xref: /linux/mm/kmemleak.c (revision 1bd9a7b4afd5e0b938868a90b16d514c19808e6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root (or object_phys_tree_root). The
18  *   object_list is the main list holding the metadata (struct kmemleak_object)
19  *   for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20  *   are red black trees used to look-up metadata based on a pointer to the
21  *   corresponding memory block. The object_phys_tree_root is for objects
22  *   allocated with physical address. The kmemleak_object structures are
23  *   added to the object_list and object_tree_root (or object_phys_tree_root)
24  *   in the create_object() function called from the kmemleak_alloc() (or
25  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
26  *   the kmemleak_free() callback
27  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
29  *   that some members of this structure may be protected by other means
30  *   (atomic or kmemleak_lock). This lock is also held when scanning the
31  *   corresponding memory block to avoid the kernel freeing it via the
32  *   kmemleak_free() callback. This is less heavyweight than holding a global
33  *   lock like kmemleak_lock during scanning.
34  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35  *   unreferenced objects at a time. The gray_list contains the objects which
36  *   are already referenced or marked as false positives and need to be
37  *   scanned. This list is only modified during a scanning episode when the
38  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
39  *   Note that the kmemleak_object.use_count is incremented when an object is
40  *   added to the gray_list and therefore cannot be freed. This mutex also
41  *   prevents multiple users of the "kmemleak" debugfs file together with
42  *   modifications to the memory scanning parameters including the scan_thread
43  *   pointer
44  *
45  * Locks and mutexes are acquired/nested in the following order:
46  *
47  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48  *
49  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50  * regions.
51  *
52  * The kmemleak_object structures have a use_count incremented or decremented
53  * using the get_object()/put_object() functions. When the use_count becomes
54  * 0, this count can no longer be incremented and put_object() schedules the
55  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56  * function must be protected by rcu_read_lock() to avoid accessing a freed
57  * structure.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
73 #include <linux/fs.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/stackdepot.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/memblock.h>
86 #include <linux/pfn.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95 #include <linux/workqueue.h>
96 #include <linux/crc32.h>
97 
98 #include <asm/sections.h>
99 #include <asm/processor.h>
100 #include <linux/atomic.h>
101 
102 #include <linux/kasan.h>
103 #include <linux/kfence.h>
104 #include <linux/kmemleak.h>
105 #include <linux/memory_hotplug.h>
106 
107 /*
108  * Kmemleak configuration and common defines.
109  */
110 #define MAX_TRACE		16	/* stack trace length */
111 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
112 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
113 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
114 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
115 
116 #define BYTES_PER_POINTER	sizeof(void *)
117 
118 /* GFP bitmask for kmemleak internal allocations */
119 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 					   __GFP_NOLOCKDEP)) | \
121 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
122 				 __GFP_NOWARN)
123 
124 /* scanning area inside a memory block */
125 struct kmemleak_scan_area {
126 	struct hlist_node node;
127 	unsigned long start;
128 	size_t size;
129 };
130 
131 #define KMEMLEAK_GREY	0
132 #define KMEMLEAK_BLACK	-1
133 
134 /*
135  * Structure holding the metadata for each allocated memory block.
136  * Modifications to such objects should be made while holding the
137  * object->lock. Insertions or deletions from object_list, gray_list or
138  * rb_node are already protected by the corresponding locks or mutex (see
139  * the notes on locking above). These objects are reference-counted
140  * (use_count) and freed using the RCU mechanism.
141  */
142 struct kmemleak_object {
143 	raw_spinlock_t lock;
144 	unsigned int flags;		/* object status flags */
145 	struct list_head object_list;
146 	struct list_head gray_list;
147 	struct rb_node rb_node;
148 	struct rcu_head rcu;		/* object_list lockless traversal */
149 	/* object usage count; object freed when use_count == 0 */
150 	atomic_t use_count;
151 	unsigned long pointer;
152 	size_t size;
153 	/* pass surplus references to this pointer */
154 	unsigned long excess_ref;
155 	/* minimum number of a pointers found before it is considered leak */
156 	int min_count;
157 	/* the total number of pointers found pointing to this object */
158 	int count;
159 	/* checksum for detecting modified objects */
160 	u32 checksum;
161 	/* memory ranges to be scanned inside an object (empty for all) */
162 	struct hlist_head area_list;
163 	depot_stack_handle_t trace_handle;
164 	unsigned long jiffies;		/* creation timestamp */
165 	pid_t pid;			/* pid of the current task */
166 	char comm[TASK_COMM_LEN];	/* executable name */
167 };
168 
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED	(1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED		(1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN		(1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN	(1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS		(1 << 4)
179 
180 #define HEX_PREFIX		"    "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE		16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE		1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII		1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES		2
189 
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204 
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
208 
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219 
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223 
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238 
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
241 
242 static void kmemleak_disable(void);
243 
244 /*
245  * Print a warning and dump the stack trace.
246  */
247 #define kmemleak_warn(x...)	do {		\
248 	pr_warn(x);				\
249 	dump_stack();				\
250 	kmemleak_warning = 1;			\
251 } while (0)
252 
253 /*
254  * Macro invoked when a serious kmemleak condition occurred and cannot be
255  * recovered from. Kmemleak will be disabled and further allocation/freeing
256  * tracing no longer available.
257  */
258 #define kmemleak_stop(x...)	do {	\
259 	kmemleak_warn(x);		\
260 	kmemleak_disable();		\
261 } while (0)
262 
263 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
264 	if (seq)					\
265 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
266 	else						\
267 		pr_warn(fmt, ##__VA_ARGS__);		\
268 } while (0)
269 
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 				 int rowsize, int groupsize, const void *buf,
272 				 size_t len, bool ascii)
273 {
274 	if (seq)
275 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276 			     buf, len, ascii);
277 	else
278 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 			       rowsize, groupsize, buf, len, ascii);
280 }
281 
282 /*
283  * Printing of the objects hex dump to the seq file. The number of lines to be
284  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286  * with the object->lock held.
287  */
288 static void hex_dump_object(struct seq_file *seq,
289 			    struct kmemleak_object *object)
290 {
291 	const u8 *ptr = (const u8 *)object->pointer;
292 	size_t len;
293 
294 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295 		return;
296 
297 	/* limit the number of lines to HEX_MAX_LINES */
298 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299 
300 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
301 	kasan_disable_current();
302 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 	kasan_enable_current();
305 }
306 
307 /*
308  * Object colors, encoded with count and min_count:
309  * - white - orphan object, not enough references to it (count < min_count)
310  * - gray  - not orphan, not marked as false positive (min_count == 0) or
311  *		sufficient references to it (count >= min_count)
312  * - black - ignore, it doesn't contain references (e.g. text section)
313  *		(min_count == -1). No function defined for this color.
314  * Newly created objects don't have any color assigned (object->count == -1)
315  * before the next memory scan when they become white.
316  */
317 static bool color_white(const struct kmemleak_object *object)
318 {
319 	return object->count != KMEMLEAK_BLACK &&
320 		object->count < object->min_count;
321 }
322 
323 static bool color_gray(const struct kmemleak_object *object)
324 {
325 	return object->min_count != KMEMLEAK_BLACK &&
326 		object->count >= object->min_count;
327 }
328 
329 /*
330  * Objects are considered unreferenced only if their color is white, they have
331  * not be deleted and have a minimum age to avoid false positives caused by
332  * pointers temporarily stored in CPU registers.
333  */
334 static bool unreferenced_object(struct kmemleak_object *object)
335 {
336 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 		time_before_eq(object->jiffies + jiffies_min_age,
338 			       jiffies_last_scan);
339 }
340 
341 /*
342  * Printing of the unreferenced objects information to the seq file. The
343  * print_unreferenced function must be called with the object->lock held.
