1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a kmemleak warning was issued */ 219 static int kmemleak_warning; 220 /* set if a fatal kmemleak error has occurred */ 221 static int kmemleak_error; 222 223 /* minimum and maximum address that may be valid pointers */ 224 static unsigned long min_addr = ULONG_MAX; 225 static unsigned long max_addr; 226 227 /* minimum and maximum address that may be valid per-CPU pointers */ 228 static unsigned long min_percpu_addr = ULONG_MAX; 229 static unsigned long max_percpu_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 if (object->flags & OBJECT_PERCPU) 305 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 306 307 /* limit the number of lines to HEX_MAX_LINES */ 308 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 309 310 if (object->flags & OBJECT_PERCPU) 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 312 len, raw_smp_processor_id()); 313 else 314 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 315 kasan_disable_current(); 316 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 317 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 318 kasan_enable_current(); 319 } 320 321 /* 322 * Object colors, encoded with count and min_count: 323 * - white - orphan object, not enough references to it (count < min_count) 324 * - gray - not orphan, not marked as false positive (min_count == 0) or 325 * sufficient references to it (count >= min_count) 326 * - black - ignore, it doesn't contain references (e.g. text section) 327 * (min_count == -1). No function defined for this color. 328 * Newly created objects don't have any color assigned (object->count == -1) 329 * before the next memory scan when they become white. 330 */ 331 static bool color_white(const struct kmemleak_object *object) 332 { 333 return object->count != KMEMLEAK_BLACK && 334 object->count < object->min_count; 335 } 336 337 static bool color_gray(const struct kmemleak_object *object) 338 { 339 return object->min_count != KMEMLEAK_BLACK && 340 object->count >= object->min_count; 341 } 342 343 /* 344 * Objects are considered unreferenced only if their color is white, they have 345 * not be deleted and have a minimum age to avoid false positives caused by 346 * pointers temporarily stored in CPU registers. 347 */ 348 static bool unreferenced_object(struct kmemleak_object *object) 349 { 350 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 351 time_before_eq(object->jiffies + jiffies_min_age, 352 jiffies_last_scan); 353 } 354 355 /* 356 * Printing of the unreferenced objects information to the seq file. The 357 * print_unreferenced function must be called with the object->lock held. 358 */ 359 static void print_unreferenced(struct seq_file *seq, 360 struct kmemleak_object *object) 361 { 362 int i; 363 unsigned long *entries; 364 unsigned int nr_entries; 365 366 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 367 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 368 object->pointer, object->size); 369 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 370 object->comm, object->pid, object->jiffies); 371 hex_dump_object(seq, object); 372 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 373 374 for (i = 0; i < nr_entries; i++) { 375 void *ptr = (void *)entries[i]; 376 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 377 } 378 } 379 380 /* 381 * Print the kmemleak_object information. This function is used mainly for 382 * debugging special cases when kmemleak operations. It must be called with 383 * the object->lock held. 384 */ 385 static void dump_object_info(struct kmemleak_object *object) 386 { 387 pr_notice("Object 0x%08lx (size %zu):\n", 388 object->pointer, object->size); 389 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 390 object->comm, object->pid, object->jiffies); 391 pr_notice(" min_count = %d\n", object->min_count); 392 pr_notice(" count = %d\n", object->count); 393 pr_notice(" flags = 0x%x\n", object->flags); 394 pr_notice(" checksum = %u\n", object->checksum); 395 pr_notice(" backtrace:\n"); 396 if (object->trace_handle) 397 stack_depot_print(object->trace_handle); 398 } 399 400 static struct rb_root *object_tree(unsigned long objflags) 401 { 402 if (objflags & OBJECT_PHYS) 403 return &object_phys_tree_root; 404 if (objflags & OBJECT_PERCPU) 405 return &object_percpu_tree_root; 406 return &object_tree_root; 407 } 408 409 /* 410 * Look-up a memory block metadata (kmemleak_object) in the object search 411 * tree based on a pointer value. If alias is 0, only values pointing to the 412 * beginning of the memory block are allowed. The kmemleak_lock must be held 413 * when calling this function. 414 */ 415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 416 unsigned int objflags) 417 { 418 struct rb_node *rb = object_tree(objflags)->rb_node; 419 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 420 421 while (rb) { 422 struct kmemleak_object *object; 423 unsigned long untagged_objp; 424 425 object = rb_entry(rb, struct kmemleak_object, rb_node); 426 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 427 428 if (untagged_ptr < untagged_objp) 429 rb = object->rb_node.rb_left; 430 else if (untagged_objp + object->size <= untagged_ptr) 431 rb = object->rb_node.rb_right; 432 else if (untagged_objp == untagged_ptr || alias) 433 return object; 434 else { 435 kmemleak_warn("Found object by alias at 0x%08lx\n", 436 ptr); 437 dump_object_info(object); 438 break; 439 } 440 } 441 return NULL; 442 } 443 444 /* Look-up a kmemleak object which allocated with virtual address. */ 445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 446 { 447 return __lookup_object(ptr, alias, 0); 448 } 449 450 /* 451 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 452 * that once an object's use_count reached 0, the RCU freeing was already 453 * registered and the object should no longer be used. This function must be 454 * called under the protection of rcu_read_lock(). 455 */ 456 static int get_object(struct kmemleak_object *object) 457 { 458 return atomic_inc_not_zero(&object->use_count); 459 } 460 461 /* 462 * Memory pool allocation and freeing. kmemleak_lock must not be held. 463 */ 464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 465 { 466 unsigned long flags; 467 struct kmemleak_object *object; 468 469 /* try the slab allocator first */ 470 if (object_cache) { 471 object = kmem_cache_alloc_noprof(object_cache, 472 gfp_nested_mask(gfp)); 473 if (object) 474 return object; 475 } 476 477 /* slab allocation failed, try the memory pool */ 478 raw_spin_lock_irqsave(&kmemleak_lock, flags); 479 object = list_first_entry_or_null(&mem_pool_free_list, 480 typeof(*object), object_list); 481 if (object) 482 list_del(&object->object_list); 483 else if (mem_pool_free_count) 484 object = &mem_pool[--mem_pool_free_count]; 485 else 486 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 487 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 488 489 return object; 490 } 491 492 /* 493 * Return the object to either the slab allocator or the memory pool. 494 */ 495 static void mem_pool_free(struct kmemleak_object *object) 496 { 497 unsigned long flags; 498 499 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 500 kmem_cache_free(object_cache, object); 501 return; 502 } 503 504 /* add the object to the memory pool free list */ 505 raw_spin_lock_irqsave(&kmemleak_lock, flags); 506 list_add(&object->object_list, &mem_pool_free_list); 507 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 508 } 509 510 /* 511 * RCU callback to free a kmemleak_object. 