1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/kmemleak.c 4 * 5 * Copyright (C) 2008 ARM Limited 6 * Written by Catalin Marinas <catalin.marinas@arm.com> 7 * 8 * For more information on the algorithm and kmemleak usage, please see 9 * Documentation/dev-tools/kmemleak.rst. 10 * 11 * Notes on locking 12 * ---------------- 13 * 14 * The following locks and mutexes are used by kmemleak: 15 * 16 * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as 17 * del_state modifications and accesses to the object trees 18 * (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The 19 * object_list is the main list holding the metadata (struct 20 * kmemleak_object) for the allocated memory blocks. The object trees are 21 * red black trees used to look-up metadata based on a pointer to the 22 * corresponding memory block. The kmemleak_object structures are added to 23 * the object_list and the object tree root in the create_object() function 24 * called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in 25 * delete_object() called from the kmemleak_free{,_phys,_percpu}() callback 26 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. 27 * Accesses to the metadata (e.g. count) are protected by this lock. Note 28 * that some members of this structure may be protected by other means 29 * (atomic or kmemleak_lock). This lock is also held when scanning the 30 * corresponding memory block to avoid the kernel freeing it via the 31 * kmemleak_free() callback. This is less heavyweight than holding a global 32 * lock like kmemleak_lock during scanning. 33 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 34 * unreferenced objects at a time. The gray_list contains the objects which 35 * are already referenced or marked as false positives and need to be 36 * scanned. This list is only modified during a scanning episode when the 37 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 38 * Note that the kmemleak_object.use_count is incremented when an object is 39 * added to the gray_list and therefore cannot be freed. This mutex also 40 * prevents multiple users of the "kmemleak" debugfs file together with 41 * modifications to the memory scanning parameters including the scan_thread 42 * pointer 43 * 44 * Locks and mutexes are acquired/nested in the following order: 45 * 46 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 47 * 48 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 49 * regions. 50 * 51 * The kmemleak_object structures have a use_count incremented or decremented 52 * using the get_object()/put_object() functions. When the use_count becomes 53 * 0, this count can no longer be incremented and put_object() schedules the 54 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 55 * function must be protected by rcu_read_lock() to avoid accessing a freed 56 * structure. 57 */ 58 59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 60 61 #include <linux/init.h> 62 #include <linux/kernel.h> 63 #include <linux/list.h> 64 #include <linux/sched/signal.h> 65 #include <linux/sched/task.h> 66 #include <linux/sched/task_stack.h> 67 #include <linux/jiffies.h> 68 #include <linux/delay.h> 69 #include <linux/export.h> 70 #include <linux/kthread.h> 71 #include <linux/rbtree.h> 72 #include <linux/fs.h> 73 #include <linux/debugfs.h> 74 #include <linux/seq_file.h> 75 #include <linux/cpumask.h> 76 #include <linux/spinlock.h> 77 #include <linux/module.h> 78 #include <linux/mutex.h> 79 #include <linux/rcupdate.h> 80 #include <linux/stacktrace.h> 81 #include <linux/stackdepot.h> 82 #include <linux/cache.h> 83 #include <linux/percpu.h> 84 #include <linux/memblock.h> 85 #include <linux/pfn.h> 86 #include <linux/mmzone.h> 87 #include <linux/slab.h> 88 #include <linux/thread_info.h> 89 #include <linux/err.h> 90 #include <linux/uaccess.h> 91 #include <linux/string.h> 92 #include <linux/nodemask.h> 93 #include <linux/mm.h> 94 #include <linux/workqueue.h> 95 #include <linux/crc32.h> 96 97 #include <asm/sections.h> 98 #include <asm/processor.h> 99 #include <linux/atomic.h> 100 101 #include <linux/kasan.h> 102 #include <linux/kfence.h> 103 #include <linux/kmemleak.h> 104 #include <linux/memory_hotplug.h> 105 106 /* 107 * Kmemleak configuration and common defines. 108 */ 109 #define MAX_TRACE 16 /* stack trace length */ 110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 114 115 #define BYTES_PER_POINTER sizeof(void *) 116 117 /* scanning area inside a memory block */ 118 struct kmemleak_scan_area { 119 struct hlist_node node; 120 unsigned long start; 121 size_t size; 122 }; 123 124 #define KMEMLEAK_GREY 0 125 #define KMEMLEAK_BLACK -1 126 127 /* 128 * Structure holding the metadata for each allocated memory block. 129 * Modifications to such objects should be made while holding the 130 * object->lock. Insertions or deletions from object_list, gray_list or 131 * rb_node are already protected by the corresponding locks or mutex (see 132 * the notes on locking above). These objects are reference-counted 133 * (use_count) and freed using the RCU mechanism. 134 */ 135 struct kmemleak_object { 136 raw_spinlock_t lock; 137 unsigned int flags; /* object status flags */ 138 struct list_head object_list; 139 struct list_head gray_list; 140 struct rb_node rb_node; 141 struct rcu_head rcu; /* object_list lockless traversal */ 142 /* object usage count; object freed when use_count == 0 */ 143 atomic_t use_count; 144 unsigned int del_state; /* deletion state */ 145 unsigned long pointer; 146 size_t size; 147 /* pass surplus references to this pointer */ 148 unsigned long excess_ref; 149 /* minimum number of a pointers found before it is considered leak */ 150 int min_count; 151 /* the total number of pointers found pointing to this object */ 152 int count; 153 /* checksum for detecting modified objects */ 154 u32 checksum; 155 depot_stack_handle_t trace_handle; 156 /* memory ranges to be scanned inside an object (empty for all) */ 157 struct hlist_head area_list; 158 unsigned long jiffies; /* creation timestamp */ 159 pid_t pid; /* pid of the current task */ 160 char comm[TASK_COMM_LEN]; /* executable name */ 161 }; 162 163 /* flag representing the memory block allocation status */ 164 #define OBJECT_ALLOCATED (1 << 0) 165 /* flag set after the first reporting of an unreference object */ 166 #define OBJECT_REPORTED (1 << 1) 167 /* flag set to not scan the object */ 168 #define OBJECT_NO_SCAN (1 << 2) 169 /* flag set to fully scan the object when scan_area allocation failed */ 170 #define OBJECT_FULL_SCAN (1 << 3) 171 /* flag set for object allocated with physical address */ 172 #define OBJECT_PHYS (1 << 4) 173 /* flag set for per-CPU pointers */ 174 #define OBJECT_PERCPU (1 << 5) 175 176 /* set when __remove_object() called */ 177 #define DELSTATE_REMOVED (1 << 0) 178 /* set to temporarily prevent deletion from object_list */ 179 #define DELSTATE_NO_DELETE (1 << 1) 180 181 #define HEX_PREFIX " " 182 /* number of bytes to print per line; must be 16 or 32 */ 183 #define HEX_ROW_SIZE 16 184 /* number of bytes to print at a time (1, 2, 4, 8) */ 185 #define HEX_GROUP_SIZE 1 186 /* include ASCII after the hex output */ 187 #define HEX_ASCII 1 188 /* max number of lines to be printed */ 189 #define HEX_MAX_LINES 2 190 191 /* the list of all allocated objects */ 192 static LIST_HEAD(object_list); 193 /* the list of gray-colored objects (see color_gray comment below) */ 194 static LIST_HEAD(gray_list); 195 /* memory pool allocation */ 196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; 197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool); 198 static LIST_HEAD(mem_pool_free_list); 199 /* search tree for object boundaries */ 200 static struct rb_root object_tree_root = RB_ROOT; 201 /* search tree for object (with OBJECT_PHYS flag) boundaries */ 202 static struct rb_root object_phys_tree_root = RB_ROOT; 203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */ 204 static struct rb_root object_percpu_tree_root = RB_ROOT; 205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */ 206 static DEFINE_RAW_SPINLOCK(kmemleak_lock); 207 208 /* allocation caches for kmemleak internal data */ 209 static struct kmem_cache *object_cache; 210 static struct kmem_cache *scan_area_cache; 211 212 /* set if tracing memory operations is enabled */ 213 static int kmemleak_enabled __read_mostly = 1; 214 /* same as above but only for the kmemleak_free() callback */ 215 static int kmemleak_free_enabled __read_mostly = 1; 216 /* set in the late_initcall if there were no errors */ 217 static int kmemleak_late_initialized; 218 /* set if a fatal kmemleak error has occurred */ 219 static int kmemleak_error; 220 221 /* minimum and maximum address that may be valid pointers */ 222 static unsigned long min_addr = ULONG_MAX; 223 static unsigned long max_addr; 224 225 /* minimum and maximum address that may be valid per-CPU pointers */ 226 static unsigned long min_percpu_addr = ULONG_MAX; 227 static unsigned long max_percpu_addr; 228 229 static struct task_struct *scan_thread; 230 /* used to avoid reporting of recently allocated objects */ 231 static unsigned long jiffies_min_age; 232 static unsigned long jiffies_last_scan; 233 /* delay between automatic memory scannings */ 234 static unsigned long jiffies_scan_wait; 235 /* enables or disables the task stacks scanning */ 236 static int kmemleak_stack_scan = 1; 237 /* protects the memory scanning, parameters and debug/kmemleak file access */ 238 static DEFINE_MUTEX(scan_mutex); 239 /* setting kmemleak=on, will set this var, skipping the disable */ 240 static int kmemleak_skip_disable; 241 /* If there are leaks that can be reported */ 242 static bool kmemleak_found_leaks; 243 244 static bool kmemleak_verbose; 245 module_param_named(verbose, kmemleak_verbose, bool, 0600); 246 247 static void kmemleak_disable(void); 248 249 /* 250 * Print a warning and dump the stack trace. 