xref: /linux/mm/kmemleak.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (rwlock): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
26  *   the metadata (e.g. count) are protected by this lock. Note that some
27  *   members of this structure may be protected by other means (atomic or
28  *   kmemleak_lock). This lock is also held when scanning the corresponding
29  *   memory block to avoid the kernel freeing it via the kmemleak_free()
30  *   callback. This is less heavyweight than holding a global lock like
31  *   kmemleak_lock during scanning
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102 
103 /*
104  * Kmemleak configuration and common defines.
105  */
106 #define MAX_TRACE		16	/* stack trace length */
107 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
109 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111 
112 #define BYTES_PER_POINTER	sizeof(void *)
113 
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 				 __GFP_NOWARN)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long start;
123 	size_t size;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * rb_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	spinlock_t lock;
139 	unsigned int flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct rb_node rb_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* pass surplus references to this pointer */
149 	unsigned long excess_ref;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN	(1 << 3)
173 
174 #define HEX_PREFIX		"    "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE		16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE		1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII		1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES		2
183 
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* rw_lock protecting the access to object_list and object_tree_root */
195 static DEFINE_RWLOCK(kmemleak_lock);
196 
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200 
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211 
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215 
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230 
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233 
234 static void kmemleak_disable(void);
235 
236 /*
237  * Print a warning and dump the stack trace.
238  */
239 #define kmemleak_warn(x...)	do {		\
240 	pr_warn(x);				\
241 	dump_stack();				\
242 	kmemleak_warning = 1;			\
243 } while (0)
244 
245 /*
246  * Macro invoked when a serious kmemleak condition occurred and cannot be
247  * recovered from. Kmemleak will be disabled and further allocation/freeing
248  * tracing no longer available.
249  */
250 #define kmemleak_stop(x...)	do {	\
251 	kmemleak_warn(x);		\
252 	kmemleak_disable();		\
253 } while (0)
254 
255 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
256 	if (seq)					\
257 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
258 	else						\
259 		pr_warn(fmt, ##__VA_ARGS__);		\
260 } while (0)
261 
262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 				 int rowsize, int groupsize, const void *buf,
264 				 size_t len, bool ascii)
265 {
266 	if (seq)
267 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 			     buf, len, ascii);
269 	else
270 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 			       rowsize, groupsize, buf, len, ascii);
272 }
273 
274 /*
275  * Printing of the objects hex dump to the seq file. The number of lines to be
276  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278  * with the object->lock held.
279  */
280 static void hex_dump_object(struct seq_file *seq,
281 			    struct kmemleak_object *object)
282 {
283 	const u8 *ptr = (const u8 *)object->pointer;
284 	size_t len;
285 
286 	/* limit the number of lines to HEX_MAX_LINES */
287 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288 
289 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
290 	kasan_disable_current();
291 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 	kasan_enable_current();
294 }
295 
296 /*
297  * Object colors, encoded with count and min_count:
298  * - white - orphan object, not enough references to it (count < min_count)
299  * - gray  - not orphan, not marked as false positive (min_count == 0) or
300  *		sufficient references to it (count >= min_count)
301  * - black - ignore, it doesn't contain references (e.g. text section)
302  *		(min_count == -1). No function defined for this color.
303  * Newly created objects don't have any color assigned (object->count == -1)
304  * before the next memory scan when they become white.
305  */
306 static bool color_white(const struct kmemleak_object *object)
307 {
308 	return object->count != KMEMLEAK_BLACK &&
309 		object->count < object->min_count;
310 }
311 
312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 	return object->min_count != KMEMLEAK_BLACK &&
315 		object->count >= object->min_count;
316 }
317 
318 /*
319  * Objects are considered unreferenced only if their color is white, they have
320  * not be deleted and have a minimum age to avoid false positives caused by
321  * pointers temporarily stored in CPU registers.
322  */
323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 		time_before_eq(object->jiffies + jiffies_min_age,
327 			       jiffies_last_scan);
328 }
329 
330 /*
331  * Printing of the unreferenced objects information to the seq file. The
332  * print_unreferenced function must be called with the object->lock held.
333  */
334 static void print_unreferenced(struct seq_file *seq,
335 			       struct kmemleak_object *object)
336 {
337 	int i;
338 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339 
340 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 		   object->pointer, object->size);
342 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 		   object->comm, object->pid, object->jiffies,
344 		   msecs_age / 1000, msecs_age % 1000);
345 	hex_dump_object(seq, object);
346 	warn_or_seq_printf(seq, "  backtrace:\n");
347 
348 	for (i = 0; i < object->trace_len; i++) {
349 		void *ptr = (void *)object->trace[i];
350 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
351 	}
352 }
353 
354 /*
355  * Print the kmemleak_object information. This function is used mainly for
356  * debugging special cases when kmemleak operations. It must be called with
357  * the object->lock held.
358  */
359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 	pr_notice("Object 0x%08lx (size %zu):\n",
362 		  object->pointer, object->size);
363 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
364 		  object->comm, object->pid, object->jiffies);
365 	pr_notice("  min_count = %d\n", object->min_count);
366 	pr_notice("  count = %d\n", object->count);
367 	pr_notice("  flags = 0x%x\n", object->flags);
368 	pr_notice("  checksum = %u\n", object->checksum);
369 	pr_notice("  backtrace:\n");
370 	stack_trace_print(object->trace, object->trace_len, 4);
371 }
372 
373 /*
374  * Look-up a memory block metadata (kmemleak_object) in the object search
375  * tree based on a pointer value. If alias is 0, only values pointing to the
376  * beginning of the memory block are allowed. The kmemleak_lock must be held
377  * when calling this function.
378  */
379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 	struct rb_node *rb = object_tree_root.rb_node;
382 
383 	while (rb) {
384 		struct kmemleak_object *object =
385 			rb_entry(rb, struct kmemleak_object, rb_node);
386 		if (ptr < object->pointer)
387 			rb = object->rb_node.rb_left;
388 		else if (object->pointer + object->size <= ptr)
389 			rb = object->rb_node.rb_right;
390 		else if (object->pointer == ptr || alias)
391 			return object;
392 		else {
393 			kmemleak_warn("Found object by alias at 0x%08lx\n",
394 				      ptr);
395 			dump_object_info(object);
396 			break;
397 		}
398 	}
399 	return NULL;
400 }
401 
402 /*
403  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404  * that once an object's use_count reached 0, the RCU freeing was already
405  * registered and the object should no longer be used. This function must be
406  * called under the protection of rcu_read_lock().
407  */
408 static int get_object(struct kmemleak_object *object)
409 {
410 	return atomic_inc_not_zero(&object->use_count);
411 }
412 
413 /*
414  * Memory pool allocation and freeing. kmemleak_lock must not be held.
