1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and 17 * accesses to the object_tree_root. The object_list is the main list 18 * holding the metadata (struct kmemleak_object) for the allocated memory 19 * blocks. The object_tree_root is a red black tree used to look-up 20 * metadata based on a pointer to the corresponding memory block. The 21 * kmemleak_object structures are added to the object_list and 22 * object_tree_root in the create_object() function called from the 23 * kmemleak_alloc() callback and removed in delete_object() called from the 24 * kmemleak_free() callback 25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 26 * Accesses to the metadata (e.g. count) are protected by this lock. Note 27 * that some members of this structure may be protected by other means 28 * (atomic or kmemleak_lock). This lock is also held when scanning the 29 * corresponding memory block to avoid the kernel freeing it via the 30 * kmemleak_free() callback. This is less heavyweight than holding a global 31 * lock like kmemleak_lock during scanning. 32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 33 * unreferenced objects at a time. The gray_list contains the objects which 34 * are already referenced or marked as false positives and need to be 35 * scanned. This list is only modified during a scanning episode when the 36 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 37 * Note that the kmemleak_object.use_count is incremented when an object is 38 * added to the gray_list and therefore cannot be freed. This mutex also 39 * prevents multiple users of the "kmemleak" debugfs file together with 40 * modifications to the memory scanning parameters including the scan_thread 41 * pointer 42 * 43 * Locks and mutexes are acquired/nested in the following order: 44 * 45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 46 * 47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 48 * regions. 49 * 50 * The kmemleak_object structures have a use_count incremented or decremented 51 * using the get_object()/put_object() functions. When the use_count becomes 52 * 0, this count can no longer be incremented and put_object() schedules the 53 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 54 * function must be protected by rcu_read_lock() to avoid accessing a freed 55 * structure. 56 */ 57 58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 59 60 #include <linux/init.h> 61 #include <linux/kernel.h> 62 #include <linux/list.h> 63 #include <linux/sched/signal.h> 64 #include <linux/sched/task.h> 65 #include <linux/sched/task_stack.h> 66 #include <linux/jiffies.h> 67 #include <linux/delay.h> 68 #include <linux/export.h> 69 #include <linux/kthread.h> 70 #include <linux/rbtree.h> 71 #include <linux/fs.h> 72 #include <linux/debugfs.h> 73 #include <linux/seq_file.h> 74 #include <linux/cpumask.h> 75 #include <linux/spinlock.h> 76 #include <linux/module.h> 77 #include <linux/mutex.h> 78 #include <linux/rcupdate.h> 79 #include <linux/stacktrace.h> 80 #include <linux/cache.h> 81 #include <linux/percpu.h> 82 #include <linux/memblock.h> 83 #include <linux/pfn.h> 84 #include <linux/mmzone.h> 85 #include <linux/slab.h> 86 #include <linux/thread_info.h> 87 #include <linux/err.h> 88 #include <linux/uaccess.h> 89 #include <linux/string.h> 90 #include <linux/nodemask.h> 91 #include <linux/mm.h> 92 #include <linux/workqueue.h> 93 #include <linux/crc32.h> 94 95 #include <asm/sections.h> 96 #include <asm/processor.h> 97 #include <linux/atomic.h> 98 99 #include <linux/kasan.h> 100 #include <linux/kfence.h> 101 #include <linux/kmemleak.h> 102 #include <linux/memory_hotplug.h> 103 104 /* 105 * Kmemleak configuration and common defines. 106 */ 107 #define MAX_TRACE 16 /* stack trace length */ 108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 112 113 #define BYTES_PER_POINTER sizeof(void *) 114 115 /* GFP bitmask for kmemleak internal allocations */ 116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 117 __GFP_NOLOCKDEP)) | \ 118 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 119 __GFP_NOWARN) 120 121 /* scanning area inside a memory block */ 122 struct kmemleak_scan_area { 123 struct hlist_node node; 124 unsigned long start; 125 size_t size; 126 }; 127 128 #define KMEMLEAK_GREY 0 129 #define KMEMLEAK_BLACK -1 130 131 /* 132 * Structure holding the metadata for each allocated memory block. 133 * Modifications to such objects should be made while holding the 134 * object->lock. Insertions or deletions from object_list, gray_list or 135 * rb_node are already protected by the corresponding locks or mutex (see 136 * the notes on locking above). These objects are reference-counted 137 * (use_count) and freed using the RCU mechanism. 138 */ 139 struct kmemleak_object { 140 raw_spinlock_t lock; 141 unsigned int flags; /* object status flags */ 142 struct list_head object_list; 143 struct list_head gray_list; 144 struct rb_node rb_node; 145 struct rcu_head rcu; /* object_list lockless traversal */ 146 /* object usage count; object freed when use_count == 0 */ 147 atomic_t use_count; 148 unsigned long pointer; 149 size_t size; 150 /* pass surplus references to this pointer */ 151 unsigned long excess_ref; 152 /* minimum number of a pointers found before it is considered leak */ 153 int min_count; 154 /* the total number of pointers found pointing to this object */ 155 int count; 156 /* checksum for detecting modified objects */ 157 u32 checksum; 158 /* memory ranges to be scanned inside an object (empty for all) */ 159 struct hlist_head area_list; 160 unsigned long trace[MAX_TRACE]; 161 unsigned int trace_len; 162 unsigned long jiffies; /* creation timestamp */ 163 pid_t pid; /* pid of the current task */ 164 char comm[TASK_COMM_LEN]; /* executable name */ 165 }; 166 167 /* flag representing the memory block allocation status */ 168 #define OBJECT_ALLOCATED (1 << 0) 169 /* flag set after the first reporting of an unreference object */ 170 #define OBJECT_REPORTED (1 << 1) 171 /* flag set to not scan the object */ 172 #define OBJECT_NO_SCAN (1 << 2) 173 /* flag set to fully scan the object when scan_area allocation failed */ 174 #define OBJECT_FULL_SCAN (1 << 3) 175 176 #define HEX_PREFIX " " 177 /* number of bytes to print per line; must be 16 or 32 */ 178 #define HEX_ROW_SIZE 16 179 /* number of bytes to print at a time (1, 2, 4, 8) */ 180 #define HEX_GROUP_SIZE 1 181 /* include ASCII after the hex output */ 182 #define HEX_ASCII 1 183 /* max number of lines to be printed */ 184 #define HEX_MAX_LINES 2 185 186 /* the list of all allocated objects */ 187 static LIST_HEAD(object_list); 188 /* the list of gray-colored objects (see color_gray comment below) */ 189 static LIST_HEAD(gray_list); 190 /* memory pool allocation */ 191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 193 static LIST_HEAD(mem_pool_free_list); 194 /* search tree for object boundaries */ 195 static struct rb_root object_tree_root = RB_ROOT; 196 /* protecting the access to object_list and object_tree_root */ 197 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 198 199 /* allocation caches for kmemleak internal data */ 200 static struct kmem_cache *object_cache; 201 static struct kmem_cache *scan_area_cache; 202 203 /* set if tracing memory operations is enabled */ 204 static int kmemleak_enabled = 1; 205 /* same as above but only for the kmemleak_free() callback */ 206 static int kmemleak_free_enabled = 1; 207 /* set in the late_initcall if there were no errors */ 208 static int kmemleak_initialized; 209 /* set if a kmemleak warning was issued */ 210 static int kmemleak_warning; 211 /* set if a fatal kmemleak error has occurred */ 212 static int kmemleak_error; 213 214 /* minimum and maximum address that may be valid pointers */ 215 static unsigned long min_addr = ULONG_MAX; 216 static unsigned long max_addr; 217 218 static struct task_struct *scan_thread; 219 /* used to avoid reporting of recently allocated objects */ 220 static unsigned long jiffies_min_age; 221 static unsigned long jiffies_last_scan; 222 /* delay between automatic memory scannings */ 223 static unsigned long jiffies_scan_wait; 224 /* enables or disables the task stacks scanning */ 225 static int kmemleak_stack_scan = 1; 226 /* protects the memory scanning, parameters and debug/kmemleak file access */ 227 static DEFINE_MUTEX(scan_mutex); 228 /* setting kmemleak=on, will set this var, skipping the disable */ 229 static int kmemleak_skip_disable; 230 /* If there are leaks that can be reported */ 231 static bool kmemleak_found_leaks; 232 233 static bool kmemleak_verbose; 234 module_param_named(verbose, kmemleak_verbose, bool, 0600); 235 236 static void kmemleak_disable(void); 237 238 /* 239 * Print a warning and dump the stack trace. 