1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a kmemleak warning was issued */ 219 static int kmemleak_warning; 220 /* set if a fatal kmemleak error has occurred */ 221 static int kmemleak_error; 222 223 /* minimum and maximum address that may be valid pointers */ 224 static unsigned long min_addr = ULONG_MAX; 225 static unsigned long max_addr; 226 227 /* minimum and maximum address that may be valid per-CPU pointers */ 228 static unsigned long min_percpu_addr = ULONG_MAX; 229 static unsigned long max_percpu_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 if (object->flags & OBJECT_PERCPU) 305 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 306 307 /* limit the number of lines to HEX_MAX_LINES */ 308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 309 310 if (object->flags & OBJECT_PERCPU) 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 312 len, raw_smp_processor_id()); 313 else 314 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 315 kasan_disable_current(); 316 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 317 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 318 kasan_enable_current(); 319 } 320 321 /* 322 * Object colors, encoded with count and min_count: 323 * - white - orphan object, not enough references to it (count < min_count) 324 * - gray - not orphan, not marked as false positive (min_count == 0) or 325 * sufficient references to it (count >= min_count) 326 * - black - ignore, it doesn't contain references (e.g. text section) 327 * (min_count == -1). No function defined for this color. 328 * Newly created objects don't have any color assigned (object->count == -1) 329 * before the next memory scan when they become white. 330 */ 331 static bool color_white(const struct kmemleak_object *object) 332 { 333 return object->count != KMEMLEAK_BLACK && 334 object->count < object->min_count; 335 } 336 337 static bool color_gray(const struct kmemleak_object *object) 338 { 339 return object->min_count != KMEMLEAK_BLACK && 340 object->count >= object->min_count; 341 } 342 343 /* 344 * Objects are considered unreferenced only if their color is white, they have 345 * not be deleted and have a minimum age to avoid false positives caused by 346 * pointers temporarily stored in CPU registers. 347 */ 348 static bool unreferenced_object(struct kmemleak_object *object) 349 { 350 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 351 time_before_eq(object->jiffies + jiffies_min_age, 352 jiffies_last_scan); 353 } 354 355 /* 356 * Printing of the unreferenced objects information to the seq file. The 357 * print_unreferenced function must be called with the object->lock held. 358 */ 359 static void print_unreferenced(struct seq_file *seq, 360 struct kmemleak_object *object) 361 { 362 int i; 363 unsigned long *entries; 364 unsigned int nr_entries; 365 366 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 367 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 368 object->pointer, object->size); 369 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 370 object->comm, object->pid, object->jiffies); 371 hex_dump_object(seq, object); 372 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 373 374 for (i = 0; i < nr_entries; i++) { 375 void *ptr = (void *)entries[i]; 376 warn_or_seq_printf(seq, " %pS\n", ptr); 377 } 378 } 379 380 /* 381 * Print the kmemleak_object information. This function is used mainly for 382 * debugging special cases when kmemleak operations. It must be called with 383 * the object->lock held. 384 */ 385 static void dump_object_info(struct kmemleak_object *object) 386 { 387 pr_notice("Object 0x%08lx (size %zu):\n", 388 object->pointer, object->size); 389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 390 object->comm, object->pid, object->jiffies); 391 pr_notice(" min_count = %d\n", object->min_count); 392 pr_notice(" count = %d\n", object->count); 393 pr_notice(" flags = 0x%x\n", object->flags); 394 pr_notice(" checksum = %u\n", object->checksum); 395 pr_notice(" backtrace:\n"); 396 if (object->trace_handle) 397 stack_depot_print(object->trace_handle); 398 } 399 400 static struct rb_root *object_tree(unsigned long objflags) 401 { 402 if (objflags & OBJECT_PHYS) 403 return &object_phys_tree_root; 404 if (objflags & OBJECT_PERCPU) 405 return &object_percpu_tree_root; 406 return &object_tree_root; 407 } 408 409 /* 410 * Look-up a memory block metadata (kmemleak_object) in the object search 411 * tree based on a pointer value. If alias is 0, only values pointing to the 412 * beginning of the memory block are allowed. The kmemleak_lock must be held 413 * when calling this function. 414 */ 415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 416 unsigned int objflags) 417 { 418 struct rb_node *rb = object_tree(objflags)->rb_node; 419 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 420 421 while (rb) { 422 struct kmemleak_object *object; 423 unsigned long untagged_objp; 424 425 object = rb_entry(rb, struct kmemleak_object, rb_node); 426 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 427 428 if (untagged_ptr < untagged_objp) 429 rb = object->rb_node.rb_left; 430 else if (untagged_objp + object->size <= untagged_ptr) 431 rb = object->rb_node.rb_right; 432 else if (untagged_objp == untagged_ptr || alias) 433 return object; 434 else { 435 kmemleak_warn("Found object by alias at 0x%08lx\n", 436 ptr); 437 dump_object_info(object); 438 break; 439 } 440 } 441 return NULL; 442 } 443 444 /* Look-up a kmemleak object which allocated with virtual address. */ 445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 446 { 447 return __lookup_object(ptr, alias, 0); 448 } 449 450 /* 451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 452 * that once an object's use_count reached 0, the RCU freeing was already 453 * registered and the object should no longer be used. This function must be 454 * called under the protection of rcu_read_lock(). 455 */ 456 static int get_object(struct kmemleak_object *object) 457 { 458 return atomic_inc_not_zero(&object->use_count); 459 } 460 461 /* 462 * Memory pool allocation and freeing. kmemleak_lock must not be held. 463 */ 464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 465 { 466 unsigned long flags; 467 struct kmemleak_object *object; 468 469 /* try the slab allocator first */ 470 if (object_cache) { 471 object = kmem_cache_alloc_noprof(object_cache, 472 gfp_nested_mask(gfp)); 473 if (object) 474 return object; 475 } 476 477 /* slab allocation failed, try the memory pool */ 478 raw_spin_lock_irqsave(&kmemleak_lock, flags); 479 object = list_first_entry_or_null(&mem_pool_free_list, 480 typeof(*object), object_list); 481 if (object) 482 list_del(&object->object_list); 483 else if (mem_pool_free_count) 484 object = &mem_pool[--mem_pool_free_count]; 485 else 486 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 487 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 488 489 return object; 490 } 491 492 /* 493 * Return the object to either the slab allocator or the memory pool. 494 */ 495 static void mem_pool_free(struct kmemleak_object *object) 496 { 497 unsigned long flags; 498 499 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 500 kmem_cache_free(object_cache, object); 501 return; 502 } 503 504 /* add the object to the memory pool free list */ 505 raw_spin_lock_irqsave(&kmemleak_lock, flags); 506 list_add(&object->object_list, &mem_pool_free_list); 507 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 508 } 509 510 /* 511 * RCU callback to free a kmemleak_object. 