621 write_lock_irqsave(&kmemleak_lock, flags); 622 623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 624 min_addr = min(min_addr, untagged_ptr); 625 max_addr = max(max_addr, untagged_ptr + size); 626 link = &object_tree_root.rb_node; 627 rb_parent = NULL; 628 while (*link) { 629 rb_parent = *link; 630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 631 if (ptr + size <= parent->pointer) 632 link = &parent->rb_node.rb_left; 633 else if (parent->pointer + parent->size <= ptr) 634 link = &parent->rb_node.rb_right; 635 else { 636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 637 ptr); 638 /* 639 * No need for parent->lock here since "parent" cannot 640 * be freed while the kmemleak_lock is held. 641 */ 642 dump_object_info(parent); 643 kmem_cache_free(object_cache, object); 644 object = NULL; 645 goto out; 646 } 647 } 648 rb_link_node(&object->rb_node, rb_parent, link); 649 rb_insert_color(&object->rb_node, &object_tree_root); 650 651 list_add_tail_rcu(&object->object_list, &object_list); 652 out: 653 write_unlock_irqrestore(&kmemleak_lock, flags); 654 return object; 655 } 656 657 /* 658 * Mark the object as not allocated and schedule RCU freeing via put_object(). 659 */ 660 static void __delete_object(struct kmemleak_object *object) 661 { 662 unsigned long flags; 663 664 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 665 WARN_ON(atomic_read(&object->use_count) < 1); 666 667 /* 668 * Locking here also ensures that the corresponding memory block 669 * cannot be freed when it is being scanned. 670 */ 671 spin_lock_irqsave(&object->lock, flags); 672 object->flags &= ~OBJECT_ALLOCATED; 673 spin_unlock_irqrestore(&object->lock, flags); 674 put_object(object); 675 } 676 677 /* 678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 679 * delete it. 680 */ 681 static void delete_object_full(unsigned long ptr) 682 { 683 struct kmemleak_object *object; 684 685 object = find_and_remove_object(ptr, 0); 686 if (!object) { 687 #ifdef DEBUG 688 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 689 ptr); 690 #endif 691 return; 692 } 693 __delete_object(object); 694 } 695 696 /* 697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 698 * delete it. If the memory block is partially freed, the function may create 699 * additional metadata for the remaining parts of the block. 700 */ 701 static void delete_object_part(unsigned long ptr, size_t size) 702 { 703 struct kmemleak_object *object; 704 unsigned long start, end; 705 706 object = find_and_remove_object(ptr, 1); 707 if (!object) { 708 #ifdef DEBUG 709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 710 ptr, size); 711 #endif 712 return; 713 } 714 715 /* 716 * Create one or two objects that may result from the memory block 717 * split. Note that partial freeing is only done by free_bootmem() and 718 * this happens before kmemleak_init() is called. The path below is 719 * only executed during early log recording in kmemleak_init(), so 720 * GFP_KERNEL is enough. 721 */ 722 start = object->pointer; 723 end = object->pointer + object->size; 724 if (ptr > start) 725 create_object(start, ptr - start, object->min_count, 726 GFP_KERNEL); 727 if (ptr + size < end) 728 create_object(ptr + size, end - ptr - size, object->min_count, 729 GFP_KERNEL); 730 731 __delete_object(object); 732 } 733 734 static void __paint_it(struct kmemleak_object *object, int color) 735 { 736 object->min_count = color; 737 if (color == KMEMLEAK_BLACK) 738 object->flags |= OBJECT_NO_SCAN; 739 } 740 741 static void paint_it(struct kmemleak_object *object, int color) 742 { 743 unsigned long flags; 744 745 spin_lock_irqsave(&object->lock, flags); 746 __paint_it(object, color); 747 spin_unlock_irqrestore(&object->lock, flags); 748 } 749 750 static void paint_ptr(unsigned long ptr, int color) 751 { 752 struct kmemleak_object *object; 753 754 object = find_and_get_object(ptr, 0); 755 if (!object) { 756 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 757 ptr, 758 (color == KMEMLEAK_GREY) ? "Grey" : 759 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 760 return; 761 } 762 paint_it(object, color); 763 put_object(object); 764 } 765 766 /* 767 * Mark an object permanently as gray-colored so that it can no longer be 768 * reported as a leak. This is used in general to mark a false positive. 769 */ 770 static void make_gray_object(unsigned long ptr) 771 { 772 paint_ptr(ptr, KMEMLEAK_GREY); 773 } 774 775 /* 776 * Mark the object as black-colored so that it is ignored from scans and 777 * reporting. 778 */ 779 static void make_black_object(unsigned long ptr) 780 { 781 paint_ptr(ptr, KMEMLEAK_BLACK); 782 } 783 784 /* 785 * Add a scanning area to the object. If at least one such area is added, 786 * kmemleak will only scan these ranges rather than the whole memory block. 787 */ 788 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 789 { 790 unsigned long flags; 791 struct kmemleak_object *object; 792 struct kmemleak_scan_area *area; 793 794 object = find_and_get_object(ptr, 1); 795 if (!object) { 796 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 797 ptr); 798 return; 799 } 800 801 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 802 if (!area) { 803 pr_warn("Cannot allocate a scan area\n"); 804 goto out; 805 } 806 807 spin_lock_irqsave(&object->lock, flags); 808 if (size == SIZE_MAX) { 809 size = object->pointer + object->size - ptr; 810 } else if (ptr + size > object->pointer + object->size) { 811 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 812 dump_object_info(object); 813 kmem_cache_free(scan_area_cache, area); 814 goto out_unlock; 815 } 816 817 INIT_HLIST_NODE(&area->node); 818 area->start = ptr; 819 area->size = size; 820 821 hlist_add_head(&area->node, &object->area_list); 822 out_unlock: 823 spin_unlock_irqrestore(&object->lock, flags); 824 out: 825 put_object(object); 826 } 827 828 /* 829 * Any surplus references (object already gray) to 'ptr' are passed to 830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 831 * vm_struct may be used as an alternative reference to the vmalloc'ed object 832 * (see free_thread_stack()). 