xref: /linux/mm/kmemleak.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/mmzone.h>
94 #include <linux/slab.h>
95 #include <linux/thread_info.h>
96 #include <linux/err.h>
97 #include <linux/uaccess.h>
98 #include <linux/string.h>
99 #include <linux/nodemask.h>
100 #include <linux/mm.h>
101 #include <linux/workqueue.h>
102 #include <linux/crc32.h>
103 
104 #include <asm/sections.h>
105 #include <asm/processor.h>
106 #include <linux/atomic.h>
107 
108 #include <linux/kasan.h>
109 #include <linux/kmemcheck.h>
110 #include <linux/kmemleak.h>
111 #include <linux/memory_hotplug.h>
112 
113 /*
114  * Kmemleak configuration and common defines.
115  */
116 #define MAX_TRACE		16	/* stack trace length */
117 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
118 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
119 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
120 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
121 
122 #define BYTES_PER_POINTER	sizeof(void *)
123 
124 /* GFP bitmask for kmemleak internal allocations */
125 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
126 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
127 				 __GFP_NOWARN)
128 
129 /* scanning area inside a memory block */
130 struct kmemleak_scan_area {
131 	struct hlist_node node;
132 	unsigned long start;
133 	size_t size;
134 };
135 
136 #define KMEMLEAK_GREY	0
137 #define KMEMLEAK_BLACK	-1
138 
139 /*
140  * Structure holding the metadata for each allocated memory block.
141  * Modifications to such objects should be made while holding the
142  * object->lock. Insertions or deletions from object_list, gray_list or
143  * rb_node are already protected by the corresponding locks or mutex (see
144  * the notes on locking above). These objects are reference-counted
145  * (use_count) and freed using the RCU mechanism.
146  */
147 struct kmemleak_object {
148 	spinlock_t lock;
149 	unsigned long flags;		/* object status flags */
150 	struct list_head object_list;
151 	struct list_head gray_list;
152 	struct rb_node rb_node;
153 	struct rcu_head rcu;		/* object_list lockless traversal */
154 	/* object usage count; object freed when use_count == 0 */
155 	atomic_t use_count;
156 	unsigned long pointer;
157 	size_t size;
158 	/* minimum number of a pointers found before it is considered leak */
159 	int min_count;
160 	/* the total number of pointers found pointing to this object */
161 	int count;
162 	/* checksum for detecting modified objects */
163 	u32 checksum;
164 	/* memory ranges to be scanned inside an object (empty for all) */
165 	struct hlist_head area_list;
166 	unsigned long trace[MAX_TRACE];
167 	unsigned int trace_len;
168 	unsigned long jiffies;		/* creation timestamp */
169 	pid_t pid;			/* pid of the current task */
170 	char comm[TASK_COMM_LEN];	/* executable name */
171 };
172 
173 /* flag representing the memory block allocation status */
174 #define OBJECT_ALLOCATED	(1 << 0)
175 /* flag set after the first reporting of an unreference object */
176 #define OBJECT_REPORTED		(1 << 1)
177 /* flag set to not scan the object */
178 #define OBJECT_NO_SCAN		(1 << 2)
179 
180 /* number of bytes to print per line; must be 16 or 32 */
181 #define HEX_ROW_SIZE		16
182 /* number of bytes to print at a time (1, 2, 4, 8) */
183 #define HEX_GROUP_SIZE		1
184 /* include ASCII after the hex output */
185 #define HEX_ASCII		1
186 /* max number of lines to be printed */
187 #define HEX_MAX_LINES		2
188 
189 /* the list of all allocated objects */
190 static LIST_HEAD(object_list);
191 /* the list of gray-colored objects (see color_gray comment below) */
192 static LIST_HEAD(gray_list);
193 /* search tree for object boundaries */
194 static struct rb_root object_tree_root = RB_ROOT;
195 /* rw_lock protecting the access to object_list and object_tree_root */
196 static DEFINE_RWLOCK(kmemleak_lock);
197 
198 /* allocation caches for kmemleak internal data */
199 static struct kmem_cache *object_cache;
200 static struct kmem_cache *scan_area_cache;
201 
202 /* set if tracing memory operations is enabled */
203 static int kmemleak_enabled;
204 /* same as above but only for the kmemleak_free() callback */
205 static int kmemleak_free_enabled;
206 /* set in the late_initcall if there were no errors */
207 static int kmemleak_initialized;
208 /* enables or disables early logging of the memory operations */
209 static int kmemleak_early_log = 1;
210 /* set if a kmemleak warning was issued */
211 static int kmemleak_warning;
212 /* set if a fatal kmemleak error has occurred */
213 static int kmemleak_error;
214 
215 /* minimum and maximum address that may be valid pointers */
216 static unsigned long min_addr = ULONG_MAX;
217 static unsigned long max_addr;
218 
219 static struct task_struct *scan_thread;
220 /* used to avoid reporting of recently allocated objects */
221 static unsigned long jiffies_min_age;
222 static unsigned long jiffies_last_scan;
223 /* delay between automatic memory scannings */
224 static signed long jiffies_scan_wait;
225 /* enables or disables the task stacks scanning */
226 static int kmemleak_stack_scan = 1;
227 /* protects the memory scanning, parameters and debug/kmemleak file access */
228 static DEFINE_MUTEX(scan_mutex);
229 /* setting kmemleak=on, will set this var, skipping the disable */
230 static int kmemleak_skip_disable;
231 /* If there are leaks that can be reported */
232 static bool kmemleak_found_leaks;
233 
234 /*
235  * Early object allocation/freeing logging. Kmemleak is initialized after the
236  * kernel allocator. However, both the kernel allocator and kmemleak may
237  * allocate memory blocks which need to be tracked. Kmemleak defines an
238  * arbitrary buffer to hold the allocation/freeing information before it is
239  * fully initialized.
240  */
241 
242 /* kmemleak operation type for early logging */
243 enum {
244 	KMEMLEAK_ALLOC,
245 	KMEMLEAK_ALLOC_PERCPU,
246 	KMEMLEAK_FREE,
247 	KMEMLEAK_FREE_PART,
248 	KMEMLEAK_FREE_PERCPU,
249 	KMEMLEAK_NOT_LEAK,
250 	KMEMLEAK_IGNORE,
251 	KMEMLEAK_SCAN_AREA,
252 	KMEMLEAK_NO_SCAN
253 };
254 
255 /*
256  * Structure holding the information passed to kmemleak callbacks during the
257  * early logging.
258  */
259 struct early_log {
260 	int op_type;			/* kmemleak operation type */
261 	const void *ptr;		/* allocated/freed memory block */
262 	size_t size;			/* memory block size */
263 	int min_count;			/* minimum reference count */
264 	unsigned long trace[MAX_TRACE];	/* stack trace */
265 	unsigned int trace_len;		/* stack trace length */
266 };
267 
268 /* early logging buffer and current position */
269 static struct early_log
270 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
271 static int crt_early_log __initdata;
272 
273 static void kmemleak_disable(void);
274 
275 /*
276  * Print a warning and dump the stack trace.
277  */
278 #define kmemleak_warn(x...)	do {		\
279 	pr_warn(x);				\
280 	dump_stack();				\
281 	kmemleak_warning = 1;			\
282 } while (0)
283 
284 /*
285  * Macro invoked when a serious kmemleak condition occurred and cannot be
286  * recovered from. Kmemleak will be disabled and further allocation/freeing
287  * tracing no longer available.