415  */
416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 	unsigned long flags;
419 	struct kmemleak_object *object;
420 
421 	/* try the slab allocator first */
422 	if (object_cache) {
423 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 		if (object)
425 			return object;
426 	}
427 
428 	/* slab allocation failed, try the memory pool */
429 	write_lock_irqsave(&kmemleak_lock, flags);
430 	object = list_first_entry_or_null(&mem_pool_free_list,
431 					  typeof(*object), object_list);
432 	if (object)
433 		list_del(&object->object_list);
434 	else if (mem_pool_free_count)
435 		object = &mem_pool[--mem_pool_free_count];
436 	else
437 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 	write_unlock_irqrestore(&kmemleak_lock, flags);
439 
440 	return object;
441 }
442 
443 /*
444  * Return the object to either the slab allocator or the memory pool.
445  */
446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 	unsigned long flags;
449 
450 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 		kmem_cache_free(object_cache, object);
452 		return;
453 	}
454 
455 	/* add the object to the memory pool free list */
456 	write_lock_irqsave(&kmemleak_lock, flags);
457 	list_add(&object->object_list, &mem_pool_free_list);
458 	write_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460 
461 /*
462  * RCU callback to free a kmemleak_object.
463  */
464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 	struct hlist_node *tmp;
467 	struct kmemleak_scan_area *area;
468 	struct kmemleak_object *object =
469 		container_of(rcu, struct kmemleak_object, rcu);
470 
471 	/*
472 	 * Once use_count is 0 (guaranteed by put_object), there is no other
473 	 * code accessing this object, hence no need for locking.
474 	 */
475 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 		hlist_del(&area->node);
477 		kmem_cache_free(scan_area_cache, area);
478 	}
479 	mem_pool_free(object);
480 }
481 
482 /*
483  * Decrement the object use_count. Once the count is 0, free the object using
484  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485  * delete_object() path, the delayed RCU freeing ensures that there is no
486  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487  * is also possible.
488  */
489 static void put_object(struct kmemleak_object *object)
490 {
491 	if (!atomic_dec_and_test(&object->use_count))
492 		return;
493 
494 	/* should only get here after delete_object was called */
495 	WARN_ON(object->flags & OBJECT_ALLOCATED);
496 
497 	/*
498 	 * It may be too early for the RCU callbacks, however, there is no
499 	 * concurrent object_list traversal when !object_cache and all objects
500 	 * came from the memory pool. Free the object directly.
501 	 */
502 	if (object_cache)
503 		call_rcu(&object->rcu, free_object_rcu);
504 	else
505 		free_object_rcu(&object->rcu);
506 }
507 
508 /*
509  * Look up an object in the object search tree and increase its use_count.
510  */
511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	rcu_read_lock();
517 	read_lock_irqsave(&kmemleak_lock, flags);
518 	object = lookup_object(ptr, alias);
519 	read_unlock_irqrestore(&kmemleak_lock, flags);
520 
521 	/* check whether the object is still available */
522 	if (object && !get_object(object))
523 		object = NULL;
524 	rcu_read_unlock();
525 
526 	return object;
527 }
528 
529 /*
530  * Look up an object in the object search tree and remove it from both
531  * object_tree_root and object_list. The returned object's use_count should be
532  * at least 1, as initially set by create_object().
533  */
534 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
535 {
536 	unsigned long flags;
537 	struct kmemleak_object *object;
538 
539 	write_lock_irqsave(&kmemleak_lock, flags);
540 	object = lookup_object(ptr, alias);
541 	if (object) {
542 		rb_erase(&object->rb_node, &object_tree_root);
543 		list_del_rcu(&object->object_list);
544 	}
545 	write_unlock_irqrestore(&kmemleak_lock, flags);
546 
547 	return object;
548 }
549 
550 /*
551  * Save stack trace to the given array of MAX_TRACE size.
552  */
553 static int __save_stack_trace(unsigned long *trace)
554 {
555 	return stack_trace_save(trace, MAX_TRACE, 2);
556 }
557 
558 /*
559  * Create the metadata (struct kmemleak_object) corresponding to an allocated
560  * memory block and add it to the object_list and object_tree_root.
561  */
562 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
563 					     int min_count, gfp_t gfp)
564 {
565 	unsigned long flags;
566 	struct kmemleak_object *object, *parent;
567 	struct rb_node **link, *rb_parent;
568 	unsigned long untagged_ptr;
569 
570 	object = mem_pool_alloc(gfp);
571 	if (!object) {
572 		pr_warn("Cannot allocate a kmemleak_object structure\n");
573 		kmemleak_disable();
574 		return NULL;
575 	}
576 
577 	INIT_LIST_HEAD(&object->object_list);
578 	INIT_LIST_HEAD(&object->gray_list);
579 	INIT_HLIST_HEAD(&object->area_list);
580 	spin_lock_init(&object->lock);
581 	atomic_set(&object->use_count, 1);
582 	object->flags = OBJECT_ALLOCATED;
583 	object->pointer = ptr;
584 	object->size = size;
585 	object->excess_ref = 0;
586 	object->min_count = min_count;
587 	object->count = 0;			/* white color initially */
588 	object->jiffies = jiffies;
589 	object->checksum = 0;
590 
591 	/* task information */
592 	if (in_irq()) {
593 		object->pid = 0;
594 		strncpy(object->comm, "hardirq", sizeof(object->comm));
595 	} else if (in_serving_softirq()) {
596 		object->pid = 0;
597 		strncpy(object->comm, "softirq", sizeof(object->comm));
598 	} else {
599 		object->pid = current->pid;
600 		/*
601 		 * There is a small chance of a race with set_task_comm(),
602 		 * however using get_task_comm() here may cause locking
603 		 * dependency issues with current->alloc_lock. In the worst
604 		 * case, the command line is not correct.
605 		 */
606 		strncpy(object->comm, current->comm, sizeof(object->comm));
607 	}
608 
609 	/* kernel backtrace */
610 	object->trace_len = __save_stack_trace(object->trace);
611 
612 	write_lock_irqsave(&kmemleak_lock, flags);
613 
614 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
615 	min_addr = min(min_addr, untagged_ptr);
616 	max_addr = max(max_addr, untagged_ptr + size);
617 	link = &object_tree_root.rb_node;
618 	rb_parent = NULL;
619 	while (*link) {
620 		rb_parent = *link;
621 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
622 		if (ptr + size <= parent->pointer)
623 			link = &parent->rb_node.rb_left;
624 		else if (parent->pointer + parent->size <= ptr)
625 			link = &parent->rb_node.rb_right;
626 		else {
627 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
628 				      ptr);
629 			/*
630 			 * No need for parent->lock here since "parent" cannot
631 			 * be freed while the kmemleak_lock is held.
632 			 */
633 			dump_object_info(parent);
634 			kmem_cache_free(object_cache, object);
635 			object = NULL;
636 			goto out;
637 		}
638 	}
639 	rb_link_node(&object->rb_node, rb_parent, link);
640 	rb_insert_color(&object->rb_node, &object_tree_root);
641 
642 	list_add_tail_rcu(&object->object_list, &object_list);
643 out:
644 	write_unlock_irqrestore(&kmemleak_lock, flags);
645 	return object;
646 }
647 
648 /*
649  * Mark the object as not allocated and schedule RCU freeing via put_object().
