xref: /linux/mm/kmemleak.c (revision 7a92fc8b4d20680e4c20289a670d8fca2d1f2c1b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60 
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98 
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102 
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107 
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE		16	/* stack trace length */
112 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
113 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
114 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
116 
117 #define BYTES_PER_POINTER	sizeof(void *)
118 
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 					   __GFP_NOLOCKDEP)) | \
122 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 				 __GFP_NOWARN)
124 
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127 	struct hlist_node node;
128 	unsigned long start;
129 	size_t size;
130 };
131 
132 #define KMEMLEAK_GREY	0
133 #define KMEMLEAK_BLACK	-1
134 
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144 	raw_spinlock_t lock;
145 	unsigned int flags;		/* object status flags */
146 	struct list_head object_list;
147 	struct list_head gray_list;
148 	struct rb_node rb_node;
149 	struct rcu_head rcu;		/* object_list lockless traversal */
150 	/* object usage count; object freed when use_count == 0 */
151 	atomic_t use_count;
152 	unsigned int del_state;		/* deletion state */
153 	unsigned long pointer;
154 	size_t size;
155 	/* pass surplus references to this pointer */
156 	unsigned long excess_ref;
157 	/* minimum number of a pointers found before it is considered leak */
158 	int min_count;
159 	/* the total number of pointers found pointing to this object */
160 	int count;
161 	/* checksum for detecting modified objects */
162 	u32 checksum;
163 	/* memory ranges to be scanned inside an object (empty for all) */
164 	struct hlist_head area_list;
165 	depot_stack_handle_t trace_handle;
166 	unsigned long jiffies;		/* creation timestamp */
167 	pid_t pid;			/* pid of the current task */
168 	char comm[TASK_COMM_LEN];	/* executable name */
169 };
170 
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED	(1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED		(1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN		(1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN	(1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS		(1 << 4)
181 
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED	(1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE	(1 << 1)
186 
187 #define HEX_PREFIX		"    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE		16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE		1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII		1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES		2
196 
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211 
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215 
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226 
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308 	kasan_disable_current();
309 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311 	kasan_enable_current();
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned long *entries;
357 	unsigned int nr_entries;
358 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359 
360 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362 			  object->pointer, object->size);
363 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364 			   object->comm, object->pid, object->jiffies,
365 			   msecs_age / 1000, msecs_age % 1000);
366 	hex_dump_object(seq, object);
367 	warn_or_seq_printf(seq, "  backtrace:\n");
368 
369 	for (i = 0; i < nr_entries; i++) {
370 		void *ptr = (void *)entries[i];
371 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372 	}
373 }
374 
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 			object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 			object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%x\n", object->flags);
389 	pr_notice("  checksum = %u\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	if (object->trace_handle)
392 		stack_depot_print(object->trace_handle);
393 }
394 
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 					       bool is_phys)
403 {
404 	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 			     object_tree_root.rb_node;
406 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407 
408 	while (rb) {
409 		struct kmemleak_object *object;
410 		unsigned long untagged_objp;
411 
412 		object = rb_entry(rb, struct kmemleak_object, rb_node);
413 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414 
415 		if (untagged_ptr < untagged_objp)
416 			rb = object->rb_node.rb_left;
417 		else if (untagged_objp + object->size <= untagged_ptr)
418 			rb = object->rb_node.rb_right;
419 		else if (untagged_objp == untagged_ptr || alias)
420 			return object;
421 		else {
422 			kmemleak_warn("Found object by alias at 0x%08lx\n",
423 				      ptr);
424 			dump_object_info(object);
425 			break;
426 		}
427 	}
428 	return NULL;
429 }
430 
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434 	return __lookup_object(ptr, alias, false);
435 }
436 
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445 	return atomic_inc_not_zero(&object->use_count);
446 }
447 
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453 	unsigned long flags;
454 	struct kmemleak_object *object;
455 
456 	/* try the slab allocator first */
457 	if (object_cache) {
458 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 		if (object)
460 			return object;
461 	}
462 
463 	/* slab allocation failed, try the memory pool */
464 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
465 	object = list_first_entry_or_null(&mem_pool_free_list,
466 					  typeof(*object), object_list);
467 	if (object)
468 		list_del(&object->object_list);
469 	else if (mem_pool_free_count)
470 		object = &mem_pool[--mem_pool_free_count];
471 	else
472 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474 
475 	return object;
476 }
477 
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483 	unsigned long flags;
484 
485 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 		kmem_cache_free(object_cache, object);
487 		return;
488 	}
489 
490 	/* add the object to the memory pool free list */
491 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
492 	list_add(&object->object_list, &mem_pool_free_list);
493 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495 
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501 	struct hlist_node *tmp;
502 	struct kmemleak_scan_area *area;
503 	struct kmemleak_object *object =
504 		container_of(rcu, struct kmemleak_object, rcu);
505 
506 	/*
507 	 * Once use_count is 0 (guaranteed by put_object), there is no other
508 	 * code accessing this object, hence no need for locking.
509 	 */
510 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 		hlist_del(&area->node);
512 		kmem_cache_free(scan_area_cache, area);
513 	}
514 	mem_pool_free(object);
515 }
516 
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526 	if (!atomic_dec_and_test(&object->use_count))
527 		return;
528 
529 	/* should only get here after delete_object was called */
530 	WARN_ON(object->flags & OBJECT_ALLOCATED);
531 
532 	/*
533 	 * It may be too early for the RCU callbacks, however, there is no
534 	 * concurrent object_list traversal when !object_cache and all objects
535 	 * came from the memory pool. Free the object directly.
536 	 */
537 	if (object_cache)
538 		call_rcu(&object->rcu, free_object_rcu);
539 	else
540 		free_object_rcu(&object->rcu);
541 }
542 
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 						     bool is_phys)
548 {
549 	unsigned long flags;
550 	struct kmemleak_object *object;
551 
552 	rcu_read_lock();
553 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
554 	object = __lookup_object(ptr, alias, is_phys);
555 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556 
557 	/* check whether the object is still available */
558 	if (object && !get_object(object))
559 		object = NULL;
560 	rcu_read_unlock();
561 
562 	return object;
563 }
564 
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568 	return __find_and_get_object(ptr, alias, false);
569 }
570 
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578 	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 				   &object_phys_tree_root :
580 				   &object_tree_root);
581 	if (!(object->del_state & DELSTATE_NO_DELETE))
582 		list_del_rcu(&object->object_list);
583 	object->del_state |= DELSTATE_REMOVED;
584 }
585 
586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
587 							int alias,
588 							bool is_phys)
589 {
590 	struct kmemleak_object *object;
591 
592 	object = __lookup_object(ptr, alias, is_phys);
593 	if (object)
594 		__remove_object(object);
595 
596 	return object;
597 }
598 
599 /*
600  * Look up an object in the object search tree and remove it from both
601  * object_tree_root (or object_phys_tree_root) and object_list. The
602  * returned object's use_count should be at least 1, as initially set
603  * by create_object().