512 */ 513 static void free_object_rcu(struct rcu_head *rcu) 514 { 515 struct hlist_node *tmp; 516 struct kmemleak_scan_area *area; 517 struct kmemleak_object *object = 518 container_of(rcu, struct kmemleak_object, rcu); 519 520 /* 521 * Once use_count is 0 (guaranteed by put_object), there is no other 522 * code accessing this object, hence no need for locking. 523 */ 524 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 525 hlist_del(&area->node); 526 kmem_cache_free(scan_area_cache, area); 527 } 528 mem_pool_free(object); 529 } 530 531 /* 532 * Decrement the object use_count. Once the count is 0, free the object using 533 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 534 * delete_object() path, the delayed RCU freeing ensures that there is no 535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 536 * is also possible. 537 */ 538 static void put_object(struct kmemleak_object *object) 539 { 540 if (!atomic_dec_and_test(&object->use_count)) 541 return; 542 543 /* should only get here after delete_object was called */ 544 WARN_ON(object->flags & OBJECT_ALLOCATED); 545 546 /* 547 * It may be too early for the RCU callbacks, however, there is no 548 * concurrent object_list traversal when !object_cache and all objects 549 * came from the memory pool. Free the object directly. 550 */ 551 if (object_cache) 552 call_rcu(&object->rcu, free_object_rcu); 553 else 554 free_object_rcu(&object->rcu); 555 } 556 557 /* 558 * Look up an object in the object search tree and increase its use_count. 559 */ 560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 561 unsigned int objflags) 562 { 563 unsigned long flags; 564 struct kmemleak_object *object; 565 566 rcu_read_lock(); 567 raw_spin_lock_irqsave(&kmemleak_lock, flags); 568 object = __lookup_object(ptr, alias, objflags); 569 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 570 571 /* check whether the object is still available */ 572 if (object && !get_object(object)) 573 object = NULL; 574 rcu_read_unlock(); 575 576 return object; 577 } 578 579 /* Look up and get an object which allocated with virtual address. */ 580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 581 { 582 return __find_and_get_object(ptr, alias, 0); 583 } 584 585 /* 586 * Remove an object from its object tree and object_list. Must be called with 587 * the kmemleak_lock held _if_ kmemleak is still enabled. 588 */ 589 static void __remove_object(struct kmemleak_object *object) 590 { 591 rb_erase(&object->rb_node, object_tree(object->flags)); 592 if (!(object->del_state & DELSTATE_NO_DELETE)) 593 list_del_rcu(&object->object_list); 594 object->del_state |= DELSTATE_REMOVED; 595 } 596 597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 598 int alias, 599 unsigned int objflags) 600 { 601 struct kmemleak_object *object; 602 603 object = __lookup_object(ptr, alias, objflags); 604 if (object) 605 __remove_object(object); 606 607 return object; 608 } 609 610 /* 611 * Look up an object in the object search tree and remove it from both object 612 * tree root and object_list. The returned object's use_count should be at 613 * least 1, as initially set by create_object(). 614 */ 615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 616 unsigned int objflags) 617 { 618 unsigned long flags; 619 struct kmemleak_object *object; 620 621 raw_spin_lock_irqsave(&kmemleak_lock, flags); 622 object = __find_and_remove_object(ptr, alias, objflags); 623 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 624 625 return object; 626 } 627 628 static noinline depot_stack_handle_t set_track_prepare(void) 629 { 630 depot_stack_handle_t trace_handle; 631 unsigned long entries[MAX_TRACE]; 632 unsigned int nr_entries; 633 634 /* 635 * Use object_cache to determine whether kmemleak_init() has 636 * been invoked. stack_depot_early_init() is called before 637 * kmemleak_init() in mm_core_init(). 638 */ 639 if (!object_cache) 640 return 0; 641 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 642 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 643 644 return trace_handle; 645 } 646 647 static struct kmemleak_object *__alloc_object(gfp_t gfp) 648 { 649 struct kmemleak_object *object; 650 651 object = mem_pool_alloc(gfp); 652 if (!object) { 653 pr_warn("Cannot allocate a kmemleak_object structure\n"); 654 kmemleak_disable(); 655 return NULL; 656 } 657 658 INIT_LIST_HEAD(&object->object_list); 659 INIT_LIST_HEAD(&object->gray_list); 660 INIT_HLIST_HEAD(&object->area_list); 661 raw_spin_lock_init(&object->lock); 662 atomic_set(&object->use_count, 1); 663 object->excess_ref = 0; 664 object->count = 0; /* white color initially */ 665 object->checksum = 0; 666 object->del_state = 0; 667 668 /* task information */ 669 if (in_hardirq()) { 670 object->pid = 0; 671 strscpy(object->comm, "hardirq"); 672 } else if (in_serving_softirq()) { 673 object->pid = 0; 674 strscpy(object->comm, "softirq"); 675 } else { 676 object->pid = current->pid; 677 /* 678 * There is a small chance of a race with set_task_comm(), 679 * however using get_task_comm() here may cause locking 680 * dependency issues with current->alloc_lock. In the worst 681 * case, the command line is not correct. 682 */ 683 strscpy(object->comm, current->comm); 684 } 685 686 /* kernel backtrace */ 687 object->trace_handle = set_track_prepare(); 688 689 return object; 690 } 691 692 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 693 size_t size, int min_count, unsigned int objflags) 694 { 695 696 struct kmemleak_object *parent; 697 struct rb_node **link, *rb_parent; 698 unsigned long untagged_ptr; 699 unsigned long untagged_objp; 700 701 object->flags = OBJECT_ALLOCATED | objflags; 702 object->pointer = ptr; 703 object->size = kfence_ksize((void *)ptr) ?: size; 704 object->min_count = min_count; 705 object->jiffies = jiffies; 706 707 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 708 /* 709 * Only update min_addr and max_addr with object storing virtual 710 * address. And update min_percpu_addr max_percpu_addr for per-CPU 711 * objects. 712 */ 713 if (objflags & OBJECT_PERCPU) { 714 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 715 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 716 } else if (!(objflags & OBJECT_PHYS)) { 717 min_addr = min(min_addr, untagged_ptr); 718 max_addr = max(max_addr, untagged_ptr + size); 719 } 720 link = &object_tree(objflags)->rb_node; 721 rb_parent = NULL; 722 while (*link) { 723 rb_parent = *link; 724 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 725 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 726 if (untagged_ptr + size <= untagged_objp) 727 link = &parent->rb_node.rb_left; 728 else if (untagged_objp + parent->size <= untagged_ptr) 729 link = &parent->rb_node.rb_right; 730 else { 731 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 732 ptr); 733 /* 734 * No need for parent->lock here since "parent" cannot 735 * be freed while the kmemleak_lock is held. 736 */ 737 dump_object_info(parent); 738 return -EEXIST; 739 } 740 } 741 rb_link_node(&object->rb_node, rb_parent, link); 742 rb_insert_color(&object->rb_node, object_tree(objflags)); 743 list_add_tail_rcu(&object->object_list, &object_list); 744 745 return 0; 746 } 747 748 /* 749 * Create the metadata (struct kmemleak_object) corresponding to an allocated 750 * memory block and add it to the object_list and object tree. 751 */ 752 static void __create_object(unsigned long ptr, size_t size, 753 int min_count, gfp_t gfp, unsigned int objflags) 754 { 755 struct kmemleak_object *object; 756 unsigned long flags; 757 int ret; 758 759 object = __alloc_object(gfp); 760 if (!object) 761 return; 762 763 raw_spin_lock_irqsave(&kmemleak_lock, flags); 764 ret = __link_object(object, ptr, size, min_count, objflags); 765 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 766 if (ret) 767 mem_pool_free(object); 768 } 769 770 /* Create kmemleak object which allocated with virtual address. */ 771 static void create_object(unsigned long ptr, size_t size, 772 int min_count, gfp_t gfp) 773 { 774 __create_object(ptr, size, min_count, gfp, 0); 775 } 776 777 /* Create kmemleak object which allocated with physical address. */ 778 static void create_object_phys(unsigned long ptr, size_t size, 779 int min_count, gfp_t gfp) 780 { 781 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 782 } 783 784 /* Create kmemleak object corresponding to a per-CPU allocation. */ 785 static void create_object_percpu(unsigned long ptr, size_t size, 786 int min_count, gfp_t gfp) 787 { 788 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 789 } 790 791 /* 792 * Mark the object as not allocated and schedule RCU freeing via put_object(). 