512 */ 513 static void free_object_rcu(struct rcu_head *rcu) 514 { 515 struct hlist_node *tmp; 516 struct kmemleak_scan_area *area; 517 struct kmemleak_object *object = 518 container_of(rcu, struct kmemleak_object, rcu); 519 520 /* 521 * Once use_count is 0 (guaranteed by put_object), there is no other 522 * code accessing this object, hence no need for locking. 523 */ 524 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 525 hlist_del(&area->node); 526 kmem_cache_free(scan_area_cache, area); 527 } 528 mem_pool_free(object); 529 } 530 531 /* 532 * Decrement the object use_count. Once the count is 0, free the object using 533 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 534 * delete_object() path, the delayed RCU freeing ensures that there is no 535 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 536 * is also possible. 537 */ 538 static void put_object(struct kmemleak_object *object) 539 { 540 if (!atomic_dec_and_test(&object->use_count)) 541 return; 542 543 /* should only get here after delete_object was called */ 544 WARN_ON(object->flags & OBJECT_ALLOCATED); 545 546 /* 547 * It may be too early for the RCU callbacks, however, there is no 548 * concurrent object_list traversal when !object_cache and all objects 549 * came from the memory pool. Free the object directly. 550 */ 551 if (object_cache) 552 call_rcu(&object->rcu, free_object_rcu); 553 else 554 free_object_rcu(&object->rcu); 555 } 556 557 /* 558 * Look up an object in the object search tree and increase its use_count. 559 */ 560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 561 unsigned int objflags) 562 { 563 unsigned long flags; 564 struct kmemleak_object *object; 565 566 rcu_read_lock(); 567 raw_spin_lock_irqsave(&kmemleak_lock, flags); 568 object = __lookup_object(ptr, alias, objflags); 569 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 570 571 /* check whether the object is still available */ 572 if (object && !get_object(object)) 573 object = NULL; 574 rcu_read_unlock(); 575 576 return object; 577 } 578 579 /* Look up and get an object which allocated with virtual address. */ 580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 581 { 582 return __find_and_get_object(ptr, alias, 0); 583 } 584 585 /* 586 * Remove an object from its object tree and object_list. Must be called with 587 * the kmemleak_lock held _if_ kmemleak is still enabled. 588 */ 589 static void __remove_object(struct kmemleak_object *object) 590 { 591 rb_erase(&object->rb_node, object_tree(object->flags)); 592 if (!(object->del_state & DELSTATE_NO_DELETE)) 593 list_del_rcu(&object->object_list); 594 object->del_state |= DELSTATE_REMOVED; 595 } 596 597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 598 int alias, 599 unsigned int objflags) 600 { 601 struct kmemleak_object *object; 602 603 object = __lookup_object(ptr, alias, objflags); 604 if (object) 605 __remove_object(object); 606 607 return object; 608 } 609 610 /* 611 * Look up an object in the object search tree and remove it from both object 612 * tree root and object_list. The returned object's use_count should be at 613 * least 1, as initially set by create_object(). 614 */ 615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 616 unsigned int objflags) 617 { 618 unsigned long flags; 619 struct kmemleak_object *object; 620 621 raw_spin_lock_irqsave(&kmemleak_lock, flags); 622 object = __find_and_remove_object(ptr, alias, objflags); 623 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 624 625 return object; 626 } 627 628 static noinline depot_stack_handle_t set_track_prepare(void) 629 { 630 depot_stack_handle_t trace_handle; 631 unsigned long entries[MAX_TRACE]; 632 unsigned int nr_entries; 633 634 /* 635 * Use object_cache to determine whether kmemleak_init() has 636 * been invoked. stack_depot_early_init() is called before 637 * kmemleak_init() in mm_core_init(). 638 */ 639 if (!object_cache) 640 return 0; 641 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 642 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 643 644 return trace_handle; 645 } 646 647 static struct kmemleak_object *__alloc_object(gfp_t gfp) 648 { 649 struct kmemleak_object *object; 650 651 object = mem_pool_alloc(gfp); 652 if (!object) { 653 pr_warn("Cannot allocate a kmemleak_object structure\n"); 654 kmemleak_disable(); 655 return NULL; 656 } 657 658 INIT_LIST_HEAD(&object->object_list); 659 INIT_LIST_HEAD(&object->gray_list); 660 INIT_HLIST_HEAD(&object->area_list); 661 raw_spin_lock_init(&object->lock); 662 atomic_set(&object->use_count, 1); 663 object->excess_ref = 0; 664 object->count = 0; /* white color initially */ 665 object->checksum = 0; 666 object->del_state = 0; 667 668 /* task information */ 669 if (in_hardirq()) { 670 object->pid = 0; 671 strscpy(object->comm, "hardirq"); 672 } else if (in_serving_softirq()) { 673 object->pid = 0; 674 strscpy(object->comm, "softirq"); 675 } else { 676 object->pid = current->pid; 677 /* 678 * There is a small chance of a race with set_task_comm(), 679 * however using get_task_comm() here may cause locking 680 * dependency issues with current->alloc_lock. In the worst 681 * case, the command line is not correct. 682 */ 683 strscpy(object->comm, current->comm); 684 } 685 686 /* kernel backtrace */ 687 object->trace_handle = set_track_prepare(); 688 689 return object; 690 } 691 692 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 693 size_t size, int min_count, unsigned int objflags) 694 { 695 696 struct kmemleak_object *parent; 697 struct rb_node **link, *rb_parent; 698 unsigned long untagged_ptr; 699 unsigned long untagged_objp; 700 701 object->flags = OBJECT_ALLOCATED | objflags; 702 object->pointer = ptr; 703 object->size = kfence_ksize((void *)ptr) ?: size; 704 object->min_count = min_count; 705 object->jiffies = jiffies; 706 707 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 708 /* 709 * Only update min_addr and max_addr with object storing virtual 710 * address. And update min_percpu_addr max_percpu_addr for per-CPU 711 * objects. 712 */ 713 if (objflags & OBJECT_PERCPU) { 714 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 715 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 716 } else if (!(objflags & OBJECT_PHYS)) { 717 min_addr = min(min_addr, untagged_ptr); 718 max_addr = max(max_addr, untagged_ptr + size); 719 } 720 link = &object_tree(objflags)->rb_node; 721 rb_parent = NULL; 722 while (*link) { 723 rb_parent = *link; 724 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 725 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 726 if (untagged_ptr + size <= untagged_objp) 727 link = &parent->rb_node.rb_left; 728 else if (untagged_objp + parent->size <= untagged_ptr) 729 link = &parent->rb_node.rb_right; 730 else { 731 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 732 ptr); 733 /* 734 * No need for parent->lock here since "parent" cannot 735 * be freed while the kmemleak_lock is held. 736 */ 737 dump_object_info(parent); 738 return -EEXIST; 739 } 740 } 741 rb_link_node(&object->rb_node, rb_parent, link); 742 rb_insert_color(&object->rb_node, object_tree(objflags)); 743 list_add_tail_rcu(&object->object_list, &object_list); 744 745 return 0; 746 } 747 748 /* 749 * Create the metadata (struct kmemleak_object) corresponding to an allocated 750 * memory block and add it to