251 */ 252 #define kmemleak_warn(x...) do { \ 253 pr_warn(x); \ 254 dump_stack(); \ 255 } while (0) 256 257 /* 258 * Macro invoked when a serious kmemleak condition occurred and cannot be 259 * recovered from. Kmemleak will be disabled and further allocation/freeing 260 * tracing no longer available. 261 */ 262 #define kmemleak_stop(x...) do { \ 263 kmemleak_warn(x); \ 264 kmemleak_disable(); \ 265 } while (0) 266 267 #define warn_or_seq_printf(seq, fmt, ...) do { \ 268 if (seq) \ 269 seq_printf(seq, fmt, ##__VA_ARGS__); \ 270 else \ 271 pr_warn(fmt, ##__VA_ARGS__); \ 272 } while (0) 273 274 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, 275 int rowsize, int groupsize, const void *buf, 276 size_t len, bool ascii) 277 { 278 if (seq) 279 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, 280 buf, len, ascii); 281 else 282 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, 283 rowsize, groupsize, buf, len, ascii); 284 } 285 286 /* 287 * Printing of the objects hex dump to the seq file. The number of lines to be 288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 290 * with the object->lock held. 291 */ 292 static void hex_dump_object(struct seq_file *seq, 293 struct kmemleak_object *object) 294 { 295 const u8 *ptr = (const u8 *)object->pointer; 296 size_t len; 297 298 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 299 return; 300 301 if (object->flags & OBJECT_PERCPU) 302 ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer); 303 304 /* limit the number of lines to HEX_MAX_LINES */ 305 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 306 307 if (object->flags & OBJECT_PERCPU) 308 warn_or_seq_printf(seq, " hex dump (first %zu bytes on cpu %d):\n", 309 len, raw_smp_processor_id()); 310 else 311 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); 312 kasan_disable_current(); 313 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, 314 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); 315 kasan_enable_current(); 316 } 317 318 /* 319 * Object colors, encoded with count and min_count: 320 * - white - orphan object, not enough references to it (count < min_count) 321 * - gray - not orphan, not marked as false positive (min_count == 0) or 322 * sufficient references to it (count >= min_count) 323 * - black - ignore, it doesn't contain references (e.g. text section) 324 * (min_count == -1). No function defined for this color. 325 */ 326 static bool color_white(const struct kmemleak_object *object) 327 { 328 return object->count != KMEMLEAK_BLACK && 329 object->count < object->min_count; 330 } 331 332 static bool color_gray(const struct kmemleak_object *object) 333 { 334 return object->min_count != KMEMLEAK_BLACK && 335 object->count >= object->min_count; 336 } 337 338 /* 339 * Objects are considered unreferenced only if their color is white, they have 340 * not be deleted and have a minimum age to avoid false positives caused by 341 * pointers temporarily stored in CPU registers. 342 */ 343 static bool unreferenced_object(struct kmemleak_object *object) 344 { 345 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 346 time_before_eq(object->jiffies + jiffies_min_age, 347 jiffies_last_scan); 348 } 349 350 static const char *__object_type_str(struct kmemleak_object *object) 351 { 352 if (object->flags & OBJECT_PHYS) 353 return " (phys)"; 354 if (object->flags & OBJECT_PERCPU) 355 return " (percpu)"; 356 return ""; 357 } 358 359 /* 360 * Printing of the unreferenced objects information to the seq file. The 361 * print_unreferenced function must be called with the object->lock held. 362 */ 363 static void print_unreferenced(struct seq_file *seq, 364 struct kmemleak_object *object) 365 { 366 int i; 367 unsigned long *entries; 368 unsigned int nr_entries; 369 370 nr_entries = stack_depot_fetch(object->trace_handle, &entries); 371 warn_or_seq_printf(seq, "unreferenced object%s 0x%08lx (size %zu):\n", 372 __object_type_str(object), 373 object->pointer, object->size); 374 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu\n", 375 object->comm, object->pid, object->jiffies); 376 hex_dump_object(seq, object); 377 warn_or_seq_printf(seq, " backtrace (crc %x):\n", object->checksum); 378 379 for (i = 0; i < nr_entries; i++) { 380 void *ptr = (void *)entries[i]; 381 warn_or_seq_printf(seq, " %pS\n", ptr); 382 } 383 } 384 385 /* 386 * Print the kmemleak_object information. This function is used mainly for 387 * debugging special cases when kmemleak operations. It must be called with 388 * the object->lock held. 389 */ 390 static void dump_object_info(struct kmemleak_object *object) 391 { 392 pr_notice("Object%s 0x%08lx (size %zu):\n", 393 __object_type_str(object), object->pointer, object->size); 394 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 395 object->comm, object->pid, object->jiffies); 396 pr_notice(" min_count = %d\n", object->min_count); 397 pr_notice(" count = %d\n", object->count); 398 pr_notice(" flags = 0x%x\n", object->flags); 399 pr_notice(" checksum = %u\n", object->checksum); 400 pr_notice(" backtrace:\n"); 401 if (object->trace_handle) 402 stack_depot_print(object->trace_handle); 403 } 404 405 static struct rb_root *object_tree(unsigned long objflags) 406 { 407 if (objflags & OBJECT_PHYS) 408 return &object_phys_tree_root; 409 if (objflags & OBJECT_PERCPU) 410 return &object_percpu_tree_root; 411 return &object_tree_root; 412 } 413 414 /* 415 * Look-up a memory block metadata (kmemleak_object) in the object search 416 * tree based on a pointer value. If alias is 0, only values pointing to the 417 * beginning of the memory block are allowed. The kmemleak_lock must be held 418 * when calling this function. 419 */ 420 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias, 421 unsigned int objflags) 422 { 423 struct rb_node *rb = object_tree(objflags)->rb_node; 424 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 425 426 while (rb) { 427 struct kmemleak_object *object; 428 unsigned long untagged_objp; 429 430 object = rb_entry(rb, struct kmemleak_object, rb_node); 431 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 432 433 if (untagged_ptr < untagged_objp) 434 rb = object->rb_node.rb_left; 435 else if (untagged_objp + object->size <= untagged_ptr) 436 rb = object->rb_node.rb_right; 437 else if (untagged_objp == untagged_ptr || alias) 438 return object; 439 else { 440 /* 441 * Printk deferring due to the kmemleak_lock held. 442 * This is done to avoid deadlock. 443 */ 444 printk_deferred_enter(); 445 kmemleak_warn("Found object by alias at 0x%08lx\n", 446 ptr); 447 dump_object_info(object); 448 printk_deferred_exit(); 449 break; 450 } 451 } 452 return NULL; 453 } 454 455 /* Look-up a kmemleak object which allocated with virtual address. */ 456 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 457 { 458 return __lookup_object(ptr, alias, 0); 459 } 460 461 /* 462 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 463 * that once an object's use_count reached 0, the RCU freeing was already 464 * registered and the object should no longer be used. This function must be 465 * called under the protection of rcu_read_lock(). 466 */ 467 static int get_object(struct kmemleak_object *object) 468 { 469 return atomic_inc_not_zero(&object->use_count); 470 } 471 472 /* 473 * Memory pool allocation and freeing. kmemleak_lock must not be held. 474 */ 475 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) 476 { 477 unsigned long flags; 478 struct kmemleak_object *object; 479 bool warn = false; 480 481 /* try the slab allocator first */ 482 if (object_cache) { 483 object = kmem_cache_alloc_noprof(object_cache, 484 gfp_nested_mask(gfp)); 485 if (object) 486 return object; 487 } 488 489 /* slab allocation failed, try the memory pool */ 490 raw_spin_lock_irqsave(&kmemleak_lock, flags); 491 object = list_first_entry_or_null(&mem_pool_free_list, 492 typeof(*object), object_list); 493 if (object) 494 list_del(&object->object_list); 495 else if (mem_pool_free_count) 496 object = &mem_pool[--mem_pool_free_count]; 497 else 498 warn = true; 499 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 500 if (warn) 501 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); 502 503 return object; 504 } 505 506 /* 507 * Return the object to either the slab allocator or the memory pool. 508 */ 509 static void mem_pool_free(struct kmemleak_object *object) 510 { 511 unsigned long flags; 512 513 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { 514 kmem_cache_free(object_cache, object); 515 return; 516 } 517 518 /* add the object to the memory pool free list */ 519 raw_spin_lock_irqsave(&kmemleak_lock, flags); 520 list_add(&object->object_list, &mem_pool_free_list); 521 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 522 } 523 524 /* 525 * RCU callback to free a kmemleak_object. 