1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 26 * Accesses to the metadata (e.g. count) are protected by this lock. Note 27 * that some members of this structure may be protected by other means 28 * (atomic or kmemleak_lock). This lock is also held when scanning the 29 * corresponding memory block to avoid the kernel freeing it via the 30 * kmemleak_free() callback. This is less heavyweight than holding a global 31 * lock like kmemleak_lock during scanning. 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kfence.h> 101 #include <linux/kmemleak.h> 102 #include <linux/memory_hotplug.h> 103 104 /* 105 * Kmemleak configuration and common defines. 106 */ 107 #define MAX_TRACE 16 /* stack trace length */ 108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 112 113 #define BYTES_PER_POINTER sizeof(void *) 114 115 /* GFP bitmask for kmemleak internal allocations */ 116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 117 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 118 __GFP_NOWARN) 119 120 /* scanning area inside a memory block */ 121 struct kmemleak_scan_area { 122 struct hlist_node node; 123 unsigned long start; 124 size_t size; 125 }; 126 127 #define KMEMLEAK_GREY 0 128 #define KMEMLEAK_BLACK -1 129 130 /* 131 * Structure holding the metadata for each allocated memory block. 132 * Modifications to such objects should be made while holding the 133 * object->lock. Insertions or deletions from object_list, gray_list or 134 * rb_node are already protected by the corresponding locks or mutex (see 135 * the notes on locking above). These objects are reference-counted 136 * (use_count) and freed using the RCU mechanism. 137 */ 138 struct kmemleak_object { 139 raw_spinlock_t lock; 140 unsigned int flags; /* object status flags */ 141 struct list_head object_list; 142 struct list_head gray_list; 143 struct rb_node rb_node; 144 struct rcu_head rcu; /* object_list lockless traversal */ 145 /* object usage count; object freed when use_count == 0 */ 146 atomic_t use_count; 147 unsigned long pointer; 148 size_t size; 149 /* pass surplus references to this pointer */ 150 unsigned long excess_ref; 151 /* minimum number of a pointers found before it is considered leak */ 152 int min_count; 153 /* the total number of pointers found pointing to this object */ 154 int count; 155 /* checksum for detecting modified objects */ 156 u32 checksum; 157 /* memory ranges to be scanned inside an object (empty for all) */ 158 struct hlist_head area_list; 159 unsigned long trace[MAX_TRACE]; 160 unsigned int trace_len; 161 unsigned long jiffies; /* creation timestamp */ 162 pid_t pid; /* pid of the current task */ 163 char comm[TASK_COMM_LEN]; /* executable name */ 164 }; 165 166 /* flag representing the memory block allocation status */ 167 #define OBJECT_ALLOCATED (1 << 0) 168 /* flag set after the first reporting of an unreference object */ 169 #define OBJECT_REPORTED (1 << 1) 170 /* flag set to not scan the object */ 171 #define OBJECT_NO_SCAN (1 << 2) 172 /* flag set to fully scan the object when scan_area allocation failed */ 173 #define OBJECT_FULL_SCAN (1 << 3) 174 175 #define HEX_PREFIX " " 176 /* number of bytes to print per line; must be 16 or 32 */ 177 #define HEX_ROW_SIZE 16 178 /* number of bytes to print at a time (1, 2, 4, 8) */ 179 #define HEX_GROUP_SIZE 1 180 /* include ASCII after the hex output */ 181 #define HEX_ASCII 1 182 /* max number of lines to be printed */ 183 #define HEX_MAX_LINES 2 184 185 /* the list of all allocated objects */ 186 static LIST_HEAD(object_list); 187 /* the list of gray-colored objects (see color_gray comment below) */ 188 static LIST_HEAD(gray_list); 189 /* memory pool allocation */ 190 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 191 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 192 static LIST_HEAD(mem_pool_free_list); 193 /* search tree for object boundaries */ 194 static struct rb_root object_tree_root = RB_ROOT; 195 /* protecting the access to object_list and object_tree_root */ 196 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 197 198 /* allocation caches for kmemleak internal data */ 199 static struct kmem_cache *object_cache; 200 static struct kmem_cache *scan_area_cache; 201 202 /* set if tracing memory operations is enabled */ 203 static int kmemleak_enabled = 1; 204 /* same as above but only for the kmemleak_free() callback */ 205 static int kmemleak_free_enabled = 1; 206 /* set in the late_initcall if there were no errors */ 207 static int kmemleak_initialized; 208 /* set if a kmemleak warning was issued */ 209 static int kmemleak_warning; 210 /* set if a fatal kmemleak error has occurred */ 211 static int kmemleak_error; 212 213 /* minimum and maximum address that may be valid pointers */ 214 static unsigned long min_addr = ULONG_MAX; 215 static unsigned long max_addr; 216 217 static struct task_struct *scan_thread; 218 /* used to avoid reporting of recently allocated objects */ 219 static unsigned long jiffies_min_age; 220 static unsigned long jiffies_last_scan; 221 /* delay between automatic memory scannings */ 222 static unsigned long jiffies_scan_wait; 223 /* enables or disables the task stacks scanning */ 224 static int kmemleak_stack_scan = 1; 225 /* protects the memory scanning, parameters and debug/kmemleak file access */ 226 static DEFINE_MUTEX(scan_mutex); 227 /* setting kmemleak=on, will set this var, skipping the disable */ 228 static int kmemleak_skip_disable; 229 /* If there are leaks that can be reported */ 230 static bool kmemleak_found_leaks; 231 232 static bool kmemleak_verbose; 233 module_param_named(verbose, kmemleak_verbose, bool, 0600); 234 235 static void kmemleak_disable(void); 236 237 /* 238 * Print a warning and dump the stack trace. 239 */ 240 #define kmemleak_warn(x...) do { \ 241 pr_warn(x); \ 242 dump_stack(); \ 243 kmemleak_warning = 1; \ 244 } while (0) 245 246 /* 247 * Macro invoked when a serious kmemleak condition occurred and cannot be 248 * recovered from. Kmemleak will be disabled and further allocation/freeing 249 * tracing no longer available. 250 */ 251 #define kmemleak_stop(x...) do { \ 252 kmemleak_warn(x); \ 253 kmemleak_disable(); \ 254 } while (0) 255 256 #define warn_or_seq_printf(seq, fmt, ...) do { \ 257 if (seq) \ 258 seq_printf(seq, fmt, ##__VA_ARGS__); \ 259 else \ 260 pr_warn(fmt, ##__VA_ARGS__); \ 261 } while (0) 262 263 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 264 int rowsize, int groupsize, const void *buf, 265 size_t len, bool ascii) 266 { 267 if (seq) 268 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 269 buf, len, ascii); 270 else 271 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 272 rowsize, groupsize, buf, len, ascii); 273 } 274 275 /* 276 * Printing of the objects hex dump to the seq file. The number of lines to be 277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 279 * with the object->lock held. 280 */ 281 static void hex_dump_object(struct seq_file *seq, 282 struct kmemleak_object *object) 283 { 284 const u8 *ptr = (const u8 *)object->pointer; 285 size_t len; 286 287 /* limit the number of lines to HEX_MAX_LINES */ 288 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 289 290 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 291 kasan_disable_current(); 292 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 293 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 294 kasan_enable_current(); 295 } 296 297 /* 298 * Object colors, encoded with count and min_count: 299 * - white - orphan object, not enough references to it (count < min_count) 300 * - gray - not orphan, not marked as false positive (min_count == 0) or 301 * sufficient references to it (count >= min_count) 302 * - black - ignore, it doesn't contain references (e.g. text section) 303 * (min_count == -1). No function defined for this color. 