1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object_tree_root (or 18 * object_phys_tree_root). The object_list is the main list holding the 19 * metadata (struct kmemleak_object) for the allocated memory blocks. 20 * The object_tree_root and object_phys_tree_root are red 21 * black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The object_phys_tree_root is for objects 23 * allocated with physical address. The kmemleak_object structures are 24 * added to the object_list and object_tree_root (or object_phys_tree_root) 25 * in the create_object() function called from the kmemleak_alloc() (or 26 * kmemleak_alloc_phys()) callback and removed in delete_object() called from 27 * the kmemleak_free() callback 28 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 29 * Accesses to the metadata (e.g. count) are protected by this lock. Note 30 * that some members of this structure may be protected by other means 31 * (atomic or kmemleak_lock). This lock is also held when scanning the 32 * corresponding memory block to avoid the kernel freeing it via the 33 * kmemleak_free() callback. This is less heavyweight than holding a global 34 * lock like kmemleak_lock during scanning. 35 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 36 * unreferenced objects at a time. The gray_list contains the objects which 37 * are already referenced or marked as false positives and need to be 38 * scanned. This list is only modified during a scanning episode when the 39 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 40 * Note that the kmemleak_object.use_count is incremented when an object is 41 * added to the gray_list and therefore cannot be freed. This mutex also 42 * prevents multiple users of the "kmemleak" debugfs file together with 43 * modifications to the memory scanning parameters including the scan_thread 44 * pointer 45 * 46 * Locks and mutexes are acquired/nested in the following order: 47 * 48 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 49 * 50 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 51 * regions. 52 * 53 * The kmemleak_object structures have a use_count incremented or decremented 54 * using the get_object()/put_object() functions. When the use_count becomes 55 * 0, this count can no longer be incremented and put_object() schedules the 56 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 57 * function must be protected by rcu_read_lock() to avoid accessing a freed 58 * structure. 59 */ 60 61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 62 63 #include <linux/init.h> 64 #include <linux/kernel.h> 65 #include <linux/list.h> 66 #include <linux/sched/signal.h> 67 #include <linux/sched/task.h> 68 #include <linux/sched/task_stack.h> 69 #include <linux/jiffies.h> 70 #include <linux/delay.h> 71 #include <linux/export.h> 72 #include <linux/kthread.h> 73 #include <linux/rbtree.h> 74 #include <linux/fs.h> 75 #include <linux/debugfs.h> 76 #include <linux/seq_file.h> 77 #include <linux/cpumask.h> 78 #include <linux/spinlock.h> 79 #include <linux/module.h> 80 #include <linux/mutex.h> 81 #include <linux/rcupdate.h> 82 #include <linux/stacktrace.h> 83 #include <linux/stackdepot.h> 84 #include <linux/cache.h> 85 #include <linux/percpu.h> 86 #include <linux/memblock.h> 87 #include <linux/pfn.h> 88 #include <linux/mmzone.h> 89 #include <linux/slab.h> 90 #include <linux/thread_info.h> 91 #include <linux/err.h> 92 #include <linux/uaccess.h> 93 #include <linux/string.h> 94 #include <linux/nodemask.h> 95 #include <linux/mm.h> 96 #include <linux/workqueue.h> 97 #include <linux/crc32.h> 98 99 #include <asm/sections.h> 100 #include <asm/processor.h> 101 #include <linux/atomic.h> 102 103 #include <linux/kasan.h> 104 #include <linux/kfence.h> 105 #include <linux/kmemleak.h> 106 #include <linux/memory_hotplug.h> 107 108 /* 109 * Kmemleak configuration and common defines. 110 */ 111 #define MAX_TRACE 16 /* stack trace length */ 112 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 113 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 114 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 115 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 116 117 #define BYTES_PER_POINTER sizeof(void *) 118 119 /* GFP bitmask for kmemleak internal allocations */ 120 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 121 __GFP_NOLOCKDEP)) | \ 122 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 123 __GFP_NOWARN) 124 125 /* scanning area inside a memory block */ 126 struct kmemleak_scan_area { 127 struct hlist_node node; 128 unsigned long start; 129 size_t size; 130 }; 131 132 #define KMEMLEAK_GREY 0 133 #define KMEMLEAK_BLACK -1 134 135 /* 136 * Structure holding the metadata for each allocated memory block. 137 * Modifications to such objects should be made while holding the 138 * object->lock. Insertions or deletions from object_list, gray_list or 139 * rb_node are already protected by the corresponding locks or mutex (see 140 * the notes on locking above). These objects are reference-counted 141 * (use_count) and freed using the RCU mechanism. 142 */ 143 struct kmemleak_object { 144 raw_spinlock_t lock; 145 unsigned int flags; /* object status flags */ 146 struct list_head object_list; 147 struct list_head gray_list; 148 struct rb_node rb_node; 149 struct rcu_head rcu; /* object_list lockless traversal */ 150 /* object usage count; object freed when use_count == 0 */ 151 atomic_t use_count; 152 unsigned int del_state; /* deletion state */ 153 unsigned long pointer; 154 size_t size; 155 /* pass surplus references to this pointer */ 156 unsigned long excess_ref; 157 /* minimum number of a pointers found before it is considered leak */ 158 int min_count; 159 /* the total number of pointers found pointing to this object */ 160 int count; 161 /* checksum for detecting modified objects */ 162 u32 checksum; 163 /* memory ranges to be scanned inside an object (empty for all) */ 164 struct hlist_head area_list; 165 depot_stack_handle_t trace_handle; 166 unsigned long jiffies; /* creation timestamp */ 167 pid_t pid; /* pid of the current task */ 168 char comm[TASK_COMM_LEN]; /* executable name */ 169 }; 170 171 /* flag representing the memory block allocation status */ 172 #define OBJECT_ALLOCATED (1 << 0) 173 /* flag set after the first reporting of an unreference object */ 174 #define OBJECT_REPORTED (1 << 1) 175 /* flag set to not scan the object */ 176 #define OBJECT_NO_SCAN (1 << 2) 177 /* flag set to fully scan the object when scan_area allocation failed */ 178 #define OBJECT_FULL_SCAN (1 << 3) 179 /* flag set for object allocated with physical address */ 180 #define OBJECT_PHYS (1 << 4) 181 182 /* set when __remove_object() called */ 183 #define DELSTATE_REMOVED (1 << 0) 184 /* set to temporarily prevent deletion from object_list */ 185 #define DELSTATE_NO_DELETE (1 << 1) 186 187 #define HEX_PREFIX " " 188 /* number of bytes to print per line; must be 16 or 32 */ 189 #define HEX_ROW_SIZE 16 190 /* number of bytes to print at a time (1, 2, 4, 8) */ 191 #define HEX_GROUP_SIZE 1 192 /* include ASCII after the hex output */ 193 #define HEX_ASCII 1 194 /* max number of lines to be printed */ 195 #define HEX_MAX_LINES 2 196 197 /* the list of all allocated objects */ 198 static LIST_HEAD(object_list); 199 /* the list of gray-colored objects (see color_gray comment below) */ 200 static LIST_HEAD(gray_list); 201 /* memory pool allocation */ 202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 204 static LIST_HEAD(mem_pool_free_list); 205 /* search tree for object boundaries */ 206 static struct rb_root object_tree_root = RB_ROOT; 207 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 208 static struct rb_root object_phys_tree_root = RB_ROOT; 209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 210 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 211 212 /* allocation caches for kmemleak internal data */ 213 static struct kmem_cache *object_cache; 214 static struct kmem_cache *scan_area_cache; 215 216 /* set if tracing memory operations is enabled */ 217 static int kmemleak_enabled = 1; 218 /* same as above but only for the kmemleak_free() callback */ 219 static int kmemleak_free_enabled = 1; 220 /* set in the late_initcall if there were no errors */ 221 static int kmemleak_late_initialized; 222 /* set if a kmemleak warning was issued */ 223 static int kmemleak_warning; 224 /* set if a fatal kmemleak error has occurred */ 225 static int kmemleak_error; 226 227 /* minimum and maximum address that may be valid pointers */ 228 static unsigned long min_addr = ULONG_MAX; 229 static unsigned long max_addr; 230 231 static struct task_struct *scan_thread; 232 /* used to avoid reporting of recently allocated objects */ 233 static unsigned long jiffies_min_age; 234 static unsigned long jiffies_last_scan; 235 /* delay between automatic memory scannings */ 236 static unsigned long jiffies_scan_wait; 237 /* enables or disables the task stacks scanning */ 238 static int kmemleak_stack_scan = 1; 239 /* protects the memory scanning, parameters and debug/kmemleak file access */ 240 static DEFINE_MUTEX(scan_mutex); 241 /* setting kmemleak=on, will set this var, skipping the disable */ 242 static int kmemleak_skip_disable; 243 /* If there are leaks that can be reported */ 244 static bool kmemleak_found_leaks; 245 246 static bool kmemleak_verbose; 247 module_param_named(verbose, kmemleak_verbose, bool, 0600); 248 249 static void kmemleak_disable(void); 250 251 /* 252 * Print a warning and dump the stack trace. 