793 */ 794 static void __delete_object(struct kmemleak_object *object) 795 { 796 unsigned long flags; 797 798 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 799 WARN_ON(atomic_read(&object->use_count) < 1); 800 801 /* 802 * Locking here also ensures that the corresponding memory block 803 * cannot be freed when it is being scanned. 804 */ 805 raw_spin_lock_irqsave(&object->lock, flags); 806 object->flags &= ~OBJECT_ALLOCATED; 807 raw_spin_unlock_irqrestore(&object->lock, flags); 808 put_object(object); 809 } 810 811 /* 812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 813 * delete it. 814 */ 815 static void delete_object_full(unsigned long ptr, unsigned int objflags) 816 { 817 struct kmemleak_object *object; 818 819 object = find_and_remove_object(ptr, 0, objflags); 820 if (!object) { 821 #ifdef DEBUG 822 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 823 ptr); 824 #endif 825 return; 826 } 827 __delete_object(object); 828 } 829 830 /* 831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 832 * delete it. If the memory block is partially freed, the function may create 833 * additional metadata for the remaining parts of the block. 834 */ 835 static void delete_object_part(unsigned long ptr, size_t size, 836 unsigned int objflags) 837 { 838 struct kmemleak_object *object, *object_l, *object_r; 839 unsigned long start, end, flags; 840 841 object_l = __alloc_object(GFP_KERNEL); 842 if (!object_l) 843 return; 844 845 object_r = __alloc_object(GFP_KERNEL); 846 if (!object_r) 847 goto out; 848 849 raw_spin_lock_irqsave(&kmemleak_lock, flags); 850 object = __find_and_remove_object(ptr, 1, objflags); 851 if (!object) { 852 #ifdef DEBUG 853 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 854 ptr, size); 855 #endif 856 goto unlock; 857 } 858 859 /* 860 * Create one or two objects that may result from the memory block 861 * split. Note that partial freeing is only done by free_bootmem() and 862 * this happens before kmemleak_init() is called. 863 */ 864 start = object->pointer; 865 end = object->pointer + object->size; 866 if ((ptr > start) && 867 !__link_object(object_l, start, ptr - start, 868 object->min_count, objflags)) 869 object_l = NULL; 870 if ((ptr + size < end) && 871 !__link_object(object_r, ptr + size, end - ptr - size, 872 object->min_count, objflags)) 873 object_r = NULL; 874 875 unlock: 876 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 877 if (object) 878 __delete_object(object); 879 880 out: 881 if (object_l) 882 mem_pool_free(object_l); 883 if (object_r) 884 mem_pool_free(object_r); 885 } 886 887 static void __paint_it(struct kmemleak_object *object, int color) 888 { 889 object->min_count = color; 890 if (color == KMEMLEAK_BLACK) 891 object->flags |= OBJECT_NO_SCAN; 892 } 893 894 static void paint_it(struct kmemleak_object *object, int color) 895 { 896 unsigned long flags; 897 898 raw_spin_lock_irqsave(&object->lock, flags); 899 __paint_it(object, color); 900 raw_spin_unlock_irqrestore(&object->lock, flags); 901 } 902 903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 904 { 905 struct kmemleak_object *object; 906 907 object = __find_and_get_object(ptr, 0, objflags); 908 if (!object) { 909 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 910 ptr, 911 (color == KMEMLEAK_GREY) ? "Grey" : 912 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 913 return; 914 } 915 paint_it(object, color); 916 put_object(object); 917 } 918 919 /* 920 * Mark an object permanently as gray-colored so that it can no longer be 921 * reported as a leak. This is used in general to mark a false positive. 922 */ 923 static void make_gray_object(unsigned long ptr) 924 { 925 paint_ptr(ptr, KMEMLEAK_GREY, 0); 926 } 927 928 /* 929 * Mark the object as black-colored so that it is ignored from scans and 930 * reporting. 931 */ 932 static void make_black_object(unsigned long ptr, unsigned int objflags) 933 { 934 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 935 } 936 937 /* 938 * Reset the checksum of an object. The immediate effect is that it will not 939 * be reported as a leak during the next scan until its checksum is updated. 940 */ 941 static void reset_checksum(unsigned long ptr) 942 { 943 unsigned long flags; 944 struct kmemleak_object *object; 945 946 object = find_and_get_object(ptr, 0); 947 if (!object) { 948 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n", 949 ptr); 950 return; 951 } 952 953 raw_spin_lock_irqsave(&object->lock, flags); 954 object->checksum = 0; 955 raw_spin_unlock_irqrestore(&object->lock, flags); 956 put_object(object); 957 } 958 959 /* 960 * Add a scanning area to the object. If at least one such area is added, 961 * kmemleak will only scan these ranges rather than the whole memory block. 962 */ 963 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 964 { 965 unsigned long flags; 966 struct kmemleak_object *object; 967 struct kmemleak_scan_area *area = NULL; 968 unsigned long untagged_ptr; 969 unsigned long untagged_objp; 970 971 object = find_and_get_object(ptr, 1); 972 if (!object) { 973 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 974 ptr); 975 return; 976 } 977 978 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 979 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 980 981 if (scan_area_cache) 982 area = kmem_cache_alloc_noprof(scan_area_cache, 983 gfp_nested_mask(gfp)); 984 985 raw_spin_lock_irqsave(&object->lock, flags); 986 if (!area) { 987 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 988 /* mark the object for full scan to avoid false positives */ 989 object->flags |= OBJECT_FULL_SCAN; 990 goto out_unlock; 991 } 992 if (size == SIZE_MAX) { 993 size = untagged_objp + object->size - untagged_ptr; 994 } else if (untagged_ptr + size > untagged_objp + object->size) { 995 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 996 dump_object_info(object); 997 kmem_cache_free(scan_area_cache, area); 998 goto out_unlock; 999 } 1000 1001 INIT_HLIST_NODE(&area->node); 1002 area->start = ptr; 1003 area->size = size; 1004 1005 hlist_add_head(&area->node, &object->area_list); 1006 out_unlock: 1007 raw_spin_unlock_irqrestore(&object->lock, flags); 1008 put_object(object); 1009 } 1010 1011 /* 1012 * Any surplus references (object already gray) to 'ptr' are passed to 1013 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 1014 * vm_struct may be used as an alternative reference to the vmalloc'ed object 1015 * (see free_thread_stack()). 