344  */
345 static void print_unreferenced(struct seq_file *seq,
346 			       struct kmemleak_object *object)
347 {
348 	int i;
349 	unsigned long *entries;
350 	unsigned int nr_entries;
351 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
352 
353 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355 			  object->pointer, object->size);
356 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357 			   object->comm, object->pid, object->jiffies,
358 			   msecs_age / 1000, msecs_age % 1000);
359 	hex_dump_object(seq, object);
360 	warn_or_seq_printf(seq, "  backtrace:\n");
361 
362 	for (i = 0; i < nr_entries; i++) {
363 		void *ptr = (void *)entries[i];
364 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
365 	}
366 }
367 
368 /*
369  * Print the kmemleak_object information. This function is used mainly for
370  * debugging special cases when kmemleak operations. It must be called with
371  * the object->lock held.
372  */
373 static void dump_object_info(struct kmemleak_object *object)
374 {
375 	pr_notice("Object 0x%08lx (size %zu):\n",
376 			object->pointer, object->size);
377 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
378 			object->comm, object->pid, object->jiffies);
379 	pr_notice("  min_count = %d\n", object->min_count);
380 	pr_notice("  count = %d\n", object->count);
381 	pr_notice("  flags = 0x%x\n", object->flags);
382 	pr_notice("  checksum = %u\n", object->checksum);
383 	pr_notice("  backtrace:\n");
384 	if (object->trace_handle)
385 		stack_depot_print(object->trace_handle);
386 }
387 
388 /*
389  * Look-up a memory block metadata (kmemleak_object) in the object search
390  * tree based on a pointer value. If alias is 0, only values pointing to the
391  * beginning of the memory block are allowed. The kmemleak_lock must be held
392  * when calling this function.
393  */
394 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395 					       bool is_phys)
396 {
397 	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 			     object_tree_root.rb_node;
399 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
400 
401 	while (rb) {
402 		struct kmemleak_object *object;
403 		unsigned long untagged_objp;
404 
405 		object = rb_entry(rb, struct kmemleak_object, rb_node);
406 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407 
408 		if (untagged_ptr < untagged_objp)
409 			rb = object->rb_node.rb_left;
410 		else if (untagged_objp + object->size <= untagged_ptr)
411 			rb = object->rb_node.rb_right;
412 		else if (untagged_objp == untagged_ptr || alias)
413 			return object;
414 		else {
415 			kmemleak_warn("Found object by alias at 0x%08lx\n",
416 				      ptr);
417 			dump_object_info(object);
418 			break;
419 		}
420 	}
421 	return NULL;
422 }
423 
424 /* Look-up a kmemleak object which allocated with virtual address. */
425 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426 {
427 	return __lookup_object(ptr, alias, false);
428 }
429 
430 /*
431  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432  * that once an object's use_count reached 0, the RCU freeing was already
433  * registered and the object should no longer be used. This function must be
434  * called under the protection of rcu_read_lock().
435  */
436 static int get_object(struct kmemleak_object *object)
437 {
438 	return atomic_inc_not_zero(&object->use_count);
439 }
440 
441 /*
442  * Memory pool allocation and freeing. kmemleak_lock must not be held.
443  */
444 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445 {
446 	unsigned long flags;
447 	struct kmemleak_object *object;
448 
449 	/* try the slab allocator first */
450 	if (object_cache) {
451 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452 		if (object)
453 			return object;
454 	}
455 
456 	/* slab allocation failed, try the memory pool */
457 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 	object = list_first_entry_or_null(&mem_pool_free_list,
459 					  typeof(*object), object_list);
460 	if (object)
461 		list_del(&object->object_list);
462 	else if (mem_pool_free_count)
463 		object = &mem_pool[--mem_pool_free_count];
464 	else
465 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
467 
468 	return object;
469 }
470 
471 /*
472  * Return the object to either the slab allocator or the memory pool.
473  */
474 static void mem_pool_free(struct kmemleak_object *object)
475 {
476 	unsigned long flags;
477 
478 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 		kmem_cache_free(object_cache, object);
480 		return;
481 	}
482 
483 	/* add the object to the memory pool free list */
484 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 	list_add(&object->object_list, &mem_pool_free_list);
486 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
487 }
488 
489 /*
490  * RCU callback to free a kmemleak_object.
491  */
492 static void free_object_rcu(struct rcu_head *rcu)
493 {
494 	struct hlist_node *tmp;
495 	struct kmemleak_scan_area *area;
496 	struct kmemleak_object *object =
497 		container_of(rcu, struct kmemleak_object, rcu);
498 
499 	/*
500 	 * Once use_count is 0 (guaranteed by put_object), there is no other
501 	 * code accessing this object, hence no need for locking.
502 	 */
503 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 		hlist_del(&area->node);
505 		kmem_cache_free(scan_area_cache, area);
506 	}
507 	mem_pool_free(object);
508 }
509 
510 /*
511  * Decrement the object use_count. Once the count is 0, free the object using
512  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513  * delete_object() path, the delayed RCU freeing ensures that there is no
514  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515  * is also possible.
516  */
517 static void put_object(struct kmemleak_object *object)
518 {
519 	if (!atomic_dec_and_test(&object->use_count))
520 		return;
521 
522 	/* should only get here after delete_object was called */
523 	WARN_ON(object->flags & OBJECT_ALLOCATED);
524 
525 	/*
526 	 * It may be too early for the RCU callbacks, however, there is no
527 	 * concurrent object_list traversal when !object_cache and all objects
528 	 * came from the memory pool. Free the object directly.
529 	 */
530 	if (object_cache)
531 		call_rcu(&object->rcu, free_object_rcu);
532 	else
533 		free_object_rcu(&object->rcu);
534 }
535 
536 /*
537  * Look up an object in the object search tree and increase its use_count.
538  */
539 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540 						     bool is_phys)
541 {
542 	unsigned long flags;
543 	struct kmemleak_object *object;
544 
545 	rcu_read_lock();
546 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
547 	object = __lookup_object(ptr, alias, is_phys);
548 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
549 
550 	/* check whether the object is still available */
551 	if (object && !get_object(object))
552 		object = NULL;
553 	rcu_read_unlock();
554 
555 	return object;
556 }
557 
558 /* Look up and get an object which allocated with virtual address. */
559 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560 {
561 	return __find_and_get_object(ptr, alias, false);
562 }
563 
564 /*
565  * Remove an object from the object_tree_root (or object_phys_tree_root)
566  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567  * is still enabled.
568  */
569 static void __remove_object(struct kmemleak_object *object)
570 {
571 	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 				   &object_phys_tree_root :
573 				   &object_tree_root);
574 	list_del_rcu(&object->object_list);
575 }
576 
577 /*
578  * Look up an object in the object search tree and remove it from both
579  * object_tree_root (or object_phys_tree_root) and object_list. The
580  * returned object's use_count should be at least 1, as initially set
581  * by create_object().
582  */
583 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584 						      bool is_phys)
585 {
586 	unsigned long flags;
587 	struct kmemleak_object *object;
588 
589 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
590 	object = __lookup_object(ptr, alias, is_phys);
591 	if (object)
592 		__remove_object(object);
593 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
594 
595 	return object;
596 }
597 
598 static noinline depot_stack_handle_t set_track_prepare(void)
599 {
600 	depot_stack_handle_t trace_handle;
601 	unsigned long entries[MAX_TRACE];
602 	unsigned int nr_entries;
603 
604 	if (!kmemleak_initialized)
605 		return 0;
606 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608 
609 	return trace_handle;
610 }
611 
612 /*
613  * Create the metadata (struct kmemleak_object) corresponding to an allocated
614  * memory block and add it to the object_list and object_tree_root (or
615  * object_phys_tree_root).
