1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/dev-tools/kmemleak.rst. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched/signal.h> 77 #include <linux/sched/task.h> 78 #include <linux/sched/task_stack.h> 79 #include <linux/jiffies.h> 80 #include <linux/delay.h> 81 #include <linux/export.h> 82 #include <linux/kthread.h> 83 #include <linux/rbtree.h> 84 #include <linux/fs.h> 85 #include <linux/debugfs.h> 86 #include <linux/seq_file.h> 87 #include <linux/cpumask.h> 88 #include <linux/spinlock.h> 89 #include <linux/mutex.h> 90 #include <linux/rcupdate.h> 91 #include <linux/stacktrace.h> 92 #include <linux/cache.h> 93 #include <linux/percpu.h> 94 #include <linux/bootmem.h> 95 #include <linux/pfn.h> 96 #include <linux/mmzone.h> 97 #include <linux/slab.h> 98 #include <linux/thread_info.h> 99 #include <linux/err.h> 100 #include <linux/uaccess.h> 101 #include <linux/string.h> 102 #include <linux/nodemask.h> 103 #include <linux/mm.h> 104 #include <linux/workqueue.h> 105 #include <linux/crc32.h> 106 107 #include <asm/sections.h> 108 #include <asm/processor.h> 109 #include <linux/atomic.h> 110 111 #include <linux/kasan.h> 112 #include <linux/kmemleak.h> 113 #include <linux/memory_hotplug.h> 114 115 /* 116 * Kmemleak configuration and common defines. 117 */ 118 #define MAX_TRACE 16 /* stack trace length */ 119 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 120 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 121 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 122 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 123 124 #define BYTES_PER_POINTER sizeof(void *) 125 126 /* GFP bitmask for kmemleak internal allocations */ 127 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \ 128 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 129 __GFP_NOWARN | __GFP_NOFAIL) 130 131 /* scanning area inside a memory block */ 132 struct kmemleak_scan_area { 133 struct hlist_node node; 134 unsigned long start; 135 size_t size; 136 }; 137 138 #define KMEMLEAK_GREY 0 139 #define KMEMLEAK_BLACK -1 140 141 /* 142 * Structure holding the metadata for each allocated memory block. 143 * Modifications to such objects should be made while holding the 144 * object->lock. Insertions or deletions from object_list, gray_list or 145 * rb_node are already protected by the corresponding locks or mutex (see 146 * the notes on locking above). These objects are reference-counted 147 * (use_count) and freed using the RCU mechanism. 148 */ 149 struct kmemleak_object { 150 spinlock_t lock; 151 unsigned int flags; /* object status flags */ 152 struct list_head object_list; 153 struct list_head gray_list; 154 struct rb_node rb_node; 155 struct rcu_head rcu; /* object_list lockless traversal */ 156 /* object usage count; object freed when use_count == 0 */ 157 atomic_t use_count; 158 unsigned long pointer; 159 size_t size; 160 /* pass surplus references to this pointer */ 161 unsigned long excess_ref; 162 /* minimum number of a pointers found before it is considered leak */ 163 int min_count; 164 /* the total number of pointers found pointing to this object */ 165 int count; 166 /* checksum for detecting modified objects */ 167 u32 checksum; 168 /* memory ranges to be scanned inside an object (empty for all) */ 169 struct hlist_head area_list; 170 unsigned long trace[MAX_TRACE]; 171 unsigned int trace_len; 172 unsigned long jiffies; /* creation timestamp */ 173 pid_t pid; /* pid of the current task */ 174 char comm[TASK_COMM_LEN]; /* executable name */ 175 }; 176 177 /* flag representing the memory block allocation status */ 178 #define OBJECT_ALLOCATED (1 << 0) 179 /* flag set after the first reporting of an unreference object */ 180 #define OBJECT_REPORTED (1 << 1) 181 /* flag set to not scan the object */ 182 #define OBJECT_NO_SCAN (1 << 2) 183 184 /* number of bytes to print per line; must be 16 or 32 */ 185 #define HEX_ROW_SIZE 16 186 /* number of bytes to print at a time (1, 2, 4, 8) */ 187 #define HEX_GROUP_SIZE 1 188 /* include ASCII after the hex output */ 189 #define HEX_ASCII 1 190 /* max number of lines to be printed */ 191 #define HEX_MAX_LINES 2 192 193 /* the list of all allocated objects */ 194 static LIST_HEAD(object_list); 195 /* the list of gray-colored objects (see color_gray comment below) */ 196 static LIST_HEAD(gray_list); 197 /* search tree for object boundaries */ 198 static struct rb_root object_tree_root = RB_ROOT; 199 /* rw_lock protecting the access to object_list and object_tree_root */ 200 static DEFINE_RWLOCK(kmemleak_lock); 201 202 /* allocation caches for kmemleak internal data */ 203 static struct kmem_cache *object_cache; 204 static struct kmem_cache *scan_area_cache; 205 206 /* set if tracing memory operations is enabled */ 207 static int kmemleak_enabled; 208 /* same as above but only for the kmemleak_free() callback */ 209 static int kmemleak_free_enabled; 210 /* set in the late_initcall if there were no errors */ 211 static int kmemleak_initialized; 212 /* enables or disables early logging of the memory operations */ 213 static int kmemleak_early_log = 1; 214 /* set if a kmemleak warning was issued */ 215 static int kmemleak_warning; 216 /* set if a fatal kmemleak error has occurred */ 217 static int kmemleak_error; 218 219 /* minimum and maximum address that may be valid pointers */ 220 static unsigned long min_addr = ULONG_MAX; 221 static unsigned long max_addr; 222 223 static struct task_struct *scan_thread; 224 /* used to avoid reporting of recently allocated objects */ 225 static unsigned long jiffies_min_age; 226 static unsigned long jiffies_last_scan; 227 /* delay between automatic memory scannings */ 228 static signed long jiffies_scan_wait; 229 /* enables or disables the task stacks scanning */ 230 static int kmemleak_stack_scan = 1; 231 /* protects the memory scanning, parameters and debug/kmemleak file access */ 232 static DEFINE_MUTEX(scan_mutex); 233 /* setting kmemleak=on, will set this var, skipping the disable */ 234 static int kmemleak_skip_disable; 235 /* If there are leaks that can be reported */ 236 static bool kmemleak_found_leaks; 237 238 /* 239 * Early object allocation/freeing logging. Kmemleak is initialized after the 240 * kernel allocator. However, both the kernel allocator and kmemleak may 241 * allocate memory blocks which need to be tracked. Kmemleak defines an 242 * arbitrary buffer to hold the allocation/freeing information before it is 243 * fully initialized. 244 */ 245 246 /* kmemleak operation type for early logging */ 247 enum { 248 KMEMLEAK_ALLOC, 249 KMEMLEAK_ALLOC_PERCPU, 250 KMEMLEAK_FREE, 251 KMEMLEAK_FREE_PART, 252 KMEMLEAK_FREE_PERCPU, 253 KMEMLEAK_NOT_LEAK, 254 KMEMLEAK_IGNORE, 255 KMEMLEAK_SCAN_AREA, 256 KMEMLEAK_NO_SCAN, 257 KMEMLEAK_SET_EXCESS_REF 258 }; 259 260 /* 261 * Structure holding the information passed to kmemleak callbacks during the 262 * early logging. 263 */ 264 struct early_log { 265 int op_type; /* kmemleak operation type */ 266 int min_count; /* minimum reference count */ 267 const void *ptr; /* allocated/freed memory block */ 268 union { 269 size_t size; /* memory block size */ 270 unsigned long excess_ref; /* surplus reference passing */ 271 }; 272 unsigned long trace[MAX_TRACE]; /* stack trace */ 273 unsigned int trace_len; /* stack trace length */ 274 }; 275 276 /* early logging buffer and current position */ 277 static struct early_log 278 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 279 static int crt_early_log __initdata; 280 281 static void kmemleak_disable(void); 282 283 /* 284 * Print a warning and dump the stack trace. 285 */ 286 #define kmemleak_warn(x...) do { \ 287 pr_warn(x); \ 288 dump_stack(); \ 289 kmemleak_warning = 1; \ 290 } while (0) 291 292 /* 293 * Macro invoked when a serious kmemleak condition occurred and cannot be 294 * recovered from. Kmemleak will be disabled and further allocation/freeing 295 * tracing no longer available. 