1016 */ 1017 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 1018 { 1019 unsigned long flags; 1020 struct kmemleak_object *object; 1021 1022 object = find_and_get_object(ptr, 0); 1023 if (!object) { 1024 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1025 ptr); 1026 return; 1027 } 1028 1029 raw_spin_lock_irqsave(&object->lock, flags); 1030 object->excess_ref = excess_ref; 1031 raw_spin_unlock_irqrestore(&object->lock, flags); 1032 put_object(object); 1033 } 1034 1035 /* 1036 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given 1037 * pointer. Such object will not be scanned by kmemleak but references to it 1038 * are searched. 1039 */ 1040 static void object_no_scan(unsigned long ptr) 1041 { 1042 unsigned long flags; 1043 struct kmemleak_object *object; 1044 1045 object = find_and_get_object(ptr, 0); 1046 if (!object) { 1047 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1048 return; 1049 } 1050 1051 raw_spin_lock_irqsave(&object->lock, flags); 1052 object->flags |= OBJECT_NO_SCAN; 1053 raw_spin_unlock_irqrestore(&object->lock, flags); 1054 put_object(object); 1055 } 1056 1057 /** 1058 * kmemleak_alloc - register a newly allocated object 1059 * @ptr: pointer to beginning of the object 1060 * @size: size of the object 1061 * @min_count: minimum number of references to this object. If during memory 1062 * scanning a number of references less than @min_count is found, 1063 * the object is reported as a memory leak. If @min_count is 0, 1064 * the object is never reported as a leak. If @min_count is -1, 1065 * the object is ignored (not scanned and not reported as a leak) 1066 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1067 * 1068 * This function is called from the kernel allocators when a new object 1069 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1070 */ 1071 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1072 gfp_t gfp) 1073 { 1074 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1075 1076 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1077 create_object((unsigned long)ptr, size, min_count, gfp); 1078 } 1079 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1080 1081 /** 1082 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1083 * @ptr: __percpu pointer to beginning of the object 1084 * @size: size of the object 1085 * @gfp: flags used for kmemleak internal memory allocations 1086 * 1087 * This function is called from the kernel percpu allocator when a new object 1088 * (memory block) is allocated (alloc_percpu). 1089 */ 1090 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1091 gfp_t gfp) 1092 { 1093 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1094 1095 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1096 create_object_percpu((__force unsigned long)ptr, size, 0, gfp); 1097 } 1098 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1099 1100 /** 1101 * kmemleak_vmalloc - register a newly vmalloc'ed object 1102 * @area: pointer to vm_struct 1103 * @size: size of the object 1104 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1105 * 1106 * This function is called from the vmalloc() kernel allocator when a new 1107 * object (memory block) is allocated. 1108 */ 1109 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1110 { 1111 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1112 1113 /* 1114 * A min_count = 2 is needed because vm_struct contains a reference to 1115 * the virtual address of the vmalloc'ed block. 1116 */ 1117 if (kmemleak_enabled) { 1118 create_object((unsigned long)area->addr, size, 2, gfp); 1119 object_set_excess_ref((unsigned long)area, 1120 (unsigned long)area->addr); 1121 } 1122 } 1123 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1124 1125 /** 1126 * kmemleak_free - unregister a previously registered object 1127 * @ptr: pointer to beginning of the object 1128 * 1129 * This function is called from the kernel allocators when an object (memory 1130 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1131 */ 1132 void __ref kmemleak_free(const void *ptr) 1133 { 1134 pr_debug("%s(0x%px)\n", __func__, ptr); 1135 1136 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1137 delete_object_full((unsigned long)ptr, 0); 1138 } 1139 EXPORT_SYMBOL_GPL(kmemleak_free); 1140 1141 /** 1142 * kmemleak_free_part - partially unregister a previously registered object 1143 * @ptr: pointer to the beginning or inside the object. This also 1144 * represents the start of the range to be freed 1145 * @size: size to be unregistered 1146 * 1147 * This function is called when only a part of a memory block is freed 1148 * (usually from the bootmem allocator). 1149 */ 1150 void __ref kmemleak_free_part(const void *ptr, size_t size) 1151 { 1152 pr_debug("%s(0x%px)\n", __func__, ptr); 1153 1154 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1155 delete_object_part((unsigned long)ptr, size, 0); 1156 } 1157 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1158 1159 /** 1160 * kmemleak_free_percpu - unregister a previously registered __percpu object 1161 * @ptr: __percpu pointer to beginning of the object 1162 * 1163 * This function is called from the kernel percpu allocator when an object 1164 * (memory block) is freed (free_percpu). 1165 */ 1166 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1167 { 1168 pr_debug("%s(0x%px)\n", __func__, ptr); 1169 1170 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1171 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1172 } 1173 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1174 1175 /** 1176 * kmemleak_update_trace - update object allocation stack trace 1177 * @ptr: pointer to beginning of the object 1178 * 1179 * Override the object allocation stack trace for cases where the actual 1180 * allocation place is not always useful. 1181 */ 1182 void __ref kmemleak_update_trace(const void *ptr) 1183 { 1184 struct kmemleak_object *object; 1185 depot_stack_handle_t trace_handle; 1186 unsigned long flags; 1187 1188 pr_debug("%s(0x%px)\n", __func__, ptr); 1189 1190 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1191 return; 1192 1193 object = find_and_get_object((unsigned long)ptr, 1); 1194 if (!object) { 1195 #ifdef DEBUG 1196 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1197 ptr); 1198 #endif 1199 return; 1200 } 1201 1202 trace_handle = set_track_prepare(); 1203 raw_spin_lock_irqsave(&object->lock, flags); 1204 object->trace_handle = trace_handle; 1205 raw_spin_unlock_irqrestore(&object->lock, flags); 1206 1207 put_object(object); 1208 } 1209 EXPORT_SYMBOL(kmemleak_update_trace); 1210 1211 /** 1212 * kmemleak_not_leak - mark an allocated object as false positive 1213 * @ptr: pointer to beginning of the object 1214 * 1215 * Calling this function on an object will cause the memory block to no longer 1216 * be reported as leak and always be scanned. 1217 */ 1218 void __ref kmemleak_not_leak(const void *ptr) 1219 { 1220 pr_debug("%s(0x%px)\n", __func__, ptr); 1221 1222 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1223 make_gray_object((unsigned long)ptr); 1224 } 1225 EXPORT_SYMBOL(kmemleak_not_leak); 1226 1227 /** 1228 * kmemleak_transient_leak - mark an allocated object as transient false positive 1229 * @ptr: pointer to beginning of the object 1230 * 1231 * Calling this function on an object will cause the memory block to not be 1232 * reported as a leak temporarily. This may happen, for example, if the object 1233 * is part of a singly linked list and the ->next reference to it is changed. 