616  */
617 static void __create_object(unsigned long ptr, size_t size,
618 			    int min_count, gfp_t gfp, bool is_phys)
619 {
620 	unsigned long flags;
621 	struct kmemleak_object *object, *parent;
622 	struct rb_node **link, *rb_parent;
623 	unsigned long untagged_ptr;
624 	unsigned long untagged_objp;
625 
626 	object = mem_pool_alloc(gfp);
627 	if (!object) {
628 		pr_warn("Cannot allocate a kmemleak_object structure\n");
629 		kmemleak_disable();
630 		return;
631 	}
632 
633 	INIT_LIST_HEAD(&object->object_list);
634 	INIT_LIST_HEAD(&object->gray_list);
635 	INIT_HLIST_HEAD(&object->area_list);
636 	raw_spin_lock_init(&object->lock);
637 	atomic_set(&object->use_count, 1);
638 	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639 	object->pointer = ptr;
640 	object->size = kfence_ksize((void *)ptr) ?: size;
641 	object->excess_ref = 0;
642 	object->min_count = min_count;
643 	object->count = 0;			/* white color initially */
644 	object->jiffies = jiffies;
645 	object->checksum = 0;
646 
647 	/* task information */
648 	if (in_hardirq()) {
649 		object->pid = 0;
650 		strncpy(object->comm, "hardirq", sizeof(object->comm));
651 	} else if (in_serving_softirq()) {
652 		object->pid = 0;
653 		strncpy(object->comm, "softirq", sizeof(object->comm));
654 	} else {
655 		object->pid = current->pid;
656 		/*
657 		 * There is a small chance of a race with set_task_comm(),
658 		 * however using get_task_comm() here may cause locking
659 		 * dependency issues with current->alloc_lock. In the worst
660 		 * case, the command line is not correct.
661 		 */
662 		strncpy(object->comm, current->comm, sizeof(object->comm));
663 	}
664 
665 	/* kernel backtrace */
666 	object->trace_handle = set_track_prepare();
667 
668 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
669 
670 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
671 	/*
672 	 * Only update min_addr and max_addr with object
673 	 * storing virtual address.
674 	 */
675 	if (!is_phys) {
676 		min_addr = min(min_addr, untagged_ptr);
677 		max_addr = max(max_addr, untagged_ptr + size);
678 	}
679 	link = is_phys ? &object_phys_tree_root.rb_node :
680 		&object_tree_root.rb_node;
681 	rb_parent = NULL;
682 	while (*link) {
683 		rb_parent = *link;
684 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 		if (untagged_ptr + size <= untagged_objp)
687 			link = &parent->rb_node.rb_left;
688 		else if (untagged_objp + parent->size <= untagged_ptr)
689 			link = &parent->rb_node.rb_right;
690 		else {
691 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
692 				      ptr);
693 			/*
694 			 * No need for parent->lock here since "parent" cannot
695 			 * be freed while the kmemleak_lock is held.
696 			 */
697 			dump_object_info(parent);
698 			kmem_cache_free(object_cache, object);
699 			goto out;
700 		}
701 	}
702 	rb_link_node(&object->rb_node, rb_parent, link);
703 	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704 					  &object_tree_root);
705 	list_add_tail_rcu(&object->object_list, &object_list);
706 out:
707 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
708 }
709 
710 /* Create kmemleak object which allocated with virtual address. */
711 static void create_object(unsigned long ptr, size_t size,
712 			  int min_count, gfp_t gfp)
713 {
714 	__create_object(ptr, size, min_count, gfp, false);
715 }
716 
717 /* Create kmemleak object which allocated with physical address. */
718 static void create_object_phys(unsigned long ptr, size_t size,
719 			       int min_count, gfp_t gfp)
720 {
721 	__create_object(ptr, size, min_count, gfp, true);
722 }
723 
724 /*
725  * Mark the object as not allocated and schedule RCU freeing via put_object().
726  */
727 static void __delete_object(struct kmemleak_object *object)
728 {
729 	unsigned long flags;
730 
731 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732 	WARN_ON(atomic_read(&object->use_count) < 1);
733 
734 	/*
735 	 * Locking here also ensures that the corresponding memory block
736 	 * cannot be freed when it is being scanned.
737 	 */
738 	raw_spin_lock_irqsave(&object->lock, flags);
739 	object->flags &= ~OBJECT_ALLOCATED;
740 	raw_spin_unlock_irqrestore(&object->lock, flags);
741 	put_object(object);
742 }
743 
744 /*
745  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746  * delete it.
747  */
748 static void delete_object_full(unsigned long ptr)
749 {
750 	struct kmemleak_object *object;
751 
752 	object = find_and_remove_object(ptr, 0, false);
753 	if (!object) {
754 #ifdef DEBUG
755 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756 			      ptr);
757 #endif
758 		return;
759 	}
760 	__delete_object(object);
761 }
762 
763 /*
764  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765  * delete it. If the memory block is partially freed, the function may create
766  * additional metadata for the remaining parts of the block.
767  */
768 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
769 {
770 	struct kmemleak_object *object;
771 	unsigned long start, end;
772 
773 	object = find_and_remove_object(ptr, 1, is_phys);
774 	if (!object) {
775 #ifdef DEBUG
776 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777 			      ptr, size);
778 #endif
779 		return;
780 	}
781 
782 	/*
783 	 * Create one or two objects that may result from the memory block
784 	 * split. Note that partial freeing is only done by free_bootmem() and
785 	 * this happens before kmemleak_init() is called.
786 	 */
787 	start = object->pointer;
788 	end = object->pointer + object->size;
789 	if (ptr > start)
790 		__create_object(start, ptr - start, object->min_count,
791 			      GFP_KERNEL, is_phys);
792 	if (ptr + size < end)
793 		__create_object(ptr + size, end - ptr - size, object->min_count,
794 			      GFP_KERNEL, is_phys);
795 
796 	__delete_object(object);
797 }
798 
799 static void __paint_it(struct kmemleak_object *object, int color)
800 {
801 	object->min_count = color;
802 	if (color == KMEMLEAK_BLACK)
803 		object->flags |= OBJECT_NO_SCAN;
804 }
805 
806 static void paint_it(struct kmemleak_object *object, int color)
807 {
808 	unsigned long flags;
809 
810 	raw_spin_lock_irqsave(&object->lock, flags);
811 	__paint_it(object, color);
812 	raw_spin_unlock_irqrestore(&object->lock, flags);
813 }
814 
815 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
816 {
817 	struct kmemleak_object *object;
818 
819 	object = __find_and_get_object(ptr, 0, is_phys);
820 	if (!object) {
821 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822 			      ptr,
823 			      (color == KMEMLEAK_GREY) ? "Grey" :
824 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
825 		return;
826 	}
827 	paint_it(object, color);
828 	put_object(object);
829 }
830 
831 /*
832  * Mark an object permanently as gray-colored so that it can no longer be
833  * reported as a leak. This is used in general to mark a false positive.
834  */
835 static void make_gray_object(unsigned long ptr)
836 {
837 	paint_ptr(ptr, KMEMLEAK_GREY, false);
838 }
839 
840 /*
841  * Mark the object as black-colored so that it is ignored from scans and
842  * reporting.
843  */
844 static void make_black_object(unsigned long ptr, bool is_phys)
845 {
846 	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
847 }
848 
849 /*
850  * Add a scanning area to the object. If at least one such area is added,
851  * kmemleak will only scan these ranges rather than the whole memory block.
852  */
853 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
854 {
855 	unsigned long flags;
856 	struct kmemleak_object *object;
857 	struct kmemleak_scan_area *area = NULL;
858 	unsigned long untagged_ptr;
859 	unsigned long untagged_objp;
860 
861 	object = find_and_get_object(ptr, 1);
862 	if (!object) {
863 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864 			      ptr);
865 		return;
866 	}
867 
868 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870 
871 	if (scan_area_cache)
872 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
873 
874 	raw_spin_lock_irqsave(&object->lock, flags);
875 	if (!area) {
876 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 		/* mark the object for full scan to avoid false positives */
878 		object->flags |= OBJECT_FULL_SCAN;
879 		goto out_unlock;
880 	}
881 	if (size == SIZE_MAX) {
882 		size = untagged_objp + object->size - untagged_ptr;
883 	} else if (untagged_ptr + size > untagged_objp + object->size) {
884 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885 		dump_object_info(object);
886 		kmem_cache_free(scan_area_cache, area);
887 		goto out_unlock;
888 	}
889 
890 	INIT_HLIST_NODE(&area->node);
891 	area->start = ptr;
892 	area->size = size;
893 
894 	hlist_add_head(&area->node, &object->area_list);
895 out_unlock:
896 	raw_spin_unlock_irqrestore(&object->lock, flags);
897 	put_object(object);
898 }
899 
900 /*
901  * Any surplus references (object already gray) to 'ptr' are passed to
902  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903  * vm_struct may be used as an alternative reference to the vmalloc'ed object
904  * (see free_thread_stack()).