240 */ 241 #define kmemleak_warn(x...) do { \ 242 pr_warn(x); \ 243 dump_stack(); \ 244 kmemleak_warning = 1; \ 245 } while (0) 246 247 /* 248 * Macro invoked when a serious kmemleak condition occurred and cannot be 249 * recovered from. Kmemleak will be disabled and further allocation/freeing 250 * tracing no longer available. 251 */ 252 #define kmemleak_stop(x...) do { \ 253 kmemleak_warn(x); \ 254 kmemleak_disable(); \ 255 } while (0) 256 257 #define warn_or_seq_printf(seq, fmt, ...) do { \ 258 if (seq) \ 259 seq_printf(seq, fmt, ##__VA_ARGS__); \ 260 else \ 261 pr_warn(fmt, ##__VA_ARGS__); \ 262 } while (0) 263 264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 265 int rowsize, int groupsize, const void *buf, 266 size_t len, bool ascii) 267 { 268 if (seq) 269 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 270 buf, len, ascii); 271 else 272 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 273 rowsize, groupsize, buf, len, ascii); 274 } 275 276 /* 277 * Printing of the objects hex dump to the seq file. The number of lines to be 278 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 279 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 280 * with the object->lock held. 281 */ 282 static void hex_dump_object(struct seq_file *seq, 283 struct kmemleak_object *object) 284 { 285 const u8 *ptr = (const u8 *)object->pointer; 286 size_t len; 287 288 /* limit the number of lines to HEX_MAX_LINES */ 289 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 290 291 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 292 kasan_disable_current(); 293 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 294 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 295 kasan_enable_current(); 296 } 297 298 /* 299 * Object colors, encoded with count and min_count: 300 * - white - orphan object, not enough references to it (count < min_count) 301 * - gray - not orphan, not marked as false positive (min_count == 0) or 302 * sufficient references to it (count >= min_count) 303 * - black - ignore, it doesn't contain references (e.g. text section) 304 * (min_count == -1). No function defined for this color. 305 * Newly created objects don't have any color assigned (object->count == -1) 306 * before the next memory scan when they become white. 307 */ 308 static bool color_white(const struct kmemleak_object *object) 309 { 310 return object->count != KMEMLEAK_BLACK && 311 object->count < object->min_count; 312 } 313 314 static bool color_gray(const struct kmemleak_object *object) 315 { 316 return object->min_count != KMEMLEAK_BLACK && 317 object->count >= object->min_count; 318 } 319 320 /* 321 * Objects are considered unreferenced only if their color is white, they have 322 * not be deleted and have a minimum age to avoid false positives caused by 323 * pointers temporarily stored in CPU registers. 324 */ 325 static bool unreferenced_object(struct kmemleak_object *object) 326 { 327 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 328 time_before_eq(object->jiffies + jiffies_min_age, 329 jiffies_last_scan); 330 } 331 332 /* 333 * Printing of the unreferenced objects information to the seq file. The 334 * print_unreferenced function must be called with the object->lock held. 335 */ 336 static void print_unreferenced(struct seq_file *seq, 337 struct kmemleak_object *object) 338 { 339 int i; 340 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 341 342 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 343 object->pointer, object->size); 344 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 345 object->comm, object->pid, object->jiffies, 346 msecs_age / 1000, msecs_age % 1000); 347 hex_dump_object(seq, object); 348 warn_or_seq_printf(seq, " backtrace:\n"); 349 350 for (i = 0; i < object->trace_len; i++) { 351 void *ptr = (void *)object->trace[i]; 352 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 353 } 354 } 355 356 /* 357 * Print the kmemleak_object information. This function is used mainly for 358 * debugging special cases when kmemleak operations. It must be called with 359 * the object->lock held. 360 */ 361 static void dump_object_info(struct kmemleak_object *object) 362 { 363 pr_notice("Object 0x%08lx (size %zu):\n", 364 object->pointer, object->size); 365 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 366 object->comm, object->pid, object->jiffies); 367 pr_notice(" min_count = %d\n", object->min_count); 368 pr_notice(" count = %d\n", object->count); 369 pr_notice(" flags = 0x%x\n", object->flags); 370 pr_notice(" checksum = %u\n", object->checksum); 371 pr_notice(" backtrace:\n"); 372 stack_trace_print(object->trace, object->trace_len, 4); 373 } 374 375 /* 376 * Look-up a memory block metadata (kmemleak_object) in the object search 377 * tree based on a pointer value. If alias is 0, only values pointing to the 378 * beginning of the memory block are allowed. The kmemleak_lock must be held 379 * when calling this function. 380 */ 381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 382 { 383 struct rb_node *rb = object_tree_root.rb_node; 384 385 while (rb) { 386 struct kmemleak_object *object = 387 rb_entry(rb, struct kmemleak_object, rb_node); 388 if (ptr < object->pointer) 389 rb = object->rb_node.rb_left; 390 else if (object->pointer + object->size <= ptr) 391 rb = object->rb_node.rb_right; 392 else if (object->pointer == ptr || alias) 393 return object; 394 else { 395 kmemleak_warn("Found object by alias at 0x%08lx\n", 396 ptr); 397 dump_object_info(object); 398 break; 399 } 400 } 401 return NULL; 402 } 403 404 /* 405 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 406 * that once an object's use_count reached 0, the RCU freeing was already 407 * registered and the object should no longer be used. This function must be 408 * called under the protection of rcu_read_lock(). 409 */ 410 static int get_object(struct kmemleak_object *object) 411 { 412 return atomic_inc_not_zero(&object->use_count); 413 } 414 415 /* 416 * Memory pool allocation and freeing. kmemleak_lock must not be held. 417 */ 418 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 419 { 420 unsigned long flags; 421 struct kmemleak_object *object; 422 423 /* try the slab allocator first */ 424 if (object_cache) { 425 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 426 if (object) 427 return object; 428 } 429 430 /* slab allocation failed, try the memory pool */ 431 raw_spin_lock_irqsave(&kmemleak_lock, flags); 432 object = list_first_entry_or_null(&mem_pool_free_list, 433 typeof(*object), object_list); 434 if (object) 435 list_del(&object->object_list); 436 else if (mem_pool_free_count) 437 object = &mem_pool[--mem_pool_free_count]; 438 else 439 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 440 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 441 442 return object; 443 } 444 445 /* 446 * Return the object to either the slab allocator or the memory pool. 447 */ 448 static void mem_pool_free(struct kmemleak_object *object) 449 { 450 unsigned long flags; 451 452 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 453 kmem_cache_free(object_cache, object); 454 return; 455 } 456 457 /* add the object to the memory pool free list */ 458 raw_spin_lock_irqsave(&kmemleak_lock, flags); 459 list_add(&object->object_list, &mem_pool_free_list); 460 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 461 } 462 463 /* 464 * RCU callback to free a kmemleak_object. 