xref: /linux/mm/kmemleak.c (revision 0f7e753fc3851aac8aeea6b551cbbcf6ca9093dd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60 
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98 
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102 
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107 
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE		16	/* stack trace length */
112 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
113 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
114 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
116 
117 #define BYTES_PER_POINTER	sizeof(void *)
118 
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121 					   __GFP_NOLOCKDEP)) | \
122 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 				 __GFP_NOWARN)
124 
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127 	struct hlist_node node;
128 	unsigned long start;
129 	size_t size;
130 };
131 
132 #define KMEMLEAK_GREY	0
133 #define KMEMLEAK_BLACK	-1
134 
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144 	raw_spinlock_t lock;
145 	unsigned int flags;		/* object status flags */
146 	struct list_head object_list;
147 	struct list_head gray_list;
148 	struct rb_node rb_node;
149 	struct rcu_head rcu;		/* object_list lockless traversal */
150 	/* object usage count; object freed when use_count == 0 */
151 	atomic_t use_count;
152 	unsigned int del_state;		/* deletion state */
153 	unsigned long pointer;
154 	size_t size;
155 	/* pass surplus references to this pointer */
156 	unsigned long excess_ref;
157 	/* minimum number of a pointers found before it is considered leak */
158 	int min_count;
159 	/* the total number of pointers found pointing to this object */
160 	int count;
161 	/* checksum for detecting modified objects */
162 	u32 checksum;
163 	/* memory ranges to be scanned inside an object (empty for all) */
164 	struct hlist_head area_list;
165 	depot_stack_handle_t trace_handle;
166 	unsigned long jiffies;		/* creation timestamp */
167 	pid_t pid;			/* pid of the current task */
168 	char comm[TASK_COMM_LEN];	/* executable name */
169 };
170 
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED	(1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED		(1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN		(1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN	(1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS		(1 << 4)
181 
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED	(1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE	(1 << 1)
186 
187 #define HEX_PREFIX		"    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE		16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE		1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII		1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES		2
196 
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211 
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215 
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226 
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	/* limit the number of lines to HEX_MAX_LINES */
305 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306 
307 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308 	kasan_disable_current();
309 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311 	kasan_enable_current();
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned long *entries;
357 	unsigned int nr_entries;
358 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359 
360 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362 			  object->pointer, object->size);
363 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364 			   object->comm, object->pid, object->jiffies,
365 			   msecs_age / 1000, msecs_age % 1000);
366 	hex_dump_object(seq, object);
367 	warn_or_seq_printf(seq, "  backtrace:\n");
368 
369 	for (i = 0; i < nr_entries; i++) {
370 		void *ptr = (void *)entries[i];
371 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372 	}
373 }
374 
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382 	pr_notice("Object 0x%08lx (size %zu):\n",
383 			object->pointer, object->size);
384 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385 			object->comm, object->pid, object->jiffies);
386 	pr_notice("  min_count = %d\n", object->min_count);
387 	pr_notice("  count = %d\n", object->count);
388 	pr_notice("  flags = 0x%x\n", object->flags);
389 	pr_notice("  checksum = %u\n", object->checksum);
390 	pr_notice("  backtrace:\n");
391 	if (object->trace_handle)
392 		stack_depot_print(object->trace_handle);
393 }
394 
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402 					       bool is_phys)
403 {
404 	struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405 			     object_tree_root.rb_node;
406 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407 
408 	while (rb) {
409 		struct kmemleak_object *object;
410 		unsigned long untagged_objp;
411 
412 		object = rb_entry(rb, struct kmemleak_object, rb_node);
413 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414 
415 		if (untagged_ptr < untagged_objp)
416 			rb = object->rb_node.rb_left;
417 		else if (untagged_objp + object->size <= untagged_ptr)
418 			rb = object->rb_node.rb_right;
419 		else if (untagged_objp == untagged_ptr || alias)
420 			return object;
421 		else {
422 			kmemleak_warn("Found object by alias at 0x%08lx\n",
423 				      ptr);
424 			dump_object_info(object);
425 			break;
426 		}
427 	}
428 	return NULL;
429 }
430 
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434 	return __lookup_object(ptr, alias, false);
435 }
436 
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445 	return atomic_inc_not_zero(&object->use_count);
446 }
447 
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453 	unsigned long flags;
454 	struct kmemleak_object *object;
455 
456 	/* try the slab allocator first */
457 	if (object_cache) {
458 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459 		if (object)
460 			return object;
461 	}
462 
463 	/* slab allocation failed, try the memory pool */
464 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
465 	object = list_first_entry_or_null(&mem_pool_free_list,
466 					  typeof(*object), object_list);
467 	if (object)
468 		list_del(&object->object_list);
469 	else if (mem_pool_free_count)
470 		object = &mem_pool[--mem_pool_free_count];
471 	else
472 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474 
475 	return object;
476 }
477 
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483 	unsigned long flags;
484 
485 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486 		kmem_cache_free(object_cache, object);
487 		return;
488 	}
489 
490 	/* add the object to the memory pool free list */
491 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
492 	list_add(&object->object_list, &mem_pool_free_list);
493 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495 
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501 	struct hlist_node *tmp;
502 	struct kmemleak_scan_area *area;
503 	struct kmemleak_object *object =
504 		container_of(rcu, struct kmemleak_object, rcu);
505 
506 	/*
507 	 * Once use_count is 0 (guaranteed by put_object), there is no other
508 	 * code accessing this object, hence no need for locking.
509 	 */
510 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511 		hlist_del(&area->node);
512 		kmem_cache_free(scan_area_cache, area);
513 	}
514 	mem_pool_free(object);
515 }
516 
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526 	if (!atomic_dec_and_test(&object->use_count))
527 		return;
528 
529 	/* should only get here after delete_object was called */
530 	WARN_ON(object->flags & OBJECT_ALLOCATED);
531 
532 	/*
533 	 * It may be too early for the RCU callbacks, however, there is no
534 	 * concurrent object_list traversal when !object_cache and all objects
535 	 * came from the memory pool. Free the object directly.
536 	 */
537 	if (object_cache)
538 		call_rcu(&object->rcu, free_object_rcu);
539 	else
540 		free_object_rcu(&object->rcu);
541 }
542 
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547 						     bool is_phys)
548 {
549 	unsigned long flags;
550 	struct kmemleak_object *object;
551 
552 	rcu_read_lock();
553 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
554 	object = __lookup_object(ptr, alias, is_phys);
555 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556 
557 	/* check whether the object is still available */
558 	if (object && !get_object(object))
559 		object = NULL;
560 	rcu_read_unlock();
561 
562 	return object;
563 }
564 
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568 	return __find_and_get_object(ptr, alias, false);
569 }
570 
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578 	rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579 				   &object_phys_tree_root :
580 				   &object_tree_root);
581 	if (!(object->del_state & DELSTATE_NO_DELETE))
582 		list_del_rcu(&object->object_list);
583 	object->del_state |= DELSTATE_REMOVED;
584 }
585 
586 /*
587  * Look up an object in the object search tree and remove it from both
588  * object_tree_root (or object_phys_tree_root) and object_list. The
589  * returned object's use_count should be at least 1, as initially set
590  * by create_object().