833 */ 834 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 835 { 836 unsigned long flags; 837 struct kmemleak_object *object; 838 839 object = find_and_get_object(ptr, 0); 840 if (!object) { 841 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 842 ptr); 843 return; 844 } 845 846 spin_lock_irqsave(&object->lock, flags); 847 object->excess_ref = excess_ref; 848 spin_unlock_irqrestore(&object->lock, flags); 849 put_object(object); 850 } 851 852 /* 853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 854 * pointer. Such object will not be scanned by kmemleak but references to it 855 * are searched. 856 */ 857 static void object_no_scan(unsigned long ptr) 858 { 859 unsigned long flags; 860 struct kmemleak_object *object; 861 862 object = find_and_get_object(ptr, 0); 863 if (!object) { 864 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 865 return; 866 } 867 868 spin_lock_irqsave(&object->lock, flags); 869 object->flags |= OBJECT_NO_SCAN; 870 spin_unlock_irqrestore(&object->lock, flags); 871 put_object(object); 872 } 873 874 /* 875 * Log an early kmemleak_* call to the early_log buffer. These calls will be 876 * processed later once kmemleak is fully initialized. 877 */ 878 static void __init log_early(int op_type, const void *ptr, size_t size, 879 int min_count) 880 { 881 unsigned long flags; 882 struct early_log *log; 883 884 if (kmemleak_error) { 885 /* kmemleak stopped recording, just count the requests */ 886 crt_early_log++; 887 return; 888 } 889 890 if (crt_early_log >= ARRAY_SIZE(early_log)) { 891 crt_early_log++; 892 kmemleak_disable(); 893 return; 894 } 895 896 /* 897 * There is no need for locking since the kernel is still in UP mode 898 * at this stage. Disabling the IRQs is enough. 899 */ 900 local_irq_save(flags); 901 log = &early_log[crt_early_log]; 902 log->op_type = op_type; 903 log->ptr = ptr; 904 log->size = size; 905 log->min_count = min_count; 906 log->trace_len = __save_stack_trace(log->trace); 907 crt_early_log++; 908 local_irq_restore(flags); 909 } 910 911 /* 912 * Log an early allocated block and populate the stack trace. 913 */ 914 static void early_alloc(struct early_log *log) 915 { 916 struct kmemleak_object *object; 917 unsigned long flags; 918 int i; 919 920 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 921 return; 922 923 /* 924 * RCU locking needed to ensure object is not freed via put_object(). 925 */ 926 rcu_read_lock(); 927 object = create_object((unsigned long)log->ptr, log->size, 928 log->min_count, GFP_ATOMIC); 929 if (!object) 930 goto out; 931 spin_lock_irqsave(&object->lock, flags); 932 for (i = 0; i < log->trace_len; i++) 933 object->trace[i] = log->trace[i]; 934 object->trace_len = log->trace_len; 935 spin_unlock_irqrestore(&object->lock, flags); 936 out: 937 rcu_read_unlock(); 938 } 939 940 /* 941 * Log an early allocated block and populate the stack trace. 942 */ 943 static void early_alloc_percpu(struct early_log *log) 944 { 945 unsigned int cpu; 946 const void __percpu *ptr = log->ptr; 947 948 for_each_possible_cpu(cpu) { 949 log->ptr = per_cpu_ptr(ptr, cpu); 950 early_alloc(log); 951 } 952 } 953 954 /** 955 * kmemleak_alloc - register a newly allocated object 956 * @ptr: pointer to beginning of the object 957 * @size: size of the object 958 * @min_count: minimum number of references to this object. If during memory 959 * scanning a number of references less than @min_count is found, 960 * the object is reported as a memory leak. If @min_count is 0, 961 * the object is never reported as a leak. If @min_count is -1, 962 * the object is ignored (not scanned and not reported as a leak) 963 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 964 * 965 * This function is called from the kernel allocators when a new object 966 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 967 */ 968 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 969 gfp_t gfp) 970 { 971 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 972 973 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 974 create_object((unsigned long)ptr, size, min_count, gfp); 975 else if (kmemleak_early_log) 976 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 977 } 978 EXPORT_SYMBOL_GPL(kmemleak_alloc); 979 980 /** 981 * kmemleak_alloc_percpu - register a newly allocated __percpu object 982 * @ptr: __percpu pointer to beginning of the object 983 * @size: size of the object 984 * @gfp: flags used for kmemleak internal memory allocations 985 * 986 * This function is called from the kernel percpu allocator when a new object 987 * (memory block) is allocated (alloc_percpu). 988 */ 989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 990 gfp_t gfp) 991 { 992 unsigned int cpu; 993 994 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 995 996 /* 997 * Percpu allocations are only scanned and not reported as leaks 998 * (min_count is set to 0). 999 */ 1000 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1001 for_each_possible_cpu(cpu) 1002 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 1003 size, 0, gfp); 1004 else if (kmemleak_early_log) 1005 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 1006 } 1007 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1008 1009 /** 1010 * kmemleak_vmalloc - register a newly vmalloc'ed object 1011 * @area: pointer to vm_struct 1012 * @size: size of the object 1013 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1014 * 1015 * This function is called from the vmalloc() kernel allocator when a new 1016 * object (memory block) is allocated. 