253 */ 254 #define kmemleak_warn(x...) do { \ 255 pr_warn(x); \ 256 dump_stack(); \ 257 kmemleak_warning = 1; \ 258 } while (0) 259 260 /* 261 * Macro invoked when a serious kmemleak condition occurred and cannot be 262 * recovered from. Kmemleak will be disabled and further allocation/freeing 263 * tracing no longer available. 264 */ 265 #define kmemleak_stop(x...) do { \ 266 kmemleak_warn(x); \ 267 kmemleak_disable(); \ 268 } while (0) 269 270 #define warn_or_seq_printf(seq, fmt, ...) do { \ 271 if (seq) \ 272 seq_printf(seq, fmt, ##__VA_ARGS__); \ 273 else \ 274 pr_warn(fmt, ##__VA_ARGS__); \ 275 } while (0) 276 277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 278 int rowsize, int groupsize, const void *buf, 279 size_t len, bool ascii) 280 { 281 if (seq) 282 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 283 buf, len, ascii); 284 else 285 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 286 rowsize, groupsize, buf, len, ascii); 287 } 288 289 /* 290 * Printing of the objects hex dump to the seq file. The number of lines to be 291 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 292 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 293 * with the object->lock held. 294 */ 295 static void hex_dump_object(struct seq_file *seq, 296 struct kmemleak_object *object) 297 { 298 const u8 *ptr = (const u8 *)object->pointer; 299 size_t len; 300 301 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 302 return; 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 308 kasan_disable_current(); 309 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 310 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 311 kasan_enable_current(); 312 } 313 314 /* 315 * Object colors, encoded with count and min_count: 316 * - white - orphan object, not enough references to it (count < min_count) 317 * - gray - not orphan, not marked as false positive (min_count == 0) or 318 * sufficient references to it (count >= min_count) 319 * - black - ignore, it doesn't contain references (e.g. text section) 320 * (min_count == -1). No function defined for this color. 321 * Newly created objects don't have any color assigned (object->count == -1) 322 * before the next memory scan when they become white. 323 */ 324 static bool color_white(const struct kmemleak_object *object) 325 { 326 return object->count != KMEMLEAK_BLACK && 327 object->count < object->min_count; 328 } 329 330 static bool color_gray(const struct kmemleak_object *object) 331 { 332 return object->min_count != KMEMLEAK_BLACK && 333 object->count >= object->min_count; 334 } 335 336 /* 337 * Objects are considered unreferenced only if their color is white, they have 338 * not be deleted and have a minimum age to avoid false positives caused by 339 * pointers temporarily stored in CPU registers. 340 */ 341 static bool unreferenced_object(struct kmemleak_object *object) 342 { 343 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 344 time_before_eq(object->jiffies + jiffies_min_age, 345 jiffies_last_scan); 346 } 347 348 /* 349 * Printing of the unreferenced objects information to the seq file. The 350 * print_unreferenced function must be called with the object->lock held. 351 */ 352 static void print_unreferenced(struct seq_file *seq, 353 struct kmemleak_object *object) 354 { 355 int i; 356 unsigned long *entries; 357 unsigned int nr_entries; 358 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 359 360 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 361 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 362 object->pointer, object->size); 363 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 364 object->comm, object->pid, object->jiffies, 365 msecs_age / 1000, msecs_age % 1000); 366 hex_dump_object(seq, object); 367 warn_or_seq_printf(seq, " backtrace:\n"); 368 369 for (i = 0; i < nr_entries; i++) { 370 void *ptr = (void *)entries[i]; 371 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr); 372 } 373 } 374 375 /* 376 * Print the kmemleak_object information. This function is used mainly for 377 * debugging special cases when kmemleak operations. It must be called with 378 * the object->lock held. 379 */ 380 static void dump_object_info(struct kmemleak_object *object) 381 { 382 pr_notice("Object 0x%08lx (size %zu):\n", 383 object->pointer, object->size); 384 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 385 object->comm, object->pid, object->jiffies); 386 pr_notice(" min_count = %d\n", object->min_count); 387 pr_notice(" count = %d\n", object->count); 388 pr_notice(" flags = 0x%x\n", object->flags); 389 pr_notice(" checksum = %u\n", object->checksum); 390 pr_notice(" backtrace:\n"); 391 if (object->trace_handle) 392 stack_depot_print(object->trace_handle); 393 } 394 395 /* 396 * Look-up a memory block metadata (kmemleak_object) in the object search 397 * tree based on a pointer value. If alias is 0, only values pointing to the 398 * beginning of the memory block are allowed. The kmemleak_lock must be held 399 * when calling this function. 400 */ 401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 402 bool is_phys) 403 { 404 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node : 405 object_tree_root.rb_node; 406 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 407 408 while (rb) { 409 struct kmemleak_object *object; 410 unsigned long untagged_objp; 411 412 object = rb_entry(rb, struct kmemleak_object, rb_node); 413 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 414 415 if (untagged_ptr < untagged_objp) 416 rb = object->rb_node.rb_left; 417 else if (untagged_objp + object->size <= untagged_ptr) 418 rb = object->rb_node.rb_right; 419 else if (untagged_objp == untagged_ptr || alias) 420 return object; 421 else { 422 kmemleak_warn("Found object by alias at 0x%08lx\n", 423 ptr); 424 dump_object_info(object); 425 break; 426 } 427 } 428 return NULL; 429 } 430 431 /* Look-up a kmemleak object which allocated with virtual address. */ 432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 433 { 434 return __lookup_object(ptr, alias, false); 435 } 436 437 /* 438 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 439 * that once an object's use_count reached 0, the RCU freeing was already 440 * registered and the object should no longer be used. This function must be 441 * called under the protection of rcu_read_lock(). 442 */ 443 static int get_object(struct kmemleak_object *object) 444 { 445 return atomic_inc_not_zero(&object->use_count); 446 } 447 448 /* 449 * Memory pool allocation and freeing. kmemleak_lock must not be held. 450 */ 451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 452 { 453 unsigned long flags; 454 struct kmemleak_object *object; 455 456 /* try the slab allocator first */ 457 if (object_cache) { 458 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 459 if (object) 460 return object; 461 } 462 463 /* slab allocation failed, try the memory pool */ 464 raw_spin_lock_irqsave(&kmemleak_lock, flags); 465 object = list_first_entry_or_null(&mem_pool_free_list, 466 typeof(*object), object_list); 467 if (object) 468 list_del(&object->object_list); 469 else if (mem_pool_free_count) 470 object = &mem_pool[--mem_pool_free_count]; 471 else 472 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 473 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 474 475 return object; 476 } 477 478 /* 479 * Return the object to either the slab allocator or the memory pool. 480 */ 481 static void mem_pool_free(struct kmemleak_object *object) 482 { 483 unsigned long flags; 484 485 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 486 kmem_cache_free(object_cache, object); 487 return; 488 } 489 490 /* add the object to the memory pool free list */ 491 raw_spin_lock_irqsave(&kmemleak_lock, flags); 492 list_add(&object->object_list, &mem_pool_free_list); 493 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 494 } 495 496 /* 497 * RCU callback to free a kmemleak_object. 