591  */
592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593 						      bool is_phys)
594 {
595 	unsigned long flags;
596 	struct kmemleak_object *object;
597 
598 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
599 	object = __lookup_object(ptr, alias, is_phys);
600 	if (object)
601 		__remove_object(object);
602 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
603 
604 	return object;
605 }
606 
607 static noinline depot_stack_handle_t set_track_prepare(void)
608 {
609 	depot_stack_handle_t trace_handle;
610 	unsigned long entries[MAX_TRACE];
611 	unsigned int nr_entries;
612 
613 	/*
614 	 * Use object_cache to determine whether kmemleak_init() has
615 	 * been invoked. stack_depot_early_init() is called before
616 	 * kmemleak_init() in mm_core_init().
617 	 */
618 	if (!object_cache)
619 		return 0;
620 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
621 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
622 
623 	return trace_handle;
624 }
625 
626 /*
627  * Create the metadata (struct kmemleak_object) corresponding to an allocated
628  * memory block and add it to the object_list and object_tree_root (or
629  * object_phys_tree_root).
630  */
631 static void __create_object(unsigned long ptr, size_t size,
632 			    int min_count, gfp_t gfp, bool is_phys)
633 {
634 	unsigned long flags;
635 	struct kmemleak_object *object, *parent;
636 	struct rb_node **link, *rb_parent;
637 	unsigned long untagged_ptr;
638 	unsigned long untagged_objp;
639 
640 	object = mem_pool_alloc(gfp);
641 	if (!object) {
642 		pr_warn("Cannot allocate a kmemleak_object structure\n");
643 		kmemleak_disable();
644 		return;
645 	}
646 
647 	INIT_LIST_HEAD(&object->object_list);
648 	INIT_LIST_HEAD(&object->gray_list);
649 	INIT_HLIST_HEAD(&object->area_list);
650 	raw_spin_lock_init(&object->lock);
651 	atomic_set(&object->use_count, 1);
652 	object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
653 	object->pointer = ptr;
654 	object->size = kfence_ksize((void *)ptr) ?: size;
655 	object->excess_ref = 0;
656 	object->min_count = min_count;
657 	object->count = 0;			/* white color initially */
658 	object->jiffies = jiffies;
659 	object->checksum = 0;
660 	object->del_state = 0;
661 
662 	/* task information */
663 	if (in_hardirq()) {
664 		object->pid = 0;
665 		strncpy(object->comm, "hardirq", sizeof(object->comm));
666 	} else if (in_serving_softirq()) {
667 		object->pid = 0;
668 		strncpy(object->comm, "softirq", sizeof(object->comm));
669 	} else {
670 		object->pid = current->pid;
671 		/*
672 		 * There is a small chance of a race with set_task_comm(),
673 		 * however using get_task_comm() here may cause locking
674 		 * dependency issues with current->alloc_lock. In the worst
675 		 * case, the command line is not correct.
676 		 */
677 		strncpy(object->comm, current->comm, sizeof(object->comm));
678 	}
679 
680 	/* kernel backtrace */
681 	object->trace_handle = set_track_prepare();
682 
683 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
684 
685 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
686 	/*
687 	 * Only update min_addr and max_addr with object
688 	 * storing virtual address.
689 	 */
690 	if (!is_phys) {
691 		min_addr = min(min_addr, untagged_ptr);
692 		max_addr = max(max_addr, untagged_ptr + size);
693 	}
694 	link = is_phys ? &object_phys_tree_root.rb_node :
695 		&object_tree_root.rb_node;
696 	rb_parent = NULL;
697 	while (*link) {
698 		rb_parent = *link;
699 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
700 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
701 		if (untagged_ptr + size <= untagged_objp)
702 			link = &parent->rb_node.rb_left;
703 		else if (untagged_objp + parent->size <= untagged_ptr)
704 			link = &parent->rb_node.rb_right;
705 		else {
706 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
707 				      ptr);
708 			/*
709 			 * No need for parent->lock here since "parent" cannot
710 			 * be freed while the kmemleak_lock is held.
711 			 */
712 			dump_object_info(parent);
713 			kmem_cache_free(object_cache, object);
714 			goto out;
715 		}
716 	}
717 	rb_link_node(&object->rb_node, rb_parent, link);
718 	rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
719 					  &object_tree_root);
720 	list_add_tail_rcu(&object->object_list, &object_list);
721 out:
722 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
723 }
724 
725 /* Create kmemleak object which allocated with virtual address. */
726 static void create_object(unsigned long ptr, size_t size,
727 			  int min_count, gfp_t gfp)
728 {
729 	__create_object(ptr, size, min_count, gfp, false);
730 }
731 
732 /* Create kmemleak object which allocated with physical address. */
733 static void create_object_phys(unsigned long ptr, size_t size,
734 			       int min_count, gfp_t gfp)
735 {
736 	__create_object(ptr, size, min_count, gfp, true);
737 }
738 
739 /*
740  * Mark the object as not allocated and schedule RCU freeing via put_object().
741  */
742 static void __delete_object(struct kmemleak_object *object)
743 {
744 	unsigned long flags;
745 
746 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
747 	WARN_ON(atomic_read(&object->use_count) < 1);
748 
749 	/*
750 	 * Locking here also ensures that the corresponding memory block
751 	 * cannot be freed when it is being scanned.
752 	 */
753 	raw_spin_lock_irqsave(&object->lock, flags);
754 	object->flags &= ~OBJECT_ALLOCATED;
755 	raw_spin_unlock_irqrestore(&object->lock, flags);
756 	put_object(object);
757 }
758 
759 /*
760  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
761  * delete it.
762  */
763 static void delete_object_full(unsigned long ptr)
764 {
765 	struct kmemleak_object *object;
766 
767 	object = find_and_remove_object(ptr, 0, false);
768 	if (!object) {
769 #ifdef DEBUG
770 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
771 			      ptr);
772 #endif
773 		return;
774 	}
775 	__delete_object(object);
776 }
777 
778 /*
779  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
780  * delete it. If the memory block is partially freed, the function may create
781  * additional metadata for the remaining parts of the block.
782  */
783 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
784 {
785 	struct kmemleak_object *object;
786 	unsigned long start, end;
787 
788 	object = find_and_remove_object(ptr, 1, is_phys);
789 	if (!object) {
790 #ifdef DEBUG
791 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
792 			      ptr, size);
793 #endif
794 		return;
795 	}
796 
797 	/*
798 	 * Create one or two objects that may result from the memory block
799 	 * split. Note that partial freeing is only done by free_bootmem() and
800 	 * this happens before kmemleak_init() is called.
