xref: /linux/mm/kmemleak.c (revision 876f5ebd58a9ac42f48a7ead3d5b274a314e0ace)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 	struct hlist_node node;
120 	unsigned long start;
121 	size_t size;
122 };
123 
124 #define KMEMLEAK_GREY	0
125 #define KMEMLEAK_BLACK	-1
126 
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136 	raw_spinlock_t lock;
137 	unsigned int flags;		/* object status flags */
138 	struct list_head object_list;
139 	struct list_head gray_list;
140 	struct rb_node rb_node;
141 	struct rcu_head rcu;		/* object_list lockless traversal */
142 	/* object usage count; object freed when use_count == 0 */
143 	atomic_t use_count;
144 	unsigned int del_state;		/* deletion state */
145 	unsigned long pointer;
146 	size_t size;
147 	/* pass surplus references to this pointer */
148 	unsigned long excess_ref;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	depot_stack_handle_t trace_handle;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long jiffies;		/* creation timestamp */
159 	pid_t pid;			/* pid of the current task */
160 	char comm[TASK_COMM_LEN];	/* executable name */
161 };
162 
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED	(1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED		(1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN		(1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN	(1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS		(1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU		(1 << 5)
175 
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED	(1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE	(1 << 1)
180 
181 #define HEX_PREFIX		"    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207 
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211 
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled __read_mostly = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled __read_mostly = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error;
220 
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr = ULONG_MAX;
223 static unsigned long max_addr;
224 
225 /* minimum and maximum address that may be valid per-CPU pointers */
226 static unsigned long min_percpu_addr = ULONG_MAX;
227 static unsigned long max_percpu_addr;
228 
229 static struct task_struct *scan_thread;
230 /* used to avoid reporting of recently allocated objects */
231 static unsigned long jiffies_min_age;
232 static unsigned long jiffies_last_scan;
233 /* delay between automatic memory scannings */
234 static unsigned long jiffies_scan_wait;
235 /* enables or disables the task stacks scanning */
236 static int kmemleak_stack_scan = 1;
237 /* protects the memory scanning, parameters and debug/kmemleak file access */
238 static DEFINE_MUTEX(scan_mutex);
239 /* setting kmemleak=on, will set this var, skipping the disable */
240 static int kmemleak_skip_disable;
241 /* If there are leaks that can be reported */
242 static bool kmemleak_found_leaks;
243 
244 static bool kmemleak_verbose;
245 module_param_named(verbose, kmemleak_verbose, bool, 0600);
246 
247 static void kmemleak_disable(void);
248 
249 /*
250  * Print a warning and dump the stack trace.
251  */
252 #define kmemleak_warn(x...)	do {		\
253 	pr_warn(x);				\
254 	dump_stack();				\
255 } while (0)
256 
257 /*
258  * Macro invoked when a serious kmemleak condition occurred and cannot be
259  * recovered from. Kmemleak will be disabled and further allocation/freeing
260  * tracing no longer available.
261  */
262 #define kmemleak_stop(x...)	do {	\
263 	kmemleak_warn(x);		\
264 	kmemleak_disable();		\
265 } while (0)
266 
267 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
268 	if (seq)					\
269 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
270 	else						\
271 		pr_warn(fmt, ##__VA_ARGS__);		\
272 } while (0)
273 
274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
275 				 int rowsize, int groupsize, const void *buf,
276 				 size_t len, bool ascii)
277 {
278 	if (seq)
279 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
280 			     buf, len, ascii);
281 	else
282 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
283 			       rowsize, groupsize, buf, len, ascii);
284 }
285 
286 /*
287  * Printing of the objects hex dump to the seq file. The number of lines to be
288  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290  * with the object->lock held.
291  */
292 static void hex_dump_object(struct seq_file *seq,
293 			    struct kmemleak_object *object)
294 {
295 	const u8 *ptr = (const u8 *)object->pointer;
296 	size_t len;
297 
298 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
299 		return;
300 
301 	if (object->flags & OBJECT_PERCPU)
302 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	if (object->flags & OBJECT_PERCPU)
308 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
309 				   len, raw_smp_processor_id());
310 	else
311 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
312 	kasan_disable_current();
313 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
315 	kasan_enable_current();
316 }
317 
318 /*
319  * Object colors, encoded with count and min_count:
320  * - white - orphan object, not enough references to it (count < min_count)
321  * - gray  - not orphan, not marked as false positive (min_count == 0) or
322  *		sufficient references to it (count >= min_count)
323  * - black - ignore, it doesn't contain references (e.g. text section)
324  *		(min_count == -1). No function defined for this color.
325  */
326 static bool color_white(const struct kmemleak_object *object)
327 {
328 	return object->count != KMEMLEAK_BLACK &&
329 		object->count < object->min_count;
330 }
331 
332 static bool color_gray(const struct kmemleak_object *object)
333 {
334 	return object->min_count != KMEMLEAK_BLACK &&
335 		object->count >= object->min_count;
336 }
337 
338 /*
339  * Objects are considered unreferenced only if their color is white, they have
340  * not be deleted and have a minimum age to avoid false positives caused by
341  * pointers temporarily stored in CPU registers.
342  */
343 static bool unreferenced_object(struct kmemleak_object *object)
344 {
345 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
346 		time_before_eq(object->jiffies + jiffies_min_age,
347 			       jiffies_last_scan);
348 }
349 
350 static const char *__object_type_str(struct kmemleak_object *object)
351 {
352 	if (object->flags & OBJECT_PHYS)
353 		return " (phys)";
354 	if (object->flags & OBJECT_PERCPU)
355 		return " (percpu)";
356 	return "";
357 }
358 
359 /*
360  * Printing of the unreferenced objects information to the seq file. The
361  * print_unreferenced function must be called with the object->lock held.
362  */
363 static void print_unreferenced(struct seq_file *seq,
364 			       struct kmemleak_object *object)
365 {
366 	int i;
367 	unsigned long *entries;
368 	unsigned int nr_entries;
369 
370 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
371 	warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n",
372 			   __object_type_str(object),
373 			   object->pointer, object->size);
374 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
375 			   object->comm, object->pid, object->jiffies);
376 	hex_dump_object(seq, object);
377 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
378 
379 	for (i = 0; i < nr_entries; i++) {
380 		void *ptr = (void *)entries[i];
381 		warn_or_seq_printf(seq, "    %pS\n", ptr);
382 	}
383 }
384 
385 /*
386  * Print the kmemleak_object information. This function is used mainly for
387  * debugging special cases when kmemleak operations. It must be called with
388  * the object->lock held.
389  */
390 static void dump_object_info(struct kmemleak_object *object)
391 {
392 	pr_notice("Object%s 0x%08lx (size %zu):\n",
393 		  __object_type_str(object), object->pointer, object->size);
394 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
395 		  object->comm, object->pid, object->jiffies);
396 	pr_notice("  min_count = %d\n", object->min_count);
397 	pr_notice("  count = %d\n", object->count);
398 	pr_notice("  flags = 0x%x\n", object->flags);
399 	pr_notice("  checksum = %u\n", object->checksum);
400 	pr_notice("  backtrace:\n");
401 	if (object->trace_handle)
402 		stack_depot_print(object->trace_handle);
403 }
404 
405 static struct rb_root *object_tree(unsigned long objflags)
406 {
407 	if (objflags & OBJECT_PHYS)
408 		return &object_phys_tree_root;
409 	if (objflags & OBJECT_PERCPU)
410 		return &object_percpu_tree_root;
411 	return &object_tree_root;
412 }
413 
414 /*
415  * Look-up a memory block metadata (kmemleak_object) in the object search
416  * tree based on a pointer value. If alias is 0, only values pointing to the
417  * beginning of the memory block are allowed. The kmemleak_lock must be held
418  * when calling this function.
419  */
420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
421 					       unsigned int objflags)
422 {
423 	struct rb_node *rb = object_tree(objflags)->rb_node;
424 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
425 
426 	while (rb) {
427 		struct kmemleak_object *object;
428 		unsigned long untagged_objp;
429 
430 		object = rb_entry(rb, struct kmemleak_object, rb_node);
431 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
432 
433 		if (untagged_ptr < untagged_objp)
434 			rb = object->rb_node.rb_left;
435 		else if (untagged_objp + object->size <= untagged_ptr)
436 			rb = object->rb_node.rb_right;
437 		else if (untagged_objp == untagged_ptr || alias)
438 			return object;
439 		else {
440 			kmemleak_warn("Found object by alias at 0x%08lx\n",
441 				      ptr);
442 			dump_object_info(object);
443 			break;
444 		}
445 	}
446 	return NULL;
447 }
448 
449 /* Look-up a kmemleak object which allocated with virtual address. */
450 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
451 {
452 	return __lookup_object(ptr, alias, 0);
453 }
454 
455 /*
456  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
457  * that once an object's use_count reached 0, the RCU freeing was already
458  * registered and the object should no longer be used. This function must be
459  * called under the protection of rcu_read_lock().