304 * Newly created objects don't have any color assigned (object->count == -1) 305 * before the next memory scan when they become white. 306 */ 307 static bool color_white(const struct kmemleak_object *object) 308 { 309 return object->count != KMEMLEAK_BLACK && 310 object->count < object->min_count; 311 } 312 313 static bool color_gray(const struct kmemleak_object *object) 314 { 315 return object->min_count != KMEMLEAK_BLACK && 316 object->count >= object->min_count; 317 } 318 319 /* 320 * Objects are considered unreferenced only if their color is white, they have 321 * not be deleted and have a minimum age to avoid false positives caused by 322 * pointers temporarily stored in CPU registers. 323 */ 324 static bool unreferenced_object(struct kmemleak_object *object) 325 { 326 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 327 time_before_eq(object->jiffies + jiffies_min_age, 328 jiffies_last_scan); 329 } 330 331 /* 332 * Printing of the unreferenced objects information to the seq file. The 333 * print_unreferenced function must be called with the object->lock held. 334 */ 335 static void print_unreferenced(struct seq_file *seq, 336 struct kmemleak_object *object) 337 { 338 int i; 339 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 340 341 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 342 object->pointer, object->size); 343 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 344 object->comm, object->pid, object->jiffies, 345 msecs_age / 1000, msecs_age % 1000); 346 hex_dump_object(seq, object); 347 warn_or_seq_printf(seq, " backtrace:\n"); 348 349 for (i = 0; i < object->trace_len; i++) { 350 void *ptr = (void *)object->trace[i]; 351 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 352 } 353 } 354 355 /* 356 * Print the kmemleak_object information. This function is used mainly for 357 * debugging special cases when kmemleak operations. It must be called with 358 * the object->lock held. 359 */ 360 static void dump_object_info(struct kmemleak_object *object) 361 { 362 pr_notice("Object 0x%08lx (size %zu):\n", 363 object->pointer, object->size); 364 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 365 object->comm, object->pid, object->jiffies); 366 pr_notice(" min_count = %d\n", object->min_count); 367 pr_notice(" count = %d\n", object->count); 368 pr_notice(" flags = 0x%x\n", object->flags); 369 pr_notice(" checksum = %u\n", object->checksum); 370 pr_notice(" backtrace:\n"); 371 stack_trace_print(object->trace, object->trace_len, 4); 372 } 373 374 /* 375 * Look-up a memory block metadata (kmemleak_object) in the object search 376 * tree based on a pointer value. If alias is 0, only values pointing to the 377 * beginning of the memory block are allowed. The kmemleak_lock must be held 378 * when calling this function. 379 */ 380 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 381 { 382 struct rb_node *rb = object_tree_root.rb_node; 383 384 while (rb) { 385 struct kmemleak_object *object = 386 rb_entry(rb, struct kmemleak_object, rb_node); 387 if (ptr < object->pointer) 388 rb = object->rb_node.rb_left; 389 else if (object->pointer + object->size <= ptr) 390 rb = object->rb_node.rb_right; 391 else if (object->pointer == ptr || alias) 392 return object; 393 else { 394 kmemleak_warn("Found object by alias at 0x%08lx\n", 395 ptr); 396 dump_object_info(object); 397 break; 398 } 399 } 400 return NULL; 401 } 402 403 /* 404 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 405 * that once an object's use_count reached 0, the RCU freeing was already 406 * registered and the object should no longer be used. This function must be 407 * called under the protection of rcu_read_lock(). 408 */ 409 static int get_object(struct kmemleak_object *object) 410 { 411 return atomic_inc_not_zero(&object->use_count); 412 } 413 414 /* 415 * Memory pool allocation and freeing. kmemleak_lock must not be held. 416 */ 417 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 418 { 419 unsigned long flags; 420 struct kmemleak_object *object; 421 422 /* try the slab allocator first */ 423 if (object_cache) { 424 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 425 if (object) 426 return object; 427 } 428 429 /* slab allocation failed, try the memory pool */ 430 raw_spin_lock_irqsave(&kmemleak_lock, flags); 431 object = list_first_entry_or_null(&mem_pool_free_list, 432 typeof(*object), object_list); 433 if (object) 434 list_del(&object->object_list); 435 else if (mem_pool_free_count) 436 object = &mem_pool[--mem_pool_free_count]; 437 else 438 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 439 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 440 441 return object; 442 } 443 444 /* 445 * Return the object to either the slab allocator or the memory pool. 446 */ 447 static void mem_pool_free(struct kmemleak_object *object) 448 { 449 unsigned long flags; 450 451 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 452 kmem_cache_free(object_cache, object); 453 return; 454 } 455 456 /* add the object to the memory pool free list */ 457 raw_spin_lock_irqsave(&kmemleak_lock, flags); 458 list_add(&object->object_list, &mem_pool_free_list); 459 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 460 } 461 462 /* 463 * RCU callback to free a kmemleak_object. 464 */ 465 static void free_object_rcu(struct rcu_head *rcu) 466 { 467 struct hlist_node *tmp; 468 struct kmemleak_scan_area *area; 469 struct kmemleak_object *object = 470 container_of(rcu, struct kmemleak_object, rcu); 471 472 /* 473 * Once use_count is 0 (guaranteed by put_object), there is no other 474 * code accessing this object, hence no need for locking. 475 */ 476 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 477 hlist_del(&area->node); 478 kmem_cache_free(scan_area_cache, area); 479 } 480 mem_pool_free(object); 481 } 482 483 /* 484 * Decrement the object use_count. Once the count is 0, free the object using 485 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 486 * delete_object() path, the delayed RCU freeing ensures that there is no 487 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 488 * is also possible. 489 */ 490 static void put_object(struct kmemleak_object *object) 491 { 492 if (!atomic_dec_and_test(&object->use_count)) 493 return; 494 495 /* should only get here after delete_object was called */ 496 WARN_ON(object->flags & OBJECT_ALLOCATED); 497 498 /* 499 * It may be too early for the RCU callbacks, however, there is no 500 * concurrent object_list traversal when !object_cache and all objects 501 * came from the memory pool. Free the object directly. 502 */ 503 if (object_cache) 504 call_rcu(&object->rcu, free_object_rcu); 505 else 506 free_object_rcu(&object->rcu); 507 } 508 509 /* 510 * Look up an object in the object search tree and increase its use_count. 