1234 */ 1235 void __ref kmemleak_transient_leak(const void *ptr) 1236 { 1237 pr_debug("%s(0x%px)\n", __func__, ptr); 1238 1239 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1240 reset_checksum((unsigned long)ptr); 1241 } 1242 EXPORT_SYMBOL(kmemleak_transient_leak); 1243 1244 /** 1245 * kmemleak_ignore - ignore an allocated object 1246 * @ptr: pointer to beginning of the object 1247 * 1248 * Calling this function on an object will cause the memory block to be 1249 * ignored (not scanned and not reported as a leak). This is usually done when 1250 * it is known that the corresponding block is not a leak and does not contain 1251 * any references to other allocated memory blocks. 1252 */ 1253 void __ref kmemleak_ignore(const void *ptr) 1254 { 1255 pr_debug("%s(0x%px)\n", __func__, ptr); 1256 1257 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1258 make_black_object((unsigned long)ptr, 0); 1259 } 1260 EXPORT_SYMBOL(kmemleak_ignore); 1261 1262 /** 1263 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1264 * @ptr: pointer to beginning or inside the object. This also 1265 * represents the start of the scan area 1266 * @size: size of the scan area 1267 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1268 * 1269 * This function is used when it is known that only certain parts of an object 1270 * contain references to other objects. Kmemleak will only scan these areas 1271 * reducing the number false negatives. 1272 */ 1273 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1274 { 1275 pr_debug("%s(0x%px)\n", __func__, ptr); 1276 1277 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1278 add_scan_area((unsigned long)ptr, size, gfp); 1279 } 1280 EXPORT_SYMBOL(kmemleak_scan_area); 1281 1282 /** 1283 * kmemleak_no_scan - do not scan an allocated object 1284 * @ptr: pointer to beginning of the object 1285 * 1286 * This function notifies kmemleak not to scan the given memory block. Useful 1287 * in situations where it is known that the given object does not contain any 1288 * references to other objects. Kmemleak will not scan such objects reducing 1289 * the number of false negatives. 1290 */ 1291 void __ref kmemleak_no_scan(const void *ptr) 1292 { 1293 pr_debug("%s(0x%px)\n", __func__, ptr); 1294 1295 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1296 object_no_scan((unsigned long)ptr); 1297 } 1298 EXPORT_SYMBOL(kmemleak_no_scan); 1299 1300 /** 1301 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1302 * address argument 1303 * @phys: physical address of the object 1304 * @size: size of the object 1305 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1306 */ 1307 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1308 { 1309 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1310 1311 if (kmemleak_enabled) 1312 /* 1313 * Create object with OBJECT_PHYS flag and 1314 * assume min_count 0. 1315 */ 1316 create_object_phys((unsigned long)phys, size, 0, gfp); 1317 } 1318 EXPORT_SYMBOL(kmemleak_alloc_phys); 1319 1320 /** 1321 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1322 * physical address argument 1323 * @phys: physical address if the beginning or inside an object. This 1324 * also represents the start of the range to be freed 1325 * @size: size to be unregistered 1326 */ 1327 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1328 { 1329 pr_debug("%s(0x%px)\n", __func__, &phys); 1330 1331 if (kmemleak_enabled) 1332 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1333 } 1334 EXPORT_SYMBOL(kmemleak_free_part_phys); 1335 1336 /** 1337 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1338 * address argument 1339 * @phys: physical address of the object 1340 */ 1341 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1342 { 1343 pr_debug("%s(0x%px)\n", __func__, &phys); 1344 1345 if (kmemleak_enabled) 1346 make_black_object((unsigned long)phys, OBJECT_PHYS); 1347 } 1348 EXPORT_SYMBOL(kmemleak_ignore_phys); 1349 1350 /* 1351 * Update an object's checksum and return true if it was modified. 1352 */ 1353 static bool update_checksum(struct kmemleak_object *object) 1354 { 1355 u32 old_csum = object->checksum; 1356 1357 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1358 return false; 1359 1360 kasan_disable_current(); 1361 kcsan_disable_current(); 1362 if (object->flags & OBJECT_PERCPU) { 1363 unsigned int cpu; 1364 1365 object->checksum = 0; 1366 for_each_possible_cpu(cpu) { 1367 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1368 1369 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1370 } 1371 } else { 1372 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1373 } 1374 kasan_enable_current(); 1375 kcsan_enable_current(); 1376 1377 return object->checksum != old_csum; 1378 } 1379 1380 /* 1381 * Update an object's references. object->lock must be held by the caller. 1382 */ 1383 static void update_refs(struct kmemleak_object *object) 1384 { 1385 if (!color_white(object)) { 1386 /* non-orphan, ignored or new */ 1387 return; 1388 } 1389 1390 /* 1391 * Increase the object's reference count (number of pointers to the 1392 * memory block). If this count reaches the required minimum, the 1393 * object's color will become gray and it will be added to the 1394 * gray_list. 1395 */ 1396 object->count++; 1397 if (color_gray(object)) { 1398 /* put_object() called when removing from gray_list */ 1399 WARN_ON(!get_object(object)); 1400 list_add_tail(&object->gray_list, &gray_list); 1401 } 1402 } 1403 1404 static void pointer_update_refs(struct kmemleak_object *scanned, 1405 unsigned long pointer, unsigned int objflags) 1406 { 1407 struct kmemleak_object *object; 1408 unsigned long untagged_ptr; 1409 unsigned long excess_ref; 1410 1411 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1412 if (objflags & OBJECT_PERCPU) { 1413 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1414 return; 1415 } else { 1416 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1417 return; 1418 } 1419 1420 /* 1421 * No need for get_object() here since we hold kmemleak_lock. 1422 * object->use_count cannot be dropped to 0 while the object 1423 * is still present in object_tree_root and object_list 1424 * (with updates protected by kmemleak_lock). 1425 */ 1426 object = __lookup_object(pointer, 1, objflags); 1427 if (!object) 1428 return; 1429 if (object == scanned) 1430 /* self referenced, ignore */ 1431 return; 1432 1433 /* 1434 * Avoid the lockdep recursive warning on object->lock being 1435 * previously acquired in scan_object(). These locks are 1436 * enclosed by scan_mutex. 1437 */ 1438 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1439 /* only pass surplus references (object already gray) */ 1440 if (color_gray(object)) { 1441 excess_ref = object->excess_ref; 1442 /* no need for update_refs() if object already gray */ 1443 } else { 1444 excess_ref = 0; 1445 update_refs(object); 1446 } 1447 raw_spin_unlock(&object->lock); 1448 1449 if (excess_ref) { 1450 object = lookup_object(excess_ref, 0); 1451 if (!object) 1452 return; 1453 if (object == scanned) 1454 /* circular reference, ignore */ 1455 return; 1456 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1457 update_refs(object); 1458 raw_spin_unlock(&object->lock); 1459 } 1460 } 1461 1462 /* 1463 * Memory scanning is a long process and it needs to be interruptible. This 1464 * function checks whether such interrupt condition occurred. 1465 */ 1466 static int scan_should_stop(void) 1467 { 1468 if (!kmemleak_enabled) 1469 return 1; 1470 1471 /* 1472 * This function may be called from either process or kthread context, 1473 * hence the need to check for both stop conditions. 