650  */
651 static void __delete_object(struct kmemleak_object *object)
652 {
653 	unsigned long flags;
654 
655 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
656 	WARN_ON(atomic_read(&object->use_count) < 1);
657 
658 	/*
659 	 * Locking here also ensures that the corresponding memory block
660 	 * cannot be freed when it is being scanned.
661 	 */
662 	spin_lock_irqsave(&object->lock, flags);
663 	object->flags &= ~OBJECT_ALLOCATED;
664 	spin_unlock_irqrestore(&object->lock, flags);
665 	put_object(object);
666 }
667 
668 /*
669  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
670  * delete it.
671  */
672 static void delete_object_full(unsigned long ptr)
673 {
674 	struct kmemleak_object *object;
675 
676 	object = find_and_remove_object(ptr, 0);
677 	if (!object) {
678 #ifdef DEBUG
679 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
680 			      ptr);
681 #endif
682 		return;
683 	}
684 	__delete_object(object);
685 }
686 
687 /*
688  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
689  * delete it. If the memory block is partially freed, the function may create
690  * additional metadata for the remaining parts of the block.
691  */
692 static void delete_object_part(unsigned long ptr, size_t size)
693 {
694 	struct kmemleak_object *object;
695 	unsigned long start, end;
696 
697 	object = find_and_remove_object(ptr, 1);
698 	if (!object) {
699 #ifdef DEBUG
700 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
701 			      ptr, size);
702 #endif
703 		return;
704 	}
705 
706 	/*
707 	 * Create one or two objects that may result from the memory block
708 	 * split. Note that partial freeing is only done by free_bootmem() and
709 	 * this happens before kmemleak_init() is called.
710 	 */
711 	start = object->pointer;
712 	end = object->pointer + object->size;
713 	if (ptr > start)
714 		create_object(start, ptr - start, object->min_count,
715 			      GFP_KERNEL);
716 	if (ptr + size < end)
717 		create_object(ptr + size, end - ptr - size, object->min_count,
718 			      GFP_KERNEL);
719 
720 	__delete_object(object);
721 }
722 
723 static void __paint_it(struct kmemleak_object *object, int color)
724 {
725 	object->min_count = color;
726 	if (color == KMEMLEAK_BLACK)
727 		object->flags |= OBJECT_NO_SCAN;
728 }
729 
730 static void paint_it(struct kmemleak_object *object, int color)
731 {
732 	unsigned long flags;
733 
734 	spin_lock_irqsave(&object->lock, flags);
735 	__paint_it(object, color);
736 	spin_unlock_irqrestore(&object->lock, flags);
737 }
738 
739 static void paint_ptr(unsigned long ptr, int color)
740 {
741 	struct kmemleak_object *object;
742 
743 	object = find_and_get_object(ptr, 0);
744 	if (!object) {
745 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
746 			      ptr,
747 			      (color == KMEMLEAK_GREY) ? "Grey" :
748 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
749 		return;
750 	}
751 	paint_it(object, color);
752 	put_object(object);
753 }
754 
755 /*
756  * Mark an object permanently as gray-colored so that it can no longer be
757  * reported as a leak. This is used in general to mark a false positive.
758  */
759 static void make_gray_object(unsigned long ptr)
760 {
761 	paint_ptr(ptr, KMEMLEAK_GREY);
762 }
763 
764 /*
765  * Mark the object as black-colored so that it is ignored from scans and
766  * reporting.
767  */
768 static void make_black_object(unsigned long ptr)
769 {
770 	paint_ptr(ptr, KMEMLEAK_BLACK);
771 }
772 
773 /*
774  * Add a scanning area to the object. If at least one such area is added,
775  * kmemleak will only scan these ranges rather than the whole memory block.
776  */
777 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
778 {
779 	unsigned long flags;
780 	struct kmemleak_object *object;
781 	struct kmemleak_scan_area *area = NULL;
782 
783 	object = find_and_get_object(ptr, 1);
784 	if (!object) {
785 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
786 			      ptr);
787 		return;
788 	}
789 
790 	if (scan_area_cache)
791 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
792 
793 	spin_lock_irqsave(&object->lock, flags);
794 	if (!area) {
795 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
796 		/* mark the object for full scan to avoid false positives */
797 		object->flags |= OBJECT_FULL_SCAN;
798 		goto out_unlock;
799 	}
800 	if (size == SIZE_MAX) {
801 		size = object->pointer + object->size - ptr;
802 	} else if (ptr + size > object->pointer + object->size) {
803 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
804 		dump_object_info(object);
805 		kmem_cache_free(scan_area_cache, area);
806 		goto out_unlock;
807 	}
808 
809 	INIT_HLIST_NODE(&area->node);
810 	area->start = ptr;
811 	area->size = size;
812 
813 	hlist_add_head(&area->node, &object->area_list);
814 out_unlock:
815 	spin_unlock_irqrestore(&object->lock, flags);
816 	put_object(object);
817 }
818 
819 /*
820  * Any surplus references (object already gray) to 'ptr' are passed to
821  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
822  * vm_struct may be used as an alternative reference to the vmalloc'ed object
823  * (see free_thread_stack()).
824  */
825 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
826 {
827 	unsigned long flags;
828 	struct kmemleak_object *object;
829 
830 	object = find_and_get_object(ptr, 0);
831 	if (!object) {
832 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
833 			      ptr);
834 		return;
835 	}
836 
837 	spin_lock_irqsave(&object->lock, flags);
838 	object->excess_ref = excess_ref;
839 	spin_unlock_irqrestore(&object->lock, flags);
840 	put_object(object);
841 }
842 
843 /*
844  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
845  * pointer. Such object will not be scanned by kmemleak but references to it
846  * are searched.
847  */
848 static void object_no_scan(unsigned long ptr)
849 {
850 	unsigned long flags;
851 	struct kmemleak_object *object;
852 
853 	object = find_and_get_object(ptr, 0);
854 	if (!object) {
855 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
856 		return;
857 	}
858 
859 	spin_lock_irqsave(&object->lock, flags);
860 	object->flags |= OBJECT_NO_SCAN;
861 	spin_unlock_irqrestore(&object->lock, flags);
862 	put_object(object);
863 }
864 
865 /**
866  * kmemleak_alloc - register a newly allocated object
867  * @ptr:	pointer to beginning of the object
868  * @size:	size of the object
869  * @min_count:	minimum number of references to this object. If during memory
870  *		scanning a number of references less than @min_count is found,
871  *		the object is reported as a memory leak. If @min_count is 0,
872  *		the object is never reported as a leak. If @min_count is -1,
873  *		the object is ignored (not scanned and not reported as a leak)
874  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
875  *
876  * This function is called from the kernel allocators when a new object
877  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
878  */
879 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
880 			  gfp_t gfp)
881 {
882 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
883 
884 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
885 		create_object((unsigned long)ptr, size, min_count, gfp);
886 }
887 EXPORT_SYMBOL_GPL(kmemleak_alloc);
888 
889 /**
890  * kmemleak_alloc_percpu - register a newly allocated __percpu object
891  * @ptr:	__percpu pointer to beginning of the object
892  * @size:	size of the object
893  * @gfp:	flags used for kmemleak internal memory allocations
894  *
895  * This function is called from the kernel percpu allocator when a new object
896  * (memory block) is allocated (alloc_percpu).