511 */ 512 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 513 { 514 unsigned long flags; 515 struct kmemleak_object *object; 516 517 rcu_read_lock(); 518 raw_spin_lock_irqsave(&kmemleak_lock, flags); 519 object = lookup_object(ptr, alias); 520 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 521 522 /* check whether the object is still available */ 523 if (object && !get_object(object)) 524 object = NULL; 525 rcu_read_unlock(); 526 527 return object; 528 } 529 530 /* 531 * Remove an object from the object_tree_root and object_list. Must be called 532 * with the kmemleak_lock held _if_ kmemleak is still enabled. 533 */ 534 static void __remove_object(struct kmemleak_object *object) 535 { 536 rb_erase(&object->rb_node, &object_tree_root); 537 list_del_rcu(&object->object_list); 538 } 539 540 /* 541 * Look up an object in the object search tree and remove it from both 542 * object_tree_root and object_list. The returned object's use_count should be 543 * at least 1, as initially set by create_object(). 544 */ 545 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 546 { 547 unsigned long flags; 548 struct kmemleak_object *object; 549 550 raw_spin_lock_irqsave(&kmemleak_lock, flags); 551 object = lookup_object(ptr, alias); 552 if (object) 553 __remove_object(object); 554 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 555 556 return object; 557 } 558 559 /* 560 * Save stack trace to the given array of MAX_TRACE size. 561 */ 562 static int __save_stack_trace(unsigned long *trace) 563 { 564 return stack_trace_save(trace, MAX_TRACE, 2); 565 } 566 567 /* 568 * Create the metadata (struct kmemleak_object) corresponding to an allocated 569 * memory block and add it to the object_list and object_tree_root. 570 */ 571 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 572 int min_count, gfp_t gfp) 573 { 574 unsigned long flags; 575 struct kmemleak_object *object, *parent; 576 struct rb_node **link, *rb_parent; 577 unsigned long untagged_ptr; 578 579 object = mem_pool_alloc(gfp); 580 if (!object) { 581 pr_warn("Cannot allocate a kmemleak_object structure\n"); 582 kmemleak_disable(); 583 return NULL; 584 } 585 586 INIT_LIST_HEAD(&object->object_list); 587 INIT_LIST_HEAD(&object->gray_list); 588 INIT_HLIST_HEAD(&object->area_list); 589 raw_spin_lock_init(&object->lock); 590 atomic_set(&object->use_count, 1); 591 object->flags = OBJECT_ALLOCATED; 592 object->pointer = ptr; 593 object->size = kfence_ksize((void *)ptr) ?: size; 594 object->excess_ref = 0; 595 object->min_count = min_count; 596 object->count = 0; /* white color initially */ 597 object->jiffies = jiffies; 598 object->checksum = 0; 599 600 /* task information */ 601 if (in_irq()) { 602 object->pid = 0; 603 strncpy(object->comm, "hardirq", sizeof(object->comm)); 604 } else if (in_serving_softirq()) { 605 object->pid = 0; 606 strncpy(object->comm, "softirq", sizeof(object->comm)); 607 } else { 608 object->pid = current->pid; 609 /* 610 * There is a small chance of a race with set_task_comm(), 611 * however using get_task_comm() here may cause locking 612 * dependency issues with current->alloc_lock. In the worst 613 * case, the command line is not correct. 614 */ 615 strncpy(object->comm, current->comm, sizeof(object->comm)); 616 } 617 618 /* kernel backtrace */ 619 object->trace_len = __save_stack_trace(object->trace); 620 621 raw_spin_lock_irqsave(&kmemleak_lock, flags); 622 623 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 624 min_addr = min(min_addr, untagged_ptr); 625 max_addr = max(max_addr, untagged_ptr + size); 626 link = &object_tree_root.rb_node; 627 rb_parent = NULL; 628 while (*link) { 629 rb_parent = *link; 630 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 631 if (ptr + size <= parent->pointer) 632 link = &parent->rb_node.rb_left; 633 else if (parent->pointer + parent->size <= ptr) 634 link = &parent->rb_node.rb_right; 635 else { 636 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 637 ptr); 638 /* 639 * No need for parent->lock here since "parent" cannot 640 * be freed while the kmemleak_lock is held. 641 */ 642 dump_object_info(parent); 643 kmem_cache_free(object_cache, object); 644 object = NULL; 645 goto out; 646 } 647 } 648 rb_link_node(&object->rb_node, rb_parent, link); 649 rb_insert_color(&object->rb_node, &object_tree_root); 650 651 list_add_tail_rcu(&object->object_list, &object_list); 652 out: 653 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 654 return object; 655 } 656 657 /* 658 * Mark the object as not allocated and schedule RCU freeing via put_object(). 659 */ 660 static void __delete_object(struct kmemleak_object *object) 661 { 662 unsigned long flags; 663 664 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 665 WARN_ON(atomic_read(&object->use_count) < 1); 666 667 /* 668 * Locking here also ensures that the corresponding memory block 669 * cannot be freed when it is being scanned. 670 */ 671 raw_spin_lock_irqsave(&object->lock, flags); 672 object->flags &= ~OBJECT_ALLOCATED; 673 raw_spin_unlock_irqrestore(&object->lock, flags); 674 put_object(object); 675 } 676 677 /* 678 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 679 * delete it. 680 */ 681 static void delete_object_full(unsigned long ptr) 682 { 683 struct kmemleak_object *object; 684 685 object = find_and_remove_object(ptr, 0); 686 if (!object) { 687 #ifdef DEBUG 688 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 689 ptr); 690 #endif 691 return; 692 } 693 __delete_object(object); 694 } 695 696 /* 697 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 698 * delete it. If the memory block is partially freed, the function may create 699 * additional metadata for the remaining parts of the block. 700 */ 701 static void delete_object_part(unsigned long ptr, size_t size) 702 { 703 struct kmemleak_object *object; 704 unsigned long start, end; 705 706 object = find_and_remove_object(ptr, 1); 707 if (!object) { 708 #ifdef DEBUG 709 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 710 ptr, size); 711 #endif 712 return; 713 } 714 715 /* 716 * Create one or two objects that may result from the memory block 717 * split. Note that partial freeing is only done by free_bootmem() and 718 * this happens before kmemleak_init() is called. 719 */ 720 start = object->pointer; 721 end = object->pointer + object->size; 722 if (ptr > start) 723 create_object(start, ptr - start, object->min_count, 724 GFP_KERNEL); 725 if (ptr + size < end) 726 create_object(ptr + size, end - ptr - size, object->min_count, 727 GFP_KERNEL); 728 729 __delete_object(object); 730 } 731 732 static void __paint_it(struct kmemleak_object *object, int color) 733 { 734 object->min_count = color; 735 if (color == KMEMLEAK_BLACK) 736 object->flags |= OBJECT_NO_SCAN; 737 } 738 739 static void paint_it(struct kmemleak_object *object, int color) 740 { 741 unsigned long flags; 742 743 raw_spin_lock_irqsave(&object->lock, flags); 744 __paint_it(object, color); 745 raw_spin_unlock_irqrestore(&object->lock, flags); 746 } 747 748 static void paint_ptr(unsigned long ptr, int color) 749 { 750 struct kmemleak_object *object; 751 752 object = find_and_get_object(ptr, 0); 753 if (!object) { 754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 755 ptr, 756 (color == KMEMLEAK_GREY) ? "Grey" : 757 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 758 return; 759 } 760 paint_it(object, color); 761 put_object(object); 762 } 763 764 /* 765 * Mark an object permanently as gray-colored so that it can no longer be 766 * reported as a leak. This is used in general to mark a false positive. 