801 	 */
802 	start = object->pointer;
803 	end = object->pointer + object->size;
804 	if (ptr > start)
805 		__create_object(start, ptr - start, object->min_count,
806 			      GFP_KERNEL, is_phys);
807 	if (ptr + size < end)
808 		__create_object(ptr + size, end - ptr - size, object->min_count,
809 			      GFP_KERNEL, is_phys);
810 
811 	__delete_object(object);
812 }
813 
814 static void __paint_it(struct kmemleak_object *object, int color)
815 {
816 	object->min_count = color;
817 	if (color == KMEMLEAK_BLACK)
818 		object->flags |= OBJECT_NO_SCAN;
819 }
820 
821 static void paint_it(struct kmemleak_object *object, int color)
822 {
823 	unsigned long flags;
824 
825 	raw_spin_lock_irqsave(&object->lock, flags);
826 	__paint_it(object, color);
827 	raw_spin_unlock_irqrestore(&object->lock, flags);
828 }
829 
830 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
831 {
832 	struct kmemleak_object *object;
833 
834 	object = __find_and_get_object(ptr, 0, is_phys);
835 	if (!object) {
836 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
837 			      ptr,
838 			      (color == KMEMLEAK_GREY) ? "Grey" :
839 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
840 		return;
841 	}
842 	paint_it(object, color);
843 	put_object(object);
844 }
845 
846 /*
847  * Mark an object permanently as gray-colored so that it can no longer be
848  * reported as a leak. This is used in general to mark a false positive.
849  */
850 static void make_gray_object(unsigned long ptr)
851 {
852 	paint_ptr(ptr, KMEMLEAK_GREY, false);
853 }
854 
855 /*
856  * Mark the object as black-colored so that it is ignored from scans and
857  * reporting.
858  */
859 static void make_black_object(unsigned long ptr, bool is_phys)
860 {
861 	paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
862 }
863 
864 /*
865  * Add a scanning area to the object. If at least one such area is added,
866  * kmemleak will only scan these ranges rather than the whole memory block.
867  */
868 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
869 {
870 	unsigned long flags;
871 	struct kmemleak_object *object;
872 	struct kmemleak_scan_area *area = NULL;
873 	unsigned long untagged_ptr;
874 	unsigned long untagged_objp;
875 
876 	object = find_and_get_object(ptr, 1);
877 	if (!object) {
878 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
879 			      ptr);
880 		return;
881 	}
882 
883 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
884 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
885 
886 	if (scan_area_cache)
887 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
888 
889 	raw_spin_lock_irqsave(&object->lock, flags);
890 	if (!area) {
891 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
892 		/* mark the object for full scan to avoid false positives */
893 		object->flags |= OBJECT_FULL_SCAN;
894 		goto out_unlock;
895 	}
896 	if (size == SIZE_MAX) {
897 		size = untagged_objp + object->size - untagged_ptr;
898 	} else if (untagged_ptr + size > untagged_objp + object->size) {
899 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
900 		dump_object_info(object);
901 		kmem_cache_free(scan_area_cache, area);
902 		goto out_unlock;
903 	}
904 
905 	INIT_HLIST_NODE(&area->node);
906 	area->start = ptr;
907 	area->size = size;
908 
909 	hlist_add_head(&area->node, &object->area_list);
910 out_unlock:
911 	raw_spin_unlock_irqrestore(&object->lock, flags);
912 	put_object(object);
913 }
914 
915 /*
916  * Any surplus references (object already gray) to 'ptr' are passed to
917  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
918  * vm_struct may be used as an alternative reference to the vmalloc'ed object
919  * (see free_thread_stack()).
920  */
921 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
922 {
923 	unsigned long flags;
924 	struct kmemleak_object *object;
925 
926 	object = find_and_get_object(ptr, 0);
927 	if (!object) {
928 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
929 			      ptr);
930 		return;
931 	}
932 
933 	raw_spin_lock_irqsave(&object->lock, flags);
934 	object->excess_ref = excess_ref;
935 	raw_spin_unlock_irqrestore(&object->lock, flags);
936 	put_object(object);
937 }
938 
939 /*
940  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
941  * pointer. Such object will not be scanned by kmemleak but references to it
942  * are searched.
943  */
944 static void object_no_scan(unsigned long ptr)
945 {
946 	unsigned long flags;
947 	struct kmemleak_object *object;
948 
949 	object = find_and_get_object(ptr, 0);
950 	if (!object) {
951 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
952 		return;
953 	}
954 
955 	raw_spin_lock_irqsave(&object->lock, flags);
956 	object->flags |= OBJECT_NO_SCAN;
957 	raw_spin_unlock_irqrestore(&object->lock, flags);
958 	put_object(object);
959 }
960 
961 /**
962  * kmemleak_alloc - register a newly allocated object
963  * @ptr:	pointer to beginning of the object
964  * @size:	size of the object
965  * @min_count:	minimum number of references to this object. If during memory
966  *		scanning a number of references less than @min_count is found,
967  *		the object is reported as a memory leak. If @min_count is 0,
968  *		the object is never reported as a leak. If @min_count is -1,
969  *		the object is ignored (not scanned and not reported as a leak)
970  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
971  *
972  * This function is called from the kernel allocators when a new object
973  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
974  */
975 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
976 			  gfp_t gfp)
977 {
978 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
979 
980 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
981 		create_object((unsigned long)ptr, size, min_count, gfp);
982 }
983 EXPORT_SYMBOL_GPL(kmemleak_alloc);
984 
985 /**
986  * kmemleak_alloc_percpu - register a newly allocated __percpu object
987  * @ptr:	__percpu pointer to beginning of the object
988  * @size:	size of the object
989  * @gfp:	flags used for kmemleak internal memory allocations
990  *
991  * This function is called from the kernel percpu allocator when a new object
992  * (memory block) is allocated (alloc_percpu).
993  */
994 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
995 				 gfp_t gfp)
996 {
997 	unsigned int cpu;
998 
999 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
1000 
1001 	/*
1002 	 * Percpu allocations are only scanned and not reported as leaks
1003 	 * (min_count is set to 0).
1004 	 */
1005 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1006 		for_each_possible_cpu(cpu)
1007 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1008 				      size, 0, gfp);
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1011 
1012 /**
1013  * kmemleak_vmalloc - register a newly vmalloc'ed object
1014  * @area:	pointer to vm_struct
1015  * @size:	size of the object
1016  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1017  *
1018  * This function is called from the vmalloc() kernel allocator when a new
1019  * object (memory block) is allocated.
1020  */
1021 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1022 {
1023 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1024 
1025 	/*
1026 	 * A min_count = 2 is needed because vm_struct contains a reference to
1027 	 * the virtual address of the vmalloc'ed block.
1028 	 */
1029 	if (kmemleak_enabled) {
1030 		create_object((unsigned long)area->addr, size, 2, gfp);
1031 		object_set_excess_ref((unsigned long)area,
1032 				      (unsigned long)area->addr);
1033 	}
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036 
1037 /**
1038  * kmemleak_free - unregister a previously registered object
1039  * @ptr:	pointer to beginning of the object
1040  *
1041  * This function is called from the kernel allocators when an object (memory
1042  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043  */
1044 void __ref kmemleak_free(const void *ptr)
1045 {
1046 	pr_debug("%s(0x%p)\n", __func__, ptr);
1047 
1048 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049 		delete_object_full((unsigned long)ptr);
1050 }
1051 EXPORT_SYMBOL_GPL(kmemleak_free);
1052 
1053 /**
1054  * kmemleak_free_part - partially unregister a previously registered object
1055  * @ptr:	pointer to the beginning or inside the object. This also
1056  *		represents the start of the range to be freed
1057  * @size:	size to be unregistered
1058  *
1059  * This function is called when only a part of a memory block is freed
1060  * (usually from the bootmem allocator).