897  */
898 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
899 				 gfp_t gfp)
900 {
901 	unsigned int cpu;
902 
903 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
904 
905 	/*
906 	 * Percpu allocations are only scanned and not reported as leaks
907 	 * (min_count is set to 0).
908 	 */
909 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
910 		for_each_possible_cpu(cpu)
911 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
912 				      size, 0, gfp);
913 }
914 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
915 
916 /**
917  * kmemleak_vmalloc - register a newly vmalloc'ed object
918  * @area:	pointer to vm_struct
919  * @size:	size of the object
920  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
921  *
922  * This function is called from the vmalloc() kernel allocator when a new
923  * object (memory block) is allocated.
924  */
925 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
926 {
927 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
928 
929 	/*
930 	 * A min_count = 2 is needed because vm_struct contains a reference to
931 	 * the virtual address of the vmalloc'ed block.
932 	 */
933 	if (kmemleak_enabled) {
934 		create_object((unsigned long)area->addr, size, 2, gfp);
935 		object_set_excess_ref((unsigned long)area,
936 				      (unsigned long)area->addr);
937 	}
938 }
939 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
940 
941 /**
942  * kmemleak_free - unregister a previously registered object
943  * @ptr:	pointer to beginning of the object
944  *
945  * This function is called from the kernel allocators when an object (memory
946  * block) is freed (kmem_cache_free, kfree, vfree etc.).
947  */
948 void __ref kmemleak_free(const void *ptr)
949 {
950 	pr_debug("%s(0x%p)\n", __func__, ptr);
951 
952 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
953 		delete_object_full((unsigned long)ptr);
954 }
955 EXPORT_SYMBOL_GPL(kmemleak_free);
956 
957 /**
958  * kmemleak_free_part - partially unregister a previously registered object
959  * @ptr:	pointer to the beginning or inside the object. This also
960  *		represents the start of the range to be freed
961  * @size:	size to be unregistered
962  *
963  * This function is called when only a part of a memory block is freed
964  * (usually from the bootmem allocator).
965  */
966 void __ref kmemleak_free_part(const void *ptr, size_t size)
967 {
968 	pr_debug("%s(0x%p)\n", __func__, ptr);
969 
970 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
971 		delete_object_part((unsigned long)ptr, size);
972 }
973 EXPORT_SYMBOL_GPL(kmemleak_free_part);
974 
975 /**
976  * kmemleak_free_percpu - unregister a previously registered __percpu object
977  * @ptr:	__percpu pointer to beginning of the object
978  *
979  * This function is called from the kernel percpu allocator when an object
980  * (memory block) is freed (free_percpu).
981  */
982 void __ref kmemleak_free_percpu(const void __percpu *ptr)
983 {
984 	unsigned int cpu;
985 
986 	pr_debug("%s(0x%p)\n", __func__, ptr);
987 
988 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
989 		for_each_possible_cpu(cpu)
990 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
991 								      cpu));
992 }
993 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
994 
995 /**
996  * kmemleak_update_trace - update object allocation stack trace
997  * @ptr:	pointer to beginning of the object
998  *
999  * Override the object allocation stack trace for cases where the actual
1000  * allocation place is not always useful.
1001  */
1002 void __ref kmemleak_update_trace(const void *ptr)
1003 {
1004 	struct kmemleak_object *object;
1005 	unsigned long flags;
1006 
1007 	pr_debug("%s(0x%p)\n", __func__, ptr);
1008 
1009 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1010 		return;
1011 
1012 	object = find_and_get_object((unsigned long)ptr, 1);
1013 	if (!object) {
1014 #ifdef DEBUG
1015 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1016 			      ptr);
1017 #endif
1018 		return;
1019 	}
1020 
1021 	spin_lock_irqsave(&object->lock, flags);
1022 	object->trace_len = __save_stack_trace(object->trace);
1023 	spin_unlock_irqrestore(&object->lock, flags);
1024 
1025 	put_object(object);
1026 }
1027 EXPORT_SYMBOL(kmemleak_update_trace);
1028 
1029 /**
1030  * kmemleak_not_leak - mark an allocated object as false positive
1031  * @ptr:	pointer to beginning of the object
1032  *
1033  * Calling this function on an object will cause the memory block to no longer
1034  * be reported as leak and always be scanned.
1035  */
1036 void __ref kmemleak_not_leak(const void *ptr)
1037 {
1038 	pr_debug("%s(0x%p)\n", __func__, ptr);
1039 
1040 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1041 		make_gray_object((unsigned long)ptr);
1042 }
1043 EXPORT_SYMBOL(kmemleak_not_leak);
1044 
1045 /**
1046  * kmemleak_ignore - ignore an allocated object
1047  * @ptr:	pointer to beginning of the object
1048  *
1049  * Calling this function on an object will cause the memory block to be
1050  * ignored (not scanned and not reported as a leak). This is usually done when
1051  * it is known that the corresponding block is not a leak and does not contain
1052  * any references to other allocated memory blocks.
1053  */
1054 void __ref kmemleak_ignore(const void *ptr)
1055 {
1056 	pr_debug("%s(0x%p)\n", __func__, ptr);
1057 
1058 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1059 		make_black_object((unsigned long)ptr);
1060 }
1061 EXPORT_SYMBOL(kmemleak_ignore);
1062 
1063 /**
1064  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1065  * @ptr:	pointer to beginning or inside the object. This also
1066  *		represents the start of the scan area
1067  * @size:	size of the scan area
1068  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1069  *
1070  * This function is used when it is known that only certain parts of an object
1071  * contain references to other objects. Kmemleak will only scan these areas
1072  * reducing the number false negatives.
1073  */
1074 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1075 {
1076 	pr_debug("%s(0x%p)\n", __func__, ptr);
1077 
1078 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1079 		add_scan_area((unsigned long)ptr, size, gfp);
1080 }
1081 EXPORT_SYMBOL(kmemleak_scan_area);
1082 
1083 /**
1084  * kmemleak_no_scan - do not scan an allocated object
1085  * @ptr:	pointer to beginning of the object
1086  *
1087  * This function notifies kmemleak not to scan the given memory block. Useful
1088  * in situations where it is known that the given object does not contain any
1089  * references to other objects. Kmemleak will not scan such objects reducing
1090  * the number of false negatives.
1091  */
1092 void __ref kmemleak_no_scan(const void *ptr)
1093 {
1094 	pr_debug("%s(0x%p)\n", __func__, ptr);
1095 
1096 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1097 		object_no_scan((unsigned long)ptr);
1098 }
1099 EXPORT_SYMBOL(kmemleak_no_scan);
1100 
1101 /**
1102  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1103  *			 address argument
1104  * @phys:	physical address of the object
1105  * @size:	size of the object
1106  * @min_count:	minimum number of references to this object.