905  */
906 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907 {
908 	unsigned long flags;
909 	struct kmemleak_object *object;
910 
911 	object = find_and_get_object(ptr, 0);
912 	if (!object) {
913 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914 			      ptr);
915 		return;
916 	}
917 
918 	raw_spin_lock_irqsave(&object->lock, flags);
919 	object->excess_ref = excess_ref;
920 	raw_spin_unlock_irqrestore(&object->lock, flags);
921 	put_object(object);
922 }
923 
924 /*
925  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926  * pointer. Such object will not be scanned by kmemleak but references to it
927  * are searched.
928  */
929 static void object_no_scan(unsigned long ptr)
930 {
931 	unsigned long flags;
932 	struct kmemleak_object *object;
933 
934 	object = find_and_get_object(ptr, 0);
935 	if (!object) {
936 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
937 		return;
938 	}
939 
940 	raw_spin_lock_irqsave(&object->lock, flags);
941 	object->flags |= OBJECT_NO_SCAN;
942 	raw_spin_unlock_irqrestore(&object->lock, flags);
943 	put_object(object);
944 }
945 
946 /**
947  * kmemleak_alloc - register a newly allocated object
948  * @ptr:	pointer to beginning of the object
949  * @size:	size of the object
950  * @min_count:	minimum number of references to this object. If during memory
951  *		scanning a number of references less than @min_count is found,
952  *		the object is reported as a memory leak. If @min_count is 0,
953  *		the object is never reported as a leak. If @min_count is -1,
954  *		the object is ignored (not scanned and not reported as a leak)
955  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
956  *
957  * This function is called from the kernel allocators when a new object
958  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
959  */
960 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961 			  gfp_t gfp)
962 {
963 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964 
965 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 		create_object((unsigned long)ptr, size, min_count, gfp);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_alloc);
969 
970 /**
971  * kmemleak_alloc_percpu - register a newly allocated __percpu object
972  * @ptr:	__percpu pointer to beginning of the object
973  * @size:	size of the object
974  * @gfp:	flags used for kmemleak internal memory allocations
975  *
976  * This function is called from the kernel percpu allocator when a new object
977  * (memory block) is allocated (alloc_percpu).
978  */
979 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980 				 gfp_t gfp)
981 {
982 	unsigned int cpu;
983 
984 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985 
986 	/*
987 	 * Percpu allocations are only scanned and not reported as leaks
988 	 * (min_count is set to 0).
989 	 */
990 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991 		for_each_possible_cpu(cpu)
992 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
993 				      size, 0, gfp);
994 }
995 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996 
997 /**
998  * kmemleak_vmalloc - register a newly vmalloc'ed object
999  * @area:	pointer to vm_struct
1000  * @size:	size of the object
1001  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1002  *
1003  * This function is called from the vmalloc() kernel allocator when a new
1004  * object (memory block) is allocated.
1005  */
1006 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007 {
1008 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009 
1010 	/*
1011 	 * A min_count = 2 is needed because vm_struct contains a reference to
1012 	 * the virtual address of the vmalloc'ed block.
1013 	 */
1014 	if (kmemleak_enabled) {
1015 		create_object((unsigned long)area->addr, size, 2, gfp);
1016 		object_set_excess_ref((unsigned long)area,
1017 				      (unsigned long)area->addr);
1018 	}
1019 }
1020 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021 
1022 /**
1023  * kmemleak_free - unregister a previously registered object
1024  * @ptr:	pointer to beginning of the object
1025  *
1026  * This function is called from the kernel allocators when an object (memory
1027  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028  */
1029 void __ref kmemleak_free(const void *ptr)
1030 {
1031 	pr_debug("%s(0x%p)\n", __func__, ptr);
1032 
1033 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034 		delete_object_full((unsigned long)ptr);
1035 }
1036 EXPORT_SYMBOL_GPL(kmemleak_free);
1037 
1038 /**
1039  * kmemleak_free_part - partially unregister a previously registered object
1040  * @ptr:	pointer to the beginning or inside the object. This also
1041  *		represents the start of the range to be freed
1042  * @size:	size to be unregistered
1043  *
1044  * This function is called when only a part of a memory block is freed
1045  * (usually from the bootmem allocator).
1046  */
1047 void __ref kmemleak_free_part(const void *ptr, size_t size)
1048 {
1049 	pr_debug("%s(0x%p)\n", __func__, ptr);
1050 
1051 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052 		delete_object_part((unsigned long)ptr, size, false);
1053 }
1054 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055 
1056 /**
1057  * kmemleak_free_percpu - unregister a previously registered __percpu object
1058  * @ptr:	__percpu pointer to beginning of the object
1059  *
1060  * This function is called from the kernel percpu allocator when an object
1061  * (memory block) is freed (free_percpu).
1062  */
1063 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064 {
1065 	unsigned int cpu;
1066 
1067 	pr_debug("%s(0x%p)\n", __func__, ptr);
1068 
1069 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070 		for_each_possible_cpu(cpu)
1071 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072 								      cpu));
1073 }
1074 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075 
1076 /**
1077  * kmemleak_update_trace - update object allocation stack trace
1078  * @ptr:	pointer to beginning of the object
1079  *
1080  * Override the object allocation stack trace for cases where the actual
1081  * allocation place is not always useful.
1082  */
1083 void __ref kmemleak_update_trace(const void *ptr)
1084 {
1085 	struct kmemleak_object *object;
1086 	unsigned long flags;
1087 
1088 	pr_debug("%s(0x%p)\n", __func__, ptr);
1089 
1090 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091 		return;
1092 
1093 	object = find_and_get_object((unsigned long)ptr, 1);
1094 	if (!object) {
1095 #ifdef DEBUG
1096 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097 			      ptr);
1098 #endif
1099 		return;
1100 	}
1101 
1102 	raw_spin_lock_irqsave(&object->lock, flags);
1103 	object->trace_handle = set_track_prepare();
1104 	raw_spin_unlock_irqrestore(&object->lock, flags);
1105 
1106 	put_object(object);
1107 }
1108 EXPORT_SYMBOL(kmemleak_update_trace);
1109 
1110 /**
1111  * kmemleak_not_leak - mark an allocated object as false positive
1112  * @ptr:	pointer to beginning of the object
1113  *
1114  * Calling this function on an object will cause the memory block to no longer
1115  * be reported as leak and always be scanned.
1116  */
1117 void __ref kmemleak_not_leak(const void *ptr)
1118 {
1119 	pr_debug("%s(0x%p)\n", __func__, ptr);
1120 
1121 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 		make_gray_object((unsigned long)ptr);
1123 }
1124 EXPORT_SYMBOL(kmemleak_not_leak);
1125 
1126 /**
1127  * kmemleak_ignore - ignore an allocated object
1128  * @ptr:	pointer to beginning of the object
1129  *
1130  * Calling this function on an object will cause the memory block to be
1131  * ignored (not scanned and not reported as a leak). This is usually done when
1132  * it is known that the corresponding block is not a leak and does not contain
1133  * any references to other allocated memory blocks.
1134  */
1135 void __ref kmemleak_ignore(const void *ptr)
1136 {
1137 	pr_debug("%s(0x%p)\n", __func__, ptr);
1138 
1139 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 		make_black_object((unsigned long)ptr, false);
1141 }
1142 EXPORT_SYMBOL(kmemleak_ignore);
1143 
1144 /**
1145  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146  * @ptr:	pointer to beginning or inside the object. This also
1147  *		represents the start of the scan area
1148  * @size:	size of the scan area
1149  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1150  *
1151  * This function is used when it is known that only certain parts of an object
1152  * contain references to other objects. Kmemleak will only scan these areas
1153  * reducing the number false negatives.