526 */ 527 static void free_object_rcu(struct rcu_head *rcu) 528 { 529 struct hlist_node *tmp; 530 struct kmemleak_scan_area *area; 531 struct kmemleak_object *object = 532 container_of(rcu, struct kmemleak_object, rcu); 533 534 /* 535 * Once use_count is 0 (guaranteed by put_object), there is no other 536 * code accessing this object, hence no need for locking. 537 */ 538 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 539 hlist_del(&area->node); 540 kmem_cache_free(scan_area_cache, area); 541 } 542 mem_pool_free(object); 543 } 544 545 /* 546 * Decrement the object use_count. Once the count is 0, free the object using 547 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 548 * delete_object() path, the delayed RCU freeing ensures that there is no 549 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 550 * is also possible. 551 */ 552 static void put_object(struct kmemleak_object *object) 553 { 554 if (!atomic_dec_and_test(&object->use_count)) 555 return; 556 557 /* should only get here after delete_object was called */ 558 WARN_ON(object->flags & OBJECT_ALLOCATED); 559 560 /* 561 * It may be too early for the RCU callbacks, however, there is no 562 * concurrent object_list traversal when !object_cache and all objects 563 * came from the memory pool. Free the object directly. 564 */ 565 if (object_cache) 566 call_rcu(&object->rcu, free_object_rcu); 567 else 568 free_object_rcu(&object->rcu); 569 } 570 571 /* 572 * Look up an object in the object search tree and increase its use_count. 573 */ 574 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias, 575 unsigned int objflags) 576 { 577 unsigned long flags; 578 struct kmemleak_object *object; 579 580 rcu_read_lock(); 581 raw_spin_lock_irqsave(&kmemleak_lock, flags); 582 object = __lookup_object(ptr, alias, objflags); 583 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 584 585 /* check whether the object is still available */ 586 if (object && !get_object(object)) 587 object = NULL; 588 rcu_read_unlock(); 589 590 return object; 591 } 592 593 /* Look up and get an object which allocated with virtual address. */ 594 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 595 { 596 return __find_and_get_object(ptr, alias, 0); 597 } 598 599 /* 600 * Remove an object from its object tree and object_list. Must be called with 601 * the kmemleak_lock held _if_ kmemleak is still enabled. 602 */ 603 static void __remove_object(struct kmemleak_object *object) 604 { 605 rb_erase(&object->rb_node, object_tree(object->flags)); 606 if (!(object->del_state & DELSTATE_NO_DELETE)) 607 list_del_rcu(&object->object_list); 608 object->del_state |= DELSTATE_REMOVED; 609 } 610 611 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr, 612 int alias, 613 unsigned int objflags) 614 { 615 struct kmemleak_object *object; 616 617 object = __lookup_object(ptr, alias, objflags); 618 if (object) 619 __remove_object(object); 620 621 return object; 622 } 623 624 /* 625 * Look up an object in the object search tree and remove it from both object 626 * tree root and object_list. The returned object's use_count should be at 627 * least 1, as initially set by create_object(). 628 */ 629 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias, 630 unsigned int objflags) 631 { 632 unsigned long flags; 633 struct kmemleak_object *object; 634 635 raw_spin_lock_irqsave(&kmemleak_lock, flags); 636 object = __find_and_remove_object(ptr, alias, objflags); 637 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 638 639 return object; 640 } 641 642 static noinline depot_stack_handle_t set_track_prepare(void) 643 { 644 depot_stack_handle_t trace_handle; 645 unsigned long entries[MAX_TRACE]; 646 unsigned int nr_entries; 647 648 /* 649 * Use object_cache to determine whether kmemleak_init() has 650 * been invoked. stack_depot_early_init() is called before 651 * kmemleak_init() in mm_core_init(). 652 */ 653 if (!object_cache) 654 return 0; 655 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3); 656 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT); 657 658 return trace_handle; 659 } 660 661 static struct kmemleak_object *__alloc_object(gfp_t gfp) 662 { 663 struct kmemleak_object *object; 664 665 object = mem_pool_alloc(gfp); 666 if (!object) { 667 pr_warn("Cannot allocate a kmemleak_object structure\n"); 668 kmemleak_disable(); 669 return NULL; 670 } 671 672 INIT_LIST_HEAD(&object->object_list); 673 INIT_LIST_HEAD(&object->gray_list); 674 INIT_HLIST_HEAD(&object->area_list); 675 raw_spin_lock_init(&object->lock); 676 atomic_set(&object->use_count, 1); 677 object->excess_ref = 0; 678 object->count = 0; /* white color initially */ 679 object->checksum = 0; 680 object->del_state = 0; 681 682 /* task information */ 683 if (in_hardirq()) { 684 object->pid = 0; 685 strscpy(object->comm, "hardirq"); 686 } else if (in_serving_softirq()) { 687 object->pid = 0; 688 strscpy(object->comm, "softirq"); 689 } else { 690 object->pid = current->pid; 691 /* 692 * There is a small chance of a race with set_task_comm(), 693 * however using get_task_comm() here may cause locking 694 * dependency issues with current->alloc_lock. In the worst 695 * case, the command line is not correct. 696 */ 697 strscpy(object->comm, current->comm); 698 } 699 700 /* kernel backtrace */ 701 object->trace_handle = set_track_prepare(); 702 703 return object; 704 } 705 706 static int __link_object(struct kmemleak_object *object, unsigned long ptr, 707 size_t size, int min_count, unsigned int objflags) 708 { 709 710 struct kmemleak_object *parent; 711 struct rb_node **link, *rb_parent; 712 unsigned long untagged_ptr; 713 unsigned long untagged_objp; 714 715 object->flags = OBJECT_ALLOCATED | objflags; 716 object->pointer = ptr; 717 object->size = kfence_ksize((void *)ptr) ?: size; 718 object->min_count = min_count; 719 object->jiffies = jiffies; 720 721 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 722 /* 723 * Only update min_addr and max_addr with object storing virtual 724 * address. And update min_percpu_addr max_percpu_addr for per-CPU 725 * objects. 726 */ 727 if (objflags & OBJECT_PERCPU) { 728 min_percpu_addr = min(min_percpu_addr, untagged_ptr); 729 max_percpu_addr = max(max_percpu_addr, untagged_ptr + size); 730 } else if (!(objflags & OBJECT_PHYS)) { 731 min_addr = min(min_addr, untagged_ptr); 732 max_addr = max(max_addr, untagged_ptr + size); 733 } 734 link = &object_tree(objflags)->rb_node; 735 rb_parent = NULL; 736 while (*link) { 737 rb_parent = *link; 738 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 739 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); 740 if (untagged_ptr + size <= untagged_objp) 741 link = &parent->rb_node.rb_left; 742 else if (untagged_objp + parent->size <= untagged_ptr) 743 link = &parent->rb_node.rb_right; 744 else { 745 /* 746 * Printk deferring due to the kmemleak_lock held. 747 * This is done to avoid deadlock. 748 */ 749 printk_deferred_enter(); 750 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 751 ptr); 752 /* 753 * No need for parent->lock here since "parent" cannot 754 * be freed while the kmemleak_lock is held. 755 */ 756 dump_object_info(parent); 757 printk_deferred_exit(); 758 return -EEXIST; 759 } 760 } 761 rb_link_node(&object->rb_node, rb_parent, link); 762 rb_insert_color(&object->rb_node, object_tree(objflags)); 763 list_add_tail_rcu(&object->object_list, &object_list); 764 765 return 0; 766 } 767 768 /* 769 * Create the metadata (struct kmemleak_object) corresponding to an allocated 770 * memory block and add it to the object_list and object tree. 771 */ 772 static void __create_object(unsigned long ptr, size_t size, 773 int min_count, gfp_t gfp, unsigned int objflags) 774 { 775 struct kmemleak_object *object; 776 unsigned long flags; 777 int ret; 778 779 object = __alloc_object(gfp); 780 if (!object) 781 return; 782 783 raw_spin_lock_irqsave(&kmemleak_lock, flags); 784 ret = __link_object(object, ptr, size, min_count, objflags); 785 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 786 if (ret) 787 mem_pool_free(object); 788 } 789 790 /* Create kmemleak object which allocated with virtual address. */ 791 static void create_object(unsigned long ptr, size_t size, 792 int min_count, gfp_t gfp) 793 { 794 __create_object(ptr, size, min_count, gfp, 0); 795 } 796 797 /* Create kmemleak object which allocated with physical address. */ 798 static void create_object_phys(unsigned long ptr, size_t size, 799 int min_count, gfp_t gfp) 800 { 801 __create_object(ptr, size, min_count, gfp, OBJECT_PHYS); 802 } 803 804 /* Create kmemleak object corresponding to a per-CPU allocation. */ 805 static void create_object_percpu(unsigned long ptr, size_t size, 806 int min_count, gfp_t gfp) 807 { 808 __create_object(ptr, size, min_count, gfp, OBJECT_PERCPU); 809 } 810 811 /* 812 * Mark the object as not allocated and schedule RCU freeing via put_object(). 