1107  *              See kmemleak_alloc()
1108  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1109  */
1110 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1111 			       gfp_t gfp)
1112 {
1113 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1114 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1115 }
1116 EXPORT_SYMBOL(kmemleak_alloc_phys);
1117 
1118 /**
1119  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1120  *			     physical address argument
1121  * @phys:	physical address if the beginning or inside an object. This
1122  *		also represents the start of the range to be freed
1123  * @size:	size to be unregistered
1124  */
1125 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1126 {
1127 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1128 		kmemleak_free_part(__va(phys), size);
1129 }
1130 EXPORT_SYMBOL(kmemleak_free_part_phys);
1131 
1132 /**
1133  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1134  *			    address argument
1135  * @phys:	physical address of the object
1136  */
1137 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1138 {
1139 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1140 		kmemleak_not_leak(__va(phys));
1141 }
1142 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1143 
1144 /**
1145  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1146  *			  address argument
1147  * @phys:	physical address of the object
1148  */
1149 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1150 {
1151 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1152 		kmemleak_ignore(__va(phys));
1153 }
1154 EXPORT_SYMBOL(kmemleak_ignore_phys);
1155 
1156 /*
1157  * Update an object's checksum and return true if it was modified.
1158  */
1159 static bool update_checksum(struct kmemleak_object *object)
1160 {
1161 	u32 old_csum = object->checksum;
1162 
1163 	kasan_disable_current();
1164 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1165 	kasan_enable_current();
1166 
1167 	return object->checksum != old_csum;
1168 }
1169 
1170 /*
1171  * Update an object's references. object->lock must be held by the caller.
1172  */
1173 static void update_refs(struct kmemleak_object *object)
1174 {
1175 	if (!color_white(object)) {
1176 		/* non-orphan, ignored or new */
1177 		return;
1178 	}
1179 
1180 	/*
1181 	 * Increase the object's reference count (number of pointers to the
1182 	 * memory block). If this count reaches the required minimum, the
1183 	 * object's color will become gray and it will be added to the
1184 	 * gray_list.
1185 	 */
1186 	object->count++;
1187 	if (color_gray(object)) {
1188 		/* put_object() called when removing from gray_list */
1189 		WARN_ON(!get_object(object));
1190 		list_add_tail(&object->gray_list, &gray_list);
1191 	}
1192 }
1193 
1194 /*
1195  * Memory scanning is a long process and it needs to be interruptable. This
1196  * function checks whether such interrupt condition occurred.
1197  */
1198 static int scan_should_stop(void)
1199 {
1200 	if (!kmemleak_enabled)
1201 		return 1;
1202 
1203 	/*
1204 	 * This function may be called from either process or kthread context,
1205 	 * hence the need to check for both stop conditions.
1206 	 */
1207 	if (current->mm)
1208 		return signal_pending(current);
1209 	else
1210 		return kthread_should_stop();
1211 
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Scan a memory block (exclusive range) for valid pointers and add those
1217  * found to the gray list.
1218  */
1219 static void scan_block(void *_start, void *_end,
1220 		       struct kmemleak_object *scanned)
1221 {
1222 	unsigned long *ptr;
1223 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1224 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1225 	unsigned long flags;
1226 	unsigned long untagged_ptr;
1227 
1228 	read_lock_irqsave(&kmemleak_lock, flags);
1229 	for (ptr = start; ptr < end; ptr++) {
1230 		struct kmemleak_object *object;
1231 		unsigned long pointer;
1232 		unsigned long excess_ref;
1233 
1234 		if (scan_should_stop())
1235 			break;
1236 
1237 		kasan_disable_current();
1238 		pointer = *ptr;
1239 		kasan_enable_current();
1240 
1241 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1242 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1243 			continue;
1244 
1245 		/*
1246 		 * No need for get_object() here since we hold kmemleak_lock.
1247 		 * object->use_count cannot be dropped to 0 while the object
1248 		 * is still present in object_tree_root and object_list
1249 		 * (with updates protected by kmemleak_lock).
1250 		 */
1251 		object = lookup_object(pointer, 1);
1252 		if (!object)
1253 			continue;
1254 		if (object == scanned)
1255 			/* self referenced, ignore */
1256 			continue;
1257 
1258 		/*
1259 		 * Avoid the lockdep recursive warning on object->lock being
1260 		 * previously acquired in scan_object(). These locks are
1261 		 * enclosed by scan_mutex.
1262 		 */
1263 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1264 		/* only pass surplus references (object already gray) */
1265 		if (color_gray(object)) {
1266 			excess_ref = object->excess_ref;
1267 			/* no need for update_refs() if object already gray */
1268 		} else {
1269 			excess_ref = 0;
1270 			update_refs(object);
1271 		}
1272 		spin_unlock(&object->lock);
1273 
1274 		if (excess_ref) {
1275 			object = lookup_object(excess_ref, 0);
1276 			if (!object)
1277 				continue;
1278 			if (object == scanned)
1279 				/* circular reference, ignore */
1280 				continue;
1281 			spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1282 			update_refs(object);
1283 			spin_unlock(&object->lock);
1284 		}
1285 	}
1286 	read_unlock_irqrestore(&kmemleak_lock, flags);
1287 }
1288 
1289 /*
1290  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1291  */
1292 #ifdef CONFIG_SMP
1293 static void scan_large_block(void *start, void *end)
1294 {
1295 	void *next;
1296 
1297 	while (start < end) {
1298 		next = min(start + MAX_SCAN_SIZE, end);
1299 		scan_block(start, next, NULL);
1300 		start = next;
1301 		cond_resched();
1302 	}
1303 }
1304 #endif
1305 
1306 /*
1307  * Scan a memory block corresponding to a kmemleak_object. A condition is
1308  * that object->use_count >= 1.
1309  */
1310 static void scan_object(struct kmemleak_object *object)
1311 {
1312 	struct kmemleak_scan_area *area;
1313 	unsigned long flags;
1314 
1315 	/*
1316 	 * Once the object->lock is acquired, the corresponding memory block
1317 	 * cannot be freed (the same lock is acquired in delete_object).
1318 	 */
1319 	spin_lock_irqsave(&object->lock, flags);
1320 	if (object->flags & OBJECT_NO_SCAN)
1321 		goto out;
1322 	if (!(object->flags & OBJECT_ALLOCATED))
1323 		/* already freed object */
1324 		goto out;
1325 	if (hlist_empty(&object->area_list) ||
1326 	    object->flags & OBJECT_FULL_SCAN) {
1327 		void *start = (void *)object->pointer;
1328 		void *end = (void *)(object->pointer + object->size);
1329 		void *next;
1330 
1331 		do {
1332 			next = min(start + MAX_SCAN_SIZE, end);
1333 			scan_block(start, next, object);
1334 
1335 			start = next;
1336 			if (start >= end)
1337 				break;
1338 
1339 			spin_unlock_irqrestore(&object->lock, flags);
1340 			cond_resched();
1341 			spin_lock_irqsave(&object->lock, flags);
1342 		} while (object->flags & OBJECT_ALLOCATED);
1343 	} else
1344 		hlist_for_each_entry(area, &object->area_list, node)
1345 			scan_block((void *)area->start,
1346 				   (void *)(area->start + area->size),
1347 				   object);
1348 out:
1349 	spin_unlock_irqrestore(&object->lock, flags);
1350 }
1351 
1352 /*
1353  * Scan the objects already referenced (gray objects). More objects will be
1354  * referenced and, if there are no memory leaks, all the objects are scanned.