460  */
461 static int get_object(struct kmemleak_object *object)
462 {
463 	return atomic_inc_not_zero(&object->use_count);
464 }
465 
466 /*
467  * Memory pool allocation and freeing. kmemleak_lock must not be held.
468  */
469 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
470 {
471 	unsigned long flags;
472 	struct kmemleak_object *object;
473 
474 	/* try the slab allocator first */
475 	if (object_cache) {
476 		object = kmem_cache_alloc_noprof(object_cache,
477 						 gfp_nested_mask(gfp));
478 		if (object)
479 			return object;
480 	}
481 
482 	/* slab allocation failed, try the memory pool */
483 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
484 	object = list_first_entry_or_null(&mem_pool_free_list,
485 					  typeof(*object), object_list);
486 	if (object)
487 		list_del(&object->object_list);
488 	else if (mem_pool_free_count)
489 		object = &mem_pool[--mem_pool_free_count];
490 	else
491 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
492 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
493 
494 	return object;
495 }
496 
497 /*
498  * Return the object to either the slab allocator or the memory pool.
499  */
500 static void mem_pool_free(struct kmemleak_object *object)
501 {
502 	unsigned long flags;
503 
504 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
505 		kmem_cache_free(object_cache, object);
506 		return;
507 	}
508 
509 	/* add the object to the memory pool free list */
510 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
511 	list_add(&object->object_list, &mem_pool_free_list);
512 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
513 }
514 
515 /*
516  * RCU callback to free a kmemleak_object.
517  */
518 static void free_object_rcu(struct rcu_head *rcu)
519 {
520 	struct hlist_node *tmp;
521 	struct kmemleak_scan_area *area;
522 	struct kmemleak_object *object =
523 		container_of(rcu, struct kmemleak_object, rcu);
524 
525 	/*
526 	 * Once use_count is 0 (guaranteed by put_object), there is no other
527 	 * code accessing this object, hence no need for locking.
528 	 */
529 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
530 		hlist_del(&area->node);
531 		kmem_cache_free(scan_area_cache, area);
532 	}
533 	mem_pool_free(object);
534 }
535 
536 /*
537  * Decrement the object use_count. Once the count is 0, free the object using
538  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
539  * delete_object() path, the delayed RCU freeing ensures that there is no
540  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
541  * is also possible.
542  */
543 static void put_object(struct kmemleak_object *object)
544 {
545 	if (!atomic_dec_and_test(&object->use_count))
546 		return;
547 
548 	/* should only get here after delete_object was called */
549 	WARN_ON(object->flags & OBJECT_ALLOCATED);
550 
551 	/*
552 	 * It may be too early for the RCU callbacks, however, there is no
553 	 * concurrent object_list traversal when !object_cache and all objects
554 	 * came from the memory pool. Free the object directly.
555 	 */
556 	if (object_cache)
557 		call_rcu(&object->rcu, free_object_rcu);
558 	else
559 		free_object_rcu(&object->rcu);
560 }
561 
562 /*
563  * Look up an object in the object search tree and increase its use_count.
564  */
565 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
566 						     unsigned int objflags)
567 {
568 	unsigned long flags;
569 	struct kmemleak_object *object;
570 
571 	rcu_read_lock();
572 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
573 	object = __lookup_object(ptr, alias, objflags);
574 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
575 
576 	/* check whether the object is still available */
577 	if (object && !get_object(object))
578 		object = NULL;
579 	rcu_read_unlock();
580 
581 	return object;
582 }
583 
584 /* Look up and get an object which allocated with virtual address. */
585 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
586 {
587 	return __find_and_get_object(ptr, alias, 0);
588 }
589 
590 /*
591  * Remove an object from its object tree and object_list. Must be called with
592  * the kmemleak_lock held _if_ kmemleak is still enabled.
593  */
594 static void __remove_object(struct kmemleak_object *object)
595 {
596 	rb_erase(&object->rb_node, object_tree(object->flags));
597 	if (!(object->del_state & DELSTATE_NO_DELETE))
598 		list_del_rcu(&object->object_list);
599 	object->del_state |= DELSTATE_REMOVED;
600 }
601 
602 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
603 							int alias,
604 							unsigned int objflags)
605 {
606 	struct kmemleak_object *object;
607 
608 	object = __lookup_object(ptr, alias, objflags);
609 	if (object)
610 		__remove_object(object);
611 
612 	return object;
613 }
614 
615 /*
616  * Look up an object in the object search tree and remove it from both object
617  * tree root and object_list. The returned object's use_count should be at
618  * least 1, as initially set by create_object().
619  */
620 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
621 						      unsigned int objflags)
622 {
623 	unsigned long flags;
624 	struct kmemleak_object *object;
625 
626 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
627 	object = __find_and_remove_object(ptr, alias, objflags);
628 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
629 
630 	return object;
631 }
632 
633 static noinline depot_stack_handle_t set_track_prepare(void)
634 {
635 	depot_stack_handle_t trace_handle;
636 	unsigned long entries[MAX_TRACE];
637 	unsigned int nr_entries;
638 
639 	/*
640 	 * Use object_cache to determine whether kmemleak_init() has
641 	 * been invoked. stack_depot_early_init() is called before
642 	 * kmemleak_init() in mm_core_init().
643 	 */
644 	if (!object_cache)
645 		return 0;
646 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
647 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
648 
649 	return trace_handle;
650 }
651 
652 static struct kmemleak_object *__alloc_object(gfp_t gfp)
653 {
654 	struct kmemleak_object *object;
655 
656 	object = mem_pool_alloc(gfp);
657 	if (!object) {
658 		pr_warn("Cannot allocate a kmemleak_object structure\n");
659 		kmemleak_disable();
660 		return NULL;
661 	}
662 
663 	INIT_LIST_HEAD(&object->object_list);
664 	INIT_LIST_HEAD(&object->gray_list);
665 	INIT_HLIST_HEAD(&object->area_list);
666 	raw_spin_lock_init(&object->lock);
667 	atomic_set(&object->use_count, 1);
668 	object->excess_ref = 0;
669 	object->count = 0;			/* white color initially */
670 	object->checksum = 0;
671 	object->del_state = 0;
672 
673 	/* task information */
674 	if (in_hardirq()) {
675 		object->pid = 0;
676 		strscpy(object->comm, "hardirq");
677 	} else if (in_serving_softirq()) {
678 		object->pid = 0;
679 		strscpy(object->comm, "softirq");
680 	} else {
681 		object->pid = current->pid;
682 		/*
683 		 * There is a small chance of a race with set_task_comm(),
684 		 * however using get_task_comm() here may cause locking
685 		 * dependency issues with current->alloc_lock. In the worst
686 		 * case, the command line is not correct.
687 		 */
688 		strscpy(object->comm, current->comm);
689 	}
690 
691 	/* kernel backtrace */
692 	object->trace_handle = set_track_prepare();
693 
694 	return object;
695 }
696 
697 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
698 			 size_t size, int min_count, unsigned int objflags)
699 {
700 
701 	struct kmemleak_object *parent;
702 	struct rb_node **link, *rb_parent;
703 	unsigned long untagged_ptr;
704 	unsigned long untagged_objp;
705 
706 	object->flags = OBJECT_ALLOCATED | objflags;
707 	object->pointer = ptr;
708 	object->size = kfence_ksize((void *)ptr) ?: size;
709 	object->min_count = min_count;
710 	object->jiffies = jiffies;
711 
712 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
713 	/*
714 	 * Only update min_addr and max_addr with object storing virtual
715 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
716 	 * objects.