1017 */ 1018 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1019 { 1020 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 1021 1022 /* 1023 * A min_count = 2 is needed because vm_struct contains a reference to 1024 * the virtual address of the vmalloc'ed block. 1025 */ 1026 if (kmemleak_enabled) { 1027 create_object((unsigned long)area->addr, size, 2, gfp); 1028 object_set_excess_ref((unsigned long)area, 1029 (unsigned long)area->addr); 1030 } else if (kmemleak_early_log) { 1031 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1032 /* reusing early_log.size for storing area->addr */ 1033 log_early(KMEMLEAK_SET_EXCESS_REF, 1034 area, (unsigned long)area->addr, 0); 1035 } 1036 } 1037 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1038 1039 /** 1040 * kmemleak_free - unregister a previously registered object 1041 * @ptr: pointer to beginning of the object 1042 * 1043 * This function is called from the kernel allocators when an object (memory 1044 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1045 */ 1046 void __ref kmemleak_free(const void *ptr) 1047 { 1048 pr_debug("%s(0x%p)\n", __func__, ptr); 1049 1050 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1051 delete_object_full((unsigned long)ptr); 1052 else if (kmemleak_early_log) 1053 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1054 } 1055 EXPORT_SYMBOL_GPL(kmemleak_free); 1056 1057 /** 1058 * kmemleak_free_part - partially unregister a previously registered object 1059 * @ptr: pointer to the beginning or inside the object. This also 1060 * represents the start of the range to be freed 1061 * @size: size to be unregistered 1062 * 1063 * This function is called when only a part of a memory block is freed 1064 * (usually from the bootmem allocator). 1065 */ 1066 void __ref kmemleak_free_part(const void *ptr, size_t size) 1067 { 1068 pr_debug("%s(0x%p)\n", __func__, ptr); 1069 1070 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1071 delete_object_part((unsigned long)ptr, size); 1072 else if (kmemleak_early_log) 1073 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1074 } 1075 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1076 1077 /** 1078 * kmemleak_free_percpu - unregister a previously registered __percpu object 1079 * @ptr: __percpu pointer to beginning of the object 1080 * 1081 * This function is called from the kernel percpu allocator when an object 1082 * (memory block) is freed (free_percpu). 1083 */ 1084 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1085 { 1086 unsigned int cpu; 1087 1088 pr_debug("%s(0x%p)\n", __func__, ptr); 1089 1090 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1091 for_each_possible_cpu(cpu) 1092 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1093 cpu)); 1094 else if (kmemleak_early_log) 1095 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1096 } 1097 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1098 1099 /** 1100 * kmemleak_update_trace - update object allocation stack trace 1101 * @ptr: pointer to beginning of the object 1102 * 1103 * Override the object allocation stack trace for cases where the actual 1104 * allocation place is not always useful. 1105 */ 1106 void __ref kmemleak_update_trace(const void *ptr) 1107 { 1108 struct kmemleak_object *object; 1109 unsigned long flags; 1110 1111 pr_debug("%s(0x%p)\n", __func__, ptr); 1112 1113 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1114 return; 1115 1116 object = find_and_get_object((unsigned long)ptr, 1); 1117 if (!object) { 1118 #ifdef DEBUG 1119 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1120 ptr); 1121 #endif 1122 return; 1123 } 1124 1125 spin_lock_irqsave(&object->lock, flags); 1126 object->trace_len = __save_stack_trace(object->trace); 1127 spin_unlock_irqrestore(&object->lock, flags); 1128 1129 put_object(object); 1130 } 1131 EXPORT_SYMBOL(kmemleak_update_trace); 1132 1133 /** 1134 * kmemleak_not_leak - mark an allocated object as false positive 1135 * @ptr: pointer to beginning of the object 1136 * 1137 * Calling this function on an object will cause the memory block to no longer 1138 * be reported as leak and always be scanned. 1139 */ 1140 void __ref kmemleak_not_leak(const void *ptr) 1141 { 1142 pr_debug("%s(0x%p)\n", __func__, ptr); 1143 1144 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1145 make_gray_object((unsigned long)ptr); 1146 else if (kmemleak_early_log) 1147 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1148 } 1149 EXPORT_SYMBOL(kmemleak_not_leak); 1150 1151 /** 1152 * kmemleak_ignore - ignore an allocated object 1153 * @ptr: pointer to beginning of the object 1154 * 1155 * Calling this function on an object will cause the memory block to be 1156 * ignored (not scanned and not reported as a leak). This is usually done when 1157 * it is known that the corresponding block is not a leak and does not contain 1158 * any references to other allocated memory blocks. 1159 */ 1160 void __ref kmemleak_ignore(const void *ptr) 1161 { 1162 pr_debug("%s(0x%p)\n", __func__, ptr); 1163 1164 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1165 make_black_object((unsigned long)ptr); 1166 else if (kmemleak_early_log) 1167 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1168 } 1169 EXPORT_SYMBOL(kmemleak_ignore); 1170 1171 /** 1172 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1173 * @ptr: pointer to beginning or inside the object. This also 1174 * represents the start of the scan area 1175 * @size: size of the scan area 1176 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1177 * 1178 * This function is used when it is known that only certain parts of an object 1179 * contain references to other objects. Kmemleak will only scan these areas 1180 * reducing the number false negatives. 