the object_list and object tree. 751 */ 752 static void __create_object(unsigned long ptr, size_t size, 753 int min_count, gfp_t gfp, unsigned int objflags) 754 { 755 struct kmemleak_object *object; 756 unsigned long flags; 757 int ret; 758 759 object = __alloc_object(gfp); 760 if (!object) 761 return; 762 763 raw_spin_lock_irqsave(&kmemleak_lock, flags); 764 ret = __link_object(object, ptr, size, min_count, objflags); 765 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 766 if (ret) 767 mem_pool_free(object); 768 } 769 770 /* Create kmemleak object which allocated with virtual address. */ 771 static void create_object(unsigned long ptr, size_t size, 772 int min_count, gfp_t gfp) 773 { 774 __create_object(ptr, size, min_count, gfp, 0); 775 } 776 777 /* Create kmemleak object which allocated with physical address. */ 778 static void create_object_phys(unsigned long ptr, size_t size, 779 int min_count, gfp_t gfp) 780 { 781 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 782 } 783 784 /* Create kmemleak object corresponding to a per-CPU allocation. */ 785 static void create_object_percpu(unsigned long ptr, size_t size, 786 int min_count, gfp_t gfp) 787 { 788 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 789 } 790 791 /* 792 * Mark the object as not allocated and schedule RCU freeing via put_object(). 793 */ 794 static void __delete_object(struct kmemleak_object *object) 795 { 796 unsigned long flags; 797 798 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 799 WARN_ON(atomic_read(&object->use_count) < 1); 800 801 /* 802 * Locking here also ensures that the corresponding memory block 803 * cannot be freed when it is being scanned. 804 */ 805 raw_spin_lock_irqsave(&object->lock, flags); 806 object->flags &= ~OBJECT_ALLOCATED; 807 raw_spin_unlock_irqrestore(&object->lock, flags); 808 put_object(object); 809 } 810 811 /* 812 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 813 * delete it. 814 */ 815 static void delete_object_full(unsigned long ptr, unsigned int objflags) 816 { 817 struct kmemleak_object *object; 818 819 object = find_and_remove_object(ptr, 0, objflags); 820 if (!object) { 821 #ifdef DEBUG 822 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 823 ptr); 824 #endif 825 return; 826 } 827 __delete_object(object); 828 } 829 830 /* 831 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 832 * delete it. If the memory block is partially freed, the function may create 833 * additional metadata for the remaining parts of the block. 834 */ 835 static void delete_object_part(unsigned long ptr, size_t size, 836 unsigned int objflags) 837 { 838 struct kmemleak_object *object, *object_l, *object_r; 839 unsigned long start, end, flags; 840 841 object_l = __alloc_object(GFP_KERNEL); 842 if (!object_l) 843 return; 844 845 object_r = __alloc_object(GFP_KERNEL); 846 if (!object_r) 847 goto out; 848 849 raw_spin_lock_irqsave(&kmemleak_lock, flags); 850 object = __find_and_remove_object(ptr, 1, objflags); 851 if (!object) { 852 #ifdef DEBUG 853 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 854 ptr, size); 855 #endif 856 goto unlock; 857 } 858 859 /* 860 * Create one or two objects that may result from the memory block 861 * split. Note that partial freeing is only done by free_bootmem() and 862 * this happens before kmemleak_init() is called. 863 */ 864 start = object->pointer; 865 end = object->pointer + object->size; 866 if ((ptr > start) && 867 !__link_object(object_l, start, ptr - start, 868 object->min_count, objflags)) 869 object_l = NULL; 870 if ((ptr + size < end) && 871 !__link_object(object_r, ptr + size, end - ptr - size, 872 object->min_count, objflags)) 873 object_r = NULL; 874 875 unlock: 876 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 877 if (object) 878 __delete_object(object); 879 880 out: 881 if (object_l) 882 mem_pool_free(object_l); 883 if (object_r) 884 mem_pool_free(object_r); 885 } 886 887 static void __paint_it(struct kmemleak_object *object, int color) 888 { 889 object->min_count = color; 890 if (color == KMEMLEAK_BLACK) 891 object->flags |= OBJECT_NO_SCAN; 892 } 893 894 static void paint_it(struct kmemleak_object *object, int color) 895 { 896 unsigned long flags; 897 898 raw_spin_lock_irqsave(&object->lock, flags); 899 __paint_it(object, color); 900 raw_spin_unlock_irqrestore(&object->lock, flags); 901 } 902 903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 904 { 905 struct kmemleak_object *object; 906 907 object = __find_and_get_object(ptr, 0, objflags); 908 if (!object) { 909 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 910 ptr, 911 (color == KMEMLEAK_GREY) ? "Grey" : 912 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 913 return; 914 } 915 paint_it(object, color); 916 put_object(object); 917 } 918 919 /* 920 * Mark an object permanently as gray-colored so that it can no longer be 921 * reported as a leak. This is used in general to mark a false positive. 922 */ 923 static void make_gray_object(unsigned long ptr) 924 { 925 paint_ptr(ptr, KMEMLEAK_GREY, 0); 926 } 927 928 /* 929 * Mark the object as black-colored so that it is ignored from scans and 930 * reporting. 931 */ 932 static void make_black_object(unsigned long ptr, unsigned int objflags) 933 { 934 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 935 } 936 937 /* 938 * Add a scanning area to the object. If at least one such area is added, 939 * kmemleak will only scan these ranges rather than the whole memory block. 940 */ 941 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 942 { 943 unsigned long flags; 944 struct kmemleak_object *object; 945 struct kmemleak_scan_area *area = NULL; 946 unsigned long untagged_ptr; 947 unsigned long untagged_objp; 948 949 object = find_and_get_object(ptr, 1); 950 if (!object) { 951 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 952 ptr); 953 return; 954 } 955 956 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 957 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 958 959 if (scan_area_cache) 960 area = kmem_cache_alloc_noprof(scan_area_cache, 961 gfp_nested_mask(gfp)); 962 963 raw_spin_lock_irqsave(&object->lock, flags); 964 if (!area) { 965 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 966 /* mark the object for full scan to avoid false positives */ 967 object->flags |= OBJECT_FULL_SCAN; 968 goto out_unlock; 969 } 970 if (size == SIZE_MAX) { 971 size = untagged_objp + object->size - untagged_ptr; 972 } else if (untagged_ptr + size > untagged_objp + object->size) { 973 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 974 dump_object_info(object); 975 kmem_cache_free(scan_area_cache, area); 976 goto out_unlock; 977 } 978 979 INIT_HLIST_NODE(&area->node); 980 area->start = ptr; 981 area->size = size; 982 983 hlist_add_head(&area->node, &object->area_list); 984 out_unlock: 985 raw_spin_unlock_irqrestore(&object->lock, flags); 986 put_object(object); 987 } 988 989 /* 990 * Any surplus references (object already gray) to 'ptr' are passed to 991 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 992 * vm_struct may be used as an alternative reference to the vmalloc'ed object 993 * (see free_thread_stack()). 