717 	 */
718 	if (objflags & OBJECT_PERCPU) {
719 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
720 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
721 	} else if (!(objflags & OBJECT_PHYS)) {
722 		min_addr = min(min_addr, untagged_ptr);
723 		max_addr = max(max_addr, untagged_ptr + size);
724 	}
725 	link = &object_tree(objflags)->rb_node;
726 	rb_parent = NULL;
727 	while (*link) {
728 		rb_parent = *link;
729 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
730 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
731 		if (untagged_ptr + size <= untagged_objp)
732 			link = &parent->rb_node.rb_left;
733 		else if (untagged_objp + parent->size <= untagged_ptr)
734 			link = &parent->rb_node.rb_right;
735 		else {
736 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
737 				      ptr);
738 			/*
739 			 * No need for parent->lock here since "parent" cannot
740 			 * be freed while the kmemleak_lock is held.
741 			 */
742 			dump_object_info(parent);
743 			return -EEXIST;
744 		}
745 	}
746 	rb_link_node(&object->rb_node, rb_parent, link);
747 	rb_insert_color(&object->rb_node, object_tree(objflags));
748 	list_add_tail_rcu(&object->object_list, &object_list);
749 
750 	return 0;
751 }
752 
753 /*
754  * Create the metadata (struct kmemleak_object) corresponding to an allocated
755  * memory block and add it to the object_list and object tree.
756  */
757 static void __create_object(unsigned long ptr, size_t size,
758 				int min_count, gfp_t gfp, unsigned int objflags)
759 {
760 	struct kmemleak_object *object;
761 	unsigned long flags;
762 	int ret;
763 
764 	object = __alloc_object(gfp);
765 	if (!object)
766 		return;
767 
768 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
769 	ret = __link_object(object, ptr, size, min_count, objflags);
770 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
771 	if (ret)
772 		mem_pool_free(object);
773 }
774 
775 /* Create kmemleak object which allocated with virtual address. */
776 static void create_object(unsigned long ptr, size_t size,
777 			  int min_count, gfp_t gfp)
778 {
779 	__create_object(ptr, size, min_count, gfp, 0);
780 }
781 
782 /* Create kmemleak object which allocated with physical address. */
783 static void create_object_phys(unsigned long ptr, size_t size,
784 			       int min_count, gfp_t gfp)
785 {
786 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
787 }
788 
789 /* Create kmemleak object corresponding to a per-CPU allocation. */
790 static void create_object_percpu(unsigned long ptr, size_t size,
791 				 int min_count, gfp_t gfp)
792 {
793 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
794 }
795 
796 /*
797  * Mark the object as not allocated and schedule RCU freeing via put_object().
798  */
799 static void __delete_object(struct kmemleak_object *object)
800 {
801 	unsigned long flags;
802 
803 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
804 	WARN_ON(atomic_read(&object->use_count) < 1);
805 
806 	/*
807 	 * Locking here also ensures that the corresponding memory block
808 	 * cannot be freed when it is being scanned.
809 	 */
810 	raw_spin_lock_irqsave(&object->lock, flags);
811 	object->flags &= ~OBJECT_ALLOCATED;
812 	raw_spin_unlock_irqrestore(&object->lock, flags);
813 	put_object(object);
814 }
815 
816 /*
817  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
818  * delete it.
819  */
820 static void delete_object_full(unsigned long ptr, unsigned int objflags)
821 {
822 	struct kmemleak_object *object;
823 
824 	object = find_and_remove_object(ptr, 0, objflags);
825 	if (!object) {
826 #ifdef DEBUG
827 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
828 			      ptr);
829 #endif
830 		return;
831 	}
832 	__delete_object(object);
833 }
834 
835 /*
836  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
837  * delete it. If the memory block is partially freed, the function may create
838  * additional metadata for the remaining parts of the block.
839  */
840 static void delete_object_part(unsigned long ptr, size_t size,
841 			       unsigned int objflags)
842 {
843 	struct kmemleak_object *object, *object_l, *object_r;
844 	unsigned long start, end, flags;
845 
846 	object_l = __alloc_object(GFP_KERNEL);
847 	if (!object_l)
848 		return;
849 
850 	object_r = __alloc_object(GFP_KERNEL);
851 	if (!object_r)
852 		goto out;
853 
854 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
855 	object = __find_and_remove_object(ptr, 1, objflags);
856 	if (!object) {
857 #ifdef DEBUG
858 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
859 			      ptr, size);
860 #endif
861 		goto unlock;
862 	}
863 
864 	/*
865 	 * Create one or two objects that may result from the memory block
866 	 * split. Note that partial freeing is only done by free_bootmem() and
867 	 * this happens before kmemleak_init() is called.
868 	 */
869 	start = object->pointer;
870 	end = object->pointer + object->size;
871 	if ((ptr > start) &&
872 	    !__link_object(object_l, start, ptr - start,
873 			   object->min_count, objflags))
874 		object_l = NULL;
875 	if ((ptr + size < end) &&
876 	    !__link_object(object_r, ptr + size, end - ptr - size,
877 			   object->min_count, objflags))
878 		object_r = NULL;
879 
880 unlock:
881 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
882 	if (object)
883 		__delete_object(object);
884 
885 out:
886 	if (object_l)
887 		mem_pool_free(object_l);
888 	if (object_r)
889 		mem_pool_free(object_r);
890 }
891 
892 static void __paint_it(struct kmemleak_object *object, int color)
893 {
894 	object->min_count = color;
895 	if (color == KMEMLEAK_BLACK)
896 		object->flags |= OBJECT_NO_SCAN;
897 }
898 
899 static void paint_it(struct kmemleak_object *object, int color)
900 {
901 	unsigned long flags;
902 
903 	raw_spin_lock_irqsave(&object->lock, flags);
904 	__paint_it(object, color);
905 	raw_spin_unlock_irqrestore(&object->lock, flags);
906 }
907 
908 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
909 {
910 	struct kmemleak_object *object;
911 
912 	object = __find_and_get_object(ptr, 0, objflags);
913 	if (!object) {
914 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
915 			      ptr,
916 			      (color == KMEMLEAK_GREY) ? "Grey" :
917 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
918 		return;
919 	}
920 	paint_it(object, color);
921 	put_object(object);
922 }
923 
924 /*
925  * Mark an object permanently as gray-colored so that it can no longer be
926  * reported as a leak. This is used in general to mark a false positive.
927  */
928 static void make_gray_object(unsigned long ptr)
929 {
930 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
931 }
932 
933 /*
934  * Mark the object as black-colored so that it is ignored from scans and
935  * reporting.
936  */
937 static void make_black_object(unsigned long ptr, unsigned int objflags)
938 {
939 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
940 }
941 
942 /*
943  * Reset the checksum of an object. The immediate effect is that it will not
944  * be reported as a leak during the next scan until its checksum is updated.
945  */
946 static void reset_checksum(unsigned long ptr)
947 {
948 	unsigned long flags;
949 	struct kmemleak_object *object;
950 
951 	object = find_and_get_object(ptr, 0);
952 	if (!object) {
953 		kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n",
954 			      ptr);
955 		return;
956 	}
957 
958 	raw_spin_lock_irqsave(&object->lock, flags);
959 	object->checksum = 0;
960 	raw_spin_unlock_irqrestore(&object->lock, flags);
961 	put_object(object);
962 }
963 
964 /*
965  * Add a scanning area to the object. If at least one such area is added,
966  * kmemleak will only scan these ranges rather than the whole memory block.
967  */
968 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
969 {
970 	unsigned long flags;
971 	struct kmemleak_object *object;
972 	struct kmemleak_scan_area *area = NULL;
973 	unsigned long untagged_ptr;
974 	unsigned long untagged_objp;
975 
976 	object = find_and_get_object(ptr, 1);
977 	if (!object) {
978 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
979 			      ptr);
980 		return;
981 	}
982 
983 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
984 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
985 
986 	if (scan_area_cache)
987 		area = kmem_cache_alloc_noprof(scan_area_cache,
988 					       gfp_nested_mask(gfp));
989 
990 	raw_spin_lock_irqsave(&object->lock, flags);
991 	if (!area) {
992 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
993 		/* mark the object for full scan to avoid false positives */
994 		object->flags |= OBJECT_FULL_SCAN;
995 		goto out_unlock;
996 	}
997 	if (size == SIZE_MAX) {
998 		size = untagged_objp + object->size - untagged_ptr;
999 	} else if (untagged_ptr + size > untagged_objp + object->size) {
1000 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
1001 		dump_object_info(object);
1002 		kmem_cache_free(scan_area_cache, area);
1003 		goto out_unlock;
1004 	}
1005 
1006 	INIT_HLIST_NODE(&area->node);
1007 	area->start = ptr;
1008 	area->size = size;
1009 
1010 	hlist_add_head(&area->node, &object->area_list);
1011 out_unlock:
1012 	raw_spin_unlock_irqrestore(&object->lock, flags);
1013 	put_object(object);
1014 }
1015 
1016 /*
1017  * Any surplus references (object already gray) to 'ptr' are passed to
1018  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
1019  * vm_struct may be used as an alternative reference to the vmalloc'ed object
1020  * (see free_thread_stack()).