604  */
605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
606 						      bool is_phys)
607 {
608 	unsigned long flags;
609 	struct kmemleak_object *object;
610 
611 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
612 	object = __find_and_remove_object(ptr, alias, is_phys);
613 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
614 
615 	return object;
616 }
617 
618 static noinline depot_stack_handle_t set_track_prepare(void)
619 {
620 	depot_stack_handle_t trace_handle;
621 	unsigned long entries[MAX_TRACE];
622 	unsigned int nr_entries;
623 
624 	/*
625 	 * Use object_cache to determine whether kmemleak_init() has
626 	 * been invoked. stack_depot_early_init() is called before
627 	 * kmemleak_init() in mm_core_init().
628 	 */
629 	if (!object_cache)
630 		return 0;
631 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
632 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
633 
634 	return trace_handle;
635 }
636 
637 static struct kmemleak_object *__alloc_object(gfp_t gfp)
638 {
639 	struct kmemleak_object *object;
640 
641 	object = mem_pool_alloc(gfp);
642 	if (!object) {
643 		pr_warn("Cannot allocate a kmemleak_object structure\n");
644 		kmemleak_disable();
645 	}
646 
647 	return object;
648 }
649 
650 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
651 			 size_t size, int min_count, bool is_phys)
652 {
653 
654 	struct kmemleak_object *parent;
655 	struct rb_node **link, *rb_parent;
656 	unsigned long untagged_ptr;
657 	unsigned long untagged_objp;
658 
659 	INIT_LIST_HEAD(&object->object_list);
660 	INIT_LIST_HEAD(&object->gray_list);
661 	INIT_HLIST_HEAD(&object->area_list);
662 	raw_spin_lock_init(&object->lock);
663 	atomic_set(&object->use_count, 1);
664 	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
665 	object->pointer = ptr;
666 	object->size = kfence_ksize((void *)ptr) ?: size;
667 	object->excess_ref = 0;
668 	object->min_count = min_count;
669 	object->count = 0;			/* white color initially */
670 	object->jiffies = jiffies;
671 	object->checksum = 0;
672 	object->del_state = 0;
673 
674 	/* task information */
675 	if (in_hardirq()) {
676 		object->pid = 0;
677 		strncpy(object->comm, "hardirq", sizeof(object->comm));
678 	} else if (in_serving_softirq()) {
679 		object->pid = 0;
680 		strncpy(object->comm, "softirq", sizeof(object->comm));
681 	} else {
682 		object->pid = current->pid;
683 		/*
684 		 * There is a small chance of a race with set_task_comm(),
685 		 * however using get_task_comm() here may cause locking
686 		 * dependency issues with current->alloc_lock. In the worst
687 		 * case, the command line is not correct.
688 		 */
689 		strncpy(object->comm, current->comm, sizeof(object->comm));
690 	}
691 
692 	/* kernel backtrace */
693 	object->trace_handle = set_track_prepare();
694 
695 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
696 	/*
697 	 * Only update min_addr and max_addr with object
698 	 * storing virtual address.
699 	 */
700 	if (!is_phys) {
701 		min_addr = min(min_addr, untagged_ptr);
702 		max_addr = max(max_addr, untagged_ptr + size);
703 	}
704 	link = is_phys ? &object_phys_tree_root.rb_node :
705 		&object_tree_root.rb_node;
706 	rb_parent = NULL;
707 	while (*link) {
708 		rb_parent = *link;
709 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
710 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
711 		if (untagged_ptr + size <= untagged_objp)
712 			link = &parent->rb_node.rb_left;
713 		else if (untagged_objp + parent->size <= untagged_ptr)
714 			link = &parent->rb_node.rb_right;
715 		else {
716 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
717 				      ptr);
718 			/*
719 			 * No need for parent->lock here since "parent" cannot
720 			 * be freed while the kmemleak_lock is held.
721 			 */
722 			dump_object_info(parent);
723 			return -EEXIST;
724 		}
725 	}
726 	rb_link_node(&object->rb_node, rb_parent, link);
727 	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
728 					  &object_tree_root);
729 	list_add_tail_rcu(&object->object_list, &object_list);
730 
731 	return 0;
732 }
733 
734 /*
735  * Create the metadata (struct kmemleak_object) corresponding to an allocated
736  * memory block and add it to the object_list and object_tree_root (or
737  * object_phys_tree_root).
738  */
739 static void __create_object(unsigned long ptr, size_t size,
740 				int min_count, gfp_t gfp, bool is_phys)
741 {
742 	struct kmemleak_object *object;
743 	unsigned long flags;
744 	int ret;
745 
746 	object = __alloc_object(gfp);
747 	if (!object)
748 		return;
749 
750 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
751 	ret = __link_object(object, ptr, size, min_count, is_phys);
752 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
753 	if (ret)
754 		mem_pool_free(object);
755 }
756 
757 /* Create kmemleak object which allocated with virtual address. */
758 static void create_object(unsigned long ptr, size_t size,
759 			  int min_count, gfp_t gfp)
760 {
761 	__create_object(ptr, size, min_count, gfp, false);
762 }
763 
764 /* Create kmemleak object which allocated with physical address. */
765 static void create_object_phys(unsigned long ptr, size_t size,
766 			       int min_count, gfp_t gfp)
767 {
768 	__create_object(ptr, size, min_count, gfp, true);
769 }
770 
771 /*
772  * Mark the object as not allocated and schedule RCU freeing via put_object().
773  */
774 static void __delete_object(struct kmemleak_object *object)
775 {
776 	unsigned long flags;
777 
778 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
779 	WARN_ON(atomic_read(&object->use_count) < 1);
780 
781 	/*
782 	 * Locking here also ensures that the corresponding memory block
783 	 * cannot be freed when it is being scanned.
784 	 */
785 	raw_spin_lock_irqsave(&object->lock, flags);
786 	object->flags &= ~OBJECT_ALLOCATED;
787 	raw_spin_unlock_irqrestore(&object->lock, flags);
788 	put_object(object);
789 }
790 
791 /*
792  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
793  * delete it.
794  */
795 static void delete_object_full(unsigned long ptr)
796 {
797 	struct kmemleak_object *object;
798 
799 	object = find_and_remove_object(ptr, 0, false);
800 	if (!object) {
801 #ifdef DEBUG
802 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
803 			      ptr);
804 #endif
805 		return;
806 	}
807 	__delete_object(object);
808 }
809 
810 /*
811  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
812  * delete it. If the memory block is partially freed, the function may create
813  * additional metadata for the remaining parts of the block.
814  */
815 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
816 {
817 	struct kmemleak_object *object, *object_l, *object_r;
818 	unsigned long start, end, flags;
819 
820 	object_l = __alloc_object(GFP_KERNEL);
821 	if (!object_l)
822 		return;
823 
824 	object_r = __alloc_object(GFP_KERNEL);
825 	if (!object_r)
826 		goto out;
827 
828 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
829 	object = __find_and_remove_object(ptr, 1, is_phys);
830 	if (!object) {
831 #ifdef DEBUG
832 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
833 			      ptr, size);
834 #endif
835 		goto unlock;
836 	}
837 
838 	/*
839 	 * Create one or two objects that may result from the memory block
840 	 * split. Note that partial freeing is only done by free_bootmem() and
841 	 * this happens before kmemleak_init() is called.