1061  */
1062 void __ref kmemleak_free_part(const void *ptr, size_t size)
1063 {
1064 	pr_debug("%s(0x%p)\n", __func__, ptr);
1065 
1066 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067 		delete_object_part((unsigned long)ptr, size, false);
1068 }
1069 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1070 
1071 /**
1072  * kmemleak_free_percpu - unregister a previously registered __percpu object
1073  * @ptr:	__percpu pointer to beginning of the object
1074  *
1075  * This function is called from the kernel percpu allocator when an object
1076  * (memory block) is freed (free_percpu).
1077  */
1078 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1079 {
1080 	unsigned int cpu;
1081 
1082 	pr_debug("%s(0x%p)\n", __func__, ptr);
1083 
1084 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1085 		for_each_possible_cpu(cpu)
1086 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1087 								      cpu));
1088 }
1089 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1090 
1091 /**
1092  * kmemleak_update_trace - update object allocation stack trace
1093  * @ptr:	pointer to beginning of the object
1094  *
1095  * Override the object allocation stack trace for cases where the actual
1096  * allocation place is not always useful.
1097  */
1098 void __ref kmemleak_update_trace(const void *ptr)
1099 {
1100 	struct kmemleak_object *object;
1101 	unsigned long flags;
1102 
1103 	pr_debug("%s(0x%p)\n", __func__, ptr);
1104 
1105 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1106 		return;
1107 
1108 	object = find_and_get_object((unsigned long)ptr, 1);
1109 	if (!object) {
1110 #ifdef DEBUG
1111 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1112 			      ptr);
1113 #endif
1114 		return;
1115 	}
1116 
1117 	raw_spin_lock_irqsave(&object->lock, flags);
1118 	object->trace_handle = set_track_prepare();
1119 	raw_spin_unlock_irqrestore(&object->lock, flags);
1120 
1121 	put_object(object);
1122 }
1123 EXPORT_SYMBOL(kmemleak_update_trace);
1124 
1125 /**
1126  * kmemleak_not_leak - mark an allocated object as false positive
1127  * @ptr:	pointer to beginning of the object
1128  *
1129  * Calling this function on an object will cause the memory block to no longer
1130  * be reported as leak and always be scanned.
1131  */
1132 void __ref kmemleak_not_leak(const void *ptr)
1133 {
1134 	pr_debug("%s(0x%p)\n", __func__, ptr);
1135 
1136 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1137 		make_gray_object((unsigned long)ptr);
1138 }
1139 EXPORT_SYMBOL(kmemleak_not_leak);
1140 
1141 /**
1142  * kmemleak_ignore - ignore an allocated object
1143  * @ptr:	pointer to beginning of the object
1144  *
1145  * Calling this function on an object will cause the memory block to be
1146  * ignored (not scanned and not reported as a leak). This is usually done when
1147  * it is known that the corresponding block is not a leak and does not contain
1148  * any references to other allocated memory blocks.
1149  */
1150 void __ref kmemleak_ignore(const void *ptr)
1151 {
1152 	pr_debug("%s(0x%p)\n", __func__, ptr);
1153 
1154 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155 		make_black_object((unsigned long)ptr, false);
1156 }
1157 EXPORT_SYMBOL(kmemleak_ignore);
1158 
1159 /**
1160  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1161  * @ptr:	pointer to beginning or inside the object. This also
1162  *		represents the start of the scan area
1163  * @size:	size of the scan area
1164  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1165  *
1166  * This function is used when it is known that only certain parts of an object
1167  * contain references to other objects. Kmemleak will only scan these areas
1168  * reducing the number false negatives.
1169  */
1170 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1171 {
1172 	pr_debug("%s(0x%p)\n", __func__, ptr);
1173 
1174 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1175 		add_scan_area((unsigned long)ptr, size, gfp);
1176 }
1177 EXPORT_SYMBOL(kmemleak_scan_area);
1178 
1179 /**
1180  * kmemleak_no_scan - do not scan an allocated object
1181  * @ptr:	pointer to beginning of the object
1182  *
1183  * This function notifies kmemleak not to scan the given memory block. Useful
1184  * in situations where it is known that the given object does not contain any
1185  * references to other objects. Kmemleak will not scan such objects reducing
1186  * the number of false negatives.
1187  */
1188 void __ref kmemleak_no_scan(const void *ptr)
1189 {
1190 	pr_debug("%s(0x%p)\n", __func__, ptr);
1191 
1192 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1193 		object_no_scan((unsigned long)ptr);
1194 }
1195 EXPORT_SYMBOL(kmemleak_no_scan);
1196 
1197 /**
1198  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1199  *			 address argument
1200  * @phys:	physical address of the object
1201  * @size:	size of the object
1202  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1203  */
1204 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1205 {
1206 	pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1207 
1208 	if (kmemleak_enabled)
1209 		/*
1210 		 * Create object with OBJECT_PHYS flag and
1211 		 * assume min_count 0.
1212 		 */
1213 		create_object_phys((unsigned long)phys, size, 0, gfp);
1214 }
1215 EXPORT_SYMBOL(kmemleak_alloc_phys);
1216 
1217 /**
1218  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219  *			     physical address argument
1220  * @phys:	physical address if the beginning or inside an object. This
1221  *		also represents the start of the range to be freed
1222  * @size:	size to be unregistered
1223  */
1224 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225 {
1226 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1227 
1228 	if (kmemleak_enabled)
1229 		delete_object_part((unsigned long)phys, size, true);
1230 }
1231 EXPORT_SYMBOL(kmemleak_free_part_phys);
1232 
1233 /**
1234  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1235  *			  address argument
1236  * @phys:	physical address of the object
1237  */
1238 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1239 {
1240 	pr_debug("%s(0x%pa)\n", __func__, &phys);
1241 
1242 	if (kmemleak_enabled)
1243 		make_black_object((unsigned long)phys, true);
1244 }
1245 EXPORT_SYMBOL(kmemleak_ignore_phys);
1246 
1247 /*
1248  * Update an object's checksum and return true if it was modified.
1249  */
1250 static bool update_checksum(struct kmemleak_object *object)
1251 {
1252 	u32 old_csum = object->checksum;
1253 
1254 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1255 		return false;
1256 
1257 	kasan_disable_current();
1258 	kcsan_disable_current();
1259 	object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1260 	kasan_enable_current();
1261 	kcsan_enable_current();
1262 
1263 	return object->checksum != old_csum;
1264 }
1265 
1266 /*
1267  * Update an object's references. object->lock must be held by the caller.
1268  */
1269 static void update_refs(struct kmemleak_object *object)
1270 {
1271 	if (!color_white(object)) {
1272 		/* non-orphan, ignored or new */
1273 		return;
1274 	}
1275 
1276 	/*
1277 	 * Increase the object's reference count (number of pointers to the
1278 	 * memory block). If this count reaches the required minimum, the
1279 	 * object's color will become gray and it will be added to the
1280 	 * gray_list.