767 */ 768 static void make_gray_object(unsigned long ptr) 769 { 770 paint_ptr(ptr, KMEMLEAK_GREY); 771 } 772 773 /* 774 * Mark the object as black-colored so that it is ignored from scans and 775 * reporting. 776 */ 777 static void make_black_object(unsigned long ptr) 778 { 779 paint_ptr(ptr, KMEMLEAK_BLACK); 780 } 781 782 /* 783 * Add a scanning area to the object. If at least one such area is added, 784 * kmemleak will only scan these ranges rather than the whole memory block. 785 */ 786 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 787 { 788 unsigned long flags; 789 struct kmemleak_object *object; 790 struct kmemleak_scan_area *area = NULL; 791 792 object = find_and_get_object(ptr, 1); 793 if (!object) { 794 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 795 ptr); 796 return; 797 } 798 799 if (scan_area_cache) 800 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 801 802 raw_spin_lock_irqsave(&object->lock, flags); 803 if (!area) { 804 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 805 /* mark the object for full scan to avoid false positives */ 806 object->flags |= OBJECT_FULL_SCAN; 807 goto out_unlock; 808 } 809 if (size == SIZE_MAX) { 810 size = object->pointer + object->size - ptr; 811 } else if (ptr + size > object->pointer + object->size) { 812 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 813 dump_object_info(object); 814 kmem_cache_free(scan_area_cache, area); 815 goto out_unlock; 816 } 817 818 INIT_HLIST_NODE(&area->node); 819 area->start = ptr; 820 area->size = size; 821 822 hlist_add_head(&area->node, &object->area_list); 823 out_unlock: 824 raw_spin_unlock_irqrestore(&object->lock, flags); 825 put_object(object); 826 } 827 828 /* 829 * Any surplus references (object already gray) to 'ptr' are passed to 830 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 831 * vm_struct may be used as an alternative reference to the vmalloc'ed object 832 * (see free_thread_stack()). 833 */ 834 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 835 { 836 unsigned long flags; 837 struct kmemleak_object *object; 838 839 object = find_and_get_object(ptr, 0); 840 if (!object) { 841 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 842 ptr); 843 return; 844 } 845 846 raw_spin_lock_irqsave(&object->lock, flags); 847 object->excess_ref = excess_ref; 848 raw_spin_unlock_irqrestore(&object->lock, flags); 849 put_object(object); 850 } 851 852 /* 853 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 854 * pointer. Such object will not be scanned by kmemleak but references to it 855 * are searched. 856 */ 857 static void object_no_scan(unsigned long ptr) 858 { 859 unsigned long flags; 860 struct kmemleak_object *object; 861 862 object = find_and_get_object(ptr, 0); 863 if (!object) { 864 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 865 return; 866 } 867 868 raw_spin_lock_irqsave(&object->lock, flags); 869 object->flags |= OBJECT_NO_SCAN; 870 raw_spin_unlock_irqrestore(&object->lock, flags); 871 put_object(object); 872 } 873 874 /** 875 * kmemleak_alloc - register a newly allocated object 876 * @ptr: pointer to beginning of the object 877 * @size: size of the object 878 * @min_count: minimum number of references to this object. If during memory 879 * scanning a number of references less than @min_count is found, 880 * the object is reported as a memory leak. If @min_count is 0, 881 * the object is never reported as a leak. If @min_count is -1, 882 * the object is ignored (not scanned and not reported as a leak) 883 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 884 * 885 * This function is called from the kernel allocators when a new object 886 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 887 */ 888 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 889 gfp_t gfp) 890 { 891 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 892 893 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 894 create_object((unsigned long)ptr, size, min_count, gfp); 895 } 896 EXPORT_SYMBOL_GPL(kmemleak_alloc); 897 898 /** 899 * kmemleak_alloc_percpu - register a newly allocated __percpu object 900 * @ptr: __percpu pointer to beginning of the object 901 * @size: size of the object 902 * @gfp: flags used for kmemleak internal memory allocations 903 * 904 * This function is called from the kernel percpu allocator when a new object 905 * (memory block) is allocated (alloc_percpu). 906 */ 907 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 908 gfp_t gfp) 909 { 910 unsigned int cpu; 911 912 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 913 914 /* 915 * Percpu allocations are only scanned and not reported as leaks 916 * (min_count is set to 0). 917 */ 918 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 919 for_each_possible_cpu(cpu) 920 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 921 size, 0, gfp); 922 } 923 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 924 925 /** 926 * kmemleak_vmalloc - register a newly vmalloc'ed object 927 * @area: pointer to vm_struct 928 * @size: size of the object 929 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 930 * 931 * This function is called from the vmalloc() kernel allocator when a new 932 * object (memory block) is allocated. 933 */ 934 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 935 { 936 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 937 938 /* 939 * A min_count = 2 is needed because vm_struct contains a reference to 940 * the virtual address of the vmalloc'ed block. 941 */ 942 if (kmemleak_enabled) { 943 create_object((unsigned long)area->addr, size, 2, gfp); 944 object_set_excess_ref((unsigned long)area, 945 (unsigned long)area->addr); 946 } 947 } 948 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 949 950 /** 951 * kmemleak_free - unregister a previously registered object 952 * @ptr: pointer to beginning of the object 953 * 954 * This function is called from the kernel allocators when an object (memory 955 * block) is freed (kmem_cache_free, kfree, vfree etc.). 956 */ 957 void __ref kmemleak_free(const void *ptr) 958 { 959 pr_debug("%s(0x%p)\n", __func__, ptr); 960 961 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 962 delete_object_full((unsigned long)ptr); 963 } 964 EXPORT_SYMBOL_GPL(kmemleak_free); 965 966 /** 967 * kmemleak_free_part - partially unregister a previously registered object 968 * @ptr: pointer to the beginning or inside the object. This also 969 * represents the start of the range to be freed 970 * @size: size to be unregistered 971 * 972 * This function is called when only a part of a memory block is freed 973 * (usually from the bootmem allocator). 974 */ 975 void __ref kmemleak_free_part(const void *ptr, size_t size) 976 { 977 pr_debug("%s(0x%p)\n", __func__, ptr); 978 979 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 980 delete_object_part((unsigned long)ptr, size); 981 } 982 EXPORT_SYMBOL_GPL(kmemleak_free_part); 983 984 /** 985 * kmemleak_free_percpu - unregister a previously registered __percpu object 986 * @ptr: __percpu pointer to beginning of the object 987 * 988 * This function is called from the kernel percpu allocator when an object 989 * (memory block) is freed (free_percpu). 