465 */ 466 static void free_object_rcu(struct rcu_head *rcu) 467 { 468 struct hlist_node *tmp; 469 struct kmemleak_scan_area *area; 470 struct kmemleak_object *object = 471 container_of(rcu, struct kmemleak_object, rcu); 472 473 /* 474 * Once use_count is 0 (guaranteed by put_object), there is no other 475 * code accessing this object, hence no need for locking. 476 */ 477 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 478 hlist_del(&area->node); 479 kmem_cache_free(scan_area_cache, area); 480 } 481 mem_pool_free(object); 482 } 483 484 /* 485 * Decrement the object use_count. Once the count is 0, free the object using 486 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 487 * delete_object() path, the delayed RCU freeing ensures that there is no 488 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 489 * is also possible. 490 */ 491 static void put_object(struct kmemleak_object *object) 492 { 493 if (!atomic_dec_and_test(&object->use_count)) 494 return; 495 496 /* should only get here after delete_object was called */ 497 WARN_ON(object->flags & OBJECT_ALLOCATED); 498 499 /* 500 * It may be too early for the RCU callbacks, however, there is no 501 * concurrent object_list traversal when !object_cache and all objects 502 * came from the memory pool. Free the object directly. 503 */ 504 if (object_cache) 505 call_rcu(&object->rcu, free_object_rcu); 506 else 507 free_object_rcu(&object->rcu); 508 } 509 510 /* 511 * Look up an object in the object search tree and increase its use_count. 512 */ 513 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 514 { 515 unsigned long flags; 516 struct kmemleak_object *object; 517 518 rcu_read_lock(); 519 raw_spin_lock_irqsave(&kmemleak_lock, flags); 520 object = lookup_object(ptr, alias); 521 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 522 523 /* check whether the object is still available */ 524 if (object && !get_object(object)) 525 object = NULL; 526 rcu_read_unlock(); 527 528 return object; 529 } 530 531 /* 532 * Remove an object from the object_tree_root and object_list. Must be called 533 * with the kmemleak_lock held _if_ kmemleak is still enabled. 534 */ 535 static void __remove_object(struct kmemleak_object *object) 536 { 537 rb_erase(&object->rb_node, &object_tree_root); 538 list_del_rcu(&object->object_list); 539 } 540 541 /* 542 * Look up an object in the object search tree and remove it from both 543 * object_tree_root and object_list. The returned object's use_count should be 544 * at least 1, as initially set by create_object(). 545 */ 546 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 547 { 548 unsigned long flags; 549 struct kmemleak_object *object; 550 551 raw_spin_lock_irqsave(&kmemleak_lock, flags); 552 object = lookup_object(ptr, alias); 553 if (object) 554 __remove_object(object); 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 556 557 return object; 558 } 559 560 /* 561 * Save stack trace to the given array of MAX_TRACE size. 562 */ 563 static int __save_stack_trace(unsigned long *trace) 564 { 565 return stack_trace_save(trace, MAX_TRACE, 2); 566 } 567 568 /* 569 * Create the metadata (struct kmemleak_object) corresponding to an allocated 570 * memory block and add it to the object_list and object_tree_root. 571 */ 572 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 573 int min_count, gfp_t gfp) 574 { 575 unsigned long flags; 576 struct kmemleak_object *object, *parent; 577 struct rb_node **link, *rb_parent; 578 unsigned long untagged_ptr; 579 580 object = mem_pool_alloc(gfp); 581 if (!object) { 582 pr_warn("Cannot allocate a kmemleak_object structure\n"); 583 kmemleak_disable(); 584 return NULL; 585 } 586 587 INIT_LIST_HEAD(&object->object_list); 588 INIT_LIST_HEAD(&object->gray_list); 589 INIT_HLIST_HEAD(&object->area_list); 590 raw_spin_lock_init(&object->lock); 591 atomic_set(&object->use_count, 1); 592 object->flags = OBJECT_ALLOCATED; 593 object->pointer = ptr; 594 object->size = kfence_ksize((void *)ptr) ?: size; 595 object->excess_ref = 0; 596 object->min_count = min_count; 597 object->count = 0; /* white color initially */ 598 object->jiffies = jiffies; 599 object->checksum = 0; 600 601 /* task information */ 602 if (in_hardirq()) { 603 object->pid = 0; 604 strncpy(object->comm, "hardirq", sizeof(object->comm)); 605 } else if (in_serving_softirq()) { 606 object->pid = 0; 607 strncpy(object->comm, "softirq", sizeof(object->comm)); 608 } else { 609 object->pid = current->pid; 610 /* 611 * There is a small chance of a race with set_task_comm(), 612 * however using get_task_comm() here may cause locking 613 * dependency issues with current->alloc_lock. In the worst 614 * case, the command line is not correct. 615 */ 616 strncpy(object->comm, current->comm, sizeof(object->comm)); 617 } 618 619 /* kernel backtrace */ 620 object->trace_len = __save_stack_trace(object->trace); 621 622 raw_spin_lock_irqsave(&kmemleak_lock, flags); 623 624 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 625 min_addr = min(min_addr, untagged_ptr); 626 max_addr = max(max_addr, untagged_ptr + size); 627 link = &object_tree_root.rb_node; 628 rb_parent = NULL; 629 while (*link) { 630 rb_parent = *link; 631 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 632 if (ptr + size <= parent->pointer) 633 link = &parent->rb_node.rb_left; 634 else if (parent->pointer + parent->size <= ptr) 635 link = &parent->rb_node.rb_right; 636 else { 637 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 638 ptr); 639 /* 640 * No need for parent->lock here since "parent" cannot 641 * be freed while the kmemleak_lock is held. 642 */ 643 dump_object_info(parent); 644 kmem_cache_free(object_cache, object); 645 object = NULL; 646 goto out; 647 } 648 } 649 rb_link_node(&object->rb_node, rb_parent, link); 650 rb_insert_color(&object->rb_node, &object_tree_root); 651 652 list_add_tail_rcu(&object->object_list, &object_list); 653 out: 654 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 655 return object; 656 } 657 658 /* 659 * Mark the object as not allocated and schedule RCU freeing via put_object(). 660 */ 661 static void __delete_object(struct kmemleak_object *object) 662 { 663 unsigned long flags; 664 665 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 666 WARN_ON(atomic_read(&object->use_count) < 1); 667 668 /* 669 * Locking here also ensures that the corresponding memory block 670 * cannot be freed when it is being scanned. 671 */ 672 raw_spin_lock_irqsave(&object->lock, flags); 673 object->flags &= ~OBJECT_ALLOCATED; 674 raw_spin_unlock_irqrestore(&object->lock, flags); 675 put_object(object); 676 } 677 678 /* 679 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 680 * delete it. 681 */ 682 static void delete_object_full(unsigned long ptr) 683 { 684 struct kmemleak_object *object; 685 686 object = find_and_remove_object(ptr, 0); 687 if (!object) { 688 #ifdef DEBUG 689 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 690 ptr); 691 #endif 692 return; 693 } 694 __delete_object(object); 695 } 696 697 /* 698 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 699 * delete it. If the memory block is partially freed, the function may create 700 * additional metadata for the remaining parts of the block. 