1474 */ 1475 if (current->mm) 1476 return signal_pending(current); 1477 else 1478 return kthread_should_stop(); 1479 1480 return 0; 1481 } 1482 1483 /* 1484 * Scan a memory block (exclusive range) for valid pointers and add those 1485 * found to the gray list. 1486 */ 1487 static void scan_block(void *_start, void *_end, 1488 struct kmemleak_object *scanned) 1489 { 1490 unsigned long *ptr; 1491 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1492 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1493 unsigned long flags; 1494 1495 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1496 for (ptr = start; ptr < end; ptr++) { 1497 unsigned long pointer; 1498 1499 if (scan_should_stop()) 1500 break; 1501 1502 kasan_disable_current(); 1503 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1504 kasan_enable_current(); 1505 1506 pointer_update_refs(scanned, pointer, 0); 1507 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1508 } 1509 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1510 } 1511 1512 /* 1513 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1514 */ 1515 #ifdef CONFIG_SMP 1516 static void scan_large_block(void *start, void *end) 1517 { 1518 void *next; 1519 1520 while (start < end) { 1521 next = min(start + MAX_SCAN_SIZE, end); 1522 scan_block(start, next, NULL); 1523 start = next; 1524 cond_resched(); 1525 } 1526 } 1527 #endif 1528 1529 /* 1530 * Scan a memory block corresponding to a kmemleak_object. A condition is 1531 * that object->use_count >= 1. 1532 */ 1533 static void scan_object(struct kmemleak_object *object) 1534 { 1535 struct kmemleak_scan_area *area; 1536 unsigned long flags; 1537 1538 /* 1539 * Once the object->lock is acquired, the corresponding memory block 1540 * cannot be freed (the same lock is acquired in delete_object). 1541 */ 1542 raw_spin_lock_irqsave(&object->lock, flags); 1543 if (object->flags & OBJECT_NO_SCAN) 1544 goto out; 1545 if (!(object->flags & OBJECT_ALLOCATED)) 1546 /* already freed object */ 1547 goto out; 1548 1549 if (object->flags & OBJECT_PERCPU) { 1550 unsigned int cpu; 1551 1552 for_each_possible_cpu(cpu) { 1553 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1554 void *end = start + object->size; 1555 1556 scan_block(start, end, object); 1557 1558 raw_spin_unlock_irqrestore(&object->lock, flags); 1559 cond_resched(); 1560 raw_spin_lock_irqsave(&object->lock, flags); 1561 if (!(object->flags & OBJECT_ALLOCATED)) 1562 break; 1563 } 1564 } else if (hlist_empty(&object->area_list) || 1565 object->flags & OBJECT_FULL_SCAN) { 1566 void *start = object->flags & OBJECT_PHYS ? 1567 __va((phys_addr_t)object->pointer) : 1568 (void *)object->pointer; 1569 void *end = start + object->size; 1570 void *next; 1571 1572 do { 1573 next = min(start + MAX_SCAN_SIZE, end); 1574 scan_block(start, next, object); 1575 1576 start = next; 1577 if (start >= end) 1578 break; 1579 1580 raw_spin_unlock_irqrestore(&object->lock, flags); 1581 cond_resched(); 1582 raw_spin_lock_irqsave(&object->lock, flags); 1583 } while (object->flags & OBJECT_ALLOCATED); 1584 } else { 1585 hlist_for_each_entry(area, &object->area_list, node) 1586 scan_block((void *)area->start, 1587 (void *)(area->start + area->size), 1588 object); 1589 } 1590 out: 1591 raw_spin_unlock_irqrestore(&object->lock, flags); 1592 } 1593 1594 /* 1595 * Scan the objects already referenced (gray objects). More objects will be 1596 * referenced and, if there are no memory leaks, all the objects are scanned. 1597 */ 1598 static void scan_gray_list(void) 1599 { 1600 struct kmemleak_object *object, *tmp; 1601 1602 /* 1603 * The list traversal is safe for both tail additions and removals 1604 * from inside the loop. The kmemleak objects cannot be freed from 1605 * outside the loop because their use_count was incremented. 1606 */ 1607 object = list_entry(gray_list.next, typeof(*object), gray_list); 1608 while (&object->gray_list != &gray_list) { 1609 cond_resched(); 1610 1611 /* may add new objects to the list */ 1612 if (!scan_should_stop()) 1613 scan_object(object); 1614 1615 tmp = list_entry(object->gray_list.next, typeof(*object), 1616 gray_list); 1617 1618 /* remove the object from the list and release it */ 1619 list_del(&object->gray_list); 1620 put_object(object); 1621 1622 object = tmp; 1623 } 1624 WARN_ON(!list_empty(&gray_list)); 1625 } 1626 1627 /* 1628 * Conditionally call resched() in an object iteration loop while making sure 1629 * that the given object won't go away without RCU read lock by performing a 1630 * get_object() if necessaary. 1631 */ 1632 static void kmemleak_cond_resched(struct kmemleak_object *object) 1633 { 1634 if (!get_object(object)) 1635 return; /* Try next object */ 1636 1637 raw_spin_lock_irq(&kmemleak_lock); 1638 if (object->del_state & DELSTATE_REMOVED) 1639 goto unlock_put; /* Object removed */ 1640 object->del_state |= DELSTATE_NO_DELETE; 1641 raw_spin_unlock_irq(&kmemleak_lock); 1642 1643 rcu_read_unlock(); 1644 cond_resched(); 1645 rcu_read_lock(); 1646 1647 raw_spin_lock_irq(&kmemleak_lock); 1648 if (object->del_state & DELSTATE_REMOVED) 1649 list_del_rcu(&object->object_list); 1650 object->del_state &= ~DELSTATE_NO_DELETE; 1651 unlock_put: 1652 raw_spin_unlock_irq(&kmemleak_lock); 1653 put_object(object); 1654 } 1655 1656 /* 1657 * Scan data sections and all the referenced memory blocks allocated via the 1658 * kernel's standard allocators. This function must be called with the 1659 * scan_mutex held. 1660 */ 1661 static void kmemleak_scan(void) 1662 { 1663 struct kmemleak_object *object; 1664 struct zone *zone; 1665 int __maybe_unused i; 1666 int new_leaks = 0; 1667 1668 jiffies_last_scan = jiffies; 1669 1670 /* prepare the kmemleak_object's */ 1671 rcu_read_lock(); 1672 list_for_each_entry_rcu(object, &object_list, object_list) { 1673 raw_spin_lock_irq(&object->lock); 1674 #ifdef DEBUG 1675 /* 1676 * With a few exceptions there should be a maximum of 1677 * 1 reference to any object at this point. 1678 */ 1679 if (atomic_read(&object->use_count) > 1) { 1680 pr_debug("object->use_count = %d\n", 1681 atomic_read(&object->use_count)); 1682 dump_object_info(object); 1683 } 1684 #endif 1685 1686 /* ignore objects outside lowmem (paint them black) */ 1687 if ((object->flags & OBJECT_PHYS) && 1688 !(object->flags & OBJECT_NO_SCAN)) { 1689 unsigned long phys = object->pointer; 1690 1691 if (PHYS_PFN(phys) < min_low_pfn || 1692 PHYS_PFN(phys + object->size) >= max_low_pfn) 1693 __paint_it(object, KMEMLEAK_BLACK); 1694 } 1695 1696 /* reset the reference count (whiten the object) */ 1697 object->count = 0; 1698 if (color_gray(object) && get_object(object)) 1699 list_add_tail(&object->gray_list, &gray_list); 1700 1701 raw_spin_unlock_irq(&object->lock); 1702 1703 if (need_resched()) 1704 kmemleak_cond_resched(object); 1705 } 1706 rcu_read_unlock(); 1707 1708 #ifdef CONFIG_SMP 1709 /* per-cpu sections scanning */ 1710 for_each_possible_cpu(i) 1711 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1712 __per_cpu_end + per_cpu_offset(i)); 1713 #endif 1714 1715 /* 1716 * Struct page scanning for each node. 1717 */ 1718 get_online_mems(); 1719 for_each_populated_zone(zone) { 1720 unsigned long start_pfn = zone->zone_start_pfn; 1721 unsigned long end_pfn = zone_end_pfn(zone); 1722 unsigned long pfn; 1723 1724 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1725 struct page *page = pfn_to_online_page(pfn); 1726 1727 if (!(pfn & 63)) 1728 cond_resched(); 1729 1730 if (!page) 1731 continue; 1732 1733 /* only scan pages belonging to this zone */ 1734 if (page_zone(page) != zone) 1735 continue; 1736 /* only scan if page is in use */ 1737 if (page_count(page) == 0) 1738 continue; 1739 scan_block(page, page + 1, NULL); 1740 } 1741 } 1742 put_online_mems(); 1743 1744 /* 1745 * Scanning the task stacks (may introduce false negatives). 