813 */ 814 static void __delete_object(struct kmemleak_object *object) 815 { 816 unsigned long flags; 817 818 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 819 WARN_ON(atomic_read(&object->use_count) < 1); 820 821 /* 822 * Locking here also ensures that the corresponding memory block 823 * cannot be freed when it is being scanned. 824 */ 825 raw_spin_lock_irqsave(&object->lock, flags); 826 object->flags &= ~OBJECT_ALLOCATED; 827 raw_spin_unlock_irqrestore(&object->lock, flags); 828 put_object(object); 829 } 830 831 /* 832 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 833 * delete it. 834 */ 835 static void delete_object_full(unsigned long ptr, unsigned int objflags) 836 { 837 struct kmemleak_object *object; 838 839 object = find_and_remove_object(ptr, 0, objflags); 840 if (!object) { 841 #ifdef DEBUG 842 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 843 ptr); 844 #endif 845 return; 846 } 847 __delete_object(object); 848 } 849 850 /* 851 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 852 * delete it. If the memory block is partially freed, the function may create 853 * additional metadata for the remaining parts of the block. 854 */ 855 static void delete_object_part(unsigned long ptr, size_t size, 856 unsigned int objflags) 857 { 858 struct kmemleak_object *object, *object_l, *object_r; 859 unsigned long start, end, flags; 860 861 object_l = __alloc_object(GFP_KERNEL); 862 if (!object_l) 863 return; 864 865 object_r = __alloc_object(GFP_KERNEL); 866 if (!object_r) 867 goto out; 868 869 raw_spin_lock_irqsave(&kmemleak_lock, flags); 870 object = __find_and_remove_object(ptr, 1, objflags); 871 if (!object) 872 goto unlock; 873 874 /* 875 * Create one or two objects that may result from the memory block 876 * split. Note that partial freeing is only done by free_bootmem() and 877 * this happens before kmemleak_init() is called. 878 */ 879 start = object->pointer; 880 end = object->pointer + object->size; 881 if ((ptr > start) && 882 !__link_object(object_l, start, ptr - start, 883 object->min_count, objflags)) 884 object_l = NULL; 885 if ((ptr + size < end) && 886 !__link_object(object_r, ptr + size, end - ptr - size, 887 object->min_count, objflags)) 888 object_r = NULL; 889 890 unlock: 891 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 892 if (object) { 893 __delete_object(object); 894 } else { 895 #ifdef DEBUG 896 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 897 ptr, size); 898 #endif 899 } 900 901 out: 902 if (object_l) 903 mem_pool_free(object_l); 904 if (object_r) 905 mem_pool_free(object_r); 906 } 907 908 static void __paint_it(struct kmemleak_object *object, int color) 909 { 910 object->min_count = color; 911 if (color == KMEMLEAK_BLACK) 912 object->flags |= OBJECT_NO_SCAN; 913 } 914 915 static void paint_it(struct kmemleak_object *object, int color) 916 { 917 unsigned long flags; 918 919 raw_spin_lock_irqsave(&object->lock, flags); 920 __paint_it(object, color); 921 raw_spin_unlock_irqrestore(&object->lock, flags); 922 } 923 924 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags) 925 { 926 struct kmemleak_object *object; 927 928 object = __find_and_get_object(ptr, 0, objflags); 929 if (!object) { 930 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 931 ptr, 932 (color == KMEMLEAK_GREY) ? "Grey" : 933 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 934 return; 935 } 936 paint_it(object, color); 937 put_object(object); 938 } 939 940 /* 941 * Mark an object permanently as gray-colored so that it can no longer be 942 * reported as a leak. This is used in general to mark a false positive. 943 */ 944 static void make_gray_object(unsigned long ptr) 945 { 946 paint_ptr(ptr, KMEMLEAK_GREY, 0); 947 } 948 949 /* 950 * Mark the object as black-colored so that it is ignored from scans and 951 * reporting. 952 */ 953 static void make_black_object(unsigned long ptr, unsigned int objflags) 954 { 955 paint_ptr(ptr, KMEMLEAK_BLACK, objflags); 956 } 957 958 /* 959 * Reset the checksum of an object. The immediate effect is that it will not 960 * be reported as a leak during the next scan until its checksum is updated. 961 */ 962 static void reset_checksum(unsigned long ptr) 963 { 964 unsigned long flags; 965 struct kmemleak_object *object; 966 967 object = find_and_get_object(ptr, 0); 968 if (!object) { 969 kmemleak_warn("Not resetting the checksum of an unknown object at 0x%08lx\n", 970 ptr); 971 return; 972 } 973 974 raw_spin_lock_irqsave(&object->lock, flags); 975 object->checksum = 0; 976 raw_spin_unlock_irqrestore(&object->lock, flags); 977 put_object(object); 978 } 979 980 /* 981 * Add a scanning area to the object. If at least one such area is added, 982 * kmemleak will only scan these ranges rather than the whole memory block. 983 */ 984 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 985 { 986 unsigned long flags; 987 struct kmemleak_object *object; 988 struct kmemleak_scan_area *area = NULL; 989 unsigned long untagged_ptr; 990 unsigned long untagged_objp; 991 992 object = find_and_get_object(ptr, 1); 993 if (!object) { 994 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 995 ptr); 996 return; 997 } 998 999 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); 1000 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); 1001 1002 if (scan_area_cache) 1003 area = kmem_cache_alloc_noprof(scan_area_cache, 1004 gfp_nested_mask(gfp)); 1005 1006 raw_spin_lock_irqsave(&object->lock, flags); 1007 if (!area) { 1008 pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); 1009 /* mark the object for full scan to avoid false positives */ 1010 object->flags |= OBJECT_FULL_SCAN; 1011 goto out_unlock; 1012 } 1013 if (size == SIZE_MAX) { 1014 size = untagged_objp + object->size - untagged_ptr; 1015 } else if (untagged_ptr + size > untagged_objp + object->size) { 1016 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 1017 dump_object_info(object); 1018 kmem_cache_free(scan_area_cache, area); 1019 goto out_unlock; 1020 } 1021 1022 INIT_HLIST_NODE(&area->node); 1023 area->start = ptr; 1024 area->size = size; 1025 1026 hlist_add_head(&area->node, &object->area_list); 1027 out_unlock: 1028 raw_spin_unlock_irqrestore(&object->lock, flags); 1029 put_object(object); 1030 } 1031 1032 /* 1033 * Any surplus references (object already gray) to 'ptr' are passed to 1034 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 1035 * vm_struct may be used as an alternative reference to the vmalloc'ed object 1036 * (see free_thread_stack()). 1037 */ 1038 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 1039 { 1040 unsigned long flags; 1041 struct kmemleak_object *object; 1042 1043 object = find_and_get_object(ptr, 0); 1044 if (!object) { 1045 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 1046 ptr); 1047 return; 1048 } 1049 1050 raw_spin_lock_irqsave(&object->lock, flags); 1051 object->excess_ref = excess_ref; 1052 raw_spin_unlock_irqrestore(&object->lock, flags); 1053 put_object(object); 1054 } 1055 1056 /* 1057 * Set the OBJECT_NO_SCAN flag for the object corresponding to the given 1058 * pointer. Such object will not be scanned by kmemleak but references to it 1059 * are searched. 1060 */ 1061 static void object_no_scan(unsigned long ptr) 1062 { 1063 unsigned long flags; 1064 struct kmemleak_object *object; 1065 1066 object = find_and_get_object(ptr, 0); 1067 if (!object) { 1068 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 1069 return; 1070 } 1071 1072 raw_spin_lock_irqsave(&object->lock, flags); 1073 object->flags |= OBJECT_NO_SCAN; 1074 raw_spin_unlock_irqrestore(&object->lock, flags); 1075 put_object(object); 1076 } 1077 1078 /** 1079 * kmemleak_alloc - register a newly allocated object 1080 * @ptr: pointer to beginning of the object 1081 * @size: size of the object 1082 * @min_count: minimum number of references to this object. If during memory 1083 * scanning a number of references less than @min_count is found, 1084 * the object is reported as a memory leak. If @min_count is 0, 1085 * the object is never reported as a leak. If @min_count is -1, 1086 * the object is ignored (not scanned and not reported as a leak) 1087 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1088 * 1089 * This function is called from the kernel allocators when a new object 1090 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 1091 */ 1092 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 1093 gfp_t gfp) 1094 { 1095 pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count); 1096 1097 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1098 create_object((unsigned long)ptr, size, min_count, gfp); 1099 } 1100 EXPORT_SYMBOL_GPL(kmemleak_alloc); 1101 1102 /** 1103 * kmemleak_alloc_percpu - register a newly allocated __percpu object 1104 * @ptr: __percpu pointer to beginning of the object 1105 * @size: size of the object 1106 * @gfp: flags used for kmemleak internal memory allocations 1107 * 1108 * This function is called from the kernel percpu allocator when a new object 1109 * (memory block) is allocated (alloc_percpu). 