701 */ 702 static void delete_object_part(unsigned long ptr, size_t size) 703 { 704 struct kmemleak_object *object; 705 unsigned long start, end; 706 707 object = find_and_remove_object(ptr, 1); 708 if (!object) { 709 #ifdef DEBUG 710 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 711 ptr, size); 712 #endif 713 return; 714 } 715 716 /* 717 * Create one or two objects that may result from the memory block 718 * split. Note that partial freeing is only done by free_bootmem() and 719 * this happens before kmemleak_init() is called. 720 */ 721 start = object->pointer; 722 end = object->pointer + object->size; 723 if (ptr > start) 724 create_object(start, ptr - start, object->min_count, 725 GFP_KERNEL); 726 if (ptr + size < end) 727 create_object(ptr + size, end - ptr - size, object->min_count, 728 GFP_KERNEL); 729 730 __delete_object(object); 731 } 732 733 static void __paint_it(struct kmemleak_object *object, int color) 734 { 735 object->min_count = color; 736 if (color == KMEMLEAK_BLACK) 737 object->flags |= OBJECT_NO_SCAN; 738 } 739 740 static void paint_it(struct kmemleak_object *object, int color) 741 { 742 unsigned long flags; 743 744 raw_spin_lock_irqsave(&object->lock, flags); 745 __paint_it(object, color); 746 raw_spin_unlock_irqrestore(&object->lock, flags); 747 } 748 749 static void paint_ptr(unsigned long ptr, int color) 750 { 751 struct kmemleak_object *object; 752 753 object = find_and_get_object(ptr, 0); 754 if (!object) { 755 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 756 ptr, 757 (color == KMEMLEAK_GREY) ? "Grey" : 758 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 759 return; 760 } 761 paint_it(object, color); 762 put_object(object); 763 } 764 765 /* 766 * Mark an object permanently as gray-colored so that it can no longer be 767 * reported as a leak. This is used in general to mark a false positive. 768 */ 769 static void make_gray_object(unsigned long ptr) 770 { 771 paint_ptr(ptr, KMEMLEAK_GREY); 772 } 773 774 /* 775 * Mark the object as black-colored so that it is ignored from scans and 776 * reporting. 777 */ 778 static void make_black_object(unsigned long ptr) 779 { 780 paint_ptr(ptr, KMEMLEAK_BLACK); 781 } 782 783 /* 784 * Add a scanning area to the object. If at least one such area is added, 785 * kmemleak will only scan these ranges rather than the whole memory block. 786 */ 787 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 788 { 789 unsigned long flags; 790 struct kmemleak_object *object; 791 struct kmemleak_scan_area *area = NULL; 792 793 object = find_and_get_object(ptr, 1); 794 if (!object) { 795 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 796 ptr); 797 return; 798 } 799 800 if (scan_area_cache) 801 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 802 803 raw_spin_lock_irqsave(&object->lock, flags); 804 if (!area) { 805 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 806 /* mark the object for full scan to avoid false positives */ 807 object->flags |= OBJECT_FULL_SCAN; 808 goto out_unlock; 809 } 810 if (size == SIZE_MAX) { 811 size = object->pointer + object->size - ptr; 812 } else if (ptr + size > object->pointer + object->size) { 813 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 814 dump_object_info(object); 815 kmem_cache_free(scan_area_cache, area); 816 goto out_unlock; 817 } 818 819 INIT_HLIST_NODE(&area->node); 820 area->start = ptr; 821 area->size = size; 822 823 hlist_add_head(&area->node, &object->area_list); 824 out_unlock: 825 raw_spin_unlock_irqrestore(&object->lock, flags); 826 put_object(object); 827 } 828 829 /* 830 * Any surplus references (object already gray) to 'ptr' are passed to 831 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 832 * vm_struct may be used as an alternative reference to the vmalloc'ed object 833 * (see free_thread_stack()). 834 */ 835 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 836 { 837 unsigned long flags; 838 struct kmemleak_object *object; 839 840 object = find_and_get_object(ptr, 0); 841 if (!object) { 842 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 843 ptr); 844 return; 845 } 846 847 raw_spin_lock_irqsave(&object->lock, flags); 848 object->excess_ref = excess_ref; 849 raw_spin_unlock_irqrestore(&object->lock, flags); 850 put_object(object); 851 } 852 853 /* 854 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 855 * pointer. Such object will not be scanned by kmemleak but references to it 856 * are searched. 857 */ 858 static void object_no_scan(unsigned long ptr) 859 { 860 unsigned long flags; 861 struct kmemleak_object *object; 862 863 object = find_and_get_object(ptr, 0); 864 if (!object) { 865 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 866 return; 867 } 868 869 raw_spin_lock_irqsave(&object->lock, flags); 870 object->flags |= OBJECT_NO_SCAN; 871 raw_spin_unlock_irqrestore(&object->lock, flags); 872 put_object(object); 873 } 874 875 /** 876 * kmemleak_alloc - register a newly allocated object 877 * @ptr: pointer to beginning of the object 878 * @size: size of the object 879 * @min_count: minimum number of references to this object. If during memory 880 * scanning a number of references less than @min_count is found, 881 * the object is reported as a memory leak. If @min_count is 0, 882 * the object is never reported as a leak. If @min_count is -1, 883 * the object is ignored (not scanned and not reported as a leak) 884 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 885 * 886 * This function is called from the kernel allocators when a new object 887 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 888 */ 889 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 890 gfp_t gfp) 891 { 892 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 893 894 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 895 create_object((unsigned long)ptr, size, min_count, gfp); 896 } 897 EXPORT_SYMBOL_GPL(kmemleak_alloc); 898 899 /** 900 * kmemleak_alloc_percpu - register a newly allocated __percpu object 901 * @ptr: __percpu pointer to beginning of the object 902 * @size: size of the object 903 * @gfp: flags used for kmemleak internal memory allocations 904 * 905 * This function is called from the kernel percpu allocator when a new object 906 * (memory block) is allocated (alloc_percpu). 907 */ 908 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 909 gfp_t gfp) 910 { 911 unsigned int cpu; 912 913 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 914 915 /* 916 * Percpu allocations are only scanned and not reported as leaks 917 * (min_count is set to 0). 918 */ 919 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 920 for_each_possible_cpu(cpu) 921 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 922 size, 0, gfp); 923 } 924 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 925 926 /** 927 * kmemleak_vmalloc - register a newly vmalloc'ed object 928 * @area: pointer to vm_struct 929 * @size: size of the object 930 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 931 * 932 * This function is called from the vmalloc() kernel allocator when a new 933 * object (memory block) is allocated. 934 */ 935 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 936 { 937 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 938 939 /* 940 * A min_count = 2 is needed because vm_struct contains a reference to 941 * the virtual address of the vmalloc'ed block. 