1355  */
1356 static void scan_gray_list(void)
1357 {
1358 	struct kmemleak_object *object, *tmp;
1359 
1360 	/*
1361 	 * The list traversal is safe for both tail additions and removals
1362 	 * from inside the loop. The kmemleak objects cannot be freed from
1363 	 * outside the loop because their use_count was incremented.
1364 	 */
1365 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1366 	while (&object->gray_list != &gray_list) {
1367 		cond_resched();
1368 
1369 		/* may add new objects to the list */
1370 		if (!scan_should_stop())
1371 			scan_object(object);
1372 
1373 		tmp = list_entry(object->gray_list.next, typeof(*object),
1374 				 gray_list);
1375 
1376 		/* remove the object from the list and release it */
1377 		list_del(&object->gray_list);
1378 		put_object(object);
1379 
1380 		object = tmp;
1381 	}
1382 	WARN_ON(!list_empty(&gray_list));
1383 }
1384 
1385 /*
1386  * Scan data sections and all the referenced memory blocks allocated via the
1387  * kernel's standard allocators. This function must be called with the
1388  * scan_mutex held.
1389  */
1390 static void kmemleak_scan(void)
1391 {
1392 	unsigned long flags;
1393 	struct kmemleak_object *object;
1394 	int i;
1395 	int new_leaks = 0;
1396 
1397 	jiffies_last_scan = jiffies;
1398 
1399 	/* prepare the kmemleak_object's */
1400 	rcu_read_lock();
1401 	list_for_each_entry_rcu(object, &object_list, object_list) {
1402 		spin_lock_irqsave(&object->lock, flags);
1403 #ifdef DEBUG
1404 		/*
1405 		 * With a few exceptions there should be a maximum of
1406 		 * 1 reference to any object at this point.
1407 		 */
1408 		if (atomic_read(&object->use_count) > 1) {
1409 			pr_debug("object->use_count = %d\n",
1410 				 atomic_read(&object->use_count));
1411 			dump_object_info(object);
1412 		}
1413 #endif
1414 		/* reset the reference count (whiten the object) */
1415 		object->count = 0;
1416 		if (color_gray(object) && get_object(object))
1417 			list_add_tail(&object->gray_list, &gray_list);
1418 
1419 		spin_unlock_irqrestore(&object->lock, flags);
1420 	}
1421 	rcu_read_unlock();
1422 
1423 #ifdef CONFIG_SMP
1424 	/* per-cpu sections scanning */
1425 	for_each_possible_cpu(i)
1426 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1427 				 __per_cpu_end + per_cpu_offset(i));
1428 #endif
1429 
1430 	/*
1431 	 * Struct page scanning for each node.
1432 	 */
1433 	get_online_mems();
1434 	for_each_online_node(i) {
1435 		unsigned long start_pfn = node_start_pfn(i);
1436 		unsigned long end_pfn = node_end_pfn(i);
1437 		unsigned long pfn;
1438 
1439 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1440 			struct page *page = pfn_to_online_page(pfn);
1441 
1442 			if (!page)
1443 				continue;
1444 
1445 			/* only scan pages belonging to this node */
1446 			if (page_to_nid(page) != i)
1447 				continue;
1448 			/* only scan if page is in use */
1449 			if (page_count(page) == 0)
1450 				continue;
1451 			scan_block(page, page + 1, NULL);
1452 			if (!(pfn & 63))
1453 				cond_resched();
1454 		}
1455 	}
1456 	put_online_mems();
1457 
1458 	/*
1459 	 * Scanning the task stacks (may introduce false negatives).
1460 	 */
1461 	if (kmemleak_stack_scan) {
1462 		struct task_struct *p, *g;
1463 
1464 		read_lock(&tasklist_lock);
1465 		do_each_thread(g, p) {
1466 			void *stack = try_get_task_stack(p);
1467 			if (stack) {
1468 				scan_block(stack, stack + THREAD_SIZE, NULL);
1469 				put_task_stack(p);
1470 			}
1471 		} while_each_thread(g, p);
1472 		read_unlock(&tasklist_lock);
1473 	}
1474 
1475 	/*
1476 	 * Scan the objects already referenced from the sections scanned
1477 	 * above.
1478 	 */
1479 	scan_gray_list();
1480 
1481 	/*
1482 	 * Check for new or unreferenced objects modified since the previous
1483 	 * scan and color them gray until the next scan.
1484 	 */
1485 	rcu_read_lock();
1486 	list_for_each_entry_rcu(object, &object_list, object_list) {
1487 		spin_lock_irqsave(&object->lock, flags);
1488 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1489 		    && update_checksum(object) && get_object(object)) {
1490 			/* color it gray temporarily */
1491 			object->count = object->min_count;
1492 			list_add_tail(&object->gray_list, &gray_list);
1493 		}
1494 		spin_unlock_irqrestore(&object->lock, flags);
1495 	}
1496 	rcu_read_unlock();
1497 
1498 	/*
1499 	 * Re-scan the gray list for modified unreferenced objects.
1500 	 */
1501 	scan_gray_list();
1502 
1503 	/*
1504 	 * If scanning was stopped do not report any new unreferenced objects.
1505 	 */
1506 	if (scan_should_stop())
1507 		return;
1508 
1509 	/*
1510 	 * Scanning result reporting.
1511 	 */
1512 	rcu_read_lock();
1513 	list_for_each_entry_rcu(object, &object_list, object_list) {
1514 		spin_lock_irqsave(&object->lock, flags);
1515 		if (unreferenced_object(object) &&
1516 		    !(object->flags & OBJECT_REPORTED)) {
1517 			object->flags |= OBJECT_REPORTED;
1518 
1519 			if (kmemleak_verbose)
1520 				print_unreferenced(NULL, object);
1521 
1522 			new_leaks++;
1523 		}
1524 		spin_unlock_irqrestore(&object->lock, flags);
1525 	}
1526 	rcu_read_unlock();
1527 
1528 	if (new_leaks) {
1529 		kmemleak_found_leaks = true;
1530 
1531 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1532 			new_leaks);
1533 	}
1534 
1535 }
1536 
1537 /*
1538  * Thread function performing automatic memory scanning. Unreferenced objects
1539  * at the end of a memory scan are reported but only the first time.