498 */ 499 static void free_object_rcu(struct rcu_head *rcu) 500 { 501 struct hlist_node *tmp; 502 struct kmemleak_scan_area *area; 503 struct kmemleak_object *object = 504 container_of(rcu, struct kmemleak_object, rcu); 505 506 /* 507 * Once use_count is 0 (guaranteed by put_object), there is no other 508 * code accessing this object, hence no need for locking. 509 */ 510 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 511 hlist_del(&area->node); 512 kmem_cache_free(scan_area_cache, area); 513 } 514 mem_pool_free(object); 515 } 516 517 /* 518 * Decrement the object use_count. Once the count is 0, free the object using 519 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 520 * delete_object() path, the delayed RCU freeing ensures that there is no 521 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 522 * is also possible. 523 */ 524 static void put_object(struct kmemleak_object *object) 525 { 526 if (!atomic_dec_and_test(&object->use_count)) 527 return; 528 529 /* should only get here after delete_object was called */ 530 WARN_ON(object->flags & OBJECT_ALLOCATED); 531 532 /* 533 * It may be too early for the RCU callbacks, however, there is no 534 * concurrent object_list traversal when !object_cache and all objects 535 * came from the memory pool. Free the object directly. 536 */ 537 if (object_cache) 538 call_rcu(&object->rcu, free_object_rcu); 539 else 540 free_object_rcu(&object->rcu); 541 } 542 543 /* 544 * Look up an object in the object search tree and increase its use_count. 545 */ 546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 547 bool is_phys) 548 { 549 unsigned long flags; 550 struct kmemleak_object *object; 551 552 rcu_read_lock(); 553 raw_spin_lock_irqsave(&kmemleak_lock, flags); 554 object = __lookup_object(ptr, alias, is_phys); 555 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 556 557 /* check whether the object is still available */ 558 if (object && !get_object(object)) 559 object = NULL; 560 rcu_read_unlock(); 561 562 return object; 563 } 564 565 /* Look up and get an object which allocated with virtual address. */ 566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 567 { 568 return __find_and_get_object(ptr, alias, false); 569 } 570 571 /* 572 * Remove an object from the object_tree_root (or object_phys_tree_root) 573 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak 574 * is still enabled. 575 */ 576 static void __remove_object(struct kmemleak_object *object) 577 { 578 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ? 579 &object_phys_tree_root : 580 &object_tree_root); 581 if (!(object->del_state & DELSTATE_NO_DELETE)) 582 list_del_rcu(&object->object_list); 583 object->del_state |= DELSTATE_REMOVED; 584 } 585 586 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 587 int alias, 588 bool is_phys) 589 { 590 struct kmemleak_object *object; 591 592 object = __lookup_object(ptr, alias, is_phys); 593 if (object) 594 __remove_object(object); 595 596 return object; 597 } 598 599 /* 600 * Look up an object in the object search tree and remove it from both 601 * object_tree_root (or object_phys_tree_root) and object_list. The 602 * returned object's use_count should be at least 1, as initially set 603 * by create_object(). 604 */ 605 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 606 bool is_phys) 607 { 608 unsigned long flags; 609 struct kmemleak_object *object; 610 611 raw_spin_lock_irqsave(&kmemleak_lock, flags); 612 object = __find_and_remove_object(ptr, alias, is_phys); 613 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 614 615 return object; 616 } 617 618 static noinline depot_stack_handle_t set_track_prepare(void) 619 { 620 depot_stack_handle_t trace_handle; 621 unsigned long entries[MAX_TRACE]; 622 unsigned int nr_entries; 623 624 /* 625 * Use object_cache to determine whether kmemleak_init() has 626 * been invoked. stack_depot_early_init() is called before 627 * kmemleak_init() in mm_core_init(). 628 */ 629 if (!object_cache) 630 return 0; 631 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 632 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 633 634 return trace_handle; 635 } 636 637 static struct kmemleak_object *__alloc_object(gfp_t gfp) 638 { 639 struct kmemleak_object *object; 640 641 object = mem_pool_alloc(gfp); 642 if (!object) { 643 pr_warn("Cannot allocate a kmemleak_object structure\n"); 644 kmemleak_disable(); 645 } 646 647 return object; 648 } 649 650 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 651 size_t size, int min_count, bool is_phys) 652 { 653 654 struct kmemleak_object *parent; 655 struct rb_node **link, *rb_parent; 656 unsigned long untagged_ptr; 657 unsigned long untagged_objp; 658 659 INIT_LIST_HEAD(&object->object_list); 660 INIT_LIST_HEAD(&object->gray_list); 661 INIT_HLIST_HEAD(&object->area_list); 662 raw_spin_lock_init(&object->lock); 663 atomic_set(&object->use_count, 1); 664 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0); 665 object->pointer = ptr; 666 object->size = kfence_ksize((void *)ptr) ?: size; 667 object->excess_ref = 0; 668 object->min_count = min_count; 669 object->count = 0; /* white color initially */ 670 object->jiffies = jiffies; 671 object->checksum = 0; 672 object->del_state = 0; 673 674 /* task information */ 675 if (in_hardirq()) { 676 object->pid = 0; 677 strncpy(object->comm, "hardirq", sizeof(object->comm)); 678 } else if (in_serving_softirq()) { 679 object->pid = 0; 680 strncpy(object->comm, "softirq", sizeof(object->comm)); 681 } else { 682 object->pid = current->pid; 683 /* 684 * There is a small chance of a race with set_task_comm(), 685 * however using get_task_comm() here may cause locking 686 * dependency issues with current->alloc_lock. In the worst 687 * case, the command line is not correct. 688 */ 689 strncpy(object->comm, current->comm, sizeof(object->comm)); 690 } 691 692 /* kernel backtrace */ 693 object->trace_handle = set_track_prepare(); 694 695 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 696 /* 697 * Only update min_addr and max_addr with object 698 * storing virtual address. 699 */ 700 if (!is_phys) { 701 min_addr = min(min_addr, untagged_ptr); 702 max_addr = max(max_addr, untagged_ptr + size); 703 } 704 link = is_phys ? &object_phys_tree_root.rb_node : 705 &object_tree_root.rb_node; 706 rb_parent = NULL; 707 while (*link) { 708 rb_parent = *link; 709 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 710 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 711 if (untagged_ptr + size <= untagged_objp) 712 link = &parent->rb_node.rb_left; 713 else if (untagged_objp + parent->size <= untagged_ptr) 714 link = &parent->rb_node.rb_right; 715 else { 716 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 717 ptr); 718 /* 719 * No need for parent->lock here since "parent" cannot 720 * be freed while the kmemleak_lock is held. 721 */ 722 dump_object_info(parent); 723 return -EEXIST; 724 } 725 } 726 rb_link_node(&object->rb_node, rb_parent, link); 727 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root : 728 &object_tree_root); 729 list_add_tail_rcu(&object->object_list, &object_list); 730 731 return 0; 732 } 733 734 /* 735 * Create the metadata (struct kmemleak_object) corresponding to an allocated 736 * memory block and add it to the object_list and object_tree_root (or 737 * object_phys_tree_root). 738 */ 739 static void __create_object(unsigned long ptr, size_t size, 740 int min_count, gfp_t gfp, bool is_phys) 741 { 742 struct kmemleak_object *object; 743 unsigned long flags; 744 int ret; 745 746 object = __alloc_object(gfp); 747 if (!object) 748 return; 749 750 raw_spin_lock_irqsave(&kmemleak_lock, flags); 751 ret = __link_object(object, ptr, size, min_count, is_phys); 752 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 753 if (ret) 754 mem_pool_free(object); 755 } 756 757 /* Create kmemleak object which allocated with virtual address. */ 758 static void create_object(unsigned long ptr, size_t size, 759 int min_count, gfp_t gfp) 760 { 761 __create_object(ptr, size, min_count, gfp, false); 762 } 763 764 /* Create kmemleak object which allocated with physical address. */ 765 static void create_object_phys(unsigned long ptr, size_t size, 766 int min_count, gfp_t gfp) 767 { 768 __create_object(ptr, size, min_count, gfp, true); 769 } 770 771 /* 772 * Mark the object as not allocated and schedule RCU freeing via put_object(). 