296 */ 297 #define kmemleak_stop(x...) do { \ 298 kmemleak_warn(x); \ 299 kmemleak_disable(); \ 300 } while (0) 301 302 /* 303 * Printing of the objects hex dump to the seq file. The number of lines to be 304 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 305 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 306 * with the object->lock held. 307 */ 308 static void hex_dump_object(struct seq_file *seq, 309 struct kmemleak_object *object) 310 { 311 const u8 *ptr = (const u8 *)object->pointer; 312 size_t len; 313 314 /* limit the number of lines to HEX_MAX_LINES */ 315 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); 316 317 seq_printf(seq, " hex dump (first %zu bytes):\n", len); 318 kasan_disable_current(); 319 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE, 320 HEX_GROUP_SIZE, ptr, len, HEX_ASCII); 321 kasan_enable_current(); 322 } 323 324 /* 325 * Object colors, encoded with count and min_count: 326 * - white - orphan object, not enough references to it (count < min_count) 327 * - gray - not orphan, not marked as false positive (min_count == 0) or 328 * sufficient references to it (count >= min_count) 329 * - black - ignore, it doesn't contain references (e.g. text section) 330 * (min_count == -1). No function defined for this color. 331 * Newly created objects don't have any color assigned (object->count == -1) 332 * before the next memory scan when they become white. 333 */ 334 static bool color_white(const struct kmemleak_object *object) 335 { 336 return object->count != KMEMLEAK_BLACK && 337 object->count < object->min_count; 338 } 339 340 static bool color_gray(const struct kmemleak_object *object) 341 { 342 return object->min_count != KMEMLEAK_BLACK && 343 object->count >= object->min_count; 344 } 345 346 /* 347 * Objects are considered unreferenced only if their color is white, they have 348 * not be deleted and have a minimum age to avoid false positives caused by 349 * pointers temporarily stored in CPU registers. 350 */ 351 static bool unreferenced_object(struct kmemleak_object *object) 352 { 353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 354 time_before_eq(object->jiffies + jiffies_min_age, 355 jiffies_last_scan); 356 } 357 358 /* 359 * Printing of the unreferenced objects information to the seq file. The 360 * print_unreferenced function must be called with the object->lock held. 361 */ 362 static void print_unreferenced(struct seq_file *seq, 363 struct kmemleak_object *object) 364 { 365 int i; 366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 367 368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 369 object->pointer, object->size); 370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 371 object->comm, object->pid, object->jiffies, 372 msecs_age / 1000, msecs_age % 1000); 373 hex_dump_object(seq, object); 374 seq_printf(seq, " backtrace:\n"); 375 376 for (i = 0; i < object->trace_len; i++) { 377 void *ptr = (void *)object->trace[i]; 378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 379 } 380 } 381 382 /* 383 * Print the kmemleak_object information. This function is used mainly for 384 * debugging special cases when kmemleak operations. It must be called with 385 * the object->lock held. 386 */ 387 static void dump_object_info(struct kmemleak_object *object) 388 { 389 struct stack_trace trace; 390 391 trace.nr_entries = object->trace_len; 392 trace.entries = object->trace; 393 394 pr_notice("Object 0x%08lx (size %zu):\n", 395 object->pointer, object->size); 396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 397 object->comm, object->pid, object->jiffies); 398 pr_notice(" min_count = %d\n", object->min_count); 399 pr_notice(" count = %d\n", object->count); 400 pr_notice(" flags = 0x%x\n", object->flags); 401 pr_notice(" checksum = %u\n", object->checksum); 402 pr_notice(" backtrace:\n"); 403 print_stack_trace(&trace, 4); 404 } 405 406 /* 407 * Look-up a memory block metadata (kmemleak_object) in the object search 408 * tree based on a pointer value. If alias is 0, only values pointing to the 409 * beginning of the memory block are allowed. The kmemleak_lock must be held 410 * when calling this function. 411 */ 412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 413 { 414 struct rb_node *rb = object_tree_root.rb_node; 415 416 while (rb) { 417 struct kmemleak_object *object = 418 rb_entry(rb, struct kmemleak_object, rb_node); 419 if (ptr < object->pointer) 420 rb = object->rb_node.rb_left; 421 else if (object->pointer + object->size <= ptr) 422 rb = object->rb_node.rb_right; 423 else if (object->pointer == ptr || alias) 424 return object; 425 else { 426 kmemleak_warn("Found object by alias at 0x%08lx\n", 427 ptr); 428 dump_object_info(object); 429 break; 430 } 431 } 432 return NULL; 433 } 434 435 /* 436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 437 * that once an object's use_count reached 0, the RCU freeing was already 438 * registered and the object should no longer be used. This function must be 439 * called under the protection of rcu_read_lock(). 440 */ 441 static int get_object(struct kmemleak_object *object) 442 { 443 return atomic_inc_not_zero(&object->use_count); 444 } 445 446 /* 447 * RCU callback to free a kmemleak_object. 448 */ 449 static void free_object_rcu(struct rcu_head *rcu) 450 { 451 struct hlist_node *tmp; 452 struct kmemleak_scan_area *area; 453 struct kmemleak_object *object = 454 container_of(rcu, struct kmemleak_object, rcu); 455 456 /* 457 * Once use_count is 0 (guaranteed by put_object), there is no other 458 * code accessing this object, hence no need for locking. 459 */ 460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 461 hlist_del(&area->node); 462 kmem_cache_free(scan_area_cache, area); 463 } 464 kmem_cache_free(object_cache, object); 465 } 466 467 /* 468 * Decrement the object use_count. Once the count is 0, free the object using 469 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 470 * delete_object() path, the delayed RCU freeing ensures that there is no 471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 472 * is also possible. 473 */ 474 static void put_object(struct kmemleak_object *object) 475 { 476 if (!atomic_dec_and_test(&object->use_count)) 477 return; 478 479 /* should only get here after delete_object was called */ 480 WARN_ON(object->flags & OBJECT_ALLOCATED); 481 482 call_rcu(&object->rcu, free_object_rcu); 483 } 484 485 /* 486 * Look up an object in the object search tree and increase its use_count. 487 */ 488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 489 { 490 unsigned long flags; 491 struct kmemleak_object *object; 492 493 rcu_read_lock(); 494 read_lock_irqsave(&kmemleak_lock, flags); 495 object = lookup_object(ptr, alias); 496 read_unlock_irqrestore(&kmemleak_lock, flags); 497 498 /* check whether the object is still available */ 499 if (object && !get_object(object)) 500 object = NULL; 501 rcu_read_unlock(); 502 503 return object; 504 } 505 506 /* 507 * Look up an object in the object search tree and remove it from both 508 * object_tree_root and object_list. The returned object's use_count should be 509 * at least 1, as initially set by create_object(). 