1021  */
1022 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
1023 {
1024 	unsigned long flags;
1025 	struct kmemleak_object *object;
1026 
1027 	object = find_and_get_object(ptr, 0);
1028 	if (!object) {
1029 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1030 			      ptr);
1031 		return;
1032 	}
1033 
1034 	raw_spin_lock_irqsave(&object->lock, flags);
1035 	object->excess_ref = excess_ref;
1036 	raw_spin_unlock_irqrestore(&object->lock, flags);
1037 	put_object(object);
1038 }
1039 
1040 /*
1041  * Set the OBJECT_NO_SCAN flag for the object corresponding to the given
1042  * pointer. Such object will not be scanned by kmemleak but references to it
1043  * are searched.
1044  */
1045 static void object_no_scan(unsigned long ptr)
1046 {
1047 	unsigned long flags;
1048 	struct kmemleak_object *object;
1049 
1050 	object = find_and_get_object(ptr, 0);
1051 	if (!object) {
1052 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1053 		return;
1054 	}
1055 
1056 	raw_spin_lock_irqsave(&object->lock, flags);
1057 	object->flags |= OBJECT_NO_SCAN;
1058 	raw_spin_unlock_irqrestore(&object->lock, flags);
1059 	put_object(object);
1060 }
1061 
1062 /**
1063  * kmemleak_alloc - register a newly allocated object
1064  * @ptr:	pointer to beginning of the object
1065  * @size:	size of the object
1066  * @min_count:	minimum number of references to this object. If during memory
1067  *		scanning a number of references less than @min_count is found,
1068  *		the object is reported as a memory leak. If @min_count is 0,
1069  *		the object is never reported as a leak. If @min_count is -1,
1070  *		the object is ignored (not scanned and not reported as a leak)
1071  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1072  *
1073  * This function is called from the kernel allocators when a new object
1074  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1075  */
1076 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1077 			  gfp_t gfp)
1078 {
1079 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1080 
1081 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1082 		create_object((unsigned long)ptr, size, min_count, gfp);
1083 }
1084 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1085 
1086 /**
1087  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1088  * @ptr:	__percpu pointer to beginning of the object
1089  * @size:	size of the object
1090  * @gfp:	flags used for kmemleak internal memory allocations
1091  *
1092  * This function is called from the kernel percpu allocator when a new object
1093  * (memory block) is allocated (alloc_percpu).
1094  */
1095 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1096 				 gfp_t gfp)
1097 {
1098 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1099 
1100 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1101 		create_object_percpu((__force unsigned long)ptr, size, 1, gfp);
1102 }
1103 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1104 
1105 /**
1106  * kmemleak_vmalloc - register a newly vmalloc'ed object
1107  * @area:	pointer to vm_struct
1108  * @size:	size of the object
1109  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1110  *
1111  * This function is called from the vmalloc() kernel allocator when a new
1112  * object (memory block) is allocated.
1113  */
1114 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1115 {
1116 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1117 
1118 	/*
1119 	 * A min_count = 2 is needed because vm_struct contains a reference to
1120 	 * the virtual address of the vmalloc'ed block.
1121 	 */
1122 	if (kmemleak_enabled) {
1123 		create_object((unsigned long)area->addr, size, 2, gfp);
1124 		object_set_excess_ref((unsigned long)area,
1125 				      (unsigned long)area->addr);
1126 	}
1127 }
1128 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1129 
1130 /**
1131  * kmemleak_free - unregister a previously registered object
1132  * @ptr:	pointer to beginning of the object
1133  *
1134  * This function is called from the kernel allocators when an object (memory
1135  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1136  */
1137 void __ref kmemleak_free(const void *ptr)
1138 {
1139 	pr_debug("%s(0x%px)\n", __func__, ptr);
1140 
1141 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1142 		delete_object_full((unsigned long)ptr, 0);
1143 }
1144 EXPORT_SYMBOL_GPL(kmemleak_free);
1145 
1146 /**
1147  * kmemleak_free_part - partially unregister a previously registered object
1148  * @ptr:	pointer to the beginning or inside the object. This also
1149  *		represents the start of the range to be freed
1150  * @size:	size to be unregistered
1151  *
1152  * This function is called when only a part of a memory block is freed
1153  * (usually from the bootmem allocator).
1154  */
1155 void __ref kmemleak_free_part(const void *ptr, size_t size)
1156 {
1157 	pr_debug("%s(0x%px)\n", __func__, ptr);
1158 
1159 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1160 		delete_object_part((unsigned long)ptr, size, 0);
1161 }
1162 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1163 
1164 /**
1165  * kmemleak_free_percpu - unregister a previously registered __percpu object
1166  * @ptr:	__percpu pointer to beginning of the object
1167  *
1168  * This function is called from the kernel percpu allocator when an object
1169  * (memory block) is freed (free_percpu).
1170  */
1171 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1172 {
1173 	pr_debug("%s(0x%px)\n", __func__, ptr);
1174 
1175 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1176 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1177 }
1178 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1179 
1180 /**
1181  * kmemleak_update_trace - update object allocation stack trace
1182  * @ptr:	pointer to beginning of the object
1183  *
1184  * Override the object allocation stack trace for cases where the actual
1185  * allocation place is not always useful.
1186  */
1187 void __ref kmemleak_update_trace(const void *ptr)
1188 {
1189 	struct kmemleak_object *object;
1190 	depot_stack_handle_t trace_handle;
1191 	unsigned long flags;
1192 
1193 	pr_debug("%s(0x%px)\n", __func__, ptr);
1194 
1195 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1196 		return;
1197 
1198 	object = find_and_get_object((unsigned long)ptr, 1);
1199 	if (!object) {
1200 #ifdef DEBUG
1201 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1202 			      ptr);
1203 #endif
1204 		return;
1205 	}
1206 
1207 	trace_handle = set_track_prepare();
1208 	raw_spin_lock_irqsave(&object->lock, flags);
1209 	object->trace_handle = trace_handle;
1210 	raw_spin_unlock_irqrestore(&object->lock, flags);
1211 
1212 	put_object(object);
1213 }
1214 EXPORT_SYMBOL(kmemleak_update_trace);
1215 
1216 /**
1217  * kmemleak_not_leak - mark an allocated object as false positive
1218  * @ptr:	pointer to beginning of the object
1219  *
1220  * Calling this function on an object will cause the memory block to no longer
1221  * be reported as leak and always be scanned.
1222  */
1223 void __ref kmemleak_not_leak(const void *ptr)
1224 {
1225 	pr_debug("%s(0x%px)\n", __func__, ptr);
1226 
1227 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1228 		make_gray_object((unsigned long)ptr);
1229 }
1230 EXPORT_SYMBOL(kmemleak_not_leak);
1231 
1232 /**
1233  * kmemleak_transient_leak - mark an allocated object as transient false positive
1234  * @ptr:	pointer to beginning of the object
1235  *
1236  * Calling this function on an object will cause the memory block to not be
1237  * reported as a leak temporarily. This may happen, for example, if the object
1238  * is part of a singly linked list and the ->next reference to it is changed.
1239  */
1240 void __ref kmemleak_transient_leak(const void *ptr)
1241 {
1242 	pr_debug("%s(0x%px)\n", __func__, ptr);
1243 
1244 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1245 		reset_checksum((unsigned long)ptr);
1246 }
1247 EXPORT_SYMBOL(kmemleak_transient_leak);
1248 
1249 /**
1250  * kmemleak_ignore - ignore an allocated object
1251  * @ptr:	pointer to beginning of the object
1252  *
1253  * Calling this function on an object will cause the memory block to be
1254  * ignored (not scanned and not reported as a leak). This is usually done when
1255  * it is known that the corresponding block is not a leak and does not contain
1256  * any references to other allocated memory blocks.