773 */ 774 static void __delete_object(struct kmemleak_object *object) 775 { 776 unsigned long flags; 777 778 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 779 WARN_ON(atomic_read(&object->use_count) < 1); 780 781 /* 782 * Locking here also ensures that the corresponding memory block 783 * cannot be freed when it is being scanned. 784 */ 785 raw_spin_lock_irqsave(&object->lock, flags); 786 object->flags &= ~OBJECT_ALLOCATED; 787 raw_spin_unlock_irqrestore(&object->lock, flags); 788 put_object(object); 789 } 790 791 /* 792 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 793 * delete it. 794 */ 795 static void delete_object_full(unsigned long ptr) 796 { 797 struct kmemleak_object *object; 798 799 object = find_and_remove_object(ptr, 0, false); 800 if (!object) { 801 #ifdef DEBUG 802 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 803 ptr); 804 #endif 805 return; 806 } 807 __delete_object(object); 808 } 809 810 /* 811 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 812 * delete it. If the memory block is partially freed, the function may create 813 * additional metadata for the remaining parts of the block. 814 */ 815 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys) 816 { 817 struct kmemleak_object *object, *object_l, *object_r; 818 unsigned long start, end, flags; 819 820 object_l = __alloc_object(GFP_KERNEL); 821 if (!object_l) 822 return; 823 824 object_r = __alloc_object(GFP_KERNEL); 825 if (!object_r) 826 goto out; 827 828 raw_spin_lock_irqsave(&kmemleak_lock, flags); 829 object = __find_and_remove_object(ptr, 1, is_phys); 830 if (!object) { 831 #ifdef DEBUG 832 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 833 ptr, size); 834 #endif 835 goto unlock; 836 } 837 838 /* 839 * Create one or two objects that may result from the memory block 840 * split. Note that partial freeing is only done by free_bootmem() and 841 * this happens before kmemleak_init() is called. 842 */ 843 start = object->pointer; 844 end = object->pointer + object->size; 845 if ((ptr > start) && 846 !__link_object(object_l, start, ptr - start, 847 object->min_count, is_phys)) 848 object_l = NULL; 849 if ((ptr + size < end) && 850 !__link_object(object_r, ptr + size, end - ptr - size, 851 object->min_count, is_phys)) 852 object_r = NULL; 853 854 unlock: 855 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 856 if (object) 857 __delete_object(object); 858 859 out: 860 if (object_l) 861 mem_pool_free(object_l); 862 if (object_r) 863 mem_pool_free(object_r); 864 } 865 866 static void __paint_it(struct kmemleak_object *object, int color) 867 { 868 object->min_count = color; 869 if (color == KMEMLEAK_BLACK) 870 object->flags |= OBJECT_NO_SCAN; 871 } 872 873 static void paint_it(struct kmemleak_object *object, int color) 874 { 875 unsigned long flags; 876 877 raw_spin_lock_irqsave(&object->lock, flags); 878 __paint_it(object, color); 879 raw_spin_unlock_irqrestore(&object->lock, flags); 880 } 881 882 static void paint_ptr(unsigned long ptr, int color, bool is_phys) 883 { 884 struct kmemleak_object *object; 885 886 object = __find_and_get_object(ptr, 0, is_phys); 887 if (!object) { 888 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 889 ptr, 890 (color == KMEMLEAK_GREY) ? "Grey" : 891 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 892 return; 893 } 894 paint_it(object, color); 895 put_object(object); 896 } 897 898 /* 899 * Mark an object permanently as gray-colored so that it can no longer be 900 * reported as a leak. This is used in general to mark a false positive. 901 */ 902 static void make_gray_object(unsigned long ptr) 903 { 904 paint_ptr(ptr, KMEMLEAK_GREY, false); 905 } 906 907 /* 908 * Mark the object as black-colored so that it is ignored from scans and 909 * reporting. 910 */ 911 static void make_black_object(unsigned long ptr, bool is_phys) 912 { 913 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys); 914 } 915 916 /* 917 * Add a scanning area to the object. If at least one such area is added, 918 * kmemleak will only scan these ranges rather than the whole memory block. 919 */ 920 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 921 { 922 unsigned long flags; 923 struct kmemleak_object *object; 924 struct kmemleak_scan_area *area = NULL; 925 unsigned long untagged_ptr; 926 unsigned long untagged_objp; 927 928 object = find_and_get_object(ptr, 1); 929 if (!object) { 930 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 931 ptr); 932 return; 933 } 934 935 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 936 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 937 938 if (scan_area_cache) 939 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 940 941 raw_spin_lock_irqsave(&object->lock, flags); 942 if (!area) { 943 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 944 /* mark the object for full scan to avoid false positives */ 945 object->flags |= OBJECT_FULL_SCAN; 946 goto out_unlock; 947 } 948 if (size == SIZE_MAX) { 949 size = untagged_objp + object->size - untagged_ptr; 950 } else if (untagged_ptr + size > untagged_objp + object->size) { 951 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 952 dump_object_info(object); 953 kmem_cache_free(scan_area_cache, area); 954 goto out_unlock; 955 } 956 957 INIT_HLIST_NODE(&area->node); 958 area->start = ptr; 959 area->size = size; 960 961 hlist_add_head(&area->node, &object->area_list); 962 out_unlock: 963 raw_spin_unlock_irqrestore(&object->lock, flags); 964 put_object(object); 965 } 966 967 /* 968 * Any surplus references (object already gray) to 'ptr' are passed to 969 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 970 * vm_struct may be used as an alternative reference to the vmalloc'ed object 971 * (see free_thread_stack()). 972 */ 973 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 974 { 975 unsigned long flags; 976 struct kmemleak_object *object; 977 978 object = find_and_get_object(ptr, 0); 979 if (!object) { 980 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 981 ptr); 982 return; 983 } 984 985 raw_spin_lock_irqsave(&object->lock, flags); 986 object->excess_ref = excess_ref; 987 raw_spin_unlock_irqrestore(&object->lock, flags); 988 put_object(object); 989 } 990 991 /* 992 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 993 * pointer. Such object will not be scanned by kmemleak but references to it 994 * are searched. 995 */ 996 static void object_no_scan(unsigned long ptr) 997 { 998 unsigned long flags; 999 struct kmemleak_object *object; 1000 1001 object = find_and_get_object(ptr, 0); 1002 if (!object) { 1003 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1004 return; 1005 } 1006 1007 raw_spin_lock_irqsave(&object->lock, flags); 1008 object->flags |= OBJECT_NO_SCAN; 1009 raw_spin_unlock_irqrestore(&object->lock, flags); 1010 put_object(object); 1011 } 1012 1013 /** 1014 * kmemleak_alloc - register a newly allocated object 1015 * @ptr: pointer to beginning of the object 1016 * @size: size of the object 1017 * @min_count: minimum number of references to this object. If during memory 1018 * scanning a number of references less than @min_count is found, 1019 * the object is reported as a memory leak. If @min_count is 0, 1020 * the object is never reported as a leak. If @min_count is -1, 1021 * the object is ignored (not scanned and not reported as a leak) 1022 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1023 * 1024 * This function is called from the kernel allocators when a new object 1025 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1026 */ 1027 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1028 gfp_t gfp) 1029 { 1030 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1031 1032 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1033 create_object((unsigned long)ptr, size, min_count, gfp); 1034 } 1035 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1036 1037 /** 1038 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1039 * @ptr: __percpu pointer to beginning of the object 1040 * @size: size of the object 1041 * @gfp: flags used for kmemleak internal memory allocations 1042 * 1043 * This function is called from the kernel percpu allocator when a new object 1044 * (memory block) is allocated (alloc_percpu). 