994 */ 995 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 996 { 997 unsigned long flags; 998 struct kmemleak_object *object; 999 1000 object = find_and_get_object(ptr, 0); 1001 if (!object) { 1002 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1003 ptr); 1004 return; 1005 } 1006 1007 raw_spin_lock_irqsave(&object->lock, flags); 1008 object->excess_ref = excess_ref; 1009 raw_spin_unlock_irqrestore(&object->lock, flags); 1010 put_object(object); 1011 } 1012 1013 /* 1014 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 1015 * pointer. Such object will not be scanned by kmemleak but references to it 1016 * are searched. 1017 */ 1018 static void object_no_scan(unsigned long ptr) 1019 { 1020 unsigned long flags; 1021 struct kmemleak_object *object; 1022 1023 object = find_and_get_object(ptr, 0); 1024 if (!object) { 1025 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1026 return; 1027 } 1028 1029 raw_spin_lock_irqsave(&object->lock, flags); 1030 object->flags |= OBJECT_NO_SCAN; 1031 raw_spin_unlock_irqrestore(&object->lock, flags); 1032 put_object(object); 1033 } 1034 1035 /** 1036 * kmemleak_alloc - register a newly allocated object 1037 * @ptr: pointer to beginning of the object 1038 * @size: size of the object 1039 * @min_count: minimum number of references to this object. If during memory 1040 * scanning a number of references less than @min_count is found, 1041 * the object is reported as a memory leak. If @min_count is 0, 1042 * the object is never reported as a leak. If @min_count is -1, 1043 * the object is ignored (not scanned and not reported as a leak) 1044 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1045 * 1046 * This function is called from the kernel allocators when a new object 1047 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1048 */ 1049 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1050 gfp_t gfp) 1051 { 1052 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1053 1054 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1055 create_object((unsigned long)ptr, size, min_count, gfp); 1056 } 1057 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1058 1059 /** 1060 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1061 * @ptr: __percpu pointer to beginning of the object 1062 * @size: size of the object 1063 * @gfp: flags used for kmemleak internal memory allocations 1064 * 1065 * This function is called from the kernel percpu allocator when a new object 1066 * (memory block) is allocated (alloc_percpu). 1067 */ 1068 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1069 gfp_t gfp) 1070 { 1071 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1072 1073 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1074 create_object_percpu((__force unsigned long)ptr, size, 0, gfp); 1075 } 1076 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1077 1078 /** 1079 * kmemleak_vmalloc - register a newly vmalloc'ed object 1080 * @area: pointer to vm_struct 1081 * @size: size of the object 1082 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1083 * 1084 * This function is called from the vmalloc() kernel allocator when a new 1085 * object (memory block) is allocated. 1086 */ 1087 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1088 { 1089 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1090 1091 /* 1092 * A min_count = 2 is needed because vm_struct contains a reference to 1093 * the virtual address of the vmalloc'ed block. 1094 */ 1095 if (kmemleak_enabled) { 1096 create_object((unsigned long)area->addr, size, 2, gfp); 1097 object_set_excess_ref((unsigned long)area, 1098 (unsigned long)area->addr); 1099 } 1100 } 1101 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1102 1103 /** 1104 * kmemleak_free - unregister a previously registered object 1105 * @ptr: pointer to beginning of the object 1106 * 1107 * This function is called from the kernel allocators when an object (memory 1108 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1109 */ 1110 void __ref kmemleak_free(const void *ptr) 1111 { 1112 pr_debug("%s(0x%px)\n", __func__, ptr); 1113 1114 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1115 delete_object_full((unsigned long)ptr, 0); 1116 } 1117 EXPORT_SYMBOL_GPL(kmemleak_free); 1118 1119 /** 1120 * kmemleak_free_part - partially unregister a previously registered object 1121 * @ptr: pointer to the beginning or inside the object. This also 1122 * represents the start of the range to be freed 1123 * @size: size to be unregistered 1124 * 1125 * This function is called when only a part of a memory block is freed 1126 * (usually from the bootmem allocator). 1127 */ 1128 void __ref kmemleak_free_part(const void *ptr, size_t size) 1129 { 1130 pr_debug("%s(0x%px)\n", __func__, ptr); 1131 1132 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1133 delete_object_part((unsigned long)ptr, size, 0); 1134 } 1135 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1136 1137 /** 1138 * kmemleak_free_percpu - unregister a previously registered __percpu object 1139 * @ptr: __percpu pointer to beginning of the object 1140 * 1141 * This function is called from the kernel percpu allocator when an object 1142 * (memory block) is freed (free_percpu). 1143 */ 1144 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1145 { 1146 pr_debug("%s(0x%px)\n", __func__, ptr); 1147 1148 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1149 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1150 } 1151 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1152 1153 /** 1154 * kmemleak_update_trace - update object allocation stack trace 1155 * @ptr: pointer to beginning of the object 1156 * 1157 * Override the object allocation stack trace for cases where the actual 1158 * allocation place is not always useful. 1159 */ 1160 void __ref kmemleak_update_trace(const void *ptr) 1161 { 1162 struct kmemleak_object *object; 1163 depot_stack_handle_t trace_handle; 1164 unsigned long flags; 1165 1166 pr_debug("%s(0x%px)\n", __func__, ptr); 1167 1168 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1169 return; 1170 1171 object = find_and_get_object((unsigned long)ptr, 1); 1172 if (!object) { 1173 #ifdef DEBUG 1174 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1175 ptr); 1176 #endif 1177 return; 1178 } 1179 1180 trace_handle = set_track_prepare(); 1181 raw_spin_lock_irqsave(&object->lock, flags); 1182 object->trace_handle = trace_handle; 1183 raw_spin_unlock_irqrestore(&object->lock, flags); 1184 1185 put_object(object); 1186 } 1187 EXPORT_SYMBOL(kmemleak_update_trace); 1188 1189 /** 1190 * kmemleak_not_leak - mark an allocated object as false positive 1191 * @ptr: pointer to beginning of the object 1192 * 1193 * Calling this function on an object will cause the memory block to no longer 1194 * be reported as leak and always be scanned. 1195 */ 1196 void __ref kmemleak_not_leak(const void *ptr) 1197 { 1198 pr_debug("%s(0x%px)\n", __func__, ptr); 1199 1200 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1201 make_gray_object((unsigned long)ptr); 1202 } 1203 EXPORT_SYMBOL(kmemleak_not_leak); 1204 1205 /** 1206 * kmemleak_ignore - ignore an allocated object 1207 * @ptr: pointer to beginning of the object 1208 * 1209 * Calling this function on an object will cause the memory block to be 1210 * ignored (not scanned and not reported as a leak). This is usually done when 1211 * it is known that the corresponding block is not a leak and does not contain 1212 * any references to other allocated memory blocks. 