1181 */ 1182 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1183 { 1184 pr_debug("%s(0x%p)\n", __func__, ptr); 1185 1186 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1187 add_scan_area((unsigned long)ptr, size, gfp); 1188 else if (kmemleak_early_log) 1189 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1190 } 1191 EXPORT_SYMBOL(kmemleak_scan_area); 1192 1193 /** 1194 * kmemleak_no_scan - do not scan an allocated object 1195 * @ptr: pointer to beginning of the object 1196 * 1197 * This function notifies kmemleak not to scan the given memory block. Useful 1198 * in situations where it is known that the given object does not contain any 1199 * references to other objects. Kmemleak will not scan such objects reducing 1200 * the number of false negatives. 1201 */ 1202 void __ref kmemleak_no_scan(const void *ptr) 1203 { 1204 pr_debug("%s(0x%p)\n", __func__, ptr); 1205 1206 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1207 object_no_scan((unsigned long)ptr); 1208 else if (kmemleak_early_log) 1209 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1210 } 1211 EXPORT_SYMBOL(kmemleak_no_scan); 1212 1213 /** 1214 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1215 * address argument 1216 * @phys: physical address of the object 1217 * @size: size of the object 1218 * @min_count: minimum number of references to this object. 1219 * See kmemleak_alloc() 1220 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1221 */ 1222 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1223 gfp_t gfp) 1224 { 1225 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1226 kmemleak_alloc(__va(phys), size, min_count, gfp); 1227 } 1228 EXPORT_SYMBOL(kmemleak_alloc_phys); 1229 1230 /** 1231 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1232 * physical address argument 1233 * @phys: physical address if the beginning or inside an object. This 1234 * also represents the start of the range to be freed 1235 * @size: size to be unregistered 1236 */ 1237 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1238 { 1239 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1240 kmemleak_free_part(__va(phys), size); 1241 } 1242 EXPORT_SYMBOL(kmemleak_free_part_phys); 1243 1244 /** 1245 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1246 * address argument 1247 * @phys: physical address of the object 1248 */ 1249 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1250 { 1251 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1252 kmemleak_not_leak(__va(phys)); 1253 } 1254 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1255 1256 /** 1257 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1258 * address argument 1259 * @phys: physical address of the object 1260 */ 1261 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1262 { 1263 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1264 kmemleak_ignore(__va(phys)); 1265 } 1266 EXPORT_SYMBOL(kmemleak_ignore_phys); 1267 1268 /* 1269 * Update an object's checksum and return true if it was modified. 1270 */ 1271 static bool update_checksum(struct kmemleak_object *object) 1272 { 1273 u32 old_csum = object->checksum; 1274 1275 kasan_disable_current(); 1276 object->checksum = crc32(0, (void *)object->pointer, object->size); 1277 kasan_enable_current(); 1278 1279 return object->checksum != old_csum; 1280 } 1281 1282 /* 1283 * Update an object's references. object->lock must be held by the caller. 1284 */ 1285 static void update_refs(struct kmemleak_object *object) 1286 { 1287 if (!color_white(object)) { 1288 /* non-orphan, ignored or new */ 1289 return; 1290 } 1291 1292 /* 1293 * Increase the object's reference count (number of pointers to the 1294 * memory block). If this count reaches the required minimum, the 1295 * object's color will become gray and it will be added to the 1296 * gray_list. 1297 */ 1298 object->count++; 1299 if (color_gray(object)) { 1300 /* put_object() called when removing from gray_list */ 1301 WARN_ON(!get_object(object)); 1302 list_add_tail(&object->gray_list, &gray_list); 1303 } 1304 } 1305 1306 /* 1307 * Memory scanning is a long process and it needs to be interruptable. This 1308 * function checks whether such interrupt condition occurred. 1309 */ 1310 static int scan_should_stop(void) 1311 { 1312 if (!kmemleak_enabled) 1313 return 1; 1314 1315 /* 1316 * This function may be called from either process or kthread context, 1317 * hence the need to check for both stop conditions. 1318 */ 1319 if (current->mm) 1320 return signal_pending(current); 1321 else 1322 return kthread_should_stop(); 1323 1324 return 0; 1325 } 1326 1327 /* 1328 * Scan a memory block (exclusive range) for valid pointers and add those 1329 * found to the gray list. 1330 */ 1331 static void scan_block(void *_start, void *_end, 1332 struct kmemleak_object *scanned) 1333 { 1334 unsigned long *ptr; 1335 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1336 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1337 unsigned long flags; 1338 unsigned long untagged_ptr; 1339 1340 read_lock_irqsave(&kmemleak_lock, flags); 1341 for (ptr = start; ptr < end; ptr++) { 1342 struct kmemleak_object *object; 1343 unsigned long pointer; 1344 unsigned long excess_ref; 1345 1346 if (scan_should_stop()) 1347 break; 1348 1349 kasan_disable_current(); 1350 pointer = *ptr; 1351 kasan_enable_current(); 1352 1353 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1354 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1355 continue; 1356 1357 /* 1358 * No need for get_object() here since we hold kmemleak_lock. 1359 * object->use_count cannot be dropped to 0 while the object 1360 * is still present in object_tree_root and object_list 1361 * (with updates protected by kmemleak_lock). 