1045 */ 1046 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1047 gfp_t gfp) 1048 { 1049 unsigned int cpu; 1050 1051 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1052 1053 /* 1054 * Percpu allocations are only scanned and not reported as leaks 1055 * (min_count is set to 0). 1056 */ 1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1058 for_each_possible_cpu(cpu) 1059 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 1060 size, 0, gfp); 1061 } 1062 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1063 1064 /** 1065 * kmemleak_vmalloc - register a newly vmalloc'ed object 1066 * @area: pointer to vm_struct 1067 * @size: size of the object 1068 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1069 * 1070 * This function is called from the vmalloc() kernel allocator when a new 1071 * object (memory block) is allocated. 1072 */ 1073 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1074 { 1075 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1076 1077 /* 1078 * A min_count = 2 is needed because vm_struct contains a reference to 1079 * the virtual address of the vmalloc'ed block. 1080 */ 1081 if (kmemleak_enabled) { 1082 create_object((unsigned long)area->addr, size, 2, gfp); 1083 object_set_excess_ref((unsigned long)area, 1084 (unsigned long)area->addr); 1085 } 1086 } 1087 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1088 1089 /** 1090 * kmemleak_free - unregister a previously registered object 1091 * @ptr: pointer to beginning of the object 1092 * 1093 * This function is called from the kernel allocators when an object (memory 1094 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1095 */ 1096 void __ref kmemleak_free(const void *ptr) 1097 { 1098 pr_debug("%s(0x%px)\n", __func__, ptr); 1099 1100 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1101 delete_object_full((unsigned long)ptr); 1102 } 1103 EXPORT_SYMBOL_GPL(kmemleak_free); 1104 1105 /** 1106 * kmemleak_free_part - partially unregister a previously registered object 1107 * @ptr: pointer to the beginning or inside the object. This also 1108 * represents the start of the range to be freed 1109 * @size: size to be unregistered 1110 * 1111 * This function is called when only a part of a memory block is freed 1112 * (usually from the bootmem allocator). 1113 */ 1114 void __ref kmemleak_free_part(const void *ptr, size_t size) 1115 { 1116 pr_debug("%s(0x%px)\n", __func__, ptr); 1117 1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1119 delete_object_part((unsigned long)ptr, size, false); 1120 } 1121 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1122 1123 /** 1124 * kmemleak_free_percpu - unregister a previously registered __percpu object 1125 * @ptr: __percpu pointer to beginning of the object 1126 * 1127 * This function is called from the kernel percpu allocator when an object 1128 * (memory block) is freed (free_percpu). 1129 */ 1130 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1131 { 1132 unsigned int cpu; 1133 1134 pr_debug("%s(0x%px)\n", __func__, ptr); 1135 1136 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1137 for_each_possible_cpu(cpu) 1138 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1139 cpu)); 1140 } 1141 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1142 1143 /** 1144 * kmemleak_update_trace - update object allocation stack trace 1145 * @ptr: pointer to beginning of the object 1146 * 1147 * Override the object allocation stack trace for cases where the actual 1148 * allocation place is not always useful. 1149 */ 1150 void __ref kmemleak_update_trace(const void *ptr) 1151 { 1152 struct kmemleak_object *object; 1153 unsigned long flags; 1154 1155 pr_debug("%s(0x%px)\n", __func__, ptr); 1156 1157 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1158 return; 1159 1160 object = find_and_get_object((unsigned long)ptr, 1); 1161 if (!object) { 1162 #ifdef DEBUG 1163 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1164 ptr); 1165 #endif 1166 return; 1167 } 1168 1169 raw_spin_lock_irqsave(&object->lock, flags); 1170 object->trace_handle = set_track_prepare(); 1171 raw_spin_unlock_irqrestore(&object->lock, flags); 1172 1173 put_object(object); 1174 } 1175 EXPORT_SYMBOL(kmemleak_update_trace); 1176 1177 /** 1178 * kmemleak_not_leak - mark an allocated object as false positive 1179 * @ptr: pointer to beginning of the object 1180 * 1181 * Calling this function on an object will cause the memory block to no longer 1182 * be reported as leak and always be scanned. 1183 */ 1184 void __ref kmemleak_not_leak(const void *ptr) 1185 { 1186 pr_debug("%s(0x%px)\n", __func__, ptr); 1187 1188 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1189 make_gray_object((unsigned long)ptr); 1190 } 1191 EXPORT_SYMBOL(kmemleak_not_leak); 1192 1193 /** 1194 * kmemleak_ignore - ignore an allocated object 1195 * @ptr: pointer to beginning of the object 1196 * 1197 * Calling this function on an object will cause the memory block to be 1198 * ignored (not scanned and not reported as a leak). This is usually done when 1199 * it is known that the corresponding block is not a leak and does not contain 1200 * any references to other allocated memory blocks. 1201 */ 1202 void __ref kmemleak_ignore(const void *ptr) 1203 { 1204 pr_debug("%s(0x%px)\n", __func__, ptr); 1205 1206 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1207 make_black_object((unsigned long)ptr, false); 1208 } 1209 EXPORT_SYMBOL(kmemleak_ignore); 1210 1211 /** 1212 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1213 * @ptr: pointer to beginning or inside the object. This also 1214 * represents the start of the scan area 1215 * @size: size of the scan area 1216 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1217 * 1218 * This function is used when it is known that only certain parts of an object 1219 * contain references to other objects. Kmemleak will only scan these areas 1220 * reducing the number false negatives. 1221 */ 1222 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1223 { 1224 pr_debug("%s(0x%px)\n", __func__, ptr); 1225 1226 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1227 add_scan_area((unsigned long)ptr, size, gfp); 1228 } 1229 EXPORT_SYMBOL(kmemleak_scan_area); 1230 1231 /** 1232 * kmemleak_no_scan - do not scan an allocated object 1233 * @ptr: pointer to beginning of the object 1234 * 1235 * This function notifies kmemleak not to scan the given memory block. Useful 1236 * in situations where it is known that the given object does not contain any 1237 * references to other objects. Kmemleak will not scan such objects reducing 1238 * the number of false negatives. 1239 */ 1240 void __ref kmemleak_no_scan(const void *ptr) 1241 { 1242 pr_debug("%s(0x%px)\n", __func__, ptr); 1243 1244 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1245 object_no_scan((unsigned long)ptr); 1246 } 1247 EXPORT_SYMBOL(kmemleak_no_scan); 1248 1249 /** 1250 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1251 * address argument 1252 * @phys: physical address of the object 1253 * @size: size of the object 1254 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1255 */ 1256 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1257 { 1258 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1259 1260 if (kmemleak_enabled) 1261 /* 1262 * Create object with OBJECT_PHYS flag and 1263 * assume min_count 0. 1264 */ 1265 create_object_phys((unsigned long)phys, size, 0, gfp); 1266 } 1267 EXPORT_SYMBOL(kmemleak_alloc_phys); 1268 1269 /** 1270 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1271 * physical address argument 1272 * @phys: physical address if the beginning or inside an object. This 1273 * also represents the start of the range to be freed 1274 * @size: size to be unregistered 1275 */ 1276 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1277 { 1278 pr_debug("%s(0x%px)\n", __func__, &phys); 1279 1280 if (kmemleak_enabled) 1281 delete_object_part((unsigned long)phys, size, true); 1282 } 1283 EXPORT_SYMBOL(kmemleak_free_part_phys); 1284 1285 /** 1286 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1287 * address argument 1288 * @phys: physical address of the object 1289 */ 1290 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1291 { 1292 pr_debug("%s(0x%px)\n", __func__, &phys); 1293 1294 if (kmemleak_enabled) 1295 make_black_object((unsigned long)phys, true); 1296 } 1297 EXPORT_SYMBOL(kmemleak_ignore_phys); 1298 1299 /* 1300 * Update an object's checksum and return true if it was modified. 