990 */ 991 void __ref kmemleak_free_percpu(const void __percpu *ptr) 992 { 993 unsigned int cpu; 994 995 pr_debug("%s(0x%p)\n", __func__, ptr); 996 997 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 998 for_each_possible_cpu(cpu) 999 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1000 cpu)); 1001 } 1002 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1003 1004 /** 1005 * kmemleak_update_trace - update object allocation stack trace 1006 * @ptr: pointer to beginning of the object 1007 * 1008 * Override the object allocation stack trace for cases where the actual 1009 * allocation place is not always useful. 1010 */ 1011 void __ref kmemleak_update_trace(const void *ptr) 1012 { 1013 struct kmemleak_object *object; 1014 unsigned long flags; 1015 1016 pr_debug("%s(0x%p)\n", __func__, ptr); 1017 1018 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1019 return; 1020 1021 object = find_and_get_object((unsigned long)ptr, 1); 1022 if (!object) { 1023 #ifdef DEBUG 1024 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1025 ptr); 1026 #endif 1027 return; 1028 } 1029 1030 raw_spin_lock_irqsave(&object->lock, flags); 1031 object->trace_len = __save_stack_trace(object->trace); 1032 raw_spin_unlock_irqrestore(&object->lock, flags); 1033 1034 put_object(object); 1035 } 1036 EXPORT_SYMBOL(kmemleak_update_trace); 1037 1038 /** 1039 * kmemleak_not_leak - mark an allocated object as false positive 1040 * @ptr: pointer to beginning of the object 1041 * 1042 * Calling this function on an object will cause the memory block to no longer 1043 * be reported as leak and always be scanned. 1044 */ 1045 void __ref kmemleak_not_leak(const void *ptr) 1046 { 1047 pr_debug("%s(0x%p)\n", __func__, ptr); 1048 1049 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1050 make_gray_object((unsigned long)ptr); 1051 } 1052 EXPORT_SYMBOL(kmemleak_not_leak); 1053 1054 /** 1055 * kmemleak_ignore - ignore an allocated object 1056 * @ptr: pointer to beginning of the object 1057 * 1058 * Calling this function on an object will cause the memory block to be 1059 * ignored (not scanned and not reported as a leak). This is usually done when 1060 * it is known that the corresponding block is not a leak and does not contain 1061 * any references to other allocated memory blocks. 1062 */ 1063 void __ref kmemleak_ignore(const void *ptr) 1064 { 1065 pr_debug("%s(0x%p)\n", __func__, ptr); 1066 1067 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1068 make_black_object((unsigned long)ptr); 1069 } 1070 EXPORT_SYMBOL(kmemleak_ignore); 1071 1072 /** 1073 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1074 * @ptr: pointer to beginning or inside the object. This also 1075 * represents the start of the scan area 1076 * @size: size of the scan area 1077 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1078 * 1079 * This function is used when it is known that only certain parts of an object 1080 * contain references to other objects. Kmemleak will only scan these areas 1081 * reducing the number false negatives. 1082 */ 1083 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1084 { 1085 pr_debug("%s(0x%p)\n", __func__, ptr); 1086 1087 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1088 add_scan_area((unsigned long)ptr, size, gfp); 1089 } 1090 EXPORT_SYMBOL(kmemleak_scan_area); 1091 1092 /** 1093 * kmemleak_no_scan - do not scan an allocated object 1094 * @ptr: pointer to beginning of the object 1095 * 1096 * This function notifies kmemleak not to scan the given memory block. Useful 1097 * in situations where it is known that the given object does not contain any 1098 * references to other objects. Kmemleak will not scan such objects reducing 1099 * the number of false negatives. 1100 */ 1101 void __ref kmemleak_no_scan(const void *ptr) 1102 { 1103 pr_debug("%s(0x%p)\n", __func__, ptr); 1104 1105 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1106 object_no_scan((unsigned long)ptr); 1107 } 1108 EXPORT_SYMBOL(kmemleak_no_scan); 1109 1110 /** 1111 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1112 * address argument 1113 * @phys: physical address of the object 1114 * @size: size of the object 1115 * @min_count: minimum number of references to this object. 1116 * See kmemleak_alloc() 1117 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1118 */ 1119 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1120 gfp_t gfp) 1121 { 1122 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1123 kmemleak_alloc(__va(phys), size, min_count, gfp); 1124 } 1125 EXPORT_SYMBOL(kmemleak_alloc_phys); 1126 1127 /** 1128 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1129 * physical address argument 1130 * @phys: physical address if the beginning or inside an object. This 1131 * also represents the start of the range to be freed 1132 * @size: size to be unregistered 1133 */ 1134 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1135 { 1136 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1137 kmemleak_free_part(__va(phys), size); 1138 } 1139 EXPORT_SYMBOL(kmemleak_free_part_phys); 1140 1141 /** 1142 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1143 * address argument 1144 * @phys: physical address of the object 1145 */ 1146 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1147 { 1148 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1149 kmemleak_not_leak(__va(phys)); 1150 } 1151 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1152 1153 /** 1154 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1155 * address argument 1156 * @phys: physical address of the object 1157 */ 1158 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1159 { 1160 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1161 kmemleak_ignore(__va(phys)); 1162 } 1163 EXPORT_SYMBOL(kmemleak_ignore_phys); 1164 1165 /* 1166 * Update an object's checksum and return true if it was modified. 1167 */ 1168 static bool update_checksum(struct kmemleak_object *object) 1169 { 1170 u32 old_csum = object->checksum; 1171 1172 kasan_disable_current(); 1173 kcsan_disable_current(); 1174 object->checksum = crc32(0, (void *)object->pointer, object->size); 1175 kasan_enable_current(); 1176 kcsan_enable_current(); 1177 1178 return object->checksum != old_csum; 1179 } 1180 1181 /* 1182 * Update an object's references. object->lock must be held by the caller. 1183 */ 1184 static void update_refs(struct kmemleak_object *object) 1185 { 1186 if (!color_white(object)) { 1187 /* non-orphan, ignored or new */ 1188 return; 1189 } 1190 1191 /* 1192 * Increase the object's reference count (number of pointers to the 1193 * memory block). If this count reaches the required minimum, the 1194 * object's color will become gray and it will be added to the 1195 * gray_list. 1196 */ 1197 object->count++; 1198 if (color_gray(object)) { 1199 /* put_object() called when removing from gray_list */ 1200 WARN_ON(!get_object(object)); 1201 list_add_tail(&object->gray_list, &gray_list); 1202 } 1203 } 1204 1205 /* 1206 * Memory scanning is a long process and it needs to be interruptible. This 1207 * function checks whether such interrupt condition occurred. 1208 */ 1209 static int scan_should_stop(void) 1210 { 1211 if (!kmemleak_enabled) 1212 return 1; 1213 1214 /* 1215 * This function may be called from either process or kthread context, 1216 * hence the need to check for both stop conditions. 