510 */ 511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 512 { 513 unsigned long flags; 514 struct kmemleak_object *object; 515 516 write_lock_irqsave(&kmemleak_lock, flags); 517 object = lookup_object(ptr, alias); 518 if (object) { 519 rb_erase(&object->rb_node, &object_tree_root); 520 list_del_rcu(&object->object_list); 521 } 522 write_unlock_irqrestore(&kmemleak_lock, flags); 523 524 return object; 525 } 526 527 /* 528 * Save stack trace to the given array of MAX_TRACE size. 529 */ 530 static int __save_stack_trace(unsigned long *trace) 531 { 532 struct stack_trace stack_trace; 533 534 stack_trace.max_entries = MAX_TRACE; 535 stack_trace.nr_entries = 0; 536 stack_trace.entries = trace; 537 stack_trace.skip = 2; 538 save_stack_trace(&stack_trace); 539 540 return stack_trace.nr_entries; 541 } 542 543 /* 544 * Create the metadata (struct kmemleak_object) corresponding to an allocated 545 * memory block and add it to the object_list and object_tree_root. 546 */ 547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 548 int min_count, gfp_t gfp) 549 { 550 unsigned long flags; 551 struct kmemleak_object *object, *parent; 552 struct rb_node **link, *rb_parent; 553 554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 555 if (!object) { 556 pr_warn("Cannot allocate a kmemleak_object structure\n"); 557 kmemleak_disable(); 558 return NULL; 559 } 560 561 INIT_LIST_HEAD(&object->object_list); 562 INIT_LIST_HEAD(&object->gray_list); 563 INIT_HLIST_HEAD(&object->area_list); 564 spin_lock_init(&object->lock); 565 atomic_set(&object->use_count, 1); 566 object->flags = OBJECT_ALLOCATED; 567 object->pointer = ptr; 568 object->size = size; 569 object->excess_ref = 0; 570 object->min_count = min_count; 571 object->count = 0; /* white color initially */ 572 object->jiffies = jiffies; 573 object->checksum = 0; 574 575 /* task information */ 576 if (in_irq()) { 577 object->pid = 0; 578 strncpy(object->comm, "hardirq", sizeof(object->comm)); 579 } else if (in_softirq()) { 580 object->pid = 0; 581 strncpy(object->comm, "softirq", sizeof(object->comm)); 582 } else { 583 object->pid = current->pid; 584 /* 585 * There is a small chance of a race with set_task_comm(), 586 * however using get_task_comm() here may cause locking 587 * dependency issues with current->alloc_lock. In the worst 588 * case, the command line is not correct. 589 */ 590 strncpy(object->comm, current->comm, sizeof(object->comm)); 591 } 592 593 /* kernel backtrace */ 594 object->trace_len = __save_stack_trace(object->trace); 595 596 write_lock_irqsave(&kmemleak_lock, flags); 597 598 min_addr = min(min_addr, ptr); 599 max_addr = max(max_addr, ptr + size); 600 link = &object_tree_root.rb_node; 601 rb_parent = NULL; 602 while (*link) { 603 rb_parent = *link; 604 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 605 if (ptr + size <= parent->pointer) 606 link = &parent->rb_node.rb_left; 607 else if (parent->pointer + parent->size <= ptr) 608 link = &parent->rb_node.rb_right; 609 else { 610 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", 611 ptr); 612 /* 613 * No need for parent->lock here since "parent" cannot 614 * be freed while the kmemleak_lock is held. 615 */ 616 dump_object_info(parent); 617 kmem_cache_free(object_cache, object); 618 object = NULL; 619 goto out; 620 } 621 } 622 rb_link_node(&object->rb_node, rb_parent, link); 623 rb_insert_color(&object->rb_node, &object_tree_root); 624 625 list_add_tail_rcu(&object->object_list, &object_list); 626 out: 627 write_unlock_irqrestore(&kmemleak_lock, flags); 628 return object; 629 } 630 631 /* 632 * Mark the object as not allocated and schedule RCU freeing via put_object(). 633 */ 634 static void __delete_object(struct kmemleak_object *object) 635 { 636 unsigned long flags; 637 638 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 639 WARN_ON(atomic_read(&object->use_count) < 1); 640 641 /* 642 * Locking here also ensures that the corresponding memory block 643 * cannot be freed when it is being scanned. 644 */ 645 spin_lock_irqsave(&object->lock, flags); 646 object->flags &= ~OBJECT_ALLOCATED; 647 spin_unlock_irqrestore(&object->lock, flags); 648 put_object(object); 649 } 650 651 /* 652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 653 * delete it. 654 */ 655 static void delete_object_full(unsigned long ptr) 656 { 657 struct kmemleak_object *object; 658 659 object = find_and_remove_object(ptr, 0); 660 if (!object) { 661 #ifdef DEBUG 662 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 663 ptr); 664 #endif 665 return; 666 } 667 __delete_object(object); 668 } 669 670 /* 671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 672 * delete it. If the memory block is partially freed, the function may create 673 * additional metadata for the remaining parts of the block. 674 */ 675 static void delete_object_part(unsigned long ptr, size_t size) 676 { 677 struct kmemleak_object *object; 678 unsigned long start, end; 679 680 object = find_and_remove_object(ptr, 1); 681 if (!object) { 682 #ifdef DEBUG 683 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", 684 ptr, size); 685 #endif 686 return; 687 } 688 689 /* 690 * Create one or two objects that may result from the memory block 691 * split. Note that partial freeing is only done by free_bootmem() and 692 * this happens before kmemleak_init() is called. The path below is 693 * only executed during early log recording in kmemleak_init(), so 694 * GFP_KERNEL is enough. 695 */ 696 start = object->pointer; 697 end = object->pointer + object->size; 698 if (ptr > start) 699 create_object(start, ptr - start, object->min_count, 700 GFP_KERNEL); 701 if (ptr + size < end) 702 create_object(ptr + size, end - ptr - size, object->min_count, 703 GFP_KERNEL); 704 705 __delete_object(object); 706 } 707 708 static void __paint_it(struct kmemleak_object *object, int color) 709 { 710 object->min_count = color; 711 if (color == KMEMLEAK_BLACK) 712 object->flags |= OBJECT_NO_SCAN; 713 } 714 715 static void paint_it(struct kmemleak_object *object, int color) 716 { 717 unsigned long flags; 718 719 spin_lock_irqsave(&object->lock, flags); 720 __paint_it(object, color); 721 spin_unlock_irqrestore(&object->lock, flags); 722 } 723 724 static void paint_ptr(unsigned long ptr, int color) 725 { 726 struct kmemleak_object *object; 727 728 object = find_and_get_object(ptr, 0); 729 if (!object) { 730 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", 731 ptr, 732 (color == KMEMLEAK_GREY) ? "Grey" : 733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 734 return; 735 } 736 paint_it(object, color); 737 put_object(object); 738 } 739 740 /* 741 * Mark an object permanently as gray-colored so that it can no longer be 742 * reported as a leak. This is used in general to mark a false positive. 743 */ 744 static void make_gray_object(unsigned long ptr) 745 { 746 paint_ptr(ptr, KMEMLEAK_GREY); 747 } 748 749 /* 750 * Mark the object as black-colored so that it is ignored from scans and 751 * reporting. 752 */ 753 static void make_black_object(unsigned long ptr) 754 { 755 paint_ptr(ptr, KMEMLEAK_BLACK); 756 } 757 758 /* 759 * Add a scanning area to the object. If at least one such area is added, 760 * kmemleak will only scan these ranges rather than the whole memory block. 761 */ 762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 763 { 764 unsigned long flags; 765 struct kmemleak_object *object; 766 struct kmemleak_scan_area *area; 767 768 object = find_and_get_object(ptr, 1); 769 if (!object) { 770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 771 ptr); 772 return; 773 } 774 775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 776 if (!area) { 777 pr_warn("Cannot allocate a scan area\n"); 778 goto out; 779 } 780 781 spin_lock_irqsave(&object->lock, flags); 782 if (size == SIZE_MAX) { 783 size = object->pointer + object->size - ptr; 784 } else if (ptr + size > object->pointer + object->size) { 785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 786 dump_object_info(object); 787 kmem_cache_free(scan_area_cache, area); 788 goto out_unlock; 789 } 790 791 INIT_HLIST_NODE(&area->node); 792 area->start = ptr; 793 area->size = size; 794 795 hlist_add_head(&area->node, &object->area_list); 796 out_unlock: 797 spin_unlock_irqrestore(&object->lock, flags); 798 out: 799 put_object(object); 800 } 801 802 /* 803 * Any surplus references (object already gray) to 'ptr' are passed to 804 * 'excess_ref'. This is used in the vmalloc() case where a pointer to 805 * vm_struct may be used as an alternative reference to the vmalloc'ed object 806 * (see free_thread_stack()). 