842 	 */
843 	start = object->pointer;
844 	end = object->pointer + object->size;
845 	if ((ptr > start) &&
846 	    !__link_object(object_l, start, ptr - start,
847 			   object->min_count, is_phys))
848 		object_l = NULL;
849 	if ((ptr + size < end) &&
850 	    !__link_object(object_r, ptr + size, end - ptr - size,
851 			   object->min_count, is_phys))
852 		object_r = NULL;
853 
854 unlock:
855 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
856 	if (object)
857 		__delete_object(object);
858 
859 out:
860 	if (object_l)
861 		mem_pool_free(object_l);
862 	if (object_r)
863 		mem_pool_free(object_r);
864 }
865 
866 static void __paint_it(struct kmemleak_object *object, int color)
867 {
868 	object->min_count = color;
869 	if (color == KMEMLEAK_BLACK)
870 		object->flags |= OBJECT_NO_SCAN;
871 }
872 
873 static void paint_it(struct kmemleak_object *object, int color)
874 {
875 	unsigned long flags;
876 
877 	raw_spin_lock_irqsave(&object->lock, flags);
878 	__paint_it(object, color);
879 	raw_spin_unlock_irqrestore(&object->lock, flags);
880 }
881 
882 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
883 {
884 	struct kmemleak_object *object;
885 
886 	object = __find_and_get_object(ptr, 0, is_phys);
887 	if (!object) {
888 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
889 			      ptr,
890 			      (color == KMEMLEAK_GREY) ? "Grey" :
891 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
892 		return;
893 	}
894 	paint_it(object, color);
895 	put_object(object);
896 }
897 
898 /*
899  * Mark an object permanently as gray-colored so that it can no longer be
900  * reported as a leak. This is used in general to mark a false positive.
901  */
902 static void make_gray_object(unsigned long ptr)
903 {
904 	paint_ptr(ptr, KMEMLEAK_GREY, false);
905 }
906 
907 /*
908  * Mark the object as black-colored so that it is ignored from scans and
909  * reporting.
910  */
911 static void make_black_object(unsigned long ptr, bool is_phys)
912 {
913 	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
914 }
915 
916 /*
917  * Add a scanning area to the object. If at least one such area is added,
918  * kmemleak will only scan these ranges rather than the whole memory block.
919  */
920 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
921 {
922 	unsigned long flags;
923 	struct kmemleak_object *object;
924 	struct kmemleak_scan_area *area = NULL;
925 	unsigned long untagged_ptr;
926 	unsigned long untagged_objp;
927 
928 	object = find_and_get_object(ptr, 1);
929 	if (!object) {
930 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
931 			      ptr);
932 		return;
933 	}
934 
935 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
936 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
937 
938 	if (scan_area_cache)
939 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
940 
941 	raw_spin_lock_irqsave(&object->lock, flags);
942 	if (!area) {
943 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
944 		/* mark the object for full scan to avoid false positives */
945 		object->flags |= OBJECT_FULL_SCAN;
946 		goto out_unlock;
947 	}
948 	if (size == SIZE_MAX) {
949 		size = untagged_objp + object->size - untagged_ptr;
950 	} else if (untagged_ptr + size > untagged_objp + object->size) {
951 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
952 		dump_object_info(object);
953 		kmem_cache_free(scan_area_cache, area);
954 		goto out_unlock;
955 	}
956 
957 	INIT_HLIST_NODE(&area->node);
958 	area->start = ptr;
959 	area->size = size;
960 
961 	hlist_add_head(&area->node, &object->area_list);
962 out_unlock:
963 	raw_spin_unlock_irqrestore(&object->lock, flags);
964 	put_object(object);
965 }
966 
967 /*
968  * Any surplus references (object already gray) to 'ptr' are passed to
969  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
970  * vm_struct may be used as an alternative reference to the vmalloc'ed object
971  * (see free_thread_stack()).
972  */
973 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
974 {
975 	unsigned long flags;
976 	struct kmemleak_object *object;
977 
978 	object = find_and_get_object(ptr, 0);
979 	if (!object) {
980 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
981 			      ptr);
982 		return;
983 	}
984 
985 	raw_spin_lock_irqsave(&object->lock, flags);
986 	object->excess_ref = excess_ref;
987 	raw_spin_unlock_irqrestore(&object->lock, flags);
988 	put_object(object);
989 }
990 
991 /*
992  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
993  * pointer. Such object will not be scanned by kmemleak but references to it
994  * are searched.
995  */
996 static void object_no_scan(unsigned long ptr)
997 {
998 	unsigned long flags;
999 	struct kmemleak_object *object;
1000 
1001 	object = find_and_get_object(ptr, 0);
1002 	if (!object) {
1003 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1004 		return;
1005 	}
1006 
1007 	raw_spin_lock_irqsave(&object->lock, flags);
1008 	object->flags |= OBJECT_NO_SCAN;
1009 	raw_spin_unlock_irqrestore(&object->lock, flags);
1010 	put_object(object);
1011 }
1012 
1013 /**
1014  * kmemleak_alloc - register a newly allocated object
1015  * @ptr:	pointer to beginning of the object
1016  * @size:	size of the object
1017  * @min_count:	minimum number of references to this object. If during memory
1018  *		scanning a number of references less than @min_count is found,
1019  *		the object is reported as a memory leak. If @min_count is 0,
1020  *		the object is never reported as a leak. If @min_count is -1,
1021  *		the object is ignored (not scanned and not reported as a leak)
1022  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1023  *
1024  * This function is called from the kernel allocators when a new object
1025  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1026  */
1027 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1028 			  gfp_t gfp)
1029 {
1030 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1031 
1032 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1033 		create_object((unsigned long)ptr, size, min_count, gfp);
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1036 
1037 /**
1038  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1039  * @ptr:	__percpu pointer to beginning of the object
1040  * @size:	size of the object
1041  * @gfp:	flags used for kmemleak internal memory allocations
1042  *
1043  * This function is called from the kernel percpu allocator when a new object
1044  * (memory block) is allocated (alloc_percpu).
1045  */
1046 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1047 				 gfp_t gfp)
1048 {
1049 	unsigned int cpu;
1050 
1051 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1052 
1053 	/*
1054 	 * Percpu allocations are only scanned and not reported as leaks
1055 	 * (min_count is set to 0).
1056 	 */
1057 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 		for_each_possible_cpu(cpu)
1059 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1060 				      size, 0, gfp);
1061 }
1062 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1063 
1064 /**
1065  * kmemleak_vmalloc - register a newly vmalloc'ed object
1066  * @area:	pointer to vm_struct
1067  * @size:	size of the object
1068  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1069  *
1070  * This function is called from the vmalloc() kernel allocator when a new
1071  * object (memory block) is allocated.
1072  */
1073 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1074 {
1075 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1076 
1077 	/*
1078 	 * A min_count = 2 is needed because vm_struct contains a reference to
1079 	 * the virtual address of the vmalloc'ed block.