1110 */ 1111 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 1112 gfp_t gfp) 1113 { 1114 pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size); 1115 1116 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1117 create_object_percpu((__force unsigned long)ptr, size, 1, gfp); 1118 } 1119 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 1120 1121 /** 1122 * kmemleak_vmalloc - register a newly vmalloc'ed object 1123 * @area: pointer to vm_struct 1124 * @size: size of the object 1125 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 1126 * 1127 * This function is called from the vmalloc() kernel allocator when a new 1128 * object (memory block) is allocated. 1129 */ 1130 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 1131 { 1132 pr_debug("%s(0x%px, %zu)\n", __func__, area, size); 1133 1134 /* 1135 * A min_count = 2 is needed because vm_struct contains a reference to 1136 * the virtual address of the vmalloc'ed block. 1137 */ 1138 if (kmemleak_enabled) { 1139 create_object((unsigned long)area->addr, size, 2, gfp); 1140 object_set_excess_ref((unsigned long)area, 1141 (unsigned long)area->addr); 1142 } 1143 } 1144 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1145 1146 /** 1147 * kmemleak_free - unregister a previously registered object 1148 * @ptr: pointer to beginning of the object 1149 * 1150 * This function is called from the kernel allocators when an object (memory 1151 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1152 */ 1153 void __ref kmemleak_free(const void *ptr) 1154 { 1155 pr_debug("%s(0x%px)\n", __func__, ptr); 1156 1157 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1158 delete_object_full((unsigned long)ptr, 0); 1159 } 1160 EXPORT_SYMBOL_GPL(kmemleak_free); 1161 1162 /** 1163 * kmemleak_free_part - partially unregister a previously registered object 1164 * @ptr: pointer to the beginning or inside the object. This also 1165 * represents the start of the range to be freed 1166 * @size: size to be unregistered 1167 * 1168 * This function is called when only a part of a memory block is freed 1169 * (usually from the bootmem allocator). 1170 */ 1171 void __ref kmemleak_free_part(const void *ptr, size_t size) 1172 { 1173 pr_debug("%s(0x%px)\n", __func__, ptr); 1174 1175 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1176 delete_object_part((unsigned long)ptr, size, 0); 1177 } 1178 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1179 1180 /** 1181 * kmemleak_free_percpu - unregister a previously registered __percpu object 1182 * @ptr: __percpu pointer to beginning of the object 1183 * 1184 * This function is called from the kernel percpu allocator when an object 1185 * (memory block) is freed (free_percpu). 1186 */ 1187 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1188 { 1189 pr_debug("%s(0x%px)\n", __func__, ptr); 1190 1191 if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr)) 1192 delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU); 1193 } 1194 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1195 1196 /** 1197 * kmemleak_update_trace - update object allocation stack trace 1198 * @ptr: pointer to beginning of the object 1199 * 1200 * Override the object allocation stack trace for cases where the actual 1201 * allocation place is not always useful. 1202 */ 1203 void __ref kmemleak_update_trace(const void *ptr) 1204 { 1205 struct kmemleak_object *object; 1206 depot_stack_handle_t trace_handle; 1207 unsigned long flags; 1208 1209 pr_debug("%s(0x%px)\n", __func__, ptr); 1210 1211 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1212 return; 1213 1214 object = find_and_get_object((unsigned long)ptr, 1); 1215 if (!object) { 1216 #ifdef DEBUG 1217 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1218 ptr); 1219 #endif 1220 return; 1221 } 1222 1223 trace_handle = set_track_prepare(); 1224 raw_spin_lock_irqsave(&object->lock, flags); 1225 object->trace_handle = trace_handle; 1226 raw_spin_unlock_irqrestore(&object->lock, flags); 1227 1228 put_object(object); 1229 } 1230 EXPORT_SYMBOL(kmemleak_update_trace); 1231 1232 /** 1233 * kmemleak_not_leak - mark an allocated object as false positive 1234 * @ptr: pointer to beginning of the object 1235 * 1236 * Calling this function on an object will cause the memory block to no longer 1237 * be reported as leak and always be scanned. 1238 */ 1239 void __ref kmemleak_not_leak(const void *ptr) 1240 { 1241 pr_debug("%s(0x%px)\n", __func__, ptr); 1242 1243 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1244 make_gray_object((unsigned long)ptr); 1245 } 1246 EXPORT_SYMBOL(kmemleak_not_leak); 1247 1248 /** 1249 * kmemleak_transient_leak - mark an allocated object as transient false positive 1250 * @ptr: pointer to beginning of the object 1251 * 1252 * Calling this function on an object will cause the memory block to not be 1253 * reported as a leak temporarily. This may happen, for example, if the object 1254 * is part of a singly linked list and the ->next reference to it is changed. 1255 */ 1256 void __ref kmemleak_transient_leak(const void *ptr) 1257 { 1258 pr_debug("%s(0x%px)\n", __func__, ptr); 1259 1260 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1261 reset_checksum((unsigned long)ptr); 1262 } 1263 EXPORT_SYMBOL(kmemleak_transient_leak); 1264 1265 /** 1266 * kmemleak_ignore_percpu - similar to kmemleak_ignore but taking a percpu 1267 * address argument 1268 * @ptr: percpu address of the object 1269 */ 1270 void __ref kmemleak_ignore_percpu(const void __percpu *ptr) 1271 { 1272 pr_debug("%s(0x%px)\n", __func__, ptr); 1273 1274 if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr)) 1275 make_black_object((unsigned long)ptr, OBJECT_PERCPU); 1276 } 1277 EXPORT_SYMBOL_GPL(kmemleak_ignore_percpu); 1278 1279 /** 1280 * kmemleak_ignore - ignore an allocated object 1281 * @ptr: pointer to beginning of the object 1282 * 1283 * Calling this function on an object will cause the memory block to be 1284 * ignored (not scanned and not reported as a leak). This is usually done when 1285 * it is known that the corresponding block is not a leak and does not contain 1286 * any references to other allocated memory blocks. 1287 */ 1288 void __ref kmemleak_ignore(const void *ptr) 1289 { 1290 pr_debug("%s(0x%px)\n", __func__, ptr); 1291 1292 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1293 make_black_object((unsigned long)ptr, 0); 1294 } 1295 EXPORT_SYMBOL(kmemleak_ignore); 1296 1297 /** 1298 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1299 * @ptr: pointer to beginning or inside the object. This also 1300 * represents the start of the scan area 1301 * @size: size of the scan area 1302 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1303 * 1304 * This function is used when it is known that only certain parts of an object 1305 * contain references to other objects. Kmemleak will only scan these areas 1306 * reducing the number false negatives. 1307 */ 1308 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1309 { 1310 pr_debug("%s(0x%px)\n", __func__, ptr); 1311 1312 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1313 add_scan_area((unsigned long)ptr, size, gfp); 1314 } 1315 EXPORT_SYMBOL(kmemleak_scan_area); 1316 1317 /** 1318 * kmemleak_no_scan - do not scan an allocated object 1319 * @ptr: pointer to beginning of the object 1320 * 1321 * This function notifies kmemleak not to scan the given memory block. Useful 1322 * in situations where it is known that the given object does not contain any 1323 * references to other objects. Kmemleak will not scan such objects reducing 1324 * the number of false negatives. 1325 */ 1326 void __ref kmemleak_no_scan(const void *ptr) 1327 { 1328 pr_debug("%s(0x%px)\n", __func__, ptr); 1329 1330 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1331 object_no_scan((unsigned long)ptr); 1332 } 1333 EXPORT_SYMBOL(kmemleak_no_scan); 1334 1335 /** 1336 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1337 * address argument 1338 * @phys: physical address of the object 1339 * @size: size of the object 1340 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1341 */ 1342 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp) 1343 { 1344 pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size); 1345 1346 if (kmemleak_enabled) 1347 /* 1348 * Create object with OBJECT_PHYS flag and 1349 * assume min_count 0. 1350 */ 1351 create_object_phys((unsigned long)phys, size, 0, gfp); 1352 } 1353 EXPORT_SYMBOL(kmemleak_alloc_phys); 1354 1355 /** 1356 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1357 * physical address argument 1358 * @phys: physical address if the beginning or inside an object. This 1359 * also represents the start of the range to be freed 1360 * @size: size to be unregistered 1361 */ 1362 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1363 { 1364 pr_debug("%s(0x%px)\n", __func__, &phys); 1365 1366 if (kmemleak_enabled) 1367 delete_object_part((unsigned long)phys, size, OBJECT_PHYS); 1368 } 1369 EXPORT_SYMBOL(kmemleak_free_part_phys); 1370 1371 /** 1372 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1373 * address argument 1374 * @phys: physical address of the object 1375 */ 1376 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1377 { 1378 pr_debug("%s(0x%px)\n", __func__, &phys); 1379 1380 if (kmemleak_enabled) 1381 make_black_object((unsigned long)phys, OBJECT_PHYS); 1382 } 1383 EXPORT_SYMBOL(kmemleak_ignore_phys); 1384 1385 /* 1386 * Update an object's checksum and return true if it was modified. 