807 */ 808 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) 809 { 810 unsigned long flags; 811 struct kmemleak_object *object; 812 813 object = find_and_get_object(ptr, 0); 814 if (!object) { 815 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", 816 ptr); 817 return; 818 } 819 820 spin_lock_irqsave(&object->lock, flags); 821 object->excess_ref = excess_ref; 822 spin_unlock_irqrestore(&object->lock, flags); 823 put_object(object); 824 } 825 826 /* 827 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 828 * pointer. Such object will not be scanned by kmemleak but references to it 829 * are searched. 830 */ 831 static void object_no_scan(unsigned long ptr) 832 { 833 unsigned long flags; 834 struct kmemleak_object *object; 835 836 object = find_and_get_object(ptr, 0); 837 if (!object) { 838 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 839 return; 840 } 841 842 spin_lock_irqsave(&object->lock, flags); 843 object->flags |= OBJECT_NO_SCAN; 844 spin_unlock_irqrestore(&object->lock, flags); 845 put_object(object); 846 } 847 848 /* 849 * Log an early kmemleak_* call to the early_log buffer. These calls will be 850 * processed later once kmemleak is fully initialized. 851 */ 852 static void __init log_early(int op_type, const void *ptr, size_t size, 853 int min_count) 854 { 855 unsigned long flags; 856 struct early_log *log; 857 858 if (kmemleak_error) { 859 /* kmemleak stopped recording, just count the requests */ 860 crt_early_log++; 861 return; 862 } 863 864 if (crt_early_log >= ARRAY_SIZE(early_log)) { 865 crt_early_log++; 866 kmemleak_disable(); 867 return; 868 } 869 870 /* 871 * There is no need for locking since the kernel is still in UP mode 872 * at this stage. Disabling the IRQs is enough. 873 */ 874 local_irq_save(flags); 875 log = &early_log[crt_early_log]; 876 log->op_type = op_type; 877 log->ptr = ptr; 878 log->size = size; 879 log->min_count = min_count; 880 log->trace_len = __save_stack_trace(log->trace); 881 crt_early_log++; 882 local_irq_restore(flags); 883 } 884 885 /* 886 * Log an early allocated block and populate the stack trace. 887 */ 888 static void early_alloc(struct early_log *log) 889 { 890 struct kmemleak_object *object; 891 unsigned long flags; 892 int i; 893 894 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 895 return; 896 897 /* 898 * RCU locking needed to ensure object is not freed via put_object(). 899 */ 900 rcu_read_lock(); 901 object = create_object((unsigned long)log->ptr, log->size, 902 log->min_count, GFP_ATOMIC); 903 if (!object) 904 goto out; 905 spin_lock_irqsave(&object->lock, flags); 906 for (i = 0; i < log->trace_len; i++) 907 object->trace[i] = log->trace[i]; 908 object->trace_len = log->trace_len; 909 spin_unlock_irqrestore(&object->lock, flags); 910 out: 911 rcu_read_unlock(); 912 } 913 914 /* 915 * Log an early allocated block and populate the stack trace. 916 */ 917 static void early_alloc_percpu(struct early_log *log) 918 { 919 unsigned int cpu; 920 const void __percpu *ptr = log->ptr; 921 922 for_each_possible_cpu(cpu) { 923 log->ptr = per_cpu_ptr(ptr, cpu); 924 early_alloc(log); 925 } 926 } 927 928 /** 929 * kmemleak_alloc - register a newly allocated object 930 * @ptr: pointer to beginning of the object 931 * @size: size of the object 932 * @min_count: minimum number of references to this object. If during memory 933 * scanning a number of references less than @min_count is found, 934 * the object is reported as a memory leak. If @min_count is 0, 935 * the object is never reported as a leak. If @min_count is -1, 936 * the object is ignored (not scanned and not reported as a leak) 937 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 938 * 939 * This function is called from the kernel allocators when a new object 940 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). 941 */ 942 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 943 gfp_t gfp) 944 { 945 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 946 947 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 948 create_object((unsigned long)ptr, size, min_count, gfp); 949 else if (kmemleak_early_log) 950 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 951 } 952 EXPORT_SYMBOL_GPL(kmemleak_alloc); 953 954 /** 955 * kmemleak_alloc_percpu - register a newly allocated __percpu object 956 * @ptr: __percpu pointer to beginning of the object 957 * @size: size of the object 958 * @gfp: flags used for kmemleak internal memory allocations 959 * 960 * This function is called from the kernel percpu allocator when a new object 961 * (memory block) is allocated (alloc_percpu). 962 */ 963 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 964 gfp_t gfp) 965 { 966 unsigned int cpu; 967 968 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 969 970 /* 971 * Percpu allocations are only scanned and not reported as leaks 972 * (min_count is set to 0). 973 */ 974 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 975 for_each_possible_cpu(cpu) 976 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 977 size, 0, gfp); 978 else if (kmemleak_early_log) 979 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 980 } 981 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 982 983 /** 984 * kmemleak_vmalloc - register a newly vmalloc'ed object 985 * @area: pointer to vm_struct 986 * @size: size of the object 987 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations 988 * 989 * This function is called from the vmalloc() kernel allocator when a new 990 * object (memory block) is allocated. 991 */ 992 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) 993 { 994 pr_debug("%s(0x%p, %zu)\n", __func__, area, size); 995 996 /* 997 * A min_count = 2 is needed because vm_struct contains a reference to 998 * the virtual address of the vmalloc'ed block. 999 */ 1000 if (kmemleak_enabled) { 1001 create_object((unsigned long)area->addr, size, 2, gfp); 1002 object_set_excess_ref((unsigned long)area, 1003 (unsigned long)area->addr); 1004 } else if (kmemleak_early_log) { 1005 log_early(KMEMLEAK_ALLOC, area->addr, size, 2); 1006 /* reusing early_log.size for storing area->addr */ 1007 log_early(KMEMLEAK_SET_EXCESS_REF, 1008 area, (unsigned long)area->addr, 0); 1009 } 1010 } 1011 EXPORT_SYMBOL_GPL(kmemleak_vmalloc); 1012 1013 /** 1014 * kmemleak_free - unregister a previously registered object 1015 * @ptr: pointer to beginning of the object 1016 * 1017 * This function is called from the kernel allocators when an object (memory 1018 * block) is freed (kmem_cache_free, kfree, vfree etc.). 1019 */ 1020 void __ref kmemleak_free(const void *ptr) 1021 { 1022 pr_debug("%s(0x%p)\n", __func__, ptr); 1023 1024 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1025 delete_object_full((unsigned long)ptr); 1026 else if (kmemleak_early_log) 1027 log_early(KMEMLEAK_FREE, ptr, 0, 0); 1028 } 1029 EXPORT_SYMBOL_GPL(kmemleak_free); 1030 1031 /** 1032 * kmemleak_free_part - partially unregister a previously registered object 1033 * @ptr: pointer to the beginning or inside the object. This also 1034 * represents the start of the range to be freed 1035 * @size: size to be unregistered 1036 * 1037 * This function is called when only a part of a memory block is freed 1038 * (usually from the bootmem allocator). 