1080 	 */
1081 	if (kmemleak_enabled) {
1082 		create_object((unsigned long)area->addr, size, 2, gfp);
1083 		object_set_excess_ref((unsigned long)area,
1084 				      (unsigned long)area->addr);
1085 	}
1086 }
1087 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1088 
1089 /**
1090  * kmemleak_free - unregister a previously registered object
1091  * @ptr:	pointer to beginning of the object
1092  *
1093  * This function is called from the kernel allocators when an object (memory
1094  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1095  */
1096 void __ref kmemleak_free(const void *ptr)
1097 {
1098 	pr_debug("%s(0x%px)\n", __func__, ptr);
1099 
1100 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1101 		delete_object_full((unsigned long)ptr);
1102 }
1103 EXPORT_SYMBOL_GPL(kmemleak_free);
1104 
1105 /**
1106  * kmemleak_free_part - partially unregister a previously registered object
1107  * @ptr:	pointer to the beginning or inside the object. This also
1108  *		represents the start of the range to be freed
1109  * @size:	size to be unregistered
1110  *
1111  * This function is called when only a part of a memory block is freed
1112  * (usually from the bootmem allocator).
1113  */
1114 void __ref kmemleak_free_part(const void *ptr, size_t size)
1115 {
1116 	pr_debug("%s(0x%px)\n", __func__, ptr);
1117 
1118 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119 		delete_object_part((unsigned long)ptr, size, false);
1120 }
1121 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1122 
1123 /**
1124  * kmemleak_free_percpu - unregister a previously registered __percpu object
1125  * @ptr:	__percpu pointer to beginning of the object
1126  *
1127  * This function is called from the kernel percpu allocator when an object
1128  * (memory block) is freed (free_percpu).
1129  */
1130 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1131 {
1132 	unsigned int cpu;
1133 
1134 	pr_debug("%s(0x%px)\n", __func__, ptr);
1135 
1136 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1137 		for_each_possible_cpu(cpu)
1138 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1139 								      cpu));
1140 }
1141 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1142 
1143 /**
1144  * kmemleak_update_trace - update object allocation stack trace
1145  * @ptr:	pointer to beginning of the object
1146  *
1147  * Override the object allocation stack trace for cases where the actual
1148  * allocation place is not always useful.
1149  */
1150 void __ref kmemleak_update_trace(const void *ptr)
1151 {
1152 	struct kmemleak_object *object;
1153 	unsigned long flags;
1154 
1155 	pr_debug("%s(0x%px)\n", __func__, ptr);
1156 
1157 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1158 		return;
1159 
1160 	object = find_and_get_object((unsigned long)ptr, 1);
1161 	if (!object) {
1162 #ifdef DEBUG
1163 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1164 			      ptr);
1165 #endif
1166 		return;
1167 	}
1168 
1169 	raw_spin_lock_irqsave(&object->lock, flags);
1170 	object->trace_handle = set_track_prepare();
1171 	raw_spin_unlock_irqrestore(&object->lock, flags);
1172 
1173 	put_object(object);
1174 }
1175 EXPORT_SYMBOL(kmemleak_update_trace);
1176 
1177 /**
1178  * kmemleak_not_leak - mark an allocated object as false positive
1179  * @ptr:	pointer to beginning of the object
1180  *
1181  * Calling this function on an object will cause the memory block to no longer
1182  * be reported as leak and always be scanned.
1183  */
1184 void __ref kmemleak_not_leak(const void *ptr)
1185 {
1186 	pr_debug("%s(0x%px)\n", __func__, ptr);
1187 
1188 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1189 		make_gray_object((unsigned long)ptr);
1190 }
1191 EXPORT_SYMBOL(kmemleak_not_leak);
1192 
1193 /**
1194  * kmemleak_ignore - ignore an allocated object
1195  * @ptr:	pointer to beginning of the object
1196  *
1197  * Calling this function on an object will cause the memory block to be
1198  * ignored (not scanned and not reported as a leak). This is usually done when
1199  * it is known that the corresponding block is not a leak and does not contain
1200  * any references to other allocated memory blocks.
1201  */
1202 void __ref kmemleak_ignore(const void *ptr)
1203 {
1204 	pr_debug("%s(0x%px)\n", __func__, ptr);
1205 
1206 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1207 		make_black_object((unsigned long)ptr, false);
1208 }
1209 EXPORT_SYMBOL(kmemleak_ignore);
1210 
1211 /**
1212  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1213  * @ptr:	pointer to beginning or inside the object. This also
1214  *		represents the start of the scan area
1215  * @size:	size of the scan area
1216  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1217  *
1218  * This function is used when it is known that only certain parts of an object
1219  * contain references to other objects. Kmemleak will only scan these areas
1220  * reducing the number false negatives.
1221  */
1222 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1223 {
1224 	pr_debug("%s(0x%px)\n", __func__, ptr);
1225 
1226 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1227 		add_scan_area((unsigned long)ptr, size, gfp);
1228 }
1229 EXPORT_SYMBOL(kmemleak_scan_area);
1230 
1231 /**
1232  * kmemleak_no_scan - do not scan an allocated object
1233  * @ptr:	pointer to beginning of the object
1234  *
1235  * This function notifies kmemleak not to scan the given memory block. Useful
1236  * in situations where it is known that the given object does not contain any
1237  * references to other objects. Kmemleak will not scan such objects reducing
1238  * the number of false negatives.
1239  */
1240 void __ref kmemleak_no_scan(const void *ptr)
1241 {
1242 	pr_debug("%s(0x%px)\n", __func__, ptr);
1243 
1244 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1245 		object_no_scan((unsigned long)ptr);
1246 }
1247 EXPORT_SYMBOL(kmemleak_no_scan);
1248 
1249 /**
1250  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1251  *			 address argument
1252  * @phys:	physical address of the object
1253  * @size:	size of the object
1254  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1255  */
1256 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1257 {
1258 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1259 
1260 	if (kmemleak_enabled)
1261 		/*
1262 		 * Create object with OBJECT_PHYS flag and
1263 		 * assume min_count 0.
1264 		 */
1265 		create_object_phys((unsigned long)phys, size, 0, gfp);
1266 }
1267 EXPORT_SYMBOL(kmemleak_alloc_phys);
1268 
1269 /**
1270  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1271  *			     physical address argument
1272  * @phys:	physical address if the beginning or inside an object. This
1273  *		also represents the start of the range to be freed
1274  * @size:	size to be unregistered
1275  */
1276 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1277 {
1278 	pr_debug("%s(0x%px)\n", __func__, &phys);
1279 
1280 	if (kmemleak_enabled)
1281 		delete_object_part((unsigned long)phys, size, true);
1282 }
1283 EXPORT_SYMBOL(kmemleak_free_part_phys);
1284 
1285 /**
1286  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1287  *			  address argument
1288  * @phys:	physical address of the object
1289  */
1290 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1291 {
1292 	pr_debug("%s(0x%px)\n", __func__, &phys);
1293 
1294 	if (kmemleak_enabled)
1295 		make_black_object((unsigned long)phys, true);
1296 }
1297 EXPORT_SYMBOL(kmemleak_ignore_phys);
1298 
1299 /*
1300  * Update an object's checksum and return true if it was modified.
1301  */
1302 static bool update_checksum(struct kmemleak_object *object)
1303 {
1304 	u32 old_csum = object->checksum;
1305 
1306 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1307 		return false;
1308 
1309 	kasan_disable_current();
1310 	kcsan_disable_current();
1311 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1312 	kasan_enable_current();
1313 	kcsan_enable_current();
1314 
1315 	return object->checksum != old_csum;
1316 }
1317 
1318 /*
1319  * Update an object's references. object->lock must be held by the caller.