1387 */ 1388 static bool update_checksum(struct kmemleak_object *object) 1389 { 1390 u32 old_csum = object->checksum; 1391 1392 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS)) 1393 return false; 1394 1395 kasan_disable_current(); 1396 kcsan_disable_current(); 1397 if (object->flags & OBJECT_PERCPU) { 1398 unsigned int cpu; 1399 1400 object->checksum = 0; 1401 for_each_possible_cpu(cpu) { 1402 void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1403 1404 object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size); 1405 } 1406 } else { 1407 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); 1408 } 1409 kasan_enable_current(); 1410 kcsan_enable_current(); 1411 1412 return object->checksum != old_csum; 1413 } 1414 1415 /* 1416 * Update an object's references. object->lock must be held by the caller. 1417 */ 1418 static void update_refs(struct kmemleak_object *object) 1419 { 1420 if (!color_white(object)) { 1421 /* non-orphan, ignored or new */ 1422 return; 1423 } 1424 1425 /* 1426 * Increase the object's reference count (number of pointers to the 1427 * memory block). If this count reaches the required minimum, the 1428 * object's color will become gray and it will be added to the 1429 * gray_list. 1430 */ 1431 object->count++; 1432 if (color_gray(object)) { 1433 /* put_object() called when removing from gray_list */ 1434 WARN_ON(!get_object(object)); 1435 list_add_tail(&object->gray_list, &gray_list); 1436 } 1437 } 1438 1439 static void pointer_update_refs(struct kmemleak_object *scanned, 1440 unsigned long pointer, unsigned int objflags) 1441 { 1442 struct kmemleak_object *object; 1443 unsigned long untagged_ptr; 1444 unsigned long excess_ref; 1445 1446 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); 1447 if (objflags & OBJECT_PERCPU) { 1448 if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr) 1449 return; 1450 } else { 1451 if (untagged_ptr < min_addr || untagged_ptr >= max_addr) 1452 return; 1453 } 1454 1455 /* 1456 * No need for get_object() here since we hold kmemleak_lock. 1457 * object->use_count cannot be dropped to 0 while the object 1458 * is still present in object_tree_root and object_list 1459 * (with updates protected by kmemleak_lock). 1460 */ 1461 object = __lookup_object(pointer, 1, objflags); 1462 if (!object) 1463 return; 1464 if (object == scanned) 1465 /* self referenced, ignore */ 1466 return; 1467 1468 /* 1469 * Avoid the lockdep recursive warning on object->lock being 1470 * previously acquired in scan_object(). These locks are 1471 * enclosed by scan_mutex. 1472 */ 1473 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1474 /* only pass surplus references (object already gray) */ 1475 if (color_gray(object)) { 1476 excess_ref = object->excess_ref; 1477 /* no need for update_refs() if object already gray */ 1478 } else { 1479 excess_ref = 0; 1480 update_refs(object); 1481 } 1482 raw_spin_unlock(&object->lock); 1483 1484 if (excess_ref) { 1485 object = lookup_object(excess_ref, 0); 1486 if (!object) 1487 return; 1488 if (object == scanned) 1489 /* circular reference, ignore */ 1490 return; 1491 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1492 update_refs(object); 1493 raw_spin_unlock(&object->lock); 1494 } 1495 } 1496 1497 /* 1498 * Memory scanning is a long process and it needs to be interruptible. This 1499 * function checks whether such interrupt condition occurred. 1500 */ 1501 static int scan_should_stop(void) 1502 { 1503 if (!kmemleak_enabled) 1504 return 1; 1505 1506 /* 1507 * This function may be called from either process or kthread context, 1508 * hence the need to check for both stop conditions. 1509 */ 1510 if (current->mm) 1511 return signal_pending(current); 1512 else 1513 return kthread_should_stop(); 1514 1515 return 0; 1516 } 1517 1518 /* 1519 * Scan a memory block (exclusive range) for valid pointers and add those 1520 * found to the gray list. 1521 */ 1522 static void scan_block(void *_start, void *_end, 1523 struct kmemleak_object *scanned) 1524 { 1525 unsigned long *ptr; 1526 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1527 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1528 unsigned long flags; 1529 1530 raw_spin_lock_irqsave(&kmemleak_lock, flags); 1531 for (ptr = start; ptr < end; ptr++) { 1532 unsigned long pointer; 1533 1534 if (scan_should_stop()) 1535 break; 1536 1537 kasan_disable_current(); 1538 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); 1539 kasan_enable_current(); 1540 1541 pointer_update_refs(scanned, pointer, 0); 1542 pointer_update_refs(scanned, pointer, OBJECT_PERCPU); 1543 } 1544 raw_spin_unlock_irqrestore(&kmemleak_lock, flags); 1545 } 1546 1547 /* 1548 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1549 */ 1550 #ifdef CONFIG_SMP 1551 static void scan_large_block(void *start, void *end) 1552 { 1553 void *next; 1554 1555 while (start < end) { 1556 next = min(start + MAX_SCAN_SIZE, end); 1557 scan_block(start, next, NULL); 1558 start = next; 1559 cond_resched(); 1560 } 1561 } 1562 #endif 1563 1564 /* 1565 * Scan a memory block corresponding to a kmemleak_object. A condition is 1566 * that object->use_count >= 1. 1567 */ 1568 static void scan_object(struct kmemleak_object *object) 1569 { 1570 struct kmemleak_scan_area *area; 1571 unsigned long flags; 1572 1573 /* 1574 * Once the object->lock is acquired, the corresponding memory block 1575 * cannot be freed (the same lock is acquired in delete_object). 1576 */ 1577 raw_spin_lock_irqsave(&object->lock, flags); 1578 if (object->flags & OBJECT_NO_SCAN) 1579 goto out; 1580 if (!(object->flags & OBJECT_ALLOCATED)) 1581 /* already freed object */ 1582 goto out; 1583 1584 if (object->flags & OBJECT_PERCPU) { 1585 unsigned int cpu; 1586 1587 for_each_possible_cpu(cpu) { 1588 void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu); 1589 void *end = start + object->size; 1590 1591 scan_block(start, end, object); 1592 1593 raw_spin_unlock_irqrestore(&object->lock, flags); 1594 cond_resched(); 1595 raw_spin_lock_irqsave(&object->lock, flags); 1596 if (!(object->flags & OBJECT_ALLOCATED)) 1597 break; 1598 } 1599 } else if (hlist_empty(&object->area_list) || 1600 object->flags & OBJECT_FULL_SCAN) { 1601 void *start = object->flags & OBJECT_PHYS ? 1602 __va((phys_addr_t)object->pointer) : 1603 (void *)object->pointer; 1604 void *end = start + object->size; 1605 void *next; 1606 1607 do { 1608 next = min(start + MAX_SCAN_SIZE, end); 1609 scan_block(start, next, object); 1610 1611 start = next; 1612 if (start >= end) 1613 break; 1614 1615 raw_spin_unlock_irqrestore(&object->lock, flags); 1616 cond_resched(); 1617 raw_spin_lock_irqsave(&object->lock, flags); 1618 } while (object->flags & OBJECT_ALLOCATED); 1619 } else { 1620 hlist_for_each_entry(area, &object->area_list, node) 1621 scan_block((void *)area->start, 1622 (void *)(area->start + area->size), 1623 object); 1624 } 1625 out: 1626 raw_spin_unlock_irqrestore(&object->lock, flags); 1627 } 1628 1629 /* 1630 * Scan the objects already referenced (gray objects). More objects will be 1631 * referenced and, if there are no memory leaks, all the objects are scanned. 1632 */ 1633 static void scan_gray_list(void) 1634 { 1635 struct kmemleak_object *object, *tmp; 1636 1637 /* 1638 * The list traversal is safe for both tail additions and removals 1639 * from inside the loop. The kmemleak objects cannot be freed from 1640 * outside the loop because their use_count was incremented. 1641 */ 1642 object = list_entry(gray_list.next, typeof(*object), gray_list); 1643 while (&object->gray_list != &gray_list) { 1644 cond_resched(); 1645 1646 /* may add new objects to the list */ 1647 if (!scan_should_stop()) 1648 scan_object(object); 1649 1650 tmp = list_entry(object->gray_list.next, typeof(*object), 1651 gray_list); 1652 1653 /* remove the object from the list and release it */ 1654 list_del(&object->gray_list); 1655 put_object(object); 1656 1657 object = tmp; 1658 } 1659 WARN_ON(!list_empty(&gray_list)); 1660 } 1661 1662 /* 1663 * Conditionally call resched() in an object iteration loop while making sure 1664 * that the given object won't go away without RCU read lock by performing a 1665 * get_object() if necessaary. 1666 */ 1667 static void kmemleak_cond_resched(struct kmemleak_object *object) 1668 { 1669 if (!get_object(object)) 1670 return; /* Try next object */ 1671 1672 raw_spin_lock_irq(&kmemleak_lock); 1673 if (object->del_state & DELSTATE_REMOVED) 1674 goto unlock_put; /* Object removed */ 1675 object->del_state |= DELSTATE_NO_DELETE; 1676 raw_spin_unlock_irq(&kmemleak_lock); 1677 1678 rcu_read_unlock(); 1679 cond_resched(); 1680 rcu_read_lock(); 1681 1682 raw_spin_lock_irq(&kmemleak_lock); 1683 if (object->del_state & DELSTATE_REMOVED) 1684 list_del_rcu(&object->object_list); 1685 object->del_state &= ~DELSTATE_NO_DELETE; 1686 unlock_put: 1687 raw_spin_unlock_irq(&kmemleak_lock); 1688 put_object(object); 1689 } 1690 1691 /* 1692 * Scan data sections and all the referenced memory blocks allocated via the 1693 * kernel's standard allocators. This function must be called with the 1694 * scan_mutex held. 1695 */ 1696 static void kmemleak_scan(void) 1697 { 1698 struct kmemleak_object *object; 1699 struct zone *zone; 1700 int __maybe_unused i; 1701 int new_leaks = 0; 1702 1703 jiffies_last_scan = jiffies; 1704 1705 /* prepare the kmemleak_object's */ 1706 rcu_read_lock(); 1707 list_for_each_entry_rcu(object, &object_list, object_list) { 1708 raw_spin_lock_irq(&object->lock); 1709 #ifdef DEBUG 1710 /* 1711 * With a few exceptions there should be a maximum of 1712 * 1 reference to any object at this point. 