1362 */ 1363 object = lookup_object(pointer, 1); 1364 if (!object) 1365 continue; 1366 if (object == scanned) 1367 /* self referenced, ignore */ 1368 continue; 1369 1370 /* 1371 * Avoid the lockdep recursive warning on object->lock being 1372 * previously acquired in scan_object(). These locks are 1373 * enclosed by scan_mutex. 1374 */ 1375 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1376 /* only pass surplus references (object already gray) */ 1377 if (color_gray(object)) { 1378 excess_ref = object->excess_ref; 1379 /* no need for update_refs() if object already gray */ 1380 } else { 1381 excess_ref = 0; 1382 update_refs(object); 1383 } 1384 spin_unlock(&object->lock); 1385 1386 if (excess_ref) { 1387 object = lookup_object(excess_ref, 0); 1388 if (!object) 1389 continue; 1390 if (object == scanned) 1391 /* circular reference, ignore */ 1392 continue; 1393 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1394 update_refs(object); 1395 spin_unlock(&object->lock); 1396 } 1397 } 1398 read_unlock_irqrestore(&kmemleak_lock, flags); 1399 } 1400 1401 /* 1402 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1403 */ 1404 #ifdef CONFIG_SMP 1405 static void scan_large_block(void *start, void *end) 1406 { 1407 void *next; 1408 1409 while (start < end) { 1410 next = min(start + MAX_SCAN_SIZE, end); 1411 scan_block(start, next, NULL); 1412 start = next; 1413 cond_resched(); 1414 } 1415 } 1416 #endif 1417 1418 /* 1419 * Scan a memory block corresponding to a kmemleak_object. A condition is 1420 * that object->use_count >= 1. 1421 */ 1422 static void scan_object(struct kmemleak_object *object) 1423 { 1424 struct kmemleak_scan_area *area; 1425 unsigned long flags; 1426 1427 /* 1428 * Once the object->lock is acquired, the corresponding memory block 1429 * cannot be freed (the same lock is acquired in delete_object). 1430 */ 1431 spin_lock_irqsave(&object->lock, flags); 1432 if (object->flags & OBJECT_NO_SCAN) 1433 goto out; 1434 if (!(object->flags & OBJECT_ALLOCATED)) 1435 /* already freed object */ 1436 goto out; 1437 if (hlist_empty(&object->area_list)) { 1438 void *start = (void *)object->pointer; 1439 void *end = (void *)(object->pointer + object->size); 1440 void *next; 1441 1442 do { 1443 next = min(start + MAX_SCAN_SIZE, end); 1444 scan_block(start, next, object); 1445 1446 start = next; 1447 if (start >= end) 1448 break; 1449 1450 spin_unlock_irqrestore(&object->lock, flags); 1451 cond_resched(); 1452 spin_lock_irqsave(&object->lock, flags); 1453 } while (object->flags & OBJECT_ALLOCATED); 1454 } else 1455 hlist_for_each_entry(area, &object->area_list, node) 1456 scan_block((void *)area->start, 1457 (void *)(area->start + area->size), 1458 object); 1459 out: 1460 spin_unlock_irqrestore(&object->lock, flags); 1461 } 1462 1463 /* 1464 * Scan the objects already referenced (gray objects). More objects will be 1465 * referenced and, if there are no memory leaks, all the objects are scanned. 1466 */ 1467 static void scan_gray_list(void) 1468 { 1469 struct kmemleak_object *object, *tmp; 1470 1471 /* 1472 * The list traversal is safe for both tail additions and removals 1473 * from inside the loop. The kmemleak objects cannot be freed from 1474 * outside the loop because their use_count was incremented. 1475 */ 1476 object = list_entry(gray_list.next, typeof(*object), gray_list); 1477 while (&object->gray_list != &gray_list) { 1478 cond_resched(); 1479 1480 /* may add new objects to the list */ 1481 if (!scan_should_stop()) 1482 scan_object(object); 1483 1484 tmp = list_entry(object->gray_list.next, typeof(*object), 1485 gray_list); 1486 1487 /* remove the object from the list and release it */ 1488 list_del(&object->gray_list); 1489 put_object(object); 1490 1491 object = tmp; 1492 } 1493 WARN_ON(!list_empty(&gray_list)); 1494 } 1495 1496 /* 1497 * Scan data sections and all the referenced memory blocks allocated via the 1498 * kernel's standard allocators. This function must be called with the 1499 * scan_mutex held. 1500 */ 1501 static void kmemleak_scan(void) 1502 { 1503 unsigned long flags; 1504 struct kmemleak_object *object; 1505 int i; 1506 int new_leaks = 0; 1507 1508 jiffies_last_scan = jiffies; 1509 1510 /* prepare the kmemleak_object's */ 1511 rcu_read_lock(); 1512 list_for_each_entry_rcu(object, &object_list, object_list) { 1513 spin_lock_irqsave(&object->lock, flags); 1514 #ifdef DEBUG 1515 /* 1516 * With a few exceptions there should be a maximum of 1517 * 1 reference to any object at this point. 1518 */ 1519 if (atomic_read(&object->use_count) > 1) { 1520 pr_debug("object->use_count = %d\n", 1521 atomic_read(&object->use_count)); 1522 dump_object_info(object); 1523 } 1524 #endif 1525 /* reset the reference count (whiten the object) */ 1526 object->count = 0; 1527 if (color_gray(object) && get_object(object)) 1528 list_add_tail(&object->gray_list, &gray_list); 1529 1530 spin_unlock_irqrestore(&object->lock, flags); 1531 } 1532 rcu_read_unlock(); 1533 1534 #ifdef CONFIG_SMP 1535 /* per-cpu sections scanning */ 1536 for_each_possible_cpu(i) 1537 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1538 __per_cpu_end + per_cpu_offset(i)); 1539 #endif 1540 1541 /* 1542 * Struct page scanning for each node. 1543 */ 1544 get_online_mems(); 1545 for_each_online_node(i) { 1546 unsigned long start_pfn = node_start_pfn(i); 1547 unsigned long end_pfn = node_end_pfn(i); 1548 unsigned long pfn; 1549 1550 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1551 struct page *page = pfn_to_online_page(pfn); 1552 1553 if (!page) 1554 continue; 1555 1556 /* only scan pages belonging to this node */ 1557 if (page_to_nid(page) != i) 1558 continue; 1559 /* only scan if page is in use */ 1560 if (page_count(page) == 0) 1561 continue; 1562 scan_block(page, page + 1, NULL); 1563 if (!