1281 	 */
1282 	object->count++;
1283 	if (color_gray(object)) {
1284 		/* put_object() called when removing from gray_list */
1285 		WARN_ON(!get_object(object));
1286 		list_add_tail(&object->gray_list, &gray_list);
1287 	}
1288 }
1289 
1290 /*
1291  * Memory scanning is a long process and it needs to be interruptible. This
1292  * function checks whether such interrupt condition occurred.
1293  */
1294 static int scan_should_stop(void)
1295 {
1296 	if (!kmemleak_enabled)
1297 		return 1;
1298 
1299 	/*
1300 	 * This function may be called from either process or kthread context,
1301 	 * hence the need to check for both stop conditions.
1302 	 */
1303 	if (current->mm)
1304 		return signal_pending(current);
1305 	else
1306 		return kthread_should_stop();
1307 
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Scan a memory block (exclusive range) for valid pointers and add those
1313  * found to the gray list.
1314  */
1315 static void scan_block(void *_start, void *_end,
1316 		       struct kmemleak_object *scanned)
1317 {
1318 	unsigned long *ptr;
1319 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1320 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1321 	unsigned long flags;
1322 	unsigned long untagged_ptr;
1323 
1324 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1325 	for (ptr = start; ptr < end; ptr++) {
1326 		struct kmemleak_object *object;
1327 		unsigned long pointer;
1328 		unsigned long excess_ref;
1329 
1330 		if (scan_should_stop())
1331 			break;
1332 
1333 		kasan_disable_current();
1334 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1335 		kasan_enable_current();
1336 
1337 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1338 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1339 			continue;
1340 
1341 		/*
1342 		 * No need for get_object() here since we hold kmemleak_lock.
1343 		 * object->use_count cannot be dropped to 0 while the object
1344 		 * is still present in object_tree_root and object_list
1345 		 * (with updates protected by kmemleak_lock).
1346 		 */
1347 		object = lookup_object(pointer, 1);
1348 		if (!object)
1349 			continue;
1350 		if (object == scanned)
1351 			/* self referenced, ignore */
1352 			continue;
1353 
1354 		/*
1355 		 * Avoid the lockdep recursive warning on object->lock being
1356 		 * previously acquired in scan_object(). These locks are
1357 		 * enclosed by scan_mutex.
1358 		 */
1359 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1360 		/* only pass surplus references (object already gray) */
1361 		if (color_gray(object)) {
1362 			excess_ref = object->excess_ref;
1363 			/* no need for update_refs() if object already gray */
1364 		} else {
1365 			excess_ref = 0;
1366 			update_refs(object);
1367 		}
1368 		raw_spin_unlock(&object->lock);
1369 
1370 		if (excess_ref) {
1371 			object = lookup_object(excess_ref, 0);
1372 			if (!object)
1373 				continue;
1374 			if (object == scanned)
1375 				/* circular reference, ignore */
1376 				continue;
1377 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1378 			update_refs(object);
1379 			raw_spin_unlock(&object->lock);
1380 		}
1381 	}
1382 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1383 }
1384 
1385 /*
1386  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1387  */
1388 #ifdef CONFIG_SMP
1389 static void scan_large_block(void *start, void *end)
1390 {
1391 	void *next;
1392 
1393 	while (start < end) {
1394 		next = min(start + MAX_SCAN_SIZE, end);
1395 		scan_block(start, next, NULL);
1396 		start = next;
1397 		cond_resched();
1398 	}
1399 }
1400 #endif
1401 
1402 /*
1403  * Scan a memory block corresponding to a kmemleak_object. A condition is
1404  * that object->use_count >= 1.
1405  */
1406 static void scan_object(struct kmemleak_object *object)
1407 {
1408 	struct kmemleak_scan_area *area;
1409 	unsigned long flags;
1410 	void *obj_ptr;
1411 
1412 	/*
1413 	 * Once the object->lock is acquired, the corresponding memory block
1414 	 * cannot be freed (the same lock is acquired in delete_object).
1415 	 */
1416 	raw_spin_lock_irqsave(&object->lock, flags);
1417 	if (object->flags & OBJECT_NO_SCAN)
1418 		goto out;
1419 	if (!(object->flags & OBJECT_ALLOCATED))
1420 		/* already freed object */
1421 		goto out;
1422 
1423 	obj_ptr = object->flags & OBJECT_PHYS ?
1424 		  __va((phys_addr_t)object->pointer) :
1425 		  (void *)object->pointer;
1426 
1427 	if (hlist_empty(&object->area_list) ||
1428 	    object->flags & OBJECT_FULL_SCAN) {
1429 		void *start = obj_ptr;
1430 		void *end = obj_ptr + object->size;
1431 		void *next;
1432 
1433 		do {
1434 			next = min(start + MAX_SCAN_SIZE, end);
1435 			scan_block(start, next, object);
1436 
1437 			start = next;
1438 			if (start >= end)
1439 				break;
1440 
1441 			raw_spin_unlock_irqrestore(&object->lock, flags);
1442 			cond_resched();
1443 			raw_spin_lock_irqsave(&object->lock, flags);
1444 		} while (object->flags & OBJECT_ALLOCATED);
1445 	} else
1446 		hlist_for_each_entry(area, &object->area_list, node)
1447 			scan_block((void *)area->start,
1448 				   (void *)(area->start + area->size),
1449 				   object);
1450 out:
1451 	raw_spin_unlock_irqrestore(&object->lock, flags);
1452 }
1453 
1454 /*
1455  * Scan the objects already referenced (gray objects). More objects will be
1456  * referenced and, if there are no memory leaks, all the objects are scanned.
1457  */
1458 static void scan_gray_list(void)
1459 {
1460 	struct kmemleak_object *object, *tmp;
1461 
1462 	/*
1463 	 * The list traversal is safe for both tail additions and removals
1464 	 * from inside the loop. The kmemleak objects cannot be freed from
1465 	 * outside the loop because their use_count was incremented.
1466 	 */
1467 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1468 	while (&object->gray_list != &gray_list) {
1469 		cond_resched();
1470 
1471 		/* may add new objects to the list */
1472 		if (!scan_should_stop())
1473 			scan_object(object);
1474 
1475 		tmp = list_entry(object->gray_list.next, typeof(*object),
1476 				 gray_list);
1477 
1478 		/* remove the object from the list and release it */
1479 		list_del(&object->gray_list);
1480 		put_object(object);
1481 
1482 		object = tmp;
1483 	}
1484 	WARN_ON(!list_empty(&gray_list));
1485 }
1486 
1487 /*
1488  * Conditionally call resched() in an object iteration loop while making sure
1489  * that the given object won't go away without RCU read lock by performing a
1490  * get_object() if necessaary.