1217 */ 1218 if (current->mm) 1219 return signal_pending(current); 1220 else 1221 return kthread_should_stop(); 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Scan a memory block (exclusive range) for valid pointers and add those 1228 * found to the gray list. 1229 */ 1230 static void scan_block(void *_start, void *_end, 1231 struct kmemleak_object *scanned) 1232 { 1233 unsigned long *ptr; 1234 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1235 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1236 unsigned long flags; 1237 unsigned long untagged_ptr; 1238 1239 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1240 for (ptr = start; ptr < end; ptr++) { 1241 struct kmemleak_object *object; 1242 unsigned long pointer; 1243 unsigned long excess_ref; 1244 1245 if (scan_should_stop()) 1246 break; 1247 1248 kasan_disable_current(); 1249 pointer = *ptr; 1250 kasan_enable_current(); 1251 1252 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1253 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1254 continue; 1255 1256 /* 1257 * No need for get_object() here since we hold kmemleak_lock. 1258 * object->use_count cannot be dropped to 0 while the object 1259 * is still present in object_tree_root and object_list 1260 * (with updates protected by kmemleak_lock). 1261 */ 1262 object = lookup_object(pointer, 1); 1263 if (!object) 1264 continue; 1265 if (object == scanned) 1266 /* self referenced, ignore */ 1267 continue; 1268 1269 /* 1270 * Avoid the lockdep recursive warning on object->lock being 1271 * previously acquired in scan_object(). These locks are 1272 * enclosed by scan_mutex. 1273 */ 1274 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1275 /* only pass surplus references (object already gray) */ 1276 if (color_gray(object)) { 1277 excess_ref = object->excess_ref; 1278 /* no need for update_refs() if object already gray */ 1279 } else { 1280 excess_ref = 0; 1281 update_refs(object); 1282 } 1283 raw_spin_unlock(&object->lock); 1284 1285 if (excess_ref) { 1286 object = lookup_object(excess_ref, 0); 1287 if (!object) 1288 continue; 1289 if (object == scanned) 1290 /* circular reference, ignore */ 1291 continue; 1292 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1293 update_refs(object); 1294 raw_spin_unlock(&object->lock); 1295 } 1296 } 1297 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1298 } 1299 1300 /* 1301 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1302 */ 1303 #ifdef CONFIG_SMP 1304 static void scan_large_block(void *start, void *end) 1305 { 1306 void *next; 1307 1308 while (start < end) { 1309 next = min(start + MAX_SCAN_SIZE, end); 1310 scan_block(start, next, NULL); 1311 start = next; 1312 cond_resched(); 1313 } 1314 } 1315 #endif 1316 1317 /* 1318 * Scan a memory block corresponding to a kmemleak_object. A condition is 1319 * that object->use_count >= 1. 1320 */ 1321 static void scan_object(struct kmemleak_object *object) 1322 { 1323 struct kmemleak_scan_area *area; 1324 unsigned long flags; 1325 1326 /* 1327 * Once the object->lock is acquired, the corresponding memory block 1328 * cannot be freed (the same lock is acquired in delete_object). 1329 */ 1330 raw_spin_lock_irqsave(&object->lock, flags); 1331 if (object->flags & OBJECT_NO_SCAN) 1332 goto out; 1333 if (!(object->flags & OBJECT_ALLOCATED)) 1334 /* already freed object */ 1335 goto out; 1336 if (hlist_empty(&object->area_list) || 1337 object->flags & OBJECT_FULL_SCAN) { 1338 void *start = (void *)object->pointer; 1339 void *end = (void *)(object->pointer + object->size); 1340 void *next; 1341 1342 do { 1343 next = min(start + MAX_SCAN_SIZE, end); 1344 scan_block(start, next, object); 1345 1346 start = next; 1347 if (start >= end) 1348 break; 1349 1350 raw_spin_unlock_irqrestore(&object->lock, flags); 1351 cond_resched(); 1352 raw_spin_lock_irqsave(&object->lock, flags); 1353 } while (object->flags & OBJECT_ALLOCATED); 1354 } else 1355 hlist_for_each_entry(area, &object->area_list, node) 1356 scan_block((void *)area->start, 1357 (void *)(area->start + area->size), 1358 object); 1359 out: 1360 raw_spin_unlock_irqrestore(&object->lock, flags); 1361 } 1362 1363 /* 1364 * Scan the objects already referenced (gray objects). More objects will be 1365 * referenced and, if there are no memory leaks, all the objects are scanned. 1366 */ 1367 static void scan_gray_list(void) 1368 { 1369 struct kmemleak_object *object, *tmp; 1370 1371 /* 1372 * The list traversal is safe for both tail additions and removals 1373 * from inside the loop. The kmemleak objects cannot be freed from 1374 * outside the loop because their use_count was incremented. 1375 */ 1376 object = list_entry(gray_list.next, typeof(*object), gray_list); 1377 while (&object->gray_list != &gray_list) { 1378 cond_resched(); 1379 1380 /* may add new objects to the list */ 1381 if (!scan_should_stop()) 1382 scan_object(object); 1383 1384 tmp = list_entry(object->gray_list.next, typeof(*object), 1385 gray_list); 1386 1387 /* remove the object from the list and release it */ 1388 list_del(&object->gray_list); 1389 put_object(object); 1390 1391 object = tmp; 1392 } 1393 WARN_ON(!list_empty(&gray_list)); 1394 } 1395 1396 /* 1397 * Scan data sections and all the referenced memory blocks allocated via the 1398 * kernel's standard allocators. This function must be called with the 1399 * scan_mutex held. 1400 */ 1401 static void kmemleak_scan(void) 1402 { 1403 unsigned long flags; 1404 struct kmemleak_object *object; 1405 int i; 1406 int new_leaks = 0; 1407 1408 jiffies_last_scan = jiffies; 1409 1410 /* prepare the kmemleak_object's */ 1411 rcu_read_lock(); 1412 list_for_each_entry_rcu(object, &object_list, object_list) { 1413 raw_spin_lock_irqsave(&object->lock, flags); 1414 #ifdef DEBUG 1415 /* 1416 * With a few exceptions there should be a maximum of 1417 * 1 reference to any object at this point. 1418 */ 1419 if (atomic_read(&object->use_count) > 1) { 1420 pr_debug("object->use_count = %d\n", 1421 atomic_read(&object->use_count)); 1422 dump_object_info(object); 1423 } 1424 #endif 1425 /* reset the reference count (whiten the object) */ 1426 object->count = 0; 1427 if (color_gray(object) && get_object(object)) 1428 list_add_tail(&object->gray_list, &gray_list); 1429 1430 raw_spin_unlock_irqrestore(&object->lock, flags); 1431 } 1432 rcu_read_unlock(); 1433 1434 #ifdef CONFIG_SMP 1435 /* per-cpu sections scanning */ 1436 for_each_possible_cpu(i) 1437 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1438 __per_cpu_end + per_cpu_offset(i)); 1439 #endif 1440 1441 /* 1442 * Struct page scanning for each node. 1443 */ 1444 get_online_mems(); 1445 for_each_online_node(i) { 1446 unsigned long start_pfn = node_start_pfn(i); 1447 unsigned long end_pfn = node_end_pfn(i); 1448 unsigned long pfn; 1449 1450 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1451 struct page *page = pfn_to_online_page(pfn); 1452 1453 if (!page) 1454 continue; 1455 1456 /* only scan pages belonging to this node */ 1457 if (page_to_nid(page) != i) 1458 continue; 1459 /* only scan if page is in use */ 1460 if (page_count(page) == 0) 1461 continue; 1462 scan_block(page, page + 1, NULL); 1463 if (!(pfn & 63)) 1464 cond_resched(); 1465 } 1466 } 1467 put_online_mems(); 1468 1469 /* 1470 * Scanning the task stacks (may introduce false negatives). 