(pfn & 63)) 1564 cond_resched(); 1565 } 1566 } 1567 put_online_mems(); 1568 1569 /* 1570 * Scanning the task stacks (may introduce false negatives). 1571 */ 1572 if (kmemleak_stack_scan) { 1573 struct task_struct *p, *g; 1574 1575 read_lock(&tasklist_lock); 1576 do_each_thread(g, p) { 1577 void *stack = try_get_task_stack(p); 1578 if (stack) { 1579 scan_block(stack, stack + THREAD_SIZE, NULL); 1580 put_task_stack(p); 1581 } 1582 } while_each_thread(g, p); 1583 read_unlock(&tasklist_lock); 1584 } 1585 1586 /* 1587 * Scan the objects already referenced from the sections scanned 1588 * above. 1589 */ 1590 scan_gray_list(); 1591 1592 /* 1593 * Check for new or unreferenced objects modified since the previous 1594 * scan and color them gray until the next scan. 1595 */ 1596 rcu_read_lock(); 1597 list_for_each_entry_rcu(object, &object_list, object_list) { 1598 spin_lock_irqsave(&object->lock, flags); 1599 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1600 && update_checksum(object) && get_object(object)) { 1601 /* color it gray temporarily */ 1602 object->count = object->min_count; 1603 list_add_tail(&object->gray_list, &gray_list); 1604 } 1605 spin_unlock_irqrestore(&object->lock, flags); 1606 } 1607 rcu_read_unlock(); 1608 1609 /* 1610 * Re-scan the gray list for modified unreferenced objects. 1611 */ 1612 scan_gray_list(); 1613 1614 /* 1615 * If scanning was stopped do not report any new unreferenced objects. 1616 */ 1617 if (scan_should_stop()) 1618 return; 1619 1620 /* 1621 * Scanning result reporting. 1622 */ 1623 rcu_read_lock(); 1624 list_for_each_entry_rcu(object, &object_list, object_list) { 1625 spin_lock_irqsave(&object->lock, flags); 1626 if (unreferenced_object(object) && 1627 !(object->flags & OBJECT_REPORTED)) { 1628 object->flags |= OBJECT_REPORTED; 1629 1630 if (kmemleak_verbose) 1631 print_unreferenced(NULL, object); 1632 1633 new_leaks++; 1634 } 1635 spin_unlock_irqrestore(&object->lock, flags); 1636 } 1637 rcu_read_unlock(); 1638 1639 if (new_leaks) { 1640 kmemleak_found_leaks = true; 1641 1642 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1643 new_leaks); 1644 } 1645 1646 } 1647 1648 /* 1649 * Thread function performing automatic memory scanning. Unreferenced objects 1650 * at the end of a memory scan are reported but only the first time. 1651 */ 1652 static int kmemleak_scan_thread(void *arg) 1653 { 1654 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1655 1656 pr_info("Automatic memory scanning thread started\n"); 1657 set_user_nice(current, 10); 1658 1659 /* 1660 * Wait before the first scan to allow the system to fully initialize. 1661 */ 1662 if (first_run) { 1663 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1664 first_run = 0; 1665 while (timeout && !kthread_should_stop()) 1666 timeout = schedule_timeout_interruptible(timeout); 1667 } 1668 1669 while (!kthread_should_stop()) { 1670 signed long timeout = jiffies_scan_wait; 1671 1672 mutex_lock(&scan_mutex); 1673 kmemleak_scan(); 1674 mutex_unlock(&scan_mutex); 1675 1676 /* wait before the next scan */ 1677 while (timeout && !kthread_should_stop()) 1678 timeout = schedule_timeout_interruptible(timeout); 1679 } 1680 1681 pr_info("Automatic memory scanning thread ended\n"); 1682 1683 return 0; 1684 } 1685 1686 /* 1687 * Start the automatic memory scanning thread. This function must be called 1688 * with the scan_mutex held. 1689 */ 1690 static void start_scan_thread(void) 1691 { 1692 if (scan_thread) 1693 return; 1694 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1695 if (IS_ERR(scan_thread)) { 1696 pr_warn("Failed to create the scan thread\n"); 1697 scan_thread = NULL; 1698 } 1699 } 1700 1701 /* 1702 * Stop the automatic memory scanning thread. 1703 */ 1704 static void stop_scan_thread(void) 1705 { 1706 if (scan_thread) { 1707 kthread_stop(scan_thread); 1708 scan_thread = NULL; 1709 } 1710 } 1711 1712 /* 1713 * Iterate over the object_list and return the first valid object at or after 1714 * the required position with its use_count incremented. The function triggers 1715 * a memory scanning when the pos argument points to the first position. 1716 */ 1717 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1718 { 1719 struct kmemleak_object *object; 1720 loff_t n = *pos; 1721 int err; 1722 1723 err = mutex_lock_interruptible(&scan_mutex); 1724 if (err < 0) 1725 return ERR_PTR(err); 1726 1727 rcu_read_lock(); 1728 list_for_each_entry_rcu(object, &object_list, object_list) { 1729 if (n-- > 0) 1730 continue; 1731 if (get_object(object)) 1732 goto out; 1733 } 1734 object = NULL; 1735 out: 1736 return object; 1737 } 1738 1739 /* 1740 * Return the next object in the object_list. The function decrements the 1741 * use_count of the previous object and increases that of the next one. 1742 */ 1743 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1744 { 1745 struct kmemleak_object *prev_obj = v; 1746 struct kmemleak_object *next_obj = NULL; 1747 struct kmemleak_object *obj = prev_obj; 1748 1749 ++(*pos); 1750 1751 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1752 if (get_object(obj)) { 1753 next_obj = obj; 1754 break; 1755 } 1756 } 1757 1758 put_object(prev_obj); 1759 return next_obj; 1760 } 1761 1762 /* 1763 * Decrement the use_count of the last object required, if any. 1764 */ 1765 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1766 { 1767 if (!IS_ERR(v)) { 1768 /* 1769 