1257  */
1258 void __ref kmemleak_ignore(const void *ptr)
1259 {
1260 	pr_debug("%s(0x%px)\n", __func__, ptr);
1261 
1262 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1263 		make_black_object((unsigned long)ptr, 0);
1264 }
1265 EXPORT_SYMBOL(kmemleak_ignore);
1266 
1267 /**
1268  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1269  * @ptr:	pointer to beginning or inside the object. This also
1270  *		represents the start of the scan area
1271  * @size:	size of the scan area
1272  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1273  *
1274  * This function is used when it is known that only certain parts of an object
1275  * contain references to other objects. Kmemleak will only scan these areas
1276  * reducing the number false negatives.
1277  */
1278 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1279 {
1280 	pr_debug("%s(0x%px)\n", __func__, ptr);
1281 
1282 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1283 		add_scan_area((unsigned long)ptr, size, gfp);
1284 }
1285 EXPORT_SYMBOL(kmemleak_scan_area);
1286 
1287 /**
1288  * kmemleak_no_scan - do not scan an allocated object
1289  * @ptr:	pointer to beginning of the object
1290  *
1291  * This function notifies kmemleak not to scan the given memory block. Useful
1292  * in situations where it is known that the given object does not contain any
1293  * references to other objects. Kmemleak will not scan such objects reducing
1294  * the number of false negatives.
1295  */
1296 void __ref kmemleak_no_scan(const void *ptr)
1297 {
1298 	pr_debug("%s(0x%px)\n", __func__, ptr);
1299 
1300 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1301 		object_no_scan((unsigned long)ptr);
1302 }
1303 EXPORT_SYMBOL(kmemleak_no_scan);
1304 
1305 /**
1306  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1307  *			 address argument
1308  * @phys:	physical address of the object
1309  * @size:	size of the object
1310  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1311  */
1312 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1313 {
1314 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1315 
1316 	if (kmemleak_enabled)
1317 		/*
1318 		 * Create object with OBJECT_PHYS flag and
1319 		 * assume min_count 0.
1320 		 */
1321 		create_object_phys((unsigned long)phys, size, 0, gfp);
1322 }
1323 EXPORT_SYMBOL(kmemleak_alloc_phys);
1324 
1325 /**
1326  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1327  *			     physical address argument
1328  * @phys:	physical address if the beginning or inside an object. This
1329  *		also represents the start of the range to be freed
1330  * @size:	size to be unregistered
1331  */
1332 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1333 {
1334 	pr_debug("%s(0x%px)\n", __func__, &phys);
1335 
1336 	if (kmemleak_enabled)
1337 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1338 }
1339 EXPORT_SYMBOL(kmemleak_free_part_phys);
1340 
1341 /**
1342  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1343  *			  address argument
1344  * @phys:	physical address of the object
1345  */
1346 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1347 {
1348 	pr_debug("%s(0x%px)\n", __func__, &phys);
1349 
1350 	if (kmemleak_enabled)
1351 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1352 }
1353 EXPORT_SYMBOL(kmemleak_ignore_phys);
1354 
1355 /*
1356  * Update an object's checksum and return true if it was modified.
1357  */
1358 static bool update_checksum(struct kmemleak_object *object)
1359 {
1360 	u32 old_csum = object->checksum;
1361 
1362 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1363 		return false;
1364 
1365 	kasan_disable_current();
1366 	kcsan_disable_current();
1367 	if (object->flags & OBJECT_PERCPU) {
1368 		unsigned int cpu;
1369 
1370 		object->checksum = 0;
1371 		for_each_possible_cpu(cpu) {
1372 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1373 
1374 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1375 		}
1376 	} else {
1377 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1378 	}
1379 	kasan_enable_current();
1380 	kcsan_enable_current();
1381 
1382 	return object->checksum != old_csum;
1383 }
1384 
1385 /*
1386  * Update an object's references. object->lock must be held by the caller.
1387  */
1388 static void update_refs(struct kmemleak_object *object)
1389 {
1390 	if (!color_white(object)) {
1391 		/* non-orphan, ignored or new */
1392 		return;
1393 	}
1394 
1395 	/*
1396 	 * Increase the object's reference count (number of pointers to the
1397 	 * memory block). If this count reaches the required minimum, the
1398 	 * object's color will become gray and it will be added to the
1399 	 * gray_list.
1400 	 */
1401 	object->count++;
1402 	if (color_gray(object)) {
1403 		/* put_object() called when removing from gray_list */
1404 		WARN_ON(!get_object(object));
1405 		list_add_tail(&object->gray_list, &gray_list);
1406 	}
1407 }
1408 
1409 static void pointer_update_refs(struct kmemleak_object *scanned,
1410 			 unsigned long pointer, unsigned int objflags)
1411 {
1412 	struct kmemleak_object *object;
1413 	unsigned long untagged_ptr;
1414 	unsigned long excess_ref;
1415 
1416 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1417 	if (objflags & OBJECT_PERCPU) {
1418 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1419 			return;
1420 	} else {
1421 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1422 			return;
1423 	}
1424 
1425 	/*
1426 	 * No need for get_object() here since we hold kmemleak_lock.
1427 	 * object->use_count cannot be dropped to 0 while the object
1428 	 * is still present in object_tree_root and object_list
1429 	 * (with updates protected by kmemleak_lock).
1430 	 */
1431 	object = __lookup_object(pointer, 1, objflags);
1432 	if (!object)
1433 		return;
1434 	if (object == scanned)
1435 		/* self referenced, ignore */
1436 		return;
1437 
1438 	/*
1439 	 * Avoid the lockdep recursive warning on object->lock being
1440 	 * previously acquired in scan_object(). These locks are
1441 	 * enclosed by scan_mutex.
1442 	 */
1443 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1444 	/* only pass surplus references (object already gray) */
1445 	if (color_gray(object)) {
1446 		excess_ref = object->excess_ref;
1447 		/* no need for update_refs() if object already gray */
1448 	} else {
1449 		excess_ref = 0;
1450 		update_refs(object);
1451 	}
1452 	raw_spin_unlock(&object->lock);
1453 
1454 	if (excess_ref) {
1455 		object = lookup_object(excess_ref, 0);
1456 		if (!object)
1457 			return;
1458 		if (object == scanned)
1459 			/* circular reference, ignore */
1460 			return;
1461 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1462 		update_refs(object);
1463 		raw_spin_unlock(&object->lock);
1464 	}
1465 }
1466 
1467 /*
1468  * Memory scanning is a long process and it needs to be interruptible. This
1469  * function checks whether such interrupt condition occurred.
1470  */
1471 static int scan_should_stop(void)
1472 {
1473 	if (!kmemleak_enabled)
1474 		return 1;
1475 
1476 	/*
1477 	 * This function may be called from either process or kthread context,
1478 	 * hence the need to check for both stop conditions.
1479 	 */
1480 	if (current->mm)
1481 		return signal_pending(current);
1482 	else
1483 		return kthread_should_stop();
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Scan a memory block (exclusive range) for valid pointers and add those
1490  * found to the gray list.
1491  */
1492 static void scan_block(void *_start, void *_end,
1493 		       struct kmemleak_object *scanned)
1494 {
1495 	unsigned long *ptr;
1496 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1497 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1498 	unsigned long flags;
1499 
1500 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1501 	for (ptr = start; ptr < end; ptr++) {
1502 		unsigned long pointer;
1503 
1504 		if (scan_should_stop())
1505 			break;
1506 
1507 		kasan_disable_current();
1508 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1509 		kasan_enable_current();
1510 
1511 		pointer_update_refs(scanned, pointer, 0);
1512 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1513 	}
1514 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1515 }
1516 
1517 /*
1518  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1519  */
1520 #ifdef CONFIG_SMP
1521 static void scan_large_block(void *start, void *end)
1522 {
1523 	void *next;
1524 
1525 	while (start < end) {
1526 		next = min(start + MAX_SCAN_SIZE, end);
1527 		scan_block(start, next, NULL);
1528 		start = next;
1529 		cond_resched();
1530 	}
1531 }
1532 #endif
1533 
1534 /*
1535  * Scan a memory block corresponding to a kmemleak_object. A condition is
1536  * that object->use_count >= 1.
1537  */
1538 static void scan_object(struct kmemleak_object *object)
1539 {
1540 	struct kmemleak_scan_area *area;
1541 	unsigned long flags;
1542 
1543 	/*
1544 	 * Once the object->lock is acquired, the corresponding memory block
1545 	 * cannot be freed (the same lock is acquired in delete_object).