1039 */ 1040 void __ref kmemleak_free_part(const void *ptr, size_t size) 1041 { 1042 pr_debug("%s(0x%p)\n", __func__, ptr); 1043 1044 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1045 delete_object_part((unsigned long)ptr, size); 1046 else if (kmemleak_early_log) 1047 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 1048 } 1049 EXPORT_SYMBOL_GPL(kmemleak_free_part); 1050 1051 /** 1052 * kmemleak_free_percpu - unregister a previously registered __percpu object 1053 * @ptr: __percpu pointer to beginning of the object 1054 * 1055 * This function is called from the kernel percpu allocator when an object 1056 * (memory block) is freed (free_percpu). 1057 */ 1058 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1059 { 1060 unsigned int cpu; 1061 1062 pr_debug("%s(0x%p)\n", __func__, ptr); 1063 1064 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1065 for_each_possible_cpu(cpu) 1066 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1067 cpu)); 1068 else if (kmemleak_early_log) 1069 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1070 } 1071 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1072 1073 /** 1074 * kmemleak_update_trace - update object allocation stack trace 1075 * @ptr: pointer to beginning of the object 1076 * 1077 * Override the object allocation stack trace for cases where the actual 1078 * allocation place is not always useful. 1079 */ 1080 void __ref kmemleak_update_trace(const void *ptr) 1081 { 1082 struct kmemleak_object *object; 1083 unsigned long flags; 1084 1085 pr_debug("%s(0x%p)\n", __func__, ptr); 1086 1087 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1088 return; 1089 1090 object = find_and_get_object((unsigned long)ptr, 1); 1091 if (!object) { 1092 #ifdef DEBUG 1093 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1094 ptr); 1095 #endif 1096 return; 1097 } 1098 1099 spin_lock_irqsave(&object->lock, flags); 1100 object->trace_len = __save_stack_trace(object->trace); 1101 spin_unlock_irqrestore(&object->lock, flags); 1102 1103 put_object(object); 1104 } 1105 EXPORT_SYMBOL(kmemleak_update_trace); 1106 1107 /** 1108 * kmemleak_not_leak - mark an allocated object as false positive 1109 * @ptr: pointer to beginning of the object 1110 * 1111 * Calling this function on an object will cause the memory block to no longer 1112 * be reported as leak and always be scanned. 1113 */ 1114 void __ref kmemleak_not_leak(const void *ptr) 1115 { 1116 pr_debug("%s(0x%p)\n", __func__, ptr); 1117 1118 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1119 make_gray_object((unsigned long)ptr); 1120 else if (kmemleak_early_log) 1121 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1122 } 1123 EXPORT_SYMBOL(kmemleak_not_leak); 1124 1125 /** 1126 * kmemleak_ignore - ignore an allocated object 1127 * @ptr: pointer to beginning of the object 1128 * 1129 * Calling this function on an object will cause the memory block to be 1130 * ignored (not scanned and not reported as a leak). This is usually done when 1131 * it is known that the corresponding block is not a leak and does not contain 1132 * any references to other allocated memory blocks. 1133 */ 1134 void __ref kmemleak_ignore(const void *ptr) 1135 { 1136 pr_debug("%s(0x%p)\n", __func__, ptr); 1137 1138 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1139 make_black_object((unsigned long)ptr); 1140 else if (kmemleak_early_log) 1141 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1142 } 1143 EXPORT_SYMBOL(kmemleak_ignore); 1144 1145 /** 1146 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1147 * @ptr: pointer to beginning or inside the object. This also 1148 * represents the start of the scan area 1149 * @size: size of the scan area 1150 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1151 * 1152 * This function is used when it is known that only certain parts of an object 1153 * contain references to other objects. Kmemleak will only scan these areas 1154 * reducing the number false negatives. 1155 */ 1156 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1157 { 1158 pr_debug("%s(0x%p)\n", __func__, ptr); 1159 1160 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1161 add_scan_area((unsigned long)ptr, size, gfp); 1162 else if (kmemleak_early_log) 1163 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1164 } 1165 EXPORT_SYMBOL(kmemleak_scan_area); 1166 1167 /** 1168 * kmemleak_no_scan - do not scan an allocated object 1169 * @ptr: pointer to beginning of the object 1170 * 1171 * This function notifies kmemleak not to scan the given memory block. Useful 1172 * in situations where it is known that the given object does not contain any 1173 * references to other objects. Kmemleak will not scan such objects reducing 1174 * the number of false negatives. 1175 */ 1176 void __ref kmemleak_no_scan(const void *ptr) 1177 { 1178 pr_debug("%s(0x%p)\n", __func__, ptr); 1179 1180 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1181 object_no_scan((unsigned long)ptr); 1182 else if (kmemleak_early_log) 1183 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1184 } 1185 EXPORT_SYMBOL(kmemleak_no_scan); 1186 1187 /** 1188 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical 1189 * address argument 1190 */ 1191 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, 1192 gfp_t gfp) 1193 { 1194 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1195 kmemleak_alloc(__va(phys), size, min_count, gfp); 1196 } 1197 EXPORT_SYMBOL(kmemleak_alloc_phys); 1198 1199 /** 1200 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a 1201 * physical address argument 1202 */ 1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) 1204 { 1205 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1206 kmemleak_free_part(__va(phys), size); 1207 } 1208 EXPORT_SYMBOL(kmemleak_free_part_phys); 1209 1210 /** 1211 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical 1212 * address argument 1213 */ 1214 void __ref kmemleak_not_leak_phys(phys_addr_t phys) 1215 { 1216 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1217 kmemleak_not_leak(__va(phys)); 1218 } 1219 EXPORT_SYMBOL(kmemleak_not_leak_phys); 1220 1221 /** 1222 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical 1223 * address argument 1224 */ 1225 void __ref kmemleak_ignore_phys(phys_addr_t phys) 1226 { 1227 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn) 1228 kmemleak_ignore(__va(phys)); 1229 } 1230 EXPORT_SYMBOL(kmemleak_ignore_phys); 1231 1232 /* 1233 * Update an object's checksum and return true if it was modified. 1234 */ 1235 static bool update_checksum(struct kmemleak_object *object) 1236 { 1237 u32 old_csum = object->checksum; 1238 1239 kasan_disable_current(); 1240 object->checksum = crc32(0, (void *)object->pointer, object->size); 1241 kasan_enable_current(); 1242 1243 return object->checksum != old_csum; 1244 } 1245 1246 /* 1247 * Update an object's references. object->lock must be held by the caller. 1248 */ 1249 static void update_refs(struct kmemleak_object *object) 1250 { 1251 if (!color_white(object)) { 1252 /* non-orphan, ignored or new */ 1253 return; 1254 } 1255 1256 /* 1257 * Increase the object's reference count (number of pointers to the 1258 * memory block). If this count reaches the required minimum, the 1259 * object's color will become gray and it will be added to the 1260 * gray_list. 1261 */ 1262 object->count++; 1263 if (color_gray(object)) { 1264 /* put_object() called when removing from gray_list */ 1265 WARN_ON(!get_object(object)); 1266 list_add_tail(&object->gray_list, &gray_list); 1267 } 1268 } 1269 1270 /* 1271 * Memory scanning is a long process and it needs to be interruptable. This 1272 * function checks whether such interrupt condition occurred. 1273 */ 1274 static int scan_should_stop(void) 1275 { 1276 if (!kmemleak_enabled) 1277 return 1; 1278 1279 /* 1280 * This function may be called from either process or kthread context, 1281 * hence the need to check for both stop conditions. 