288  */
289 #define kmemleak_stop(x...)	do {	\
290 	kmemleak_warn(x);		\
291 	kmemleak_disable();		\
292 } while (0)
293 
294 /*
295  * Printing of the objects hex dump to the seq file. The number of lines to be
296  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
297  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
298  * with the object->lock held.
299  */
300 static void hex_dump_object(struct seq_file *seq,
301 			    struct kmemleak_object *object)
302 {
303 	const u8 *ptr = (const u8 *)object->pointer;
304 	size_t len;
305 
306 	/* limit the number of lines to HEX_MAX_LINES */
307 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
308 
309 	seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
310 	seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
311 		     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
312 }
313 
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *		sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *		(min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326 	return object->count != KMEMLEAK_BLACK &&
327 		object->count < object->min_count;
328 }
329 
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332 	return object->min_count != KMEMLEAK_BLACK &&
333 		object->count >= object->min_count;
334 }
335 
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344 		time_before_eq(object->jiffies + jiffies_min_age,
345 			       jiffies_last_scan);
346 }
347 
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353 			       struct kmemleak_object *object)
354 {
355 	int i;
356 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
357 
358 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
359 		   object->pointer, object->size);
360 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
361 		   object->comm, object->pid, object->jiffies,
362 		   msecs_age / 1000, msecs_age % 1000);
363 	hex_dump_object(seq, object);
364 	seq_printf(seq, "  backtrace:\n");
365 
366 	for (i = 0; i < object->trace_len; i++) {
367 		void *ptr = (void *)object->trace[i];
368 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
369 	}
370 }
371 
372 /*
373  * Print the kmemleak_object information. This function is used mainly for
374  * debugging special cases when kmemleak operations. It must be called with
375  * the object->lock held.
376  */
377 static void dump_object_info(struct kmemleak_object *object)
378 {
379 	struct stack_trace trace;
380 
381 	trace.nr_entries = object->trace_len;
382 	trace.entries = object->trace;
383 
384 	pr_notice("Object 0x%08lx (size %zu):\n",
385 		  object->pointer, object->size);
386 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
387 		  object->comm, object->pid, object->jiffies);
388 	pr_notice("  min_count = %d\n", object->min_count);
389 	pr_notice("  count = %d\n", object->count);
390 	pr_notice("  flags = 0x%lx\n", object->flags);
391 	pr_notice("  checksum = %u\n", object->checksum);
392 	pr_notice("  backtrace:\n");
393 	print_stack_trace(&trace, 4);
394 }
395 
396 /*
397  * Look-up a memory block metadata (kmemleak_object) in the object search
398  * tree based on a pointer value. If alias is 0, only values pointing to the
399  * beginning of the memory block are allowed. The kmemleak_lock must be held
400  * when calling this function.
401  */
402 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
403 {
404 	struct rb_node *rb = object_tree_root.rb_node;
405 
406 	while (rb) {
407 		struct kmemleak_object *object =
408 			rb_entry(rb, struct kmemleak_object, rb_node);
409 		if (ptr < object->pointer)
410 			rb = object->rb_node.rb_left;
411 		else if (object->pointer + object->size <= ptr)
412 			rb = object->rb_node.rb_right;
413 		else if (object->pointer == ptr || alias)
414 			return object;
415 		else {
416 			kmemleak_warn("Found object by alias at 0x%08lx\n",
417 				      ptr);
418 			dump_object_info(object);
419 			break;
420 		}
421 	}
422 	return NULL;
423 }
424 
425 /*
426  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
427  * that once an object's use_count reached 0, the RCU freeing was already
428  * registered and the object should no longer be used. This function must be
429  * called under the protection of rcu_read_lock().
430  */
431 static int get_object(struct kmemleak_object *object)
432 {
433 	return atomic_inc_not_zero(&object->use_count);
434 }
435 
436 /*
437  * RCU callback to free a kmemleak_object.
438  */
439 static void free_object_rcu(struct rcu_head *rcu)
440 {
441 	struct hlist_node *tmp;
442 	struct kmemleak_scan_area *area;
443 	struct kmemleak_object *object =
444 		container_of(rcu, struct kmemleak_object, rcu);
445 
446 	/*
447 	 * Once use_count is 0 (guaranteed by put_object), there is no other
448 	 * code accessing this object, hence no need for locking.
449 	 */
450 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
451 		hlist_del(&area->node);
452 		kmem_cache_free(scan_area_cache, area);
453 	}
454 	kmem_cache_free(object_cache, object);
455 }
456 
457 /*
458  * Decrement the object use_count. Once the count is 0, free the object using
459  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
460  * delete_object() path, the delayed RCU freeing ensures that there is no
461  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
462  * is also possible.
463  */
464 static void put_object(struct kmemleak_object *object)
465 {
466 	if (!atomic_dec_and_test(&object->use_count))
467 		return;
468 
469 	/* should only get here after delete_object was called */
470 	WARN_ON(object->flags & OBJECT_ALLOCATED);
471 
472 	call_rcu(&object->rcu, free_object_rcu);
473 }
474 
475 /*
476  * Look up an object in the object search tree and increase its use_count.
477  */
478 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
479 {
480 	unsigned long flags;
481 	struct kmemleak_object *object;
482 
483 	rcu_read_lock();
484 	read_lock_irqsave(&kmemleak_lock, flags);
485 	object = lookup_object(ptr, alias);
486 	read_unlock_irqrestore(&kmemleak_lock, flags);
487 
488 	/* check whether the object is still available */
489 	if (object && !get_object(object))
490 		object = NULL;
491 	rcu_read_unlock();
492 
493 	return object;
494 }
495 
496 /*
497  * Look up an object in the object search tree and remove it from both
498  * object_tree_root and object_list. The returned object's use_count should be
499  * at least 1, as initially set by create_object().
500  */
501 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
502 {
503 	unsigned long flags;
504 	struct kmemleak_object *object;
505 
506 	write_lock_irqsave(&kmemleak_lock, flags);
507 	object = lookup_object(ptr, alias);
508 	if (object) {
509 		rb_erase(&object->rb_node, &object_tree_root);
510 		list_del_rcu(&object->object_list);
511 	}
512 	write_unlock_irqrestore(&kmemleak_lock, flags);
513 
514 	return object;
515 }
516 
517 /*
518  * Save stack trace to the given array of MAX_TRACE size.
519  */
520 static int __save_stack_trace(unsigned long *trace)
521 {
522 	struct stack_trace stack_trace;
523 
524 	stack_trace.max_entries = MAX_TRACE;
525 	stack_trace.nr_entries = 0;
526 	stack_trace.entries = trace;
527 	stack_trace.skip = 2;
528 	save_stack_trace(&stack_trace);
529 
530 	return stack_trace.nr_entries;
531 }
532 
533 /*
534  * Create the metadata (struct kmemleak_object) corresponding to an allocated
535  * memory block and add it to the object_list and object_tree_root.
536  */
537 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
538 					     int min_count, gfp_t gfp)
539 {
540 	unsigned long flags;
541 	struct kmemleak_object *object, *parent;
542 	struct rb_node **link, *rb_parent;
543 
544 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
545 	if (!object) {
546 		pr_warn("Cannot allocate a kmemleak_object structure\n");
547 		kmemleak_disable();
548 		return NULL;
549 	}
550 
551 	INIT_LIST_HEAD(&object->object_list);
552 	INIT_LIST_HEAD(&object->gray_list);
553 	INIT_HLIST_HEAD(&object->area_list);
554 	spin_lock_init(&object->lock);
555 	atomic_set(&object->use_count, 1);
556 	object->flags = OBJECT_ALLOCATED;
557 	object->pointer = ptr;
558 	object->size = size;
559 	object->min_count = min_count;
560 	object->count = 0;			/* white color initially */
561 	object->jiffies = jiffies;
562 	object->checksum = 0;
563 
564 	/* task information */
565 	if (in_irq()) {
566 		object->pid = 0;
567 		strncpy(object->comm, "hardirq", sizeof(object->comm));
568 	} else if (in_softirq()) {
569 		object->pid = 0;
570 		strncpy(object->comm, "softirq", sizeof(object->comm));
571 	} else {
572 		object->pid = current->pid;
573 		/*
574 		 * There is a small chance of a race with set_task_comm(),
575 		 * however using get_task_comm() here may cause locking
576 		 * dependency issues with current->alloc_lock. In the worst
577 		 * case, the command line is not correct.