1546 	 */
1547 	raw_spin_lock_irqsave(&object->lock, flags);
1548 	if (object->flags & OBJECT_NO_SCAN)
1549 		goto out;
1550 	if (!(object->flags & OBJECT_ALLOCATED))
1551 		/* already freed object */
1552 		goto out;
1553 
1554 	if (object->flags & OBJECT_PERCPU) {
1555 		unsigned int cpu;
1556 
1557 		for_each_possible_cpu(cpu) {
1558 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1559 			void *end = start + object->size;
1560 
1561 			scan_block(start, end, object);
1562 
1563 			raw_spin_unlock_irqrestore(&object->lock, flags);
1564 			cond_resched();
1565 			raw_spin_lock_irqsave(&object->lock, flags);
1566 			if (!(object->flags & OBJECT_ALLOCATED))
1567 				break;
1568 		}
1569 	} else if (hlist_empty(&object->area_list) ||
1570 	    object->flags & OBJECT_FULL_SCAN) {
1571 		void *start = object->flags & OBJECT_PHYS ?
1572 				__va((phys_addr_t)object->pointer) :
1573 				(void *)object->pointer;
1574 		void *end = start + object->size;
1575 		void *next;
1576 
1577 		do {
1578 			next = min(start + MAX_SCAN_SIZE, end);
1579 			scan_block(start, next, object);
1580 
1581 			start = next;
1582 			if (start >= end)
1583 				break;
1584 
1585 			raw_spin_unlock_irqrestore(&object->lock, flags);
1586 			cond_resched();
1587 			raw_spin_lock_irqsave(&object->lock, flags);
1588 		} while (object->flags & OBJECT_ALLOCATED);
1589 	} else {
1590 		hlist_for_each_entry(area, &object->area_list, node)
1591 			scan_block((void *)area->start,
1592 				   (void *)(area->start + area->size),
1593 				   object);
1594 	}
1595 out:
1596 	raw_spin_unlock_irqrestore(&object->lock, flags);
1597 }
1598 
1599 /*
1600  * Scan the objects already referenced (gray objects). More objects will be
1601  * referenced and, if there are no memory leaks, all the objects are scanned.
1602  */
1603 static void scan_gray_list(void)
1604 {
1605 	struct kmemleak_object *object, *tmp;
1606 
1607 	/*
1608 	 * The list traversal is safe for both tail additions and removals
1609 	 * from inside the loop. The kmemleak objects cannot be freed from
1610 	 * outside the loop because their use_count was incremented.
1611 	 */
1612 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1613 	while (&object->gray_list != &gray_list) {
1614 		cond_resched();
1615 
1616 		/* may add new objects to the list */
1617 		if (!scan_should_stop())
1618 			scan_object(object);
1619 
1620 		tmp = list_entry(object->gray_list.next, typeof(*object),
1621 				 gray_list);
1622 
1623 		/* remove the object from the list and release it */
1624 		list_del(&object->gray_list);
1625 		put_object(object);
1626 
1627 		object = tmp;
1628 	}
1629 	WARN_ON(!list_empty(&gray_list));
1630 }
1631 
1632 /*
1633  * Conditionally call resched() in an object iteration loop while making sure
1634  * that the given object won't go away without RCU read lock by performing a
1635  * get_object() if necessaary.
1636  */
1637 static void kmemleak_cond_resched(struct kmemleak_object *object)
1638 {
1639 	if (!get_object(object))
1640 		return;	/* Try next object */
1641 
1642 	raw_spin_lock_irq(&kmemleak_lock);
1643 	if (object->del_state & DELSTATE_REMOVED)
1644 		goto unlock_put;	/* Object removed */
1645 	object->del_state |= DELSTATE_NO_DELETE;
1646 	raw_spin_unlock_irq(&kmemleak_lock);
1647 
1648 	rcu_read_unlock();
1649 	cond_resched();
1650 	rcu_read_lock();
1651 
1652 	raw_spin_lock_irq(&kmemleak_lock);
1653 	if (object->del_state & DELSTATE_REMOVED)
1654 		list_del_rcu(&object->object_list);
1655 	object->del_state &= ~DELSTATE_NO_DELETE;
1656 unlock_put:
1657 	raw_spin_unlock_irq(&kmemleak_lock);
1658 	put_object(object);
1659 }
1660 
1661 /*
1662  * Scan data sections and all the referenced memory blocks allocated via the
1663  * kernel's standard allocators. This function must be called with the
1664  * scan_mutex held.
1665  */
1666 static void kmemleak_scan(void)
1667 {
1668 	struct kmemleak_object *object;
1669 	struct zone *zone;
1670 	int __maybe_unused i;
1671 	int new_leaks = 0;
1672 
1673 	jiffies_last_scan = jiffies;
1674 
1675 	/* prepare the kmemleak_object's */
1676 	rcu_read_lock();
1677 	list_for_each_entry_rcu(object, &object_list, object_list) {
1678 		raw_spin_lock_irq(&object->lock);
1679 #ifdef DEBUG
1680 		/*
1681 		 * With a few exceptions there should be a maximum of
1682 		 * 1 reference to any object at this point.
1683 		 */
1684 		if (atomic_read(&object->use_count) > 1) {
1685 			pr_debug("object->use_count = %d\n",
1686 				 atomic_read(&object->use_count));
1687 			dump_object_info(object);
1688 		}
1689 #endif
1690 
1691 		/* ignore objects outside lowmem (paint them black) */
1692 		if ((object->flags & OBJECT_PHYS) &&
1693 		   !(object->flags & OBJECT_NO_SCAN)) {
1694 			unsigned long phys = object->pointer;
1695 
1696 			if (PHYS_PFN(phys) < min_low_pfn ||
1697 			    PHYS_PFN(phys + object->size) > max_low_pfn)
1698 				__paint_it(object, KMEMLEAK_BLACK);
1699 		}
1700 
1701 		/* reset the reference count (whiten the object) */
1702 		object->count = 0;
1703 		if (color_gray(object) && get_object(object))
1704 			list_add_tail(&object->gray_list, &gray_list);
1705 
1706 		raw_spin_unlock_irq(&object->lock);
1707 
1708 		if (need_resched())
1709 			kmemleak_cond_resched(object);
1710 	}
1711 	rcu_read_unlock();
1712 
1713 #ifdef CONFIG_SMP
1714 	/* per-cpu sections scanning */
1715 	for_each_possible_cpu(i)
1716 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1717 				 __per_cpu_end + per_cpu_offset(i));
1718 #endif
1719 
1720 	/*
1721 	 * Struct page scanning for each node.
1722 	 */
1723 	get_online_mems();
1724 	for_each_populated_zone(zone) {
1725 		unsigned long start_pfn = zone->zone_start_pfn;
1726 		unsigned long end_pfn = zone_end_pfn(zone);
1727 		unsigned long pfn;
1728 
1729 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1730 			struct page *page = pfn_to_online_page(pfn);
1731 
1732 			if (!(pfn & 63))
1733 				cond_resched();
1734 
1735 			if (!page)
1736 				continue;
1737 
1738 			/* only scan pages belonging to this zone */
1739 			if (page_zone(page) != zone)
1740 				continue;
1741 			/* only scan if page is in use */
1742 			if (page_count(page) == 0)
1743 				continue;
1744 			scan_block(page, page + 1, NULL);
1745 		}
1746 	}
1747 	put_online_mems();
1748 
1749 	/*
1750 	 * Scanning the task stacks (may introduce false negatives).
1751 	 */
1752 	if (kmemleak_stack_scan) {
1753 		struct task_struct *p, *g;
1754 
1755 		rcu_read_lock();
1756 		for_each_process_thread(g, p) {
1757 			void *stack = try_get_task_stack(p);
1758 			if (stack) {
1759 				scan_block(stack, stack + THREAD_SIZE, NULL);
1760 				put_task_stack(p);
1761 			}
1762 		}
1763 		rcu_read_unlock();
1764 	}
1765 
1766 	/*
1767 	 * Scan the objects already referenced from the sections scanned
1768 	 * above.
1769 	 */
1770 	scan_gray_list();
1771 
1772 	/*
1773 	 * Check for new or unreferenced objects modified since the previous
1774 	 * scan and color them gray until the next scan.
1775 	 */
1776 	rcu_read_lock();
1777 	list_for_each_entry_rcu(object, &object_list, object_list) {
1778 		if (need_resched())
1779 			kmemleak_cond_resched(object);
1780 
1781 		/*
1782 		 * This is racy but we can save the overhead of lock/unlock
1783 		 * calls. The missed objects, if any, should be caught in
1784 		 * the next scan.