1471 */ 1472 if (kmemleak_stack_scan) { 1473 struct task_struct *p, *g; 1474 1475 rcu_read_lock(); 1476 for_each_process_thread(g, p) { 1477 void *stack = try_get_task_stack(p); 1478 if (stack) { 1479 scan_block(stack, stack + THREAD_SIZE, NULL); 1480 put_task_stack(p); 1481 } 1482 } 1483 rcu_read_unlock(); 1484 } 1485 1486 /* 1487 * Scan the objects already referenced from the sections scanned 1488 * above. 1489 */ 1490 scan_gray_list(); 1491 1492 /* 1493 * Check for new or unreferenced objects modified since the previous 1494 * scan and color them gray until the next scan. 1495 */ 1496 rcu_read_lock(); 1497 list_for_each_entry_rcu(object, &object_list, object_list) { 1498 raw_spin_lock_irqsave(&object->lock, flags); 1499 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1500 && update_checksum(object) && get_object(object)) { 1501 /* color it gray temporarily */ 1502 object->count = object->min_count; 1503 list_add_tail(&object->gray_list, &gray_list); 1504 } 1505 raw_spin_unlock_irqrestore(&object->lock, flags); 1506 } 1507 rcu_read_unlock(); 1508 1509 /* 1510 * Re-scan the gray list for modified unreferenced objects. 1511 */ 1512 scan_gray_list(); 1513 1514 /* 1515 * If scanning was stopped do not report any new unreferenced objects. 1516 */ 1517 if (scan_should_stop()) 1518 return; 1519 1520 /* 1521 * Scanning result reporting. 1522 */ 1523 rcu_read_lock(); 1524 list_for_each_entry_rcu(object, &object_list, object_list) { 1525 raw_spin_lock_irqsave(&object->lock, flags); 1526 if (unreferenced_object(object) && 1527 !(object->flags & OBJECT_REPORTED)) { 1528 object->flags |= OBJECT_REPORTED; 1529 1530 if (kmemleak_verbose) 1531 print_unreferenced(NULL, object); 1532 1533 new_leaks++; 1534 } 1535 raw_spin_unlock_irqrestore(&object->lock, flags); 1536 } 1537 rcu_read_unlock(); 1538 1539 if (new_leaks) { 1540 kmemleak_found_leaks = true; 1541 1542 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1543 new_leaks); 1544 } 1545 1546 } 1547 1548 /* 1549 * Thread function performing automatic memory scanning. Unreferenced objects 1550 * at the end of a memory scan are reported but only the first time. 1551 */ 1552 static int kmemleak_scan_thread(void *arg) 1553 { 1554 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1555 1556 pr_info("Automatic memory scanning thread started\n"); 1557 set_user_nice(current, 10); 1558 1559 /* 1560 * Wait before the first scan to allow the system to fully initialize. 1561 */ 1562 if (first_run) { 1563 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1564 first_run = 0; 1565 while (timeout && !kthread_should_stop()) 1566 timeout = schedule_timeout_interruptible(timeout); 1567 } 1568 1569 while (!kthread_should_stop()) { 1570 signed long timeout = READ_ONCE(jiffies_scan_wait); 1571 1572 mutex_lock(&scan_mutex); 1573 kmemleak_scan(); 1574 mutex_unlock(&scan_mutex); 1575 1576 /* wait before the next scan */ 1577 while (timeout && !kthread_should_stop()) 1578 timeout = schedule_timeout_interruptible(timeout); 1579 } 1580 1581 pr_info("Automatic memory scanning thread ended\n"); 1582 1583 return 0; 1584 } 1585 1586 /* 1587 * Start the automatic memory scanning thread. This function must be called 1588 * with the scan_mutex held. 1589 */ 1590 static void start_scan_thread(void) 1591 { 1592 if (scan_thread) 1593 return; 1594 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1595 if (IS_ERR(scan_thread)) { 1596 pr_warn("Failed to create the scan thread\n"); 1597 scan_thread = NULL; 1598 } 1599 } 1600 1601 /* 1602 * Stop the automatic memory scanning thread. 1603 */ 1604 static void stop_scan_thread(void) 1605 { 1606 if (scan_thread) { 1607 kthread_stop(scan_thread); 1608 scan_thread = NULL; 1609 } 1610 } 1611 1612 /* 1613 * Iterate over the object_list and return the first valid object at or after 1614 * the required position with its use_count incremented. The function triggers 1615 * a memory scanning when the pos argument points to the first position. 1616 */ 1617 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1618 { 1619 struct kmemleak_object *object; 1620 loff_t n = *pos; 1621 int err; 1622 1623 err = mutex_lock_interruptible(&scan_mutex); 1624 if (err < 0) 1625 return ERR_PTR(err); 1626 1627 rcu_read_lock(); 1628 list_for_each_entry_rcu(object, &object_list, object_list) { 1629 if (n-- > 0) 1630 continue; 1631 if (get_object(object)) 1632 goto out; 1633 } 1634 object = NULL; 1635 out: 1636 return object; 1637 } 1638 1639 /* 1640 * Return the next object in the object_list. The function decrements the 1641 * use_count of the previous object and increases that of the next one. 1642 */ 1643 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1644 { 1645 struct kmemleak_object *prev_obj = v; 1646 struct kmemleak_object *next_obj = NULL; 1647 struct kmemleak_object *obj = prev_obj; 1648 1649 ++(*pos); 1650 1651 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1652 if (get_object(obj)) { 1653 next_obj = obj; 1654 break; 1655 } 1656 } 1657 1658 put_object(prev_obj); 1659 return next_obj; 1660 } 1661 1662 /* 1663 * Decrement the use_count of the last object required, if any. 1664 */ 1665 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1666 { 1667 if (!IS_ERR(v)) { 1668 /* 1669 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1670 * waiting was interrupted, so only release it if !IS_ERR. 1671 */ 1672 rcu_read_unlock(); 1673 mutex_unlock(&scan_mutex); 1674 if (v) 1675 put_object(v); 1676 } 1677 } 1678 1679 /* 1680 * Print the information for an unreferenced object to the seq file. 1681 */ 1682 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1683 { 1684 struct kmemleak_object *object = v; 1685 unsigned long flags; 1686 1687 raw_spin_lock_irqsave(&object->lock, flags); 1688 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1689 print_unreferenced(seq, object); 1690 raw_spin_unlock_irqrestore(&object->lock, flags); 1691 return 0; 1692 } 1693 1694 static const struct seq_operations kmemleak_seq_ops = { 1695 .start = kmemleak_seq_start, 1696 .next = kmemleak_seq_next, 1697 .stop = kmemleak_seq_stop, 1698 .show = kmemleak_seq_show, 1699 }; 1700 1701 static int kmemleak_open(struct inode *inode, struct file *file) 1702 { 1703 return seq_open(file, &kmemleak_seq_ops); 1704 } 1705 1706 static int dump_str_object_info(const char *str) 1707 { 1708 unsigned long flags; 1709 struct kmemleak_object *object; 1710 unsigned long addr; 1711 1712 if (kstrtoul(str, 0, &addr)) 1713 return -EINVAL; 1714 object = find_and_get_object(addr, 0); 1715 if (!object) { 1716 pr_info("Unknown object at 0x%08lx\n", addr); 1717 return -EINVAL; 1718 } 1719 1720 raw_spin_lock_irqsave(&object->lock, flags); 1721 dump_object_info(object); 1722 raw_spin_unlock_irqrestore(&object->lock, flags); 1723 1724 put_object(object); 1725 return 0; 1726 } 1727 1728 /* 1729 * We use grey instead of black to ensure we can do future scans on the same 1730 * objects. If we did not do future scans these black objects could 1731 * potentially contain references to newly allocated objects in the future and 1732 * we'd end up with false positives. 