578 		 */
579 		strncpy(object->comm, current->comm, sizeof(object->comm));
580 	}
581 
582 	/* kernel backtrace */
583 	object->trace_len = __save_stack_trace(object->trace);
584 
585 	write_lock_irqsave(&kmemleak_lock, flags);
586 
587 	min_addr = min(min_addr, ptr);
588 	max_addr = max(max_addr, ptr + size);
589 	link = &object_tree_root.rb_node;
590 	rb_parent = NULL;
591 	while (*link) {
592 		rb_parent = *link;
593 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
594 		if (ptr + size <= parent->pointer)
595 			link = &parent->rb_node.rb_left;
596 		else if (parent->pointer + parent->size <= ptr)
597 			link = &parent->rb_node.rb_right;
598 		else {
599 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
600 				      ptr);
601 			/*
602 			 * No need for parent->lock here since "parent" cannot
603 			 * be freed while the kmemleak_lock is held.
604 			 */
605 			dump_object_info(parent);
606 			kmem_cache_free(object_cache, object);
607 			object = NULL;
608 			goto out;
609 		}
610 	}
611 	rb_link_node(&object->rb_node, rb_parent, link);
612 	rb_insert_color(&object->rb_node, &object_tree_root);
613 
614 	list_add_tail_rcu(&object->object_list, &object_list);
615 out:
616 	write_unlock_irqrestore(&kmemleak_lock, flags);
617 	return object;
618 }
619 
620 /*
621  * Mark the object as not allocated and schedule RCU freeing via put_object().
622  */
623 static void __delete_object(struct kmemleak_object *object)
624 {
625 	unsigned long flags;
626 
627 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
628 	WARN_ON(atomic_read(&object->use_count) < 1);
629 
630 	/*
631 	 * Locking here also ensures that the corresponding memory block
632 	 * cannot be freed when it is being scanned.
633 	 */
634 	spin_lock_irqsave(&object->lock, flags);
635 	object->flags &= ~OBJECT_ALLOCATED;
636 	spin_unlock_irqrestore(&object->lock, flags);
637 	put_object(object);
638 }
639 
640 /*
641  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
642  * delete it.
643  */
644 static void delete_object_full(unsigned long ptr)
645 {
646 	struct kmemleak_object *object;
647 
648 	object = find_and_remove_object(ptr, 0);
649 	if (!object) {
650 #ifdef DEBUG
651 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
652 			      ptr);
653 #endif
654 		return;
655 	}
656 	__delete_object(object);
657 }
658 
659 /*
660  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
661  * delete it. If the memory block is partially freed, the function may create
662  * additional metadata for the remaining parts of the block.
663  */
664 static void delete_object_part(unsigned long ptr, size_t size)
665 {
666 	struct kmemleak_object *object;
667 	unsigned long start, end;
668 
669 	object = find_and_remove_object(ptr, 1);
670 	if (!object) {
671 #ifdef DEBUG
672 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
673 			      ptr, size);
674 #endif
675 		return;
676 	}
677 
678 	/*
679 	 * Create one or two objects that may result from the memory block
680 	 * split. Note that partial freeing is only done by free_bootmem() and
681 	 * this happens before kmemleak_init() is called. The path below is
682 	 * only executed during early log recording in kmemleak_init(), so
683 	 * GFP_KERNEL is enough.
684 	 */
685 	start = object->pointer;
686 	end = object->pointer + object->size;
687 	if (ptr > start)
688 		create_object(start, ptr - start, object->min_count,
689 			      GFP_KERNEL);
690 	if (ptr + size < end)
691 		create_object(ptr + size, end - ptr - size, object->min_count,
692 			      GFP_KERNEL);
693 
694 	__delete_object(object);
695 }
696 
697 static void __paint_it(struct kmemleak_object *object, int color)
698 {
699 	object->min_count = color;
700 	if (color == KMEMLEAK_BLACK)
701 		object->flags |= OBJECT_NO_SCAN;
702 }
703 
704 static void paint_it(struct kmemleak_object *object, int color)
705 {
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&object->lock, flags);
709 	__paint_it(object, color);
710 	spin_unlock_irqrestore(&object->lock, flags);
711 }
712 
713 static void paint_ptr(unsigned long ptr, int color)
714 {
715 	struct kmemleak_object *object;
716 
717 	object = find_and_get_object(ptr, 0);
718 	if (!object) {
719 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
720 			      ptr,
721 			      (color == KMEMLEAK_GREY) ? "Grey" :
722 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
723 		return;
724 	}
725 	paint_it(object, color);
726 	put_object(object);
727 }
728 
729 /*
730  * Mark an object permanently as gray-colored so that it can no longer be
731  * reported as a leak. This is used in general to mark a false positive.
732  */
733 static void make_gray_object(unsigned long ptr)
734 {
735 	paint_ptr(ptr, KMEMLEAK_GREY);
736 }
737 
738 /*
739  * Mark the object as black-colored so that it is ignored from scans and
740  * reporting.
741  */
742 static void make_black_object(unsigned long ptr)
743 {
744 	paint_ptr(ptr, KMEMLEAK_BLACK);
745 }
746 
747 /*
748  * Add a scanning area to the object. If at least one such area is added,
749  * kmemleak will only scan these ranges rather than the whole memory block.
750  */
751 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
752 {
753 	unsigned long flags;
754 	struct kmemleak_object *object;
755 	struct kmemleak_scan_area *area;
756 
757 	object = find_and_get_object(ptr, 1);
758 	if (!object) {
759 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
760 			      ptr);
761 		return;
762 	}
763 
764 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
765 	if (!area) {
766 		pr_warn("Cannot allocate a scan area\n");
767 		goto out;
768 	}
769 
770 	spin_lock_irqsave(&object->lock, flags);
771 	if (size == SIZE_MAX) {
772 		size = object->pointer + object->size - ptr;
773 	} else if (ptr + size > object->pointer + object->size) {
774 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
775 		dump_object_info(object);
776 		kmem_cache_free(scan_area_cache, area);
777 		goto out_unlock;
778 	}
779 
780 	INIT_HLIST_NODE(&area->node);
781 	area->start = ptr;
782 	area->size = size;
783 
784 	hlist_add_head(&area->node, &object->area_list);
785 out_unlock:
786 	spin_unlock_irqrestore(&object->lock, flags);
787 out:
788 	put_object(object);
789 }
790 
791 /*
792  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
793  * pointer. Such object will not be scanned by kmemleak but references to it
794  * are searched.
795  */
796 static void object_no_scan(unsigned long ptr)
797 {
798 	unsigned long flags;
799 	struct kmemleak_object *object;
800 
801 	object = find_and_get_object(ptr, 0);
802 	if (!object) {
803 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
804 		return;
805 	}
806 
807 	spin_lock_irqsave(&object->lock, flags);
808 	object->flags |= OBJECT_NO_SCAN;
809 	spin_unlock_irqrestore(&object->lock, flags);
810 	put_object(object);
811 }
812 
813 /*
814  * Log an early kmemleak_* call to the early_log buffer. These calls will be
815  * processed later once kmemleak is fully initialized.