1491  */
1492 static void kmemleak_cond_resched(struct kmemleak_object *object)
1493 {
1494 	if (!get_object(object))
1495 		return;	/* Try next object */
1496 
1497 	raw_spin_lock_irq(&kmemleak_lock);
1498 	if (object->del_state & DELSTATE_REMOVED)
1499 		goto unlock_put;	/* Object removed */
1500 	object->del_state |= DELSTATE_NO_DELETE;
1501 	raw_spin_unlock_irq(&kmemleak_lock);
1502 
1503 	rcu_read_unlock();
1504 	cond_resched();
1505 	rcu_read_lock();
1506 
1507 	raw_spin_lock_irq(&kmemleak_lock);
1508 	if (object->del_state & DELSTATE_REMOVED)
1509 		list_del_rcu(&object->object_list);
1510 	object->del_state &= ~DELSTATE_NO_DELETE;
1511 unlock_put:
1512 	raw_spin_unlock_irq(&kmemleak_lock);
1513 	put_object(object);
1514 }
1515 
1516 /*
1517  * Scan data sections and all the referenced memory blocks allocated via the
1518  * kernel's standard allocators. This function must be called with the
1519  * scan_mutex held.
1520  */
1521 static void kmemleak_scan(void)
1522 {
1523 	struct kmemleak_object *object;
1524 	struct zone *zone;
1525 	int __maybe_unused i;
1526 	int new_leaks = 0;
1527 
1528 	jiffies_last_scan = jiffies;
1529 
1530 	/* prepare the kmemleak_object's */
1531 	rcu_read_lock();
1532 	list_for_each_entry_rcu(object, &object_list, object_list) {
1533 		raw_spin_lock_irq(&object->lock);
1534 #ifdef DEBUG
1535 		/*
1536 		 * With a few exceptions there should be a maximum of
1537 		 * 1 reference to any object at this point.
1538 		 */
1539 		if (atomic_read(&object->use_count) > 1) {
1540 			pr_debug("object->use_count = %d\n",
1541 				 atomic_read(&object->use_count));
1542 			dump_object_info(object);
1543 		}
1544 #endif
1545 
1546 		/* ignore objects outside lowmem (paint them black) */
1547 		if ((object->flags & OBJECT_PHYS) &&
1548 		   !(object->flags & OBJECT_NO_SCAN)) {
1549 			unsigned long phys = object->pointer;
1550 
1551 			if (PHYS_PFN(phys) < min_low_pfn ||
1552 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1553 				__paint_it(object, KMEMLEAK_BLACK);
1554 		}
1555 
1556 		/* reset the reference count (whiten the object) */
1557 		object->count = 0;
1558 		if (color_gray(object) && get_object(object))
1559 			list_add_tail(&object->gray_list, &gray_list);
1560 
1561 		raw_spin_unlock_irq(&object->lock);
1562 
1563 		if (need_resched())
1564 			kmemleak_cond_resched(object);
1565 	}
1566 	rcu_read_unlock();
1567 
1568 #ifdef CONFIG_SMP
1569 	/* per-cpu sections scanning */
1570 	for_each_possible_cpu(i)
1571 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1572 				 __per_cpu_end + per_cpu_offset(i));
1573 #endif
1574 
1575 	/*
1576 	 * Struct page scanning for each node.
1577 	 */
1578 	get_online_mems();
1579 	for_each_populated_zone(zone) {
1580 		unsigned long start_pfn = zone->zone_start_pfn;
1581 		unsigned long end_pfn = zone_end_pfn(zone);
1582 		unsigned long pfn;
1583 
1584 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1585 			struct page *page = pfn_to_online_page(pfn);
1586 
1587 			if (!(pfn & 63))
1588 				cond_resched();
1589 
1590 			if (!page)
1591 				continue;
1592 
1593 			/* only scan pages belonging to this zone */
1594 			if (page_zone(page) != zone)
1595 				continue;
1596 			/* only scan if page is in use */
1597 			if (page_count(page) == 0)
1598 				continue;
1599 			scan_block(page, page + 1, NULL);
1600 		}
1601 	}
1602 	put_online_mems();
1603 
1604 	/*
1605 	 * Scanning the task stacks (may introduce false negatives).
1606 	 */
1607 	if (kmemleak_stack_scan) {
1608 		struct task_struct *p, *g;
1609 
1610 		rcu_read_lock();
1611 		for_each_process_thread(g, p) {
1612 			void *stack = try_get_task_stack(p);
1613 			if (stack) {
1614 				scan_block(stack, stack + THREAD_SIZE, NULL);
1615 				put_task_stack(p);
1616 			}
1617 		}
1618 		rcu_read_unlock();
1619 	}
1620 
1621 	/*
1622 	 * Scan the objects already referenced from the sections scanned
1623 	 * above.
1624 	 */
1625 	scan_gray_list();
1626 
1627 	/*
1628 	 * Check for new or unreferenced objects modified since the previous
1629 	 * scan and color them gray until the next scan.
1630 	 */
1631 	rcu_read_lock();
1632 	list_for_each_entry_rcu(object, &object_list, object_list) {
1633 		if (need_resched())
1634 			kmemleak_cond_resched(object);
1635 
1636 		/*
1637 		 * This is racy but we can save the overhead of lock/unlock
1638 		 * calls. The missed objects, if any, should be caught in
1639 		 * the next scan.
1640 		 */
1641 		if (!color_white(object))
1642 			continue;
1643 		raw_spin_lock_irq(&object->lock);
1644 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1645 		    && update_checksum(object) && get_object(object)) {
1646 			/* color it gray temporarily */
1647 			object->count = object->min_count;
1648 			list_add_tail(&object->gray_list, &gray_list);
1649 		}
1650 		raw_spin_unlock_irq(&object->lock);
1651 	}
1652 	rcu_read_unlock();
1653 
1654 	/*
1655 	 * Re-scan the gray list for modified unreferenced objects.
1656 	 */
1657 	scan_gray_list();
1658 
1659 	/*
1660 	 * If scanning was stopped do not report any new unreferenced objects.
1661 	 */
1662 	if (scan_should_stop())
1663 		return;
1664 
1665 	/*
1666 	 * Scanning result reporting.
1667 	 */
1668 	rcu_read_lock();
1669 	list_for_each_entry_rcu(object, &object_list, object_list) {
1670 		if (need_resched())
1671 			kmemleak_cond_resched(object);
1672 
1673 		/*
1674 		 * This is racy but we can save the overhead of lock/unlock
1675 		 * calls. The missed objects, if any, should be caught in
1676 		 * the next scan.
1677 		 */
1678 		if (!color_white(object))
1679 			continue;
1680 		raw_spin_lock_irq(&object->lock);
1681 		if (unreferenced_object(object) &&
1682 		    !(object->flags & OBJECT_REPORTED)) {
1683 			object->flags |= OBJECT_REPORTED;
1684 
1685 			if (kmemleak_verbose)
1686 				print_unreferenced(NULL, object);
1687 
1688 			new_leaks++;
1689 		}
1690 		raw_spin_unlock_irq(&object->lock);
1691 	}
1692 	rcu_read_unlock();
1693 
1694 	if (new_leaks) {
1695 		kmemleak_found_leaks = true;
1696 
1697 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1698 			new_leaks);
1699 	}
1700 
1701 }
1702 
1703 /*
1704  * Thread function performing automatic memory scanning. Unreferenced objects
1705  * at the end of a memory scan are reported but only the first time.