1154  */
1155 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156 {
1157 	pr_debug("%s(0x%p)\n", __func__, ptr);
1158 
1159 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160 		add_scan_area((unsigned long)ptr, size, gfp);
1161 }
1162 EXPORT_SYMBOL(kmemleak_scan_area);
1163 
1164 /**
1165  * kmemleak_no_scan - do not scan an allocated object
1166  * @ptr:	pointer to beginning of the object
1167  *
1168  * This function notifies kmemleak not to scan the given memory block. Useful
1169  * in situations where it is known that the given object does not contain any
1170  * references to other objects. Kmemleak will not scan such objects reducing
1171  * the number of false negatives.
1172  */
1173 void __ref kmemleak_no_scan(const void *ptr)
1174 {
1175 	pr_debug("%s(0x%p)\n", __func__, ptr);
1176 
1177 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178 		object_no_scan((unsigned long)ptr);
1179 }
1180 EXPORT_SYMBOL(kmemleak_no_scan);
1181 
1182 /**
1183  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184  *			 address argument
1185  * @phys:	physical address of the object
1186  * @size:	size of the object
1187  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1188  */
1189 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190 {
1191 	pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192 
1193 	if (kmemleak_enabled)
1194 		/*
1195 		 * Create object with OBJECT_PHYS flag and
1196 		 * assume min_count 0.
1197 		 */
1198 		create_object_phys((unsigned long)phys, size, 0, gfp);
1199 }
1200 EXPORT_SYMBOL(kmemleak_alloc_phys);
1201 
1202 /**
1203  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204  *			     physical address argument
1205  * @phys:	physical address if the beginning or inside an object. This
1206  *		also represents the start of the range to be freed
1207  * @size:	size to be unregistered
1208  */
1209 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210 {
1211 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1212 
1213 	if (kmemleak_enabled)
1214 		delete_object_part((unsigned long)phys, size, true);
1215 }
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1217 
1218 /**
1219  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220  *			  address argument
1221  * @phys:	physical address of the object
1222  */
1223 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224 {
1225 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1226 
1227 	if (kmemleak_enabled)
1228 		make_black_object((unsigned long)phys, true);
1229 }
1230 EXPORT_SYMBOL(kmemleak_ignore_phys);
1231 
1232 /*
1233  * Update an object's checksum and return true if it was modified.
1234  */
1235 static bool update_checksum(struct kmemleak_object *object)
1236 {
1237 	u32 old_csum = object->checksum;
1238 
1239 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240 		return false;
1241 
1242 	kasan_disable_current();
1243 	kcsan_disable_current();
1244 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245 	kasan_enable_current();
1246 	kcsan_enable_current();
1247 
1248 	return object->checksum != old_csum;
1249 }
1250 
1251 /*
1252  * Update an object's references. object->lock must be held by the caller.
1253  */
1254 static void update_refs(struct kmemleak_object *object)
1255 {
1256 	if (!color_white(object)) {
1257 		/* non-orphan, ignored or new */
1258 		return;
1259 	}
1260 
1261 	/*
1262 	 * Increase the object's reference count (number of pointers to the
1263 	 * memory block). If this count reaches the required minimum, the
1264 	 * object's color will become gray and it will be added to the
1265 	 * gray_list.
1266 	 */
1267 	object->count++;
1268 	if (color_gray(object)) {
1269 		/* put_object() called when removing from gray_list */
1270 		WARN_ON(!get_object(object));
1271 		list_add_tail(&object->gray_list, &gray_list);
1272 	}
1273 }
1274 
1275 /*
1276  * Memory scanning is a long process and it needs to be interruptible. This
1277  * function checks whether such interrupt condition occurred.
1278  */
1279 static int scan_should_stop(void)
1280 {
1281 	if (!kmemleak_enabled)
1282 		return 1;
1283 
1284 	/*
1285 	 * This function may be called from either process or kthread context,
1286 	 * hence the need to check for both stop conditions.
1287 	 */
1288 	if (current->mm)
1289 		return signal_pending(current);
1290 	else
1291 		return kthread_should_stop();
1292 
1293 	return 0;
1294 }
1295 
1296 /*
1297  * Scan a memory block (exclusive range) for valid pointers and add those
1298  * found to the gray list.
1299  */
1300 static void scan_block(void *_start, void *_end,
1301 		       struct kmemleak_object *scanned)
1302 {
1303 	unsigned long *ptr;
1304 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 	unsigned long flags;
1307 	unsigned long untagged_ptr;
1308 
1309 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310 	for (ptr = start; ptr < end; ptr++) {
1311 		struct kmemleak_object *object;
1312 		unsigned long pointer;
1313 		unsigned long excess_ref;
1314 
1315 		if (scan_should_stop())
1316 			break;
1317 
1318 		kasan_disable_current();
1319 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320 		kasan_enable_current();
1321 
1322 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324 			continue;
1325 
1326 		/*
1327 		 * No need for get_object() here since we hold kmemleak_lock.
1328 		 * object->use_count cannot be dropped to 0 while the object
1329 		 * is still present in object_tree_root and object_list
1330 		 * (with updates protected by kmemleak_lock).
1331 		 */
1332 		object = lookup_object(pointer, 1);
1333 		if (!object)
1334 			continue;
1335 		if (object == scanned)
1336 			/* self referenced, ignore */
1337 			continue;
1338 
1339 		/*
1340 		 * Avoid the lockdep recursive warning on object->lock being
1341 		 * previously acquired in scan_object(). These locks are
1342 		 * enclosed by scan_mutex.
1343 		 */
1344 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345 		/* only pass surplus references (object already gray) */
1346 		if (color_gray(object)) {
1347 			excess_ref = object->excess_ref;
1348 			/* no need for update_refs() if object already gray */
1349 		} else {
1350 			excess_ref = 0;
1351 			update_refs(object);
1352 		}
1353 		raw_spin_unlock(&object->lock);
1354 
1355 		if (excess_ref) {
1356 			object = lookup_object(excess_ref, 0);
1357 			if (!object)
1358 				continue;
1359 			if (object == scanned)
1360 				/* circular reference, ignore */
1361 				continue;
1362 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 			update_refs(object);
1364 			raw_spin_unlock(&object->lock);
1365 		}
1366 	}
1367 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368 }
1369 
1370 /*
1371  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372  */
1373 #ifdef CONFIG_SMP
1374 static void scan_large_block(void *start, void *end)
1375 {
1376 	void *next;
1377 
1378 	while (start < end) {
1379 		next = min(start + MAX_SCAN_SIZE, end);
1380 		scan_block(start, next, NULL);
1381 		start = next;
1382 		cond_resched();
1383 	}
1384 }
1385 #endif
1386 
1387 /*
1388  * Scan a memory block corresponding to a kmemleak_object. A condition is
1389  * that object->use_count >= 1.
1390  */
1391 static void scan_object(struct kmemleak_object *object)
1392 {
1393 	struct kmemleak_scan_area *area;
1394 	unsigned long flags;
1395 	void *obj_ptr;
1396 
1397 	/*
1398 	 * Once the object->lock is acquired, the corresponding memory block
1399 	 * cannot be freed (the same lock is acquired in delete_object).
1400 	 */
1401 	raw_spin_lock_irqsave(&object->lock, flags);
1402 	if (object->flags & OBJECT_NO_SCAN)
1403 		goto out;
1404 	if (!(object->flags & OBJECT_ALLOCATED))
1405 		/* already freed object */
1406 		goto out;
1407 
1408 	obj_ptr = object->flags & OBJECT_PHYS ?