942 */ 943 if (kmemleak_enabled) { 944 create_object((unsigned long)area->addr, size, 2, gfp); 945 object_set_excess_ref((unsigned long)area, 946 (unsigned long)area->addr); 947 } 948 } 949 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 950 951 /** 952 * kmemleak_free - unregister a previously registered object 953 * @ptr: pointer to beginning of the object 954 * 955 * This function is called from the kernel allocators when an object (memory 956 * block) is freed (kmem_cache_free, kfree, vfree etc.). 957 */ 958 void __ref kmemleak_free(const void *ptr) 959 { 960 pr_debug("%s(0x%p)\n", __func__, ptr); 961 962 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 963 delete_object_full((unsigned long)ptr); 964 } 965 EXPORT_SYMBOL_GPL(kmemleak_free); 966 967 /** 968 * kmemleak_free_part - partially unregister a previously registered object 969 * @ptr: pointer to the beginning or inside the object. This also 970 * represents the start of the range to be freed 971 * @size: size to be unregistered 972 * 973 * This function is called when only a part of a memory block is freed 974 * (usually from the bootmem allocator). 975 */ 976 void __ref kmemleak_free_part(const void *ptr, size_t size) 977 { 978 pr_debug("%s(0x%p)\n", __func__, ptr); 979 980 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 981 delete_object_part((unsigned long)ptr, size); 982 } 983 EXPORT_SYMBOL_GPL(kmemleak_free_part); 984 985 /** 986 * kmemleak_free_percpu - unregister a previously registered __percpu object 987 * @ptr: __percpu pointer to beginning of the object 988 * 989 * This function is called from the kernel percpu allocator when an object 990 * (memory block) is freed (free_percpu). 991 */ 992 void __ref kmemleak_free_percpu(const void __percpu *ptr) 993 { 994 unsigned int cpu; 995 996 pr_debug("%s(0x%p)\n", __func__, ptr); 997 998 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 999 for_each_possible_cpu(cpu) 1000 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1001 cpu)); 1002 } 1003 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1004 1005 /** 1006 * kmemleak_update_trace - update object allocation stack trace 1007 * @ptr: pointer to beginning of the object 1008 * 1009 * Override the object allocation stack trace for cases where the actual 1010 * allocation place is not always useful. 1011 */ 1012 void __ref kmemleak_update_trace(const void *ptr) 1013 { 1014 struct kmemleak_object *object; 1015 unsigned long flags; 1016 1017 pr_debug("%s(0x%p)\n", __func__, ptr); 1018 1019 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1020 return; 1021 1022 object = find_and_get_object((unsigned long)ptr, 1); 1023 if (!object) { 1024 #ifdef DEBUG 1025 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1026 ptr); 1027 #endif 1028 return; 1029 } 1030 1031 raw_spin_lock_irqsave(&object->lock, flags); 1032 object->trace_len = __save_stack_trace(object->trace); 1033 raw_spin_unlock_irqrestore(&object->lock, flags); 1034 1035 put_object(object); 1036 } 1037 EXPORT_SYMBOL(kmemleak_update_trace); 1038 1039 /** 1040 * kmemleak_not_leak - mark an allocated object as false positive 1041 * @ptr: pointer to beginning of the object 1042 * 1043 * Calling this function on an object will cause the memory block to no longer 1044 * be reported as leak and always be scanned. 1045 */ 1046 void __ref kmemleak_not_leak(const void *ptr) 1047 { 1048 pr_debug("%s(0x%p)\n", __func__, ptr); 1049 1050 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1051 make_gray_object((unsigned long)ptr); 1052 } 1053 EXPORT_SYMBOL(kmemleak_not_leak); 1054 1055 /** 1056 * kmemleak_ignore - ignore an allocated object 1057 * @ptr: pointer to beginning of the object 1058 * 1059 * Calling this function on an object will cause the memory block to be 1060 * ignored (not scanned and not reported as a leak). This is usually done when 1061 * it is known that the corresponding block is not a leak and does not contain 1062 * any references to other allocated memory blocks. 1063 */ 1064 void __ref kmemleak_ignore(const void *ptr) 1065 { 1066 pr_debug("%s(0x%p)\n", __func__, ptr); 1067 1068 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1069 make_black_object((unsigned long)ptr); 1070 } 1071 EXPORT_SYMBOL(kmemleak_ignore); 1072 1073 /** 1074 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1075 * @ptr: pointer to beginning or inside the object. This also 1076 * represents the start of the scan area 1077 * @size: size of the scan area 1078 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1079 * 1080 * This function is used when it is known that only certain parts of an object 1081 * contain references to other objects. Kmemleak will only scan these areas 1082 * reducing the number false negatives. 1083 */ 1084 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1085 { 1086 pr_debug("%s(0x%p)\n", __func__, ptr); 1087 1088 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1089 add_scan_area((unsigned long)ptr, size, gfp); 1090 } 1091 EXPORT_SYMBOL(kmemleak_scan_area); 1092 1093 /** 1094 * kmemleak_no_scan - do not scan an allocated object 1095 * @ptr: pointer to beginning of the object 1096 * 1097 * This function notifies kmemleak not to scan the given memory block. Useful 1098 * in situations where it is known that the given object does not contain any 1099 * references to other objects. Kmemleak will not scan such objects reducing 1100 * the number of false negatives. 1101 */ 1102 void __ref kmemleak_no_scan(const void *ptr) 1103 { 1104 pr_debug("%s(0x%p)\n", __func__, ptr); 1105 1106 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1107 object_no_scan((unsigned long)ptr); 1108 } 1109 EXPORT_SYMBOL(kmemleak_no_scan); 1110 1111 /** 1112 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1113 * address argument 1114 * @phys: physical address of the object 1115 * @size: size of the object 1116 * @min_count: minimum number of references to this object. 1117 * See kmemleak_alloc() 1118 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1119 */ 1120 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1121 gfp_t gfp) 1122 { 1123 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1124 kmemleak_alloc(__va(phys), size, min_count, gfp); 1125 } 1126 EXPORT_SYMBOL(kmemleak_alloc_phys); 1127 1128 /** 1129 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1130 * physical address argument 1131 * @phys: physical address if the beginning or inside an object. This 1132 * also represents the start of the range to be freed 1133 * @size: size to be unregistered 1134 */ 1135 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1136 { 1137 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1138 kmemleak_free_part(__va(phys), size); 1139 } 1140 EXPORT_SYMBOL(kmemleak_free_part_phys); 1141 1142 /** 1143 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1144 * address argument 1145 * @phys: physical address of the object 1146 */ 1147 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1148 { 1149 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1150 kmemleak_not_leak(__va(phys)); 1151 } 1152 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1153 1154 /** 1155 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1156 * address argument 1157 * @phys: physical address of the object 1158 */ 1159 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1160 { 1161 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1162 kmemleak_ignore(__va(phys)); 1163 } 1164 EXPORT_SYMBOL(kmemleak_ignore_phys); 1165 1166 /* 1167 * Update an object's checksum and return true if it was modified. 1168 */ 1169 static bool update_checksum(struct kmemleak_object *object) 1170 { 1171 u32 old_csum = object->checksum; 1172 1173 kasan_disable_current(); 1174 kcsan_disable_current(); 1175 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1176 kasan_enable_current(); 1177 kcsan_enable_current(); 1178 1179 return object->checksum != old_csum; 1180 } 1181 1182 /* 1183 * Update an object's references. object->lock must be held by the caller. 