1540  */
1541 static int kmemleak_scan_thread(void *arg)
1542 {
1543 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1544 
1545 	pr_info("Automatic memory scanning thread started\n");
1546 	set_user_nice(current, 10);
1547 
1548 	/*
1549 	 * Wait before the first scan to allow the system to fully initialize.
1550 	 */
1551 	if (first_run) {
1552 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1553 		first_run = 0;
1554 		while (timeout && !kthread_should_stop())
1555 			timeout = schedule_timeout_interruptible(timeout);
1556 	}
1557 
1558 	while (!kthread_should_stop()) {
1559 		signed long timeout = jiffies_scan_wait;
1560 
1561 		mutex_lock(&scan_mutex);
1562 		kmemleak_scan();
1563 		mutex_unlock(&scan_mutex);
1564 
1565 		/* wait before the next scan */
1566 		while (timeout && !kthread_should_stop())
1567 			timeout = schedule_timeout_interruptible(timeout);
1568 	}
1569 
1570 	pr_info("Automatic memory scanning thread ended\n");
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Start the automatic memory scanning thread. This function must be called
1577  * with the scan_mutex held.
1578  */
1579 static void start_scan_thread(void)
1580 {
1581 	if (scan_thread)
1582 		return;
1583 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1584 	if (IS_ERR(scan_thread)) {
1585 		pr_warn("Failed to create the scan thread\n");
1586 		scan_thread = NULL;
1587 	}
1588 }
1589 
1590 /*
1591  * Stop the automatic memory scanning thread.
1592  */
1593 static void stop_scan_thread(void)
1594 {
1595 	if (scan_thread) {
1596 		kthread_stop(scan_thread);
1597 		scan_thread = NULL;
1598 	}
1599 }
1600 
1601 /*
1602  * Iterate over the object_list and return the first valid object at or after
1603  * the required position with its use_count incremented. The function triggers
1604  * a memory scanning when the pos argument points to the first position.
1605  */
1606 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1607 {
1608 	struct kmemleak_object *object;
1609 	loff_t n = *pos;
1610 	int err;
1611 
1612 	err = mutex_lock_interruptible(&scan_mutex);
1613 	if (err < 0)
1614 		return ERR_PTR(err);
1615 
1616 	rcu_read_lock();
1617 	list_for_each_entry_rcu(object, &object_list, object_list) {
1618 		if (n-- > 0)
1619 			continue;
1620 		if (get_object(object))
1621 			goto out;
1622 	}
1623 	object = NULL;
1624 out:
1625 	return object;
1626 }
1627 
1628 /*
1629  * Return the next object in the object_list. The function decrements the
1630  * use_count of the previous object and increases that of the next one.
1631  */
1632 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1633 {
1634 	struct kmemleak_object *prev_obj = v;
1635 	struct kmemleak_object *next_obj = NULL;
1636 	struct kmemleak_object *obj = prev_obj;
1637 
1638 	++(*pos);
1639 
1640 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1641 		if (get_object(obj)) {
1642 			next_obj = obj;
1643 			break;
1644 		}
1645 	}
1646 
1647 	put_object(prev_obj);
1648 	return next_obj;
1649 }
1650 
1651 /*
1652  * Decrement the use_count of the last object required, if any.
1653  */
1654 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1655 {
1656 	if (!IS_ERR(v)) {
1657 		/*
1658 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1659 		 * waiting was interrupted, so only release it if !IS_ERR.
1660 		 */
1661 		rcu_read_unlock();
1662 		mutex_unlock(&scan_mutex);
1663 		if (v)
1664 			put_object(v);
1665 	}
1666 }
1667 
1668 /*
1669  * Print the information for an unreferenced object to the seq file.
1670  */
1671 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1672 {
1673 	struct kmemleak_object *object = v;
1674 	unsigned long flags;
1675 
1676 	spin_lock_irqsave(&object->lock, flags);
1677 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1678 		print_unreferenced(seq, object);
1679 	spin_unlock_irqrestore(&object->lock, flags);
1680 	return 0;
1681 }
1682 
1683 static const struct seq_operations kmemleak_seq_ops = {
1684 	.start = kmemleak_seq_start,
1685 	.next  = kmemleak_seq_next,
1686 	.stop  = kmemleak_seq_stop,
1687 	.show  = kmemleak_seq_show,
1688 };
1689 
1690 static int kmemleak_open(struct inode *inode, struct file *file)
1691 {
1692 	return seq_open(file, &kmemleak_seq_ops);
1693 }
1694 
1695 static int dump_str_object_info(const char *str)
1696 {
1697 	unsigned long flags;
1698 	struct kmemleak_object *object;
1699 	unsigned long addr;
1700 
1701 	if (kstrtoul(str, 0, &addr))
1702 		return -EINVAL;
1703 	object = find_and_get_object(addr, 0);
1704 	if (!object) {
1705 		pr_info("Unknown object at 0x%08lx\n", addr);
1706 		return -EINVAL;
1707 	}
1708 
1709 	spin_lock_irqsave(&object->lock, flags);
1710 	dump_object_info(object);
1711 	spin_unlock_irqrestore(&object->lock, flags);
1712 
1713 	put_object(object);
1714 	return 0;
1715 }
1716 
1717 /*
1718  * We use grey instead of black to ensure we can do future scans on the same
1719  * objects. If we did not do future scans these black objects could
1720  * potentially contain references to newly allocated objects in the future and
1721  * we'd end up with false positives.
1722  */
1723 static void kmemleak_clear(void)
1724 {
1725 	struct kmemleak_object *object;
1726 	unsigned long flags;
1727 
1728 	rcu_read_lock();
1729 	list_for_each_entry_rcu(object, &object_list, object_list) {
1730 		spin_lock_irqsave(&object->lock, flags);
1731 		if ((object->flags & OBJECT_REPORTED) &&
1732 		    unreferenced_object(object))
1733 			__paint_it(object, KMEMLEAK_GREY);
1734 		spin_unlock_irqrestore(&object->lock, flags);
1735 	}
1736 	rcu_read_unlock();
1737 
1738 	kmemleak_found_leaks = false;
1739 }
1740 
1741 static void __kmemleak_do_cleanup(void);
1742 
1743 /*
1744  * File write operation to configure kmemleak at run-time. The following
1745  * commands can be written to the /sys/kernel/debug/kmemleak file:
1746  *   off	- disable kmemleak (irreversible)
1747  *   stack=on	- enable the task stacks scanning
1748  *   stack=off	- disable the tasks stacks scanning
1749  *   scan=on	- start the automatic memory scanning thread
1750  *   scan=off	- stop the automatic memory scanning thread
1751  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1752  *		  disable it)
1753  *   scan	- trigger a memory scan
1754  *   clear	- mark all current reported unreferenced kmemleak objects as
1755  *		  grey to ignore printing them, or free all kmemleak objects
1756  *		  if kmemleak has been disabled.