1282 */ 1283 if (current->mm) 1284 return signal_pending(current); 1285 else 1286 return kthread_should_stop(); 1287 1288 return 0; 1289 } 1290 1291 /* 1292 * Scan a memory block (exclusive range) for valid pointers and add those 1293 * found to the gray list. 1294 */ 1295 static void scan_block(void *_start, void *_end, 1296 struct kmemleak_object *scanned) 1297 { 1298 unsigned long *ptr; 1299 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1300 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1301 unsigned long flags; 1302 1303 read_lock_irqsave(&kmemleak_lock, flags); 1304 for (ptr = start; ptr < end; ptr++) { 1305 struct kmemleak_object *object; 1306 unsigned long pointer; 1307 unsigned long excess_ref; 1308 1309 if (scan_should_stop()) 1310 break; 1311 1312 kasan_disable_current(); 1313 pointer = *ptr; 1314 kasan_enable_current(); 1315 1316 if (pointer < min_addr || pointer >= max_addr) 1317 continue; 1318 1319 /* 1320 * No need for get_object() here since we hold kmemleak_lock. 1321 * object->use_count cannot be dropped to 0 while the object 1322 * is still present in object_tree_root and object_list 1323 * (with updates protected by kmemleak_lock). 1324 */ 1325 object = lookup_object(pointer, 1); 1326 if (!object) 1327 continue; 1328 if (object == scanned) 1329 /* self referenced, ignore */ 1330 continue; 1331 1332 /* 1333 * Avoid the lockdep recursive warning on object->lock being 1334 * previously acquired in scan_object(). These locks are 1335 * enclosed by scan_mutex. 1336 */ 1337 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1338 /* only pass surplus references (object already gray) */ 1339 if (color_gray(object)) { 1340 excess_ref = object->excess_ref; 1341 /* no need for update_refs() if object already gray */ 1342 } else { 1343 excess_ref = 0; 1344 update_refs(object); 1345 } 1346 spin_unlock(&object->lock); 1347 1348 if (excess_ref) { 1349 object = lookup_object(excess_ref, 0); 1350 if (!object) 1351 continue; 1352 if (object == scanned) 1353 /* circular reference, ignore */ 1354 continue; 1355 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1356 update_refs(object); 1357 spin_unlock(&object->lock); 1358 } 1359 } 1360 read_unlock_irqrestore(&kmemleak_lock, flags); 1361 } 1362 1363 /* 1364 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1365 */ 1366 static void scan_large_block(void *start, void *end) 1367 { 1368 void *next; 1369 1370 while (start < end) { 1371 next = min(start + MAX_SCAN_SIZE, end); 1372 scan_block(start, next, NULL); 1373 start = next; 1374 cond_resched(); 1375 } 1376 } 1377 1378 /* 1379 * Scan a memory block corresponding to a kmemleak_object. A condition is 1380 * that object->use_count >= 1. 1381 */ 1382 static void scan_object(struct kmemleak_object *object) 1383 { 1384 struct kmemleak_scan_area *area; 1385 unsigned long flags; 1386 1387 /* 1388 * Once the object->lock is acquired, the corresponding memory block 1389 * cannot be freed (the same lock is acquired in delete_object). 1390 */ 1391 spin_lock_irqsave(&object->lock, flags); 1392 if (object->flags & OBJECT_NO_SCAN) 1393 goto out; 1394 if (!(object->flags & OBJECT_ALLOCATED)) 1395 /* already freed object */ 1396 goto out; 1397 if (hlist_empty(&object->area_list)) { 1398 void *start = (void *)object->pointer; 1399 void *end = (void *)(object->pointer + object->size); 1400 void *next; 1401 1402 do { 1403 next = min(start + MAX_SCAN_SIZE, end); 1404 scan_block(start, next, object); 1405 1406 start = next; 1407 if (start >= end) 1408 break; 1409 1410 spin_unlock_irqrestore(&object->lock, flags); 1411 cond_resched(); 1412 spin_lock_irqsave(&object->lock, flags); 1413 } while (object->flags & OBJECT_ALLOCATED); 1414 } else 1415 hlist_for_each_entry(area, &object->area_list, node) 1416 scan_block((void *)area->start, 1417 (void *)(area->start + area->size), 1418 object); 1419 out: 1420 spin_unlock_irqrestore(&object->lock, flags); 1421 } 1422 1423 /* 1424 * Scan the objects already referenced (gray objects). More objects will be 1425 * referenced and, if there are no memory leaks, all the objects are scanned. 1426 */ 1427 static void scan_gray_list(void) 1428 { 1429 struct kmemleak_object *object, *tmp; 1430 1431 /* 1432 * The list traversal is safe for both tail additions and removals 1433 * from inside the loop. The kmemleak objects cannot be freed from 1434 * outside the loop because their use_count was incremented. 1435 */ 1436 object = list_entry(gray_list.next, typeof(*object), gray_list); 1437 while (&object->gray_list != &gray_list) { 1438 cond_resched(); 1439 1440 /* may add new objects to the list */ 1441 if (!scan_should_stop()) 1442 scan_object(object); 1443 1444 tmp = list_entry(object->gray_list.next, typeof(*object), 1445 gray_list); 1446 1447 /* remove the object from the list and release it */ 1448 list_del(&object->gray_list); 1449 put_object(object); 1450 1451 object = tmp; 1452 } 1453 WARN_ON(!list_empty(&gray_list)); 1454 } 1455 1456 /* 1457 * Scan data sections and all the referenced memory blocks allocated via the 1458 * kernel's standard allocators. This function must be called with the 1459 * scan_mutex held. 1460 */ 1461 static void kmemleak_scan(void) 1462 { 1463 unsigned long flags; 1464 struct kmemleak_object *object; 1465 int i; 1466 int new_leaks = 0; 1467 1468 jiffies_last_scan = jiffies; 1469 1470 /* prepare the kmemleak_object's */ 1471 rcu_read_lock(); 1472 list_for_each_entry_rcu(object, &object_list, object_list) { 1473 spin_lock_irqsave(&object->lock, flags); 1474 #ifdef DEBUG 1475 /* 1476 * With a few exceptions there should be a maximum of 1477 * 1 reference to any object at this point. 1478 */ 1479 if (atomic_read(&object->use_count) > 1) { 1480 pr_debug("object->use_count = %d\n", 1481 atomic_read(&object->use_count)); 1482 dump_object_info(object); 1483 } 1484 #endif 1485 /* reset the reference count (whiten the object) */ 1486 object->count = 0; 1487 if (color_gray(object) && get_object(object)) 1488 list_add_tail(&object->gray_list, &gray_list); 1489 1490 spin_unlock_irqrestore(&object->lock, flags); 1491 } 1492 rcu_read_unlock(); 1493 1494 /* data/bss scanning */ 1495 scan_large_block(_sdata, _edata); 1496 scan_large_block(__bss_start, __bss_stop); 1497 scan_large_block(__start_ro_after_init, __end_ro_after_init); 1498 1499 #ifdef CONFIG_SMP 1500 /* per-cpu sections scanning */ 1501 for_each_possible_cpu(i) 1502 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1503 __per_cpu_end + per_cpu_offset(i)); 1504 #endif 1505 1506 /* 1507 * Struct page scanning for each node. 1508 */ 1509 get_online_mems(); 1510 for_each_online_node(i) { 1511 unsigned long start_pfn = node_start_pfn(i); 1512 unsigned long end_pfn = node_end_pfn(i); 1513 unsigned long pfn; 1514 1515 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1516 struct page *page; 1517 1518 if (!pfn_valid(pfn)) 1519 continue; 1520 page = pfn_to_page(pfn); 1521 /* only scan if page is in use */ 1522 if (page_count(page) == 0) 1523 continue; 1524 scan_block(page, page + 1, NULL); 1525 if (!(pfn & 63)) 1526 cond_resched(); 1527 } 1528 } 1529 put_online_mems(); 1530 1531 /* 1532 * Scanning the task stacks (may introduce false negatives). 1533 */ 1534 if (kmemleak_stack_scan) { 1535 struct task_struct *p, *g; 1536 1537 read_lock(&tasklist_lock); 1538 do_each_thread(g, p) { 1539 void *stack = try_get_task_stack(p); 1540 if (stack) { 1541 scan_block(stack, stack + THREAD_SIZE, NULL); 1542 put_task_stack(p); 1543 } 1544 } while_each_thread(g, p); 1545 read_unlock(&tasklist_lock); 1546 } 1547 1548 /* 1549 * Scan the objects already referenced from the sections scanned 1550 * above. 