1184 */ 1185 static void update_refs(struct kmemleak_object *object) 1186 { 1187 if (!color_white(object)) { 1188 /* non-orphan, ignored or new */ 1189 return; 1190 } 1191 1192 /* 1193 * Increase the object's reference count (number of pointers to the 1194 * memory block). If this count reaches the required minimum, the 1195 * object's color will become gray and it will be added to the 1196 * gray_list. 1197 */ 1198 object->count++; 1199 if (color_gray(object)) { 1200 /* put_object() called when removing from gray_list */ 1201 WARN_ON(!get_object(object)); 1202 list_add_tail(&object->gray_list, &gray_list); 1203 } 1204 } 1205 1206 /* 1207 * Memory scanning is a long process and it needs to be interruptible. This 1208 * function checks whether such interrupt condition occurred. 1209 */ 1210 static int scan_should_stop(void) 1211 { 1212 if (!kmemleak_enabled) 1213 return 1; 1214 1215 /* 1216 * This function may be called from either process or kthread context, 1217 * hence the need to check for both stop conditions. 1218 */ 1219 if (current->mm) 1220 return signal_pending(current); 1221 else 1222 return kthread_should_stop(); 1223 1224 return 0; 1225 } 1226 1227 /* 1228 * Scan a memory block (exclusive range) for valid pointers and add those 1229 * found to the gray list. 1230 */ 1231 static void scan_block(void *_start, void *_end, 1232 struct kmemleak_object *scanned) 1233 { 1234 unsigned long *ptr; 1235 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1236 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1237 unsigned long flags; 1238 unsigned long untagged_ptr; 1239 1240 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1241 for (ptr = start; ptr < end; ptr++) { 1242 struct kmemleak_object *object; 1243 unsigned long pointer; 1244 unsigned long excess_ref; 1245 1246 if (scan_should_stop()) 1247 break; 1248 1249 kasan_disable_current(); 1250 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1251 kasan_enable_current(); 1252 1253 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1254 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1255 continue; 1256 1257 /* 1258 * No need for get_object() here since we hold kmemleak_lock. 1259 * object->use_count cannot be dropped to 0 while the object 1260 * is still present in object_tree_root and object_list 1261 * (with updates protected by kmemleak_lock). 1262 */ 1263 object = lookup_object(pointer, 1); 1264 if (!object) 1265 continue; 1266 if (object == scanned) 1267 /* self referenced, ignore */ 1268 continue; 1269 1270 /* 1271 * Avoid the lockdep recursive warning on object->lock being 1272 * previously acquired in scan_object(). These locks are 1273 * enclosed by scan_mutex. 1274 */ 1275 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1276 /* only pass surplus references (object already gray) */ 1277 if (color_gray(object)) { 1278 excess_ref = object->excess_ref; 1279 /* no need for update_refs() if object already gray */ 1280 } else { 1281 excess_ref = 0; 1282 update_refs(object); 1283 } 1284 raw_spin_unlock(&object->lock); 1285 1286 if (excess_ref) { 1287 object = lookup_object(excess_ref, 0); 1288 if (!object) 1289 continue; 1290 if (object == scanned) 1291 /* circular reference, ignore */ 1292 continue; 1293 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1294 update_refs(object); 1295 raw_spin_unlock(&object->lock); 1296 } 1297 } 1298 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1299 } 1300 1301 /* 1302 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1303 */ 1304 #ifdef CONFIG_SMP 1305 static void scan_large_block(void *start, void *end) 1306 { 1307 void *next; 1308 1309 while (start < end) { 1310 next = min(start + MAX_SCAN_SIZE, end); 1311 scan_block(start, next, NULL); 1312 start = next; 1313 cond_resched(); 1314 } 1315 } 1316 #endif 1317 1318 /* 1319 * Scan a memory block corresponding to a kmemleak_object. A condition is 1320 * that object->use_count >= 1. 1321 */ 1322 static void scan_object(struct kmemleak_object *object) 1323 { 1324 struct kmemleak_scan_area *area; 1325 unsigned long flags; 1326 1327 /* 1328 * Once the object->lock is acquired, the corresponding memory block 1329 * cannot be freed (the same lock is acquired in delete_object). 1330 */ 1331 raw_spin_lock_irqsave(&object->lock, flags); 1332 if (object->flags & OBJECT_NO_SCAN) 1333 goto out; 1334 if (!(object->flags & OBJECT_ALLOCATED)) 1335 /* already freed object */ 1336 goto out; 1337 if (hlist_empty(&object->area_list) || 1338 object->flags & OBJECT_FULL_SCAN) { 1339 void *start = (void *)object->pointer; 1340 void *end = (void *)(object->pointer + object->size); 1341 void *next; 1342 1343 do { 1344 next = min(start + MAX_SCAN_SIZE, end); 1345 scan_block(start, next, object); 1346 1347 start = next; 1348 if (start >= end) 1349 break; 1350 1351 raw_spin_unlock_irqrestore(&object->lock, flags); 1352 cond_resched(); 1353 raw_spin_lock_irqsave(&object->lock, flags); 1354 } while (object->flags & OBJECT_ALLOCATED); 1355 } else 1356 hlist_for_each_entry(area, &object->area_list, node) 1357 scan_block((void *)area->start, 1358 (void *)(area->start + area->size), 1359 object); 1360 out: 1361 raw_spin_unlock_irqrestore(&object->lock, flags); 1362 } 1363 1364 /* 1365 * Scan the objects already referenced (gray objects). More objects will be 1366 * referenced and, if there are no memory leaks, all the objects are scanned. 1367 */ 1368 static void scan_gray_list(void) 1369 { 1370 struct kmemleak_object *object, *tmp; 1371 1372 /* 1373 * The list traversal is safe for both tail additions and removals 1374 * from inside the loop. The kmemleak objects cannot be freed from 1375 * outside the loop because their use_count was incremented. 1376 */ 1377 object = list_entry(gray_list.next, typeof(*object), gray_list); 1378 while (&object->gray_list != &gray_list) { 1379 cond_resched(); 1380 1381 /* may add new objects to the list */ 1382 if (!scan_should_stop()) 1383 scan_object(object); 1384 1385 tmp = list_entry(object->gray_list.next, typeof(*object), 1386 gray_list); 1387 1388 /* remove the object from the list and release it */ 1389 list_del(&object->gray_list); 1390 put_object(object); 1391 1392 object = tmp; 1393 } 1394 WARN_ON(!list_empty(&gray_list)); 1395 } 1396 1397 /* 1398 * Scan data sections and all the referenced memory blocks allocated via the 1399 * kernel's standard allocators. This function must be called with the 1400 * scan_mutex held. 1401 */ 1402 static void kmemleak_scan(void) 1403 { 1404 unsigned long flags; 1405 struct kmemleak_object *object; 1406 int i; 1407 int new_leaks = 0; 1408 1409 jiffies_last_scan = jiffies; 1410 1411 /* prepare the kmemleak_object's */ 1412 rcu_read_lock(); 1413 list_for_each_entry_rcu(object, &object_list, object_list) { 1414 raw_spin_lock_irqsave(&object->lock, flags); 1415 #ifdef DEBUG 1416 /* 1417 * With a few exceptions there should be a maximum of 1418 * 1 reference to any object at this point. 1419 */ 1420 if (atomic_read(&object->use_count) > 1) { 1421 pr_debug("object->use_count = %d\n", 1422 atomic_read(&object->use_count)); 1423 dump_object_info(object); 1424 } 1425 #endif 1426 /* reset the reference count (whiten the object) */ 1427 object->count = 0; 1428 if (color_gray(object) && get_object(object)) 1429 list_add_tail(&object->gray_list, &gray_list); 1430 1431 raw_spin_unlock_irqrestore(&object->lock, flags); 1432 } 1433 rcu_read_unlock(); 1434 1435 #ifdef CONFIG_SMP 1436 /* per-cpu sections scanning */ 1437 for_each_possible_cpu(i) 1438 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1439 __per_cpu_end + per_cpu_offset(i)); 1440 #endif 1441 1442 /* 1443 * Struct page scanning for each node. 1444 */ 1445 get_online_mems(); 1446 for_each_online_node(i) { 1447 unsigned long start_pfn = node_start_pfn(i); 1448 unsigned long end_pfn = node_end_pfn(i); 1449 unsigned long pfn; 1450 1451 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1452 struct page *page = pfn_to_online_page(pfn); 1453 1454 if (!page) 1455 continue; 1456 1457 /* only scan pages belonging to this node */ 1458 if (page_to_nid(page) != i) 1459 continue; 1460 /* only scan if page is in use */ 1461 if (page_count(page) == 0) 1462 continue; 1463 scan_block(page, page + 1, NULL); 1464 if (!