1706  */
1707 static int kmemleak_scan_thread(void *arg)
1708 {
1709 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1710 
1711 	pr_info("Automatic memory scanning thread started\n");
1712 	set_user_nice(current, 10);
1713 
1714 	/*
1715 	 * Wait before the first scan to allow the system to fully initialize.
1716 	 */
1717 	if (first_run) {
1718 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1719 		first_run = 0;
1720 		while (timeout && !kthread_should_stop())
1721 			timeout = schedule_timeout_interruptible(timeout);
1722 	}
1723 
1724 	while (!kthread_should_stop()) {
1725 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1726 
1727 		mutex_lock(&scan_mutex);
1728 		kmemleak_scan();
1729 		mutex_unlock(&scan_mutex);
1730 
1731 		/* wait before the next scan */
1732 		while (timeout && !kthread_should_stop())
1733 			timeout = schedule_timeout_interruptible(timeout);
1734 	}
1735 
1736 	pr_info("Automatic memory scanning thread ended\n");
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  * Start the automatic memory scanning thread. This function must be called
1743  * with the scan_mutex held.
1744  */
1745 static void start_scan_thread(void)
1746 {
1747 	if (scan_thread)
1748 		return;
1749 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1750 	if (IS_ERR(scan_thread)) {
1751 		pr_warn("Failed to create the scan thread\n");
1752 		scan_thread = NULL;
1753 	}
1754 }
1755 
1756 /*
1757  * Stop the automatic memory scanning thread.
1758  */
1759 static void stop_scan_thread(void)
1760 {
1761 	if (scan_thread) {
1762 		kthread_stop(scan_thread);
1763 		scan_thread = NULL;
1764 	}
1765 }
1766 
1767 /*
1768  * Iterate over the object_list and return the first valid object at or after
1769  * the required position with its use_count incremented. The function triggers
1770  * a memory scanning when the pos argument points to the first position.
1771  */
1772 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1773 {
1774 	struct kmemleak_object *object;
1775 	loff_t n = *pos;
1776 	int err;
1777 
1778 	err = mutex_lock_interruptible(&scan_mutex);
1779 	if (err < 0)
1780 		return ERR_PTR(err);
1781 
1782 	rcu_read_lock();
1783 	list_for_each_entry_rcu(object, &object_list, object_list) {
1784 		if (n-- > 0)
1785 			continue;
1786 		if (get_object(object))
1787 			goto out;
1788 	}
1789 	object = NULL;
1790 out:
1791 	return object;
1792 }
1793 
1794 /*
1795  * Return the next object in the object_list. The function decrements the
1796  * use_count of the previous object and increases that of the next one.
1797  */
1798 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1799 {
1800 	struct kmemleak_object *prev_obj = v;
1801 	struct kmemleak_object *next_obj = NULL;
1802 	struct kmemleak_object *obj = prev_obj;
1803 
1804 	++(*pos);
1805 
1806 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1807 		if (get_object(obj)) {
1808 			next_obj = obj;
1809 			break;
1810 		}
1811 	}
1812 
1813 	put_object(prev_obj);
1814 	return next_obj;
1815 }
1816 
1817 /*
1818  * Decrement the use_count of the last object required, if any.
1819  */
1820 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1821 {
1822 	if (!IS_ERR(v)) {
1823 		/*
1824 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1825 		 * waiting was interrupted, so only release it if !IS_ERR.
1826 		 */
1827 		rcu_read_unlock();
1828 		mutex_unlock(&scan_mutex);
1829 		if (v)
1830 			put_object(v);
1831 	}
1832 }
1833 
1834 /*
1835  * Print the information for an unreferenced object to the seq file.
1836  */
1837 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1838 {
1839 	struct kmemleak_object *object = v;
1840 	unsigned long flags;
1841 
1842 	raw_spin_lock_irqsave(&object->lock, flags);
1843 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1844 		print_unreferenced(seq, object);
1845 	raw_spin_unlock_irqrestore(&object->lock, flags);
1846 	return 0;
1847 }
1848 
1849 static const struct seq_operations kmemleak_seq_ops = {
1850 	.start = kmemleak_seq_start,
1851 	.next  = kmemleak_seq_next,
1852 	.stop  = kmemleak_seq_stop,
1853 	.show  = kmemleak_seq_show,
1854 };
1855 
1856 static int kmemleak_open(struct inode *inode, struct file *file)
1857 {
1858 	return seq_open(file, &kmemleak_seq_ops);
1859 }
1860 
1861 static int dump_str_object_info(const char *str)
1862 {
1863 	unsigned long flags;
1864 	struct kmemleak_object *object;
1865 	unsigned long addr;
1866 
1867 	if (kstrtoul(str, 0, &addr))
1868 		return -EINVAL;
1869 	object = find_and_get_object(addr, 0);
1870 	if (!object) {
1871 		pr_info("Unknown object at 0x%08lx\n", addr);
1872 		return -EINVAL;
1873 	}
1874 
1875 	raw_spin_lock_irqsave(&object->lock, flags);
1876 	dump_object_info(object);
1877 	raw_spin_unlock_irqrestore(&object->lock, flags);
1878 
1879 	put_object(object);
1880 	return 0;
1881 }
1882 
1883 /*
1884  * We use grey instead of black to ensure we can do future scans on the same
1885  * objects. If we did not do future scans these black objects could
1886  * potentially contain references to newly allocated objects in the future and
1887  * we'd end up with false positives.
1888  */
1889 static void kmemleak_clear(void)
1890 {
1891 	struct kmemleak_object *object;
1892 
1893 	rcu_read_lock();
1894 	list_for_each_entry_rcu(object, &object_list, object_list) {
1895 		raw_spin_lock_irq(&object->lock);
1896 		if ((object->flags & OBJECT_REPORTED) &&
1897 		    unreferenced_object(object))
1898 			__paint_it(object, KMEMLEAK_GREY);
1899 		raw_spin_unlock_irq(&object->lock);
1900 	}
1901 	rcu_read_unlock();
1902 
1903 	kmemleak_found_leaks = false;
1904 }
1905 
1906 static void __kmemleak_do_cleanup(void);
1907 
1908 /*
1909  * File write operation to configure kmemleak at run-time. The following
1910  * commands can be written to the /sys/kernel/debug/kmemleak file:
1911  *   off	- disable kmemleak (irreversible)
1912  *   stack=on	- enable the task stacks scanning
1913  *   stack=off	- disable the tasks stacks scanning
1914  *   scan=on	- start the automatic memory scanning thread
1915  *   scan=off	- stop the automatic memory scanning thread
1916  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1917  *		  disable it)
1918  *   scan	- trigger a memory scan
1919  *   clear	- mark all current reported unreferenced kmemleak objects as
1920  *		  grey to ignore printing them, or free all kmemleak objects
1921  *		  if kmemleak has been disabled.