1713 */ 1714 if (atomic_read(&object->use_count) > 1) { 1715 pr_debug("object->use_count = %d\n", 1716 atomic_read(&object->use_count)); 1717 dump_object_info(object); 1718 } 1719 #endif 1720 1721 /* ignore objects outside lowmem (paint them black) */ 1722 if ((object->flags & OBJECT_PHYS) && 1723 !(object->flags & OBJECT_NO_SCAN)) { 1724 unsigned long phys = object->pointer; 1725 1726 if (PHYS_PFN(phys) < min_low_pfn || 1727 PHYS_PFN(phys + object->size) > max_low_pfn) 1728 __paint_it(object, KMEMLEAK_BLACK); 1729 } 1730 1731 /* reset the reference count (whiten the object) */ 1732 object->count = 0; 1733 if (color_gray(object) && get_object(object)) 1734 list_add_tail(&object->gray_list, &gray_list); 1735 1736 raw_spin_unlock_irq(&object->lock); 1737 1738 if (need_resched()) 1739 kmemleak_cond_resched(object); 1740 } 1741 rcu_read_unlock(); 1742 1743 #ifdef CONFIG_SMP 1744 /* per-cpu sections scanning */ 1745 for_each_possible_cpu(i) 1746 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1747 __per_cpu_end + per_cpu_offset(i)); 1748 #endif 1749 1750 /* 1751 * Struct page scanning for each node. 1752 */ 1753 get_online_mems(); 1754 for_each_populated_zone(zone) { 1755 unsigned long start_pfn = zone->zone_start_pfn; 1756 unsigned long end_pfn = zone_end_pfn(zone); 1757 unsigned long pfn; 1758 1759 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1760 struct page *page = pfn_to_online_page(pfn); 1761 1762 if (!(pfn & 63)) 1763 cond_resched(); 1764 1765 if (!page) 1766 continue; 1767 1768 /* only scan pages belonging to this zone */ 1769 if (page_zone(page) != zone) 1770 continue; 1771 /* only scan if page is in use */ 1772 if (page_count(page) == 0) 1773 continue; 1774 scan_block(page, page + 1, NULL); 1775 } 1776 } 1777 put_online_mems(); 1778 1779 /* 1780 * Scanning the task stacks (may introduce false negatives). 1781 */ 1782 if (kmemleak_stack_scan) { 1783 struct task_struct *p, *g; 1784 1785 rcu_read_lock(); 1786 for_each_process_thread(g, p) { 1787 void *stack = try_get_task_stack(p); 1788 if (stack) { 1789 scan_block(stack, stack + THREAD_SIZE, NULL); 1790 put_task_stack(p); 1791 } 1792 } 1793 rcu_read_unlock(); 1794 } 1795 1796 /* 1797 * Scan the objects already referenced from the sections scanned 1798 * above. 1799 */ 1800 scan_gray_list(); 1801 1802 /* 1803 * Check for new or unreferenced objects modified since the previous 1804 * scan and color them gray until the next scan. 1805 */ 1806 rcu_read_lock(); 1807 list_for_each_entry_rcu(object, &object_list, object_list) { 1808 if (need_resched()) 1809 kmemleak_cond_resched(object); 1810 1811 /* 1812 * This is racy but we can save the overhead of lock/unlock 1813 * calls. The missed objects, if any, should be caught in 1814 * the next scan. 1815 */ 1816 if (!color_white(object)) 1817 continue; 1818 raw_spin_lock_irq(&object->lock); 1819 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1820 && update_checksum(object) && get_object(object)) { 1821 /* color it gray temporarily */ 1822 object->count = object->min_count; 1823 list_add_tail(&object->gray_list, &gray_list); 1824 } 1825 raw_spin_unlock_irq(&object->lock); 1826 } 1827 rcu_read_unlock(); 1828 1829 /* 1830 * Re-scan the gray list for modified unreferenced objects. 1831 */ 1832 scan_gray_list(); 1833 1834 /* 1835 * If scanning was stopped do not report any new unreferenced objects. 1836 */ 1837 if (scan_should_stop()) 1838 return; 1839 1840 /* 1841 * Scanning result reporting. 1842 */ 1843 rcu_read_lock(); 1844 list_for_each_entry_rcu(object, &object_list, object_list) { 1845 if (need_resched()) 1846 kmemleak_cond_resched(object); 1847 1848 /* 1849 * This is racy but we can save the overhead of lock/unlock 1850 * calls. The missed objects, if any, should be caught in 1851 * the next scan. 1852 */ 1853 if (!color_white(object)) 1854 continue; 1855 raw_spin_lock_irq(&object->lock); 1856 if (unreferenced_object(object) && 1857 !(object->flags & OBJECT_REPORTED)) { 1858 object->flags |= OBJECT_REPORTED; 1859 1860 if (kmemleak_verbose) 1861 print_unreferenced(NULL, object); 1862 1863 new_leaks++; 1864 } 1865 raw_spin_unlock_irq(&object->lock); 1866 } 1867 rcu_read_unlock(); 1868 1869 if (new_leaks) { 1870 kmemleak_found_leaks = true; 1871 1872 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1873 new_leaks); 1874 } 1875 1876 } 1877 1878 /* 1879 * Thread function performing automatic memory scanning. Unreferenced objects 1880 * at the end of a memory scan are reported but only the first time. 1881 */ 1882 static int kmemleak_scan_thread(void *arg) 1883 { 1884 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); 1885 1886 pr_info("Automatic memory scanning thread started\n"); 1887 set_user_nice(current, 10); 1888 1889 /* 1890 * Wait before the first scan to allow the system to fully initialize. 1891 */ 1892 if (first_run) { 1893 signed long timeout = secs_to_jiffies(SECS_FIRST_SCAN); 1894 first_run = 0; 1895 while (timeout && !kthread_should_stop()) 1896 timeout = schedule_timeout_interruptible(timeout); 1897 } 1898 1899 while (!kthread_should_stop()) { 1900 signed long timeout = READ_ONCE(jiffies_scan_wait); 1901 1902 mutex_lock(&scan_mutex); 1903 kmemleak_scan(); 1904 mutex_unlock(&scan_mutex); 1905 1906 /* wait before the next scan */ 1907 while (timeout && !kthread_should_stop()) 1908 timeout = schedule_timeout_interruptible(timeout); 1909 } 1910 1911 pr_info("Automatic memory scanning thread ended\n"); 1912 1913 return 0; 1914 } 1915 1916 /* 1917 * Start the automatic memory scanning thread. This function must be called 1918 * with the scan_mutex held. 1919 */ 1920 static void start_scan_thread(void) 1921 { 1922 if (scan_thread) 1923 return; 1924 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1925 if (IS_ERR(scan_thread)) { 1926 pr_warn("Failed to create the scan thread\n"); 1927 scan_thread = NULL; 1928 } 1929 } 1930 1931 /* 1932 * Stop the automatic memory scanning thread. 1933 */ 1934 static void stop_scan_thread(void) 1935 { 1936 if (scan_thread) { 1937 kthread_stop(scan_thread); 1938 scan_thread = NULL; 1939 } 1940 } 1941 1942 /* 1943 * Iterate over the object_list and return the first valid object at or after 1944 * the required position with its use_count incremented. The function triggers 1945 * a memory scanning when the pos argument points to the first position. 1946 */ 1947 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1948 { 1949 struct kmemleak_object *object; 1950 loff_t n = *pos; 1951 int err; 1952 1953 err = mutex_lock_interruptible(&scan_mutex); 1954 if (err < 0) 1955 return ERR_PTR(err); 1956 1957 rcu_read_lock(); 1958 list_for_each_entry_rcu(object, &object_list, object_list) { 1959 if (n-- > 0) 1960 continue; 1961 if (get_object(object)) 1962 goto out; 1963 } 1964 object = NULL; 1965 out: 1966 return object; 1967 } 1968 1969 /* 1970 * Return the next object in the object_list. The function decrements the 1971 * use_count of the previous object and increases that of the next one. 1972 */ 1973 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1974 { 1975 struct kmemleak_object *prev_obj = v; 1976 struct kmemleak_object *next_obj = NULL; 1977 struct kmemleak_object *obj = prev_obj; 1978 1979 ++(*pos); 1980 1981 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1982 if (get_object(obj)) { 1983 next_obj = obj; 1984 break; 1985 } 1986 } 1987 1988 put_object(prev_obj); 1989 return next_obj; 1990 } 1991 1992 /* 1993 * Decrement the use_count of the last object required, if any. 1994 */ 1995 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1996 { 1997 if (!IS_ERR(v)) { 1998 /* 1999 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 2000 * waiting was interrupted, so only release it if !IS_ERR. 2001 */ 2002 rcu_read_unlock(); 2003 mutex_unlock(&scan_mutex); 2004 if (v) 2005 put_object(v); 2006 } 2007 } 2008 2009 /* 2010 * Print the information for an unreferenced object to the seq file. 2011 */ 2012 static int kmemleak_seq_show(struct seq_file *seq, void *v) 2013 { 2014 struct kmemleak_object *object = v; 2015 unsigned long flags; 2016 2017 raw_spin_lock_irqsave(&object->lock, flags); 2018 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 2019 print_unreferenced(seq, object); 2020 raw_spin_unlock_irqrestore(&object->lock, flags); 2021 return 0; 2022 } 2023 2024 static const struct seq_operations kmemleak_seq_ops = { 2025 .start = kmemleak_seq_start, 2026 .next = kmemleak_seq_next, 2027 .stop = kmemleak_seq_stop, 2028 .show = kmemleak_seq_show, 2029 }; 2030 2031 static int kmemleak_open(struct inode *inode, struct file *file) 2032 { 2033 return seq_open(file, &kmemleak_seq_ops); 2034 } 2035 2036 static bool __dump_str_object_info(unsigned long addr, unsigned int objflags) 2037 { 2038 unsigned long flags; 2039 struct kmemleak_object *object; 2040 2041 object = __find_and_get_object(addr, 1, objflags); 2042 if (!object) 2043 return false; 2044 2045 raw_spin_lock_irqsave(&object->lock, flags); 2046 dump_object_info(object); 2047 raw_spin_unlock_irqrestore(&object->lock, flags); 2048 2049 put_object(object); 2050 2051 return true; 2052 } 2053 2054 static int dump_str_object_info(const char *str) 2055 { 2056 unsigned long addr; 2057 bool found = false; 2058 2059 if (kstrtoul(str, 0, &addr)) 2060 return -EINVAL; 2061 2062 found |= __dump_str_object_info(addr, 0); 2063 found |= __dump_str_object_info(addr, OBJECT_PHYS); 2064 found |= __dump_str_object_info(addr, OBJECT_PERCPU); 2065 2066 if (!found) { 2067 pr_info("Unknown object at 0x%08lx\n", addr); 2068 return -EINVAL; 2069 } 2070 2071 return 0; 2072 } 2073 2074 /* 2075 * We use grey instead of black to ensure we can do future scans on the same 2076 * objects. If we did not do future scans these black objects could 2077 * potentially contain references to newly allocated objects in the future and 2078 * we'd end up with false positives. 