1733 */ 1734 static void kmemleak_clear(void) 1735 { 1736 struct kmemleak_object *object; 1737 unsigned long flags; 1738 1739 rcu_read_lock(); 1740 list_for_each_entry_rcu(object, &object_list, object_list) { 1741 raw_spin_lock_irqsave(&object->lock, flags); 1742 if ((object->flags & OBJECT_REPORTED) && 1743 unreferenced_object(object)) 1744 __paint_it(object, KMEMLEAK_GREY); 1745 raw_spin_unlock_irqrestore(&object->lock, flags); 1746 } 1747 rcu_read_unlock(); 1748 1749 kmemleak_found_leaks = false; 1750 } 1751 1752 static void __kmemleak_do_cleanup(void); 1753 1754 /* 1755 * File write operation to configure kmemleak at run-time. The following 1756 * commands can be written to the /sys/kernel/debug/kmemleak file: 1757 * off - disable kmemleak (irreversible) 1758 * stack=on - enable the task stacks scanning 1759 * stack=off - disable the tasks stacks scanning 1760 * scan=on - start the automatic memory scanning thread 1761 * scan=off - stop the automatic memory scanning thread 1762 * scan=... - set the automatic memory scanning period in seconds (0 to 1763 * disable it) 1764 * scan - trigger a memory scan 1765 * clear - mark all current reported unreferenced kmemleak objects as 1766 * grey to ignore printing them, or free all kmemleak objects 1767 * if kmemleak has been disabled. 1768 * dump=... - dump information about the object found at the given address 1769 */ 1770 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1771 size_t size, loff_t *ppos) 1772 { 1773 char buf[64]; 1774 int buf_size; 1775 int ret; 1776 1777 buf_size = min(size, (sizeof(buf) - 1)); 1778 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1779 return -EFAULT; 1780 buf[buf_size] = 0; 1781 1782 ret = mutex_lock_interruptible(&scan_mutex); 1783 if (ret < 0) 1784 return ret; 1785 1786 if (strncmp(buf, "clear", 5) == 0) { 1787 if (kmemleak_enabled) 1788 kmemleak_clear(); 1789 else 1790 __kmemleak_do_cleanup(); 1791 goto out; 1792 } 1793 1794 if (!kmemleak_enabled) { 1795 ret = -EPERM; 1796 goto out; 1797 } 1798 1799 if (strncmp(buf, "off", 3) == 0) 1800 kmemleak_disable(); 1801 else if (strncmp(buf, "stack=on", 8) == 0) 1802 kmemleak_stack_scan = 1; 1803 else if (strncmp(buf, "stack=off", 9) == 0) 1804 kmemleak_stack_scan = 0; 1805 else if (strncmp(buf, "scan=on", 7) == 0) 1806 start_scan_thread(); 1807 else if (strncmp(buf, "scan=off", 8) == 0) 1808 stop_scan_thread(); 1809 else if (strncmp(buf, "scan=", 5) == 0) { 1810 unsigned secs; 1811 unsigned long msecs; 1812 1813 ret = kstrtouint(buf + 5, 0, &secs); 1814 if (ret < 0) 1815 goto out; 1816 1817 msecs = secs * MSEC_PER_SEC; 1818 if (msecs > UINT_MAX) 1819 msecs = UINT_MAX; 1820 1821 stop_scan_thread(); 1822 if (msecs) { 1823 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1824 start_scan_thread(); 1825 } 1826 } else if (strncmp(buf, "scan", 4) == 0) 1827 kmemleak_scan(); 1828 else if (strncmp(buf, "dump=", 5) == 0) 1829 ret = dump_str_object_info(buf + 5); 1830 else 1831 ret = -EINVAL; 1832 1833 out: 1834 mutex_unlock(&scan_mutex); 1835 if (ret < 0) 1836 return ret; 1837 1838 /* ignore the rest of the buffer, only one command at a time */ 1839 *ppos += size; 1840 return size; 1841 } 1842 1843 static const struct file_operations kmemleak_fops = { 1844 .owner = THIS_MODULE, 1845 .open = kmemleak_open, 1846 .read = seq_read, 1847 .write = kmemleak_write, 1848 .llseek = seq_lseek, 1849 .release = seq_release, 1850 }; 1851 1852 static void __kmemleak_do_cleanup(void) 1853 { 1854 struct kmemleak_object *object, *tmp; 1855 1856 /* 1857 * Kmemleak has already been disabled, no need for RCU list traversal 1858 * or kmemleak_lock held. 1859 */ 1860 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1861 __remove_object(object); 1862 __delete_object(object); 1863 } 1864 } 1865 1866 /* 1867 * Stop the memory scanning thread and free the kmemleak internal objects if 1868 * no previous scan thread (otherwise, kmemleak may still have some useful 1869 * information on memory leaks). 1870 */ 1871 static void kmemleak_do_cleanup(struct work_struct *work) 1872 { 1873 stop_scan_thread(); 1874 1875 mutex_lock(&scan_mutex); 1876 /* 1877 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1878 * longer track object freeing. Ordering of the scan thread stopping and 1879 * the memory accesses below is guaranteed by the kthread_stop() 1880 * function. 1881 */ 1882 kmemleak_free_enabled = 0; 1883 mutex_unlock(&scan_mutex); 1884 1885 if (!kmemleak_found_leaks) 1886 __kmemleak_do_cleanup(); 1887 else 1888 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1889 } 1890 1891 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1892 1893 /* 1894 * Disable kmemleak. No memory allocation/freeing will be traced once this 1895 * function is called. Disabling kmemleak is an irreversible operation. 1896 */ 1897 static void kmemleak_disable(void) 1898 { 1899 /* atomically check whether it was already invoked */ 1900 if (cmpxchg(&kmemleak_error, 0, 1)) 1901 return; 1902 1903 /* stop any memory operation tracing */ 1904 kmemleak_enabled = 0; 1905 1906 /* check whether it is too early for a kernel thread */ 1907 if (kmemleak_initialized) 1908 schedule_work(&cleanup_work); 1909 else 1910 kmemleak_free_enabled = 0; 1911 1912 pr_info("Kernel memory leak detector disabled\n"); 1913 } 1914 1915 /* 1916 * Allow boot-time kmemleak disabling (enabled by default). 1917 */ 1918 static int __init kmemleak_boot_config(char *str) 1919 { 1920 if (!str) 1921 return -EINVAL; 1922 if (strcmp(str, "off") == 0) 1923 kmemleak_disable(); 1924 else if (strcmp(str, "on") == 0) 1925 kmemleak_skip_disable = 1; 1926 else 1927 return -EINVAL; 1928 return 0; 1929 } 1930 early_param("kmemleak", kmemleak_boot_config); 1931 1932 /* 1933 * Kmemleak initialization. 1934 */ 1935 void __init kmemleak_init(void) 1936 { 1937 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1938 if (!kmemleak_skip_disable) { 1939 kmemleak_disable(); 1940 return; 1941 } 1942 #endif 1943 1944 if (kmemleak_error) 1945 return; 1946 1947 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1948 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1949 1950 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1951 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1952 1953 /* register the data/bss sections */ 1954 create_object((unsigned long)_sdata, _edata - _sdata, 1955 KMEMLEAK_GREY, GFP_ATOMIC); 1956 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1957 KMEMLEAK_GREY, GFP_ATOMIC); 1958 /* only register .data..ro_after_init if not within .data */ 1959 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 1960 create_object((unsigned long)__start_ro_after_init, 1961 __end_ro_after_init - __start_ro_after_init, 1962 KMEMLEAK_GREY, GFP_ATOMIC); 1963 } 1964 1965 /* 1966 * Late initialization function. 1967 */ 1968 static int __init kmemleak_late_init(void) 1969 { 1970 kmemleak_initialized = 1; 1971 1972 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1973 1974 if (kmemleak_error) { 1975 /* 1976 * Some error occurred and kmemleak was disabled. There is a 1977 * small chance that kmemleak_disable() was called immediately 1978 * after setting kmemleak_initialized and we may end up with 1979 * two clean-up threads but serialized by scan_mutex. 1980 */ 1981 schedule_work(&cleanup_work); 1982 return -ENOMEM; 1983 } 1984 1985 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 1986 mutex_lock(&scan_mutex); 1987 start_scan_thread(); 1988 mutex_unlock(&scan_mutex); 1989 } 1990 1991 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 1992 mem_pool_free_count); 1993 1994 return 0; 1995 } 1996 late_initcall(kmemleak_late_init); 1997