1746 */ 1747 if (kmemleak_stack_scan) { 1748 struct task_struct *p, *g; 1749 1750 rcu_read_lock(); 1751 for_each_process_thread(g, p) { 1752 void *stack = try_get_task_stack(p); 1753 if (stack) { 1754 scan_block(stack, stack + THREAD_SIZE, NULL); 1755 put_task_stack(p); 1756 } 1757 } 1758 rcu_read_unlock(); 1759 } 1760 1761 /* 1762 * Scan the objects already referenced from the sections scanned 1763 * above. 1764 */ 1765 scan_gray_list(); 1766 1767 /* 1768 * Check for new or unreferenced objects modified since the previous 1769 * scan and color them gray until the next scan. 1770 */ 1771 rcu_read_lock(); 1772 list_for_each_entry_rcu(object, &object_list, object_list) { 1773 if (need_resched()) 1774 kmemleak_cond_resched(object); 1775 1776 /* 1777 * This is racy but we can save the overhead of lock/unlock 1778 * calls. The missed objects, if any, should be caught in 1779 * the next scan. 1780 */ 1781 if (!color_white(object)) 1782 continue; 1783 raw_spin_lock_irq(&object->lock); 1784 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1785 && update_checksum(object) && get_object(object)) { 1786 /* color it gray temporarily */ 1787 object->count = object->min_count; 1788 list_add_tail(&object->gray_list, &gray_list); 1789 } 1790 raw_spin_unlock_irq(&object->lock); 1791 } 1792 rcu_read_unlock(); 1793 1794 /* 1795 * Re-scan the gray list for modified unreferenced objects. 1796 */ 1797 scan_gray_list(); 1798 1799 /* 1800 * If scanning was stopped do not report any new unreferenced objects. 1801 */ 1802 if (scan_should_stop()) 1803 return; 1804 1805 /* 1806 * Scanning result reporting. 1807 */ 1808 rcu_read_lock(); 1809 list_for_each_entry_rcu(object, &object_list, object_list) { 1810 if (need_resched()) 1811 kmemleak_cond_resched(object); 1812 1813 /* 1814 * This is racy but we can save the overhead of lock/unlock 1815 * calls. The missed objects, if any, should be caught in 1816 * the next scan. 1817 */ 1818 if (!color_white(object)) 1819 continue; 1820 raw_spin_lock_irq(&object->lock); 1821 if (unreferenced_object(object) && 1822 !(object->flags & OBJECT_REPORTED)) { 1823 object->flags |= OBJECT_REPORTED; 1824 1825 if (kmemleak_verbose) 1826 print_unreferenced(NULL, object); 1827 1828 new_leaks++; 1829 } 1830 raw_spin_unlock_irq(&object->lock); 1831 } 1832 rcu_read_unlock(); 1833 1834 if (new_leaks) { 1835 kmemleak_found_leaks = true; 1836 1837 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1838 new_leaks); 1839 } 1840 1841 } 1842 1843 /* 1844 * Thread function performing automatic memory scanning. Unreferenced objects 1845 * at the end of a memory scan are reported but only the first time. 1846 */ 1847 static int kmemleak_scan_thread(void *arg) 1848 { 1849 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1850 1851 pr_info("Automatic memory scanning thread started\n"); 1852 set_user_nice(current, 10); 1853 1854 /* 1855 * Wait before the first scan to allow the system to fully initialize. 1856 */ 1857 if (first_run) { 1858 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1859 first_run = 0; 1860 while (timeout && !kthread_should_stop()) 1861 timeout = schedule_timeout_interruptible(timeout); 1862 } 1863 1864 while (!kthread_should_stop()) { 1865 signed long timeout = READ_ONCE(jiffies_scan_wait); 1866 1867 mutex_lock(&scan_mutex); 1868 kmemleak_scan(); 1869 mutex_unlock(&scan_mutex); 1870 1871 /* wait before the next scan */ 1872 while (timeout && !kthread_should_stop()) 1873 timeout = schedule_timeout_interruptible(timeout); 1874 } 1875 1876 pr_info("Automatic memory scanning thread ended\n"); 1877 1878 return 0; 1879 } 1880 1881 /* 1882 * Start the automatic memory scanning thread. This function must be called 1883 * with the scan_mutex held. 1884 */ 1885 static void start_scan_thread(void) 1886 { 1887 if (scan_thread) 1888 return; 1889 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1890 if (IS_ERR(scan_thread)) { 1891 pr_warn("Failed to create the scan thread\n"); 1892 scan_thread = NULL; 1893 } 1894 } 1895 1896 /* 1897 * Stop the automatic memory scanning thread. 1898 */ 1899 static void stop_scan_thread(void) 1900 { 1901 if (scan_thread) { 1902 kthread_stop(scan_thread); 1903 scan_thread = NULL; 1904 } 1905 } 1906 1907 /* 1908 * Iterate over the object_list and return the first valid object at or after 1909 * the required position with its use_count incremented. The function triggers 1910 * a memory scanning when the pos argument points to the first position. 1911 */ 1912 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1913 { 1914 struct kmemleak_object *object; 1915 loff_t n = *pos; 1916 int err; 1917 1918 err = mutex_lock_interruptible(&scan_mutex); 1919 if (err < 0) 1920 return ERR_PTR(err); 1921 1922 rcu_read_lock(); 1923 list_for_each_entry_rcu(object, &object_list, object_list) { 1924 if (n-- > 0) 1925 continue; 1926 if (get_object(object)) 1927 goto out; 1928 } 1929 object = NULL; 1930 out: 1931 return object; 1932 } 1933 1934 /* 1935 * Return the next object in the object_list. The function decrements the 1936 * use_count of the previous object and increases that of the next one. 1937 */ 1938 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1939 { 1940 struct kmemleak_object *prev_obj = v; 1941 struct kmemleak_object *next_obj = NULL; 1942 struct kmemleak_object *obj = prev_obj; 1943 1944 ++(*pos); 1945 1946 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1947 if (get_object(obj)) { 1948 next_obj = obj; 1949 break; 1950 } 1951 } 1952 1953 put_object(prev_obj); 1954 return next_obj; 1955 } 1956 1957 /* 1958 * Decrement the use_count of the last object required, if any. 1959 */ 1960 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1961 { 1962 if (!IS_ERR(v)) { 1963 /* 1964 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1965 * waiting was interrupted, so only release it if !IS_ERR. 1966 */ 1967 rcu_read_unlock(); 1968 mutex_unlock(&scan_mutex); 1969 if (v) 1970 put_object(v); 1971 } 1972 } 1973 1974 /* 1975 * Print the information for an unreferenced object to the seq file. 1976 */ 1977 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1978 { 1979 struct kmemleak_object *object = v; 1980 unsigned long flags; 1981 1982 raw_spin_lock_irqsave(&object->lock, flags); 1983 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1984 print_unreferenced(seq, object); 1985 raw_spin_unlock_irqrestore(&object->lock, flags); 1986 return 0; 1987 } 1988 1989 static const struct seq_operations kmemleak_seq_ops = { 1990 .start = kmemleak_seq_start, 1991 .next = kmemleak_seq_next, 1992 .stop = kmemleak_seq_stop, 1993 .show = kmemleak_seq_show, 1994 }; 1995 1996 static int kmemleak_open(struct inode *inode, struct file *file) 1997 { 1998 return seq_open(file, &kmemleak_seq_ops); 1999 } 2000 2001 static int dump_str_object_info(const char *str) 2002 { 2003 unsigned long flags; 2004 struct kmemleak_object *object; 2005 unsigned long addr; 2006 2007 if (kstrtoul(str, 0, &addr)) 2008 return -EINVAL; 2009 object = find_and_get_object(addr, 0); 2010 if (!object) { 2011 pr_info("Unknown object at 0x%08lx\n", addr); 2012 return -EINVAL; 2013 } 2014 2015 raw_spin_lock_irqsave(&object->lock, flags); 2016 dump_object_info(object); 2017 raw_spin_unlock_irqrestore(&object->lock, flags); 2018 2019 put_object(object); 2020 return 0; 2021 } 2022 2023 /* 2024 * We use grey instead of black to ensure we can do future scans on the same 2025 * objects. If we did not do future scans these black objects could 2026 * potentially contain references to newly allocated objects in the future and 2027 * we'd end up with false positives. 