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1770 * waiting was interrupted, so only release it if !IS_ERR. 1771 */ 1772 rcu_read_unlock(); 1773 mutex_unlock(&scan_mutex); 1774 if (v) 1775 put_object(v); 1776 } 1777 } 1778 1779 /* 1780 * Print the information for an unreferenced object to the seq file. 1781 */ 1782 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1783 { 1784 struct kmemleak_object *object = v; 1785 unsigned long flags; 1786 1787 spin_lock_irqsave(&object->lock, flags); 1788 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1789 print_unreferenced(seq, object); 1790 spin_unlock_irqrestore(&object->lock, flags); 1791 return 0; 1792 } 1793 1794 static const struct seq_operations kmemleak_seq_ops = { 1795 .start = kmemleak_seq_start, 1796 .next = kmemleak_seq_next, 1797 .stop = kmemleak_seq_stop, 1798 .show = kmemleak_seq_show, 1799 }; 1800 1801 static int kmemleak_open(struct inode *inode, struct file *file) 1802 { 1803 return seq_open(file, &kmemleak_seq_ops); 1804 } 1805 1806 static int dump_str_object_info(const char *str) 1807 { 1808 unsigned long flags; 1809 struct kmemleak_object *object; 1810 unsigned long addr; 1811 1812 if (kstrtoul(str, 0, &addr)) 1813 return -EINVAL; 1814 object = find_and_get_object(addr, 0); 1815 if (!object) { 1816 pr_info("Unknown object at 0x%08lx\n", addr); 1817 return -EINVAL; 1818 } 1819 1820 spin_lock_irqsave(&object->lock, flags); 1821 dump_object_info(object); 1822 spin_unlock_irqrestore(&object->lock, flags); 1823 1824 put_object(object); 1825 return 0; 1826 } 1827 1828 /* 1829 * We use grey instead of black to ensure we can do future scans on the same 1830 * objects. If we did not do future scans these black objects could 1831 * potentially contain references to newly allocated objects in the future and 1832 * we'd end up with false positives. 1833 */ 1834 static void kmemleak_clear(void) 1835 { 1836 struct kmemleak_object *object; 1837 unsigned long flags; 1838 1839 rcu_read_lock(); 1840 list_for_each_entry_rcu(object, &object_list, object_list) { 1841 spin_lock_irqsave(&object->lock, flags); 1842 if ((object->flags & OBJECT_REPORTED) && 1843 unreferenced_object(object)) 1844 __paint_it(object, KMEMLEAK_GREY); 1845 spin_unlock_irqrestore(&object->lock, flags); 1846 } 1847 rcu_read_unlock(); 1848 1849 kmemleak_found_leaks = false; 1850 } 1851 1852 static void __kmemleak_do_cleanup(void); 1853 1854 /* 1855 * File write operation to configure kmemleak at run-time. The following 1856 * commands can be written to the /sys/kernel/debug/kmemleak file: 1857 * off - disable kmemleak (irreversible) 1858 * stack=on - enable the task stacks scanning 1859 * stack=off - disable the tasks stacks scanning 1860 * scan=on - start the automatic memory scanning thread 1861 * scan=off - stop the automatic memory scanning thread 1862 * scan=... - set the automatic memory scanning period in seconds (0 to 1863 * disable it) 1864 * scan - trigger a memory scan 1865 * clear - mark all current reported unreferenced kmemleak objects as 1866 * grey to ignore printing them, or free all kmemleak objects 1867 * if kmemleak has been disabled. 1868 * dump=... - dump information about the object found at the given address 1869 */ 1870 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1871 size_t size, loff_t *ppos) 1872 { 1873 char buf[64]; 1874 int buf_size; 1875 int ret; 1876 1877 buf_size = min(size, (sizeof(buf) - 1)); 1878 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1879 return -EFAULT; 1880 buf[buf_size] = 0; 1881 1882 ret = mutex_lock_interruptible(&scan_mutex); 1883 if (ret < 0) 1884 return ret; 1885 1886 if (strncmp(buf, "clear", 5) == 0) { 1887 if (kmemleak_enabled) 1888 kmemleak_clear(); 1889 else 1890 __kmemleak_do_cleanup(); 1891 goto out; 1892 } 1893 1894 if (!kmemleak_enabled) { 1895 ret = -EBUSY; 1896 goto out; 1897 } 1898 1899 if (strncmp(buf, "off", 3) == 0) 1900 kmemleak_disable(); 1901 else if (strncmp(buf, "stack=on", 8) == 0) 1902 kmemleak_stack_scan = 1; 1903 else if (strncmp(buf, "stack=off", 9) == 0) 1904 kmemleak_stack_scan = 0; 1905 else if (strncmp(buf, "scan=on", 7) == 0) 1906 start_scan_thread(); 1907 else if (strncmp(buf, "scan=off", 8) == 0) 1908 stop_scan_thread(); 1909 else if (strncmp(buf, "scan=", 5) == 0) { 1910 unsigned long secs; 1911 1912 ret = kstrtoul(buf + 5, 0, &secs); 1913 if (ret < 0) 1914 goto out; 1915 stop_scan_thread(); 1916 if (secs) { 1917 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1918 start_scan_thread(); 1919 } 1920 } else if (strncmp(buf, "scan", 4) == 0) 1921 kmemleak_scan(); 1922 else if (strncmp(buf, "dump=", 5) == 0) 1923 ret = dump_str_object_info(buf + 5); 1924 else 1925 ret = -EINVAL; 1926 1927 out: 1928 mutex_unlock(&scan_mutex); 1929 if (ret < 0) 1930 return ret; 1931 1932 /* ignore the rest of the buffer, only one command at a time */ 1933 *ppos += size; 1934 return size; 1935 } 1936 1937 static const struct file_operations kmemleak_fops = { 1938 .owner = THIS_MODULE, 1939 .open = kmemleak_open, 1940 .read = seq_read, 1941 .write = kmemleak_write, 1942 .llseek = seq_lseek, 1943 .release = seq_release, 1944 }; 1945 1946 static void __kmemleak_do_cleanup(void) 1947 { 1948 struct kmemleak_object *object; 1949 1950 rcu_read_lock(); 1951 list_for_each_entry_rcu(object, &object_list, object_list) 1952 delete_object_full(object->pointer); 1953 rcu_read_unlock(); 1954 } 1955 1956 /* 1957 * Stop the memory scanning thread and free the kmemleak internal objects if 1958 * no previous scan thread (otherwise, kmemleak may still have some useful 1959 * information on memory leaks). 