1320  */
1321 static void update_refs(struct kmemleak_object *object)
1322 {
1323 	if (!color_white(object)) {
1324 		/* non-orphan, ignored or new */
1325 		return;
1326 	}
1327 
1328 	/*
1329 	 * Increase the object's reference count (number of pointers to the
1330 	 * memory block). If this count reaches the required minimum, the
1331 	 * object's color will become gray and it will be added to the
1332 	 * gray_list.
1333 	 */
1334 	object->count++;
1335 	if (color_gray(object)) {
1336 		/* put_object() called when removing from gray_list */
1337 		WARN_ON(!get_object(object));
1338 		list_add_tail(&object->gray_list, &gray_list);
1339 	}
1340 }
1341 
1342 /*
1343  * Memory scanning is a long process and it needs to be interruptible. This
1344  * function checks whether such interrupt condition occurred.
1345  */
1346 static int scan_should_stop(void)
1347 {
1348 	if (!kmemleak_enabled)
1349 		return 1;
1350 
1351 	/*
1352 	 * This function may be called from either process or kthread context,
1353 	 * hence the need to check for both stop conditions.
1354 	 */
1355 	if (current->mm)
1356 		return signal_pending(current);
1357 	else
1358 		return kthread_should_stop();
1359 
1360 	return 0;
1361 }
1362 
1363 /*
1364  * Scan a memory block (exclusive range) for valid pointers and add those
1365  * found to the gray list.
1366  */
1367 static void scan_block(void *_start, void *_end,
1368 		       struct kmemleak_object *scanned)
1369 {
1370 	unsigned long *ptr;
1371 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1372 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1373 	unsigned long flags;
1374 	unsigned long untagged_ptr;
1375 
1376 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1377 	for (ptr = start; ptr < end; ptr++) {
1378 		struct kmemleak_object *object;
1379 		unsigned long pointer;
1380 		unsigned long excess_ref;
1381 
1382 		if (scan_should_stop())
1383 			break;
1384 
1385 		kasan_disable_current();
1386 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1387 		kasan_enable_current();
1388 
1389 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1390 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1391 			continue;
1392 
1393 		/*
1394 		 * No need for get_object() here since we hold kmemleak_lock.
1395 		 * object->use_count cannot be dropped to 0 while the object
1396 		 * is still present in object_tree_root and object_list
1397 		 * (with updates protected by kmemleak_lock).
1398 		 */
1399 		object = lookup_object(pointer, 1);
1400 		if (!object)
1401 			continue;
1402 		if (object == scanned)
1403 			/* self referenced, ignore */
1404 			continue;
1405 
1406 		/*
1407 		 * Avoid the lockdep recursive warning on object->lock being
1408 		 * previously acquired in scan_object(). These locks are
1409 		 * enclosed by scan_mutex.
1410 		 */
1411 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1412 		/* only pass surplus references (object already gray) */
1413 		if (color_gray(object)) {
1414 			excess_ref = object->excess_ref;
1415 			/* no need for update_refs() if object already gray */
1416 		} else {
1417 			excess_ref = 0;
1418 			update_refs(object);
1419 		}
1420 		raw_spin_unlock(&object->lock);
1421 
1422 		if (excess_ref) {
1423 			object = lookup_object(excess_ref, 0);
1424 			if (!object)
1425 				continue;
1426 			if (object == scanned)
1427 				/* circular reference, ignore */
1428 				continue;
1429 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1430 			update_refs(object);
1431 			raw_spin_unlock(&object->lock);
1432 		}
1433 	}
1434 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1435 }
1436 
1437 /*
1438  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1439  */
1440 #ifdef CONFIG_SMP
1441 static void scan_large_block(void *start, void *end)
1442 {
1443 	void *next;
1444 
1445 	while (start < end) {
1446 		next = min(start + MAX_SCAN_SIZE, end);
1447 		scan_block(start, next, NULL);
1448 		start = next;
1449 		cond_resched();
1450 	}
1451 }
1452 #endif
1453 
1454 /*
1455  * Scan a memory block corresponding to a kmemleak_object. A condition is
1456  * that object->use_count >= 1.
1457  */
1458 static void scan_object(struct kmemleak_object *object)
1459 {
1460 	struct kmemleak_scan_area *area;
1461 	unsigned long flags;
1462 	void *obj_ptr;
1463 
1464 	/*
1465 	 * Once the object->lock is acquired, the corresponding memory block
1466 	 * cannot be freed (the same lock is acquired in delete_object).
1467 	 */
1468 	raw_spin_lock_irqsave(&object->lock, flags);
1469 	if (object->flags & OBJECT_NO_SCAN)
1470 		goto out;
1471 	if (!(object->flags & OBJECT_ALLOCATED))
1472 		/* already freed object */
1473 		goto out;
1474 
1475 	obj_ptr = object->flags & OBJECT_PHYS ?
1476 		  __va((phys_addr_t)object->pointer) :
1477 		  (void *)object->pointer;
1478 
1479 	if (hlist_empty(&object->area_list) ||
1480 	    object->flags & OBJECT_FULL_SCAN) {
1481 		void *start = obj_ptr;
1482 		void *end = obj_ptr + object->size;
1483 		void *next;
1484 
1485 		do {
1486 			next = min(start + MAX_SCAN_SIZE, end);
1487 			scan_block(start, next, object);
1488 
1489 			start = next;
1490 			if (start >= end)
1491 				break;
1492 
1493 			raw_spin_unlock_irqrestore(&object->lock, flags);
1494 			cond_resched();
1495 			raw_spin_lock_irqsave(&object->lock, flags);
1496 		} while (object->flags & OBJECT_ALLOCATED);
1497 	} else
1498 		hlist_for_each_entry(area, &object->area_list, node)
1499 			scan_block((void *)area->start,
1500 				   (void *)(area->start + area->size),
1501 				   object);
1502 out:
1503 	raw_spin_unlock_irqrestore(&object->lock, flags);
1504 }
1505 
1506 /*
1507  * Scan the objects already referenced (gray objects). More objects will be
1508  * referenced and, if there are no memory leaks, all the objects are scanned.
1509  */
1510 static void scan_gray_list(void)
1511 {
1512 	struct kmemleak_object *object, *tmp;
1513 
1514 	/*
1515 	 * The list traversal is safe for both tail additions and removals
1516 	 * from inside the loop. The kmemleak objects cannot be freed from
1517 	 * outside the loop because their use_count was incremented.
1518 	 */
1519 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1520 	while (&object->gray_list != &gray_list) {
1521 		cond_resched();
1522 
1523 		/* may add new objects to the list */
1524 		if (!scan_should_stop())
1525 			scan_object(object);
1526 
1527 		tmp = list_entry(object->gray_list.next, typeof(*object),
1528 				 gray_list);
1529 
1530 		/* remove the object from the list and release it */
1531 		list_del(&object->gray_list);
1532 		put_object(object);
1533 
1534 		object = tmp;
1535 	}
1536 	WARN_ON(!list_empty(&gray_list));
1537 }
1538 
1539 /*
1540  * Conditionally call resched() in an object iteration loop while making sure
1541  * that the given object won't go away without RCU read lock by performing a
1542  * get_object() if necessaary.