1551 */ 1552 scan_gray_list(); 1553 1554 /* 1555 * Check for new or unreferenced objects modified since the previous 1556 * scan and color them gray until the next scan. 1557 */ 1558 rcu_read_lock(); 1559 list_for_each_entry_rcu(object, &object_list, object_list) { 1560 spin_lock_irqsave(&object->lock, flags); 1561 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1562 && update_checksum(object) && get_object(object)) { 1563 /* color it gray temporarily */ 1564 object->count = object->min_count; 1565 list_add_tail(&object->gray_list, &gray_list); 1566 } 1567 spin_unlock_irqrestore(&object->lock, flags); 1568 } 1569 rcu_read_unlock(); 1570 1571 /* 1572 * Re-scan the gray list for modified unreferenced objects. 1573 */ 1574 scan_gray_list(); 1575 1576 /* 1577 * If scanning was stopped do not report any new unreferenced objects. 1578 */ 1579 if (scan_should_stop()) 1580 return; 1581 1582 /* 1583 * Scanning result reporting. 1584 */ 1585 rcu_read_lock(); 1586 list_for_each_entry_rcu(object, &object_list, object_list) { 1587 spin_lock_irqsave(&object->lock, flags); 1588 if (unreferenced_object(object) && 1589 !(object->flags & OBJECT_REPORTED)) { 1590 object->flags |= OBJECT_REPORTED; 1591 new_leaks++; 1592 } 1593 spin_unlock_irqrestore(&object->lock, flags); 1594 } 1595 rcu_read_unlock(); 1596 1597 if (new_leaks) { 1598 kmemleak_found_leaks = true; 1599 1600 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", 1601 new_leaks); 1602 } 1603 1604 } 1605 1606 /* 1607 * Thread function performing automatic memory scanning. Unreferenced objects 1608 * at the end of a memory scan are reported but only the first time. 1609 */ 1610 static int kmemleak_scan_thread(void *arg) 1611 { 1612 static int first_run = 1; 1613 1614 pr_info("Automatic memory scanning thread started\n"); 1615 set_user_nice(current, 10); 1616 1617 /* 1618 * Wait before the first scan to allow the system to fully initialize. 1619 */ 1620 if (first_run) { 1621 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); 1622 first_run = 0; 1623 while (timeout && !kthread_should_stop()) 1624 timeout = schedule_timeout_interruptible(timeout); 1625 } 1626 1627 while (!kthread_should_stop()) { 1628 signed long timeout = jiffies_scan_wait; 1629 1630 mutex_lock(&scan_mutex); 1631 kmemleak_scan(); 1632 mutex_unlock(&scan_mutex); 1633 1634 /* wait before the next scan */ 1635 while (timeout && !kthread_should_stop()) 1636 timeout = schedule_timeout_interruptible(timeout); 1637 } 1638 1639 pr_info("Automatic memory scanning thread ended\n"); 1640 1641 return 0; 1642 } 1643 1644 /* 1645 * Start the automatic memory scanning thread. This function must be called 1646 * with the scan_mutex held. 1647 */ 1648 static void start_scan_thread(void) 1649 { 1650 if (scan_thread) 1651 return; 1652 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1653 if (IS_ERR(scan_thread)) { 1654 pr_warn("Failed to create the scan thread\n"); 1655 scan_thread = NULL; 1656 } 1657 } 1658 1659 /* 1660 * Stop the automatic memory scanning thread. This function must be called 1661 * with the scan_mutex held. 1662 */ 1663 static void stop_scan_thread(void) 1664 { 1665 if (scan_thread) { 1666 kthread_stop(scan_thread); 1667 scan_thread = NULL; 1668 } 1669 } 1670 1671 /* 1672 * Iterate over the object_list and return the first valid object at or after 1673 * the required position with its use_count incremented. The function triggers 1674 * a memory scanning when the pos argument points to the first position. 1675 */ 1676 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1677 { 1678 struct kmemleak_object *object; 1679 loff_t n = *pos; 1680 int err; 1681 1682 err = mutex_lock_interruptible(&scan_mutex); 1683 if (err < 0) 1684 return ERR_PTR(err); 1685 1686 rcu_read_lock(); 1687 list_for_each_entry_rcu(object, &object_list, object_list) { 1688 if (n-- > 0) 1689 continue; 1690 if (get_object(object)) 1691 goto out; 1692 } 1693 object = NULL; 1694 out: 1695 return object; 1696 } 1697 1698 /* 1699 * Return the next object in the object_list. The function decrements the 1700 * use_count of the previous object and increases that of the next one. 1701 */ 1702 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1703 { 1704 struct kmemleak_object *prev_obj = v; 1705 struct kmemleak_object *next_obj = NULL; 1706 struct kmemleak_object *obj = prev_obj; 1707 1708 ++(*pos); 1709 1710 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1711 if (get_object(obj)) { 1712 next_obj = obj; 1713 break; 1714 } 1715 } 1716 1717 put_object(prev_obj); 1718 return next_obj; 1719 } 1720 1721 /* 1722 * Decrement the use_count of the last object required, if any. 1723 */ 1724 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1725 { 1726 if (!IS_ERR(v)) { 1727 /* 1728 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1729 * waiting was interrupted, so only release it if !IS_ERR. 1730 */ 1731 rcu_read_unlock(); 1732 mutex_unlock(&scan_mutex); 1733 if (v) 1734 put_object(v); 1735 } 1736 } 1737 1738 /* 1739 * Print the information for an unreferenced object to the seq file. 1740 */ 1741 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1742 { 1743 struct kmemleak_object *object = v; 1744 unsigned long flags; 1745 1746 spin_lock_irqsave(&object->lock, flags); 1747 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1748 print_unreferenced(seq, object); 1749 spin_unlock_irqrestore(&object->lock, flags); 1750 return 0; 1751 } 1752 1753 static const struct seq_operations kmemleak_seq_ops = { 1754 .start = kmemleak_seq_start, 1755 .next = kmemleak_seq_next, 1756 .stop = kmemleak_seq_stop, 1757 .show = kmemleak_seq_show, 1758 }; 1759 1760 static int kmemleak_open(struct inode *inode, struct file *file) 1761 { 1762 return seq_open(file, &kmemleak_seq_ops); 1763 } 1764 1765 static int dump_str_object_info(const char *str) 1766 { 1767 unsigned long flags; 1768 struct kmemleak_object *object; 1769 unsigned long addr; 1770 1771 if (kstrtoul(str, 0, &addr)) 1772 return -EINVAL; 1773 object = find_and_get_object(addr, 0); 1774 if (!object) { 1775 pr_info("Unknown object at 0x%08lx\n", addr); 1776 return -EINVAL; 1777 } 1778 1779 spin_lock_irqsave(&object->lock, flags); 1780 dump_object_info(object); 1781 spin_unlock_irqrestore(&object->lock, flags); 1782 1783 put_object(object); 1784 return 0; 1785 } 1786 1787 /* 1788 * We use grey instead of black to ensure we can do future scans on the same 1789 * objects. If we did not do future scans these black objects could 1790 * potentially contain references to newly allocated objects in the future and 1791 * we'd end up with false positives. 1792 */ 1793 static void kmemleak_clear(void) 1794 { 1795 struct kmemleak_object *object; 1796 unsigned long flags; 1797 1798 rcu_read_lock(); 1799 list_for_each_entry_rcu(object, &object_list, object_list) { 1800 spin_lock_irqsave(&object->lock, flags); 1801 if ((object->flags & OBJECT_REPORTED) && 1802 unreferenced_object(object)) 1803 __paint_it(object, KMEMLEAK_GREY); 1804 spin_unlock_irqrestore(&object->lock, flags); 1805 } 1806 rcu_read_unlock(); 1807 1808 kmemleak_found_leaks = false; 1809 } 1810 1811 static void __kmemleak_do_cleanup(void); 1812 1813 /* 1814 * File write operation to configure kmemleak at run-time. The following 1815 * commands can be written to the /sys/kernel/debug/kmemleak file: 1816 * off - disable kmemleak (irreversible) 1817 * stack=on - enable the task stacks scanning 1818 * stack=off - disable the tasks stacks scanning 1819 * scan=on - start the automatic memory scanning thread 1820 * scan=off - stop the automatic memory scanning thread 1821 * scan=... - set the automatic memory scanning period in seconds (0 to 1822 * disable it) 1823 * scan - trigger a memory scan 1824 * clear - mark all current reported unreferenced kmemleak objects as 1825 * grey to ignore printing them, or free all kmemleak objects 1826 * if kmemleak has been disabled. 