1409 		  __va((phys_addr_t)object->pointer) :
1410 		  (void *)object->pointer;
1411 
1412 	if (hlist_empty(&object->area_list) ||
1413 	    object->flags & OBJECT_FULL_SCAN) {
1414 		void *start = obj_ptr;
1415 		void *end = obj_ptr + object->size;
1416 		void *next;
1417 
1418 		do {
1419 			next = min(start + MAX_SCAN_SIZE, end);
1420 			scan_block(start, next, object);
1421 
1422 			start = next;
1423 			if (start >= end)
1424 				break;
1425 
1426 			raw_spin_unlock_irqrestore(&object->lock, flags);
1427 			cond_resched();
1428 			raw_spin_lock_irqsave(&object->lock, flags);
1429 		} while (object->flags & OBJECT_ALLOCATED);
1430 	} else
1431 		hlist_for_each_entry(area, &object->area_list, node)
1432 			scan_block((void *)area->start,
1433 				   (void *)(area->start + area->size),
1434 				   object);
1435 out:
1436 	raw_spin_unlock_irqrestore(&object->lock, flags);
1437 }
1438 
1439 /*
1440  * Scan the objects already referenced (gray objects). More objects will be
1441  * referenced and, if there are no memory leaks, all the objects are scanned.
1442  */
1443 static void scan_gray_list(void)
1444 {
1445 	struct kmemleak_object *object, *tmp;
1446 
1447 	/*
1448 	 * The list traversal is safe for both tail additions and removals
1449 	 * from inside the loop. The kmemleak objects cannot be freed from
1450 	 * outside the loop because their use_count was incremented.
1451 	 */
1452 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 	while (&object->gray_list != &gray_list) {
1454 		cond_resched();
1455 
1456 		/* may add new objects to the list */
1457 		if (!scan_should_stop())
1458 			scan_object(object);
1459 
1460 		tmp = list_entry(object->gray_list.next, typeof(*object),
1461 				 gray_list);
1462 
1463 		/* remove the object from the list and release it */
1464 		list_del(&object->gray_list);
1465 		put_object(object);
1466 
1467 		object = tmp;
1468 	}
1469 	WARN_ON(!list_empty(&gray_list));
1470 }
1471 
1472 /*
1473  * Conditionally call resched() in an object iteration loop while making sure
1474  * that the given object won't go away without RCU read lock by performing a
1475  * get_object() if !pinned.
1476  *
1477  * Return: false if can't do a cond_resched() due to get_object() failure
1478  *	   true otherwise
1479  */
1480 static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481 {
1482 	if (!pinned && !get_object(object))
1483 		return false;
1484 
1485 	rcu_read_unlock();
1486 	cond_resched();
1487 	rcu_read_lock();
1488 	if (!pinned)
1489 		put_object(object);
1490 	return true;
1491 }
1492 
1493 /*
1494  * Scan data sections and all the referenced memory blocks allocated via the
1495  * kernel's standard allocators. This function must be called with the
1496  * scan_mutex held.
1497  */
1498 static void kmemleak_scan(void)
1499 {
1500 	struct kmemleak_object *object;
1501 	struct zone *zone;
1502 	int __maybe_unused i;
1503 	int new_leaks = 0;
1504 	int loop_cnt = 0;
1505 
1506 	jiffies_last_scan = jiffies;
1507 
1508 	/* prepare the kmemleak_object's */
1509 	rcu_read_lock();
1510 	list_for_each_entry_rcu(object, &object_list, object_list) {
1511 		bool obj_pinned = false;
1512 
1513 		raw_spin_lock_irq(&object->lock);
1514 #ifdef DEBUG
1515 		/*
1516 		 * With a few exceptions there should be a maximum of
1517 		 * 1 reference to any object at this point.
1518 		 */
1519 		if (atomic_read(&object->use_count) > 1) {
1520 			pr_debug("object->use_count = %d\n",
1521 				 atomic_read(&object->use_count));
1522 			dump_object_info(object);
1523 		}
1524 #endif
1525 
1526 		/* ignore objects outside lowmem (paint them black) */
1527 		if ((object->flags & OBJECT_PHYS) &&
1528 		   !(object->flags & OBJECT_NO_SCAN)) {
1529 			unsigned long phys = object->pointer;
1530 
1531 			if (PHYS_PFN(phys) < min_low_pfn ||
1532 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 				__paint_it(object, KMEMLEAK_BLACK);
1534 		}
1535 
1536 		/* reset the reference count (whiten the object) */
1537 		object->count = 0;
1538 		if (color_gray(object) && get_object(object)) {
1539 			list_add_tail(&object->gray_list, &gray_list);
1540 			obj_pinned = true;
1541 		}
1542 
1543 		raw_spin_unlock_irq(&object->lock);
1544 
1545 		/*
1546 		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1547 		 */
1548 		if (!(++loop_cnt & 0xffff) &&
1549 		    !kmemleak_cond_resched(object, obj_pinned))
1550 			loop_cnt--; /* Try again on next object */
1551 	}
1552 	rcu_read_unlock();
1553 
1554 #ifdef CONFIG_SMP
1555 	/* per-cpu sections scanning */
1556 	for_each_possible_cpu(i)
1557 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 				 __per_cpu_end + per_cpu_offset(i));
1559 #endif
1560 
1561 	/*
1562 	 * Struct page scanning for each node.
1563 	 */
1564 	get_online_mems();
1565 	for_each_populated_zone(zone) {
1566 		unsigned long start_pfn = zone->zone_start_pfn;
1567 		unsigned long end_pfn = zone_end_pfn(zone);
1568 		unsigned long pfn;
1569 
1570 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571 			struct page *page = pfn_to_online_page(pfn);
1572 
1573 			if (!page)
1574 				continue;
1575 
1576 			/* only scan pages belonging to this zone */
1577 			if (page_zone(page) != zone)
1578 				continue;
1579 			/* only scan if page is in use */
1580 			if (page_count(page) == 0)
1581 				continue;
1582 			scan_block(page, page + 1, NULL);
1583 			if (!(pfn & 63))
1584 				cond_resched();
1585 		}
1586 	}
1587 	put_online_mems();
1588 
1589 	/*
1590 	 * Scanning the task stacks (may introduce false negatives).
1591 	 */
1592 	if (kmemleak_stack_scan) {
1593 		struct task_struct *p, *g;
1594 
1595 		rcu_read_lock();
1596 		for_each_process_thread(g, p) {
1597 			void *stack = try_get_task_stack(p);
1598 			if (stack) {
1599 				scan_block(stack, stack + THREAD_SIZE, NULL);
1600 				put_task_stack(p);
1601 			}
1602 		}
1603 		rcu_read_unlock();
1604 	}
1605 
1606 	/*
1607 	 * Scan the objects already referenced from the sections scanned
1608 	 * above.
1609 	 */
1610 	scan_gray_list();
1611 
1612 	/*
1613 	 * Check for new or unreferenced objects modified since the previous
1614 	 * scan and color them gray until the next scan.
1615 	 */
1616 	rcu_read_lock();
1617 	loop_cnt = 0;
1618 	list_for_each_entry_rcu(object, &object_list, object_list) {
1619 		/*
1620 		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1621 		 */
1622 		if (!(++loop_cnt & 0xffff) &&
1623 		    !kmemleak_cond_resched(object, false))
1624 			loop_cnt--;	/* Try again on next object */
1625 
1626 		/*
1627 		 * This is racy but we can save the overhead of lock/unlock
1628 		 * calls. The missed objects, if any, should be caught in
1629 		 * the next scan.
1630 		 */
1631 		if (!color_white(object))
1632 			continue;
1633 		raw_spin_lock_irq(&object->lock);
1634 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 		    && update_checksum(object) && get_object(object)) {
1636 			/* color it gray temporarily */
1637 			object->count = object->min_count;
1638 			list_add_tail(&object->gray_list, &gray_list);
1639 		}
1640 		raw_spin_unlock_irq(&object->lock);
1641 	}
1642 	rcu_read_unlock();
1643 
1644 	/*
1645 	 * Re-scan the gray list for modified unreferenced objects.
1646 	 */
1647 	scan_gray_list();
1648 
1649 	/*
1650 	 * If scanning was stopped do not report any new unreferenced objects.