1213 */ 1214 void __ref kmemleak_ignore(const void *ptr) 1215 { 1216 pr_debug("%s(0x%px)\n", __func__, ptr); 1217 1218 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1219 make_black_object((unsigned long)ptr, 0); 1220 } 1221 EXPORT_SYMBOL(kmemleak_ignore); 1222 1223 /** 1224 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1225 * @ptr: pointer to beginning or inside the object. This also 1226 * represents the start of the scan area 1227 * @size: size of the scan area 1228 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1229 * 1230 * This function is used when it is known that only certain parts of an object 1231 * contain references to other objects. Kmemleak will only scan these areas 1232 * reducing the number false negatives. 1233 */ 1234 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1235 { 1236 pr_debug("%s(0x%px)\n", __func__, ptr); 1237 1238 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1239 add_scan_area((unsigned long)ptr, size, gfp); 1240 } 1241 EXPORT_SYMBOL(kmemleak_scan_area); 1242 1243 /** 1244 * kmemleak_no_scan - do not scan an allocated object 1245 * @ptr: pointer to beginning of the object 1246 * 1247 * This function notifies kmemleak not to scan the given memory block. Useful 1248 * in situations where it is known that the given object does not contain any 1249 * references to other objects. Kmemleak will not scan such objects reducing 1250 * the number of false negatives. 1251 */ 1252 void __ref kmemleak_no_scan(const void *ptr) 1253 { 1254 pr_debug("%s(0x%px)\n", __func__, ptr); 1255 1256 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1257 object_no_scan((unsigned long)ptr); 1258 } 1259 EXPORT_SYMBOL(kmemleak_no_scan); 1260 1261 /** 1262 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1263 * address argument 1264 * @phys: physical address of the object 1265 * @size: size of the object 1266 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1267 */ 1268 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1269 { 1270 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1271 1272 if (kmemleak_enabled) 1273 /* 1274 * Create object with OBJECT_PHYS flag and 1275 * assume min_count 0. 1276 */ 1277 create_object_phys((unsigned long)phys, size, 0, gfp); 1278 } 1279 EXPORT_SYMBOL(kmemleak_alloc_phys); 1280 1281 /** 1282 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1283 * physical address argument 1284 * @phys: physical address if the beginning or inside an object. This 1285 * also represents the start of the range to be freed 1286 * @size: size to be unregistered 1287 */ 1288 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1289 { 1290 pr_debug("%s(0x%px)\n", __func__, &phys); 1291 1292 if (kmemleak_enabled) 1293 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1294 } 1295 EXPORT_SYMBOL(kmemleak_free_part_phys); 1296 1297 /** 1298 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1299 * address argument 1300 * @phys: physical address of the object 1301 */ 1302 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1303 { 1304 pr_debug("%s(0x%px)\n", __func__, &phys); 1305 1306 if (kmemleak_enabled) 1307 make_black_object((unsigned long)phys, OBJECT_PHYS); 1308 } 1309 EXPORT_SYMBOL(kmemleak_ignore_phys); 1310 1311 /* 1312 * Update an object's checksum and return true if it was modified. 1313 */ 1314 static bool update_checksum(struct kmemleak_object *object) 1315 { 1316 u32 old_csum = object->checksum; 1317 1318 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1319 return false; 1320 1321 kasan_disable_current(); 1322 kcsan_disable_current(); 1323 if (object->flags & OBJECT_PERCPU) { 1324 unsigned int cpu; 1325 1326 object->checksum = 0; 1327 for_each_possible_cpu(cpu) { 1328 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1329 1330 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1331 } 1332 } else { 1333 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1334 } 1335 kasan_enable_current(); 1336 kcsan_enable_current(); 1337 1338 return object->checksum != old_csum; 1339 } 1340 1341 /* 1342 * Update an object's references. object->lock must be held by the caller. 1343 */ 1344 static void update_refs(struct kmemleak_object *object) 1345 { 1346 if (!color_white(object)) { 1347 /* non-orphan, ignored or new */ 1348 return; 1349 } 1350 1351 /* 1352 * Increase the object's reference count (number of pointers to the 1353 * memory block). If this count reaches the required minimum, the 1354 * object's color will become gray and it will be added to the 1355 * gray_list. 1356 */ 1357 object->count++; 1358 if (color_gray(object)) { 1359 /* put_object() called when removing from gray_list */ 1360 WARN_ON(!get_object(object)); 1361 list_add_tail(&object->gray_list, &gray_list); 1362 } 1363 } 1364 1365 static void pointer_update_refs(struct kmemleak_object *scanned, 1366 unsigned long pointer, unsigned int objflags) 1367 { 1368 struct kmemleak_object *object; 1369 unsigned long untagged_ptr; 1370 unsigned long excess_ref; 1371 1372 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1373 if (objflags & OBJECT_PERCPU) { 1374 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1375 return; 1376 } else { 1377 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1378 return; 1379 } 1380 1381 /* 1382 * No need for get_object() here since we hold kmemleak_lock. 1383 * object->use_count cannot be dropped to 0 while the object 1384 * is still present in object_tree_root and object_list 1385 * (with updates protected by kmemleak_lock). 1386 */ 1387 object = __lookup_object(pointer, 1, objflags); 1388 if (!object) 1389 return; 1390 if (object == scanned) 1391 /* self referenced, ignore */ 1392 return; 1393 1394 /* 1395 * Avoid the lockdep recursive warning on object->lock being 1396 * previously acquired in scan_object(). These locks are 1397 * enclosed by scan_mutex. 1398 */ 1399 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1400 /* only pass surplus references (object already gray) */ 1401 if (color_gray(object)) { 1402 excess_ref = object->excess_ref; 1403 /* no need for update_refs() if object already gray */ 1404 } else { 1405 excess_ref = 0; 1406 update_refs(object); 1407 } 1408 raw_spin_unlock(&object->lock); 1409 1410 if (excess_ref) { 1411 object = lookup_object(excess_ref, 0); 1412 if (!object) 1413 return; 1414 if (object == scanned) 1415 /* circular reference, ignore */ 1416 return; 1417 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1418 update_refs(object); 1419 raw_spin_unlock(&object->lock); 1420 } 1421 } 1422 1423 /* 1424 * Memory scanning is a long process and it needs to be interruptible. This 1425 * function checks whether such interrupt condition occurred. 1426 */ 1427 static int scan_should_stop(void) 1428 { 1429 if (!kmemleak_enabled) 1430 return 1; 1431 1432 /* 1433 * This function may be called from either process or kthread context, 1434 * hence the need to check for both stop conditions. 