816  */
817 static void __init log_early(int op_type, const void *ptr, size_t size,
818 			     int min_count)
819 {
820 	unsigned long flags;
821 	struct early_log *log;
822 
823 	if (kmemleak_error) {
824 		/* kmemleak stopped recording, just count the requests */
825 		crt_early_log++;
826 		return;
827 	}
828 
829 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
830 		crt_early_log++;
831 		kmemleak_disable();
832 		return;
833 	}
834 
835 	/*
836 	 * There is no need for locking since the kernel is still in UP mode
837 	 * at this stage. Disabling the IRQs is enough.
838 	 */
839 	local_irq_save(flags);
840 	log = &early_log[crt_early_log];
841 	log->op_type = op_type;
842 	log->ptr = ptr;
843 	log->size = size;
844 	log->min_count = min_count;
845 	log->trace_len = __save_stack_trace(log->trace);
846 	crt_early_log++;
847 	local_irq_restore(flags);
848 }
849 
850 /*
851  * Log an early allocated block and populate the stack trace.
852  */
853 static void early_alloc(struct early_log *log)
854 {
855 	struct kmemleak_object *object;
856 	unsigned long flags;
857 	int i;
858 
859 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
860 		return;
861 
862 	/*
863 	 * RCU locking needed to ensure object is not freed via put_object().
864 	 */
865 	rcu_read_lock();
866 	object = create_object((unsigned long)log->ptr, log->size,
867 			       log->min_count, GFP_ATOMIC);
868 	if (!object)
869 		goto out;
870 	spin_lock_irqsave(&object->lock, flags);
871 	for (i = 0; i < log->trace_len; i++)
872 		object->trace[i] = log->trace[i];
873 	object->trace_len = log->trace_len;
874 	spin_unlock_irqrestore(&object->lock, flags);
875 out:
876 	rcu_read_unlock();
877 }
878 
879 /*
880  * Log an early allocated block and populate the stack trace.
881  */
882 static void early_alloc_percpu(struct early_log *log)
883 {
884 	unsigned int cpu;
885 	const void __percpu *ptr = log->ptr;
886 
887 	for_each_possible_cpu(cpu) {
888 		log->ptr = per_cpu_ptr(ptr, cpu);
889 		early_alloc(log);
890 	}
891 }
892 
893 /**
894  * kmemleak_alloc - register a newly allocated object
895  * @ptr:	pointer to beginning of the object
896  * @size:	size of the object
897  * @min_count:	minimum number of references to this object. If during memory
898  *		scanning a number of references less than @min_count is found,
899  *		the object is reported as a memory leak. If @min_count is 0,
900  *		the object is never reported as a leak. If @min_count is -1,
901  *		the object is ignored (not scanned and not reported as a leak)
902  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
903  *
904  * This function is called from the kernel allocators when a new object
905  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
906  */
907 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
908 			  gfp_t gfp)
909 {
910 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
911 
912 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
913 		create_object((unsigned long)ptr, size, min_count, gfp);
914 	else if (kmemleak_early_log)
915 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
916 }
917 EXPORT_SYMBOL_GPL(kmemleak_alloc);
918 
919 /**
920  * kmemleak_alloc_percpu - register a newly allocated __percpu object
921  * @ptr:	__percpu pointer to beginning of the object
922  * @size:	size of the object
923  * @gfp:	flags used for kmemleak internal memory allocations
924  *
925  * This function is called from the kernel percpu allocator when a new object
926  * (memory block) is allocated (alloc_percpu).
927  */
928 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
929 				 gfp_t gfp)
930 {
931 	unsigned int cpu;
932 
933 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
934 
935 	/*
936 	 * Percpu allocations are only scanned and not reported as leaks
937 	 * (min_count is set to 0).
938 	 */
939 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
940 		for_each_possible_cpu(cpu)
941 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
942 				      size, 0, gfp);
943 	else if (kmemleak_early_log)
944 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
945 }
946 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
947 
948 /**
949  * kmemleak_free - unregister a previously registered object
950  * @ptr:	pointer to beginning of the object
951  *
952  * This function is called from the kernel allocators when an object (memory
953  * block) is freed (kmem_cache_free, kfree, vfree etc.).
954  */
955 void __ref kmemleak_free(const void *ptr)
956 {
957 	pr_debug("%s(0x%p)\n", __func__, ptr);
958 
959 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
960 		delete_object_full((unsigned long)ptr);
961 	else if (kmemleak_early_log)
962 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
963 }
964 EXPORT_SYMBOL_GPL(kmemleak_free);
965 
966 /**
967  * kmemleak_free_part - partially unregister a previously registered object
968  * @ptr:	pointer to the beginning or inside the object. This also
969  *		represents the start of the range to be freed
970  * @size:	size to be unregistered
971  *
972  * This function is called when only a part of a memory block is freed
973  * (usually from the bootmem allocator).
974  */
975 void __ref kmemleak_free_part(const void *ptr, size_t size)
976 {
977 	pr_debug("%s(0x%p)\n", __func__, ptr);
978 
979 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
980 		delete_object_part((unsigned long)ptr, size);
981 	else if (kmemleak_early_log)
982 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
983 }
984 EXPORT_SYMBOL_GPL(kmemleak_free_part);
985 
986 /**
987  * kmemleak_free_percpu - unregister a previously registered __percpu object
988  * @ptr:	__percpu pointer to beginning of the object
989  *
990  * This function is called from the kernel percpu allocator when an object
991  * (memory block) is freed (free_percpu).
992  */
993 void __ref kmemleak_free_percpu(const void __percpu *ptr)
994 {
995 	unsigned int cpu;
996 
997 	pr_debug("%s(0x%p)\n", __func__, ptr);
998 
999 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1000 		for_each_possible_cpu(cpu)
1001 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1002 								      cpu));
1003 	else if (kmemleak_early_log)
1004 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1005 }
1006 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007 
1008 /**
1009  * kmemleak_update_trace - update object allocation stack trace
1010  * @ptr:	pointer to beginning of the object
1011  *
1012  * Override the object allocation stack trace for cases where the actual
1013  * allocation place is not always useful.
1014  */
1015 void __ref kmemleak_update_trace(const void *ptr)
1016 {
1017 	struct kmemleak_object *object;
1018 	unsigned long flags;
1019 
1020 	pr_debug("%s(0x%p)\n", __func__, ptr);
1021 
1022 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023 		return;
1024 
1025 	object = find_and_get_object((unsigned long)ptr, 1);
1026 	if (!object) {
1027 #ifdef DEBUG
1028 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 			      ptr);
1030 #endif
1031 		return;
1032 	}
1033 
1034 	spin_lock_irqsave(&object->lock, flags);
1035 	object->trace_len = __save_stack_trace(object->trace);
1036 	spin_unlock_irqrestore(&object->lock, flags);
1037 
1038 	put_object(object);
1039 }
1040 EXPORT_SYMBOL(kmemleak_update_trace);
1041 
1042 /**
1043  * kmemleak_not_leak - mark an allocated object as false positive
1044  * @ptr:	pointer to beginning of the object
1045  *
1046  * Calling this function on an object will cause the memory block to no longer
1047  * be reported as leak and always be scanned.