1651 	 */
1652 	if (scan_should_stop())
1653 		return;
1654 
1655 	/*
1656 	 * Scanning result reporting.
1657 	 */
1658 	rcu_read_lock();
1659 	loop_cnt = 0;
1660 	list_for_each_entry_rcu(object, &object_list, object_list) {
1661 		/*
1662 		 * Do a cond_resched() every 64k objects to avoid soft lockup.
1663 		 */
1664 		if (!(++loop_cnt & 0xffff) &&
1665 		    !kmemleak_cond_resched(object, false))
1666 			loop_cnt--;	/* Try again on next object */
1667 
1668 		/*
1669 		 * This is racy but we can save the overhead of lock/unlock
1670 		 * calls. The missed objects, if any, should be caught in
1671 		 * the next scan.
1672 		 */
1673 		if (!color_white(object))
1674 			continue;
1675 		raw_spin_lock_irq(&object->lock);
1676 		if (unreferenced_object(object) &&
1677 		    !(object->flags & OBJECT_REPORTED)) {
1678 			object->flags |= OBJECT_REPORTED;
1679 
1680 			if (kmemleak_verbose)
1681 				print_unreferenced(NULL, object);
1682 
1683 			new_leaks++;
1684 		}
1685 		raw_spin_unlock_irq(&object->lock);
1686 	}
1687 	rcu_read_unlock();
1688 
1689 	if (new_leaks) {
1690 		kmemleak_found_leaks = true;
1691 
1692 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693 			new_leaks);
1694 	}
1695 
1696 }
1697 
1698 /*
1699  * Thread function performing automatic memory scanning. Unreferenced objects
1700  * at the end of a memory scan are reported but only the first time.
1701  */
1702 static int kmemleak_scan_thread(void *arg)
1703 {
1704 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705 
1706 	pr_info("Automatic memory scanning thread started\n");
1707 	set_user_nice(current, 10);
1708 
1709 	/*
1710 	 * Wait before the first scan to allow the system to fully initialize.
1711 	 */
1712 	if (first_run) {
1713 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714 		first_run = 0;
1715 		while (timeout && !kthread_should_stop())
1716 			timeout = schedule_timeout_interruptible(timeout);
1717 	}
1718 
1719 	while (!kthread_should_stop()) {
1720 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1721 
1722 		mutex_lock(&scan_mutex);
1723 		kmemleak_scan();
1724 		mutex_unlock(&scan_mutex);
1725 
1726 		/* wait before the next scan */
1727 		while (timeout && !kthread_should_stop())
1728 			timeout = schedule_timeout_interruptible(timeout);
1729 	}
1730 
1731 	pr_info("Automatic memory scanning thread ended\n");
1732 
1733 	return 0;
1734 }
1735 
1736 /*
1737  * Start the automatic memory scanning thread. This function must be called
1738  * with the scan_mutex held.
1739  */
1740 static void start_scan_thread(void)
1741 {
1742 	if (scan_thread)
1743 		return;
1744 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 	if (IS_ERR(scan_thread)) {
1746 		pr_warn("Failed to create the scan thread\n");
1747 		scan_thread = NULL;
1748 	}
1749 }
1750 
1751 /*
1752  * Stop the automatic memory scanning thread.
1753  */
1754 static void stop_scan_thread(void)
1755 {
1756 	if (scan_thread) {
1757 		kthread_stop(scan_thread);
1758 		scan_thread = NULL;
1759 	}
1760 }
1761 
1762 /*
1763  * Iterate over the object_list and return the first valid object at or after
1764  * the required position with its use_count incremented. The function triggers
1765  * a memory scanning when the pos argument points to the first position.
1766  */
1767 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768 {
1769 	struct kmemleak_object *object;
1770 	loff_t n = *pos;
1771 	int err;
1772 
1773 	err = mutex_lock_interruptible(&scan_mutex);
1774 	if (err < 0)
1775 		return ERR_PTR(err);
1776 
1777 	rcu_read_lock();
1778 	list_for_each_entry_rcu(object, &object_list, object_list) {
1779 		if (n-- > 0)
1780 			continue;
1781 		if (get_object(object))
1782 			goto out;
1783 	}
1784 	object = NULL;
1785 out:
1786 	return object;
1787 }
1788 
1789 /*
1790  * Return the next object in the object_list. The function decrements the
1791  * use_count of the previous object and increases that of the next one.
1792  */
1793 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794 {
1795 	struct kmemleak_object *prev_obj = v;
1796 	struct kmemleak_object *next_obj = NULL;
1797 	struct kmemleak_object *obj = prev_obj;
1798 
1799 	++(*pos);
1800 
1801 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802 		if (get_object(obj)) {
1803 			next_obj = obj;
1804 			break;
1805 		}
1806 	}
1807 
1808 	put_object(prev_obj);
1809 	return next_obj;
1810 }
1811 
1812 /*
1813  * Decrement the use_count of the last object required, if any.
1814  */
1815 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816 {
1817 	if (!IS_ERR(v)) {
1818 		/*
1819 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 		 * waiting was interrupted, so only release it if !IS_ERR.
1821 		 */
1822 		rcu_read_unlock();
1823 		mutex_unlock(&scan_mutex);
1824 		if (v)
1825 			put_object(v);
1826 	}
1827 }
1828 
1829 /*
1830  * Print the information for an unreferenced object to the seq file.
1831  */
1832 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833 {
1834 	struct kmemleak_object *object = v;
1835 	unsigned long flags;
1836 
1837 	raw_spin_lock_irqsave(&object->lock, flags);
1838 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839 		print_unreferenced(seq, object);
1840 	raw_spin_unlock_irqrestore(&object->lock, flags);
1841 	return 0;
1842 }
1843 
1844 static const struct seq_operations kmemleak_seq_ops = {
1845 	.start = kmemleak_seq_start,
1846 	.next  = kmemleak_seq_next,
1847 	.stop  = kmemleak_seq_stop,
1848 	.show  = kmemleak_seq_show,
1849 };
1850 
1851 static int kmemleak_open(struct inode *inode, struct file *file)
1852 {
1853 	return seq_open(file, &kmemleak_seq_ops);
1854 }
1855 
1856 static int dump_str_object_info(const char *str)
1857 {
1858 	unsigned long flags;
1859 	struct kmemleak_object *object;
1860 	unsigned long addr;
1861 
1862 	if (kstrtoul(str, 0, &addr))
1863 		return -EINVAL;
1864 	object = find_and_get_object(addr, 0);
1865 	if (!object) {
1866 		pr_info("Unknown object at 0x%08lx\n", addr);
1867 		return -EINVAL;
1868 	}
1869 
1870 	raw_spin_lock_irqsave(&object->lock, flags);
1871 	dump_object_info(object);
1872 	raw_spin_unlock_irqrestore(&object->lock, flags);
1873 
1874 	put_object(object);
1875 	return 0;
1876 }
1877 
1878 /*
1879  * We use grey instead of black to ensure we can do future scans on the same
1880  * objects. If we did not do future scans these black objects could
1881  * potentially contain references to newly allocated objects in the future and
1882  * we'd end up with false positives.
1883  */
1884 static void kmemleak_clear(void)
1885 {
1886 	struct kmemleak_object *object;
1887 
1888 	rcu_read_lock();
1889 	list_for_each_entry_rcu(object, &object_list, object_list) {
1890 		raw_spin_lock_irq(&object->lock);
1891 		if ((object->flags & OBJECT_REPORTED) &&
1892 		    unreferenced_object(object))
1893 			__paint_it(object, KMEMLEAK_GREY);
1894 		raw_spin_unlock_irq(&object->lock);
1895 	}
1896 	rcu_read_unlock();
1897 
1898 	kmemleak_found_leaks = false;
1899 }
1900 
1901 static void __kmemleak_do_cleanup(void);
1902 
1903 /*
1904  * File write operation to configure kmemleak at run-time. The following
1905  * commands can be written to the /sys/kernel/debug/kmemleak file:
1906  *   off	- disable kmemleak (irreversible)
1907  *   stack=on	- enable the task stacks scanning
1908  *   stack=off	- disable the tasks stacks scanning
1909  *   scan=on	- start the automatic memory scanning thread
1910  *   scan=off	- stop the automatic memory scanning thread
1911  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1912  *		  disable it)
1913  *   scan	- trigger a memory scan
1914  *   clear	- mark all current reported unreferenced kmemleak objects as
1915  *		  grey to ignore printing them, or free all kmemleak objects
1916  *		  if kmemleak has been disabled.