1543  */
1544 static void kmemleak_cond_resched(struct kmemleak_object *object)
1545 {
1546 	if (!get_object(object))
1547 		return;	/* Try next object */
1548 
1549 	raw_spin_lock_irq(&kmemleak_lock);
1550 	if (object->del_state & DELSTATE_REMOVED)
1551 		goto unlock_put;	/* Object removed */
1552 	object->del_state |= DELSTATE_NO_DELETE;
1553 	raw_spin_unlock_irq(&kmemleak_lock);
1554 
1555 	rcu_read_unlock();
1556 	cond_resched();
1557 	rcu_read_lock();
1558 
1559 	raw_spin_lock_irq(&kmemleak_lock);
1560 	if (object->del_state & DELSTATE_REMOVED)
1561 		list_del_rcu(&object->object_list);
1562 	object->del_state &= ~DELSTATE_NO_DELETE;
1563 unlock_put:
1564 	raw_spin_unlock_irq(&kmemleak_lock);
1565 	put_object(object);
1566 }
1567 
1568 /*
1569  * Scan data sections and all the referenced memory blocks allocated via the
1570  * kernel's standard allocators. This function must be called with the
1571  * scan_mutex held.
1572  */
1573 static void kmemleak_scan(void)
1574 {
1575 	struct kmemleak_object *object;
1576 	struct zone *zone;
1577 	int __maybe_unused i;
1578 	int new_leaks = 0;
1579 
1580 	jiffies_last_scan = jiffies;
1581 
1582 	/* prepare the kmemleak_object's */
1583 	rcu_read_lock();
1584 	list_for_each_entry_rcu(object, &object_list, object_list) {
1585 		raw_spin_lock_irq(&object->lock);
1586 #ifdef DEBUG
1587 		/*
1588 		 * With a few exceptions there should be a maximum of
1589 		 * 1 reference to any object at this point.
1590 		 */
1591 		if (atomic_read(&object->use_count) > 1) {
1592 			pr_debug("object->use_count = %d\n",
1593 				 atomic_read(&object->use_count));
1594 			dump_object_info(object);
1595 		}
1596 #endif
1597 
1598 		/* ignore objects outside lowmem (paint them black) */
1599 		if ((object->flags & OBJECT_PHYS) &&
1600 		   !(object->flags & OBJECT_NO_SCAN)) {
1601 			unsigned long phys = object->pointer;
1602 
1603 			if (PHYS_PFN(phys) < min_low_pfn ||
1604 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1605 				__paint_it(object, KMEMLEAK_BLACK);
1606 		}
1607 
1608 		/* reset the reference count (whiten the object) */
1609 		object->count = 0;
1610 		if (color_gray(object) && get_object(object))
1611 			list_add_tail(&object->gray_list, &gray_list);
1612 
1613 		raw_spin_unlock_irq(&object->lock);
1614 
1615 		if (need_resched())
1616 			kmemleak_cond_resched(object);
1617 	}
1618 	rcu_read_unlock();
1619 
1620 #ifdef CONFIG_SMP
1621 	/* per-cpu sections scanning */
1622 	for_each_possible_cpu(i)
1623 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1624 				 __per_cpu_end + per_cpu_offset(i));
1625 #endif
1626 
1627 	/*
1628 	 * Struct page scanning for each node.
1629 	 */
1630 	get_online_mems();
1631 	for_each_populated_zone(zone) {
1632 		unsigned long start_pfn = zone->zone_start_pfn;
1633 		unsigned long end_pfn = zone_end_pfn(zone);
1634 		unsigned long pfn;
1635 
1636 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1637 			struct page *page = pfn_to_online_page(pfn);
1638 
1639 			if (!(pfn & 63))
1640 				cond_resched();
1641 
1642 			if (!page)
1643 				continue;
1644 
1645 			/* only scan pages belonging to this zone */
1646 			if (page_zone(page) != zone)
1647 				continue;
1648 			/* only scan if page is in use */
1649 			if (page_count(page) == 0)
1650 				continue;
1651 			scan_block(page, page + 1, NULL);
1652 		}
1653 	}
1654 	put_online_mems();
1655 
1656 	/*
1657 	 * Scanning the task stacks (may introduce false negatives).
1658 	 */
1659 	if (kmemleak_stack_scan) {
1660 		struct task_struct *p, *g;
1661 
1662 		rcu_read_lock();
1663 		for_each_process_thread(g, p) {
1664 			void *stack = try_get_task_stack(p);
1665 			if (stack) {
1666 				scan_block(stack, stack + THREAD_SIZE, NULL);
1667 				put_task_stack(p);
1668 			}
1669 		}
1670 		rcu_read_unlock();
1671 	}
1672 
1673 	/*
1674 	 * Scan the objects already referenced from the sections scanned
1675 	 * above.
1676 	 */
1677 	scan_gray_list();
1678 
1679 	/*
1680 	 * Check for new or unreferenced objects modified since the previous
1681 	 * scan and color them gray until the next scan.
1682 	 */
1683 	rcu_read_lock();
1684 	list_for_each_entry_rcu(object, &object_list, object_list) {
1685 		if (need_resched())
1686 			kmemleak_cond_resched(object);
1687 
1688 		/*
1689 		 * This is racy but we can save the overhead of lock/unlock
1690 		 * calls. The missed objects, if any, should be caught in
1691 		 * the next scan.
1692 		 */
1693 		if (!color_white(object))
1694 			continue;
1695 		raw_spin_lock_irq(&object->lock);
1696 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1697 		    && update_checksum(object) && get_object(object)) {
1698 			/* color it gray temporarily */
1699 			object->count = object->min_count;
1700 			list_add_tail(&object->gray_list, &gray_list);
1701 		}
1702 		raw_spin_unlock_irq(&object->lock);
1703 	}
1704 	rcu_read_unlock();
1705 
1706 	/*
1707 	 * Re-scan the gray list for modified unreferenced objects.
1708 	 */
1709 	scan_gray_list();
1710 
1711 	/*
1712 	 * If scanning was stopped do not report any new unreferenced objects.
1713 	 */
1714 	if (scan_should_stop())
1715 		return;
1716 
1717 	/*
1718 	 * Scanning result reporting.
1719 	 */
1720 	rcu_read_lock();
1721 	list_for_each_entry_rcu(object, &object_list, object_list) {
1722 		if (need_resched())
1723 			kmemleak_cond_resched(object);
1724 
1725 		/*
1726 		 * This is racy but we can save the overhead of lock/unlock
1727 		 * calls. The missed objects, if any, should be caught in
1728 		 * the next scan.
1729 		 */
1730 		if (!color_white(object))
1731 			continue;
1732 		raw_spin_lock_irq(&object->lock);
1733 		if (unreferenced_object(object) &&
1734 		    !(object->flags & OBJECT_REPORTED)) {
1735 			object->flags |= OBJECT_REPORTED;
1736 
1737 			if (kmemleak_verbose)
1738 				print_unreferenced(NULL, object);
1739 
1740 			new_leaks++;
1741 		}
1742 		raw_spin_unlock_irq(&object->lock);
1743 	}
1744 	rcu_read_unlock();
1745 
1746 	if (new_leaks) {
1747 		kmemleak_found_leaks = true;
1748 
1749 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1750 			new_leaks);
1751 	}
1752 
1753 }
1754 
1755 /*
1756  * Thread function performing automatic memory scanning. Unreferenced objects
1757  * at the end of a memory scan are reported but only the first time.