1435 */ 1436 if (current->mm) 1437 return signal_pending(current); 1438 else 1439 return kthread_should_stop(); 1440 1441 return 0; 1442 } 1443 1444 /* 1445 * Scan a memory block (exclusive range) for valid pointers and add those 1446 * found to the gray list. 1447 */ 1448 static void scan_block(void *_start, void *_end, 1449 struct kmemleak_object *scanned) 1450 { 1451 unsigned long *ptr; 1452 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1453 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1454 unsigned long flags; 1455 1456 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1457 for (ptr = start; ptr < end; ptr++) { 1458 unsigned long pointer; 1459 1460 if (scan_should_stop()) 1461 break; 1462 1463 kasan_disable_current(); 1464 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1465 kasan_enable_current(); 1466 1467 pointer_update_refs(scanned, pointer, 0); 1468 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1469 } 1470 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1471 } 1472 1473 /* 1474 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1475 */ 1476 #ifdef CONFIG_SMP 1477 static void scan_large_block(void *start, void *end) 1478 { 1479 void *next; 1480 1481 while (start < end) { 1482 next = min(start + MAX_SCAN_SIZE, end); 1483 scan_block(start, next, NULL); 1484 start = next; 1485 cond_resched(); 1486 } 1487 } 1488 #endif 1489 1490 /* 1491 * Scan a memory block corresponding to a kmemleak_object. A condition is 1492 * that object->use_count >= 1. 1493 */ 1494 static void scan_object(struct kmemleak_object *object) 1495 { 1496 struct kmemleak_scan_area *area; 1497 unsigned long flags; 1498 1499 /* 1500 * Once the object->lock is acquired, the corresponding memory block 1501 * cannot be freed (the same lock is acquired in delete_object). 1502 */ 1503 raw_spin_lock_irqsave(&object->lock, flags); 1504 if (object->flags & OBJECT_NO_SCAN) 1505 goto out; 1506 if (!(object->flags & OBJECT_ALLOCATED)) 1507 /* already freed object */ 1508 goto out; 1509 1510 if (object->flags & OBJECT_PERCPU) { 1511 unsigned int cpu; 1512 1513 for_each_possible_cpu(cpu) { 1514 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1515 void *end = start + object->size; 1516 1517 scan_block(start, end, object); 1518 1519 raw_spin_unlock_irqrestore(&object->lock, flags); 1520 cond_resched(); 1521 raw_spin_lock_irqsave(&object->lock, flags); 1522 if (!(object->flags & OBJECT_ALLOCATED)) 1523 break; 1524 } 1525 } else if (hlist_empty(&object->area_list) || 1526 object->flags & OBJECT_FULL_SCAN) { 1527 void *start = object->flags & OBJECT_PHYS ? 1528 __va((phys_addr_t)object->pointer) : 1529 (void *)object->pointer; 1530 void *end = start + object->size; 1531 void *next; 1532 1533 do { 1534 next = min(start + MAX_SCAN_SIZE, end); 1535 scan_block(start, next, object); 1536 1537 start = next; 1538 if (start >= end) 1539 break; 1540 1541 raw_spin_unlock_irqrestore(&object->lock, flags); 1542 cond_resched(); 1543 raw_spin_lock_irqsave(&object->lock, flags); 1544 } while (object->flags & OBJECT_ALLOCATED); 1545 } else { 1546 hlist_for_each_entry(area, &object->area_list, node) 1547 scan_block((void *)area->start, 1548 (void *)(area->start + area->size), 1549 object); 1550 } 1551 out: 1552 raw_spin_unlock_irqrestore(&object->lock, flags); 1553 } 1554 1555 /* 1556 * Scan the objects already referenced (gray objects). More objects will be 1557 * referenced and, if there are no memory leaks, all the objects are scanned. 1558 */ 1559 static void scan_gray_list(void) 1560 { 1561 struct kmemleak_object *object, *tmp; 1562 1563 /* 1564 * The list traversal is safe for both tail additions and removals 1565 * from inside the loop. The kmemleak objects cannot be freed from 1566 * outside the loop because their use_count was incremented. 1567 */ 1568 object = list_entry(gray_list.next, typeof(*object), gray_list); 1569 while (&object->gray_list != &gray_list) { 1570 cond_resched(); 1571 1572 /* may add new objects to the list */ 1573 if (!scan_should_stop()) 1574 scan_object(object); 1575 1576 tmp = list_entry(object->gray_list.next, typeof(*object), 1577 gray_list); 1578 1579 /* remove the object from the list and release it */ 1580 list_del(&object->gray_list); 1581 put_object(object); 1582 1583 object = tmp; 1584 } 1585 WARN_ON(!list_empty(&gray_list)); 1586 } 1587 1588 /* 1589 * Conditionally call resched() in an object iteration loop while making sure 1590 * that the given object won't go away without RCU read lock by performing a 1591 * get_object() if necessaary. 1592 */ 1593 static void kmemleak_cond_resched(struct kmemleak_object *object) 1594 { 1595 if (!get_object(object)) 1596 return; /* Try next object */ 1597 1598 raw_spin_lock_irq(&kmemleak_lock); 1599 if (object->del_state & DELSTATE_REMOVED) 1600 goto unlock_put; /* Object removed */ 1601 object->del_state |= DELSTATE_NO_DELETE; 1602 raw_spin_unlock_irq(&kmemleak_lock); 1603 1604 rcu_read_unlock(); 1605 cond_resched(); 1606 rcu_read_lock(); 1607 1608 raw_spin_lock_irq(&kmemleak_lock); 1609 if (object->del_state & DELSTATE_REMOVED) 1610 list_del_rcu(&object->object_list); 1611 object->del_state &= ~DELSTATE_NO_DELETE; 1612 unlock_put: 1613 raw_spin_unlock_irq(&kmemleak_lock); 1614 put_object(object); 1615 } 1616 1617 /* 1618 * Scan data sections and all the referenced memory blocks allocated via the 1619 * kernel's standard allocators. This function must be called with the 1620 * scan_mutex held. 1621 */ 1622 static void kmemleak_scan(void) 1623 { 1624 struct kmemleak_object *object; 1625 struct zone *zone; 1626 int __maybe_unused i; 1627 int new_leaks = 0; 1628 1629 jiffies_last_scan = jiffies; 1630 1631 /* prepare the kmemleak_object's */ 1632 rcu_read_lock(); 1633 list_for_each_entry_rcu(object, &object_list, object_list) { 1634 raw_spin_lock_irq(&object->lock); 1635 #ifdef DEBUG 1636 /* 1637 * With a few exceptions there should be a maximum of 1638 * 1 reference to any object at this point. 1639 */ 1640 if (atomic_read(&object->use_count) > 1) { 1641 pr_debug("object->use_count = %d\n", 1642 atomic_read(&object->use_count)); 1643 dump_object_info(object); 1644 } 1645 #endif 1646 1647 /* ignore objects outside lowmem (paint them black) */ 1648 if ((object->flags & OBJECT_PHYS) && 1649 !(object->flags & OBJECT_NO_SCAN)) { 1650 unsigned long phys = object->pointer; 1651 1652 if (PHYS_PFN(phys) < min_low_pfn || 1653 PHYS_PFN(phys + object->size) >= max_low_pfn) 1654 __paint_it(object, KMEMLEAK_BLACK); 1655 } 1656 1657 /* reset the reference count (whiten the object) */ 1658 object->count = 0; 1659 if (color_gray(object) && get_object(object)) 1660 list_add_tail(&object->gray_list, &gray_list); 1661 1662 raw_spin_unlock_irq(&object->lock); 1663 1664 if (need_resched()) 1665 kmemleak_cond_resched(object); 1666 } 1667 rcu_read_unlock(); 1668 1669 #ifdef CONFIG_SMP 1670 /* per-cpu sections scanning */ 1671 for_each_possible_cpu(i) 1672 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1673 __per_cpu_end + per_cpu_offset(i)); 1674 #endif 1675 1676 /* 1677 * Struct page scanning for each node. 1678 */ 1679 get_online_mems(); 1680 for_each_populated_zone(zone) { 1681 unsigned long start_pfn = zone->zone_start_pfn; 1682 unsigned long end_pfn = zone_end_pfn(zone); 1683 unsigned long pfn; 1684 1685 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1686 struct page *page = pfn_to_online_page(pfn); 1687 1688 if (!(pfn & 63)) 1689 cond_resched(); 1690 1691 if (!page) 1692 continue; 1693 1694 /* only scan pages belonging to this zone */ 1695 if (page_zone(page) != zone) 1696 continue; 1697 /* only scan if page is in use */ 1698 if (page_count(page) == 0) 1699 continue; 1700 scan_block(page, page + 1, NULL); 1701 } 1702 } 1703 put_online_mems(); 1704 1705 /* 1706 * Scanning the task stacks (may introduce false negatives). 1707 */ 1708 if (kmemleak_stack_scan) { 1709 struct task_struct *p, *g; 1710 1711 rcu_read_lock(); 1712 for_each_process_thread(g, p) { 1713 void *stack = try_get_task_stack(p); 1714 if (stack) { 1715 scan_block(stack, stack + THREAD_SIZE, NULL); 1716 put_task_stack(p); 1717 } 1718 } 1719 rcu_read_unlock(); 1720 } 1721 1722 /* 1723 * Scan the objects already referenced from the sections scanned 1724 * above. 