1785 		 */
1786 		if (!color_white(object))
1787 			continue;
1788 		raw_spin_lock_irq(&object->lock);
1789 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1790 		    && update_checksum(object) && get_object(object)) {
1791 			/* color it gray temporarily */
1792 			object->count = object->min_count;
1793 			list_add_tail(&object->gray_list, &gray_list);
1794 		}
1795 		raw_spin_unlock_irq(&object->lock);
1796 	}
1797 	rcu_read_unlock();
1798 
1799 	/*
1800 	 * Re-scan the gray list for modified unreferenced objects.
1801 	 */
1802 	scan_gray_list();
1803 
1804 	/*
1805 	 * If scanning was stopped do not report any new unreferenced objects.
1806 	 */
1807 	if (scan_should_stop())
1808 		return;
1809 
1810 	/*
1811 	 * Scanning result reporting.
1812 	 */
1813 	rcu_read_lock();
1814 	list_for_each_entry_rcu(object, &object_list, object_list) {
1815 		if (need_resched())
1816 			kmemleak_cond_resched(object);
1817 
1818 		/*
1819 		 * This is racy but we can save the overhead of lock/unlock
1820 		 * calls. The missed objects, if any, should be caught in
1821 		 * the next scan.
1822 		 */
1823 		if (!color_white(object))
1824 			continue;
1825 		raw_spin_lock_irq(&object->lock);
1826 		if (unreferenced_object(object) &&
1827 		    !(object->flags & OBJECT_REPORTED)) {
1828 			object->flags |= OBJECT_REPORTED;
1829 
1830 			if (kmemleak_verbose)
1831 				print_unreferenced(NULL, object);
1832 
1833 			new_leaks++;
1834 		}
1835 		raw_spin_unlock_irq(&object->lock);
1836 	}
1837 	rcu_read_unlock();
1838 
1839 	if (new_leaks) {
1840 		kmemleak_found_leaks = true;
1841 
1842 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1843 			new_leaks);
1844 	}
1845 
1846 }
1847 
1848 /*
1849  * Thread function performing automatic memory scanning. Unreferenced objects
1850  * at the end of a memory scan are reported but only the first time.
1851  */
1852 static int kmemleak_scan_thread(void *arg)
1853 {
1854 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1855 
1856 	pr_info("Automatic memory scanning thread started\n");
1857 	set_user_nice(current, 10);
1858 
1859 	/*
1860 	 * Wait before the first scan to allow the system to fully initialize.
1861 	 */
1862 	if (first_run) {
1863 		signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN);
1864 		first_run = 0;
1865 		while (timeout && !kthread_should_stop())
1866 			timeout = schedule_timeout_interruptible(timeout);
1867 	}
1868 
1869 	while (!kthread_should_stop()) {
1870 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1871 
1872 		mutex_lock(&scan_mutex);
1873 		kmemleak_scan();
1874 		mutex_unlock(&scan_mutex);
1875 
1876 		/* wait before the next scan */
1877 		while (timeout && !kthread_should_stop())
1878 			timeout = schedule_timeout_interruptible(timeout);
1879 	}
1880 
1881 	pr_info("Automatic memory scanning thread ended\n");
1882 
1883 	return 0;
1884 }
1885 
1886 /*
1887  * Start the automatic memory scanning thread. This function must be called
1888  * with the scan_mutex held.
1889  */
1890 static void start_scan_thread(void)
1891 {
1892 	if (scan_thread)
1893 		return;
1894 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1895 	if (IS_ERR(scan_thread)) {
1896 		pr_warn("Failed to create the scan thread\n");
1897 		scan_thread = NULL;
1898 	}
1899 }
1900 
1901 /*
1902  * Stop the automatic memory scanning thread.
1903  */
1904 static void stop_scan_thread(void)
1905 {
1906 	if (scan_thread) {
1907 		kthread_stop(scan_thread);
1908 		scan_thread = NULL;
1909 	}
1910 }
1911 
1912 /*
1913  * Iterate over the object_list and return the first valid object at or after
1914  * the required position with its use_count incremented. The function triggers
1915  * a memory scanning when the pos argument points to the first position.
1916  */
1917 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1918 {
1919 	struct kmemleak_object *object;
1920 	loff_t n = *pos;
1921 	int err;
1922 
1923 	err = mutex_lock_interruptible(&scan_mutex);
1924 	if (err < 0)
1925 		return ERR_PTR(err);
1926 
1927 	rcu_read_lock();
1928 	list_for_each_entry_rcu(object, &object_list, object_list) {
1929 		if (n-- > 0)
1930 			continue;
1931 		if (get_object(object))
1932 			goto out;
1933 	}
1934 	object = NULL;
1935 out:
1936 	return object;
1937 }
1938 
1939 /*
1940  * Return the next object in the object_list. The function decrements the
1941  * use_count of the previous object and increases that of the next one.
1942  */
1943 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1944 {
1945 	struct kmemleak_object *prev_obj = v;
1946 	struct kmemleak_object *next_obj = NULL;
1947 	struct kmemleak_object *obj = prev_obj;
1948 
1949 	++(*pos);
1950 
1951 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1952 		if (get_object(obj)) {
1953 			next_obj = obj;
1954 			break;
1955 		}
1956 	}
1957 
1958 	put_object(prev_obj);
1959 	return next_obj;
1960 }
1961 
1962 /*
1963  * Decrement the use_count of the last object required, if any.
1964  */
1965 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1966 {
1967 	if (!IS_ERR(v)) {
1968 		/*
1969 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1970 		 * waiting was interrupted, so only release it if !IS_ERR.
1971 		 */
1972 		rcu_read_unlock();
1973 		mutex_unlock(&scan_mutex);
1974 		if (v)
1975 			put_object(v);
1976 	}
1977 }
1978 
1979 /*
1980  * Print the information for an unreferenced object to the seq file.
1981  */
1982 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1983 {
1984 	struct kmemleak_object *object = v;
1985 	unsigned long flags;
1986 
1987 	raw_spin_lock_irqsave(&object->lock, flags);
1988 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1989 		print_unreferenced(seq, object);
1990 	raw_spin_unlock_irqrestore(&object->lock, flags);
1991 	return 0;
1992 }
1993 
1994 static const struct seq_operations kmemleak_seq_ops = {
1995 	.start = kmemleak_seq_start,
1996 	.next  = kmemleak_seq_next,
1997 	.stop  = kmemleak_seq_stop,
1998 	.show  = kmemleak_seq_show,
1999 };
2000 
2001 static int kmemleak_open(struct inode *inode, struct file *file)
2002 {
2003 	return seq_open(file, &kmemleak_seq_ops);
2004 }
2005 
2006 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags)
2007 {
2008 	unsigned long flags;
2009 	struct kmemleak_object *object;
2010 
2011 	object = __find_and_get_object(addr, 1, objflags);
2012 	if (!object)
2013 		return false;
2014 
2015 	raw_spin_lock_irqsave(&object->lock, flags);
2016 	dump_object_info(object);
2017 	raw_spin_unlock_irqrestore(&object->lock, flags);
2018 
2019 	put_object(object);
2020 
2021 	return true;
2022 }
2023 
2024 static int dump_str_object_info(const char *str)
2025 {
2026 	unsigned long addr;
2027 	bool found = false;
2028 
2029 	if (kstrtoul(str, 0, &addr))
2030 		return -EINVAL;
2031 
2032 	found |= __dump_str_object_info(addr, 0);
2033 	found |= __dump_str_object_info(addr, OBJECT_PHYS);
2034 	found |= __dump_str_object_info(addr, OBJECT_PERCPU);
2035 
2036 	if (!found) {
2037 		pr_info("Unknown object at 0x%08lx\n", addr);
2038 		return -EINVAL;
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 /*
2045  * We use grey instead of black to ensure we can do future scans on the same
2046  * objects. If we did not do future scans these black objects could
2047  * potentially contain references to newly allocated objects in the future and
2048  * we'd end up with false positives.