1301 */ 1302 static bool update_checksum(struct kmemleak_object *object) 1303 { 1304 u32 old_csum = object->checksum; 1305 1306 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1307 return false; 1308 1309 kasan_disable_current(); 1310 kcsan_disable_current(); 1311 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1312 kasan_enable_current(); 1313 kcsan_enable_current(); 1314 1315 return object->checksum != old_csum; 1316 } 1317 1318 /* 1319 * Update an object's references. object->lock must be held by the caller. 1320 */ 1321 static void update_refs(struct kmemleak_object *object) 1322 { 1323 if (!color_white(object)) { 1324 /* non-orphan, ignored or new */ 1325 return; 1326 } 1327 1328 /* 1329 * Increase the object's reference count (number of pointers to the 1330 * memory block). If this count reaches the required minimum, the 1331 * object's color will become gray and it will be added to the 1332 * gray_list. 1333 */ 1334 object->count++; 1335 if (color_gray(object)) { 1336 /* put_object() called when removing from gray_list */ 1337 WARN_ON(!get_object(object)); 1338 list_add_tail(&object->gray_list, &gray_list); 1339 } 1340 } 1341 1342 /* 1343 * Memory scanning is a long process and it needs to be interruptible. This 1344 * function checks whether such interrupt condition occurred. 1345 */ 1346 static int scan_should_stop(void) 1347 { 1348 if (!kmemleak_enabled) 1349 return 1; 1350 1351 /* 1352 * This function may be called from either process or kthread context, 1353 * hence the need to check for both stop conditions. 1354 */ 1355 if (current->mm) 1356 return signal_pending(current); 1357 else 1358 return kthread_should_stop(); 1359 1360 return 0; 1361 } 1362 1363 /* 1364 * Scan a memory block (exclusive range) for valid pointers and add those 1365 * found to the gray list. 1366 */ 1367 static void scan_block(void *_start, void *_end, 1368 struct kmemleak_object *scanned) 1369 { 1370 unsigned long *ptr; 1371 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1372 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1373 unsigned long flags; 1374 unsigned long untagged_ptr; 1375 1376 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1377 for (ptr = start; ptr < end; ptr++) { 1378 struct kmemleak_object *object; 1379 unsigned long pointer; 1380 unsigned long excess_ref; 1381 1382 if (scan_should_stop()) 1383 break; 1384 1385 kasan_disable_current(); 1386 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1387 kasan_enable_current(); 1388 1389 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1390 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1391 continue; 1392 1393 /* 1394 * No need for get_object() here since we hold kmemleak_lock. 1395 * object->use_count cannot be dropped to 0 while the object 1396 * is still present in object_tree_root and object_list 1397 * (with updates protected by kmemleak_lock). 1398 */ 1399 object = lookup_object(pointer, 1); 1400 if (!object) 1401 continue; 1402 if (object == scanned) 1403 /* self referenced, ignore */ 1404 continue; 1405 1406 /* 1407 * Avoid the lockdep recursive warning on object->lock being 1408 * previously acquired in scan_object(). These locks are 1409 * enclosed by scan_mutex. 1410 */ 1411 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1412 /* only pass surplus references (object already gray) */ 1413 if (color_gray(object)) { 1414 excess_ref = object->excess_ref; 1415 /* no need for update_refs() if object already gray */ 1416 } else { 1417 excess_ref = 0; 1418 update_refs(object); 1419 } 1420 raw_spin_unlock(&object->lock); 1421 1422 if (excess_ref) { 1423 object = lookup_object(excess_ref, 0); 1424 if (!object) 1425 continue; 1426 if (object == scanned) 1427 /* circular reference, ignore */ 1428 continue; 1429 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1430 update_refs(object); 1431 raw_spin_unlock(&object->lock); 1432 } 1433 } 1434 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1435 } 1436 1437 /* 1438 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1439 */ 1440 #ifdef CONFIG_SMP 1441 static void scan_large_block(void *start, void *end) 1442 { 1443 void *next; 1444 1445 while (start < end) { 1446 next = min(start + MAX_SCAN_SIZE, end); 1447 scan_block(start, next, NULL); 1448 start = next; 1449 cond_resched(); 1450 } 1451 } 1452 #endif 1453 1454 /* 1455 * Scan a memory block corresponding to a kmemleak_object. A condition is 1456 * that object->use_count >= 1. 1457 */ 1458 static void scan_object(struct kmemleak_object *object) 1459 { 1460 struct kmemleak_scan_area *area; 1461 unsigned long flags; 1462 void *obj_ptr; 1463 1464 /* 1465 * Once the object->lock is acquired, the corresponding memory block 1466 * cannot be freed (the same lock is acquired in delete_object). 1467 */ 1468 raw_spin_lock_irqsave(&object->lock, flags); 1469 if (object->flags & OBJECT_NO_SCAN) 1470 goto out; 1471 if (!(object->flags & OBJECT_ALLOCATED)) 1472 /* already freed object */ 1473 goto out; 1474 1475 obj_ptr = object->flags & OBJECT_PHYS ? 1476 __va((phys_addr_t)object->pointer) : 1477 (void *)object->pointer; 1478 1479 if (hlist_empty(&object->area_list) || 1480 object->flags & OBJECT_FULL_SCAN) { 1481 void *start = obj_ptr; 1482 void *end = obj_ptr + object->size; 1483 void *next; 1484 1485 do { 1486 next = min(start + MAX_SCAN_SIZE, end); 1487 scan_block(start, next, object); 1488 1489 start = next; 1490 if (start >= end) 1491 break; 1492 1493 raw_spin_unlock_irqrestore(&object->lock, flags); 1494 cond_resched(); 1495 raw_spin_lock_irqsave(&object->lock, flags); 1496 } while (object->flags & OBJECT_ALLOCATED); 1497 } else 1498 hlist_for_each_entry(area, &object->area_list, node) 1499 scan_block((void *)area->start, 1500 (void *)(area->start + area->size), 1501 object); 1502 out: 1503 raw_spin_unlock_irqrestore(&object->lock, flags); 1504 } 1505 1506 /* 1507 * Scan the objects already referenced (gray objects). More objects will be 1508 * referenced and, if there are no memory leaks, all the objects are scanned. 1509 */ 1510 static void scan_gray_list(void) 1511 { 1512 struct kmemleak_object *object, *tmp; 1513 1514 /* 1515 * The list traversal is safe for both tail additions and removals 1516 * from inside the loop. The kmemleak objects cannot be freed from 1517 * outside the loop because their use_count was incremented. 1518 */ 1519 object = list_entry(gray_list.next, typeof(*object), gray_list); 1520 while (&object->gray_list != &gray_list) { 1521 cond_resched(); 1522 1523 /* may add new objects to the list */ 1524 if (!scan_should_stop()) 1525 scan_object(object); 1526 1527 tmp = list_entry(object->gray_list.next, typeof(*object), 1528 gray_list); 1529 1530 /* remove the object from the list and release it */ 1531 list_del(&object->gray_list); 1532 put_object(object); 1533 1534 object = tmp; 1535 } 1536 WARN_ON(!list_empty(&gray_list)); 1537 } 1538 1539 /* 1540 * Conditionally call resched() in an object iteration loop while making sure 1541 * that the given object won't go away without RCU read lock by performing a 1542 * get_object() if necessaary. 1543 */ 1544 static void kmemleak_cond_resched(struct kmemleak_object *object) 1545 { 1546 if (!get_object(object)) 1547 return; /* Try next object */ 1548 1549 raw_spin_lock_irq(&kmemleak_lock); 1550 if (object->del_state & DELSTATE_REMOVED) 1551 goto unlock_put; /* Object removed */ 1552 object->del_state |= DELSTATE_NO_DELETE; 1553 raw_spin_unlock_irq(&kmemleak_lock); 1554 1555 rcu_read_unlock(); 1556 cond_resched(); 1557 rcu_read_lock(); 1558 1559 raw_spin_lock_irq(&kmemleak_lock); 1560 if (object->del_state & DELSTATE_REMOVED) 1561 list_del_rcu(&object->object_list); 1562 object->del_state &= ~DELSTATE_NO_DELETE; 1563 unlock_put: 1564 raw_spin_unlock_irq(&kmemleak_lock); 1565 put_object(object); 1566 } 1567 1568 /* 1569 * Scan data sections and all the referenced memory blocks allocated via the 1570 * kernel's standard allocators. This function must be called with the 1571 * scan_mutex held. 1572 */ 1573 static void kmemleak_scan(void) 1574 { 1575 struct kmemleak_object *object; 1576 struct zone *zone; 1577 int __maybe_unused i; 1578 int new_leaks = 0; 1579 1580 jiffies_last_scan = jiffies; 1581 1582 /* prepare the kmemleak_object's */ 1583 rcu_read_lock(); 1584 list_for_each_entry_rcu(object, &object_list, object_list) { 1585 raw_spin_lock_irq(&object->lock); 1586 #ifdef DEBUG 1587 /* 1588 * With a few exceptions there should be a maximum of 1589 * 1 reference to any object at this point. 