1758  */
1759 static int kmemleak_scan_thread(void *arg)
1760 {
1761 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1762 
1763 	pr_info("Automatic memory scanning thread started\n");
1764 	set_user_nice(current, 10);
1765 
1766 	/*
1767 	 * Wait before the first scan to allow the system to fully initialize.
1768 	 */
1769 	if (first_run) {
1770 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1771 		first_run = 0;
1772 		while (timeout && !kthread_should_stop())
1773 			timeout = schedule_timeout_interruptible(timeout);
1774 	}
1775 
1776 	while (!kthread_should_stop()) {
1777 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1778 
1779 		mutex_lock(&scan_mutex);
1780 		kmemleak_scan();
1781 		mutex_unlock(&scan_mutex);
1782 
1783 		/* wait before the next scan */
1784 		while (timeout && !kthread_should_stop())
1785 			timeout = schedule_timeout_interruptible(timeout);
1786 	}
1787 
1788 	pr_info("Automatic memory scanning thread ended\n");
1789 
1790 	return 0;
1791 }
1792 
1793 /*
1794  * Start the automatic memory scanning thread. This function must be called
1795  * with the scan_mutex held.
1796  */
1797 static void start_scan_thread(void)
1798 {
1799 	if (scan_thread)
1800 		return;
1801 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1802 	if (IS_ERR(scan_thread)) {
1803 		pr_warn("Failed to create the scan thread\n");
1804 		scan_thread = NULL;
1805 	}
1806 }
1807 
1808 /*
1809  * Stop the automatic memory scanning thread.
1810  */
1811 static void stop_scan_thread(void)
1812 {
1813 	if (scan_thread) {
1814 		kthread_stop(scan_thread);
1815 		scan_thread = NULL;
1816 	}
1817 }
1818 
1819 /*
1820  * Iterate over the object_list and return the first valid object at or after
1821  * the required position with its use_count incremented. The function triggers
1822  * a memory scanning when the pos argument points to the first position.
1823  */
1824 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1825 {
1826 	struct kmemleak_object *object;
1827 	loff_t n = *pos;
1828 	int err;
1829 
1830 	err = mutex_lock_interruptible(&scan_mutex);
1831 	if (err < 0)
1832 		return ERR_PTR(err);
1833 
1834 	rcu_read_lock();
1835 	list_for_each_entry_rcu(object, &object_list, object_list) {
1836 		if (n-- > 0)
1837 			continue;
1838 		if (get_object(object))
1839 			goto out;
1840 	}
1841 	object = NULL;
1842 out:
1843 	return object;
1844 }
1845 
1846 /*
1847  * Return the next object in the object_list. The function decrements the
1848  * use_count of the previous object and increases that of the next one.
1849  */
1850 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1851 {
1852 	struct kmemleak_object *prev_obj = v;
1853 	struct kmemleak_object *next_obj = NULL;
1854 	struct kmemleak_object *obj = prev_obj;
1855 
1856 	++(*pos);
1857 
1858 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1859 		if (get_object(obj)) {
1860 			next_obj = obj;
1861 			break;
1862 		}
1863 	}
1864 
1865 	put_object(prev_obj);
1866 	return next_obj;
1867 }
1868 
1869 /*
1870  * Decrement the use_count of the last object required, if any.
1871  */
1872 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1873 {
1874 	if (!IS_ERR(v)) {
1875 		/*
1876 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1877 		 * waiting was interrupted, so only release it if !IS_ERR.
1878 		 */
1879 		rcu_read_unlock();
1880 		mutex_unlock(&scan_mutex);
1881 		if (v)
1882 			put_object(v);
1883 	}
1884 }
1885 
1886 /*
1887  * Print the information for an unreferenced object to the seq file.
1888  */
1889 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1890 {
1891 	struct kmemleak_object *object = v;
1892 	unsigned long flags;
1893 
1894 	raw_spin_lock_irqsave(&object->lock, flags);
1895 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1896 		print_unreferenced(seq, object);
1897 	raw_spin_unlock_irqrestore(&object->lock, flags);
1898 	return 0;
1899 }
1900 
1901 static const struct seq_operations kmemleak_seq_ops = {
1902 	.start = kmemleak_seq_start,
1903 	.next  = kmemleak_seq_next,
1904 	.stop  = kmemleak_seq_stop,
1905 	.show  = kmemleak_seq_show,
1906 };
1907 
1908 static int kmemleak_open(struct inode *inode, struct file *file)
1909 {
1910 	return seq_open(file, &kmemleak_seq_ops);
1911 }
1912 
1913 static int dump_str_object_info(const char *str)
1914 {
1915 	unsigned long flags;
1916 	struct kmemleak_object *object;
1917 	unsigned long addr;
1918 
1919 	if (kstrtoul(str, 0, &addr))
1920 		return -EINVAL;
1921 	object = find_and_get_object(addr, 0);
1922 	if (!object) {
1923 		pr_info("Unknown object at 0x%08lx\n", addr);
1924 		return -EINVAL;
1925 	}
1926 
1927 	raw_spin_lock_irqsave(&object->lock, flags);
1928 	dump_object_info(object);
1929 	raw_spin_unlock_irqrestore(&object->lock, flags);
1930 
1931 	put_object(object);
1932 	return 0;
1933 }
1934 
1935 /*
1936  * We use grey instead of black to ensure we can do future scans on the same
1937  * objects. If we did not do future scans these black objects could
1938  * potentially contain references to newly allocated objects in the future and
1939  * we'd end up with false positives.
1940  */
1941 static void kmemleak_clear(void)
1942 {
1943 	struct kmemleak_object *object;
1944 
1945 	rcu_read_lock();
1946 	list_for_each_entry_rcu(object, &object_list, object_list) {
1947 		raw_spin_lock_irq(&object->lock);
1948 		if ((object->flags & OBJECT_REPORTED) &&
1949 		    unreferenced_object(object))
1950 			__paint_it(object, KMEMLEAK_GREY);
1951 		raw_spin_unlock_irq(&object->lock);
1952 	}
1953 	rcu_read_unlock();
1954 
1955 	kmemleak_found_leaks = false;
1956 }
1957 
1958 static void __kmemleak_do_cleanup(void);
1959 
1960 /*
1961  * File write operation to configure kmemleak at run-time. The following
1962  * commands can be written to the /sys/kernel/debug/kmemleak file:
1963  *   off	- disable kmemleak (irreversible)
1964  *   stack=on	- enable the task stacks scanning
1965  *   stack=off	- disable the tasks stacks scanning
1966  *   scan=on	- start the automatic memory scanning thread
1967  *   scan=off	- stop the automatic memory scanning thread
1968  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1969  *		  disable it)
1970  *   scan	- trigger a memory scan
1971  *   clear	- mark all current reported unreferenced kmemleak objects as
1972  *		  grey to ignore printing them, or free all kmemleak objects
1973  *		  if kmemleak has been disabled.