1048  */
1049 void __ref kmemleak_not_leak(const void *ptr)
1050 {
1051 	pr_debug("%s(0x%p)\n", __func__, ptr);
1052 
1053 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054 		make_gray_object((unsigned long)ptr);
1055 	else if (kmemleak_early_log)
1056 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1057 }
1058 EXPORT_SYMBOL(kmemleak_not_leak);
1059 
1060 /**
1061  * kmemleak_ignore - ignore an allocated object
1062  * @ptr:	pointer to beginning of the object
1063  *
1064  * Calling this function on an object will cause the memory block to be
1065  * ignored (not scanned and not reported as a leak). This is usually done when
1066  * it is known that the corresponding block is not a leak and does not contain
1067  * any references to other allocated memory blocks.
1068  */
1069 void __ref kmemleak_ignore(const void *ptr)
1070 {
1071 	pr_debug("%s(0x%p)\n", __func__, ptr);
1072 
1073 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1074 		make_black_object((unsigned long)ptr);
1075 	else if (kmemleak_early_log)
1076 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1077 }
1078 EXPORT_SYMBOL(kmemleak_ignore);
1079 
1080 /**
1081  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1082  * @ptr:	pointer to beginning or inside the object. This also
1083  *		represents the start of the scan area
1084  * @size:	size of the scan area
1085  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1086  *
1087  * This function is used when it is known that only certain parts of an object
1088  * contain references to other objects. Kmemleak will only scan these areas
1089  * reducing the number false negatives.
1090  */
1091 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1092 {
1093 	pr_debug("%s(0x%p)\n", __func__, ptr);
1094 
1095 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1096 		add_scan_area((unsigned long)ptr, size, gfp);
1097 	else if (kmemleak_early_log)
1098 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1099 }
1100 EXPORT_SYMBOL(kmemleak_scan_area);
1101 
1102 /**
1103  * kmemleak_no_scan - do not scan an allocated object
1104  * @ptr:	pointer to beginning of the object
1105  *
1106  * This function notifies kmemleak not to scan the given memory block. Useful
1107  * in situations where it is known that the given object does not contain any
1108  * references to other objects. Kmemleak will not scan such objects reducing
1109  * the number of false negatives.
1110  */
1111 void __ref kmemleak_no_scan(const void *ptr)
1112 {
1113 	pr_debug("%s(0x%p)\n", __func__, ptr);
1114 
1115 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1116 		object_no_scan((unsigned long)ptr);
1117 	else if (kmemleak_early_log)
1118 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1119 }
1120 EXPORT_SYMBOL(kmemleak_no_scan);
1121 
1122 /*
1123  * Update an object's checksum and return true if it was modified.
1124  */
1125 static bool update_checksum(struct kmemleak_object *object)
1126 {
1127 	u32 old_csum = object->checksum;
1128 
1129 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1130 		return false;
1131 
1132 	kasan_disable_current();
1133 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1134 	kasan_enable_current();
1135 
1136 	return object->checksum != old_csum;
1137 }
1138 
1139 /*
1140  * Memory scanning is a long process and it needs to be interruptable. This
1141  * function checks whether such interrupt condition occurred.
1142  */
1143 static int scan_should_stop(void)
1144 {
1145 	if (!kmemleak_enabled)
1146 		return 1;
1147 
1148 	/*
1149 	 * This function may be called from either process or kthread context,
1150 	 * hence the need to check for both stop conditions.
1151 	 */
1152 	if (current->mm)
1153 		return signal_pending(current);
1154 	else
1155 		return kthread_should_stop();
1156 
1157 	return 0;
1158 }
1159 
1160 /*
1161  * Scan a memory block (exclusive range) for valid pointers and add those
1162  * found to the gray list.
1163  */
1164 static void scan_block(void *_start, void *_end,
1165 		       struct kmemleak_object *scanned)
1166 {
1167 	unsigned long *ptr;
1168 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1169 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1170 	unsigned long flags;
1171 
1172 	read_lock_irqsave(&kmemleak_lock, flags);
1173 	for (ptr = start; ptr < end; ptr++) {
1174 		struct kmemleak_object *object;
1175 		unsigned long pointer;
1176 
1177 		if (scan_should_stop())
1178 			break;
1179 
1180 		/* don't scan uninitialized memory */
1181 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1182 						  BYTES_PER_POINTER))
1183 			continue;
1184 
1185 		kasan_disable_current();
1186 		pointer = *ptr;
1187 		kasan_enable_current();
1188 
1189 		if (pointer < min_addr || pointer >= max_addr)
1190 			continue;
1191 
1192 		/*
1193 		 * No need for get_object() here since we hold kmemleak_lock.
1194 		 * object->use_count cannot be dropped to 0 while the object
1195 		 * is still present in object_tree_root and object_list
1196 		 * (with updates protected by kmemleak_lock).
1197 		 */
1198 		object = lookup_object(pointer, 1);
1199 		if (!object)
1200 			continue;
1201 		if (object == scanned)
1202 			/* self referenced, ignore */
1203 			continue;
1204 
1205 		/*
1206 		 * Avoid the lockdep recursive warning on object->lock being
1207 		 * previously acquired in scan_object(). These locks are
1208 		 * enclosed by scan_mutex.
1209 		 */
1210 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1211 		if (!color_white(object)) {
1212 			/* non-orphan, ignored or new */
1213 			spin_unlock(&object->lock);
1214 			continue;
1215 		}
1216 
1217 		/*
1218 		 * Increase the object's reference count (number of pointers
1219 		 * to the memory block). If this count reaches the required
1220 		 * minimum, the object's color will become gray and it will be
1221 		 * added to the gray_list.
1222 		 */
1223 		object->count++;
1224 		if (color_gray(object)) {
1225 			/* put_object() called when removing from gray_list */
1226 			WARN_ON(!get_object(object));
1227 			list_add_tail(&object->gray_list, &gray_list);
1228 		}
1229 		spin_unlock(&object->lock);
1230 	}
1231 	read_unlock_irqrestore(&kmemleak_lock, flags);
1232 }
1233 
1234 /*
1235  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1236  */
1237 static void scan_large_block(void *start, void *end)
1238 {
1239 	void *next;
1240 
1241 	while (start < end) {
1242 		next = min(start + MAX_SCAN_SIZE, end);
1243 		scan_block(start, next, NULL);
1244 		start = next;
1245 		cond_resched();
1246 	}
1247 }
1248 
1249 /*
1250  * Scan a memory block corresponding to a kmemleak_object. A condition is
1251  * that object->use_count >= 1.
1252  */
1253 static void scan_object(struct kmemleak_object *object)
1254 {
1255 	struct kmemleak_scan_area *area;
1256 	unsigned long flags;
1257 
1258 	/*
1259 	 * Once the object->lock is acquired, the corresponding memory block
1260 	 * cannot be freed (the same lock is acquired in delete_object).
1261 	 */
1262 	spin_lock_irqsave(&object->lock, flags);
1263 	if (object->flags & OBJECT_NO_SCAN)
1264 		goto out;
1265 	if (!(object->flags & OBJECT_ALLOCATED))
1266 		/* already freed object */
1267 		goto out;
1268 	if (hlist_empty(&object->area_list)) {
1269 		void *start = (void *)object->pointer;
1270 		void *end = (void *)(object->pointer + object->size);
1271 		void *next;
1272 
1273 		do {
1274 			next = min(start + MAX_SCAN_SIZE, end);
1275 			scan_block(start, next, object);
1276 
1277 			start = next;
1278 			if (start >= end)
1279 				break;
1280 
1281 			spin_unlock_irqrestore(&object->lock, flags);
1282 			cond_resched();
1283 			spin_lock_irqsave(&object->lock, flags);
1284 		} while (object->flags & OBJECT_ALLOCATED);
1285 	} else
1286 		hlist_for_each_entry(area, &object->area_list, node)
1287 			scan_block((void *)area->start,
1288 				   (void *)(area->start + area->size),
1289 				   object);
1290 out:
1291 	spin_unlock_irqrestore(&object->lock, flags);
1292 }
1293 
1294 /*
1295  * Scan the objects already referenced (gray objects). More objects will be
1296  * referenced and, if there are no memory leaks, all the objects are scanned.