2049  */
2050 static void kmemleak_clear(void)
2051 {
2052 	struct kmemleak_object *object;
2053 
2054 	rcu_read_lock();
2055 	list_for_each_entry_rcu(object, &object_list, object_list) {
2056 		raw_spin_lock_irq(&object->lock);
2057 		if ((object->flags & OBJECT_REPORTED) &&
2058 		    unreferenced_object(object))
2059 			__paint_it(object, KMEMLEAK_GREY);
2060 		raw_spin_unlock_irq(&object->lock);
2061 	}
2062 	rcu_read_unlock();
2063 
2064 	kmemleak_found_leaks = false;
2065 }
2066 
2067 static void __kmemleak_do_cleanup(void);
2068 
2069 /*
2070  * File write operation to configure kmemleak at run-time. The following
2071  * commands can be written to the /sys/kernel/debug/kmemleak file:
2072  *   off	- disable kmemleak (irreversible)
2073  *   stack=on	- enable the task stacks scanning
2074  *   stack=off	- disable the tasks stacks scanning
2075  *   scan=on	- start the automatic memory scanning thread
2076  *   scan=off	- stop the automatic memory scanning thread
2077  *   scan=...	- set the automatic memory scanning period in seconds (0 to
2078  *		  disable it)
2079  *   scan	- trigger a memory scan
2080  *   clear	- mark all current reported unreferenced kmemleak objects as
2081  *		  grey to ignore printing them, or free all kmemleak objects
2082  *		  if kmemleak has been disabled.
2083  *   dump=...	- dump information about the object found at the given address
2084  */
2085 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2086 			      size_t size, loff_t *ppos)
2087 {
2088 	char buf[64];
2089 	int buf_size;
2090 	int ret;
2091 
2092 	buf_size = min(size, (sizeof(buf) - 1));
2093 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2094 		return -EFAULT;
2095 	buf[buf_size] = 0;
2096 
2097 	ret = mutex_lock_interruptible(&scan_mutex);
2098 	if (ret < 0)
2099 		return ret;
2100 
2101 	if (strncmp(buf, "clear", 5) == 0) {
2102 		if (kmemleak_enabled)
2103 			kmemleak_clear();
2104 		else
2105 			__kmemleak_do_cleanup();
2106 		goto out;
2107 	}
2108 
2109 	if (!kmemleak_enabled) {
2110 		ret = -EPERM;
2111 		goto out;
2112 	}
2113 
2114 	if (strncmp(buf, "off", 3) == 0)
2115 		kmemleak_disable();
2116 	else if (strncmp(buf, "stack=on", 8) == 0)
2117 		kmemleak_stack_scan = 1;
2118 	else if (strncmp(buf, "stack=off", 9) == 0)
2119 		kmemleak_stack_scan = 0;
2120 	else if (strncmp(buf, "scan=on", 7) == 0)
2121 		start_scan_thread();
2122 	else if (strncmp(buf, "scan=off", 8) == 0)
2123 		stop_scan_thread();
2124 	else if (strncmp(buf, "scan=", 5) == 0) {
2125 		unsigned secs;
2126 		unsigned long msecs;
2127 
2128 		ret = kstrtouint(buf + 5, 0, &secs);
2129 		if (ret < 0)
2130 			goto out;
2131 
2132 		msecs = secs * MSEC_PER_SEC;
2133 		if (msecs > UINT_MAX)
2134 			msecs = UINT_MAX;
2135 
2136 		stop_scan_thread();
2137 		if (msecs) {
2138 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2139 			start_scan_thread();
2140 		}
2141 	} else if (strncmp(buf, "scan", 4) == 0)
2142 		kmemleak_scan();
2143 	else if (strncmp(buf, "dump=", 5) == 0)
2144 		ret = dump_str_object_info(buf + 5);
2145 	else
2146 		ret = -EINVAL;
2147 
2148 out:
2149 	mutex_unlock(&scan_mutex);
2150 	if (ret < 0)
2151 		return ret;
2152 
2153 	/* ignore the rest of the buffer, only one command at a time */
2154 	*ppos += size;
2155 	return size;
2156 }
2157 
2158 static const struct file_operations kmemleak_fops = {
2159 	.owner		= THIS_MODULE,
2160 	.open		= kmemleak_open,
2161 	.read		= seq_read,
2162 	.write		= kmemleak_write,
2163 	.llseek		= seq_lseek,
2164 	.release	= seq_release,
2165 };
2166 
2167 static void __kmemleak_do_cleanup(void)
2168 {
2169 	struct kmemleak_object *object, *tmp;
2170 
2171 	/*
2172 	 * Kmemleak has already been disabled, no need for RCU list traversal
2173 	 * or kmemleak_lock held.
2174 	 */
2175 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2176 		__remove_object(object);
2177 		__delete_object(object);
2178 	}
2179 }
2180 
2181 /*
2182  * Stop the memory scanning thread and free the kmemleak internal objects if
2183  * no previous scan thread (otherwise, kmemleak may still have some useful
2184  * information on memory leaks).
2185  */
2186 static void kmemleak_do_cleanup(struct work_struct *work)
2187 {
2188 	stop_scan_thread();
2189 
2190 	mutex_lock(&scan_mutex);
2191 	/*
2192 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2193 	 * longer track object freeing. Ordering of the scan thread stopping and
2194 	 * the memory accesses below is guaranteed by the kthread_stop()
2195 	 * function.
2196 	 */
2197 	kmemleak_free_enabled = 0;
2198 	mutex_unlock(&scan_mutex);
2199 
2200 	if (!kmemleak_found_leaks)
2201 		__kmemleak_do_cleanup();
2202 	else
2203 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2204 }
2205 
2206 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2207 
2208 /*
2209  * Disable kmemleak. No memory allocation/freeing will be traced once this
2210  * function is called. Disabling kmemleak is an irreversible operation.
2211  */
2212 static void kmemleak_disable(void)
2213 {
2214 	/* atomically check whether it was already invoked */
2215 	if (cmpxchg(&kmemleak_error, 0, 1))
2216 		return;
2217 
2218 	/* stop any memory operation tracing */
2219 	kmemleak_enabled = 0;
2220 
2221 	/* check whether it is too early for a kernel thread */
2222 	if (kmemleak_late_initialized)
2223 		schedule_work(&cleanup_work);
2224 	else
2225 		kmemleak_free_enabled = 0;
2226 
2227 	pr_info("Kernel memory leak detector disabled\n");
2228 }
2229 
2230 /*
2231  * Allow boot-time kmemleak disabling (enabled by default).
2232  */
2233 static int __init kmemleak_boot_config(char *str)
2234 {
2235 	if (!str)
2236 		return -EINVAL;
2237 	if (strcmp(str, "off") == 0)
2238 		kmemleak_disable();
2239 	else if (strcmp(str, "on") == 0) {
2240 		kmemleak_skip_disable = 1;
2241 		stack_depot_request_early_init();
2242 	}
2243 	else
2244 		return -EINVAL;
2245 	return 0;
2246 }
2247 early_param("kmemleak", kmemleak_boot_config);
2248 
2249 /*
2250  * Kmemleak initialization.
2251  */
2252 void __init kmemleak_init(void)
2253 {
2254 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2255 	if (!kmemleak_skip_disable) {
2256 		kmemleak_disable();
2257 		return;
2258 	}
2259 #endif
2260 
2261 	if (kmemleak_error)
2262 		return;
2263 
2264 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2265 	jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT);
2266 
2267 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2268 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2269 
2270 	/* register the data/bss sections */
2271 	create_object((unsigned long)_sdata, _edata - _sdata,
2272 		      KMEMLEAK_GREY, GFP_ATOMIC);
2273 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2274 		      KMEMLEAK_GREY, GFP_ATOMIC);
2275 	/* only register .data..ro_after_init if not within .data */
2276 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2277 		create_object((unsigned long)__start_ro_after_init,
2278 			      __end_ro_after_init - __start_ro_after_init,
2279 			      KMEMLEAK_GREY, GFP_ATOMIC);
2280 }
2281 
2282 /*
2283  * Late initialization function.
2284  */
2285 static int __init kmemleak_late_init(void)
2286 {
2287 	kmemleak_late_initialized = 1;
2288 
2289 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2290 
2291 	if (kmemleak_error) {
2292 		/*
2293 		 * Some error occurred and kmemleak was disabled. There is a
2294 		 * small chance that kmemleak_disable() was called immediately
2295 		 * after setting kmemleak_late_initialized and we may end up with
2296 		 * two clean-up threads but serialized by scan_mutex.
2297 		 */
2298 		schedule_work(&cleanup_work);
2299 		return -ENOMEM;
2300 	}
2301 
2302 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2303 		mutex_lock(&scan_mutex);
2304 		start_scan_thread();
2305 		mutex_unlock(&scan_mutex);
2306 	}
2307 
2308 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2309 		mem_pool_free_count);
2310 
2311 	return 0;
2312 }
2313 late_initcall(kmemleak_late_init);
2314