1922  *   dump=...	- dump information about the object found at the given address
1923  */
1924 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1925 			      size_t size, loff_t *ppos)
1926 {
1927 	char buf[64];
1928 	int buf_size;
1929 	int ret;
1930 
1931 	buf_size = min(size, (sizeof(buf) - 1));
1932 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1933 		return -EFAULT;
1934 	buf[buf_size] = 0;
1935 
1936 	ret = mutex_lock_interruptible(&scan_mutex);
1937 	if (ret < 0)
1938 		return ret;
1939 
1940 	if (strncmp(buf, "clear", 5) == 0) {
1941 		if (kmemleak_enabled)
1942 			kmemleak_clear();
1943 		else
1944 			__kmemleak_do_cleanup();
1945 		goto out;
1946 	}
1947 
1948 	if (!kmemleak_enabled) {
1949 		ret = -EPERM;
1950 		goto out;
1951 	}
1952 
1953 	if (strncmp(buf, "off", 3) == 0)
1954 		kmemleak_disable();
1955 	else if (strncmp(buf, "stack=on", 8) == 0)
1956 		kmemleak_stack_scan = 1;
1957 	else if (strncmp(buf, "stack=off", 9) == 0)
1958 		kmemleak_stack_scan = 0;
1959 	else if (strncmp(buf, "scan=on", 7) == 0)
1960 		start_scan_thread();
1961 	else if (strncmp(buf, "scan=off", 8) == 0)
1962 		stop_scan_thread();
1963 	else if (strncmp(buf, "scan=", 5) == 0) {
1964 		unsigned secs;
1965 		unsigned long msecs;
1966 
1967 		ret = kstrtouint(buf + 5, 0, &secs);
1968 		if (ret < 0)
1969 			goto out;
1970 
1971 		msecs = secs * MSEC_PER_SEC;
1972 		if (msecs > UINT_MAX)
1973 			msecs = UINT_MAX;
1974 
1975 		stop_scan_thread();
1976 		if (msecs) {
1977 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1978 			start_scan_thread();
1979 		}
1980 	} else if (strncmp(buf, "scan", 4) == 0)
1981 		kmemleak_scan();
1982 	else if (strncmp(buf, "dump=", 5) == 0)
1983 		ret = dump_str_object_info(buf + 5);
1984 	else
1985 		ret = -EINVAL;
1986 
1987 out:
1988 	mutex_unlock(&scan_mutex);
1989 	if (ret < 0)
1990 		return ret;
1991 
1992 	/* ignore the rest of the buffer, only one command at a time */
1993 	*ppos += size;
1994 	return size;
1995 }
1996 
1997 static const struct file_operations kmemleak_fops = {
1998 	.owner		= THIS_MODULE,
1999 	.open		= kmemleak_open,
2000 	.read		= seq_read,
2001 	.write		= kmemleak_write,
2002 	.llseek		= seq_lseek,
2003 	.release	= seq_release,
2004 };
2005 
2006 static void __kmemleak_do_cleanup(void)
2007 {
2008 	struct kmemleak_object *object, *tmp;
2009 
2010 	/*
2011 	 * Kmemleak has already been disabled, no need for RCU list traversal
2012 	 * or kmemleak_lock held.
2013 	 */
2014 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2015 		__remove_object(object);
2016 		__delete_object(object);
2017 	}
2018 }
2019 
2020 /*
2021  * Stop the memory scanning thread and free the kmemleak internal objects if
2022  * no previous scan thread (otherwise, kmemleak may still have some useful
2023  * information on memory leaks).
2024  */
2025 static void kmemleak_do_cleanup(struct work_struct *work)
2026 {
2027 	stop_scan_thread();
2028 
2029 	mutex_lock(&scan_mutex);
2030 	/*
2031 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2032 	 * longer track object freeing. Ordering of the scan thread stopping and
2033 	 * the memory accesses below is guaranteed by the kthread_stop()
2034 	 * function.
2035 	 */
2036 	kmemleak_free_enabled = 0;
2037 	mutex_unlock(&scan_mutex);
2038 
2039 	if (!kmemleak_found_leaks)
2040 		__kmemleak_do_cleanup();
2041 	else
2042 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2043 }
2044 
2045 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2046 
2047 /*
2048  * Disable kmemleak. No memory allocation/freeing will be traced once this
2049  * function is called. Disabling kmemleak is an irreversible operation.
2050  */
2051 static void kmemleak_disable(void)
2052 {
2053 	/* atomically check whether it was already invoked */
2054 	if (cmpxchg(&kmemleak_error, 0, 1))
2055 		return;
2056 
2057 	/* stop any memory operation tracing */
2058 	kmemleak_enabled = 0;
2059 
2060 	/* check whether it is too early for a kernel thread */
2061 	if (kmemleak_late_initialized)
2062 		schedule_work(&cleanup_work);
2063 	else
2064 		kmemleak_free_enabled = 0;
2065 
2066 	pr_info("Kernel memory leak detector disabled\n");
2067 }
2068 
2069 /*
2070  * Allow boot-time kmemleak disabling (enabled by default).
2071  */
2072 static int __init kmemleak_boot_config(char *str)
2073 {
2074 	if (!str)
2075 		return -EINVAL;
2076 	if (strcmp(str, "off") == 0)
2077 		kmemleak_disable();
2078 	else if (strcmp(str, "on") == 0) {
2079 		kmemleak_skip_disable = 1;
2080 		stack_depot_request_early_init();
2081 	}
2082 	else
2083 		return -EINVAL;
2084 	return 0;
2085 }
2086 early_param("kmemleak", kmemleak_boot_config);
2087 
2088 /*
2089  * Kmemleak initialization.
2090  */
2091 void __init kmemleak_init(void)
2092 {
2093 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2094 	if (!kmemleak_skip_disable) {
2095 		kmemleak_disable();
2096 		return;
2097 	}
2098 #endif
2099 
2100 	if (kmemleak_error)
2101 		return;
2102 
2103 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2104 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2105 
2106 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2107 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2108 
2109 	/* register the data/bss sections */
2110 	create_object((unsigned long)_sdata, _edata - _sdata,
2111 		      KMEMLEAK_GREY, GFP_ATOMIC);
2112 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2113 		      KMEMLEAK_GREY, GFP_ATOMIC);
2114 	/* only register .data..ro_after_init if not within .data */
2115 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2116 		create_object((unsigned long)__start_ro_after_init,
2117 			      __end_ro_after_init - __start_ro_after_init,
2118 			      KMEMLEAK_GREY, GFP_ATOMIC);
2119 }
2120 
2121 /*
2122  * Late initialization function.
2123  */
2124 static int __init kmemleak_late_init(void)
2125 {
2126 	kmemleak_late_initialized = 1;
2127 
2128 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2129 
2130 	if (kmemleak_error) {
2131 		/*
2132 		 * Some error occurred and kmemleak was disabled. There is a
2133 		 * small chance that kmemleak_disable() was called immediately
2134 		 * after setting kmemleak_late_initialized and we may end up with
2135 		 * two clean-up threads but serialized by scan_mutex.
2136 		 */
2137 		schedule_work(&cleanup_work);
2138 		return -ENOMEM;
2139 	}
2140 
2141 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2142 		mutex_lock(&scan_mutex);
2143 		start_scan_thread();
2144 		mutex_unlock(&scan_mutex);
2145 	}
2146 
2147 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2148 		mem_pool_free_count);
2149 
2150 	return 0;
2151 }
2152 late_initcall(kmemleak_late_init);
2153