2028 */ 2029 static void kmemleak_clear(void) 2030 { 2031 struct kmemleak_object *object; 2032 2033 rcu_read_lock(); 2034 list_for_each_entry_rcu(object, &object_list, object_list) { 2035 raw_spin_lock_irq(&object->lock); 2036 if ((object->flags & OBJECT_REPORTED) && 2037 unreferenced_object(object)) 2038 __paint_it(object, KMEMLEAK_GREY); 2039 raw_spin_unlock_irq(&object->lock); 2040 } 2041 rcu_read_unlock(); 2042 2043 kmemleak_found_leaks = false; 2044 } 2045 2046 static void __kmemleak_do_cleanup(void); 2047 2048 /* 2049 * File write operation to configure kmemleak at run-time. The following 2050 * commands can be written to the /sys/kernel/debug/kmemleak file: 2051 * off - disable kmemleak (irreversible) 2052 * stack=on - enable the task stacks scanning 2053 * stack=off - disable the tasks stacks scanning 2054 * scan=on - start the automatic memory scanning thread 2055 * scan=off - stop the automatic memory scanning thread 2056 * scan=... - set the automatic memory scanning period in seconds (0 to 2057 * disable it) 2058 * scan - trigger a memory scan 2059 * clear - mark all current reported unreferenced kmemleak objects as 2060 * grey to ignore printing them, or free all kmemleak objects 2061 * if kmemleak has been disabled. 2062 * dump=... - dump information about the object found at the given address 2063 */ 2064 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2065 size_t size, loff_t *ppos) 2066 { 2067 char buf[64]; 2068 int buf_size; 2069 int ret; 2070 2071 buf_size = min(size, (sizeof(buf) - 1)); 2072 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2073 return -EFAULT; 2074 buf[buf_size] = 0; 2075 2076 ret = mutex_lock_interruptible(&scan_mutex); 2077 if (ret < 0) 2078 return ret; 2079 2080 if (strncmp(buf, "clear", 5) == 0) { 2081 if (kmemleak_enabled) 2082 kmemleak_clear(); 2083 else 2084 __kmemleak_do_cleanup(); 2085 goto out; 2086 } 2087 2088 if (!kmemleak_enabled) { 2089 ret = -EPERM; 2090 goto out; 2091 } 2092 2093 if (strncmp(buf, "off", 3) == 0) 2094 kmemleak_disable(); 2095 else if (strncmp(buf, "stack=on", 8) == 0) 2096 kmemleak_stack_scan = 1; 2097 else if (strncmp(buf, "stack=off", 9) == 0) 2098 kmemleak_stack_scan = 0; 2099 else if (strncmp(buf, "scan=on", 7) == 0) 2100 start_scan_thread(); 2101 else if (strncmp(buf, "scan=off", 8) == 0) 2102 stop_scan_thread(); 2103 else if (strncmp(buf, "scan=", 5) == 0) { 2104 unsigned secs; 2105 unsigned long msecs; 2106 2107 ret = kstrtouint(buf + 5, 0, &secs); 2108 if (ret < 0) 2109 goto out; 2110 2111 msecs = secs * MSEC_PER_SEC; 2112 if (msecs > UINT_MAX) 2113 msecs = UINT_MAX; 2114 2115 stop_scan_thread(); 2116 if (msecs) { 2117 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2118 start_scan_thread(); 2119 } 2120 } else if (strncmp(buf, "scan", 4) == 0) 2121 kmemleak_scan(); 2122 else if (strncmp(buf, "dump=", 5) == 0) 2123 ret = dump_str_object_info(buf + 5); 2124 else 2125 ret = -EINVAL; 2126 2127 out: 2128 mutex_unlock(&scan_mutex); 2129 if (ret < 0) 2130 return ret; 2131 2132 /* ignore the rest of the buffer, only one command at a time */ 2133 *ppos += size; 2134 return size; 2135 } 2136 2137 static const struct file_operations kmemleak_fops = { 2138 .owner = THIS_MODULE, 2139 .open = kmemleak_open, 2140 .read = seq_read, 2141 .write = kmemleak_write, 2142 .llseek = seq_lseek, 2143 .release = seq_release, 2144 }; 2145 2146 static void __kmemleak_do_cleanup(void) 2147 { 2148 struct kmemleak_object *object, *tmp; 2149 2150 /* 2151 * Kmemleak has already been disabled, no need for RCU list traversal 2152 * or kmemleak_lock held. 2153 */ 2154 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2155 __remove_object(object); 2156 __delete_object(object); 2157 } 2158 } 2159 2160 /* 2161 * Stop the memory scanning thread and free the kmemleak internal objects if 2162 * no previous scan thread (otherwise, kmemleak may still have some useful 2163 * information on memory leaks). 2164 */ 2165 static void kmemleak_do_cleanup(struct work_struct *work) 2166 { 2167 stop_scan_thread(); 2168 2169 mutex_lock(&scan_mutex); 2170 /* 2171 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2172 * longer track object freeing. Ordering of the scan thread stopping and 2173 * the memory accesses below is guaranteed by the kthread_stop() 2174 * function. 2175 */ 2176 kmemleak_free_enabled = 0; 2177 mutex_unlock(&scan_mutex); 2178 2179 if (!kmemleak_found_leaks) 2180 __kmemleak_do_cleanup(); 2181 else 2182 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2183 } 2184 2185 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2186 2187 /* 2188 * Disable kmemleak. No memory allocation/freeing will be traced once this 2189 * function is called. Disabling kmemleak is an irreversible operation. 2190 */ 2191 static void kmemleak_disable(void) 2192 { 2193 /* atomically check whether it was already invoked */ 2194 if (cmpxchg(&kmemleak_error, 0, 1)) 2195 return; 2196 2197 /* stop any memory operation tracing */ 2198 kmemleak_enabled = 0; 2199 2200 /* check whether it is too early for a kernel thread */ 2201 if (kmemleak_late_initialized) 2202 schedule_work(&cleanup_work); 2203 else 2204 kmemleak_free_enabled = 0; 2205 2206 pr_info("Kernel memory leak detector disabled\n"); 2207 } 2208 2209 /* 2210 * Allow boot-time kmemleak disabling (enabled by default). 2211 */ 2212 static int __init kmemleak_boot_config(char *str) 2213 { 2214 if (!str) 2215 return -EINVAL; 2216 if (strcmp(str, "off") == 0) 2217 kmemleak_disable(); 2218 else if (strcmp(str, "on") == 0) { 2219 kmemleak_skip_disable = 1; 2220 stack_depot_request_early_init(); 2221 } 2222 else 2223 return -EINVAL; 2224 return 0; 2225 } 2226 early_param("kmemleak", kmemleak_boot_config); 2227 2228 /* 2229 * Kmemleak initialization. 2230 */ 2231 void __init kmemleak_init(void) 2232 { 2233 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2234 if (!kmemleak_skip_disable) { 2235 kmemleak_disable(); 2236 return; 2237 } 2238 #endif 2239 2240 if (kmemleak_error) 2241 return; 2242 2243 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2244 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2245 2246 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2247 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2248 2249 /* register the data/bss sections */ 2250 create_object((unsigned long)_sdata, _edata - _sdata, 2251 KMEMLEAK_GREY, GFP_ATOMIC); 2252 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2253 KMEMLEAK_GREY, GFP_ATOMIC); 2254 /* only register .data..ro_after_init if not within .data */ 2255 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2256 create_object((unsigned long)__start_ro_after_init, 2257 __end_ro_after_init - __start_ro_after_init, 2258 KMEMLEAK_GREY, GFP_ATOMIC); 2259 } 2260 2261 /* 2262 * Late initialization function. 2263 */ 2264 static int __init kmemleak_late_init(void) 2265 { 2266 kmemleak_late_initialized = 1; 2267 2268 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2269 2270 if (kmemleak_error) { 2271 /* 2272 * Some error occurred and kmemleak was disabled. There is a 2273 * small chance that kmemleak_disable() was called immediately 2274 * after setting kmemleak_late_initialized and we may end up with 2275 * two clean-up threads but serialized by scan_mutex. 2276 */ 2277 schedule_work(&cleanup_work); 2278 return -ENOMEM; 2279 } 2280 2281 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2282 mutex_lock(&scan_mutex); 2283 start_scan_thread(); 2284 mutex_unlock(&scan_mutex); 2285 } 2286 2287 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2288 mem_pool_free_count); 2289 2290 return 0; 2291 } 2292 late_initcall(kmemleak_late_init); 2293