1917  *   dump=...	- dump information about the object found at the given address
1918  */
1919 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 			      size_t size, loff_t *ppos)
1921 {
1922 	char buf[64];
1923 	int buf_size;
1924 	int ret;
1925 
1926 	buf_size = min(size, (sizeof(buf) - 1));
1927 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928 		return -EFAULT;
1929 	buf[buf_size] = 0;
1930 
1931 	ret = mutex_lock_interruptible(&scan_mutex);
1932 	if (ret < 0)
1933 		return ret;
1934 
1935 	if (strncmp(buf, "clear", 5) == 0) {
1936 		if (kmemleak_enabled)
1937 			kmemleak_clear();
1938 		else
1939 			__kmemleak_do_cleanup();
1940 		goto out;
1941 	}
1942 
1943 	if (!kmemleak_enabled) {
1944 		ret = -EPERM;
1945 		goto out;
1946 	}
1947 
1948 	if (strncmp(buf, "off", 3) == 0)
1949 		kmemleak_disable();
1950 	else if (strncmp(buf, "stack=on", 8) == 0)
1951 		kmemleak_stack_scan = 1;
1952 	else if (strncmp(buf, "stack=off", 9) == 0)
1953 		kmemleak_stack_scan = 0;
1954 	else if (strncmp(buf, "scan=on", 7) == 0)
1955 		start_scan_thread();
1956 	else if (strncmp(buf, "scan=off", 8) == 0)
1957 		stop_scan_thread();
1958 	else if (strncmp(buf, "scan=", 5) == 0) {
1959 		unsigned secs;
1960 		unsigned long msecs;
1961 
1962 		ret = kstrtouint(buf + 5, 0, &secs);
1963 		if (ret < 0)
1964 			goto out;
1965 
1966 		msecs = secs * MSEC_PER_SEC;
1967 		if (msecs > UINT_MAX)
1968 			msecs = UINT_MAX;
1969 
1970 		stop_scan_thread();
1971 		if (msecs) {
1972 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973 			start_scan_thread();
1974 		}
1975 	} else if (strncmp(buf, "scan", 4) == 0)
1976 		kmemleak_scan();
1977 	else if (strncmp(buf, "dump=", 5) == 0)
1978 		ret = dump_str_object_info(buf + 5);
1979 	else
1980 		ret = -EINVAL;
1981 
1982 out:
1983 	mutex_unlock(&scan_mutex);
1984 	if (ret < 0)
1985 		return ret;
1986 
1987 	/* ignore the rest of the buffer, only one command at a time */
1988 	*ppos += size;
1989 	return size;
1990 }
1991 
1992 static const struct file_operations kmemleak_fops = {
1993 	.owner		= THIS_MODULE,
1994 	.open		= kmemleak_open,
1995 	.read		= seq_read,
1996 	.write		= kmemleak_write,
1997 	.llseek		= seq_lseek,
1998 	.release	= seq_release,
1999 };
2000 
2001 static void __kmemleak_do_cleanup(void)
2002 {
2003 	struct kmemleak_object *object, *tmp;
2004 
2005 	/*
2006 	 * Kmemleak has already been disabled, no need for RCU list traversal
2007 	 * or kmemleak_lock held.
2008 	 */
2009 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 		__remove_object(object);
2011 		__delete_object(object);
2012 	}
2013 }
2014 
2015 /*
2016  * Stop the memory scanning thread and free the kmemleak internal objects if
2017  * no previous scan thread (otherwise, kmemleak may still have some useful
2018  * information on memory leaks).
2019  */
2020 static void kmemleak_do_cleanup(struct work_struct *work)
2021 {
2022 	stop_scan_thread();
2023 
2024 	mutex_lock(&scan_mutex);
2025 	/*
2026 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 	 * longer track object freeing. Ordering of the scan thread stopping and
2028 	 * the memory accesses below is guaranteed by the kthread_stop()
2029 	 * function.
2030 	 */
2031 	kmemleak_free_enabled = 0;
2032 	mutex_unlock(&scan_mutex);
2033 
2034 	if (!kmemleak_found_leaks)
2035 		__kmemleak_do_cleanup();
2036 	else
2037 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038 }
2039 
2040 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041 
2042 /*
2043  * Disable kmemleak. No memory allocation/freeing will be traced once this
2044  * function is called. Disabling kmemleak is an irreversible operation.
2045  */
2046 static void kmemleak_disable(void)
2047 {
2048 	/* atomically check whether it was already invoked */
2049 	if (cmpxchg(&kmemleak_error, 0, 1))
2050 		return;
2051 
2052 	/* stop any memory operation tracing */
2053 	kmemleak_enabled = 0;
2054 
2055 	/* check whether it is too early for a kernel thread */
2056 	if (kmemleak_initialized)
2057 		schedule_work(&cleanup_work);
2058 	else
2059 		kmemleak_free_enabled = 0;
2060 
2061 	pr_info("Kernel memory leak detector disabled\n");
2062 }
2063 
2064 /*
2065  * Allow boot-time kmemleak disabling (enabled by default).
2066  */
2067 static int __init kmemleak_boot_config(char *str)
2068 {
2069 	if (!str)
2070 		return -EINVAL;
2071 	if (strcmp(str, "off") == 0)
2072 		kmemleak_disable();
2073 	else if (strcmp(str, "on") == 0)
2074 		kmemleak_skip_disable = 1;
2075 	else
2076 		return -EINVAL;
2077 	return 0;
2078 }
2079 early_param("kmemleak", kmemleak_boot_config);
2080 
2081 /*
2082  * Kmemleak initialization.
2083  */
2084 void __init kmemleak_init(void)
2085 {
2086 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2087 	if (!kmemleak_skip_disable) {
2088 		kmemleak_disable();
2089 		return;
2090 	}
2091 #endif
2092 
2093 	if (kmemleak_error)
2094 		return;
2095 
2096 	stack_depot_init();
2097 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099 
2100 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2102 
2103 	/* register the data/bss sections */
2104 	create_object((unsigned long)_sdata, _edata - _sdata,
2105 		      KMEMLEAK_GREY, GFP_ATOMIC);
2106 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107 		      KMEMLEAK_GREY, GFP_ATOMIC);
2108 	/* only register .data..ro_after_init if not within .data */
2109 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2110 		create_object((unsigned long)__start_ro_after_init,
2111 			      __end_ro_after_init - __start_ro_after_init,
2112 			      KMEMLEAK_GREY, GFP_ATOMIC);
2113 }
2114 
2115 /*
2116  * Late initialization function.
2117  */
2118 static int __init kmemleak_late_init(void)
2119 {
2120 	kmemleak_initialized = 1;
2121 
2122 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2123 
2124 	if (kmemleak_error) {
2125 		/*
2126 		 * Some error occurred and kmemleak was disabled. There is a
2127 		 * small chance that kmemleak_disable() was called immediately
2128 		 * after setting kmemleak_initialized and we may end up with
2129 		 * two clean-up threads but serialized by scan_mutex.
2130 		 */
2131 		schedule_work(&cleanup_work);
2132 		return -ENOMEM;
2133 	}
2134 
2135 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136 		mutex_lock(&scan_mutex);
2137 		start_scan_thread();
2138 		mutex_unlock(&scan_mutex);
2139 	}
2140 
2141 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142 		mem_pool_free_count);
2143 
2144 	return 0;
2145 }
2146 late_initcall(kmemleak_late_init);
2147