1827 * dump=... - dump information about the object found at the given address 1828 */ 1829 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1830 size_t size, loff_t *ppos) 1831 { 1832 char buf[64]; 1833 int buf_size; 1834 int ret; 1835 1836 buf_size = min(size, (sizeof(buf) - 1)); 1837 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1838 return -EFAULT; 1839 buf[buf_size] = 0; 1840 1841 ret = mutex_lock_interruptible(&scan_mutex); 1842 if (ret < 0) 1843 return ret; 1844 1845 if (strncmp(buf, "clear", 5) == 0) { 1846 if (kmemleak_enabled) 1847 kmemleak_clear(); 1848 else 1849 __kmemleak_do_cleanup(); 1850 goto out; 1851 } 1852 1853 if (!kmemleak_enabled) { 1854 ret = -EBUSY; 1855 goto out; 1856 } 1857 1858 if (strncmp(buf, "off", 3) == 0) 1859 kmemleak_disable(); 1860 else if (strncmp(buf, "stack=on", 8) == 0) 1861 kmemleak_stack_scan = 1; 1862 else if (strncmp(buf, "stack=off", 9) == 0) 1863 kmemleak_stack_scan = 0; 1864 else if (strncmp(buf, "scan=on", 7) == 0) 1865 start_scan_thread(); 1866 else if (strncmp(buf, "scan=off", 8) == 0) 1867 stop_scan_thread(); 1868 else if (strncmp(buf, "scan=", 5) == 0) { 1869 unsigned long secs; 1870 1871 ret = kstrtoul(buf + 5, 0, &secs); 1872 if (ret < 0) 1873 goto out; 1874 stop_scan_thread(); 1875 if (secs) { 1876 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1877 start_scan_thread(); 1878 } 1879 } else if (strncmp(buf, "scan", 4) == 0) 1880 kmemleak_scan(); 1881 else if (strncmp(buf, "dump=", 5) == 0) 1882 ret = dump_str_object_info(buf + 5); 1883 else 1884 ret = -EINVAL; 1885 1886 out: 1887 mutex_unlock(&scan_mutex); 1888 if (ret < 0) 1889 return ret; 1890 1891 /* ignore the rest of the buffer, only one command at a time */ 1892 *ppos += size; 1893 return size; 1894 } 1895 1896 static const struct file_operations kmemleak_fops = { 1897 .owner = THIS_MODULE, 1898 .open = kmemleak_open, 1899 .read = seq_read, 1900 .write = kmemleak_write, 1901 .llseek = seq_lseek, 1902 .release = seq_release, 1903 }; 1904 1905 static void __kmemleak_do_cleanup(void) 1906 { 1907 struct kmemleak_object *object; 1908 1909 rcu_read_lock(); 1910 list_for_each_entry_rcu(object, &object_list, object_list) 1911 delete_object_full(object->pointer); 1912 rcu_read_unlock(); 1913 } 1914 1915 /* 1916 * Stop the memory scanning thread and free the kmemleak internal objects if 1917 * no previous scan thread (otherwise, kmemleak may still have some useful 1918 * information on memory leaks). 1919 */ 1920 static void kmemleak_do_cleanup(struct work_struct *work) 1921 { 1922 stop_scan_thread(); 1923 1924 /* 1925 * Once the scan thread has stopped, it is safe to no longer track 1926 * object freeing. Ordering of the scan thread stopping and the memory 1927 * accesses below is guaranteed by the kthread_stop() function. 1928 */ 1929 kmemleak_free_enabled = 0; 1930 1931 if (!kmemleak_found_leaks) 1932 __kmemleak_do_cleanup(); 1933 else 1934 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); 1935 } 1936 1937 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1938 1939 /* 1940 * Disable kmemleak. No memory allocation/freeing will be traced once this 1941 * function is called. Disabling kmemleak is an irreversible operation. 1942 */ 1943 static void kmemleak_disable(void) 1944 { 1945 /* atomically check whether it was already invoked */ 1946 if (cmpxchg(&kmemleak_error, 0, 1)) 1947 return; 1948 1949 /* stop any memory operation tracing */ 1950 kmemleak_enabled = 0; 1951 1952 /* check whether it is too early for a kernel thread */ 1953 if (kmemleak_initialized) 1954 schedule_work(&cleanup_work); 1955 else 1956 kmemleak_free_enabled = 0; 1957 1958 pr_info("Kernel memory leak detector disabled\n"); 1959 } 1960 1961 /* 1962 * Allow boot-time kmemleak disabling (enabled by default). 1963 */ 1964 static int kmemleak_boot_config(char *str) 1965 { 1966 if (!str) 1967 return -EINVAL; 1968 if (strcmp(str, "off") == 0) 1969 kmemleak_disable(); 1970 else if (strcmp(str, "on") == 0) 1971 kmemleak_skip_disable = 1; 1972 else 1973 return -EINVAL; 1974 return 0; 1975 } 1976 early_param("kmemleak", kmemleak_boot_config); 1977 1978 static void __init print_log_trace(struct early_log *log) 1979 { 1980 struct stack_trace trace; 1981 1982 trace.nr_entries = log->trace_len; 1983 trace.entries = log->trace; 1984 1985 pr_notice("Early log backtrace:\n"); 1986 print_stack_trace(&trace, 2); 1987 } 1988 1989 /* 1990 * Kmemleak initialization. 1991 */ 1992 void __init kmemleak_init(void) 1993 { 1994 int i; 1995 unsigned long flags; 1996 1997 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1998 if (!kmemleak_skip_disable) { 1999 kmemleak_early_log = 0; 2000 kmemleak_disable(); 2001 return; 2002 } 2003 #endif 2004 2005 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 2006 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 2007 2008 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 2009 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 2010 2011 if (crt_early_log > ARRAY_SIZE(early_log)) 2012 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", 2013 crt_early_log); 2014 2015 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 2016 local_irq_save(flags); 2017 kmemleak_early_log = 0; 2018 if (kmemleak_error) { 2019 local_irq_restore(flags); 2020 return; 2021 } else { 2022 kmemleak_enabled = 1; 2023 kmemleak_free_enabled = 1; 2024 } 2025 local_irq_restore(flags); 2026 2027 /* 2028 * This is the point where tracking allocations is safe. Automatic 2029 * scanning is started during the late initcall. Add the early logged 2030 * callbacks to the kmemleak infrastructure. 2031 */ 2032 for (i = 0; i < crt_early_log; i++) { 2033 struct early_log *log = &early_log[i]; 2034 2035 switch (log->op_type) { 2036 case KMEMLEAK_ALLOC: 2037 early_alloc(log); 2038 break; 2039 case KMEMLEAK_ALLOC_PERCPU: 2040 early_alloc_percpu(log); 2041 break; 2042 case KMEMLEAK_FREE: 2043 kmemleak_free(log->ptr); 2044 break; 2045 case KMEMLEAK_FREE_PART: 2046 kmemleak_free_part(log->ptr, log->size); 2047 break; 2048 case KMEMLEAK_FREE_PERCPU: 2049 kmemleak_free_percpu(log->ptr); 2050 break; 2051 case KMEMLEAK_NOT_LEAK: 2052 kmemleak_not_leak(log->ptr); 2053 break; 2054 case KMEMLEAK_IGNORE: 2055 kmemleak_ignore(log->ptr); 2056 break; 2057 case KMEMLEAK_SCAN_AREA: 2058 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 2059 break; 2060 case KMEMLEAK_NO_SCAN: 2061 kmemleak_no_scan(log->ptr); 2062 break; 2063 case KMEMLEAK_SET_EXCESS_REF: 2064 object_set_excess_ref((unsigned long)log->ptr, 2065 log->excess_ref); 2066 break; 2067 default: 2068 kmemleak_warn("Unknown early log operation: %d\n", 2069 log->op_type); 2070 } 2071 2072 if (kmemleak_warning) { 2073 print_log_trace(log); 2074 kmemleak_warning = 0; 2075 } 2076 } 2077 } 2078 2079 /* 2080 * Late initialization function. 2081 */ 2082 static int __init kmemleak_late_init(void) 2083 { 2084 struct dentry *dentry; 2085 2086 kmemleak_initialized = 1; 2087 2088 if (kmemleak_error) { 2089 /* 2090 * Some error occurred and kmemleak was disabled. There is a 2091 * small chance that kmemleak_disable() was called immediately 2092 * after setting kmemleak_initialized and we may end up with 2093 * two clean-up threads but serialized by scan_mutex. 2094 */ 2095 schedule_work(&cleanup_work); 2096 return -ENOMEM; 2097 } 2098 2099 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL, 2100 &kmemleak_fops); 2101 if (!dentry) 2102 pr_warn("Failed to create the debugfs kmemleak file\n"); 2103 mutex_lock(&scan_mutex); 2104 start_scan_thread(); 2105 mutex_unlock(&scan_mutex); 2106 2107 pr_info("Kernel memory leak detector initialized\n"); 2108 2109 return 0; 2110 } 2111 late_initcall(kmemleak_late_init); 2112