2079 */ 2080 static void kmemleak_clear(void) 2081 { 2082 struct kmemleak_object *object; 2083 2084 rcu_read_lock(); 2085 list_for_each_entry_rcu(object, &object_list, object_list) { 2086 raw_spin_lock_irq(&object->lock); 2087 if ((object->flags & OBJECT_REPORTED) && 2088 unreferenced_object(object)) 2089 __paint_it(object, KMEMLEAK_GREY); 2090 raw_spin_unlock_irq(&object->lock); 2091 } 2092 rcu_read_unlock(); 2093 2094 kmemleak_found_leaks = false; 2095 } 2096 2097 static void __kmemleak_do_cleanup(void); 2098 2099 /* 2100 * File write operation to configure kmemleak at run-time. The following 2101 * commands can be written to the /sys/kernel/debug/kmemleak file: 2102 * off - disable kmemleak (irreversible) 2103 * stack=on - enable the task stacks scanning 2104 * stack=off - disable the tasks stacks scanning 2105 * scan=on - start the automatic memory scanning thread 2106 * scan=off - stop the automatic memory scanning thread 2107 * scan=... - set the automatic memory scanning period in seconds (0 to 2108 * disable it) 2109 * scan - trigger a memory scan 2110 * clear - mark all current reported unreferenced kmemleak objects as 2111 * grey to ignore printing them, or free all kmemleak objects 2112 * if kmemleak has been disabled. 2113 * dump=... - dump information about the object found at the given address 2114 */ 2115 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 2116 size_t size, loff_t *ppos) 2117 { 2118 char buf[64]; 2119 int buf_size; 2120 int ret; 2121 2122 buf_size = min(size, (sizeof(buf) - 1)); 2123 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 2124 return -EFAULT; 2125 buf[buf_size] = 0; 2126 2127 ret = mutex_lock_interruptible(&scan_mutex); 2128 if (ret < 0) 2129 return ret; 2130 2131 if (strncmp(buf, "clear", 5) == 0) { 2132 if (kmemleak_enabled) 2133 kmemleak_clear(); 2134 else 2135 __kmemleak_do_cleanup(); 2136 goto out; 2137 } 2138 2139 if (!kmemleak_enabled) { 2140 ret = -EPERM; 2141 goto out; 2142 } 2143 2144 if (strncmp(buf, "off", 3) == 0) 2145 kmemleak_disable(); 2146 else if (strncmp(buf, "stack=on", 8) == 0) 2147 kmemleak_stack_scan = 1; 2148 else if (strncmp(buf, "stack=off", 9) == 0) 2149 kmemleak_stack_scan = 0; 2150 else if (strncmp(buf, "scan=on", 7) == 0) 2151 start_scan_thread(); 2152 else if (strncmp(buf, "scan=off", 8) == 0) 2153 stop_scan_thread(); 2154 else if (strncmp(buf, "scan=", 5) == 0) { 2155 unsigned secs; 2156 unsigned long msecs; 2157 2158 ret = kstrtouint(buf + 5, 0, &secs); 2159 if (ret < 0) 2160 goto out; 2161 2162 msecs = secs * MSEC_PER_SEC; 2163 if (msecs > UINT_MAX) 2164 msecs = UINT_MAX; 2165 2166 stop_scan_thread(); 2167 if (msecs) { 2168 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); 2169 start_scan_thread(); 2170 } 2171 } else if (strncmp(buf, "scan", 4) == 0) 2172 kmemleak_scan(); 2173 else if (strncmp(buf, "dump=", 5) == 0) 2174 ret = dump_str_object_info(buf + 5); 2175 else 2176 ret = -EINVAL; 2177 2178 out: 2179 mutex_unlock(&scan_mutex); 2180 if (ret < 0) 2181 return ret; 2182 2183 /* ignore the rest of the buffer, only one command at a time */ 2184 *ppos += size; 2185 return size; 2186 } 2187 2188 static const struct file_operations kmemleak_fops = { 2189 .owner = THIS_MODULE, 2190 .open = kmemleak_open, 2191 .read = seq_read, 2192 .write = kmemleak_write, 2193 .llseek = seq_lseek, 2194 .release = seq_release, 2195 }; 2196 2197 static void __kmemleak_do_cleanup(void) 2198 { 2199 struct kmemleak_object *object, *tmp; 2200 unsigned int cnt = 0; 2201 2202 /* 2203 * Kmemleak has already been disabled, no need for RCU list traversal 2204 * or kmemleak_lock held. 2205 */ 2206 list_for_each_entry_safe(object, tmp, &object_list, object_list) { 2207 __remove_object(object); 2208 __delete_object(object); 2209 2210 /* Call cond_resched() once per 64 iterations to avoid soft lockup */ 2211 if (!(++cnt & 0x3f)) 2212 cond_resched(); 2213 } 2214 } 2215 2216 /* 2217 * Stop the memory scanning thread and free the kmemleak internal objects if 2218 * no previous scan thread (otherwise, kmemleak may still have some useful 2219 * information on memory leaks). 2220 */ 2221 static void kmemleak_do_cleanup(struct work_struct *work) 2222 { 2223 stop_scan_thread(); 2224 2225 mutex_lock(&scan_mutex); 2226 /* 2227 * Once it is made sure that kmemleak_scan has stopped, it is safe to no 2228 * longer track object freeing. Ordering of the scan thread stopping and 2229 * the memory accesses below is guaranteed by the kthread_stop() 2230 * function. 2231 */ 2232 kmemleak_free_enabled = 0; 2233 mutex_unlock(&scan_mutex); 2234 2235 if (!kmemleak_found_leaks) 2236 __kmemleak_do_cleanup(); 2237 else 2238 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 2239 } 2240 2241 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 2242 2243 /* 2244 * Disable kmemleak. No memory allocation/freeing will be traced once this 2245 * function is called. Disabling kmemleak is an irreversible operation. 2246 */ 2247 static void kmemleak_disable(void) 2248 { 2249 /* atomically check whether it was already invoked */ 2250 if (cmpxchg(&kmemleak_error, 0, 1)) 2251 return; 2252 2253 /* stop any memory operation tracing */ 2254 kmemleak_enabled = 0; 2255 2256 /* check whether it is too early for a kernel thread */ 2257 if (kmemleak_late_initialized) 2258 schedule_work(&cleanup_work); 2259 else 2260 kmemleak_free_enabled = 0; 2261 2262 pr_info("Kernel memory leak detector disabled\n"); 2263 } 2264 2265 /* 2266 * Allow boot-time kmemleak disabling (enabled by default). 2267 */ 2268 static int __init kmemleak_boot_config(char *str) 2269 { 2270 if (!str) 2271 return -EINVAL; 2272 if (strcmp(str, "off") == 0) 2273 kmemleak_disable(); 2274 else if (strcmp(str, "on") == 0) { 2275 kmemleak_skip_disable = 1; 2276 stack_depot_request_early_init(); 2277 } 2278 else 2279 return -EINVAL; 2280 return 0; 2281 } 2282 early_param("kmemleak", kmemleak_boot_config); 2283 2284 /* 2285 * Kmemleak initialization. 2286 */ 2287 void __init kmemleak_init(void) 2288 { 2289 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 2290 if (!kmemleak_skip_disable) { 2291 kmemleak_disable(); 2292 return; 2293 } 2294 #endif 2295 2296 if (kmemleak_error) 2297 return; 2298 2299 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2300 jiffies_scan_wait = secs_to_jiffies(SECS_SCAN_WAIT); 2301 2302 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2303 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2304 2305 /* register the data/bss sections */ 2306 create_object((unsigned long)_sdata, _edata - _sdata, 2307 KMEMLEAK_GREY, GFP_ATOMIC); 2308 create_object((unsigned long)__bss_start, __bss_stop - __bss_start, 2309 KMEMLEAK_GREY, GFP_ATOMIC); 2310 /* only register .data..ro_after_init if not within .data */ 2311 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) 2312 create_object((unsigned long)__start_ro_after_init, 2313 __end_ro_after_init - __start_ro_after_init, 2314 KMEMLEAK_GREY, GFP_ATOMIC); 2315 } 2316 2317 /* 2318 * Late initialization function. 2319 */ 2320 static int __init kmemleak_late_init(void) 2321 { 2322 kmemleak_late_initialized = 1; 2323 2324 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); 2325 2326 if (kmemleak_error) { 2327 /* 2328 * Some error occurred and kmemleak was disabled. There is a 2329 * small chance that kmemleak_disable() was called immediately 2330 * after setting kmemleak_late_initialized and we may end up with 2331 * two clean-up threads but serialized by scan_mutex. 2332 */ 2333 schedule_work(&cleanup_work); 2334 return -ENOMEM; 2335 } 2336 2337 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { 2338 mutex_lock(&scan_mutex); 2339 start_scan_thread(); 2340 mutex_unlock(&scan_mutex); 2341 } 2342 2343 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", 2344 mem_pool_free_count); 2345 2346 return 0; 2347 } 2348 late_initcall(kmemleak_late_init); 2349