1725 */ 1726 scan_gray_list(); 1727 1728 /* 1729 * Check for new or unreferenced objects modified since the previous 1730 * scan and color them gray until the next scan. 1731 */ 1732 rcu_read_lock(); 1733 list_for_each_entry_rcu(object, &object_list, object_list) { 1734 if (need_resched()) 1735 kmemleak_cond_resched(object); 1736 1737 /* 1738 * This is racy but we can save the overhead of lock/unlock 1739 * calls. The missed objects, if any, should be caught in 1740 * the next scan. 1741 */ 1742 if (!color_white(object)) 1743 continue; 1744 raw_spin_lock_irq(&object->lock); 1745 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1746 && update_checksum(object) && get_object(object)) { 1747 /* color it gray temporarily */ 1748 object->count = object->min_count; 1749 list_add_tail(&object->gray_list, &gray_list); 1750 } 1751 raw_spin_unlock_irq(&object->lock); 1752 } 1753 rcu_read_unlock(); 1754 1755 /* 1756 * Re-scan the gray list for modified unreferenced objects. 1757 */ 1758 scan_gray_list(); 1759 1760 /* 1761 * If scanning was stopped do not report any new unreferenced objects. 1762 */ 1763 if (scan_should_stop()) 1764 return; 1765 1766 /* 1767 * Scanning result reporting. 1768 */ 1769 rcu_read_lock(); 1770 list_for_each_entry_rcu(object, &object_list, object_list) { 1771 if (need_resched()) 1772 kmemleak_cond_resched(object); 1773 1774 /* 1775 * This is racy but we can save the overhead of lock/unlock 1776 * calls. The missed objects, if any, should be caught in 1777 * the next scan. 1778 */ 1779 if (!color_white(object)) 1780 continue; 1781 raw_spin_lock_irq(&object->lock); 1782 if (unreferenced_object(object) && 1783 !(object->flags & OBJECT_REPORTED)) { 1784 object->flags |= OBJECT_REPORTED; 1785 1786 if (kmemleak_verbose) 1787 print_unreferenced(NULL, object); 1788 1789 new_leaks++; 1790 } 1791 raw_spin_unlock_irq(&object->lock); 1792 } 1793 rcu_read_unlock(); 1794 1795 if (new_leaks) { 1796 kmemleak_found_leaks = true; 1797 1798 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1799 new_leaks); 1800 } 1801 1802 } 1803 1804 /* 1805 * Thread function performing automatic memory scanning. Unreferenced objects 1806 * at the end of a memory scan are reported but only the first time. 1807 */ 1808 static int kmemleak_scan_thread(void *arg) 1809 { 1810 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1811 1812 pr_info("Automatic memory scanning thread started\n"); 1813 set_user_nice(current, 10); 1814 1815 /* 1816 * Wait before the first scan to allow the system to fully initialize. 1817 */ 1818 if (first_run) { 1819 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1820 first_run = 0; 1821 while (timeout && !kthread_should_stop()) 1822 timeout = schedule_timeout_interruptible(timeout); 1823 } 1824 1825 while (!kthread_should_stop()) { 1826 signed long timeout = READ_ONCE(jiffies_scan_wait); 1827 1828 mutex_lock(&scan_mutex); 1829 kmemleak_scan(); 1830 mutex_unlock(&scan_mutex); 1831 1832 /* wait before the next scan */ 1833 while (timeout && !kthread_should_stop()) 1834 timeout = schedule_timeout_interruptible(timeout); 1835 } 1836 1837 pr_info("Automatic memory scanning thread ended\n"); 1838 1839 return 0; 1840 } 1841 1842 /* 1843 * Start the automatic memory scanning thread. This function must be called 1844 * with the scan_mutex held. 1845 */ 1846 static void start_scan_thread(void) 1847 { 1848 if (scan_thread) 1849 return; 1850 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1851 if (IS_ERR(scan_thread)) { 1852 pr_warn("Failed to create the scan thread\n"); 1853 scan_thread = NULL; 1854 } 1855 } 1856 1857 /* 1858 * Stop the automatic memory scanning thread. 1859 */ 1860 static void stop_scan_thread(void) 1861 { 1862 if (scan_thread) { 1863 kthread_stop(scan_thread); 1864 scan_thread = NULL; 1865 } 1866 } 1867 1868 /* 1869 * Iterate over the object_list and return the first valid object at or after 1870 * the required position with its use_count incremented. The function triggers 1871 * a memory scanning when the pos argument points to the first position. 1872 */ 1873 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1874 { 1875 struct kmemleak_object *object; 1876 loff_t n = *pos; 1877 int err; 1878 1879 err = mutex_lock_interruptible(&scan_mutex); 1880 if (err < 0) 1881 return ERR_PTR(err); 1882 1883 rcu_read_lock(); 1884 list_for_each_entry_rcu(object, &object_list, object_list) { 1885 if (n-- > 0) 1886 continue; 1887 if (get_object(object)) 1888 goto out; 1889 } 1890 object = NULL; 1891 out: 1892 return object; 1893 } 1894 1895 /* 1896 * Return the next object in the object_list. The function decrements the 1897 * use_count of the previous object and increases that of the next one. 1898 */ 1899 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1900 { 1901 struct kmemleak_object *prev_obj = v; 1902 struct kmemleak_object *next_obj = NULL; 1903 struct kmemleak_object *obj = prev_obj; 1904 1905 ++(*pos); 1906 1907 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1908 if (get_object(obj)) { 1909 next_obj = obj; 1910 break; 1911 } 1912 } 1913 1914 put_object(prev_obj); 1915 return next_obj; 1916 } 1917 1918 /* 1919 * Decrement the use_count of the last object required, if any. 1920 */ 1921 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1922 { 1923 if (!IS_ERR(v)) { 1924 /* 1925 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1926 * waiting was interrupted, so only release it if !IS_ERR. 1927 */ 1928 rcu_read_unlock(); 1929 mutex_unlock(&scan_mutex); 1930 if (v) 1931 put_object(v); 1932 } 1933 } 1934 1935 /* 1936 * Print the information for an unreferenced object to the seq file. 1937 */ 1938 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1939 { 1940 struct kmemleak_object *object = v; 1941 unsigned long flags; 1942 1943 raw_spin_lock_irqsave(&object->lock, flags); 1944 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1945 print_unreferenced(seq, object); 1946 raw_spin_unlock_irqrestore(&object->lock, flags); 1947 return 0; 1948 } 1949 1950 static const struct seq_operations kmemleak_seq_ops = { 1951 .start = kmemleak_seq_start, 1952 .next = kmemleak_seq_next, 1953 .stop = kmemleak_seq_stop, 1954 .show = kmemleak_seq_show, 1955 }; 1956 1957 static int kmemleak_open(struct inode *inode, struct file *file) 1958 { 1959 return seq_open(file, &kmemleak_seq_ops); 1960 } 1961 1962 static int dump_str_object_info(const char *str) 1963 { 1964 unsigned long flags; 1965 struct kmemleak_object *object; 1966 unsigned long addr; 1967 1968 if (kstrtoul(str, 0, &addr)) 1969 return -EINVAL; 1970 object = find_and_get_object(addr, 0); 1971 if (!object) { 1972 pr_info("Unknown object at 0x%08lx\n", addr); 1973 return -EINVAL; 1974 } 1975 1976 raw_spin_lock_irqsave(&object->lock, flags); 1977 dump_object_info(object); 1978 raw_spin_unlock_irqrestore(&object->lock, flags); 1979 1980 put_object(object); 1981 return 0; 1982 } 1983 1984 /* 1985 * We use grey instead of black to ensure we can do future scans on the same 1986 * objects. If we did not do future scans these black objects could 1987 * potentially contain references to newly allocated objects in the future and 1988 * we'd end up with false positives. 