1757  *   dump=...	- dump information about the object found at the given address
1758  */
1759 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1760 			      size_t size, loff_t *ppos)
1761 {
1762 	char buf[64];
1763 	int buf_size;
1764 	int ret;
1765 
1766 	buf_size = min(size, (sizeof(buf) - 1));
1767 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1768 		return -EFAULT;
1769 	buf[buf_size] = 0;
1770 
1771 	ret = mutex_lock_interruptible(&scan_mutex);
1772 	if (ret < 0)
1773 		return ret;
1774 
1775 	if (strncmp(buf, "clear", 5) == 0) {
1776 		if (kmemleak_enabled)
1777 			kmemleak_clear();
1778 		else
1779 			__kmemleak_do_cleanup();
1780 		goto out;
1781 	}
1782 
1783 	if (!kmemleak_enabled) {
1784 		ret = -EPERM;
1785 		goto out;
1786 	}
1787 
1788 	if (strncmp(buf, "off", 3) == 0)
1789 		kmemleak_disable();
1790 	else if (strncmp(buf, "stack=on", 8) == 0)
1791 		kmemleak_stack_scan = 1;
1792 	else if (strncmp(buf, "stack=off", 9) == 0)
1793 		kmemleak_stack_scan = 0;
1794 	else if (strncmp(buf, "scan=on", 7) == 0)
1795 		start_scan_thread();
1796 	else if (strncmp(buf, "scan=off", 8) == 0)
1797 		stop_scan_thread();
1798 	else if (strncmp(buf, "scan=", 5) == 0) {
1799 		unsigned long secs;
1800 
1801 		ret = kstrtoul(buf + 5, 0, &secs);
1802 		if (ret < 0)
1803 			goto out;
1804 		stop_scan_thread();
1805 		if (secs) {
1806 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1807 			start_scan_thread();
1808 		}
1809 	} else if (strncmp(buf, "scan", 4) == 0)
1810 		kmemleak_scan();
1811 	else if (strncmp(buf, "dump=", 5) == 0)
1812 		ret = dump_str_object_info(buf + 5);
1813 	else
1814 		ret = -EINVAL;
1815 
1816 out:
1817 	mutex_unlock(&scan_mutex);
1818 	if (ret < 0)
1819 		return ret;
1820 
1821 	/* ignore the rest of the buffer, only one command at a time */
1822 	*ppos += size;
1823 	return size;
1824 }
1825 
1826 static const struct file_operations kmemleak_fops = {
1827 	.owner		= THIS_MODULE,
1828 	.open		= kmemleak_open,
1829 	.read		= seq_read,
1830 	.write		= kmemleak_write,
1831 	.llseek		= seq_lseek,
1832 	.release	= seq_release,
1833 };
1834 
1835 static void __kmemleak_do_cleanup(void)
1836 {
1837 	struct kmemleak_object *object;
1838 
1839 	rcu_read_lock();
1840 	list_for_each_entry_rcu(object, &object_list, object_list)
1841 		delete_object_full(object->pointer);
1842 	rcu_read_unlock();
1843 }
1844 
1845 /*
1846  * Stop the memory scanning thread and free the kmemleak internal objects if
1847  * no previous scan thread (otherwise, kmemleak may still have some useful
1848  * information on memory leaks).
1849  */
1850 static void kmemleak_do_cleanup(struct work_struct *work)
1851 {
1852 	stop_scan_thread();
1853 
1854 	mutex_lock(&scan_mutex);
1855 	/*
1856 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1857 	 * longer track object freeing. Ordering of the scan thread stopping and
1858 	 * the memory accesses below is guaranteed by the kthread_stop()
1859 	 * function.
1860 	 */
1861 	kmemleak_free_enabled = 0;
1862 	mutex_unlock(&scan_mutex);
1863 
1864 	if (!kmemleak_found_leaks)
1865 		__kmemleak_do_cleanup();
1866 	else
1867 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1868 }
1869 
1870 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1871 
1872 /*
1873  * Disable kmemleak. No memory allocation/freeing will be traced once this
1874  * function is called. Disabling kmemleak is an irreversible operation.
1875  */
1876 static void kmemleak_disable(void)
1877 {
1878 	/* atomically check whether it was already invoked */
1879 	if (cmpxchg(&kmemleak_error, 0, 1))
1880 		return;
1881 
1882 	/* stop any memory operation tracing */
1883 	kmemleak_enabled = 0;
1884 
1885 	/* check whether it is too early for a kernel thread */
1886 	if (kmemleak_initialized)
1887 		schedule_work(&cleanup_work);
1888 	else
1889 		kmemleak_free_enabled = 0;
1890 
1891 	pr_info("Kernel memory leak detector disabled\n");
1892 }
1893 
1894 /*
1895  * Allow boot-time kmemleak disabling (enabled by default).
1896  */
1897 static int __init kmemleak_boot_config(char *str)
1898 {
1899 	if (!str)
1900 		return -EINVAL;
1901 	if (strcmp(str, "off") == 0)
1902 		kmemleak_disable();
1903 	else if (strcmp(str, "on") == 0)
1904 		kmemleak_skip_disable = 1;
1905 	else
1906 		return -EINVAL;
1907 	return 0;
1908 }
1909 early_param("kmemleak", kmemleak_boot_config);
1910 
1911 /*
1912  * Kmemleak initialization.
1913  */
1914 void __init kmemleak_init(void)
1915 {
1916 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1917 	if (!kmemleak_skip_disable) {
1918 		kmemleak_disable();
1919 		return;
1920 	}
1921 #endif
1922 
1923 	if (kmemleak_error)
1924 		return;
1925 
1926 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1927 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1928 
1929 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1930 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1931 
1932 	/* register the data/bss sections */
1933 	create_object((unsigned long)_sdata, _edata - _sdata,
1934 		      KMEMLEAK_GREY, GFP_ATOMIC);
1935 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1936 		      KMEMLEAK_GREY, GFP_ATOMIC);
1937 	/* only register .data..ro_after_init if not within .data */
1938 	if (__start_ro_after_init < _sdata || __end_ro_after_init > _edata)
1939 		create_object((unsigned long)__start_ro_after_init,
1940 			      __end_ro_after_init - __start_ro_after_init,
1941 			      KMEMLEAK_GREY, GFP_ATOMIC);
1942 }
1943 
1944 /*
1945  * Late initialization function.
1946  */
1947 static int __init kmemleak_late_init(void)
1948 {
1949 	kmemleak_initialized = 1;
1950 
1951 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1952 
1953 	if (kmemleak_error) {
1954 		/*
1955 		 * Some error occurred and kmemleak was disabled. There is a
1956 		 * small chance that kmemleak_disable() was called immediately
1957 		 * after setting kmemleak_initialized and we may end up with
1958 		 * two clean-up threads but serialized by scan_mutex.
1959 		 */
1960 		schedule_work(&cleanup_work);
1961 		return -ENOMEM;
1962 	}
1963 
1964 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1965 		mutex_lock(&scan_mutex);
1966 		start_scan_thread();
1967 		mutex_unlock(&scan_mutex);
1968 	}
1969 
1970 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1971 		mem_pool_free_count);
1972 
1973 	return 0;
1974 }
1975 late_initcall(kmemleak_late_init);
1976