1297  */
1298 static void scan_gray_list(void)
1299 {
1300 	struct kmemleak_object *object, *tmp;
1301 
1302 	/*
1303 	 * The list traversal is safe for both tail additions and removals
1304 	 * from inside the loop. The kmemleak objects cannot be freed from
1305 	 * outside the loop because their use_count was incremented.
1306 	 */
1307 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1308 	while (&object->gray_list != &gray_list) {
1309 		cond_resched();
1310 
1311 		/* may add new objects to the list */
1312 		if (!scan_should_stop())
1313 			scan_object(object);
1314 
1315 		tmp = list_entry(object->gray_list.next, typeof(*object),
1316 				 gray_list);
1317 
1318 		/* remove the object from the list and release it */
1319 		list_del(&object->gray_list);
1320 		put_object(object);
1321 
1322 		object = tmp;
1323 	}
1324 	WARN_ON(!list_empty(&gray_list));
1325 }
1326 
1327 /*
1328  * Scan data sections and all the referenced memory blocks allocated via the
1329  * kernel's standard allocators. This function must be called with the
1330  * scan_mutex held.
1331  */
1332 static void kmemleak_scan(void)
1333 {
1334 	unsigned long flags;
1335 	struct kmemleak_object *object;
1336 	int i;
1337 	int new_leaks = 0;
1338 
1339 	jiffies_last_scan = jiffies;
1340 
1341 	/* prepare the kmemleak_object's */
1342 	rcu_read_lock();
1343 	list_for_each_entry_rcu(object, &object_list, object_list) {
1344 		spin_lock_irqsave(&object->lock, flags);
1345 #ifdef DEBUG
1346 		/*
1347 		 * With a few exceptions there should be a maximum of
1348 		 * 1 reference to any object at this point.
1349 		 */
1350 		if (atomic_read(&object->use_count) > 1) {
1351 			pr_debug("object->use_count = %d\n",
1352 				 atomic_read(&object->use_count));
1353 			dump_object_info(object);
1354 		}
1355 #endif
1356 		/* reset the reference count (whiten the object) */
1357 		object->count = 0;
1358 		if (color_gray(object) && get_object(object))
1359 			list_add_tail(&object->gray_list, &gray_list);
1360 
1361 		spin_unlock_irqrestore(&object->lock, flags);
1362 	}
1363 	rcu_read_unlock();
1364 
1365 	/* data/bss scanning */
1366 	scan_large_block(_sdata, _edata);
1367 	scan_large_block(__bss_start, __bss_stop);
1368 
1369 #ifdef CONFIG_SMP
1370 	/* per-cpu sections scanning */
1371 	for_each_possible_cpu(i)
1372 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1373 				 __per_cpu_end + per_cpu_offset(i));
1374 #endif
1375 
1376 	/*
1377 	 * Struct page scanning for each node.
1378 	 */
1379 	get_online_mems();
1380 	for_each_online_node(i) {
1381 		unsigned long start_pfn = node_start_pfn(i);
1382 		unsigned long end_pfn = node_end_pfn(i);
1383 		unsigned long pfn;
1384 
1385 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1386 			struct page *page;
1387 
1388 			if (!pfn_valid(pfn))
1389 				continue;
1390 			page = pfn_to_page(pfn);
1391 			/* only scan if page is in use */
1392 			if (page_count(page) == 0)
1393 				continue;
1394 			scan_block(page, page + 1, NULL);
1395 		}
1396 	}
1397 	put_online_mems();
1398 
1399 	/*
1400 	 * Scanning the task stacks (may introduce false negatives).
1401 	 */
1402 	if (kmemleak_stack_scan) {
1403 		struct task_struct *p, *g;
1404 
1405 		read_lock(&tasklist_lock);
1406 		do_each_thread(g, p) {
1407 			scan_block(task_stack_page(p), task_stack_page(p) +
1408 				   THREAD_SIZE, NULL);
1409 		} while_each_thread(g, p);
1410 		read_unlock(&tasklist_lock);
1411 	}
1412 
1413 	/*
1414 	 * Scan the objects already referenced from the sections scanned
1415 	 * above.
1416 	 */
1417 	scan_gray_list();
1418 
1419 	/*
1420 	 * Check for new or unreferenced objects modified since the previous
1421 	 * scan and color them gray until the next scan.
1422 	 */
1423 	rcu_read_lock();
1424 	list_for_each_entry_rcu(object, &object_list, object_list) {
1425 		spin_lock_irqsave(&object->lock, flags);
1426 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1427 		    && update_checksum(object) && get_object(object)) {
1428 			/* color it gray temporarily */
1429 			object->count = object->min_count;
1430 			list_add_tail(&object->gray_list, &gray_list);
1431 		}
1432 		spin_unlock_irqrestore(&object->lock, flags);
1433 	}
1434 	rcu_read_unlock();
1435 
1436 	/*
1437 	 * Re-scan the gray list for modified unreferenced objects.
1438 	 */
1439 	scan_gray_list();
1440 
1441 	/*
1442 	 * If scanning was stopped do not report any new unreferenced objects.
1443 	 */
1444 	if (scan_should_stop())
1445 		return;
1446 
1447 	/*
1448 	 * Scanning result reporting.
1449 	 */
1450 	rcu_read_lock();
1451 	list_for_each_entry_rcu(object, &object_list, object_list) {
1452 		spin_lock_irqsave(&object->lock, flags);
1453 		if (unreferenced_object(object) &&
1454 		    !(object->flags & OBJECT_REPORTED)) {
1455 			object->flags |= OBJECT_REPORTED;
1456 			new_leaks++;
1457 		}
1458 		spin_unlock_irqrestore(&object->lock, flags);
1459 	}
1460 	rcu_read_unlock();
1461 
1462 	if (new_leaks) {
1463 		kmemleak_found_leaks = true;
1464 
1465 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1466 			new_leaks);
1467 	}
1468 
1469 }
1470 
1471 /*
1472  * Thread function performing automatic memory scanning. Unreferenced objects
1473  * at the end of a memory scan are reported but only the first time.
1474  */
1475 static int kmemleak_scan_thread(void *arg)
1476 {
1477 	static int first_run = 1;
1478 
1479 	pr_info("Automatic memory scanning thread started\n");
1480 	set_user_nice(current, 10);
1481 
1482 	/*
1483 	 * Wait before the first scan to allow the system to fully initialize.
1484 	 */
1485 	if (first_run) {
1486 		first_run = 0;
1487 		ssleep(SECS_FIRST_SCAN);
1488 	}
1489 
1490 	while (!kthread_should_stop()) {
1491 		signed long timeout = jiffies_scan_wait;
1492 
1493 		mutex_lock(&scan_mutex);
1494 		kmemleak_scan();
1495 		mutex_unlock(&scan_mutex);
1496 
1497 		/* wait before the next scan */
1498 		while (timeout && !kthread_should_stop())
1499 			timeout = schedule_timeout_interruptible(timeout);
1500 	}
1501 
1502 	pr_info("Automatic memory scanning thread ended\n");
1503 
1504 	return 0;
1505 }
1506 
1507 /*
1508  * Start the automatic memory scanning thread. This function must be called
1509  * with the scan_mutex held.