1989 */ 1990 static void kmemleak_clear(void) 1991 { 1992 struct kmemleak_object *object; 1993 1994 rcu_read_lock(); 1995 list_for_each_entry_rcu(object, &object_list, object_list) { 1996 raw_spin_lock_irq(&object->lock); 1997 if ((object->flags & OBJECT_REPORTED) && 1998 unreferenced_object(object)) 1999 __paint_it(object, KMEMLEAK_GREY); 2000 raw_spin_unlock_irq(&object->lock); 2001 } 2002 rcu_read_unlock(); 2003 2004 kmemleak_found_leaks = false; 2005 } 2006 2007 static void __kmemleak_do_cleanup(void); 2008 2009 /* 2010 * File write operation to configure kmemleak at run-time. The following 2011 * commands can be written to the /sys/kernel/debug/kmemleak file: 2012 * off - disable kmemleak (irreversible) 2013 * stack=on - enable the task stacks scanning 2014 * stack=off - disable the tasks stacks scanning 2015 * scan=on - start the automatic memory scanning thread 2016 * scan=off - stop the automatic memory scanning thread 2017 * scan=... - set the automatic memory scanning period in seconds (0 to 2018 * disable it) 2019 * scan - trigger a memory scan 2020 * clear - mark all current reported unreferenced kmemleak objects as 2021 * grey to ignore printing them, or free all kmemleak objects 2022 * if kmemleak has been disabled. 2023 * dump=... - dump information about the object found at the given address 2024 */ 2025 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2026 size_t size, loff_t *ppos) 2027 { 2028 char buf[64]; 2029 int buf_size; 2030 int ret; 2031 2032 buf_size = min(size, (sizeof(buf) - 1)); 2033 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2034 return -EFAULT; 2035 buf[buf_size] = 0; 2036 2037 ret = mutex_lock_interruptible(&scan_mutex); 2038 if (ret < 0) 2039 return ret; 2040 2041 if (strncmp(buf, "clear", 5) == 0) { 2042 if (kmemleak_enabled) 2043 kmemleak_clear(); 2044 else 2045 __kmemleak_do_cleanup(); 2046 goto out; 2047 } 2048 2049 if (!kmemleak_enabled) { 2050 ret = -EPERM; 2051 goto out; 2052 } 2053 2054 if (strncmp(buf, "off", 3) == 0) 2055 kmemleak_disable(); 2056 else if (strncmp(buf, "stack=on", 8) == 0) 2057 kmemleak_stack_scan = 1; 2058 else if (strncmp(buf, "stack=off", 9) == 0) 2059 kmemleak_stack_scan = 0; 2060 else if (strncmp(buf, "scan=on", 7) == 0) 2061 start_scan_thread(); 2062 else if (strncmp(buf, "scan=off", 8) == 0) 2063 stop_scan_thread(); 2064 else if (strncmp(buf, "scan=", 5) == 0) { 2065 unsigned secs; 2066 unsigned long msecs; 2067 2068 ret = kstrtouint(buf + 5, 0, &secs); 2069 if (ret < 0) 2070 goto out; 2071 2072 msecs = secs * MSEC_PER_SEC; 2073 if (msecs > UINT_MAX) 2074 msecs = UINT_MAX; 2075 2076 stop_scan_thread(); 2077 if (msecs) { 2078 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2079 start_scan_thread(); 2080 } 2081 } else if (strncmp(buf, "scan", 4) == 0) 2082 kmemleak_scan(); 2083 else if (strncmp(buf, "dump=", 5) == 0) 2084 ret = dump_str_object_info(buf + 5); 2085 else 2086 ret = -EINVAL; 2087 2088 out: 2089 mutex_unlock(&scan_mutex); 2090 if (ret < 0) 2091 return ret; 2092 2093 /* ignore the rest of the buffer, only one command at a time */ 2094 *ppos += size; 2095 return size; 2096 } 2097 2098 static const struct file_operations kmemleak_fops = { 2099 .owner = THIS_MODULE, 2100 .open = kmemleak_open, 2101 .read = seq_read, 2102 .write = kmemleak_write, 2103 .llseek = seq_lseek, 2104 .release = seq_release, 2105 }; 2106 2107 static void __kmemleak_do_cleanup(void) 2108 { 2109 struct kmemleak_object *object, *tmp; 2110 2111 /* 2112 * Kmemleak has already been disabled, no need for RCU list traversal 2113 * or kmemleak_lock held. 2114 */ 2115 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2116 __remove_object(object); 2117 __delete_object(object); 2118 } 2119 } 2120 2121 /* 2122 * Stop the memory scanning thread and free the kmemleak internal objects if 2123 * no previous scan thread (otherwise, kmemleak may still have some useful 2124 * information on memory leaks). 2125 */ 2126 static void kmemleak_do_cleanup(struct work_struct *work) 2127 { 2128 stop_scan_thread(); 2129 2130 mutex_lock(&scan_mutex); 2131 /* 2132 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2133 * longer track object freeing. Ordering of the scan thread stopping and 2134 * the memory accesses below is guaranteed by the kthread_stop() 2135 * function. 2136 */ 2137 kmemleak_free_enabled = 0; 2138 mutex_unlock(&scan_mutex); 2139 2140 if (!kmemleak_found_leaks) 2141 __kmemleak_do_cleanup(); 2142 else 2143 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2144 } 2145 2146 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2147 2148 /* 2149 * Disable kmemleak. No memory allocation/freeing will be traced once this 2150 * function is called. Disabling kmemleak is an irreversible operation. 2151 */ 2152 static void kmemleak_disable(void) 2153 { 2154 /* atomically check whether it was already invoked */ 2155 if (cmpxchg(&kmemleak_error, 0, 1)) 2156 return; 2157 2158 /* stop any memory operation tracing */ 2159 kmemleak_enabled = 0; 2160 2161 /* check whether it is too early for a kernel thread */ 2162 if (kmemleak_late_initialized) 2163 schedule_work(&cleanup_work); 2164 else 2165 kmemleak_free_enabled = 0; 2166 2167 pr_info("Kernel memory leak detector disabled\n"); 2168 } 2169 2170 /* 2171 * Allow boot-time kmemleak disabling (enabled by default). 2172 */ 2173 static int __init kmemleak_boot_config(char *str) 2174 { 2175 if (!str) 2176 return -EINVAL; 2177 if (strcmp(str, "off") == 0) 2178 kmemleak_disable(); 2179 else if (strcmp(str, "on") == 0) { 2180 kmemleak_skip_disable = 1; 2181 stack_depot_request_early_init(); 2182 } 2183 else 2184 return -EINVAL; 2185 return 0; 2186 } 2187 early_param("kmemleak", kmemleak_boot_config); 2188 2189 /* 2190 * Kmemleak initialization. 2191 */ 2192 void __init kmemleak_init(void) 2193 { 2194 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2195 if (!kmemleak_skip_disable) { 2196 kmemleak_disable(); 2197 return; 2198 } 2199 #endif 2200 2201 if (kmemleak_error) 2202 return; 2203 2204 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2205 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2206 2207 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2208 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2209 2210 /* register the data/bss sections */ 2211 create_object((unsigned long)_sdata, _edata - _sdata, 2212 KMEMLEAK_GREY, GFP_ATOMIC); 2213 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2214 KMEMLEAK_GREY, GFP_ATOMIC); 2215 /* only register .data..ro_after_init if not within .data */ 2216 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2217 create_object((unsigned long)__start_ro_after_init, 2218 __end_ro_after_init - __start_ro_after_init, 2219 KMEMLEAK_GREY, GFP_ATOMIC); 2220 } 2221 2222 /* 2223 * Late initialization function. 2224 */ 2225 static int __init kmemleak_late_init(void) 2226 { 2227 kmemleak_late_initialized = 1; 2228 2229 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2230 2231 if (kmemleak_error) { 2232 /* 2233 * Some error occurred and kmemleak was disabled. There is a 2234 * small chance that kmemleak_disable() was called immediately 2235 * after setting kmemleak_late_initialized and we may end up with 2236 * two clean-up threads but serialized by scan_mutex. 2237 */ 2238 schedule_work(&cleanup_work); 2239 return -ENOMEM; 2240 } 2241 2242 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2243 mutex_lock(&scan_mutex); 2244 start_scan_thread(); 2245 mutex_unlock(&scan_mutex); 2246 } 2247 2248 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2249 mem_pool_free_count); 2250 2251 return 0; 2252 } 2253 late_initcall(kmemleak_late_init); 2254