(pfn & 63)) 1465 cond_resched(); 1466 } 1467 } 1468 put_online_mems(); 1469 1470 /* 1471 * Scanning the task stacks (may introduce false negatives). 1472 */ 1473 if (kmemleak_stack_scan) { 1474 struct task_struct *p, *g; 1475 1476 rcu_read_lock(); 1477 for_each_process_thread(g, p) { 1478 void *stack = try_get_task_stack(p); 1479 if (stack) { 1480 scan_block(stack, stack + THREAD_SIZE, NULL); 1481 put_task_stack(p); 1482 } 1483 } 1484 rcu_read_unlock(); 1485 } 1486 1487 /* 1488 * Scan the objects already referenced from the sections scanned 1489 * above. 1490 */ 1491 scan_gray_list(); 1492 1493 /* 1494 * Check for new or unreferenced objects modified since the previous 1495 * scan and color them gray until the next scan. 1496 */ 1497 rcu_read_lock(); 1498 list_for_each_entry_rcu(object, &object_list, object_list) { 1499 raw_spin_lock_irqsave(&object->lock, flags); 1500 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1501 && update_checksum(object) && get_object(object)) { 1502 /* color it gray temporarily */ 1503 object->count = object->min_count; 1504 list_add_tail(&object->gray_list, &gray_list); 1505 } 1506 raw_spin_unlock_irqrestore(&object->lock, flags); 1507 } 1508 rcu_read_unlock(); 1509 1510 /* 1511 * Re-scan the gray list for modified unreferenced objects. 1512 */ 1513 scan_gray_list(); 1514 1515 /* 1516 * If scanning was stopped do not report any new unreferenced objects. 1517 */ 1518 if (scan_should_stop()) 1519 return; 1520 1521 /* 1522 * Scanning result reporting. 1523 */ 1524 rcu_read_lock(); 1525 list_for_each_entry_rcu(object, &object_list, object_list) { 1526 raw_spin_lock_irqsave(&object->lock, flags); 1527 if (unreferenced_object(object) && 1528 !(object->flags & OBJECT_REPORTED)) { 1529 object->flags |= OBJECT_REPORTED; 1530 1531 if (kmemleak_verbose) 1532 print_unreferenced(NULL, object); 1533 1534 new_leaks++; 1535 } 1536 raw_spin_unlock_irqrestore(&object->lock, flags); 1537 } 1538 rcu_read_unlock(); 1539 1540 if (new_leaks) { 1541 kmemleak_found_leaks = true; 1542 1543 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1544 new_leaks); 1545 } 1546 1547 } 1548 1549 /* 1550 * Thread function performing automatic memory scanning. Unreferenced objects 1551 * at the end of a memory scan are reported but only the first time. 1552 */ 1553 static int kmemleak_scan_thread(void *arg) 1554 { 1555 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1556 1557 pr_info("Automatic memory scanning thread started\n"); 1558 set_user_nice(current, 10); 1559 1560 /* 1561 * Wait before the first scan to allow the system to fully initialize. 1562 */ 1563 if (first_run) { 1564 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1565 first_run = 0; 1566 while (timeout && !kthread_should_stop()) 1567 timeout = schedule_timeout_interruptible(timeout); 1568 } 1569 1570 while (!kthread_should_stop()) { 1571 signed long timeout = READ_ONCE(jiffies_scan_wait); 1572 1573 mutex_lock(&scan_mutex); 1574 kmemleak_scan(); 1575 mutex_unlock(&scan_mutex); 1576 1577 /* wait before the next scan */ 1578 while (timeout && !kthread_should_stop()) 1579 timeout = schedule_timeout_interruptible(timeout); 1580 } 1581 1582 pr_info("Automatic memory scanning thread ended\n"); 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * Start the automatic memory scanning thread. This function must be called 1589 * with the scan_mutex held. 1590 */ 1591 static void start_scan_thread(void) 1592 { 1593 if (scan_thread) 1594 return; 1595 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1596 if (IS_ERR(scan_thread)) { 1597 pr_warn("Failed to create the scan thread\n"); 1598 scan_thread = NULL; 1599 } 1600 } 1601 1602 /* 1603 * Stop the automatic memory scanning thread. 1604 */ 1605 static void stop_scan_thread(void) 1606 { 1607 if (scan_thread) { 1608 kthread_stop(scan_thread); 1609 scan_thread = NULL; 1610 } 1611 } 1612 1613 /* 1614 * Iterate over the object_list and return the first valid object at or after 1615 * the required position with its use_count incremented. The function triggers 1616 * a memory scanning when the pos argument points to the first position. 1617 */ 1618 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1619 { 1620 struct kmemleak_object *object; 1621 loff_t n = *pos; 1622 int err; 1623 1624 err = mutex_lock_interruptible(&scan_mutex); 1625 if (err < 0) 1626 return ERR_PTR(err); 1627 1628 rcu_read_lock(); 1629 list_for_each_entry_rcu(object, &object_list, object_list) { 1630 if (n-- > 0) 1631 continue; 1632 if (get_object(object)) 1633 goto out; 1634 } 1635 object = NULL; 1636 out: 1637 return object; 1638 } 1639 1640 /* 1641 * Return the next object in the object_list. The function decrements the 1642 * use_count of the previous object and increases that of the next one. 1643 */ 1644 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1645 { 1646 struct kmemleak_object *prev_obj = v; 1647 struct kmemleak_object *next_obj = NULL; 1648 struct kmemleak_object *obj = prev_obj; 1649 1650 ++(*pos); 1651 1652 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1653 if (get_object(obj)) { 1654 next_obj = obj; 1655 break; 1656 } 1657 } 1658 1659 put_object(prev_obj); 1660 return next_obj; 1661 } 1662 1663 /* 1664 * Decrement the use_count of the last object required, if any. 1665 */ 1666 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1667 { 1668 if (!IS_ERR(v)) { 1669 /* 1670 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1671 * waiting was interrupted, so only release it if !IS_ERR. 1672 */ 1673 rcu_read_unlock(); 1674 mutex_unlock(&scan_mutex); 1675 if (v) 1676 put_object(v); 1677 } 1678 } 1679 1680 /* 1681 * Print the information for an unreferenced object to the seq file. 1682 */ 1683 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1684 { 1685 struct kmemleak_object *object = v; 1686 unsigned long flags; 1687 1688 raw_spin_lock_irqsave(&object->lock, flags); 1689 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1690 print_unreferenced(seq, object); 1691 raw_spin_unlock_irqrestore(&object->lock, flags); 1692 return 0; 1693 } 1694 1695 static const struct seq_operations kmemleak_seq_ops = { 1696 .start = kmemleak_seq_start, 1697 .next = kmemleak_seq_next, 1698 .stop = kmemleak_seq_stop, 1699 .show = kmemleak_seq_show, 1700 }; 1701 1702 static int kmemleak_open(struct inode *inode, struct file *file) 1703 { 1704 return seq_open(file, &kmemleak_seq_ops); 1705 } 1706 1707 static int dump_str_object_info(const char *str) 1708 { 1709 unsigned long flags; 1710 struct kmemleak_object *object; 1711 unsigned long addr; 1712 1713 if (kstrtoul(str, 0, &addr)) 1714 return -EINVAL; 1715 object = find_and_get_object(addr, 0); 1716 if (!object) { 1717 pr_info("Unknown object at 0x%08lx\n", addr); 1718 return -EINVAL; 1719 } 1720 1721 raw_spin_lock_irqsave(&object->lock, flags); 1722 dump_object_info(object); 1723 raw_spin_unlock_irqrestore(&object->lock, flags); 1724 1725 put_object(object); 1726 return 0; 1727 } 1728 1729 /* 1730 * We use grey instead of black to ensure we can do future scans on the same 1731 * objects. If we did not do future scans these black objects could 1732 * potentially contain references to newly allocated objects in the future and 1733 * we'd end up with false positives. 