1590 */ 1591 if (atomic_read(&object->use_count) > 1) { 1592 pr_debug("object->use_count = %d\n", 1593 atomic_read(&object->use_count)); 1594 dump_object_info(object); 1595 } 1596 #endif 1597 1598 /* ignore objects outside lowmem (paint them black) */ 1599 if ((object->flags & OBJECT_PHYS) && 1600 !(object->flags & OBJECT_NO_SCAN)) { 1601 unsigned long phys = object->pointer; 1602 1603 if (PHYS_PFN(phys) < min_low_pfn || 1604 PHYS_PFN(phys + object->size) >= max_low_pfn) 1605 __paint_it(object, KMEMLEAK_BLACK); 1606 } 1607 1608 /* reset the reference count (whiten the object) */ 1609 object->count = 0; 1610 if (color_gray(object) && get_object(object)) 1611 list_add_tail(&object->gray_list, &gray_list); 1612 1613 raw_spin_unlock_irq(&object->lock); 1614 1615 if (need_resched()) 1616 kmemleak_cond_resched(object); 1617 } 1618 rcu_read_unlock(); 1619 1620 #ifdef CONFIG_SMP 1621 /* per-cpu sections scanning */ 1622 for_each_possible_cpu(i) 1623 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1624 __per_cpu_end + per_cpu_offset(i)); 1625 #endif 1626 1627 /* 1628 * Struct page scanning for each node. 1629 */ 1630 get_online_mems(); 1631 for_each_populated_zone(zone) { 1632 unsigned long start_pfn = zone->zone_start_pfn; 1633 unsigned long end_pfn = zone_end_pfn(zone); 1634 unsigned long pfn; 1635 1636 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1637 struct page *page = pfn_to_online_page(pfn); 1638 1639 if (!(pfn & 63)) 1640 cond_resched(); 1641 1642 if (!page) 1643 continue; 1644 1645 /* only scan pages belonging to this zone */ 1646 if (page_zone(page) != zone) 1647 continue; 1648 /* only scan if page is in use */ 1649 if (page_count(page) == 0) 1650 continue; 1651 scan_block(page, page + 1, NULL); 1652 } 1653 } 1654 put_online_mems(); 1655 1656 /* 1657 * Scanning the task stacks (may introduce false negatives). 1658 */ 1659 if (kmemleak_stack_scan) { 1660 struct task_struct *p, *g; 1661 1662 rcu_read_lock(); 1663 for_each_process_thread(g, p) { 1664 void *stack = try_get_task_stack(p); 1665 if (stack) { 1666 scan_block(stack, stack + THREAD_SIZE, NULL); 1667 put_task_stack(p); 1668 } 1669 } 1670 rcu_read_unlock(); 1671 } 1672 1673 /* 1674 * Scan the objects already referenced from the sections scanned 1675 * above. 1676 */ 1677 scan_gray_list(); 1678 1679 /* 1680 * Check for new or unreferenced objects modified since the previous 1681 * scan and color them gray until the next scan. 1682 */ 1683 rcu_read_lock(); 1684 list_for_each_entry_rcu(object, &object_list, object_list) { 1685 if (need_resched()) 1686 kmemleak_cond_resched(object); 1687 1688 /* 1689 * This is racy but we can save the overhead of lock/unlock 1690 * calls. The missed objects, if any, should be caught in 1691 * the next scan. 1692 */ 1693 if (!color_white(object)) 1694 continue; 1695 raw_spin_lock_irq(&object->lock); 1696 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1697 && update_checksum(object) && get_object(object)) { 1698 /* color it gray temporarily */ 1699 object->count = object->min_count; 1700 list_add_tail(&object->gray_list, &gray_list); 1701 } 1702 raw_spin_unlock_irq(&object->lock); 1703 } 1704 rcu_read_unlock(); 1705 1706 /* 1707 * Re-scan the gray list for modified unreferenced objects. 1708 */ 1709 scan_gray_list(); 1710 1711 /* 1712 * If scanning was stopped do not report any new unreferenced objects. 1713 */ 1714 if (scan_should_stop()) 1715 return; 1716 1717 /* 1718 * Scanning result reporting. 1719 */ 1720 rcu_read_lock(); 1721 list_for_each_entry_rcu(object, &object_list, object_list) { 1722 if (need_resched()) 1723 kmemleak_cond_resched(object); 1724 1725 /* 1726 * This is racy but we can save the overhead of lock/unlock 1727 * calls. The missed objects, if any, should be caught in 1728 * the next scan. 1729 */ 1730 if (!color_white(object)) 1731 continue; 1732 raw_spin_lock_irq(&object->lock); 1733 if (unreferenced_object(object) && 1734 !(object->flags & OBJECT_REPORTED)) { 1735 object->flags |= OBJECT_REPORTED; 1736 1737 if (kmemleak_verbose) 1738 print_unreferenced(NULL, object); 1739 1740 new_leaks++; 1741 } 1742 raw_spin_unlock_irq(&object->lock); 1743 } 1744 rcu_read_unlock(); 1745 1746 if (new_leaks) { 1747 kmemleak_found_leaks = true; 1748 1749 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1750 new_leaks); 1751 } 1752 1753 } 1754 1755 /* 1756 * Thread function performing automatic memory scanning. Unreferenced objects 1757 * at the end of a memory scan are reported but only the first time. 1758 */ 1759 static int kmemleak_scan_thread(void *arg) 1760 { 1761 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1762 1763 pr_info("Automatic memory scanning thread started\n"); 1764 set_user_nice(current, 10); 1765 1766 /* 1767 * Wait before the first scan to allow the system to fully initialize. 1768 */ 1769 if (first_run) { 1770 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1771 first_run = 0; 1772 while (timeout && !kthread_should_stop()) 1773 timeout = schedule_timeout_interruptible(timeout); 1774 } 1775 1776 while (!kthread_should_stop()) { 1777 signed long timeout = READ_ONCE(jiffies_scan_wait); 1778 1779 mutex_lock(&scan_mutex); 1780 kmemleak_scan(); 1781 mutex_unlock(&scan_mutex); 1782 1783 /* wait before the next scan */ 1784 while (timeout && !kthread_should_stop()) 1785 timeout = schedule_timeout_interruptible(timeout); 1786 } 1787 1788 pr_info("Automatic memory scanning thread ended\n"); 1789 1790 return 0; 1791 } 1792 1793 /* 1794 * Start the automatic memory scanning thread. This function must be called 1795 * with the scan_mutex held. 1796 */ 1797 static void start_scan_thread(void) 1798 { 1799 if (scan_thread) 1800 return; 1801 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1802 if (IS_ERR(scan_thread)) { 1803 pr_warn("Failed to create the scan thread\n"); 1804 scan_thread = NULL; 1805 } 1806 } 1807 1808 /* 1809 * Stop the automatic memory scanning thread. 1810 */ 1811 static void stop_scan_thread(void) 1812 { 1813 if (scan_thread) { 1814 kthread_stop(scan_thread); 1815 scan_thread = NULL; 1816 } 1817 } 1818 1819 /* 1820 * Iterate over the object_list and return the first valid object at or after 1821 * the required position with its use_count incremented. The function triggers 1822 * a memory scanning when the pos argument points to the first position. 1823 */ 1824 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1825 { 1826 struct kmemleak_object *object; 1827 loff_t n = *pos; 1828 int err; 1829 1830 err = mutex_lock_interruptible(&scan_mutex); 1831 if (err < 0) 1832 return ERR_PTR(err); 1833 1834 rcu_read_lock(); 1835 list_for_each_entry_rcu(object, &object_list, object_list) { 1836 if (n-- > 0) 1837 continue; 1838 if (get_object(object)) 1839 goto out; 1840 } 1841 object = NULL; 1842 out: 1843 return object; 1844 } 1845 1846 /* 1847 * Return the next object in the object_list. The function decrements the 1848 * use_count of the previous object and increases that of the next one. 1849 */ 1850 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1851 { 1852 struct kmemleak_object *prev_obj = v; 1853 struct kmemleak_object *next_obj = NULL; 1854 struct kmemleak_object *obj = prev_obj; 1855 1856 ++(*pos); 1857 1858 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1859 if (get_object(obj)) { 1860 next_obj = obj; 1861 break; 1862 } 1863 } 1864 1865 put_object(prev_obj); 1866 return next_obj; 1867 } 1868 1869 /* 1870 * Decrement the use_count of the last object required, if any. 1871 */ 1872 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1873 { 1874 if (!IS_ERR(v)) { 1875 /* 1876 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1877 * waiting was interrupted, so only release it if !IS_ERR. 1878 */ 1879 rcu_read_unlock(); 1880 mutex_unlock(&scan_mutex); 1881 if (v) 1882 put_object(v); 1883 } 1884 } 1885 1886 /* 1887 * Print the information for an unreferenced object to the seq file. 1888 */ 1889 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1890 { 1891 struct kmemleak_object *object = v; 1892 unsigned long flags; 1893 1894 raw_spin_lock_irqsave(&object->lock, flags); 1895 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1896 print_unreferenced(seq, object); 1897 raw_spin_unlock_irqrestore(&object->lock, flags); 1898 return 0; 1899 } 1900 1901 static const struct seq_operations kmemleak_seq_ops = { 1902 .start = kmemleak_seq_start, 1903 .next = kmemleak_seq_next, 1904 .stop = kmemleak_seq_stop, 1905 .show = kmemleak_seq_show, 1906 }; 1907 1908 static int kmemleak_open(struct inode *inode, struct file *file) 1909 { 1910 return seq_open(file, &kmemleak_seq_ops); 1911 } 1912 1913 static int dump_str_object_info(const char *str) 1914 { 1915 unsigned long flags; 1916 struct kmemleak_object *object; 1917 unsigned long addr; 1918 1919 if (kstrtoul(str, 0, &addr)) 1920 return -EINVAL; 1921 object = find_and_get_object(addr, 0); 1922 if (!object) { 1923 pr_info("Unknown object at 0x%08lx\n", addr); 1924 return -EINVAL; 1925 } 1926 1927 raw_spin_lock_irqsave(&object->lock, flags); 1928 dump_object_info(object); 1929 raw_spin_unlock_irqrestore(&object->lock, flags); 1930 1931 put_object(object); 1932 return 0; 1933 } 1934 1935 /* 1936 * We use grey instead of black to ensure we can do future scans on the same 1937 * objects. If we did not do future scans these black objects could 1938 * potentially contain references to newly allocated objects in the future and 1939 * we'd end up with false positives. 