1960 */ 1961 static void kmemleak_do_cleanup(struct work_struct *work) 1962 { 1963 stop_scan_thread(); 1964 1965 mutex_lock(&scan_mutex); 1966 /* 1967 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1968 * longer track object freeing. Ordering of the scan thread stopping and 1969 * the memory accesses below is guaranteed by the kthread_stop() 1970 * function. 1971 */ 1972 kmemleak_free_enabled = 0; 1973 mutex_unlock(&scan_mutex); 1974 1975 if (!kmemleak_found_leaks) 1976 __kmemleak_do_cleanup(); 1977 else 1978 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1979 } 1980 1981 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1982 1983 /* 1984 * Disable kmemleak. No memory allocation/freeing will be traced once this 1985 * function is called. Disabling kmemleak is an irreversible operation. 1986 */ 1987 static void kmemleak_disable(void) 1988 { 1989 /* atomically check whether it was already invoked */ 1990 if (cmpxchg(&kmemleak_error, 0, 1)) 1991 return; 1992 1993 /* stop any memory operation tracing */ 1994 kmemleak_enabled = 0; 1995 1996 /* check whether it is too early for a kernel thread */ 1997 if (kmemleak_initialized) 1998 schedule_work(&cleanup_work); 1999 else 2000 kmemleak_free_enabled = 0; 2001 2002 pr_info("Kernel memory leak detector disabled\n"); 2003 } 2004 2005 /* 2006 * Allow boot-time kmemleak disabling (enabled by default). 2007 */ 2008 static int __init kmemleak_boot_config(char *str) 2009 { 2010 if (!str) 2011 return -EINVAL; 2012 if (strcmp(str, "off") == 0) 2013 kmemleak_disable(); 2014 else if (strcmp(str, "on") == 0) 2015 kmemleak_skip_disable = 1; 2016 else 2017 return -EINVAL; 2018 return 0; 2019 } 2020 early_param("kmemleak", kmemleak_boot_config); 2021 2022 static void __init print_log_trace(struct early_log *log) 2023 { 2024 struct stack_trace trace; 2025 2026 trace.nr_entries = log->trace_len; 2027 trace.entries = log->trace; 2028 2029 pr_notice("Early log backtrace:\n"); 2030 print_stack_trace(&trace, 2); 2031 } 2032 2033 /* 2034 * Kmemleak initialization. 2035 */ 2036 void __init kmemleak_init(void) 2037 { 2038 int i; 2039 unsigned long flags; 2040 2041 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2042 if (!kmemleak_skip_disable) { 2043 kmemleak_early_log = 0; 2044 kmemleak_disable(); 2045 return; 2046 } 2047 #endif 2048 2049 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2050 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2051 2052 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2053 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2054 2055 if (crt_early_log > ARRAY_SIZE(early_log)) 2056 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2057 crt_early_log); 2058 2059 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2060 local_irq_save(flags); 2061 kmemleak_early_log = 0; 2062 if (kmemleak_error) { 2063 local_irq_restore(flags); 2064 return; 2065 } else { 2066 kmemleak_enabled = 1; 2067 kmemleak_free_enabled = 1; 2068 } 2069 local_irq_restore(flags); 2070 2071 /* register the data/bss sections */ 2072 create_object((unsigned long)_sdata, _edata - _sdata, 2073 KMEMLEAK_GREY, GFP_ATOMIC); 2074 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2075 KMEMLEAK_GREY, GFP_ATOMIC); 2076 /* only register .data..ro_after_init if not within .data */ 2077 if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata) 2078 create_object((unsigned long)__start_ro_after_init, 2079 __end_ro_after_init - __start_ro_after_init, 2080 KMEMLEAK_GREY, GFP_ATOMIC); 2081 2082 /* 2083 * This is the point where tracking allocations is safe. Automatic 2084 * scanning is started during the late initcall. Add the early logged 2085 * callbacks to the kmemleak infrastructure. 2086 */ 2087 for (i = 0; i < crt_early_log; i++) { 2088 struct early_log *log = &early_log[i]; 2089 2090 switch (log->op_type) { 2091 case KMEMLEAK_ALLOC: 2092 early_alloc(log); 2093 break; 2094 case KMEMLEAK_ALLOC_PERCPU: 2095 early_alloc_percpu(log); 2096 break; 2097 case KMEMLEAK_FREE: 2098 kmemleak_free(log->ptr); 2099 break; 2100 case KMEMLEAK_FREE_PART: 2101 kmemleak_free_part(log->ptr, log->size); 2102 break; 2103 case KMEMLEAK_FREE_PERCPU: 2104 kmemleak_free_percpu(log->ptr); 2105 break; 2106 case KMEMLEAK_NOT_LEAK: 2107 kmemleak_not_leak(log->ptr); 2108 break; 2109 case KMEMLEAK_IGNORE: 2110 kmemleak_ignore(log->ptr); 2111 break; 2112 case KMEMLEAK_SCAN_AREA: 2113 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2114 break; 2115 case KMEMLEAK_NO_SCAN: 2116 kmemleak_no_scan(log->ptr); 2117 break; 2118 case KMEMLEAK_SET_EXCESS_REF: 2119 object_set_excess_ref((unsigned long)log->ptr, 2120 log->excess_ref); 2121 break; 2122 default: 2123 kmemleak_warn("Unknown early log operation: %d\n", 2124 log->op_type); 2125 } 2126 2127 if (kmemleak_warning) { 2128 print_log_trace(log); 2129 kmemleak_warning = 0; 2130 } 2131 } 2132 } 2133 2134 /* 2135 * Late initialization function. 2136 */ 2137 static int __init kmemleak_late_init(void) 2138 { 2139 struct dentry *dentry; 2140 2141 kmemleak_initialized = 1; 2142 2143 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, 2144 &kmemleak_fops); 2145 if (!dentry) 2146 pr_warn("Failed to create the debugfs kmemleak file\n"); 2147 2148 if (kmemleak_error) { 2149 /* 2150 * Some error occurred and kmemleak was disabled. There is a 2151 * small chance that kmemleak_disable() was called immediately 2152 * after setting kmemleak_initialized and we may end up with 2153 * two clean-up threads but serialized by scan_mutex. 2154 */ 2155 schedule_work(&cleanup_work); 2156 return -ENOMEM; 2157 } 2158 2159 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2160 mutex_lock(&scan_mutex); 2161 start_scan_thread(); 2162 mutex_unlock(&scan_mutex); 2163 } 2164 2165 pr_info("Kernel memory leak detector initialized\n"); 2166 2167 return 0; 2168 } 2169 late_initcall(kmemleak_late_init); 2170