1734 */ 1735 static void kmemleak_clear(void) 1736 { 1737 struct kmemleak_object *object; 1738 unsigned long flags; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(object, &object_list, object_list) { 1742 raw_spin_lock_irqsave(&object->lock, flags); 1743 if ((object->flags & OBJECT_REPORTED) && 1744 unreferenced_object(object)) 1745 __paint_it(object, KMEMLEAK_GREY); 1746 raw_spin_unlock_irqrestore(&object->lock, flags); 1747 } 1748 rcu_read_unlock(); 1749 1750 kmemleak_found_leaks = false; 1751 } 1752 1753 static void __kmemleak_do_cleanup(void); 1754 1755 /* 1756 * File write operation to configure kmemleak at run-time. The following 1757 * commands can be written to the /sys/kernel/debug/kmemleak file: 1758 * off - disable kmemleak (irreversible) 1759 * stack=on - enable the task stacks scanning 1760 * stack=off - disable the tasks stacks scanning 1761 * scan=on - start the automatic memory scanning thread 1762 * scan=off - stop the automatic memory scanning thread 1763 * scan=... - set the automatic memory scanning period in seconds (0 to 1764 * disable it) 1765 * scan - trigger a memory scan 1766 * clear - mark all current reported unreferenced kmemleak objects as 1767 * grey to ignore printing them, or free all kmemleak objects 1768 * if kmemleak has been disabled. 1769 * dump=... - dump information about the object found at the given address 1770 */ 1771 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1772 size_t size, loff_t *ppos) 1773 { 1774 char buf[64]; 1775 int buf_size; 1776 int ret; 1777 1778 buf_size = min(size, (sizeof(buf) - 1)); 1779 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1780 return -EFAULT; 1781 buf[buf_size] = 0; 1782 1783 ret = mutex_lock_interruptible(&scan_mutex); 1784 if (ret < 0) 1785 return ret; 1786 1787 if (strncmp(buf, "clear", 5) == 0) { 1788 if (kmemleak_enabled) 1789 kmemleak_clear(); 1790 else 1791 __kmemleak_do_cleanup(); 1792 goto out; 1793 } 1794 1795 if (!kmemleak_enabled) { 1796 ret = -EPERM; 1797 goto out; 1798 } 1799 1800 if (strncmp(buf, "off", 3) == 0) 1801 kmemleak_disable(); 1802 else if (strncmp(buf, "stack=on", 8) == 0) 1803 kmemleak_stack_scan = 1; 1804 else if (strncmp(buf, "stack=off", 9) == 0) 1805 kmemleak_stack_scan = 0; 1806 else if (strncmp(buf, "scan=on", 7) == 0) 1807 start_scan_thread(); 1808 else if (strncmp(buf, "scan=off", 8) == 0) 1809 stop_scan_thread(); 1810 else if (strncmp(buf, "scan=", 5) == 0) { 1811 unsigned secs; 1812 unsigned long msecs; 1813 1814 ret = kstrtouint(buf + 5, 0, &secs); 1815 if (ret < 0) 1816 goto out; 1817 1818 msecs = secs * MSEC_PER_SEC; 1819 if (msecs > UINT_MAX) 1820 msecs = UINT_MAX; 1821 1822 stop_scan_thread(); 1823 if (msecs) { 1824 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 1825 start_scan_thread(); 1826 } 1827 } else if (strncmp(buf, "scan", 4) == 0) 1828 kmemleak_scan(); 1829 else if (strncmp(buf, "dump=", 5) == 0) 1830 ret = dump_str_object_info(buf + 5); 1831 else 1832 ret = -EINVAL; 1833 1834 out: 1835 mutex_unlock(&scan_mutex); 1836 if (ret < 0) 1837 return ret; 1838 1839 /* ignore the rest of the buffer, only one command at a time */ 1840 *ppos += size; 1841 return size; 1842 } 1843 1844 static const struct file_operations kmemleak_fops = { 1845 .owner = THIS_MODULE, 1846 .open = kmemleak_open, 1847 .read = seq_read, 1848 .write = kmemleak_write, 1849 .llseek = seq_lseek, 1850 .release = seq_release, 1851 }; 1852 1853 static void __kmemleak_do_cleanup(void) 1854 { 1855 struct kmemleak_object *object, *tmp; 1856 1857 /* 1858 * Kmemleak has already been disabled, no need for RCU list traversal 1859 * or kmemleak_lock held. 1860 */ 1861 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 1862 __remove_object(object); 1863 __delete_object(object); 1864 } 1865 } 1866 1867 /* 1868 * Stop the memory scanning thread and free the kmemleak internal objects if 1869 * no previous scan thread (otherwise, kmemleak may still have some useful 1870 * information on memory leaks). 1871 */ 1872 static void kmemleak_do_cleanup(struct work_struct *work) 1873 { 1874 stop_scan_thread(); 1875 1876 mutex_lock(&scan_mutex); 1877 /* 1878 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 1879 * longer track object freeing. Ordering of the scan thread stopping and 1880 * the memory accesses below is guaranteed by the kthread_stop() 1881 * function. 1882 */ 1883 kmemleak_free_enabled = 0; 1884 mutex_unlock(&scan_mutex); 1885 1886 if (!kmemleak_found_leaks) 1887 __kmemleak_do_cleanup(); 1888 else 1889 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1890 } 1891 1892 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1893 1894 /* 1895 * Disable kmemleak. No memory allocation/freeing will be traced once this 1896 * function is called. Disabling kmemleak is an irreversible operation. 1897 */ 1898 static void kmemleak_disable(void) 1899 { 1900 /* atomically check whether it was already invoked */ 1901 if (cmpxchg(&kmemleak_error, 0, 1)) 1902 return; 1903 1904 /* stop any memory operation tracing */ 1905 kmemleak_enabled = 0; 1906 1907 /* check whether it is too early for a kernel thread */ 1908 if (kmemleak_initialized) 1909 schedule_work(&cleanup_work); 1910 else 1911 kmemleak_free_enabled = 0; 1912 1913 pr_info("Kernel memory leak detector disabled\n"); 1914 } 1915 1916 /* 1917 * Allow boot-time kmemleak disabling (enabled by default). 1918 */ 1919 static int __init kmemleak_boot_config(char *str) 1920 { 1921 if (!str) 1922 return -EINVAL; 1923 if (strcmp(str, "off") == 0) 1924 kmemleak_disable(); 1925 else if (strcmp(str, "on") == 0) 1926 kmemleak_skip_disable = 1; 1927 else 1928 return -EINVAL; 1929 return 0; 1930 } 1931 early_param("kmemleak", kmemleak_boot_config); 1932 1933 /* 1934 * Kmemleak initialization. 1935 */ 1936 void __init kmemleak_init(void) 1937 { 1938 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1939 if (!kmemleak_skip_disable) { 1940 kmemleak_disable(); 1941 return; 1942 } 1943 #endif 1944 1945 if (kmemleak_error) 1946 return; 1947 1948 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1949 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1950 1951 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1952 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1953 1954 /* register the data/bss sections */ 1955 create_object((unsigned long)_sdata, _edata - _sdata, 1956 KMEMLEAK_GREY, GFP_ATOMIC); 1957 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 1958 KMEMLEAK_GREY, GFP_ATOMIC); 1959 /* only register .data..ro_after_init if not within .data */ 1960 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 1961 create_object((unsigned long)__start_ro_after_init, 1962 __end_ro_after_init - __start_ro_after_init, 1963 KMEMLEAK_GREY, GFP_ATOMIC); 1964 } 1965 1966 /* 1967 * Late initialization function. 1968 */ 1969 static int __init kmemleak_late_init(void) 1970 { 1971 kmemleak_initialized = 1; 1972 1973 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 1974 1975 if (kmemleak_error) { 1976 /* 1977 * Some error occurred and kmemleak was disabled. There is a 1978 * small chance that kmemleak_disable() was called immediately 1979 * after setting kmemleak_initialized and we may end up with 1980 * two clean-up threads but serialized by scan_mutex. 1981 */ 1982 schedule_work(&cleanup_work); 1983 return -ENOMEM; 1984 } 1985 1986 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 1987 mutex_lock(&scan_mutex); 1988 start_scan_thread(); 1989 mutex_unlock(&scan_mutex); 1990 } 1991 1992 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 1993 mem_pool_free_count); 1994 1995 return 0; 1996 } 1997 late_initcall(kmemleak_late_init); 1998