1510  */
1511 static void start_scan_thread(void)
1512 {
1513 	if (scan_thread)
1514 		return;
1515 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1516 	if (IS_ERR(scan_thread)) {
1517 		pr_warn("Failed to create the scan thread\n");
1518 		scan_thread = NULL;
1519 	}
1520 }
1521 
1522 /*
1523  * Stop the automatic memory scanning thread. This function must be called
1524  * with the scan_mutex held.
1525  */
1526 static void stop_scan_thread(void)
1527 {
1528 	if (scan_thread) {
1529 		kthread_stop(scan_thread);
1530 		scan_thread = NULL;
1531 	}
1532 }
1533 
1534 /*
1535  * Iterate over the object_list and return the first valid object at or after
1536  * the required position with its use_count incremented. The function triggers
1537  * a memory scanning when the pos argument points to the first position.
1538  */
1539 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1540 {
1541 	struct kmemleak_object *object;
1542 	loff_t n = *pos;
1543 	int err;
1544 
1545 	err = mutex_lock_interruptible(&scan_mutex);
1546 	if (err < 0)
1547 		return ERR_PTR(err);
1548 
1549 	rcu_read_lock();
1550 	list_for_each_entry_rcu(object, &object_list, object_list) {
1551 		if (n-- > 0)
1552 			continue;
1553 		if (get_object(object))
1554 			goto out;
1555 	}
1556 	object = NULL;
1557 out:
1558 	return object;
1559 }
1560 
1561 /*
1562  * Return the next object in the object_list. The function decrements the
1563  * use_count of the previous object and increases that of the next one.
1564  */
1565 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1566 {
1567 	struct kmemleak_object *prev_obj = v;
1568 	struct kmemleak_object *next_obj = NULL;
1569 	struct kmemleak_object *obj = prev_obj;
1570 
1571 	++(*pos);
1572 
1573 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1574 		if (get_object(obj)) {
1575 			next_obj = obj;
1576 			break;
1577 		}
1578 	}
1579 
1580 	put_object(prev_obj);
1581 	return next_obj;
1582 }
1583 
1584 /*
1585  * Decrement the use_count of the last object required, if any.
1586  */
1587 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1588 {
1589 	if (!IS_ERR(v)) {
1590 		/*
1591 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1592 		 * waiting was interrupted, so only release it if !IS_ERR.
1593 		 */
1594 		rcu_read_unlock();
1595 		mutex_unlock(&scan_mutex);
1596 		if (v)
1597 			put_object(v);
1598 	}
1599 }
1600 
1601 /*
1602  * Print the information for an unreferenced object to the seq file.
1603  */
1604 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1605 {
1606 	struct kmemleak_object *object = v;
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&object->lock, flags);
1610 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1611 		print_unreferenced(seq, object);
1612 	spin_unlock_irqrestore(&object->lock, flags);
1613 	return 0;
1614 }
1615 
1616 static const struct seq_operations kmemleak_seq_ops = {
1617 	.start = kmemleak_seq_start,
1618 	.next  = kmemleak_seq_next,
1619 	.stop  = kmemleak_seq_stop,
1620 	.show  = kmemleak_seq_show,
1621 };
1622 
1623 static int kmemleak_open(struct inode *inode, struct file *file)
1624 {
1625 	return seq_open(file, &kmemleak_seq_ops);
1626 }
1627 
1628 static int dump_str_object_info(const char *str)
1629 {
1630 	unsigned long flags;
1631 	struct kmemleak_object *object;
1632 	unsigned long addr;
1633 
1634 	if (kstrtoul(str, 0, &addr))
1635 		return -EINVAL;
1636 	object = find_and_get_object(addr, 0);
1637 	if (!object) {
1638 		pr_info("Unknown object at 0x%08lx\n", addr);
1639 		return -EINVAL;
1640 	}
1641 
1642 	spin_lock_irqsave(&object->lock, flags);
1643 	dump_object_info(object);
1644 	spin_unlock_irqrestore(&object->lock, flags);
1645 
1646 	put_object(object);
1647 	return 0;
1648 }
1649 
1650 /*
1651  * We use grey instead of black to ensure we can do future scans on the same
1652  * objects. If we did not do future scans these black objects could
1653  * potentially contain references to newly allocated objects in the future and
1654  * we'd end up with false positives.
1655  */
1656 static void kmemleak_clear(void)
1657 {
1658 	struct kmemleak_object *object;
1659 	unsigned long flags;
1660 
1661 	rcu_read_lock();
1662 	list_for_each_entry_rcu(object, &object_list, object_list) {
1663 		spin_lock_irqsave(&object->lock, flags);
1664 		if ((object->flags & OBJECT_REPORTED) &&
1665 		    unreferenced_object(object))
1666 			__paint_it(object, KMEMLEAK_GREY);
1667 		spin_unlock_irqrestore(&object->lock, flags);
1668 	}
1669 	rcu_read_unlock();
1670 
1671 	kmemleak_found_leaks = false;
1672 }
1673 
1674 static void __kmemleak_do_cleanup(void);
1675 
1676 /*
1677  * File write operation to configure kmemleak at run-time. The following
1678  * commands can be written to the /sys/kernel/debug/kmemleak file:
1679  *   off	- disable kmemleak (irreversible)
1680  *   stack=on	- enable the task stacks scanning
1681  *   stack=off	- disable the tasks stacks scanning
1682  *   scan=on	- start the automatic memory scanning thread
1683  *   scan=off	- stop the automatic memory scanning thread
1684  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1685  *		  disable it)
1686  *   scan	- trigger a memory scan
1687  *   clear	- mark all current reported unreferenced kmemleak objects as
1688  *		  grey to ignore printing them, or free all kmemleak objects
1689  *		  if kmemleak has been disabled.
1690  *   dump=...	- dump information about the object found at the given address
1691  */
1692 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1693 			      size_t size, loff_t *ppos)
1694 {
1695 	char buf[64];
1696 	int buf_size;
1697 	int ret;
1698 
1699 	buf_size = min(size, (sizeof(buf) - 1));
1700 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1701 		return -EFAULT;
1702 	buf[buf_size] = 0;
1703 
1704 	ret = mutex_lock_interruptible(&scan_mutex);
1705 	if (ret < 0)
1706 		return ret;
1707 
1708 	if (strncmp(buf, "clear", 5) == 0) {
1709 		if (kmemleak_enabled)
1710 			kmemleak_clear();
1711 		else
1712 			__kmemleak_do_cleanup();
1713 		goto out;
1714 	}
1715 
1716 	if (!kmemleak_enabled) {
1717 		ret = -EBUSY;
1718 		goto out;
1719 	}
1720 
1721 	if (strncmp(buf, "off", 3) == 0)
1722 		kmemleak_disable();
1723 	else if (strncmp(buf, "stack=on", 8) == 0)
1724 		kmemleak_stack_scan = 1;
1725 	else if (strncmp(buf, "stack=off", 9) == 0)
1726 		kmemleak_stack_scan = 0;
1727 	else if (strncmp(buf, "scan=on", 7) == 0)
1728 		start_scan_thread();
1729 	else if (strncmp(buf, "scan=off", 8) == 0)
1730 		stop_scan_thread();
1731 	else if (strncmp(buf, "scan=", 5) == 0) {
1732 		unsigned long secs;
1733 
1734 		ret = kstrtoul(buf + 5, 0, &secs);
1735 		if (ret < 0)
1736 			goto out;
1737 		stop_scan_thread();
1738 		if (secs) {
1739 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1740 			start_scan_thread();
1741 		}
1742 	} else if (strncmp(buf, "scan", 4) == 0)
1743 		kmemleak_scan();
1744 	else if (strncmp(buf, "dump=", 5) == 0)
1745 		ret = dump_str_object_info(buf + 5);
1746 	else
1747 		ret = -EINVAL;
1748 
1749 out:
1750 	mutex_unlock(&scan_mutex);
1751 	if (ret < 0)
1752 		return ret;
1753 
1754 	/* ignore the rest of the buffer, only one command at a time */
1755 	*ppos += size;
1756 	return size;
1757 }
1758 
1759 static const struct file_operations kmemleak_fops = {
1760 	.owner		= THIS_MODULE,
1761 	.open		= kmemleak_open,
1762 	.read		= seq_read,
1763 	.write		= kmemleak_write,
1764 	.llseek		= seq_lseek,
1765 	.release	= seq_release,
1766 };
1767 
1768 static void __kmemleak_do_cleanup(void)
1769 {
1770 	struct kmemleak_object *object;
1771 
1772 	rcu_read_lock();
1773 	list_for_each_entry_rcu(object, &object_list, object_list)
1774 		delete_object_full(object->pointer);
1775 	rcu_read_unlock();
1776 }
1777 
1778 /*
1779  * Stop the memory scanning thread and free the kmemleak internal objects if
1780  * no previous scan thread (otherwise, kmemleak may still have some useful
1781  * information on memory leaks).