1940 */ 1941 static void kmemleak_clear(void) 1942 { 1943 struct kmemleak_object *object; 1944 1945 rcu_read_lock(); 1946 list_for_each_entry_rcu(object, &object_list, object_list) { 1947 raw_spin_lock_irq(&object->lock); 1948 if ((object->flags & OBJECT_REPORTED) && 1949 unreferenced_object(object)) 1950 __paint_it(object, KMEMLEAK_GREY); 1951 raw_spin_unlock_irq(&object->lock); 1952 } 1953 rcu_read_unlock(); 1954 1955 kmemleak_found_leaks = false; 1956 } 1957 1958 static void __kmemleak_do_cleanup(void); 1959 1960 /* 1961 * File write operation to configure kmemleak at run-time. The following 1962 * commands can be written to the /sys/kernel/debug/kmemleak file: 1963 * off - disable kmemleak (irreversible) 1964 * stack=on - enable the task stacks scanning 1965 * stack=off - disable the tasks stacks scanning 1966 * scan=on - start the automatic memory scanning thread 1967 * scan=off - stop the automatic memory scanning thread 1968 * scan=... - set the automatic memory scanning period in seconds (0 to 1969 * disable it) 1970 * scan - trigger a memory scan 1971 * clear - mark all current reported unreferenced kmemleak objects as 1972 * grey to ignore printing them, or free all kmemleak objects 1973 * if kmemleak has been disabled. 1974 * dump=... - dump information about the object found at the given address 1975 */ 1976 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1977 size_t size, loff_t *ppos) 1978 { 1979 char buf[64]; 1980 int buf_size; 1981 int ret; 1982 1983 buf_size = min(size, (sizeof(buf) - 1)); 1984 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1985 return -EFAULT; 1986 buf[buf_size] = 0; 1987 1988 ret = mutex_lock_interruptible(&scan_mutex); 1989 if (ret < 0) 1990 return ret; 1991 1992 if (strncmp(buf, "clear", 5) == 0) { 1993 if (kmemleak_enabled) 1994 kmemleak_clear(); 1995 else 1996 __kmemleak_do_cleanup(); 1997 goto out; 1998 } 1999 2000 if (!kmemleak_enabled) { 2001 ret = -EPERM; 2002 goto out; 2003 } 2004 2005 if (strncmp(buf, "off", 3) == 0) 2006 kmemleak_disable(); 2007 else if (strncmp(buf, "stack=on", 8) == 0) 2008 kmemleak_stack_scan = 1; 2009 else if (strncmp(buf, "stack=off", 9) == 0) 2010 kmemleak_stack_scan = 0; 2011 else if (strncmp(buf, "scan=on", 7) == 0) 2012 start_scan_thread(); 2013 else if (strncmp(buf, "scan=off", 8) == 0) 2014 stop_scan_thread(); 2015 else if (strncmp(buf, "scan=", 5) == 0) { 2016 unsigned secs; 2017 unsigned long msecs; 2018 2019 ret = kstrtouint(buf + 5, 0, &secs); 2020 if (ret < 0) 2021 goto out; 2022 2023 msecs = secs * MSEC_PER_SEC; 2024 if (msecs > UINT_MAX) 2025 msecs = UINT_MAX; 2026 2027 stop_scan_thread(); 2028 if (msecs) { 2029 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2030 start_scan_thread(); 2031 } 2032 } else if (strncmp(buf, "scan", 4) == 0) 2033 kmemleak_scan(); 2034 else if (strncmp(buf, "dump=", 5) == 0) 2035 ret = dump_str_object_info(buf + 5); 2036 else 2037 ret = -EINVAL; 2038 2039 out: 2040 mutex_unlock(&scan_mutex); 2041 if (ret < 0) 2042 return ret; 2043 2044 /* ignore the rest of the buffer, only one command at a time */ 2045 *ppos += size; 2046 return size; 2047 } 2048 2049 static const struct file_operations kmemleak_fops = { 2050 .owner = THIS_MODULE, 2051 .open = kmemleak_open, 2052 .read = seq_read, 2053 .write = kmemleak_write, 2054 .llseek = seq_lseek, 2055 .release = seq_release, 2056 }; 2057 2058 static void __kmemleak_do_cleanup(void) 2059 { 2060 struct kmemleak_object *object, *tmp; 2061 2062 /* 2063 * Kmemleak has already been disabled, no need for RCU list traversal 2064 * or kmemleak_lock held. 2065 */ 2066 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2067 __remove_object(object); 2068 __delete_object(object); 2069 } 2070 } 2071 2072 /* 2073 * Stop the memory scanning thread and free the kmemleak internal objects if 2074 * no previous scan thread (otherwise, kmemleak may still have some useful 2075 * information on memory leaks). 2076 */ 2077 static void kmemleak_do_cleanup(struct work_struct *work) 2078 { 2079 stop_scan_thread(); 2080 2081 mutex_lock(&scan_mutex); 2082 /* 2083 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2084 * longer track object freeing. Ordering of the scan thread stopping and 2085 * the memory accesses below is guaranteed by the kthread_stop() 2086 * function. 2087 */ 2088 kmemleak_free_enabled = 0; 2089 mutex_unlock(&scan_mutex); 2090 2091 if (!kmemleak_found_leaks) 2092 __kmemleak_do_cleanup(); 2093 else 2094 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2095 } 2096 2097 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2098 2099 /* 2100 * Disable kmemleak. No memory allocation/freeing will be traced once this 2101 * function is called. Disabling kmemleak is an irreversible operation. 2102 */ 2103 static void kmemleak_disable(void) 2104 { 2105 /* atomically check whether it was already invoked */ 2106 if (cmpxchg(&kmemleak_error, 0, 1)) 2107 return; 2108 2109 /* stop any memory operation tracing */ 2110 kmemleak_enabled = 0; 2111 2112 /* check whether it is too early for a kernel thread */ 2113 if (kmemleak_late_initialized) 2114 schedule_work(&cleanup_work); 2115 else 2116 kmemleak_free_enabled = 0; 2117 2118 pr_info("Kernel memory leak detector disabled\n"); 2119 } 2120 2121 /* 2122 * Allow boot-time kmemleak disabling (enabled by default). 2123 */ 2124 static int __init kmemleak_boot_config(char *str) 2125 { 2126 if (!str) 2127 return -EINVAL; 2128 if (strcmp(str, "off") == 0) 2129 kmemleak_disable(); 2130 else if (strcmp(str, "on") == 0) { 2131 kmemleak_skip_disable = 1; 2132 stack_depot_request_early_init(); 2133 } 2134 else 2135 return -EINVAL; 2136 return 0; 2137 } 2138 early_param("kmemleak", kmemleak_boot_config); 2139 2140 /* 2141 * Kmemleak initialization. 2142 */ 2143 void __init kmemleak_init(void) 2144 { 2145 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2146 if (!kmemleak_skip_disable) { 2147 kmemleak_disable(); 2148 return; 2149 } 2150 #endif 2151 2152 if (kmemleak_error) 2153 return; 2154 2155 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2156 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2157 2158 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2159 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2160 2161 /* register the data/bss sections */ 2162 create_object((unsigned long)_sdata, _edata - _sdata, 2163 KMEMLEAK_GREY, GFP_ATOMIC); 2164 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2165 KMEMLEAK_GREY, GFP_ATOMIC); 2166 /* only register .data..ro_after_init if not within .data */ 2167 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2168 create_object((unsigned long)__start_ro_after_init, 2169 __end_ro_after_init - __start_ro_after_init, 2170 KMEMLEAK_GREY, GFP_ATOMIC); 2171 } 2172 2173 /* 2174 * Late initialization function. 2175 */ 2176 static int __init kmemleak_late_init(void) 2177 { 2178 kmemleak_late_initialized = 1; 2179 2180 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2181 2182 if (kmemleak_error) { 2183 /* 2184 * Some error occurred and kmemleak was disabled. There is a 2185 * small chance that kmemleak_disable() was called immediately 2186 * after setting kmemleak_late_initialized and we may end up with 2187 * two clean-up threads but serialized by scan_mutex. 2188 */ 2189 schedule_work(&cleanup_work); 2190 return -ENOMEM; 2191 } 2192 2193 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2194 mutex_lock(&scan_mutex); 2195 start_scan_thread(); 2196 mutex_unlock(&scan_mutex); 2197 } 2198 2199 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2200 mem_pool_free_count); 2201 2202 return 0; 2203 } 2204 late_initcall(kmemleak_late_init); 2205