1974  *   dump=...	- dump information about the object found at the given address
1975  */
1976 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1977 			      size_t size, loff_t *ppos)
1978 {
1979 	char buf[64];
1980 	int buf_size;
1981 	int ret;
1982 
1983 	buf_size = min(size, (sizeof(buf) - 1));
1984 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1985 		return -EFAULT;
1986 	buf[buf_size] = 0;
1987 
1988 	ret = mutex_lock_interruptible(&scan_mutex);
1989 	if (ret < 0)
1990 		return ret;
1991 
1992 	if (strncmp(buf, "clear", 5) == 0) {
1993 		if (kmemleak_enabled)
1994 			kmemleak_clear();
1995 		else
1996 			__kmemleak_do_cleanup();
1997 		goto out;
1998 	}
1999 
2000 	if (!kmemleak_enabled) {
2001 		ret = -EPERM;
2002 		goto out;
2003 	}
2004 
2005 	if (strncmp(buf, "off", 3) == 0)
2006 		kmemleak_disable();
2007 	else if (strncmp(buf, "stack=on", 8) == 0)
2008 		kmemleak_stack_scan = 1;
2009 	else if (strncmp(buf, "stack=off", 9) == 0)
2010 		kmemleak_stack_scan = 0;
2011 	else if (strncmp(buf, "scan=on", 7) == 0)
2012 		start_scan_thread();
2013 	else if (strncmp(buf, "scan=off", 8) == 0)
2014 		stop_scan_thread();
2015 	else if (strncmp(buf, "scan=", 5) == 0) {
2016 		unsigned secs;
2017 		unsigned long msecs;
2018 
2019 		ret = kstrtouint(buf + 5, 0, &secs);
2020 		if (ret < 0)
2021 			goto out;
2022 
2023 		msecs = secs * MSEC_PER_SEC;
2024 		if (msecs > UINT_MAX)
2025 			msecs = UINT_MAX;
2026 
2027 		stop_scan_thread();
2028 		if (msecs) {
2029 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2030 			start_scan_thread();
2031 		}
2032 	} else if (strncmp(buf, "scan", 4) == 0)
2033 		kmemleak_scan();
2034 	else if (strncmp(buf, "dump=", 5) == 0)
2035 		ret = dump_str_object_info(buf + 5);
2036 	else
2037 		ret = -EINVAL;
2038 
2039 out:
2040 	mutex_unlock(&scan_mutex);
2041 	if (ret < 0)
2042 		return ret;
2043 
2044 	/* ignore the rest of the buffer, only one command at a time */
2045 	*ppos += size;
2046 	return size;
2047 }
2048 
2049 static const struct file_operations kmemleak_fops = {
2050 	.owner		= THIS_MODULE,
2051 	.open		= kmemleak_open,
2052 	.read		= seq_read,
2053 	.write		= kmemleak_write,
2054 	.llseek		= seq_lseek,
2055 	.release	= seq_release,
2056 };
2057 
2058 static void __kmemleak_do_cleanup(void)
2059 {
2060 	struct kmemleak_object *object, *tmp;
2061 
2062 	/*
2063 	 * Kmemleak has already been disabled, no need for RCU list traversal
2064 	 * or kmemleak_lock held.
2065 	 */
2066 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2067 		__remove_object(object);
2068 		__delete_object(object);
2069 	}
2070 }
2071 
2072 /*
2073  * Stop the memory scanning thread and free the kmemleak internal objects if
2074  * no previous scan thread (otherwise, kmemleak may still have some useful
2075  * information on memory leaks).
2076  */
2077 static void kmemleak_do_cleanup(struct work_struct *work)
2078 {
2079 	stop_scan_thread();
2080 
2081 	mutex_lock(&scan_mutex);
2082 	/*
2083 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2084 	 * longer track object freeing. Ordering of the scan thread stopping and
2085 	 * the memory accesses below is guaranteed by the kthread_stop()
2086 	 * function.
2087 	 */
2088 	kmemleak_free_enabled = 0;
2089 	mutex_unlock(&scan_mutex);
2090 
2091 	if (!kmemleak_found_leaks)
2092 		__kmemleak_do_cleanup();
2093 	else
2094 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2095 }
2096 
2097 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2098 
2099 /*
2100  * Disable kmemleak. No memory allocation/freeing will be traced once this
2101  * function is called. Disabling kmemleak is an irreversible operation.
2102  */
2103 static void kmemleak_disable(void)
2104 {
2105 	/* atomically check whether it was already invoked */
2106 	if (cmpxchg(&kmemleak_error, 0, 1))
2107 		return;
2108 
2109 	/* stop any memory operation tracing */
2110 	kmemleak_enabled = 0;
2111 
2112 	/* check whether it is too early for a kernel thread */
2113 	if (kmemleak_late_initialized)
2114 		schedule_work(&cleanup_work);
2115 	else
2116 		kmemleak_free_enabled = 0;
2117 
2118 	pr_info("Kernel memory leak detector disabled\n");
2119 }
2120 
2121 /*
2122  * Allow boot-time kmemleak disabling (enabled by default).
2123  */
2124 static int __init kmemleak_boot_config(char *str)
2125 {
2126 	if (!str)
2127 		return -EINVAL;
2128 	if (strcmp(str, "off") == 0)
2129 		kmemleak_disable();
2130 	else if (strcmp(str, "on") == 0) {
2131 		kmemleak_skip_disable = 1;
2132 		stack_depot_request_early_init();
2133 	}
2134 	else
2135 		return -EINVAL;
2136 	return 0;
2137 }
2138 early_param("kmemleak", kmemleak_boot_config);
2139 
2140 /*
2141  * Kmemleak initialization.
2142  */
2143 void __init kmemleak_init(void)
2144 {
2145 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2146 	if (!kmemleak_skip_disable) {
2147 		kmemleak_disable();
2148 		return;
2149 	}
2150 #endif
2151 
2152 	if (kmemleak_error)
2153 		return;
2154 
2155 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2156 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2157 
2158 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2159 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2160 
2161 	/* register the data/bss sections */
2162 	create_object((unsigned long)_sdata, _edata - _sdata,
2163 		      KMEMLEAK_GREY, GFP_ATOMIC);
2164 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2165 		      KMEMLEAK_GREY, GFP_ATOMIC);
2166 	/* only register .data..ro_after_init if not within .data */
2167 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2168 		create_object((unsigned long)__start_ro_after_init,
2169 			      __end_ro_after_init - __start_ro_after_init,
2170 			      KMEMLEAK_GREY, GFP_ATOMIC);
2171 }
2172 
2173 /*
2174  * Late initialization function.
2175  */
2176 static int __init kmemleak_late_init(void)
2177 {
2178 	kmemleak_late_initialized = 1;
2179 
2180 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2181 
2182 	if (kmemleak_error) {
2183 		/*
2184 		 * Some error occurred and kmemleak was disabled. There is a
2185 		 * small chance that kmemleak_disable() was called immediately
2186 		 * after setting kmemleak_late_initialized and we may end up with
2187 		 * two clean-up threads but serialized by scan_mutex.
2188 		 */
2189 		schedule_work(&cleanup_work);
2190 		return -ENOMEM;
2191 	}
2192 
2193 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2194 		mutex_lock(&scan_mutex);
2195 		start_scan_thread();
2196 		mutex_unlock(&scan_mutex);
2197 	}
2198 
2199 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2200 		mem_pool_free_count);
2201 
2202 	return 0;
2203 }
2204 late_initcall(kmemleak_late_init);
2205