1782  */
1783 static void kmemleak_do_cleanup(struct work_struct *work)
1784 {
1785 	stop_scan_thread();
1786 
1787 	/*
1788 	 * Once the scan thread has stopped, it is safe to no longer track
1789 	 * object freeing. Ordering of the scan thread stopping and the memory
1790 	 * accesses below is guaranteed by the kthread_stop() function.
1791 	 */
1792 	kmemleak_free_enabled = 0;
1793 
1794 	if (!kmemleak_found_leaks)
1795 		__kmemleak_do_cleanup();
1796 	else
1797 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1798 }
1799 
1800 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1801 
1802 /*
1803  * Disable kmemleak. No memory allocation/freeing will be traced once this
1804  * function is called. Disabling kmemleak is an irreversible operation.
1805  */
1806 static void kmemleak_disable(void)
1807 {
1808 	/* atomically check whether it was already invoked */
1809 	if (cmpxchg(&kmemleak_error, 0, 1))
1810 		return;
1811 
1812 	/* stop any memory operation tracing */
1813 	kmemleak_enabled = 0;
1814 
1815 	/* check whether it is too early for a kernel thread */
1816 	if (kmemleak_initialized)
1817 		schedule_work(&cleanup_work);
1818 	else
1819 		kmemleak_free_enabled = 0;
1820 
1821 	pr_info("Kernel memory leak detector disabled\n");
1822 }
1823 
1824 /*
1825  * Allow boot-time kmemleak disabling (enabled by default).
1826  */
1827 static int kmemleak_boot_config(char *str)
1828 {
1829 	if (!str)
1830 		return -EINVAL;
1831 	if (strcmp(str, "off") == 0)
1832 		kmemleak_disable();
1833 	else if (strcmp(str, "on") == 0)
1834 		kmemleak_skip_disable = 1;
1835 	else
1836 		return -EINVAL;
1837 	return 0;
1838 }
1839 early_param("kmemleak", kmemleak_boot_config);
1840 
1841 static void __init print_log_trace(struct early_log *log)
1842 {
1843 	struct stack_trace trace;
1844 
1845 	trace.nr_entries = log->trace_len;
1846 	trace.entries = log->trace;
1847 
1848 	pr_notice("Early log backtrace:\n");
1849 	print_stack_trace(&trace, 2);
1850 }
1851 
1852 /*
1853  * Kmemleak initialization.
1854  */
1855 void __init kmemleak_init(void)
1856 {
1857 	int i;
1858 	unsigned long flags;
1859 
1860 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1861 	if (!kmemleak_skip_disable) {
1862 		kmemleak_early_log = 0;
1863 		kmemleak_disable();
1864 		return;
1865 	}
1866 #endif
1867 
1868 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1869 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1870 
1871 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1872 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1873 
1874 	if (crt_early_log > ARRAY_SIZE(early_log))
1875 		pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1876 			crt_early_log);
1877 
1878 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1879 	local_irq_save(flags);
1880 	kmemleak_early_log = 0;
1881 	if (kmemleak_error) {
1882 		local_irq_restore(flags);
1883 		return;
1884 	} else {
1885 		kmemleak_enabled = 1;
1886 		kmemleak_free_enabled = 1;
1887 	}
1888 	local_irq_restore(flags);
1889 
1890 	/*
1891 	 * This is the point where tracking allocations is safe. Automatic
1892 	 * scanning is started during the late initcall. Add the early logged
1893 	 * callbacks to the kmemleak infrastructure.
1894 	 */
1895 	for (i = 0; i < crt_early_log; i++) {
1896 		struct early_log *log = &early_log[i];
1897 
1898 		switch (log->op_type) {
1899 		case KMEMLEAK_ALLOC:
1900 			early_alloc(log);
1901 			break;
1902 		case KMEMLEAK_ALLOC_PERCPU:
1903 			early_alloc_percpu(log);
1904 			break;
1905 		case KMEMLEAK_FREE:
1906 			kmemleak_free(log->ptr);
1907 			break;
1908 		case KMEMLEAK_FREE_PART:
1909 			kmemleak_free_part(log->ptr, log->size);
1910 			break;
1911 		case KMEMLEAK_FREE_PERCPU:
1912 			kmemleak_free_percpu(log->ptr);
1913 			break;
1914 		case KMEMLEAK_NOT_LEAK:
1915 			kmemleak_not_leak(log->ptr);
1916 			break;
1917 		case KMEMLEAK_IGNORE:
1918 			kmemleak_ignore(log->ptr);
1919 			break;
1920 		case KMEMLEAK_SCAN_AREA:
1921 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1922 			break;
1923 		case KMEMLEAK_NO_SCAN:
1924 			kmemleak_no_scan(log->ptr);
1925 			break;
1926 		default:
1927 			kmemleak_warn("Unknown early log operation: %d\n",
1928 				      log->op_type);
1929 		}
1930 
1931 		if (kmemleak_warning) {
1932 			print_log_trace(log);
1933 			kmemleak_warning = 0;
1934 		}
1935 	}
1936 }
1937 
1938 /*
1939  * Late initialization function.
1940  */
1941 static int __init kmemleak_late_init(void)
1942 {
1943 	struct dentry *dentry;
1944 
1945 	kmemleak_initialized = 1;
1946 
1947 	if (kmemleak_error) {
1948 		/*
1949 		 * Some error occurred and kmemleak was disabled. There is a
1950 		 * small chance that kmemleak_disable() was called immediately
1951 		 * after setting kmemleak_initialized and we may end up with
1952 		 * two clean-up threads but serialized by scan_mutex.
1953 		 */
1954 		schedule_work(&cleanup_work);
1955 		return -ENOMEM;
1956 	}
1957 
1958 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1959 				     &kmemleak_fops);
1960 	if (!dentry)
1961 		pr_warn("Failed to create the debugfs kmemleak file\n");
1962 	mutex_lock(&scan_mutex);
1963 	start_scan_thread();
1964 	mutex_unlock(&scan_mutex);
1965 
1966 	pr_info("Kernel memory leak detector initialized\n");
1967 
1968 	return 0;
1969 }
1970 late_initcall(kmemleak_late_init);
1971